JP6172175B2 - スイッチング回路及び半導体装置 - Google Patents

スイッチング回路及び半導体装置 Download PDF

Info

Publication number
JP6172175B2
JP6172175B2 JP2015023313A JP2015023313A JP6172175B2 JP 6172175 B2 JP6172175 B2 JP 6172175B2 JP 2015023313 A JP2015023313 A JP 2015023313A JP 2015023313 A JP2015023313 A JP 2015023313A JP 6172175 B2 JP6172175 B2 JP 6172175B2
Authority
JP
Japan
Prior art keywords
igbt
turn
timing
turned
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015023313A
Other languages
English (en)
Other versions
JP2016146717A (ja
Inventor
真樹 早稲倉
真樹 早稲倉
賢 妹尾
賢 妹尾
健 利行
健 利行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015023313A priority Critical patent/JP6172175B2/ja
Priority to CN201511030906.9A priority patent/CN105871363A/zh
Priority to US14/988,425 priority patent/US20160233858A1/en
Priority to DE102016101339.0A priority patent/DE102016101339A1/de
Priority to KR1020160014099A priority patent/KR20160098060A/ko
Publication of JP2016146717A publication Critical patent/JP2016146717A/ja
Priority to KR1020170083150A priority patent/KR20170082142A/ko
Application granted granted Critical
Publication of JP6172175B2 publication Critical patent/JP6172175B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Description

本明細書が開示する技術は、スイッチング回路に関する。
特許文献1に、複数のIGBTを利用するスイッチング回路が開示されている。IGBTによれば、大電流をスイッチングすることができる。
特開2004−112916号公報
IGBTを利用するスイッチング回路では、IGBTで生じるターンオフ損失が問題となる。従来、ゲート抵抗を小さくすることでIGBTのスイッチング速度が速くなることが知られており、スイッチング速度を速くする(すなわち、ゲート抵抗を小さくする)とターンオフ損失が小さくなることが知られている。しかしながら、発明者らは、IGBTに流れる電流が小さい場合には、上記のスイッチング速度とターンオフ損失の関係が成り立たないことを確認した。すなわち、ゲート抵抗を小さくすることでは、低電流時にIGBTのターンオフ損失を低減することは難しいことを確認した。したがって、本明細書では、低電流時におけるIGBTのターンオフ損失を低減する新たな技術を提供する。
発明者らは、IGBTを流れる電流が小さい場合には、IGBTのサイズが小さいほどターンオフ損失が小さい関係があるのに対し、IGBTを流れる電流が大きくなると、IGBTのサイズとターンオフ損失の間に関係がなくなることを確認した。本明細書に開示する技術では、この現象を利用してIGBTのターンオフ損失を低減する。
本明細書が開示するスイッチング回路は、第1IGBTと第2IGBTの並列回路が挿入されている配線と、前記第1IGBTと前記第2IGBTを個々に制御する制御装置を備えている。前記制御装置は、ターンオンタイミングとターンオフタイミングを示す信号の入力を受ける。前記制御装置は、第1制御手順と第2制御手順を備えている。第1制御手順では、前記ターンオンタイミングで前記第1IGBTと前記第2IGBTの双方をオンさせ、前記ターンオフタイミングで前記第1IGBTと前記第2IGBTの双方をオフさせる。第2制御手順では、前記ターンオンタイミングで前記第1IGBTと前記第2IGBTの一方である第1対象IGBTをオンさせ、前記ターンオフタイミングで前記第1対象IGBTをオフさせ、前記ターンオフタイミングに先立って前記第1IGBTと前記第2IGBTの他方である第2対象IGBTをオフにしておく。前記制御装置は、前記配線を流れる電流が閾値よりも大きいときは前記第1制御手順を実施し、前記配線を流れる電流が前記閾値よりも小さいときは前記第2制御手順を実施する。
ターンオフタイミングに先立って第2対象IGBTをオフにしておくために、第2対象IGBTをオンさせない態様もあり得るし、第2対象IGBTと第1対象IGBTを共にオン状態としてから第2対象IGBTを第1対象IGBTより先にオフさせる態様もあり得る。また第1IGBTと第2IGBTの一方を固定的に第2対象IGBTとし、他方を固定的に第1対象IGBTとする態様であってもよいし、第1IGBTを第2対象IGBTとする期間と第2IGBTを第2対象IGBTとする期間が交互に出現する態様であってもよい。
また、制御装置は、第1制御手順を実施するか第2制御手順を実施するかの判定を、その判定時またはその判定時よりも前の時点における配線の電流に基づいて行うことができる。また、この判定は、前記配線を流れる電流そのものが閾値よりも大きいか否かによって実施してもよいし、前記配線を流れる電流に基づいて算出される所定の値が閾値よりも大きいか否かによって実施してもよい。例えば、判定時よりも前の時点における前記配線の電流から前記配線に流れる電流の予測値を算出し、その予測値が閾値よりも大きいか否かによって判定を実施してもよい。
このスイッチング回路では、第1IGBTと第2IGBTとが並列に接続されている並列回路によって配線に流れる電流をスイッチングする。また、このスイッチング回路は、配線に流れる電流に基づいて、第1制御手順と第2制御手順を実施する。
配線に流れる電流が大きいときは、第1制御手順が実施される。第1制御手順では、ターンオンタイミングからターンオフタイミングまで第1IGBTと第2IGBTがオンしている。このため、第1IGBTと第2IGBTの両方に電流が流れる。配線に流れる電流が大きい場合には、第1制御手順を実施することで、第1IGBT及び第2IGBTに分散して電流すことができる。これによって、第1IGBT及び第2IGBTの負荷を低減することができる。また、ターンオフタイミングにおいて、第1IGBTと第2IGBTがオフする。この場合、オフするIGBTのサイズは第1IGBTと第2IGBTを合わせたサイズとなるので、オフするIGBTのサイズは大きい。しかしながら、第1制御手順では、配線(すなわち、第1IGBTと第2IGBT)に流れる電流が大きいので、オフするIGBTのサイズとターンオフ損失の間に相関関係はほとんどない。したがって、このように第1IGBTと第2IGBTをオフしても、それほど大きいターンオフ損失は生じない。
配線に流れる電流が小さいときは、第2制御手順が実施される。第2制御手順では、ターンオフタイミングに先立って第2対象IGBTがオフする。したがって、ターンオフタイミングでは、第2対象IGBTが既にオフしている状態で第1対象IGBTがオフする。この場合、オフするIGBTのサイズは第1対象IGBTのサイズであるので、第1制御手順に比べてオフするIGBTのサイズは小さい。第2制御手順では配線に流れる電流が小さいので、第2対象IGBTがオフしている状態で第1対象IGBTをオフさせる(すなわち、ターンオフするIGBTのサイズを小さくする)ことで、ターンオフ損失を低減することができる。また、第2制御手順では、少なくともターンオフタイミングの直前において、第2対象IGBTがオフしており、第1対象IGBTがオンしている。このため、電流が、第2対象IGBTに流れず、第1対象IGBTに流れる。しかしながら、配線に流れる電流が小さいので、このように第1対象IGBTに偏って電流が流れても、第1対象IGBTに過大な負荷が掛かることはない。
このように、このスイッチング回路によれば、大電流時における各IGBTの負荷を低減しながら、小電流時におけるターンオフ損失を低減することができる。
インバータ回路10の回路図。 スイッチング回路16の回路図。 半導体基板100の上面図(斜線領域はIGBT20を示す)。 実施例1における各値の経時変化を示すグラフ。 実施例2における各値の経時変化を示すグラフ。 実施例3における各値の経時変化を示すグラフ。 実施例4における各値の経時変化を示すグラフ。 変形例の半導体基板100の上面図(斜線領域はIGBT20を示す)。 別の変形例の半導体基板100の上面図(斜線領域はIGBT20を示す)。
図1に示す実施例1のインバータ回路10は、モータ92に交流電流を供給する。インバータ回路10は、高電位配線12と低電位配線14を有している。高電位配線12と低電位配線14は、図示しない直流電源に接続されている。高電位配線12にはプラスの電位VHが印加されており、低電位配線14にはグランド電位(0V)が印加されている。高電位配線12と低電位配線14の間には、3つの直列回路15が並列に接続されている。各直列回路15は、高電位配線12と低電位配線14の間に接続されている接続配線13と、接続配線13に介装されている2つのスイッチング回路16を有している。2つのスイッチング回路16は、高電位配線12と低電位配線14の間で直列に接続されている。直列接続されている2つのスイッチング回路16の間の接続配線13には、出力配線22a〜22cが接続されている。出力配線22a〜22cの他端は、モータ92に接続されている。インバータ回路10は、各スイッチング回路16をスイッチングさせることによって、モータ92に三相交流電流を供給する。
図2は、1つのスイッチング回路16の内部回路を示している。なお、各スイッチング回路16の構成は互いに等しい。図2に示すように、スイッチング回路16は、IGBT18とIGBT20を有している。IGBT18とIGBT20は、互いに並列に接続されている。すなわち、IGBT18のコレクタがIGBT20のコレクタに接続されており、IGBT18のエミッタがIGBT20のエミッタに接続されている。並列に接続された2つのIGBT18、20によって、並列回路30が構成されている。並列回路30は、接続配線13に介装されている。並列回路30は、ダイオード22、24を有している。ダイオード22、24は、IGBT18、20のそれぞれに対して逆並列に接続されている。すなわち、ダイオード22のアノードはIGBT18のエミッタに接続されている。ダイオード22のカソードはIGBT18のコレクタに接続されている。ダイオード24のアノードはIGBT20のエミッタに接続されている。ダイオード24のカソードはIGBT20のコレクタに接続されている。
IGBT18とIGBT20は、図3に示すように、1つの半導体基板100に形成されている。半導体基板100の上面を平面視したときに、IGBT20は半導体基板100の中央100aを含む範囲に形成されており、IGBT18はIGBT20の周囲に形成されている。IGBT18のエミッタとIGBT20のエミッタは、共通のエミッタ電極に接続されている。IGBT18のコレクタとIGBT20のコレクタは、共通のコレクタ電極に接続されている。IGBT18のゲート電極とIGBT20のゲート電極は、分離されている。したがって、IGBT18のゲート電位を、IGBT20のゲート電位とは異なる電位に制御することができる。すなわち、IGBT18のゲート電位とIGBT20のゲート電位を個々に制御することができる。
図2のスイッチング回路16は、ゲート制御回路40を有している。ゲート制御回路40は、IGBT18のゲート電位Vg18とIGBT20のゲート電位Vg20を制御する。ゲート制御回路40は、ロジック制御回路90と、レベルシフタ60と、レベルシフタ80と、制御回路50と、制御回路70を有している。
ロジック制御回路90には、外部から、PWM信号VPが入力される。図4に示すように、PWM信号VPは、高電位Von1と低電位Voff1との間で遷移するパルス信号である。PWM信号VPのデューティ比は、モータ92の動作状態に応じて変化する。
また、ロジック制御回路90には、接続配線13に流れる電流Icの値が入力される。IGBT18のコレクタ電流Ic1は、図示しないIGBT18の検出電極(コレクタ電流を検出するための電極)の電位から測定することができる。また、IGBT20のコレクタ電流Ic2は、図示しないIGBT20の検出電極の電位から測定することができる。コレクタ電流Ic1とコレクタ電流Ic2を加算することで、接続配線13に流れる電流Icが測定される。なお、電流Icは、別の方法によって測定されてもよい。
ロジック制御回路90は、入力されるPWM信号VPと電流Icの値に基づいて、駆動信号VP1と駆動信号VP2を出力する。図4に示すように、駆動信号VP1と駆動信号VP2は、低電位Von2と高電位Voff2の間で遷移するパルス信号である。駆動信号VP1、VP2の波形については、後に詳細に説明する。
レベルシフタ60は、ロジック制御回路90と制御回路50に接続されている。レベルシフタ60は、ロジック制御回路90から出力された駆動信号VP1の基準電位を変更する。基準電位が変更された駆動信号VP1は、制御回路50に入力される。
制御回路50は、レベルシフタ60から入力される駆動信号VP1に基づいて、IGBT18のゲート電位Vg18を制御する。制御回路50は、ゲートオン抵抗52、ゲートオフ抵抗54、PMOS56及びNMOS58を有している。ゲートオン抵抗52の一端は、IGBT18のゲートに接続されている。ゲートオン抵抗52の他端は、PMOS56のドレインに接続されている。PMOS56のソースは、ゲートオン電位Vg1に接続されている。ゲートオン電位Vg1は、IGBT18のエミッタの電位よりも高い電位であり、IGBT18のゲート閾値(IGBT18をオンさせるのに必要な最小限のゲート電位)よりも高い電位である。PMOS56のゲートには、駆動信号VP1が入力される。ゲートオフ抵抗54の一端は、IGBT18のゲートに接続されている。ゲートオフ抵抗54の他端は、NMOS58のドレインに接続されている。NMOS58のソースは、IGBT18のエミッタに接続されている。NMOS58のゲートには、駆動信号VP1が入力される。図4に示すように、駆動信号VP1は、高電位Voff2と低電位Von2の間で遷移する信号である。駆動信号VP1が低電位Von2である間は、PMOS56がオンしており、NMOS58がオフしている。したがって、IGBT18のゲート電位Vg18がゲートオン電位Vg1となり、IGBT18がオンしている。駆動信号VP1が高電位Voff2である間は、NMOS58がオンしており、PMOS56がオフしている。したがって、IGBT18のゲート電位Vg18がIGBT18のエミッタと略同電位Vg0となり、IGBT18がオフしている。このように、制御回路50は、駆動信号VP1に応じて、IGBT18をスイッチングさせる。
レベルシフタ80は、ロジック制御回路90と制御回路70に接続されている。レベルシフタ80は、ロジック制御回路90から出力された駆動信号VP2の基準電位を変更する。基準電位が変更された駆動信号VP2は、制御回路70に入力される。
制御回路70は、レベルシフタ80から入力される駆動信号VP2に基づいて、IGBT20のゲート電位Vg20を制御する。制御回路70は、ゲートオン抵抗72、ゲートオフ抵抗74、PMOS76及びNMOS78を有している。ゲートオン抵抗72の一端は、IGBT20のゲートに接続されている。ゲートオン抵抗72の他端は、PMOS76のドレインに接続されている。PMOS76のソースは、ゲートオン電位Vg1に接続されている。PMOS76のゲートには、駆動信号VP2が入力される。ゲートオフ抵抗74の一端は、IGBT20のゲートに接続されている。ゲートオフ抵抗74の他端は、NMOS78のドレインに接続されている。NMOS78のソースは、IGBT20のエミッタに接続されている。NMOS78のゲートには、駆動信号VP2が入力される。図4に示すように、駆動信号VP2は、高電位Voff2と低電位Von2の間で遷移する信号である。駆動信号VP2が低電位Von2である間は、PMOS76がオンしており、NMOS78がオフしている。したがって、IGBT20のゲート電位Vg20がゲートオン電位Vg1となり、IGBT20がオンしている。駆動信号VP2が高電位Voff2である間は、NMOS78がオンしており、PMOS76がオフしている。したがって、IGBT20のゲート電位Vg20がIGBT20のエミッタと略同電位Vg0となり、IGBT20がオフしている。このように、制御回路70は、駆動信号VP2に応じて、IGBT20をスイッチングさせる。
次に、スイッチング回路16の動作について詳細に説明する。図4に示すように、ロジック制御回路90には、高電位Von1と低電位Voff1の間で遷移するPWM信号VPが入力される。高電位Von1はスイッチング回路16をオン状態とすることを意味する信号であり、低電位Voff1はスイッチング回路16をオフ状態とすることを意味する信号である。したがって、PWM信号VPが低電位Voff1から高電位Von1に遷移するタイミングは、スイッチング回路16をターンオンさせるターンオンタイミングtnである。また、PWM信号VPが高電位Von1から低電位Voff1に遷移するタイミングは、スイッチング回路16をターンオフさせるターンオフタイミングtfである。また、以下では、PWM信号VPが高電位Von1である期間をオン期間Tonと呼び、PWM信号VPが低電位Voff1である期間をオフ期間Toffと呼ぶ。
ロジック制御回路90は、駆動信号VP1として、PWM信号VPを反転した波形の信号を出力する。すなわち、PWM信号VPが高電位Von1である間は駆動信号VP1が低電位Von2であり、PWM信号VPが低電位Voff1である間は駆動信号VP1が高電位Voff2である。したがって、オン期間Tonにおいて、ゲート電位Vg18がゲートオン電位Vg1となり、IGBT18がオン状態となる。このため、オン期間Tonにおいては、少なくともIGBT18を介して電流Icが流れる。オフ期間Toffにおいて、ゲート電位Vg18がゲートオフ電位Vg0となり、IGBT18がオフ状態となる。
また、ロジック制御回路90は、オフ期間Toffの間は、駆動信号VP2として高電位Voff2を出力する。このため、オフ期間Toffにおいて、ゲート電位Vg20がゲートオフ電位Vg0となり、IGBT20がオフ状態となる。オフ期間Toffの間は、IGBT18とIGBT20が共にオフしているので、電流Icが流れない。ロジック制御回路90は、オフ期間Toffの間に、次のオン期間TonにおいてIGBT20をオンさせるか否かを判定する。より詳細には、ロジック制御回路90は、オフ期間Toffの間に、直前のオン期間Tonの最後のターンオフタイミングtfにおいて、電流Icが閾値Ithよりも大きかったか否かを判定する。電流Icが閾値Ith以下であった場合には、第2制御手順が実施される。第2制御手順では、ロジック制御回路90は、次のオン期間Tonにおいて駆動信号VP2を高電位Voff2に維持する。他方、電流Icが閾値Ithより大きかった場合には、第1制御手順が実施される。第1制御手順では、ロジック制御回路90は、次のターンオンタイミングtnにおいて駆動信号VP2を低電位Von2に遷移させ、オン期間Tonの間は駆動信号VP2を低電位Von2に維持する。例えば、図4のタイミングt1(オフ期間Toff中のタイミング)において、ロジック制御回路90は、直前のオン期間Ton1において電流Icが閾値Ithよりも小さかったと判定する。すると、ロジック制御回路90は、第2制御手順を実施し、次のオン期間Ton2において、駆動信号VP2を高電位Voff2に維持する。このため、オン期間Ton2において、IGBT20はオフ状態に維持される。したがって、オン期間Ton2において、IGBT18のみを介して電流Icが流れる。図4のケースでは、オン期間Ton2の間に、電流Icが閾値Ithを超える。このため、ロジック制御回路90は、次のオフ期間Toff中のタイミングt2において、直前のオン期間Ton2の最後のターンオフタイミングtfにおいて電流Icが閾値Ithよりも大きかったと判定する。すると、ロジック制御回路90は、第1制御手順を実施する。すなわち、ロジック制御回路90は、次のターンオンタイミングtnにおいて、駆動信号VP2を低電位Von2に遷移させる。駆動信号VP2は、オン期間Ton3の間は低電位Von2に維持される。このため、オン期間Ton3において、IGBT20がオン状態となる。すなわち、オン期間Ton3において、IGBT18とIGBT20を介して電流Icが流れる。オン期間Ton3の最後のターンオフタイミングtf2において、IGBT18とIGBT20が同時にオフする。このように、このスイッチング回路16では、接続配線13に流れる電流Icが小さい場合には、オン期間TonにおいてIGBT18のみがオンし、電流Icが大きい場合には、オン期間TonにおいてIGBT18とIGBT20の両方がオンする。
IGBT18、20がオフする際には、ターンオフ損失が発生する。電流Icが小さい場合には、ターンオフ損失とターンオフするIGBTのサイズとの間に相関関係が現れる。すなわち、ターンオフするIGBTのサイズが小さいほど、ターンオフ損失が小さくなる。電流Icが大きい場合には、このような相関関係はほとんど現れない。このように電流Icに応じて上記相関関係が変化するのは、以下の理由によると考えられる。ターンオフ損失は、ターンオフ直前にIGBTの半導体基板中に存在するキャリア(電子とホール)が、ターンオフ時に半導体基板から排出されることによって生じる。電流Icが流れている間に半導体基板中に存在する電子の数は、電流Icが大きいほど多くなる。他方、電流Icが大きいか小さいかに係らず、電流Icが流れていれば、半導体基板中にホールが飽和状態で存在している。すなわち、電流Icが流れているときに半導体基板中に存在するホールの数は、電流Icに係らず略一定である。したがって、電流Icが小さい場合には、ターンオフ損失は主にホールの影響によって発生する。上記の通り、半導体基板の電流Icが流れている領域中にホールは飽和状態で存在しているので、このときのホールの数は、IGBTのサイズ(すなわち、半導体基板のうちの電流Icが流れている領域の面積)に略比例する。したがって、電流Icが小さい場合には、ターンオフ損失とターンオフするIGBTのサイズとの間に相関関係が現れる。他方、電流Icが大きい場合には、半導体基板中に存在する電子の数が多くなるので、ターンオフ損失が主に電子の影響によって生じるようになる。このため、電流Icが大きい場合には、ターンオフ損失とターンオフするIGBTのサイズとの間に相関関係がほとんど無い。
上記の通り、スイッチング回路16は、電流Icが小さい場合には、オン期間Tonにおいて、IGBT20をオンさせず、IGBT18のみをオンさせる。つまり、ターンオフタイミングtfに先立ってIGBT20をオフにしておき、ターンオフタイミングtfにIGBT18をオフさせる。したがって、ターンオフタイミングtf(例えば、図4のターンオフタイミングtf1)において、IGBT18が単独でオフする。IGBT18が単独でオフする場合には、半導体基板100のうちのオフする領域のサイズ(すなわち、図3のIGBT18の領域の面積)が小さいので、ターンオフ損失が小さくなる。また、電流Icが小さい場合には、オン期間TonにおいてIGBT18にのみ電流Icが流れても、IGBT18にそれほど高い負荷は掛からない。このように、電流Icが小さい場合には、ターンオフタイミングtfにおいてIGBT18が単独でオフするようにすることで、IGBT18に過大な負荷が掛かることを防止しながら、ターンオフ損失を低減することができる。
また、上記の通り、スイッチング回路16は、電流Icが大きい場合には、オン期間Tonにおいて、IGBT18とIGBT20の両方をオンさせる。すなわち、ターンオンタイミングtnでIGBT18とIGBT20の双方をオンさせ、ターンオフタイミングでIGBT18とIGBT20の双方をオフさせる。したがって、接続配線13に流れる電流Icは、IGBT18とIGBT20に分散して流れる。このように、電流Icが大きい場合には、IGBT18とIGBT20に分散して電流Icを流すことで、IGBT18とIGBT20に高い負荷が掛かることを防止することができる。また、ターンオフタイミングtf(例えば、図4のターンオフタイミングtf2)において、IGBT18とIGBT20が共にオフする。この場合、半導体基板100のうちのオフする領域のサイズが、図3のIGBT18の面積とIGBT20の面積を合わせた面積となる。すなわち、この場合、オフする領域のサイズが大きい。しかしながら、電流Icが大きい場合には、ターンオフするIGBTのサイズとターンオフ損失の間にほとんど相関関係は存在しない。したがって、このようにIGBT18とIGBT20を同時にオフさせても、いずれか一方のみをオフさせる場合に比べてターンオフ損失は大きくならない。このように、電流Icが大きい場合には、オン期間TonにおいてIGBT18、20を共にオンさせることで、ターンオフ損失を増大させることなく、IGBT18、20の負荷を軽減することができる。
また、上述した説明から明らかなように、このスイッチング回路16では、IGBT18の通電時間(すなわち、オンしている時間)が、IGBT20の通電時間よりも長い。また、図3に示すように、半導体基板100の中央部にIGBT20が形成されており、その周囲にIGBT18が形成されている。外周側に形成されているIGBT18は、中央部に形成されているIGBT20よりも放熱性能が高い。このように、放熱性能が高いIGBT18の通電時間を長くすることで、半導体基板100の温度上昇を好適に抑制することができる。
実施例2のスイッチング回路は、図2に示す実施例1のスイッチング回路と同様の構成を有している。実施例2のスイッチング回路は、電流Icが大きい場合には、実施例1と同様に制御を実施する。すなわち、電流Icが大きい場合には、オン期間TonにおいてIGBT18とIGBT20の両方をオンさせ、オフ期間ToffにおいてIGBT18とIGBT20の両方をオフさせる。実施例2のスイッチング回路は、電流Icが小さい場合における制御方法が実施例1の制御方法と異なる。
実施例2のスイッチング回路は、電流Icが小さい場合に、図5に示す第2制御手順を行う。すなわち、ロジック制御回路90は、電流Icが小さい場合に、IGBT18のみがオンするオン期間Ton18とIGBT20のみがオンするオン期間Ton20とが交互に現れるようにIGBT18、20を制御する。より詳細には、オン期間Ton18、オフ期間Toff、オン期間Ton20、オフ期間Toffがこの順序で繰り返し現れるように制御を行う。オフ期間Toffでは、IGBT18とIGBT20が共にオフしている。例えば、図5のタイミングt3において、ロジック制御回路90は、直前のオン期間Ton20において電流Icが閾値Ithよりも小さかったと判定する。すると、次のオン期間Ton18において、ロジック制御回路90は、IGBT18をオン状態とし、IGBT20をオフ状態に維持する。このオン期間Ton18において電流Icが閾値Ithまで上昇しなかったので、タイミングt4において、ロジック制御回路90は、直前のオン期間Ton18において電流Icが閾値Ithよりも小さかったと判定する。すると、次のオン期間Ton20において、ロジック制御回路90は、IGBT20をオン状態とし、IGBT18をオフ状態に維持する。このように、ロジック制御回路90は、IGBT18、20のうちの前回のオン期間TonにおいてオンさせたIGBTではない方のIGBTを次のオン期間Tonにおいてオンさせる。このため、電流Icが小さい間は、IGBT18とIGBT20が交互にオンする。このようにIGBT18とIGBT20を交互にオンさせることで、半導体基板100で生じる熱を分散させることができる。これによって、半導体基板100の温度上昇を抑制することができる。また、このような構成でも、電流Icが小さい場合には、ターンオフタイミングtfにおいてIGBT18またはIGBT20が単独でターンオフするので、ターンオフ損失を低減することができる。
実施例3のスイッチング回路は、図2に示す実施例1のスイッチング回路と同様の構成を有している。実施例3のスイッチング回路は、電流Icが大きい場合には、実施例1と同様に制御を実施する。実施例3のスイッチング回路は、電流Icが小さい場合における制御方法が実施例1の制御方法と異なる。
実施例3のスイッチング回路は、電流Icが小さい場合に、図6に示す第2制御手順を行う。ロジック制御回路90は、電流Icが小さい場合であっても、ターンオンタイミングtnにおいて、IGBT18とIGBT20の両方をオンさせる。そして、ターンオフタイミングtfの直前のタイミングtcで、IGBT20をオフさせる。その後、ロジック制御回路90は、次のターンオンタイミングtnまで(すなわち、ターンオフタイミングtfが過ぎるまで)、IGBT20をオフ状態に維持する。したがって、ターンオフタイミングtfにおいて、IGBT18が単独でオフする。例えば、図6のタイミングt5において、ロジック制御回路90は、直前のオン期間Tonにおいて電流Icが閾値Ithよりも小さかったと判定する。すると、次のターンオンタイミングtnにおいて、ロジック制御回路90は、IGBT18とIGBT20を共にオンさせる。そして、ターンオフタイミングtfより前のタイミングtcで、IGBT20をオフさせる。IGBT20は、ターンオフタイミングtfが過ぎるまでオフ状態に維持される。タイミングtcでは、IGBT18をオフさせず、オン状態に維持する。その後のターンオフタイミングtfでIGBT18をオフさせる。したがって、ターンオフタイミングtfにおいては、IGBT18が単独でオフする。このように、実施例3では、電流Icが小さい場合に、オン期間Tonの一部においてIGBT18、20を共にオンさせるが、IGBT20をIGBT18よりも先にオフさせる。
上記の制御においては、タイミングtcにおいてIGBT20がオフする一方で、IGBT18はオン状態に維持される。IGBT20がオフしても、IGBT18がオンしているので、IGBT20のコレクタ‐エミッタ間電圧は低い電圧に維持される。したがって、IGBT20がオフする際に、ターンオフ損失は発生しない。また、ターンオフタイミングtfにおいてIGBT18がオフする際には、IGBT18がオフすることでIGBT18のコレクタ‐エミッタ間電圧が上昇する。したがって、ターンオフタイミングtfにおいて、ターンオフ損失が発生する。しかしながら、ターンオフタイミングtfでは、IGBT18が単独でオフするので、ターンオフ損失は小さい。したがって、実施例3のスイッチング回路でも、ターンオフ損失を低減することができる。また、このように電流Icが小さい場合でも、オン期間Tonの一部でIGBT18、20に電流Icを分散させることで、IGBT18、20の負荷をさらに低減することができる。これによって、半導体基板100の温度上昇を抑制することができる。
なお、上述した実施例3では、オフ期間Toff中のタイミング(例えば、タイミングt5)でロジック制御回路90が電流Icに関する判定を行った。しかしながら、実施例3では、オン期間Ton中のタイミング(例えば、タイミングt6(すなわち、IGBT20をオフさせるタイミングtcより前のタイミング))で電流Icに関する判定を行ってもよい。この場合、タイミングt6の時点の電流Icに基づいて判定を行うことができる。
また、上述した実施例3において、IGBT20がオフするタイミングtcからIGBT18がオフするターンオフタイミングtfの間の遅延時間は、半導体基板100のIGBT20の領域中のキャリアが消滅するのに十分な時間であることが好ましい。他方、上記遅延時間は、制御への影響を最小化するために、オン期間Tonの10%以下であることが好ましい。
また、上述した実施例3において、ターンオンタイミングtnにおいてIGBT18とIGBT20を同時にオンさせた。しかしながら、IGBT20がオンするタイミングがターンオンタイミングtnより遅くてもよい。
実施例4のスイッチング回路は、図2に示す実施例1のスイッチング回路と同様の構成を有している。実施例4のスイッチング回路は、電流Icが大きい場合には、実施例1と同様に制御を実施する。実施例4のスイッチング回路は、電流Icが小さい場合における制御方法が実施例1の制御方法と異なる。
実施例4の電流Icが小さい場合の制御方法は、実施例2の制御方法と実施例3の制御方法を組み合わせた方法である。実施例4では、電流Icが小さい場合に、図7に示す第2制御手順が実施される。図7では、オン期間Ton18、オフ期間Toff、オン期間Ton20、オフ期間Toffがこの順序で繰り返し現れるように制御が行われる。ターンオンタイミングtnで、IGBT18とIGBT20が共にオンする。オン期間Ton18の前半では、IGBT18とIGBT20がオンしている。オン期間Ton18の途中のタイミングtc1で、IGBT20がオフする。IGBT18は、次のターンオフタイミングtfでオフする。オフ期間Toffでは、IGBT18とIGBT20がオフしている。次のターンオンタイミングtnで、IGBT18とIGBT20が共にオンする。オン期間Ton20の前半では、IGBT18とIGBT20がオンしている。オン期間Ton20の途中のタイミングtc2で、IGBT18がオフする。IGBT20は、次のターンオフタイミングtfでオフする。このような構成によれば、IGBT18の通電時間が長いオン期間Ton18と、IGBT20の通電時間が長いオン期間Ton20が交互に現れるので、半導体基板100で生じる熱を分散させることができる。
なお、上述した実施例1〜4では、図3のように、IGBT20が半導体基板100の中央部に形成されており、IGBT18がIGBT20の周りに形成されていた。しかしながら、図8に示すようにIGBT18とIGBT20が隣接していてもよい。また、図9に示すように、ストライプ状のIGBT18とIGBT20が交互に形成されていてもよい。図9の構成では、IGBT18またはIGBT20が単独でオンしている場合に発生する熱を分散させることができる。また、IGBT18とIGBT20が別の半導体基板に形成されていてもよい。但し、IGBT18とIGBT20を別の半導体基板に形成すると、IGBT18とIGBT20とを接続する配線に生じる寄生抵抗や寄生インダクタンスが大きくなり、並列回路30で生じる損失が大きくなる場合がある。したがって、IGBT18とIGBT20は、単一の半導体基板に形成されている方がより好ましい。
また、上述した実施例1〜4でのスイッチング回路は、直前のオン期間Tonにおける電流Icが閾値Ithよりも大きいか否かによって、第2制御手順と第1制御手順を切り換える。しかしながら、直前のオン期間Tonの電流Icに基づいて次のオン期間Tonの電流Icの予測値を算出し、その予測値に基づいて第2制御手順と第1制御手順を切り換えてもよい。
以下に、各実施例の構成要素と請求項の構成要素との関係について説明する。実施例1〜4のIGBT18は、請求項の第1IGBTの一例である。実施例1〜4のIGBT20は、請求項の第2IGBTの一例である。実施例1〜4の接続配線13は、請求項の配線の一例である。実施例1〜4のゲート制御回路40は、請求項の制御装置の一例である。実施例1〜4のPWM信号VPは、請求項のターンオンタイミングとターンオフタイミングを示す信号の一例である。
実施例1のIGBT20は、請求項の第2対象IGBTの一例である。実施例1のIGBT18は、請求項の第1対象IGBTの一例である。実施例1の第2制御手順は、ターンオンタイミングで第2対象IGBTをオンさせない請求項の第2制御手順の一例である。
実施例2のオン期間Ton18においては、IGBT20が請求項の第2対象IGBTの一例であり、IGBT18が請求項の第1対象IGBTの一例である。実施例2のオン期間Ton20においては、IGBT18が請求項の第2対象IGBTの一例であり、IGBT20が請求項の第1対象IGBTの一例である。実施例2の第2制御手順は、第1IGBTと第2IGBTを交互に第2対象IGBTとする請求項の第2制御手順の一例である。また、実施例2の第2制御手順は、ターンオンタイミングで第2対象IGBTをオンさせない請求項の第2制御手順の一例である。
実施例3のIGBT20は、請求項の第2対象IGBTの一例である。実施例3のIGBT18は、請求項の第1対象IGBTの一例である。実施例3の第2制御手順は、ターンオンタイミング以降でターンオフタイミングより前の期間の一部で第2対象IGBTをオンさせる請求項の第2制御手順の一例である。
実施例4のオン期間Ton18においては、IGBT20が請求項の第2対象IGBTの一例であり、IGBT18が請求項の第1対象IGBTの一例である。実施例4のオン期間Ton20においては、IGBT18が請求項の第2対象IGBTの一例であり、IGBT20が請求項の第1対象IGBTの一例である。実施例4の第2制御手順は、第1IGBTと第2IGBTを交互に第2対象IGBTとする請求項の第2制御手順の一例である。また、実施例4の第2制御手順は、ターンオンタイミング以降でターンオフタイミングより前の期間の一部で第2対象IGBTをオンさせる請求項の第2制御手順の一例である。
本明細書が開示する技術要素について、以下に列記する。なお、以下の各技術要素は、それぞれ独立して有用なものである。
本明細書が開示する一例の技術においては、第2制御手順では、ターンオンタイミングで第2対象IGBTをオンさせない。
この構成によれば、配線に流れる電流が小さい間は第1対象IGBTをオンさせないので、制御が簡単である。
本明細書が開示する一例の技術においては、第2IGBTを第2対象IGBTとする。
この構成によれば、第2IGBTが常に第2対象IGBTであるので、制御が簡単である。
本明細書が開示する一例の技術においては、第1IGBTと第2IGBTを交互に第2対象IGBTとする。
この構成によれば、IGBTの発熱領域を分散させることができる。
本明細書が開示する一例の技術においては、第2制御手順では、ターンオンタイミング以降でターンオフタイミングより前の期間の一部で第2対象IGBTをオンさせる。
この構成によれば、第1対象IGBTがオンしている期間の一部において第2対象IGBTがオンするので、第1対象IGBTの負荷を低減することができる。
本明細書が開示する一例の技術においては、第1IGBTと第2IGBTが共通の半導体基板に形成されている。
上述した第2IGBTを常に第2対象IGBTとする技術の一例においては、第1IGBTと第2IGBTが共通の半導体基板に形成されており、第2IGBTが半導体基板の中央を含む範囲に形成されており、第1IGBTが第2IGBTの周囲に形成されている。
この構成によれば、IGBTの温度上昇を抑制することができる。
本明細書が開示する一例の技術では、半導体装置が提供される。この半導体装置では、ターンオンタイミングとターンオフタイミングが個々に制御できる第1IGBTと第2IGBTが共通の半導体基板に形成されている。前記第1IGBTのエミッタと前記第2IGBTのエミッタが共通エミッタ電極に接続されている。前記第1IGBTのコレクタと前記第2IGBTのコレクタが共通コレクタ電極に接続されている。
以上、実施形態について詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
本明細書または図面に説明した技術要素は、単独あるいは各種の組み合わせによって技術有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの1つの目的を達成すること自体で技術有用性を持つものである。
10 :インバータ回路
13 :接続配線
16 :スイッチング回路
18 :IGBT
20 :IGBT
22 :ダイオード
24 :ダイオード
30 :並列回路
40 :ゲート制御回路
50 :制御回路
52 :ゲートオン抵抗
54 :ゲートオフ抵抗
56 :PMOS
58 :NMOS
60 :レベルシフタ
70 :制御回路
72 :ゲートオン抵抗
74 :ゲートオフ抵抗
76 :PMOS
78 :NMOS
80 :レベルシフタ
90 :ロジック制御回路
92 :モータ
100 :半導体基板

Claims (2)

  1. 第1IGBTと第2IGBTの並列回路が挿入されている配線と、
    前記第1IGBTと前記第2IGBTを個々に制御する制御装置を備えており、
    前記制御装置が、
    ターンオンタイミングとターンオフタイミングを示す信号の入力を受け、
    前記ターンオンタイミングで前記第1IGBTと前記第2IGBTの双方をオンさせ、前記ターンオフタイミングで前記第1IGBTと前記第2IGBTの双方をオフさせる第1制御手順と、
    前記ターンオンタイミングで前記第1IGBTをオンさせ、前記ターンオフタイミングで前記第1IGBTをオフさせ、前記ターンオフタイミングに先立って前記第2IGBTをオフにしておく第2制御手順を備えており、
    前記配線を流れる電流が閾値よりも大きいときは前記第1制御手順を実施し、
    前記配線を流れる電流が前記閾値よりも小さいときは前記第2制御手順を実施し、
    前記第2制御手順では、前記ターンオンタイミングで前記第2IGBTをオンさせず、
    前記第1IGBTと前記第2IGBTが共通の半導体基板に形成されており、
    前記第2IGBTが前記半導体基板の中央を含む範囲に形成されており、
    前記第1IGBTが前記第2IGBTの周囲に形成されている、
    スイッチング回路。
  2. 第1IGBTと第2IGBTの並列回路が挿入されている配線と、
    前記第1IGBTと前記第2IGBTを個々に制御する制御装置を備えており、
    前記制御装置が、
    ターンオンタイミングとターンオフタイミングを示す信号の入力を受け、
    前記ターンオンタイミングで前記第1IGBTと前記第2IGBTの双方をオンさせ、前記ターンオフタイミングで前記第1IGBTと前記第2IGBTの双方をオフさせる第1制御手順と、
    前記ターンオンタイミングで前記第1IGBTをオンさせ、前記ターンオフタイミングで前記第1IGBTをオフさせ、前記ターンオフタイミングに先立って前記第2IGBTをオフにしておく第2制御手順を備えており、
    前記配線を流れる電流が閾値よりも大きいときは前記第1制御手順を実施し、
    前記配線を流れる電流が前記閾値よりも小さいときは前記第2制御手順を実施し、
    前記第2制御手順では、前記ターンオンタイミング以降で前記ターンオフタイミングより前の期間の一部で前記第2IGBTをオンさせ、
    前記第1IGBTと前記第2IGBTが共通の半導体基板に形成されており、
    前記第2IGBTが前記半導体基板の中央を含む範囲に形成されており、
    前記第1IGBTが前記第2IGBTの周囲に形成されている、
    スイッチング回路。
JP2015023313A 2015-02-09 2015-02-09 スイッチング回路及び半導体装置 Expired - Fee Related JP6172175B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015023313A JP6172175B2 (ja) 2015-02-09 2015-02-09 スイッチング回路及び半導体装置
CN201511030906.9A CN105871363A (zh) 2015-02-09 2015-12-31 开关电路及半导体装置
US14/988,425 US20160233858A1 (en) 2015-02-09 2016-01-05 Switching circuit and semiconductor device
DE102016101339.0A DE102016101339A1 (de) 2015-02-09 2016-01-26 Schaltschaltung und halbleitervorrichtung
KR1020160014099A KR20160098060A (ko) 2015-02-09 2016-02-04 스위칭 회로 및 반도체 장치
KR1020170083150A KR20170082142A (ko) 2015-02-09 2017-06-30 스위칭 회로 및 반도체 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023313A JP6172175B2 (ja) 2015-02-09 2015-02-09 スイッチング回路及び半導体装置

Publications (2)

Publication Number Publication Date
JP2016146717A JP2016146717A (ja) 2016-08-12
JP6172175B2 true JP6172175B2 (ja) 2017-08-02

Family

ID=56498670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023313A Expired - Fee Related JP6172175B2 (ja) 2015-02-09 2015-02-09 スイッチング回路及び半導体装置

Country Status (5)

Country Link
US (1) US20160233858A1 (ja)
JP (1) JP6172175B2 (ja)
KR (2) KR20160098060A (ja)
CN (1) CN105871363A (ja)
DE (1) DE102016101339A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319276B2 (ja) 2015-11-20 2018-05-09 トヨタ自動車株式会社 スイッチング回路
JP6561794B2 (ja) 2015-11-20 2019-08-21 トヨタ自動車株式会社 スイッチング回路
JP6724706B2 (ja) * 2016-10-11 2020-07-15 株式会社デンソー スイッチング素子の駆動回路
JP6669638B2 (ja) * 2016-11-29 2020-03-18 トヨタ自動車株式会社 スイッチング回路
US10439485B2 (en) 2018-01-17 2019-10-08 Ford Global Technologies, Llc DC inverter having reduced switching loss for paralleled phase leg switches
JP7210912B2 (ja) 2018-06-27 2023-01-24 株式会社デンソー スイッチング素子駆動装置
JP7119872B2 (ja) * 2018-10-09 2022-08-17 株式会社デンソー スイッチの駆動回路
JP7103139B2 (ja) * 2018-10-09 2022-07-20 株式会社デンソー スイッチの駆動回路
JP7188331B2 (ja) * 2019-09-16 2022-12-13 株式会社デンソー スイッチング素子駆動装置
US11290088B2 (en) * 2020-02-19 2022-03-29 Eaton Intelligent Power Limited Drivers for paralleled semiconductor switches
KR20210148638A (ko) * 2020-06-01 2021-12-08 코웨이 주식회사 전력변환장치, 이를 포함하는 전기레인지 및 그 제어방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280475A (ja) * 1991-03-08 1992-10-06 Fuji Electric Co Ltd 半導体スイッチング装置
US7253540B1 (en) * 2000-03-15 2007-08-07 Ct Concept Technologie Ag Method for operating a parallel arrangement of semiconductor power switches
JP4120329B2 (ja) 2002-09-19 2008-07-16 富士電機デバイステクノロジー株式会社 電圧駆動型半導体素子のゲート駆動装置
JP4069022B2 (ja) * 2003-06-12 2008-03-26 三菱電機株式会社 電力用半導体装置
JP2007074771A (ja) * 2005-09-05 2007-03-22 Nissan Motor Co Ltd 電圧駆動型スイッチング回路、多相インバータ装置、および、電圧駆動型スイッチング制御方法
TWI348270B (en) * 2008-05-21 2011-09-01 Niko Semiconductor Co Ltd A negative voltage switching apparatus
JP2009284640A (ja) * 2008-05-21 2009-12-03 Toyota Motor Corp 半導体素子駆動装置及び電圧変換装置
EP2182551A1 (en) * 2008-10-29 2010-05-05 ABB Research Ltd. Connection arrangement for semiconductor power modules
JP5250895B2 (ja) * 2009-01-22 2013-07-31 三菱電機株式会社 半導体装置
DE102009041019A1 (de) * 2009-09-10 2011-06-22 Siemens Aktiengesellschaft, 80333 Ansteuerverfahren für hart parallel geschaltete abschaltbare Leistungshalbleiterschalter
US8600595B2 (en) * 2010-07-29 2013-12-03 GM Global Technology Operations LLC Power module active current management for efficiency improvement
JP5854895B2 (ja) * 2011-05-02 2016-02-09 三菱電機株式会社 電力用半導体装置
JP5767018B2 (ja) * 2011-05-17 2015-08-19 トヨタ自動車株式会社 絶縁ゲート型スイッチング素子のゲートの電位を制御する回路
CN102355246A (zh) * 2011-05-18 2012-02-15 中国兵器工业集团第二一四研究所苏州研发中心 一种高速dac电流源开关驱动电路
JP6510310B2 (ja) * 2014-05-12 2019-05-08 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
KR20160098060A (ko) 2016-08-18
DE102016101339A1 (de) 2016-08-11
CN105871363A (zh) 2016-08-17
JP2016146717A (ja) 2016-08-12
KR20170082142A (ko) 2017-07-13
US20160233858A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
JP6172175B2 (ja) スイッチング回路及び半導体装置
JP6319276B2 (ja) スイッチング回路
US9954521B2 (en) Gate drive circuit for semiconductor switching devices
US9065357B2 (en) Power conversion circuit
US10439485B2 (en) DC inverter having reduced switching loss for paralleled phase leg switches
JP6725328B2 (ja) ゲート駆動回路
KR102090665B1 (ko) 전력 변환 회로
CN108123707B (zh) 开关电路
JP6819525B2 (ja) 電力変換回路
JP6758486B2 (ja) 半導体素子の駆動装置および電力変換装置
JP6561794B2 (ja) スイッチング回路
JP6004988B2 (ja) 電力用半導体素子のゲート制御装置
JP2007252020A (ja) 電力変換装置
JP2017228912A (ja) 半導体装置
JP2020178399A (ja) 電力変換装置
JP7201045B2 (ja) 電力変換装置
WO2022244361A1 (ja) ゲート駆動回路、電力変換装置
US20220140748A1 (en) Semiconductor device and inverter device
JP2011217583A (ja) Dc−dcコンバータ
JP2007282444A (ja) 電力変換器の制御回路
JP2008067476A (ja) 電圧駆動型電力用半導体素子のゲート駆動回路
JP5741672B2 (ja) 電力変換回路
JP5841098B2 (ja) ゼロカレントスイッチング回路及びフルブリッジ回路
JP2019193047A (ja) スイッチング素子制御回路
JP2018088772A (ja) スイッチングモジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R151 Written notification of patent or utility model registration

Ref document number: 6172175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees