JP6171354B2 - 非水系電解液及びそれを用いた非水系電解液電池 - Google Patents

非水系電解液及びそれを用いた非水系電解液電池 Download PDF

Info

Publication number
JP6171354B2
JP6171354B2 JP2013007500A JP2013007500A JP6171354B2 JP 6171354 B2 JP6171354 B2 JP 6171354B2 JP 2013007500 A JP2013007500 A JP 2013007500A JP 2013007500 A JP2013007500 A JP 2013007500A JP 6171354 B2 JP6171354 B2 JP 6171354B2
Authority
JP
Japan
Prior art keywords
carbonate
aqueous electrolyte
mass
anhydride
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013007500A
Other languages
English (en)
Other versions
JP2013168363A (ja
Inventor
脩平 澤
脩平 澤
古田土 稔
稔 古田土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013007500A priority Critical patent/JP6171354B2/ja
Publication of JP2013168363A publication Critical patent/JP2013168363A/ja
Application granted granted Critical
Publication of JP6171354B2 publication Critical patent/JP6171354B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水系電解液及びそれを用いた非水系電解液電池に関するものである。
携帯電話機、ノート型パーソナルコンピュータ等の携帯用電子機器の急速な進歩に伴い、その主電源やバックアップ電源に用いられる電池に対する高容量化への要求が高くなっており、ニッケル・カドミウム電池やニッケル・水素電池に比べてエネルギー密度の高いリチウムイオン二次電池等の非水系電解液電池が注目されている。
リチウムイオン二次電池の電解液としては、LiPF、LiBF、LiN(CFSO、LiCF(CFSO等の電解質を、エチレンカーボネート、プロピレンカーボネート等の高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の低粘度溶媒との混合溶媒に溶解させた非水系電解液が代表例として挙げられる。
また、リチウムイオン二次電池の負極活物質としては主にリチウムイオンを吸蔵・放出することができる炭素質材料が用いられており、天然黒鉛、人造黒鉛、非晶質炭素等がその代表例として挙げられる。更に高容量化を目指してシリコンやスズ等を用いた金属又は合金系の負極も知られている。正極活物質としては主にリチウムイオンを吸蔵・放出することができる遷移金属複合酸化物が用いられており、前記遷移金属の代表例としてはコバルト、ニッケル、マンガン、鉄等が挙げられる。
このようなリチウムイオン二次電池は、活性の高い正極と負極を使用しているため、電極と電解液との副反応により、充放電容量が低下することが知られており、電池特性を改良するために、非水系有機溶媒や電解質について種々の検討がなされている。
特許文献1では、ニトリル基を2個以上有する有機化合物を添加した電解液を用いることにより、ニトリル基の分極による大きな双極子モーメントが高電圧での充電時における正極上での電解液酸化分解を抑制し、これにより電池特性を向上させる技術が提案されている。
特許文献2では、水と反応してハロゲン酸の生成を阻止するアセタール化合物を添加した電解液を用いることにより、電解液中の水分が除去され、これにより電池のサイクル特性を向上させる技術が提案されている。
特許文献3では、スピロ構造を有する環状エーテルを添加した電解液を用いることにより、当該エーテルと電解液成分が正負極上に被膜を形成し、電池の保存特性、サイクル特性ならびに連続充電時の電池特性を向上させる技術が提案されている。
日本国特開平7−176322号公報 日本国特開平11−97061号公報 日本国特開2006−12780号公報
しかしながら、近年の電池に対する高性能化への要求は、ますます高くなっており、高容量、高温保存特性、サイクル特性等の種々の電池特性を高い次元で達成することが求められている。
高容量化する方法として、例えば、電極の活物質層を加圧することにより高密度化して、電池内部の活物質間の空隙の体積を極力少なくする方法や、正極の利用範囲を広げて高電位まで使用する方法が検討されている。しかし、電極の活物質層を加圧して高密度化すると、活物質を均一に使用しづらくなり、不均一な反応により一部のリチウムが析出したり、活物質の劣化が促進されたりして、十分な特性が得られない場合がある。また、正極の利用範囲を広げて高電位まで使用すると、正極の活性は更に高くなり、正極と電解液との反応により劣化が促進されやすくなる。特に充電状態において電池を高温条件下で保存した場合、電極と電解液との副反応により、電池容量が低下することが知られており、保存特性を改良するために、非水系有機溶媒や電解質について種々の検討がなされている。
更に高容量化によって電池内部の空隙は減少し、電解液の分解で少量のガスが発生した場合でも電池内圧は顕著に上昇してしまう場合がある。
上記電池特性の劣化を抑制することが求められるが、特許文献1および2に記載されている添加剤を非水系電解液に含有させると、負極上において添加剤の副反応も同時に進行する。その結果、電池の初期容量や高温保存特性、サイクル特性、低温充放電特性、放電保存特性が低下する。
特許文献3に記載されている添加剤を非水系電解液に含有させても、電解液の正負極での劣化反応は完全には抑制できない。その結果、高温保存特性ならびにサイクル特性としては満足しうるものではない。特に高温保存特性については、ガス発生を抑制することが求められるが、従来技術によっては電池特性の劣化の抑制、及びガス発生の抑制の双方を同時に満たすことはできなかった。
本発明は、上記の課題を解決すべくなされたものであり、非水系電解液電池において、高温保存時における容量劣化、ガス発生、サイクル特性低下、低温充放電特性低下、放電保存特性の低下を抑制する非水系電解液と、この非水系電解液を用いた非水系電解液電池を提供することを目的とする。
本発明者らは、上記目的を達成するために種々の検討を重ねた結果、特定の化合物を電解液中に含有させることによって、上記課題を解決できることを見出し、本発明を完成させるに至った。
すなわち、本発明の要旨は、下記に示すとおりである。
(a)リチウム塩と非水系有機溶媒を含む非水系電解液であって、該非水系電解液が、下記式(1)で示される化合物をさらに含有することを特徴とする非水系電解液。
Figure 0006171354
(式中、RはCN基を少なくとも1つ含む有機基を表し、R1’は水素原子、ハロゲン原子、または、置換基を有してもよい有機基を表し、Rは置換基を有してもよい有機基を表し、Rは置換基を有してもよい有機基を表す。Zは1以上の整数であり、Zが2以上の場合は、複数のR、R1’およびRはそれぞれ同一であっても異なっていてもよい。R、R1’、R、およびRは互いに結合して環を形成してもよい。)
(b)前記式(1)中、RとRが互いに結合して環を形成することを特徴とする、前記(a)に記載の非水系電解液(ただしZが2以上の場合は、少なくとも一つのRとRが互いに結合して環を形成する)。
(c)前記式(1)中、Zが2以上の整数であることを特徴とする、前記(a)または(b)に記載の非水系電解液。
(d)前記式(1)で示される化合物が、下記式(2)で示される化合物であることを特徴とする、前記(a)乃至(c)のいずれか1つに記載の非水系電解液。
Figure 0006171354

(式中、RはCN基を少なくとも1つ含む有機基を表し、R1’は水素原子、ハロゲン原子、または、置換基を有してもよい有機基を表し、Rは置換基を有してもよい有機基を表す。複数存在するR及びR1’は、それぞれ互いに同一であっても異なっていてもよい。)。
(e)前記式(1)で示される化合物を0.001〜10質量%含有することを特徴とする、前記(a)乃至(d)のいずれか1つに記載の非水系電解液。
(f)更に、フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、モノフルオロリン酸塩、ジフルオロリン酸塩、酸無水物、イソシアネート化合物、環状スルホン酸エステルおよび前記式(1)で示される化合物以外のニトリル化合物よりなる群から選ばれる少なくとも1種の化合物を含有することを特徴とする、前記(a)乃至(e)のいずれか1つに記載の非水系電解液。
(g)前記フッ素原子を有する環状カーボネートが、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネートおよび4,5−ジフルオロエチレンカーボネートよりなる群から選ばれる少なくとも1種の化合物であり、または、前記炭素−炭素不飽和結合を有する環状カーボネートが、ビニレンカーボネート、ビニルエチレンカーボネートおよびエチニルエチレンカーボネートよりなる群から選ばれる少なくとも1種の化合物であることを特徴とする、前記(f)に記載の非水系電解液。
(h)リチウムイオンを吸蔵・放出可能な負極及び正極、並びに前記(a)乃至(g)のいずれか1つに記載の非水系電解液を含むことを特徴とする非水系電解液電池。
本発明によれば、非水系電解液電池の高温保存時における容量劣化、ガス発生、サイクル特性低下、低温充放電特性低下および放電保存特性の低下を抑制する非水系電解液と、該非水系電解液を用いた非水系電解液電池を提供することができる。
なお、本発明の非水系電解液を用いて作製された非水系電解液電池、及び本発明の非水系電解液電池が、高温保存時における容量劣化ならびに低温での優れた充放電特性を達成できる作用・原理は明確ではないが、以下のように考えられる。ただし、本発明は、以下に記述する作用・原理に限定されるものではない。
通常、特許文献1に代表されるニトリル基を2個以上有する有機化合物は、正極に作用することにより、電池特性の向上をもたらす。しかし、同時に負極での副反応による電極劣化も進行する。また、特許文献2に代表されるアセタール化合物は、電極上で副反応を起こし、電池特性を低下させる。さらに、特許文献3に代表されるスピロ構造を有する環状エーテルは、正負極上で作用することで電池特性に向上をもたらすものの、その作用は弱く、劣化反応を完全には抑制できない。
そのような課題に対し、本発明では、式(1)で示される化合物を非水系電解液中に含有させることによって、上記課題を解決できる。すなわち式(1)で示される化合物は、アセタール構造とCN基を一分子内に有しており、アセタール構造部位とCN基が協奏的に正極金属に作用することができる。その結果、より強固な正極保護効果をもたらす。また、アセタール構造とCN基を一分子内に有することで、負極上での副反応機構に変化が現れ、それらのいずれかの構造を有する化合物を単独で添加した場合よりも電池特性の低下が小さくなる。その結果、正極上での保護効果が最大限発揮できるものと考えられる。
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
また、本明細書において“重量%”、“重量ppm”および“重量部”と“質量%”、“質量ppm”および“質量部”とは、それぞれ同義である。また、単にppmと記載した場合は、“重量ppm”のことを示す。
1.非水系電解液
1−1.式(1)で示される化合物
本発明は、下記式(1)で示される化合物を非水系電解液中に含有することを特徴としている。
Figure 0006171354
式中、RはCN基を少なくとも1つ含む有機基を表し、R1’は水素原子、ハロゲン原子、または、置換基を有してもよい有機基を表し、Rは置換基を有してもよい有機基を表し、Rは置換基を有してもよい有機基を表す。Zは1以上の整数であり、Zが2以上の場合は、複数のR、R1’およびRはそれぞれ同一であっても異なっていてもよい。R、R1’、R、およびRは互いに結合して環を形成してもよい。
なお、RにおけるCN基は通常2個以下であり、Zは通常3以下であり、R、R1’、R、およびRが互いに結合して環を形成するとは、これらのうち少なくとも二つが結合して環を形成することを意味する。Zが2以上の場合には、Rに複数のR、R1’及びRのうち二つ以上が結合して環を形成してもよい。
上記有機基とは、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子およびハロゲン原子からなる群から選ばれる1以上の原子で構成された基のことを表す。その具体例としては、1価の有機基としてアルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、ニトリル基、イソシアナト基などが、2価の有機基としてアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、エーテル基、カーボネート基、カルボニル基、スルホニル基などが、そして3価の有機基として炭化水素基、ホスホリル基およびホスファントリイル基、4価の有機基として炭化水素基(ただし、水素を含まなくてもよい)などが挙げられる。なお、1価の有機基の一部はハロゲン原子で置換されていてもよく、2価、3価および4価の有機基の一部がハロゲン原子と結合していてもよい。
また、上記置換基の具体例としては、ハロゲン原子で置換されていてもよい、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、そして、ニトリル基、イソシアナト基、エーテル基、カーボネート基、カルボニル基、カルボキシル基、スルホニル基、ホスファントリイル基およびホスホリル基などが挙げられる。
としては、CN基またはCN基を少なくとも1つ含むアルキル基(例えば、CN基を有するメチル基又はエチル基)が好ましい。R1’としては、水素原子、アルキル基またはハロゲン原子が好ましく、水素原子またはアルキル基がより好ましく、特に水素原子が好ましい。
またRおよびRは、炭素原子、水素原子、および酸素原子からなる群から選ばれる1つ以上の原子で構成された基であることが好ましい。RおよびRはそれぞれ、炭素原子および水素原子で構成された基がより好ましい。
さらに上記式(1)において、RとRが互いに結合して環を形成することが好ましい。ただし、Zが2以上の場合は、少なくとも一つのRとRが互いに結合して環を形成する。環を形成することで、非水系電解液の耐酸化性が向上し、正極上での副反応による分解が起こりにくくなるためである。そのため、本発明の非水系電解液を用いて得られる非水系電解液電池は、高温保存時に正極上での副反応による容量劣化やガス発生が少ない。なお、環を形成する場合、RとRは互いに結合して、例えば置換基を有していてもよい炭素数1〜5のアルキレン基または炭素数2〜5のアルケニレン基などを形成している。好ましくは、炭素数1〜5のアルキレン基を形成する場合である。
前記式(1)において、Zが2以上の整数であることも好ましい。Zが2以上の整数であることで式(1)の化合物が一分子内にCN基を複数個有し、正極上での安定化効果がより強く発現するためである。
また、前記式(1)で示される化合物が、Zが2でありRに二つのRが結合して環を形成している、下記式(2)で示される化合物であることがより好ましい。このような構造を有することで、負極で形成される被膜の安定性が大幅に向上するためである。加えて、分子内にニトリル基を複数個持つため、正極上での安定化効果が向上し、保存特性が向上する。
Figure 0006171354

式中、R及びR1’は、上記式(1)で規定するR及びR1’と同義であり、Rは置換基を有してもよい有機基を表す。また複数存在するR及びR1’は、それぞれ互いに同一であっても異なっていてもよい。
において、前記有機基とは、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子およびハロゲン原子からなる群から選ばれる1つ以上の原子で構成された基のことを表す。その具体例としては、不飽和結合(二重結合、三重結合)、エーテル基、カーボネート基、カルボニル基、スルホニル基およびホスホリル基を有していてもよい4価の炭化水素基などが挙げられ、中でも不飽和結合(二重結合、三重結合)を有していてもよい、炭素原子及び水素原子からなる4価の炭化水素基が好ましく、4価の飽和炭化水素基が特に好ましい。また、Rにおいて、置換基の具体例としては、ハロゲン原子で置換されていてもよい、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、そして、トリル基、イソシアナト基、エーテル基、カーボネート基、カルボニル基、カルボキシル基、スルホニル基、ホスファントリイル基およびホスホリル基などが挙げられる。
式(1)で示される化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは100以上、より好ましくは180以上、さらに好ましく200以上であり、通常850以下、好ましくは500以下、さらに好ましくは350以下である。この範囲であれば、非水系電解液における式(1)で示される化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。
式(1)で示される化合物の具体例としては、例えば、以下の化合物が挙げられる。
Figure 0006171354
Figure 0006171354
Figure 0006171354
Figure 0006171354
Figure 0006171354
Figure 0006171354
Figure 0006171354
これらのうち、以下に示す化合物等のように環構造を有する化合物は、非水系電解液の耐酸化性が向上し、高温保存時に正極上での副反応による容量劣化やガス発生が少ないため好ましい。
Figure 0006171354
Figure 0006171354
Figure 0006171354
Figure 0006171354
また、下記に示す化合物等のように、Zが2である化合物は、一分子内にCN基を複数個有しており、高温保存時の正極上での安定化効果がより強く発現するため、好ましい。
Figure 0006171354
Figure 0006171354
さらに、下記に示す化合物等のように、スピロ構造を有する化合物は、負極上での被膜形成作用による安定化効果が高い。加えて分子内にニトリル基を複数個持つため、正極上に保存特性が向上するためより好ましい。
Figure 0006171354
また、アセタール構造を3つ以上有すると、電池内部での化合物の安定性が悪化する。よって、下記に示す、式(1)においてZが2であり、かつスピロ構造を有する化合物が、特に好ましい。
Figure 0006171354
本発明において上記式(1)で示される化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。本発明の非水系電解液全体に対する式(1)で示される化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、本発明の非水系電解液電池の出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
なお、式(1)で示される化合物の製造方法にも特に制限は無く、公知の方法を任意に選択して製造することが可能である。
また、本発明の非水系電解液に用いる式(1)で示される化合物は、不純物として、アルコール化合物、アルデヒド化合物、トリオキサン化合物、有機シアノ化合物、有機ハロゲン化合物、無機シアノ化合物、無機ハロゲン化合物を含んでいてもよい。これら不純物の量は、式(1)で示される化合物に対して、通常5質量%以下、好ましくは2質量%以下、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下、特に好ましくは、0.01質量%以下である。上記上限範囲を満たした場合は、本発明の非水系電解液電池の出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
1−2.フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、モノフルオロリン酸塩、ジフルオロリン酸塩、酸無水物、イソシアネート化合物、環状スルホン酸エステルおよび式(1)で示される化合物以外のニトリル化合物
本発明に係る非水系電解液は、更に、フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、モノフルオロリン酸塩、ジフルオロリン酸塩、酸無水物、イソシアネート化合物、環状スルホン酸エステルおよび式(1)で示される化合物以外のニトリル化合物からなる群から選ばれる少なくとも一種の化合物を含有することが好ましい。これらを併用することで、それぞれの添加剤が引き起こす副反応を効率よく抑制できるためである。なおこれらの化合物のうち式(1)で示される化合物に該当するものは、本明細書においては式(1)で示される化合物であるものとする。
さらに、フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、酸無水物、イソシアネート化合物は、式(1)で示される化合物と負極の表面に安定な保護被膜を形成し、負極と電解液成分との副反応を抑制し、本発明の非水系電解液電池の高温保存特性ならびにサイクル特性を向上することができるため、より好ましい。
<フッ素原子を有する環状カーボネート>
フッ素原子を有する環状カーボネート(以下、「フッ素化環状カーボネート」と記載する場合がある)としては、フッ素原子を有し、不飽和結合を有さない環状カーボネートであれば、特に制限はされない。
フッ素化環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する環状カーボネートのフッ素化物、及びその誘導体が挙げられ、例えばエチレンカーボネートのフッ素化物、及びその誘導体が挙げられる。エチレンカーボネートのフッ素化物の誘導体としては、例えば、アルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられる。中でもフッ素原子を1〜8個有するエチレンカーボネート、及びその誘導体が好ましい。
具体的には、
モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。
中でも、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート及び4,5−ジフルオロエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。
フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
フッ素化環状カーボネートの含有量は、非水系電解液に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、また、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは3質量%以下である。また、フッ素化環状カーボネートを本発明の非水系電解液における非水系有機溶媒として用いる場合の配合量は、非水系有機溶媒100体積%中、好ましくは1体積%以上、より好ましくは5体積%以上、さらに好ましくは10体積%以上であり、また、好ましくは50体積%以下、より好ましくは35体積%以下、さらに好ましくは25体積%以下である。
上記範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、高温保存特性の低下や、ガス発生量の増加により、放電容量維持率が低下することを回避しやすい。
本発明の非水系電解液において、上記式(1)で示される化合物とフッ素原子を有する環状カーボネートは、負極上に複合的な被膜を形成する。このような被膜を良好に形成する観点から、上記式(1)で示される化合物とフッ素化環状カーボネートの配合質量比は、0.4:100〜100:100であることが好ましく、1:100〜50:100であることがより好ましく、1.4:100〜35:100であることがさらに好ましい。この範囲で配合した場合、各添加剤の正負極での副反応を効率よく抑制でき、電池特性が向上する。
<炭素−炭素不飽和結合を有する環状カーボネート>
炭素−炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と記載する場合がある)としては、炭素−炭素二重結合または炭素−炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、
ビニレンカーボネート類、芳香環または炭素−炭素二重結合または炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
ビニレンカーボネート類としては、
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート等が挙げられる。
芳香環または炭素−炭素二重結合または炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、
ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネート、4−アリル−5−エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート等が挙げられる。
これらの中でも、特に式(1)で示される化合物と併用するのに好ましい不飽和環状カーボネートとしては、
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネートが挙げられる。また、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートはさらに安定な界面保護被膜を形成するので、特に好ましい。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、80以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは85以上であり、また、より好ましくは150以下である。
不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートの配合量は、非水系電解液100質量%中、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。この範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<モノフルオロリン酸塩およびジフルオロリン酸塩>
モノフルオロリン酸塩およびジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、及び、NR11121314(式中、R11〜R14は、各々独立に、水素原子又は炭素数1〜12の有機基を表わす。)で表されるアンモニウム等が例示として挙げられる。
上記アンモニウムのR11〜R14で表わされる炭素数1〜12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR11〜R14として、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基が好ましい。
モノフルオロリン酸塩およびジフルオロリン酸塩の具体例としては、
モノフルオロリン酸リチウム、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム等が挙げられ、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムが好ましく、ジフルオロリン酸リチウムがより好ましい。
モノフルオロリン酸塩およびジフルオロリン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、モノフルオロリン酸塩およびジフルオロリン酸塩の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
モノフルオロリン酸塩およびジフルオロリン酸塩の配合量は、本発明の非水系電解液100質量%中、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。
この範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<酸無水物>
酸無水物としては、分子内に酸の無水物構造を有している化合物であれば特にその種類は限定されない。好ましくは、カルボン酸無水物である。
酸無水物の具体例としては、例えば、
無水酢酸、プロピオン酸無水物、ブタン酸無水物、2−メチルプロピオン酸無水物、2,2−ジメチルプロピオン酸無水物、2−メチルブタン酸無水物、3−メチルブタン酸無水物、2,2−ジメチルブタン酸無水物、2,3−ジメチルブタン酸無水物、3,3−ジメチルブタン酸無水物、2,2,3−トリメチルブタン酸無水物、2,3,3−トリメチルブタン酸無水物、2,2,3,3−テトラメチルブタン酸無水物、2−エチルブタン酸無水物、シクロプロパンカルボン酸無水物、シクロペンタンカルボン酸無水物、シクロヘキサンカルボン酸無水物アクリル酸無水物、2−メチルアクリル酸無水物、3−メチルアクリル酸無水物、2,3−ジメチルアクリル酸無水物、3,3−ジメチルアクリル酸無水物、2,3,3−トリメチルアクリル酸無水物、2−フェニルアクリル酸無水物、3−フェニルアクリル酸無水物、2,3−ジフェニルアクリル酸無水物、3,3−ジフェニルアクリル酸無水物、3−ブテン酸無水物、2−メチル−3−ブテン酸無水物、2,2−ジメチル−3−ブテン酸無水物、3−メチル−3−ブテン酸無水物、2−メチル−3−メチル−3−ブテン酸無水物、2,2−ジメチル−3−メチル−3−ブテン酸無水物、3−ペンテン酸無水物、4−ペンテン酸無水物、2−シクロペンテンカルボン酸無水物、3−シクロペンテンカルボン酸無水物、4−シクロペンテンカルボン酸無水物、プロピン酸無水物、3−フェニルプロピン酸無水物、2−ブチン酸無水物、2−ペンチン酸無水物、3−ブチン酸無水物、3−ペンチン酸無水物、4−ペンチン酸無水物、安息香酸無水物、4−メチル安息香酸無水物、4−エチル安息香酸無水物、4−tert−ブチル安息香酸無水物、2−メチル安息香酸無水物、2,4,6−トリメチル安息香酸無水物、1−ナフタレンカルボン酸無水物、2−ナフタレンカルボン酸無水物、フルオロ酢酸無水物、ジフルオロ酢酸無水物、トリフルオロ酢酸無水物、2−フルオロプロピオン酸無水物、2,2−ジフルオロプロピオン酸無水物、2,3−ジフルオロプロピオン酸無水物、2,2,3−トリフルオロプロピオン酸無水物、2,3,3−トリフルオロプロピオン酸無水物、2,2,3,3−テトラプロピオン酸無水物、2,3,3,3−テトラプロピオン酸無水物、3−フルオロプロピオン酸無水物、3,3−ジフルオロプロピオン酸無水物、3,3,3−トリフルオロプロピオン酸無水物、パーフルオロプロピオン酸無水物、2−フルオロシクロペンタンカルボン酸無水物、3−フルオロシクロペンタンカルボン酸無水物、4−フルオロシクロペンタンカルボン酸無水物、2−フルオロアクリル酸無水物、3−フルオロアクリル酸無水物、2,3−ジフルオロアクリル酸無水物、3,3−ジフルオロアクリル酸無水物、2,3,3−トリフルオロアクリル酸無水物、2−(トリフルオロメチル)アクリル酸無水物、3−(トリフルオロメチル)アクリル酸無水物、2,3−ビス(トリフルオロメチル)アクリル酸無水物、2,3,3−トリス(トリフルオロメチル)アクリル酸無水物、2−(4−フルオロフェニル)アクリル酸無水物、3−(4−フルオロフェニル)アクリル酸無水物、2,3−ビス(4−フルオロフェニル)アクリル酸無水物、3,3−ビス(4−フルオロフェニル)アクリル酸無水物、2−フルオロ−3−ブテン酸無水物、2,2−ジフルオロ−3−ブテン酸無水物、3−フルオロ−2−ブテン酸無水物、4−フルオロ−3−ブテン酸無水物、3,4−ジフルオロ−3−ブテン酸無水物、3,3,4−トリフルオロ−3−ブテン酸無水物、3−フルオロ−2−プロピン酸無水物、3−(4−フルオロフェニル)−2−プロピン酸無水物、3−(2,3,4,5,6−ペンタフルオロフェニル)−2−プロピン酸無水物、4−フルオロ−2−ブチン酸無水物、4,4−ジフルオロ−2−ブチン酸無水物、4,4,4−トリフルオロ−2−ブチン酸無水物、4−フルオロ安息香酸無水物、2,3,4,5,6−ペンタフルオロ安息香酸無水物、4−トリフルオロメチル安息香酸無水物、アルキルシュウ酸無水物、2−シアノ酢酸無水物、2−オキソプロピオン酸無水物、3−オキソブタン酸無水物、4−アセチル安息香酸無水物、メトキシ酢酸無水物、4−メトキシ安息香酸無水物、酢酸プロピオン酸無水物、酢酸ブタン酸無水物、ブタン酸プロピオン酸無水物、酢酸2−メチルプロピオン酸無水物、酢酸シクロペンタン酸無水物、酢酸シクロヘキサン酸無水物、シクロペンタン酸プロピオン酸無水物、酢酸アクリル酸無水物、酢酸3−メチルアクリル酸無水物、酢酸3−ブテン酸無水物、アクリル酸プロピオン酸無水物、酢酸プロピン酸無水物、酢酸2−ブチン酸無水物、酢酸3−ブチン酸無水物、酢酸3−フェニルプロピン酸無水物、プロピオン酸プロピン酸無水物、酢酸安息香酸無水物、酢酸4−メチル安息香酸無水物、酢酸1−ナフタレンカルボン酸無水物、安息香酸プロピオン酸無水物、酢酸フルオロ酢酸無水物、酢酸トリフルオロ酢酸無水物、酢酸4−フルオロ安息香酸無水物、フルオロ酢酸プロピオン酸無水物、酢酸アルキルシュウ酸無水物、酢酸2−シアノ酢酸無水物、酢酸2−オキソプロピオン酸無水物、酢酸メトキシ酢酸無水物、メトキシ酢酸プロピオン酸無水物、シクロペンタン酸シクロヘキサン酸無水物、アクリル酸シクロペンタン酸無水物、3−メチルアクリル酸シクロペンタン酸無水物、3−ブテン酸シクロペンタン酸無水物、アクリル酸シクロヘキサン酸無水物、プロピン酸シクロペンタン酸無水物、2−ブチン酸シクロペンタン酸無水物、プロピン酸シクロヘキサン酸無水物、安息香酸シクロペンタン酸無水物、4−メチル安息香酸シクロペンタン酸無水物、安息香酸シクロヘキサン酸無水物、フルオロ酢酸シクロペンタン酸無水物、シクロペンタン酸トリフルオロ酢酸無水物、シクロペンタン酸2−シアノ酢酸無水物、シクロペンタン酸メトキシ酢酸無水物、シクロヘキサン酸フルオロ酢酸無水物、アクリル酸2−メチルアクリル酸無水物、アクリル酸3−メチルアクリル酸無水物、アクリル酸3−ブテン酸無水物、2−メチルアクリル酸3−メチルアクリル酸無水物、アクリル酸プロピン酸無水物、アクリル酸2−ブチン酸無水物、2−メチルアクリル酸プロピン酸無水物、アクリル酸安息香酸無水物、アクリル酸4−メチル安息香酸無水物、2−メチルアクリル酸安息香酸無水物、アクリル酸フルオロ酢酸無水物、アクリル酸トリフルオロ酢酸無水物、アクリル酸2−シアノ酢酸無水物、アクリル酸メトキシ酢酸無水物、2−メチルアクリル酸フルオロ酢酸無水物、プロピン酸2−ブチン酸無水物、プロピン酸3−ブチン酸無水物、2−ブチン酸3−ブチン酸無水物、安息香酸プロピン酸無水物、4−メチル安息香酸プロピン酸無水物、安息香酸2−ブチン酸無水物、プロピン酸フルオロ酢酸無水物、プロピン酸トリフルオロ酢酸無水物、プロピン酸2−シアノ酢酸無水物、プロピン酸メトキシ酢酸無水物、2−ブチン酸フルオロ酢酸無水物、安息香酸4−メチル安息香酸無水物、安息香酸1−ナフタレンカルボン酸無水物、4−メチル安息香酸1−ナフタレンカルボン酸無水物、安息香酸フルオロ酢酸無水物、安息香酸トリフルオロ酢酸無水物、安息香酸2−シアノ酢酸無水物、安息香酸メトキシ酢酸無水物、4−メチル安息香酸フルオロ酢酸無水物、フルオロ酢酸トリフルオロ酢酸無水物、フルオロ酢酸2−シアノ酢酸無水物、フルオロ酢酸メトキシ酢酸無水物、トリフルオロ酢酸2−シアノ酢酸無水物、メタンスルホン酸無水物、エタンスルホン酸無水物、プロパンスルホン酸無水物、ブタンスルホン酸無水物、ペンタンスルホン酸無水物、ビニルスルホン酸無水物、アリルスルホン酸無水物、ベンゼンスルホン酸無水物、トルエンスルホン酸無水物などの鎖状酸無水物;
無水コハク酸、4−メチルコハク酸無水物、4,4−ジメチルコハク酸無水物、4,5−ジメチルコハク酸無水物、4,4,5−トリメチルコハク酸無水物、4,4,5,5−テトラメチルコハク酸無水物、4−ビニルコハク酸無水物、4,5−ジビニルコハク酸無水物、4−フェニルコハク酸無水物、4,5−ジフェニルコハク酸無水物、4,4−ジフェニルコハク酸無水物、シトラコン酸無水物、無水グルタコン酸、無水マレイン酸、4−メチルマレイン酸無水物、4,5−ジメチルマレイン酸無水物、4−フェニルマレイン酸無水物、4,5−ジフェニルマレイン酸無水物、イタコン酸無水物、5−メチルイタコン酸無水物、5,5−ジメチルイタコン酸無水物、無水フタル酸、3,4,5,6−テトラヒドロフタル酸無水物、シクロヘキサン−1,2−ジカルボン酸無水物、4−シクロヘキセン−1,2−ジカルボン酸無水物、グルタル酸無水物、無水グルタコン酸、5−ノルボルネン−2,3−ジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、ピロメリット酸無水物、ジグリコール酸無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、4−フルオロコハク酸無水物、4,4−ジフルオロコハク酸無水物、4,5−ジフルオロコハク酸無水物、4,4,5−トリフルオロコハク酸無水物、4,4,5,5−テトラフルオロコハク酸無水物、4−フルオロマレイン酸無水物、4,5−ジフルオロマレイン酸無水物、5−フルオロイタコン酸無水物、5,5−ジフルオロイタコン酸無水物などの環状酸無水物;及び
それらの類縁体などが挙げられる。
これらのうち、フッ素原子を有する環状カーボネートまたは炭素−炭素不飽和結合を有する環状カーボネートと良好な被膜を形成して特に優れた電池性能を発現すると考えられることから、環状酸無水物が好ましい。中でも、5員環構造を形成している酸無水物がより好ましい。さらに、一分子内に酸無水物骨格を複数個有する化合物が特に好ましい。
なお、酸無水物の分子量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、通常90以上である。また、上限に特に制限は無いが、分子量が大きくなると非水系電解液粘性が上昇する傾向があることから、350以下、好ましくは320以下、さらに好ましくは300以下である。
また、酸無水物の製造方法にも特に制限は無く、公知の方法を任意に選択して製造することが可能である。
上記酸無水物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
また、本発明の非水系電解液に対する特定化合物の配合量に特に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.01重量%以上、好ましくは0.1重量%以上、また、通常5重量%以下、好ましくは3重量%以下の濃度で含有させることが望ましい。この範囲の下限を下回ると、本発明の非水系電解液を非水系電解液電池に用いた場合に、その非水系電解液電池が十分なサイクル特性向上効果を発現し難くなる場合があり、また、この上限を上回ると、非水系電解液内での反応性が上昇し、上記の非水系電解液電池の電池特性が低下する場合がある。
<イソシアネート化合物>
イソシアネート化合物としては、分子内にイソシアネート基を有している化合物であれば特にその種類は限定されない。
イソシアネート化合物の具体例としては、例えば、
メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、イソプロピルイソシアネート、ブチルイソシアネート、ターシャルブチルイソシアネート、ペンチルイソシアネートヘキシルイソシアネート、シクロヘキシルイソシアネート、ビニルイソシアネート、アリルイソシアネート、エチニルイソシアネート、プロピニルイソシアネート、フェニルイソシアネート、フロロフェニルイソシアネートなどのモノイソシアネート化合物;
モノメチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、1,3−ジイソシアナトプロパン、1,4−ジイソシアナト−2−ブテン、1,4−ジイソシアナト−2−フルオロブタン、1,4−ジイソシアナト−2,3−ジフルオロブタン、1,5−ジイソシアナト−2−ペンテン、1,5−ジイソシアナト−2−メチルペンタン、1,6−ジイソシアナト−2−ヘキセン、1,6−ジイソシアナト−3−ヘキセン、1,6−ジイソシアナト−3−フルオロヘキサン、1,6−ジイソシアナト−3,4−ジフルオロヘキサン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン−1,1’−ジイソシアネート、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチルイソシアネート)、イソホロンジイソシアネート、カルボニルジイソシアネート、1,4−ジイソシアナトブタン−1,4−ジオン、1,5−ジイソシアナトペンタン−1,5−ジオン、2,2,4−トリメチルヘキサメチレンジイソシアナート、2,4,4−トリメチルヘキサメチレンジイソシアナートなどのジイソシアネート化合物;
等が挙げられる。
これらのうち、モノメチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチルイソシアネート)、ジイソシアン酸イソホロン、2,2,4−トリメチルヘキサメチレンジイソシアナート、2,4,4−トリメチルヘキサメチレンジイソシアナートが、非水系電解液電池の保存特性向上の点から好ましい。
さらに、イソシアネート基を有する化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明の非水系電解液全体に対するイソシアネート基を有する化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。
上記範囲を満たした場合は、本発明の非水系電解液電池の出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
<環状スルホン酸エステル>
環状スルホン酸エステルとしては、環状構造を有するスルホン酸エステルであれば特にその種類は限定されない。
環状スルホン酸エステルの具体例としては、例えば、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−メチル−1,3−プロパンスルトン、2−メチル−1,3−プロパンスルトン、3−メチル−1,3−プロパンスルトン1−プロペン−1,3−スルトン、2−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1−フルオロ−2−プロペン−1,3−スルトン、2−フルオロ−2−プロペン−1,3−スルトン、3−フルオロ−2−プロペン−1,3−スルトン、1−メチル−1−プロペン−1,3−スルトン、2−メチル−1−プロペン−1,3−スルトン、3−メチル−1−プロペン−1,3−スルトン、1−メチル−2−プロペン−1,3−スルトン、2−メチル−2−プロペン−1,3−スルトン、3−メチル−2−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−フルオロ−1,4−ブタンスルトン、2−フルオロ−1,4−ブタンスルトン、3−フルオロ−1,4−ブタンスルトン、4−フルオロ−1,4−ブタンスルトン、1−メチル−1,4−ブタンスルトン、2−メチル−1,4−ブタンスルトン、3−メチル−1,4−ブタンスルトン、4−メチル−1,4−ブタンスルトン、1−ブテン−1,4−スルトン、2−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、1−フルオロ−1−ブテン−1,4−スルトン、2−フルオロ−1−ブテン−1,4−スルトン、3−フルオロ−1−ブテン−1,4−スルトン、4−フルオロ−1−ブテン−1,4−スルトン、1−フルオロ−2−ブテン−1,4−スルトン、2−フルオロ−2−ブテン−1,4−スルトン、3−フルオロ−2−ブテン−1,4−スルトン、4−フルオロ−2−ブテン−1,4−スルトン、1−フルオロ−3−ブテン−1,4−スルトン、2−フルオロ−3−ブテン−1,4−スルトン、3−フルオロ−3−ブテン−1,4−スルトン、4−フルオロ−3−ブテン−1,4−スルトン、1−メチル−1−ブテン−1,4−スルトン、2−メチル−1−ブテン−1,4−スルトン、3−メチル−1−ブテン−1,4−スルトン、4−メチル−1−ブテン−1,4−スルトン、1−メチル−2−ブテン−1,4−スルトン、2−メチル−2−ブテン−1,4−スルトン、3−メチル−2−ブテン−1,4−スルトン、4−メチル−2−ブテン−1,4−スルトン、1−メチル−3−ブテン−1,4−スルトン、2−メチル−3−ブテン−1,4−スルトン、3−メチル−3−ブテン−1,4−スルトン、4−メチル−3−ブテン−1,4−スルトン、1,5−ペンタンスルトン、1−フルオロ−1,5−ペンタンスルトン、2−フルオロ−1,5−ペンタンスルトン、3−フルオロ−1,5−ペンタンスルトン、4−フルオロ−1,5−ペンタンスルトン、5−フルオロ−1,5−ペンタンスルトン、1−メチル−1,5−ペンタンスルトン、2−メチル−1,5−ペンタンスルトン、3−メチル−1,5−ペンタンスルトン、4−メチル−1,5−ペンタンスルトン、5−メチル−1,5−ペンタンスルトン、1−ペンテン−1,5−スルトン、2−ペンテン−1,5−スルトン、3−ペンテン−1,5−スルトン、4−ペンテン−1,5−スルトン、1−フルオロ−1−ペンテン−1,5−スルトン、2−フルオロ−1−ペンテン−1,5−スルトン、3−フルオロ−1−ペンテン−1,5−スルトン、4−フルオロ−1−ペンテン−1,5−スルトン、5−フルオロ−1−ペンテン−1,5−スルトン、1−フルオロ−2−ペンテン−1,5−スルトン、2−フルオロ−2−ペンテン−1,5−スルトン、3−フルオロ−2−ペンテン−1,5−スルトン、4−フルオロ−2−ペンテン−1,5−スルトン、5−フルオロ−2−ペンテン−1,5−スルトン、1−フルオロ−3−ペンテン−1,5−スルトン、2−フルオロ−3−ペンテン−1,5−スルトン、3−フルオロ−3−ペンテン−1,5−スルトン、4−フルオロ−3−ペンテン−1,5−スルトン、5−フルオロ−3−ペンテン−1,5−スルトン、1−フルオロ−4−ペンテン−1,5−スルトン、2−フルオロ−4−ペンテン−1,5−スルトン、3−フルオロ−4−ペンテン−1,5−スルトン、4−フルオロ−4−ペンテン−1,5−スルトン、5−フルオロ−4−ペンテン−1,5−スルトン、1−メチル−1−ペンテン−1,5−スルトン、2−メチル−1−ペンテン−1,5−スルトン、3−メチル−1−ペンテン−1,5−スルトン、4−メチル−1−ペンテン−1,5−スルトン、5−メチル−1−ペンテン−1,5−スルトン、1−メチル−2−ペンテン−1,5−スルトン、2−メチル−2−ペンテン−1,5−スルトン、3−メチル−2−ペンテン−1,5−スルトン、4−メチル−2−ペンテン−1,5−スルトン、5−メチル−2−ペンテン−1,5−スルトン、1−メチル−3−ペンテン−1,5−スルトン、2−メチル−3−ペンテン−1,5−スルトン、3−メチル−3−ペンテン−1,5−スルトン、4−メチル−3−ペンテン−1,5−スルトン、5−メチル−3−ペンテン−1,5−スルトン、1−メチル−4−ペンテン−1,5−スルトン、2−メチル−4−ペンテン−1,5−スルトン、3−メチル−4−ペンテン−1,5−スルトン、4−メチル−4−ペンテン−1,5−スルトン、5−メチル−4−ペンテン−1,5−スルトンなどのスルトン化合物;
メチレンスルフェート、エチレンスルフェート、プロピレンスルフェートなどのスルフェート化合物;
メチレンメタンジスルホネート、エチレンメタンジスルホネートなどのジスルホネート化合物;
1,2,3−オキサチアゾリジン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,3−オキサチアゾール−2,2−ジオキシド、5H−1,2,3−オキサチアゾール−2,2−ジオキシド、1,2,4−オキサチアゾリジン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,4−オキサチアゾール−2,2−ジオキシド、5H−1,2,4−オキサチアゾール−2,2−ジオキシド、1,2,5−オキサチアゾリジン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,5−オキサチアゾール−2,2−ジオキシド、5H−1,2,5−オキサチアゾール−2,2−ジオキシド、1,2,3−オキサチアジナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,3−オキサチアジン−2,2−ジオキシド、1,2,4−オキサチアジナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、1,2,5−オキサチアジナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、1,2,6−オキサチアジナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシドなどの含窒素化合物;
1,2,3−オキサチアホスラン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスラン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、3−メトキシ−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、1,2,4−オキサチアホスラン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスラン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、4−メトキシ−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、1,2,5−オキサチアホスラン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスラン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、5−メトキシ−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、1,2,3−オキサチアホスフィナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスフィナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、3−メトキシ−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,4−オキサチアホスフィナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスフィナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、4−メチル−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、4−メトキシ−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、3−メトキシ−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,5−オキサチアホスフィナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスフィナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、5−メトキシ−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,6−オキサチアホスフィナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアホスフィナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシド、6−メトキシ−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシドどの含リン化合物;
等が挙げられる。
これらのうち、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、メチレンメタンジスルホネート、エチレンメタンジスルホネートが非水系電解液電池の保存特性向上の点から好ましく、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトンがより好ましい。
環状スルホン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。本発明の非水系電解液全体に対する環状スルホン酸エステルの配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、本発明の非水系電解液電池の出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
<式(1)で示される化合物以外のニトリル化合物>
式(1)で示される化合物以外のニトリル化合物としては、分子内にニトリル基を有している、式(1)で示される化合物以外の化合物であれば特にその種類は限定されない。
式(1)で示される化合物以外のニトリル化合物の具体例としては、例えば、
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、2−メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテンニトリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル、2−ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2−フルオロプロピオニトリル、3−フルオロプロピオニトリル、2,2−ジフルオロプロピオニトリル、2,3−ジフルオロプロピオニトリル、3,3−ジフルオロプロピオニトリル、2,2,3−トリフルオロプロピオニトリル、3,3,3−トリフルオロプロピオニトリル、3,3’−オキシジプロピオニトリル、3,3’−チオジプロピオニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等のニトリル基を1つ有する化合物;
マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、2,3,3−トリメチルスクシノニトリル、2,2,3,3−テトラメチルスクシノニトリル、2,3−ジエチル−2,3−ジメチルスクシノニトリル、2,2−ジエチル−3,3−ジメチルスクシノニトリル、ビシクロヘキシル−1,1−ジカルボニトリル、ビシクロヘキシル−2,2−ジカルボニトリル、ビシクロヘキシル−3,3−ジカルボニトリル、2,5−ジメチル−2,5−ヘキサンジカルボニトリル、2,3−ジイソブチル−2,3−ジメチルスクシノニトリル、2,2−ジイソブチル−3,3−ジメチルスクシノニトリル、2−メチルグルタロニトリル、2,3−ジメチルグルタロニトリル、2,4−ジメチルグルタロニトリル、2,2,3,3−テトラメチルグルタロニトリル、2,2,4,4−テトラメチルグルタロニトリル、2,2,3,4−テトラメチルグルタロニトリル、2,3,3,4−テトラメチルグルタロニトリル、マレオニトリル、フマロニトリル、1,4−ジシアノペンタン、2,6−ジシアノヘプタン、2,7−ジシアノオクタン、2,8−ジシアノノナン、1,6−ジシアノデカン、1,2−ジジアノベンゼン、1,3−ジシアノベンゼン、1,4−ジシアノベンゼン、3,3’−(エチレンジオキシ)ジプロピオニトリル、3,3’−(エチレンジチオ)ジプロピオニトリル等のニトリル基を2つ有する化合物;
シクロヘキサントリカルボニトリル、トリスシアノエチルアミン、トリスシアノエトキシプロパン、トリシアノエチレン、ペンタントリカルボニトリル、プロパントリカルボニトリル、ヘプタントリカルボニトリル等のシアノ基を3つ有する化合物;
等が挙げられる。
これらのうち、ラウロニトリル、クロトノニトリル、スクシノニトリル、グルタロニトリル、2−メチルグルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、フマロニトリルが保存特性向上の点から好ましい。また、ニトリル基を2つ有する化合物がより好ましい。
式(1)で示される化合物以外のニトリル化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。本発明の非水系電解液全体に対する式(1)で示される化合物以外のニトリル化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、非水系電解液電池の出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
1−3.電解質
<リチウム塩>
本発明の非水系電解液における電解質としては、リチウム塩が用いられる。前記リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩; LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
FSOLi、CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等のリチウムオキサラトボレート塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラトフォスフェート塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;等が挙げられる。
中でも、LiPF、LiBF、LiSbF、LiTaF、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等が出力特性や高速充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。
これらのリチウム塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPFとLiBFや、LiPFとFSOLi等の併用であり、非水系電解液電池の負荷特性やサイクル特性を向上させる効果がある。
この場合、非水系電解液全体100質量%に対するLiBF或いはFSOLiの濃度に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、また、通常30質量%以下、好ましくは20質量%以下である。
また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。有機リチウム塩としては、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等が好ましい。この場合には、非水系電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であり、また、好ましくは30質量%以下、特に好ましくは20質量%以下である。
非水系電解液中のこれらのリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、非水系電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、さらに好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、さらに好ましくは2.0mol/L以下である。
リチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
1−4.非水系有機溶媒
本発明における非水系有機溶媒について特に制限はなく、公知の有機溶媒を用いることが可能である。そのような有機溶媒の例としては、フッ素原子を有していない環状カーボネート、鎖状カーボネート、環状及び鎖状カルボン酸エステル、エーテル化合物、環状スルホン酸エステル以外のスルホン系化合物等が挙げられる。なお、これらのうち式(1)に該当する化合物は、本明細書においては、式(1)で示される化合物であるものとする。
<フッ素原子を有していない環状カーボネート>
フッ素原子を有していない環状カーボネートとしては、炭素数2〜4のアルキレン基を有する環状カーボネートが挙げられる。
炭素数2〜4のアルキレン基を有する、フッ素原子を有していない環状カーボネートの具体的な例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
フッ素原子を有していない環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
フッ素原子を有していない環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系有機溶媒100体積%中、5体積%以上、より好ましくは10体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また、95体積%以下、より好ましくは90体積%以下、さらに好ましくは85体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の負荷特性を良好な範囲としやすくなる。
<鎖状カーボネート>
鎖状カーボネートとしては、炭素数3〜7の鎖状カーボネートが好ましく、炭素数3〜7のジアルキルカーボネートがより好ましい。
鎖状カーボネートの具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と記載する場合がある)も好適に用いることができる。
フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。
フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート及びその誘導体、フッ素化エチルメチルカーボネート及びその誘導体、フッ素化ジエチルカーボネート及びその誘導体等が挙げられる。
フッ素化ジメチルカーボネート及びその誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート及びその誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート及びその誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。
鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートの配合量は、非水系有機溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上である。このように下限を設定することにより、本発明の非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。また、鎖状カーボネートは、非水系有機溶媒100体積%中、90体積%以下、より好ましくは85体積%以下であることが好ましい。このように上限を設定することにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。
<環状カルボン酸エステル>
環状カルボン酸エステルとしては、炭素原子数が3〜12のものが好ましい。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
環状カルボン酸エステルの配合量は、通常、非水系有機溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上である。この範囲であれば、本発明の非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
<鎖状カルボン酸エステル>
鎖状カルボン酸エステルとしては、炭素数が3〜7のものが好ましい。具体的には、
酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。
鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カルボン酸エステルの配合量は、通常、非水系有機溶媒100体積%中、好ましくは10体積%以上、より好ましくは15体積%以上である。このように下限を設定することで、本発明の非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルの配合量は、非水系有機溶媒100体積%中、好ましくは60体積%以下、より好ましくは50体積%以下である。このように上限を設定することで、負極抵抗の増大を抑制し、非水系電解液電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。
<エーテル系化合物>
エーテル系化合物としては、一部の水素がフッ素にて置換されていてもよい炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、
ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
エーテル系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
エーテル系化合物の配合量は、通常、非水系有機溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上、また、好ましくは70体積%以下、より好ましくは60体積%以下、さらに好ましくは50体積%以下である。
この範囲であれば、エーテル系化合物のリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、エーテル系化合物がリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。
<スルホン系化合物>
スルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが好ましい。スルホン系化合物1分子中のスルホニル基の数は、1又は2であることが好ましい。
炭素数3〜6の環状スルホンとしては、
モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;
ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。
中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と記載する場合がある)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スルホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等が、イオン伝導度が高く、入出力特性が高い点で好ましい。
また、炭素数2〜6の鎖状スルホンとしては、
ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等はイオン伝導度が高く、入出力特性が高い点で好ましい。
スルホン系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
スルホン系化合物の配合量は、通常、非水系有機溶媒100体積%中、好ましくは0.3体積%以上、より好ましくは1体積%以上、さらに好ましくは5体積%以上であり、また、好ましくは40体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下である。
この範囲であれば、非水系電解液電池のサイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。
<フッ素原子を有する環状カーボネートを非水系有機溶媒として用いる場合>
本発明において、上記で説明したフッ素原子を有する環状カーボネートを非水系有機溶媒として用いる場合は、フッ素原子を有する環状カーボネート以外の非水系有機溶媒として、上記例示した非水系有機溶媒の1種をフッ素原子を有する環状カーボネートと組み合わせて用いてもよく、2種以上をフッ素原子を有する環状カーボネートと組み合わせて併用してもよい。
例えば、非水系有機溶媒の好ましい組合せの一つとして、フッ素原子を有する環状カーボネートと鎖状カーボネートを主体とする組合せが挙げられる。中でも、非水系有機溶媒に占めるフッ素原子を有する環状カーボネートと鎖状カーボネートとの合計が、好ましくは60体積%以上、より好ましくは80体積%以上、更に好ましくは90体積%以上であり、かつフッ素原子を有する環状カーボネートと鎖状カーボネートとの合計に対するフッ素原子を有する環状カーボネートの割合が3体積%以上、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上であり、また好ましくは60体積%以下、より好ましくは50体積%以下、さらに好ましくは40体積%以下、特に好ましくは35体積%以下である。
これらの非水系有機溶媒の組み合わせを用いると、これを用いて作製された非水系電解液電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスが良くなることがある。
例えば、フッ素原子を有する環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
モノフルオロエチレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
フッ素原子を有する環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして対称鎖状アルキルカーボネート類を含有するものが更に好ましく、特に、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったモノフルオロエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、対称鎖状カーボネート類がジメチルカーボネートであることが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
これらのフッ素原子を有する環状カーボネートと鎖状カーボネート類との組み合わせに、更にフッ素原子を有していない環状カーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。中でも、非水系有機溶媒に占めるフッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートとの合計が、好ましくは10体積%以上、より好ましくは15体積%以上、さらに好ましくは20体積%以上であり、かつフッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートとの合計に対するフッ素原子を有する環状カーボネートの割合が5体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上、さらに好ましくは25体積%以上であり、また、好ましくは95体積%以下、より好ましくは85体積%以下、さらに好ましくは75体積%以下、特に好ましくは60体積%以下のものである。
この濃度範囲でフッ素原子を有していない環状カーボネートを含有すると、負極に安定な保護被膜を形成しつつ、電解液の電気伝導度を維持できる。
フッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
フッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして対称鎖状アルキルカーボネート類を含有するものがさらに好ましく、特に、
モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートモノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートモノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート
といったモノフルオロエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、対称鎖状カーボネート類がジメチルカーボネートであるのが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
非水系有機溶媒中にジメチルカーボネートを含有する場合は、全非水系有機溶媒中に占めるジメチルカーボネートの割合が、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは25体積%以上、特に好ましくは30体積%以上であり、また、好ましくは90体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下、特に好ましくは70体積%以下となる範囲で含有させると、非水系電解液電池の負荷特性が向上することがある。
中でも、ジメチルカーボネートとエチルメチルカーボネートを含有し、ジメチルカーボネートの含有割合をエチルメチルカーボネートの含有割合よりも多くすることにより、非水系電解液の電気伝導度を維持できながら、高温保存後の電池特性が向上することから、好ましい。
全非水系有機溶媒中に占めるジメチルカーボネートのエチルメチルカーボネートに対する体積比(ジメチルカーボネート/エチルメチルカーボネート)は、非水系電解液の電気伝導度の向上と保存後の電池特性を向上させる点で、1.1以上が好ましく、1.5以上がより好ましく、2.5以上がさらに好ましい。
上記体積比(ジメチルカーボネート/エチルメチルカーボネート)は、低温での電池特性を向上する点で、40以下が好ましく、20以下がより好ましく、10以下がさらに好ましく、8以下が特に好ましい。
上記フッ素原子を有する環状カーボネートと鎖状カーボネートを主体とする組合せにおいては、上記フッ素原子を有していない環状カーボネート以外にも、環状カルボン酸エステル類、鎖状カルボン酸エステル類、環状エーテル類、鎖状エーテル類、含硫黄有機溶媒、含燐有機溶媒、含フッ素芳香族溶媒等、他の溶媒を混合してもよい。
<フッ素原子を有する環状カーボネートを助剤として用いる場合>
本発明において、フッ素原子を有する環状カーボネートを助剤として用いる場合は、フッ素原子を有する環状カーボネート以外の非水系有機溶媒として、上記で例示した非水系有機溶媒1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
例えば、非水系有機溶媒の好ましい組合せの一つとして、フッ素原子を有していない環状カーボネートと鎖状カーボネートを主体とする組合せが挙げられる。
中でも、非水系有機溶媒に占めるフッ素原子を有していない環状カーボネートと鎖状カーボネートとの合計が、好ましくは70体積%以上、より好ましくは80体積%以上、さらに好ましくは90体積%以上であり、かつ環状カーボネートと鎖状カーボネートとの合計に対するフッ素原子を有していない環状カーボネートの割合が好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上であり、また、好ましくは50体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下、特に好ましくは25体積%以下である。
これらの非水系有機溶媒の組み合わせを用いると、これを用いて作製された非水系電解液電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスが良くなることがある。
例えば、フッ素原子を有していない環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
フッ素原子を有していない環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして非対称鎖状アルキルカーボネート類を含有するものがさらに好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。
中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるのが好ましく、又、鎖状カーボネートのアルキル基としては炭素数1〜2であるものが好ましい。
これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。
プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの体積比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水系有機溶媒全体に占めるプロピレンカーボネートの割合は、好ましくは0.1体積%以上、より好ましくは1体積%以上、さらに好ましくは2体積%以上、また、好ましくは20体積%以下、より好ましくは8体積%以下、さらに好ましくは5体積%以下である。
この濃度範囲でプロピレンカーボネートを含有すると、エチレンカーボネートと鎖状カーボネートとの組み合わせの特性を維持したまま、更に低温特性が優れることがあるので好ましい。
非水系有機溶媒中にジメチルカーボネートを含有させる場合は、全非水系有機溶媒中に占めるジメチルカーボネートの割合が、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは25体積%以上、特に好ましくは30体積%以上であり、また、好ましくは90体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下、特に好ましくは、70体積%以下となる範囲で含有させると、電池の負荷特性が向上することがある。
中でも、ジメチルカーボネートとエチルメチルカーボネートを含有し、ジメチルカーボネートの含有割合をエチルメチルカーボネートの含有割合よりも多くすることにより、非水系電解液の電気伝導度を維持できながら、高温保存後の電池特性が向上することがあり好ましい。
全非水系有機溶媒中に占めるジメチルカーボネートのエチルメチルカーボネートに対する体積比(ジメチルカーボネート/エチルメチルカーボネート)は、非水系電解液の電気伝導度の向上と保存後の非水系電解液電池の電池特性を向上させる点で、1.1以上が好ましく、1.5以上がより好ましく、2.5以上がさらに好ましい。上記体積比(ジメチルカーボネート/エチルメチルカーボネート)は、低温での電池特性を向上させる点で、40以下が好ましく、20以下がより好ましく、10以下がさらに好ましく、8以下が特に好ましい。
上記フッ素原子を有していない環状カーボネートと鎖状カーボネートを主体とする組合せにおいては、環状カルボン酸エステル類、鎖状カルボン酸エステル類、環状エーテル類、鎖状エーテル類、含硫黄有機溶媒、含燐有機溶媒、芳香族含フッ素溶媒等、他の溶媒を混合してもよい。
なお、本明細書において、非水系有機溶媒の体積は25℃での測定値であるが、エチレンカーボネートのように25℃で固体のものは融点での測定値を用いる。
1−5.助剤
本発明の非水系電解液電池において、式(1)で示される化合物以外に、目的に応じて適宜助剤を用いてもよい。助剤としては、以下に示されるフッ素原子を有する不飽和環状カーボネート、過充電防止剤、その他の助剤、等が挙げられる。
<フッ素化不飽和環状カーボネート>
助剤として、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と記載する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上であれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1又は2のものが最も好ましい。
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート等が挙げられる。
芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、
4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
中でも、特に式(1)の化合物と併用するのに好ましいフッ素化不飽和環状カーボネートとしては、
4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが挙げられる。安定な界面保護被膜を形成するので、これらがより好適に用いられる。
フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その分子量は、好ましくは、50以上であり、また、250以下である。この範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。
フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。その分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
フッ素化不飽和環状カーボネートの配合量は、通常、非水系電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。
この範囲内であれば、非水系電解液電池は十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<過充電防止剤>
本発明の非水系電解液において、非水系電解液電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、
ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;
2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;
2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物
等が挙げられる。中でも、
ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。
これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、好ましくは、0.1質量%以上であり、また、5質量%以下である。この範囲であれば、過充電防止剤の効果を十分に発現させやすく、また、高温保存特性等の電池の特性が低下するといった事態も回避しやすい。
過充電防止剤の配合量は、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上、特に好ましくは0.5質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。
<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、
エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;
2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;
エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2−ビス(ビニルスルホニロキシ)エタン等の含硫黄化合物;
1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;
亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢酸エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド等の含燐化合物;
ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物;
フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物;
等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、本発明の非水系電解液電池の高温保存後の容量維持特性やサイクル特性を向上させることができる。
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤の配合量は、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他の助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。
以上、上述の非水系電解液は、本発明の非水系電解液電池の内部に存在するものも含まれる。
具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調製し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。
2.電池構成
本発明の非水系電解液電池は、非水系電解液電池の中でも二次電池用、例えばリチウム二次電池用の電解液として用いるのに好適である。以下、本発明の非水系電解液を用いた非水系電解液電池について説明する。
本発明の非水系電解液電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極及び正極と、上記の本発明の非水系電解液とを備える。
2−1.負極
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
<負極活物質>
上記炭素質材料のうち、負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400〜3200℃の範囲で1回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種の異なる結晶性を有する炭素質からなり、または、さらにその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種の異なる配向性を有する炭素質からなり、または、さらにその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよく好ましい。また、上記(1)〜(4)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記(2)の人造炭素質物質並びに人造黒鉛質物質としては、
天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチもしくは石油系ピッチまたはこれらピッチを酸化処理したもの、ニードルコークスもしくはピッチコークスまたはこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物またはこれらの炭化物、あるいは、炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液またはこれらの炭化物等が挙げられる。
負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物及びリン化物等の化合物のいずれであってもよく、特に制限されない。
リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く。)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と記載する場合がある。)の単体金属及びこれら原子を含む合金又は化合物である。
これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、および、1種もしくは2種以上の特定金属元素を含有する化合物またはその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。
負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
上記複合化合物には、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物が挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。スズの場合は、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5〜6種の元素を含むような複雑な化合物も用いることができる。
これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物、炭化物、窒化物等が好ましく、特に、ケイ素及び/又はスズの金属単体、合金、酸化物、炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料であり、さらに好ましくはリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と記載する場合がある。)である。即ちスピネル構造を有するリチウムチタン複合酸化物を、非水系電解液電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されている金属酸化物も好ましい。
上記金属酸化物が、下記式(A)で表されるリチウムチタン複合酸化物であり、式(A)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。
LiTi ・・・(A)(式中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。)
上記の式(A)で表される組成の中でも、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3Ti5/3、(b)ではLiTi、(c)ではLi4/5Ti11/5である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
<炭素質材料の物性>
負極活物質として炭素質材料を用いる場合、以下の物性を有するものであることが望ましい。
(X線パラメータ)
炭素質材料の学振法によるX線回折で求めた格子面(002)のd値(層間距離)は、0.335nm以上であることが好ましく、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
(体積基準平均粒径)
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。
(ラマンR値、ラマン半値幅)
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
また、炭素質材料の1580cm−1付近のラマン半値幅は特に制限されないが、通常10cm−1以上であり、15cm−1以上が好ましく、また、通常100cm−1以下であり、80cm−1以下が好ましく、60cm−1以下がさらに好ましく、40cm−1以下が特に好ましい。
ラマンR値及びラマン半値幅は、炭素質材料表面の結晶性を示す指標であるが、炭素質材料は、化学的安定性の観点から適度な結晶性を有し、かつ充放電によってLiが入り込む層間のサイトを消失しない、即ち充電受入性が低下しない程度の結晶性であることが好ましい。なお、集電体に塗布した後のプレスによって負極を高密度化する場合には、電極板と平行方向に結晶が配向しやすくなるため、充電受入性が低下しない程度の結晶性を考慮することが好ましい。ラマンR値又はラマン半値幅が上記範囲であると、負極表面に好適な被膜を形成して保存特性やサイクル特性、負荷特性を向上させることができるとともに、非水系電解液との反応に伴う効率の低下やガス発生を抑制することができる。
ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPAの強度Iaと、1360cm−1付近のピークPBの強度Ibとを測定し、その強度比R(R=Ib/Ia)を算出する。
上記のラマン分光分析測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
(BET比表面積)
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m・g−1以上であり、0.7m・g−1以上が好ましく、1.0m・g−1以上がさらに好ましく、1.5m・g−1以上が特に好ましく、また、通常100m・g−1以下であり、25m・g−1以下が好ましく、15m・g−1以下がさらに好ましく、10m・g−1以下が特に好ましい。
BET比表面積の値が上記範囲であると、電極表面へのリチウムの析出を抑制することができると共に、非水系電解液との反応によるガス発生を抑制することができる。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素ガス気流下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。
(円形度)
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。 炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上がさらに好ましく、0.9以上が特に好ましい。
円形度が大きいほど炭素質材料の充填性が向上し、粒子間の抵抗を抑えることができるため、高電流密度充放電特性は向上する。従って、円形度が上記範囲のように高いほど好ましい。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。
円形度を向上させる方法は、特に制限されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダーもしくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
(タップ密度)
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がさらに好ましく、1.6g・cm−3以下が特に好ましい。タップ密度が上記範囲であると、電池容量を確保することができるとともに、粒子間の抵抗の増大を抑制することができる。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。
(配向比)
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲であると、優れた高密度充放電特性を確保することができる。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
(アスペクト比(粉))
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がさらに好ましい。上記範囲であると、極板化時のスジ引きを抑制し、さらに均一な塗布が可能となるため、優れた高電流密度充放電特性を確保することができる。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡(SEM)で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。
<負極の構成と作製法>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれかの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
また、合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
(集電体)
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さ、コスト及びイオン化傾向が小さく金属イオンとして溶出しにくい点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
集電体の厚さは、電池容量の確保、取扱い性の観点から、通常1μm以上、好ましくは5μm以上であり、また、通常100μm以下、好ましくは50μm以下である。
(集電体と負極活物質層との厚さの比)
集電体と負極活物質層の厚さの比は特に制限されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がさらに好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がさらに好ましく、1以上が特に好ましい。集電体と負極活物質層の厚さの比が、上記範囲であると、電池容量を維持することができるとともに、高電流密度充放電時における集電体の発熱を抑制することができる。
(結着材(バインダー))
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、
ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、ポリイミド、セルロース、ニトロセルロース等の樹脂系高分子;
SBR(スチレンブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;
スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;
EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;
シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;
ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;
アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物
等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質100質量部に対するバインダーの割合は、0.1質量部以上が好ましく、0.5質量部以上がさらに好ましく、0.6質量部以上が特に好ましく、また、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下がさらに好ましく、8質量部以下が特に好ましい。
負極活物質に対するバインダーの割合が、上記範囲であると、電池容量と負極電極の強度を十分に確保することができる。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質100質量部に対するバインダーの割合は、通常0.1質量部以上であり、0.5質量部以上が好ましく、0.6質量部以上がさらに好ましく、また、通常5質量部以下であり、3質量部以下が好ましく、2質量部以下がさらに好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には、負極活物質100質量部に対する割合は、通常1質量部以上であり、2質量部以上が好ましく、3質量部以上がさらに好ましく、また、通常15質量部以下であり、10質量部以下が好ましく、8質量部以下がさらに好ましい。
(スラリー形成溶媒)
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と非水系有機溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、非水系有機溶媒としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(増粘剤)
増粘剤は、通常、スラリーの粘度を調整するために使用される。増粘剤としては、特に制限されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに増粘剤を用いる場合には、負極活物質100質量部に対する増粘剤の割合は、通常0.1質量部以上であり、0.5質量部以上が好ましく、0.6質量部以上がさらに好ましく、また、通常5質量部以下であり、3質量部以下が好ましく、2質量部以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲であると、電池容量の低下や抵抗の増大を抑制できるとともに、良好な塗布性を確保することができる。
(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。
集電体上に存在している負極活物質の密度が、上記範囲であると、負極活物質粒子の破壊を防止して、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を抑制することができると共に、電池容量の低下や抵抗の増大を抑制することができる。
(負極板の厚さ)
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、芯材の金属箔厚さを差し引いた合材層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
(負極板の表面被覆)
上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物;硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩;炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
2−2.正極
<正極活物質>
以下に正極に使用される正極活物質について述べる。
(組成)
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、
LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をNa、K、B、F、Al、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の元素で置換した酸化物等が挙げられる。
置換された酸化物の具体例としては、例えば、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、LiNi0.45Co0.10Al0.45、LiMn1.8Al0.2、LiMn1.5Ni0.5等が挙げられる。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の元素で置換したもの等が挙げられる。
正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好ましい。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は前記正極活物質とリン酸リチウムの合計に対し、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、また、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは5質量%以下である。
(表面被覆)
上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることができる。
表面付着物質の量としては、正極活物質に対して質量で、好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、また、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制する効果が得られ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、一方付着量が多すぎる場合には、リチウムイオンの出入りを阻害するため界面抵抗が増加する場合がある。
本発明においては、正極活物質の表面に、これとは異なる組成の物質が付着したものも「正極活物質」に含まれる。
(形状)
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
(タップ密度)
正極活物質のタップ密度は、好ましくは0.5g/cm以上、より好ましくは0.8g/cm以上、さらに好ましくは1.0g/cm以上である。該正極活物質のタップ密度が上記範囲であると、正極活物質層形成時に必要な分散媒量及び導電材や結着材の必要量を抑えることができ、その結果、正極活物質の充填率及び電池容量を確保することができる。
タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、好ましくは4.0g/cm以下、より好ましくは3.7g/cm以下、さらに好ましくは3.5g/cm以下である。上記範囲であると負荷特性の低下を抑制することができる。
本発明では、タップ密度は、正極活物質粉体5〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/cmとして求める。
(メジアン径d50)
正極活物質粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、また、好ましくは30μm以下、より好ましくは27μm以下、さらに好ましくは25μm以下、最も好ましくは22μm以下である。上記範囲であると、高タップ密度品が得られ、電池性能の低下を抑制できると共に、電池の正極作製、即ち活物質と導電材やバインダー等を溶媒でスラリー化して薄膜状に塗布する際に、スジ引き等の問題を防止することができる。ここで、異なるメジアン径d50をもつ該正極活物質を2種類以上混合することで、正極作製時の充填性をさらに向上させることができる。
本発明では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
(平均一次粒子径)
一次粒子が凝集して二次粒子を形成している場合には、該正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、また、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記範囲であると、粉体充填性及び比表面積を確保し、電池性能の低下を抑制することができると共に、適度な結晶性が得られることによって、充放電の可逆性を確保することができる。
本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(BET比表面積)
正極活物質のBET比表面積は、好ましくは0.1m/g以上、より好ましくは0.2m/g以上、さらに好ましくは0.3m/g以上であり、また、50m/g以下、好ましくは40m/g以下、さらに好ましくは30m/g以下である。BET比表面積が上記範囲であると、電池性能を確保できるとともに、正極活性物質の塗布性を良好に保つことができる。
本発明では、BET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素ガス気流下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
(正極活物質の製造法)
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の1種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoOとLiMn若しくはこのMnの一部を他の遷移金属等で置換したもの(例えばLiNi0.33Co0.33Mn0.33など)との組み合わせ、又は、LiCoO若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
<正極の構成と作製法>
以下に、正極の構成について述べる。本発明において、正極は、正極活物質と結着材とを含有する正極活物質層を、集電体上に形成して作製することができる。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着材、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解若しくは分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させ、正極を得ることができる。
正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また、好ましくは99質量%以下、より好ましくは98質量%以下である。上記範囲であると、正極活物質層中の正極活物質の電気容量を確保できるとともに、正極の強度を保つことができる。
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、好ましくは1.5g/cm以上、より好ましくは2g/cm、さらに好ましくは2.2g/cm以上であり、また、好ましくは5g/cm以下、より好ましくは4.5g/cm以下、さらに好ましくは4g/cm以下の範囲である。上記範囲であると、良好な充放電特性が得られるとともに、電気抵抗の増大を抑制することができる。
(導電材)
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。上記範囲であると、十分な導電性と電池容量を確保することができる。
(結着材)
正極活物質層の製造に用いる結着材としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、
ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;
SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;
スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;
シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;
ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;
アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物;
等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の結着材の割合は、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは1.5質量%以上であり、また、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着材の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
(スラリー形成溶媒)
スラリーを形成するための溶媒としては、正極活物質、導電材、結着材、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と非水系有機溶媒のどちらを用いてもよい。水系溶媒としては、例えば、水、アルコールと水との混合溶媒等が挙げられる。有機系溶媒としては、例えば、
ヘキサン等の脂肪族炭化水素類;
ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;
キノリン、ピリジン等の複素環化合物;
アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;
酢酸メチル、アクリル酸メチル等のエステル類;
ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;
ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;
N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;
ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒
等が挙げられる。
特に水系溶媒を用いる場合、増粘剤と、スチレン−ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調整するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。さらに増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。上記範囲であると、良好な塗布性が得られるとともに、電池容量の低下や抵抗の増大を抑制することができる。
(集電体)
正極集電体の材質としては特に制限されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、集電体としての強度及び取扱い性の観点から、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電子接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、また、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。上記範囲であると、高電流密度充放電時の集電体の発熱を抑制し、電池容量を確保することができる。
(電極面積)
本発明の非水系電解液を用いる場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極面積の総和が面積比で15倍以上とすることが好ましく、さらに40倍以上とすることがより好ましい。
外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。
正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
(正極板の厚さ)
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合材層の厚さは、集電体の片面に対して、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
(正極板の表面被覆)
上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
2−3.セパレータ
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。上記範囲であると、絶縁性及び機械的強度を確保できると同時に、良好なレート特性等の電池性能及びエネルギー密度を確保することができる。
セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲であると、絶縁性及び機械的強度を確保できると同時に、膜抵抗を抑え良好なレート特性を得ることができる。
セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。平均孔径が、上記範囲であると、短絡を防止しつつ、膜抵抗を抑え良好なレート特性を得ることができる。一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
セパレータの形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。
上記の独立した薄膜形状以外に、樹脂製の結着材を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として多孔層を形成させることが挙げられる。
2−4.電池設計
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲であると、電池容量を確保できるとともに内部圧力の上昇に伴う充放電繰り返し性能や高温保存等の特性低下を抑制し、さらにはガス放出弁の作動を防止することができる。
<集電構造>
集電構造は、特に制限されないが、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。
電極群が上記の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減する方法も好適に用いられる。電極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
<外装ケース>
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、又は、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。
上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)サーミスター、温度ヒューズ、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。
上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
本実施例に使用した式(1)で示される化合物(i)〜(iii)を以下に示す。
Figure 0006171354
また、その他、使用した化合物を以下に示す。
Figure 0006171354
参考例1−1及び比較例1−1〜1−7(電池評価)>
参考例1−1]
[非水系電解液の調製]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とビニレンカーボネート(VC)との混合物(体積比30:70:2)に、非水系電解液中の含有量として化合物(i)1.0質量%を混合し、次いで十分に乾燥したLiPFを1.0モル/リットルの割合となるように溶解して非水系電解液を調製した。
[正極の作製]
正極活物質としてコバルト酸リチウム(LiCoO)97質量%と、導電材としてアセチレンブラック1.5質量%と、結着材としてポリフッ化ビニリデン(PVdF)1.5質量%とを、N−メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ21μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
[負極の作製]
負極活物質として天然黒鉛粉末に、増粘剤、結着材としてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、及び、スチレンブタジエンゴムの水性ディスパージョン(スチレンブタジエンゴムの濃度50質量%)を加え、ディスパーザーで混合してスラリー化した。このスラリーを厚さ12μmの銅箔の片面に均一に塗布、乾燥した後、プレスして負極とした。なお、乾燥後の負極において、天然黒鉛:カルボキシメチルセルロースナトリウム:スチレンブタジエンゴム=100:1:1の質量比となるように作製した。
[二次電池の作製]
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正・負極の端子を突設させながら挿入した後、上記で得た非水系電解液を袋内に注入し、真空封止を行ない、シート状の非水系電解液電池を作製した。
[初期容量評価]
非水系電解液電池を、ガラス板で挟んで加圧した状態で、25℃において、0.2Cに相当する電流で4.1Vまで定電流充電(以下適宜、「CC充電」という。)した後、0.2Cの定電流で3Vまで放電し、さらに0.2Cに相当する電流で4.33Vまで定電流−定電圧充電(以下適宜、「CCCV充電」という。)(0.05Cカット)した後、0.2Cで3Vまで放電して電池を安定させた。次いで、0.2Cで4.33VまでCCCV充電(0.05Cカット)した後、0.2Cで3Vまで再度放電し、初期放電容量を求めた。
ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、例えば、0.2Cとはその1/5の電流値を表す。
[高温保存特性評価]
初期容量評価を行った後の非水系電解液電池を、25℃において、0.2Cで4.33VまでCCCV充電(0.05Cカット)を行った後、85℃、24時間の条件で高温保存を行った。電池を十分に冷却させた後、エタノール浴中に浸して体積を測定し、保存前後の体積変化から発生ガス量を求めた。次に、25℃において0.2Cで3Vまで放電させ、高温保存特性評価後の残存容量を測定し、初期放電容量に対する残存容量の割合を求め、これを高温保存後の残存容量(%)とした。再度、0.2Cで4.33VまでCCCV充電(0.05Cカット)を行い、0.2Cで3Vまで放電させ、高温保存特性評価後の0.2C放電容量を測定し、初期放電容量に対する0.2C放電容量の割合を求め、これを高温保存後の回復容量(%)とした。さらに、0.2Cで4.33VまでCCCV充電(0.05Cカット)した後、0.5Cで3Vまで再度放電し高温保存特性評価後の0.5C放電容量を求め、回復容量に対する高温保存特性評価後の0.5C放電容量の割合を求め、これを保存後レート(%)とした。
以上のようにして、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表1に示す。
[比較例1−1]
参考例1−1の非水系電解液において、化合物(i)を含まない電解液を用いた以外、参考例1−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表1に示す。
[比較例1−2]
参考例1−1の非水系電解液において、化合物(i)1.0質量%に代えてTU 0.6質量%を使用した以外、参考例1−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表1に示す。
[比較例1−3]
参考例1−1の非水系電解液において、化合物(i)1.0質量%に代えてSN 0.3質量%を使用した以外、参考例1−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表1に示す。
[比較例1−4]
参考例1−1の非水系電解液において、化合物(i)1.0質量%に代えてTU 0.6質量%およびSN 0.3質量%を使用した以外、参考例1−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表1に示す。
[比較例1−5]
参考例1−1の非水系電解液において、化合物(i)1.0質量%に代えてSN 1.0質量%を使用した以外、参考例1−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表1に示す。
[比較例1−6]
参考例1−1の非水系電解液において、化合物(i)1.0質量%に代えてAN 1.0質量%を使用した以外、参考例1−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表1に示す。
[比較例1−7]
参考例1−1の非水系電解液において、化合物(i)1.0質量%に代えてON 1.0質量%を使用した以外、参考例1−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表1に示す。
Figure 0006171354
表1より、本発明にかかる参考例1−1の非水系電解液を用いると、式(1)で示される化合物が添加されていない場合(比較例1−1)に比べ、高温保存時のガス発生量が低く、かつ高温保存後の残存容量・回復容量・レート特性に優れていることが分かる。また、式(1)で示される化合物に代えて、化合物(i)の構造的な構成要素であるTUやSNを構成要素量が等しくなるように用いた場合(比較例1−2、1−3)、高温保存時の発生ガス抑制ならびに高温保存後の残存容量・回復容量・レート特性向上の効果は見られるものの、添加剤として不十分であることがわかる。また、TUとSNを同時に添加した場合(比較例1−4)も、化合物(i)の特性には及ばないことから、式(1)の構造を有する化合物の特異的な特性向上効果を確認することができる。
さらに、式(1)と類似な構造を有するSN、AN、ONを参考例1−1における化合物(i)と同じ添加量で電解液に加えた場合(比較例1−5〜1−7) も、高温保存時の発生ガス抑制ならびに高温保存後の残存容量・回復容量・レート特性向上の効果は見られるものの、化合物(i)を用いた場合には及ばず、添加剤として不十分であることがわかる。
参考例2−1〜2−5及び比較例2−1、2−2(電池評価)>
参考例2−1]
[非水系電解液の調製]
参考例1−1の非水系電解液において、化合物(i)1.0質量%に代えて化合物(i)0.5質量%を使用した以外、参考例1−1と同様にして非水系電解液を調製した。
[負極の作製]
参考例1−1の負極において、天然黒鉛粉末に代えて非晶質被覆黒鉛粉末を用い、乾燥後の負極において非晶質被覆黒鉛:カルボキシメチルセルロースナトリウム:スチレンブタジエンゴム=100:1:1の質量比となるようにした以外、参考例1−1と同様にして負極を作製した。
[正極・二次電池の作製]
参考例1−1と同様に作製した。
この非水系電解液電池を用いて、参考例1−1と同様に初期容量評価ならびに高温保存特性評価を実施した。評価結果を表2に示す。
参考例2−2]
参考例2−1の非水系電解液において、化合物(i)0.5質量%に代えて化合物(i)1.0質量%を使用した以外、参考例2−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表2に示す。
参考例2−3]
参考例2−1の非水系電解液において、化合物(i)0.5質量%に代えて化合物(ii)0.5質量%を使用した以外、参考例2−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表2に示す。
参考例2−4]
参考例2−1の非水系電解液において、化合物(i)0.5質量%に代えて化合物(ii)1.0質量%を使用した以外、参考例2−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表2に示す。
参考例2−5]
参考例2−1の非水系電解液において、化合物(i)0.5質量%に代えて化合物(iii)0.5質量%を使用した以外、参考例2−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表2に示す。
[比較例2−1]
参考例2−1の非水系電解液において、化合物(i)を含まない電解液を用いた以外、参考例2−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表2に示す。
[比較例2−2]
参考例2−1の非水系電解液において、化合物(i)0.5質量%に代えてDMM 0.5質量%を使用した以外、参考例2−1と同様にして非水系電解液電池を作製し、初期容量評価ならびに高温保存特性評価を実施した。評価結果を表2に示す。
Figure 0006171354
表2より、本発明にかかる参考例2−1〜2−5の非水系電解液を用いると、式(1)の化合物が添加されていない場合(比較例2−1)に比べ、高温保存時のガス発生量が低く、かつ高温保存後の残存容量・回復容量・レート特性に優れていることが分かる。また、式(1)に該当しないアセタール化合物DMMを用いた場合(比較例2−2)は、高温保存時の発生ガス抑制ならびに高温保存後の残存容量向上効果は発現するものの、回復容量・レート特性が低下するため、添加剤として不十分であることがわかる。
参考例3−1、3−2及び比較例3−1〜3−3(電池評価)>
参考例3−1]
[非水系電解液の調製]
乾燥アルゴン雰囲気下、ECとモノフルオロエチレンカーボネート(MFEC)とDMCとVCとの混合物(体積比15:15:70:1)に、非水系電解液中の含有量として化合物(i)1.0質量%を混合し、次いで十分に乾燥したLiPFを1.0モル/リットルの割合となるように溶解して非水系電解液を調製した。
[負極の作製]
参考例1−1の負極において、天然黒鉛粉末に代えて非晶質被覆黒鉛粉末ならびに天然黒鉛粉末の混合物を用い、乾燥後の負極において非晶質被覆黒鉛:天然黒鉛:カルボキシメチルセルロースナトリウム:スチレンブタジエンゴム=30:70:1:1の質量比となるようにした以外、参考例1−1と同様にして負極を作製した。
[正極・二次電池の作製]
参考例1−1と同様に作製した。
この非水系電解液電池を用いて、参考例1−1と同様に高温保存特性評価を実施した。評価結果を表3に示す。
参考例3−2]
参考例3−1の非水系電解液において、化合物(i)1.0質量%に代えて化合物(i)4.0質量%を使用した以外、参考例3−1と同様にして非水系電解液電池を作製し、高温保存特性評価を実施した。評価結果を表3に示す。
[比較例3−1]
参考例3−1の非水系電解液において、化合物(i)を含まない電解液を用いた以外、参考例3−1と同様にして非水系電解液電池を作製し、高温保存特性評価を実施した。評価結果を表3に示す。
[比較例3−2]
参考例3−1の非水系電解液において、化合物(i)1.0質量%に代えてAN 1.0質量%を使用した以外、参考例3−1と同様にして非水系電解液電池を作製し、高温保存特性評価を実施した。評価結果を表3に示す。
[比較例3−3]
参考例3−1の非水系電解液において、化合物(i)1.0質量%に代えてAN 2.0質量%を使用した以外、参考例3−1と同様にして非水系電解液電池を作製し、高温保存特性評価を実施した。評価結果を表3に示す。
Figure 0006171354
表3より、本発明にかかる参考例3−1、3−2の非水系電解液を用いると、式(1)の化合物が添加されていない場合(比較例3−1)に比べ、高温保存時のガス発生量が低く、かつ高温保存後の残存容量・回復容量・レート特性に優れていることが分かる。また、式(1)に該当しないジニトリル化合物ANを用いた場合(比較例3−2、3−3)は、高温保存時の発生ガス抑制ならびに高温保存後の残存容量・回復容量・レート特性向上の効果は見られるものの、今回の24時間保存よりも長期の高温保存をした場合の高温保存特性を考慮すると、添加剤として不十分であることがわかる。
<実施例4−1、4−2及び比較例4−1(電池評価)>
[実施例4−1]
[非水系電解液の調製]
乾燥アルゴン雰囲気下、ECとMFECとDMCとVCとの混合物(体積比15:15:70:1)に、非水系電解液中の含有量として化合物(i)0.5質量%ならびにHMI 0.3質量%を混合し、次いで十分に乾燥したLiPFを1.0モル/リットルの割合となるように溶解して非水系電解液を調製した。
[負極・正極・二次電池の作製]
参考例1−1と同様に作製した。
[低温特性評価]
初期容量評価を行った後の非水系電解液電池を、25℃において、0.2Cで3.0VまでCCCV充電(0.05Cカット)を行った。その後、0℃において、0.2Cで4.33VまでCC充電し、低温充電容量を求めた。次いで、0℃において、0.2Cで3.0Vまで放電し、低温放電容量を求め、低温充電容量に対する低温放電容量の割合を求め、これを低温充放電効率(%)とした。
さらに前記非水系電解液電池を用いて、参考例1−1と同様に高温保存特性評価ならびに低温特性評価を実施した。評価結果を表4に示す。
[実施例4−2]
実施例4−1の非水系電解液において、化合物(i)0.5質量%に代えて化合物(i)1.0質量%を使用した以外、実施例4−1と同様にして非水系電解液電池を作製し、高温保存特性評価ならびに低温特性評価を実施した。評価結果を表4に示す。
[比較例4−1]
実施例4−1の非水系電解液において、化合物(i)0.5質量%に代えてAN 1.0質量%を使用した以外、実施例4−1と同様にして非水系電解液電池を作製し、高温保存特性評価ならびに低温特性評価を実施した。評価結果を表4に示す。
Figure 0006171354
表4より、本発明にかかる実施例4−1、4−2の非水系電解液を用いると、式(1)に該当しないジニトリル化合物ANを用いた場合(比較例4−1)に比べ、高温保存後の残存容量・回復容量・レート特性ならびに低温充放電効率が優れていることが分かる。
<実施例5−1、5−2及び比較例5−1、5−2(電池評価)>
[実施例5−1]
[非水系電解液の調製]
乾燥アルゴン雰囲気下、ECとMFECとDMCとVCとの混合物(体積比25:5:70:1)に、非水系電解液中の含有量として化合物(i)1.0質量%ならびにHMI 0.3質量%を混合し、次いで十分に乾燥したLiPFを1.0モル/リットルの割合となるように溶解して非水系電解液を調製した。
[負極・正極・二次電池の作製]
参考例1−1と同様に作製した。
[サイクル特性評価]
初期容量評価を行った後の非水系電解液電池を、45℃において、0.2Cで4.33VまでCCCV充電(0.05Cカット)を行った後、0.2Cで3Vまで放電し、サイクル初期放電容量を求めた。その後、45℃において、0.5Cで4.33VまでCCCV充電した後、0.5Cで3Vまで定電流放電する過程を1サイクルとして、199サイクル実施した。その後、45℃において、0.2Cで4.33VまでCCCV充電(0.05Cカット)を行った後、0.2Cで3Vまで放電し、サイクル後放電容量を求めた。
(サイクル後放電容量)÷(サイクル初期放電容量)×100
の計算式から、サイクル容量維持率を求めた。
前記非水系電解液電池を用いて、参考例1−1と同様に高温保存特性評価、実施例4−1と同様に低温特性評価を行い、さらに前記の通りサイクル特性評価を実施した。評価結果を表5に示す。
[実施例5−2]
実施例5−1の非水系電解液において、HMI 0.3質量%に代えてDMHC 0.5質量%を使用した以外、実施例5−1と同様にして非水系電解液電池を作製し、高温保存特性評価、低温特性評価ならびにサイクル特性評価を実施した。評価結果を表5に示す。
[比較例5−1]
実施例5−1の非水系電解液において、化合物(i)1.0質量%に代えてAN 1.0質量%を使用した以外、実施例5−1と同様にして非水系電解液電池を作製し、高温保存特性評価、低温特性評価ならびにサイクル特性評価を実施した。評価結果を表5に示す。
[比較例5−2]
実施例5−2の非水系電解液において、化合物(i)1.0質量%に代えてAN 1.0質量%を使用した以外、実施例5−1と同様にして非水系電解液電池を作製し、高温保存特性評価、低温特性評価ならびにサイクル特性評価を実施した。評価結果を表5に示す。
Figure 0006171354
表5より、本発明にかかる実施例5−1、5−2の非水系電解液を用いると、式(1)に該当しないジニトリル化合物ANを用いた場合(比較例5−1、5−2)に比べ、高温保存後の残存容量・回復容量・レート特性、低温充放電効率、サイクル容量維持率に優れていることが分かる。
<実施例6−1、6−2及び比較例6−1、6−2(電池評価)>
[実施例6−1]
[非水系電解液の調製]
実施例4−1と同様に作製した。
[負極・正極・二次電池の作製]
参考例1−1と同様に作製した。
[放電保存特性評価]
初期容量評価を行った後の非水系電解液電池を、25℃において、0.2Cで3.0VまでCCCV充電(0.05Cカット)を行った。その後、60℃、168時間の条件で高温保存を行った。電池を十分に冷却させた後、保存後の電圧を測定し、放電保存後電圧(V)を求めた。
さらに前記非水系電解液電池を用いて、実施例5−1と同様にサイクル特性評価を実施した。以上の評価結果を表6に示す。
[実施例6−2]
実施例6−1の非水系電解液において、化合物(i)0.5質量%に代えて化合物(i)1.0質量%を使用した以外、実施例6−1と同様にして非水系電解液電池を作製し、サイクル特性評価ならびに放電保存特性評価を実施した。評価結果を表6に示す。
[比較例6−1]
実施例6−1の非水系電解液において、化合物(i)0.5質量%に代えてAN 1.0質量%を使用した以外、実施例6−1と同様にして非水系電解液電池を作製し、サイクル特性評価ならびに放電保存特性評価を実施した。評価結果を表6に示す。
[比較例6−2]
実施例6−1の非水系電解液において、化合物(i)0.5質量%に代えてPN 1.0質量%を使用した以外、実施例6−1と同様にして非水系電解液電池を作製し、サイクル特性評価ならびに放電保存特性評価を実施した。評価結果を表6に示す。
Figure 0006171354
表6より、本発明にかかる実施例6−1、6−2の非水系電解液を用いると、式(1)に該当しないジニトリル化合物ANならびにPNを用いた場合(比較例6−1、6−2)に比べ、サイクル容量維持率に優れ、かつ、放電保存時の電圧降下が抑制されていることが分かる。
<実施例7−1、7−2及び比較例7−1、7−2(電池評価)>
[実施例7−1]
[非水系電解液の調製]
乾燥アルゴン雰囲気下、ECとMFECとDMCとVCとの混合物(体積比15:15:70:1)に、非水系電解液中の含有量として化合物(i)1.0質量%ならびにHMI 0.3質量%を混合し、次いで十分に乾燥したLiPFを1.0モル/リットルの割合となるように溶解して非水系電解液を調製した。
[負極・正極・二次電池の作製]
参考例2−1と同様に作製した。
これら非水系電解液電池を用いて、実施例6−1と同様に放電保存特性評価を実施した。評価結果を表7に示す。
[実施例7−2]
実施例7−1の非水系電解液において、HMI 0.3質量%に代えてDMHC 0.5質量%を使用した以外、実施例7−1と同様にして非水系電解液電池を作製し、放電保存特性評価を実施した。評価結果を表7に示す。
[比較例7−1]
実施例7−1の非水系電解液において、化合物(i)1.0質量%に代えてAN 1.0質量%を使用した以外、実施例7−1と同様にして非水系電解液電池を作製し、放電保存特性評価を実施した。評価結果を表7に示す。
[比較例7−2]
実施例7−2の非水系電解液において、化合物(i)1.0質量%に代えてAN 1.0質量%を使用した以外、実施例7−2と同様にして非水系電解液電池を作製し、放電保存特性評価を実施した。評価結果を表7に示す。
Figure 0006171354
表7より、本発明にかかる実施例7−1、7−2の非水系電解液を用いると、式(1)に該当しないジニトリル化合物ANを用いた場合(比較例7−1、7−2)に比べ、放電保存時の電圧降下が抑制されていることが分かる。
<実施例8−1、8−2及び比較例8−1〜8−4(電池評価)>
[実施例8−1]
[非水系電解液の調製]
実施例7−1と同様に作製した。
[負極・正極・二次電池の作製]
参考例1−1と同様に作製した。
[連続充電評価]
初期容量評価を行った後の非水系電解液電池を、60℃において、0.2Cで4.38VまでCCCV充電(168時間カット)を行うことで、連続充電試験を実施した。その後、電池を十分に冷却させた後、エタノール浴中に浸して体積を測定し、連続充電前後の体積変化から発生ガス量を求めた。
以上の通りにして、連続充電評価を実施した。評価結果を表8に示す。
[実施例8−2]
実施例8−1の非水系電解液において、さらにAN 1.0質量%を含む電解液を用いた以外、実施例8−1と同様にして非水系電解液電池を作製し、連続充電評価を実施した。評価結果を表8に示す。
[比較例8−1]
実施例8−1の非水系電解液において、化合物(i)を含まない電解液を用いた以外、実施例8−1と同様にして非水系電解液電池を作製し、連続充電評価を実施した。評価結果を表8に示す。
[比較例8−2]
実施例8−1の非水系電解液において、化合物(i)1.0質量%に代えてAN 1.0質量%を使用した以外、実施例8−1と同様にして非水系電解液電池を作製し、連続充電評価を実施した。評価結果を表8に示す。
[比較例8−3]
実施例8−1の非水系電解液において、化合物(i)1.0質量%に代えてPN 1.0質量%を使用した以外、実施例8−1と同様にして非水系電解液電池を作製し、連続充電評価を実施した。評価結果を表8に示す。
[比較例8−4]
比較例8−2の非水系電解液において、さらにPN 1.0質量%を含む電解液を用いた以外、比較例8−2と同様にして非水系電解液電池を作製し、連続充電評価を実施した。評価結果を表8に示す。
Figure 0006171354
表8より、本発明にかかる実施例8−1、8−2の非水系電解液を用いると、式(1)の化合物が添加されていない場合(比較例8−1)に比べ、連続充電時のガス発生量が低いことが分かる。また、式(1)に該当しないジニトリルANならびにPNを単独または併用で用いた場合(比較例8−2〜8−4)は、連続充電時の発生ガス抑制効果は見られるものの、添加剤として不十分であることがわかる。
本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本発明の非水系電解液によれば、非水系電解液電池の高温保存時における容量劣化とガス発生を改善できる。そのため、本発明の非水系電解液及びこれを用いた非水系電解液電池は、公知の各種の用途に用いることが可能である。
具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ及びカメラの電源や、さらにバックアップ電源、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。

Claims (7)

  1. リチウム塩と非水系有機溶媒を含む非水系電解液であって、該非水系電解液が、下記式(1)で示される化合物をさらに含有し、更にモノフルオロリン酸塩、ジフルオロリン酸塩、カルボン酸無水物およびイソシアネート化合物よりなる群から選ばれる少なくとも1種の化合物を含有することを特徴とする非水系電解液:
    Figure 0006171354

    (式中、RはCN基を少なくとも1つ含むアルキル基を表し、R1’は水素原子を表し、RおよびRはそれぞれ独立に炭素原子および水素原子で構成された基を表す。Zは1以上3以下の整数であり、Zが2以上の場合は、複数のRおよびRはそれぞれ同一であっても異なっていてもよい。R、R、およびRは互いに結合して環を形成してもよい。)。
  2. 前記式(1)中、RとRが互いに結合して環を形成することを特徴とする請求項1に記載の非水系電解液(ただしZが2以上の場合は、少なくとも一つのRとRが互いに結合して環を形成する)。
  3. およびRがそれぞれ独立にアルキル基を表す請求項1に記載の非水系電解液。
  4. 前記式(1)中、Zが2以上の整数であることを特徴とする請求項1乃至3のいずれか1項に記載の非水系電解液。
  5. 前記式(1)で示される化合物が、下記式(2)で示される化合物であることを特徴とする請求項1乃至4のいずれか1項に記載の非水系電解液:
    Figure 0006171354

    (式中、RはCN基を少なくとも1つ含むアルキル基を表し、R1’は水素原子を表し、R炭素原子および水素原子で構成された基を表す。複数存在するRは、それぞれ互いに同一であっても異なっていてもよい。)。
  6. 前記式(1)で示される化合物を0.001〜10質量%含有することを特徴とする請求項1乃至5のいずれか1項に記載の非水系電解液。
  7. リチウムイオンを吸蔵・放出可能な負極及び正極、並びに請求項1乃至6のいずれか1項に記載の非水系電解液を含むことを特徴とする非水系電解液電池。
JP2013007500A 2012-01-18 2013-01-18 非水系電解液及びそれを用いた非水系電解液電池 Active JP6171354B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013007500A JP6171354B2 (ja) 2012-01-18 2013-01-18 非水系電解液及びそれを用いた非水系電解液電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012007901 2012-01-18
JP2012007901 2012-01-18
JP2013007500A JP6171354B2 (ja) 2012-01-18 2013-01-18 非水系電解液及びそれを用いた非水系電解液電池

Publications (2)

Publication Number Publication Date
JP2013168363A JP2013168363A (ja) 2013-08-29
JP6171354B2 true JP6171354B2 (ja) 2017-08-02

Family

ID=48799312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013007500A Active JP6171354B2 (ja) 2012-01-18 2013-01-18 非水系電解液及びそれを用いた非水系電解液電池

Country Status (4)

Country Link
JP (1) JP6171354B2 (ja)
KR (1) KR101953945B1 (ja)
CN (1) CN104067433B (ja)
WO (1) WO2013108891A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825049B (zh) * 2014-03-04 2017-10-27 东风商用车有限公司 一种锂离子电池耐高温电解液
US9755277B2 (en) * 2014-03-28 2017-09-05 Daikin Industries, Ltd. Electrolyte, electrochemical device, secondary cell, and module
JP2016051600A (ja) * 2014-08-29 2016-04-11 富山薬品工業株式会社 蓄電デバイス用非水電解液
KR101797290B1 (ko) * 2014-09-26 2017-12-12 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
CN109346760A (zh) * 2014-09-29 2019-02-15 深圳新宙邦科技股份有限公司 一种高电压锂离子电池的电解液及高电压锂离子电池
JP6542882B2 (ja) * 2014-10-02 2019-07-10 エルジー・ケム・リミテッド リチウム二次電池用電解液添加剤、前記電解液添加剤を含む非水性電解液及びリチウム二次電池
CN105140565A (zh) * 2015-08-03 2015-12-09 深圳新宙邦科技股份有限公司 一种高电压锂离子电池用非水电解液及锂离子电池
JP2018133282A (ja) * 2017-02-17 2018-08-23 Tdk株式会社 リチウムイオン二次電池
CN109326824B (zh) * 2017-07-31 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及锂离子电池
CN113555604A (zh) * 2018-04-11 2021-10-26 宁德新能源科技有限公司 锂离子电池
CN111384437A (zh) * 2018-12-27 2020-07-07 北京宝沃汽车有限公司 适用于硅碳负极的锂电池电解液和锂电池
KR20210129463A (ko) * 2020-04-20 2021-10-28 주식회사 엘지에너지솔루션 리튬 금속 이차전지용 전해액, 및 이를 포함하는 리튬 금속 이차전지
CN111740165B (zh) * 2020-06-28 2022-06-10 宁德新能源科技有限公司 电解液和包含电解液的电化学装置及电子装置
CN112259791A (zh) * 2020-10-27 2021-01-22 惠州亿纬锂能股份有限公司 一种非水电解液及其制备方法和锂离子电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172043A (en) * 1991-04-03 1992-12-15 Gates Energy Products, Inc. Energy using device
JPH07176322A (ja) 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Li二次電池用電解液
JP3322182B2 (ja) * 1997-09-24 2002-09-09 株式会社豊田中央研究所 電池用非水電解液
US6235431B1 (en) * 1997-06-24 2001-05-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery using the same
CA2313027A1 (en) * 1997-12-02 1999-06-10 Sri International Fire-resistant gas generating battery electrolytes
JP4910303B2 (ja) * 2004-05-26 2012-04-04 三菱化学株式会社 非水系電解液および非水系電解液電池
JP4411157B2 (ja) * 2004-07-27 2010-02-10 日本化学工業株式会社 リチウムマンガンニッケル系複合酸化物、その製造方法及びそれを用いたリチウム二次電池
CN102244294B (zh) * 2006-06-02 2015-11-18 三菱化学株式会社 非水电解液以及非水电解质电池
CN102280664B (zh) * 2010-06-09 2015-07-22 中国科学院物理研究所 一种电解液及含有该电解液的二次锂电池和电容器
JP2012184201A (ja) * 2011-03-07 2012-09-27 Nippon Zeon Co Ltd 環状エーテル化合物、非水系電池電極用バインダー組成物、非水系電池電極用スラリー組成物、非水系電池用電極及び非水系電池
JP2013089468A (ja) * 2011-10-18 2013-05-13 Sony Corp 非水電解質電池および非水電解質、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム

Also Published As

Publication number Publication date
JP2013168363A (ja) 2013-08-29
CN104067433A (zh) 2014-09-24
CN104067433B (zh) 2016-09-14
KR20140116873A (ko) 2014-10-06
KR101953945B1 (ko) 2019-03-04
WO2013108891A1 (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP6171354B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6036298B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液電池
KR102416651B1 (ko) 비수계 전해액 및 그것을 사용한 비수계 전해액 2 차 전지
JP6604014B2 (ja) 非水系電解液及び非水系電解液二次電池
JP5966410B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
US20130071730A1 (en) Nonaqueous electrolyte secondary battery
JP5655653B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP6520151B2 (ja) 非水系電解液及び非水系電解液二次電池
JP6079272B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2016146341A (ja) 非水系電解液及び非水系電解液二次電池
JP5928057B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
WO2018151234A1 (ja) 非水系電解液及び蓄電デバイス
JP6031868B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2013232298A (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP5776422B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2019135730A (ja) 非水系電解液及び非水系電解液二次電池
JP5903931B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6167729B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6236907B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2015195203A (ja) 非水系電解液及び非水系電解液二次電池
JP5857434B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2019040676A (ja) 非水系電解液及び非水系電解液二次電池
JP6191395B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2018073738A (ja) 非水系電解液及び非水系電解液二次電池
JP6003036B2 (ja) 非水系電解液二次電池

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R151 Written notification of patent or utility model registration

Ref document number: 6171354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350