JP6150906B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP6150906B2
JP6150906B2 JP2015556680A JP2015556680A JP6150906B2 JP 6150906 B2 JP6150906 B2 JP 6150906B2 JP 2015556680 A JP2015556680 A JP 2015556680A JP 2015556680 A JP2015556680 A JP 2015556680A JP 6150906 B2 JP6150906 B2 JP 6150906B2
Authority
JP
Japan
Prior art keywords
refrigerant
expander
compressor
shell
refrigerating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015556680A
Other languages
English (en)
Other versions
JPWO2015104822A1 (ja
Inventor
加藤 央平
央平 加藤
裕輔 島津
裕輔 島津
悟 梁池
悟 梁池
大坪 祐介
祐介 大坪
進一 内野
進一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015104822A1 publication Critical patent/JPWO2015104822A1/ja
Application granted granted Critical
Publication of JP6150906B2 publication Critical patent/JP6150906B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、冷媒の膨張動力を電力として回収する膨張機を備えた冷凍サイクル装置に関する。
従来の冷凍サイクル装置においては、冷媒回路は、圧縮機と膨張機を有している。圧縮機ケーシングと膨張機ケーシングが連絡管で連通すると共に、吐出管と膨張機ケーシングが分岐流出管で連通して両ケーシング内が均圧される。圧縮機および膨張機の油溜りを繋ぐ油流通管には、油量調節弁が設けられる。油量調節弁を開くと、圧縮機ケーシング内の油溜りと膨張機ケーシング内の油溜りとが互いに連通し、油流通管を通って冷凍機油が移動する、というものが提案されている(例えば、特許文献1参照)。
また、従来の冷凍サイクル装置においては、冷媒回路には、圧縮機と膨張機が設けられる。圧縮機では、圧縮機構で圧縮された冷媒が圧縮機ケーシングの内部空間へ吐出される。圧縮機では、圧縮機ケーシングの底に溜まった冷凍機油が圧縮機構へ供給される。圧縮機ケーシングの底に溜まった冷凍機油は、給油用配管を通じて膨張機の膨張機構へ直接に導入される、というものが提案されている(例えば、特許文献2参照)。
特開2007−285674号公報(要約) 特開2008−224053号公報(要約)
特許文献1に記載の技術では、圧縮機シェル(圧縮機ケーシング)と膨張機シェル(膨張機ケーシング)とを配管で接続し、圧縮機シェル内のガス冷媒の一部を膨張機シェルへ流入させることで、圧縮機内の冷凍機油の一部を膨張機シェル内へ流入させている。
このため、圧縮機シェル内の圧力と膨張機シェル内の圧力とが同じ圧力となる。よって、例えば、圧縮機シェル内が高圧で膨張機シェル内が低圧となる構成、もしくはその逆の構成のように、圧縮機シェル内の圧力と膨張機シェル内の圧力とが異なる構成には対応できない、という課題があった。
特許文献2に記載の技術では、圧縮機シェル(圧縮機ケーシング)の底に溜まった冷凍機油が、給油用配管を通じて膨張機内の膨張部(膨張機構)へ直接に導入させている。
このため、圧縮機シェル内の冷凍機油が枯渇した場合、膨張機内へ油を供給できなくなる、という課題があった。
また、冷凍機油が給油用配管を流通する際、冷凍機油に溶け込んだ冷媒が減圧されて発泡し、冷凍機油内に冷媒ガスが混入して潤滑性が悪化する、という課題があった。
本発明は、上記のような課題を解決するためになされたもので、圧縮機シェル内の圧力によらず膨張機シェル内に冷凍機油を貯留することができ、膨張機における冷凍機油の枯渇を抑制することができる冷凍サイクル装置を得ることを目的とする。
本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、膨張機、及び蒸発器が配管で接続され、冷媒が循環する冷媒回路を備え、前記膨張機は、外郭を構成する膨張機シェルと、前記膨張機シェル内に配置され、前記凝縮器から流出した前記冷媒を膨張させ駆動力を発生し、膨張させた前記冷媒を前記蒸発器へ流入させる膨張部と、前記膨張機シェル内に配置され、前記膨張部の駆動力によって回転する発電機と、を有し、前記膨張機シェルは、前記圧縮機から吐出された前記冷媒と前記冷媒に含まれる冷凍機油とが流入する入口部と、前記冷媒と前記冷凍機油とを前記入口部から流入させた後、前記膨張機シェル内を経由して前記凝縮器へ流出させる出口部と、が形成され、前記膨張機シェル内が高圧であり、前記圧縮機の吐出配管から吐出された前記冷媒に含まれる前記冷凍機油が貯留され、前記冷凍機油が前記膨張部及び前記発電機の少なくとも一方に供給されるものである。
本発明は、圧縮機から吐出された冷媒に含まれる冷凍機油が膨張機シェルに貯留される。このため、圧縮機シェル内の圧力によらず膨張機シェル内に冷凍機油を貯留することができ、膨張機における冷凍機油の枯渇を抑制することができる。
本発明の実施の形態1に係る冷凍サイクル装置100の構成図である。 本発明の実施の形態2に係る冷凍サイクル装置100の膨張機3の構成図である。 本発明の実施の形態3に係る冷凍サイクル装置100の構成図である。 本発明の実施の形態4に係る冷凍サイクル装置100の構成図である。 本発明の実施の形態4に係る冷凍サイクル装置100の他の構成例を示す図である。 本発明の実施の形態5に係る冷凍サイクル装置100の構成図である。 本発明の実施の形態6に係る冷凍サイクル装置100の構成図である。
実施の形態1.
<冷凍サイクル装置100の構成>
図1は、本発明の実施の形態1に係る冷凍サイクル装置100の構成図である。
図1に示すように、冷凍サイクル装置100は、圧縮機1、負荷側熱交換器2、膨張機3、熱源側熱交換器4、第1四方弁5、及び第2四方弁6を備えている。圧縮機1、負荷側熱交換器2、膨張機3、及び熱源側熱交換器4は配管で接続され、冷媒が循環する冷媒回路を構成する。
(圧縮機1)
圧縮機1は、例えば全密閉式圧縮機により構成される。圧縮機1は、圧縮機シェル15により外殻が構成される。圧縮機シェル15内には、電動機部17と、圧縮部18とが収納されている。
また、圧縮機シェル15には、冷凍機油50が貯留される。冷凍機油50は、電動機部17及び圧縮部18へ供給され、潤滑に利用される。
圧縮機1は、吸入側の配管21から圧縮機シェル15内に、低圧の冷媒を吸入する。圧縮部18は、電動機部17によって駆動される。圧縮機シェル15内に吸入された低圧の冷媒は、圧縮部18で圧縮される。圧縮部18で圧縮された高圧の冷媒は、吐出側の配管10へ吐出される。
このように、圧縮機シェル15の内部の圧力は低圧となっている。即ち、圧縮機シェル15は、いわゆる低圧シェルである。
なお、本実施の形態1では圧縮機シェル15内の圧力が低圧である場合を説明するが、本発明はこれに限定されない。
例えば、圧縮部18が、吸入側の配管21から低圧の冷媒を直接吸入する。圧縮部18で圧縮された高圧の冷媒が、圧縮機シェル15内に放出する。そして、圧縮機シェル15内に放出された冷媒が、吐出側の配管10へ吐出される構成でもよい。
このように、圧縮機シェル15の内部の圧力が高圧となる構成でもよい。即ち、圧縮機シェル15が、いわゆる高圧シェルでもよい。
(膨張機3)
膨張機3は、膨張機シェル34により外殻が構成される。膨張機シェル34内には、膨張部31と、発電機32(モータ)とが収納されている。膨張部31と発電機32は、回転軸33によって連結されている。
また、膨張機シェル34には、冷凍機油50が貯留される。冷凍機油50は、膨張部31及び発電機32の少なくとも一方へ供給され、潤滑に利用される。
膨張部31は、冷媒が流入する膨張部入口43と、冷媒が流出する膨張部出口44とを有している。膨張部入口43は、流入配管35と接続される。膨張部出口44は、流出配管36と接続される。
流入配管35は、第2四方弁6を介して、凝縮器(負荷側熱交換器2または熱源側熱交換器4)と接続される。
流出配管36は、第2四方弁6を介して、蒸発器(負荷側熱交換器2または熱源側熱交換器4)と接続される。
膨張部31は、流入配管35から膨張部入口43へ流入した冷媒を膨張させて、膨張部出口44から流出配管36へ、膨張させた冷媒を流出させる。また、膨張部31は、冷媒を膨張させる際の膨張動力によって回転軸33を回転駆動する。
発電機32は、回転軸33によって膨張部31と連結し、膨張部31の駆動力によって回転し、発電する。これにより、膨張部31の膨張動力が、電力として回収される。
膨張機3の膨張機シェル34は、冷媒が流入する入口部41と、冷媒が流出する出口部42とが形成されている。
入口部41は、圧縮機1の吐出側の配管10と接続されている。膨張機シェル34内には、圧縮機1から吐出された冷媒が流入する。膨張機シェル34内に流入した冷媒は、ガス冷媒と冷凍機油50とに分離される。これにより、膨張機シェル34内には、圧縮機1から吐出された冷媒に含まれる冷凍機油50が貯留される。
出口部42は、ガス配管11と接続されている。ガス配管11は、第1四方弁5を介して、凝縮器(負荷側熱交換器2または熱源側熱交換器4)と接続される。
(負荷側熱交換器2)
負荷側熱交換器2は、例えばフィンアンドチューブ型熱交換器で構成される。負荷側熱交換器2は、負荷側媒体としての空気と冷媒との熱交換を行う。なお、負荷側媒体は、空気に限らず、例えば水または不凍液等を熱源として利用できるようにしても良い。
(熱源側熱交換器4)
熱源側熱交換器4は、例えばフィンアンドチューブ型熱交換器で構成される。熱源側熱交換器4は、熱源側媒体としての外気と冷媒との熱交換を行う。なお、熱源側媒体は、外気(空気)に限らず、例えば水または不凍液等を熱源として利用できるようにしても良い。
(第1四方弁5、第2四方弁6)
第1四方弁5及び第2四方弁6は、冷媒回路の流れを切り替えるために用いられる。
負荷側熱交換器2を凝縮器(放熱器)として機能させ、熱源側熱交換器4を蒸発器として機能させる場合(暖房運転)、第1四方弁5は、ガス配管11と熱源側熱交換器4とを接続し、負荷側熱交換器2と圧縮機1の吸入側の配管21とを接続する。また、第2四方弁6は、負荷側熱交換器2と流入配管35とを接続し、流出配管36と熱源側熱交換器4と接続する。
一方、負荷側熱交換器2を蒸発器として機能させ、熱源側熱交換器4を凝縮器(放熱器)として機能させる場合(冷房運転)、第1四方弁5は、ガス配管11と負荷側熱交換器2とを接続し、熱源側熱交換器4と圧縮機1の吸入側の配管21とを接続する。
また、第2四方弁6は、熱源側熱交換器4と流入配管35とを接続し、流出配管36と負荷側熱交換器2と接続する。
なお、暖房運転と冷房運転との切り替えを行わない場合には、第1四方弁5、第2四方弁6を設けなくてもよい。
(制御装置200)
制御装置200は、例えばマイクロコンピュータで構成され、CPU、RAM及びROM等を備えており、ROMには制御プログラム等が記憶されている。制御装置200は、冷媒回路における冷媒の圧力及び温度等、並びに負荷側媒体及び熱源側媒体の温度等を検出する各種のセンサから検出値が入力される。制御装置200は、各センサからの検出値に基づいて、冷凍サイクル装置100の各構成部を制御する。また、制御装置200は第1四方弁5及び第2四方弁6の切り替えの制御を行う。
次に、本実施の形態の冷凍サイクル装置100における暖房運転及び冷房運転について説明する。
<暖房運転時の冷媒の動作>
暖房運転時は、第1四方弁5及び第2四方弁6が、図1の点線で示される状態に切り替えられる。
圧縮機1は、圧縮機シェル15内の低圧の冷媒を圧縮し、高温高圧のガス冷媒を吐出側の配管10へ吐出させる。圧縮機1から吐出されたガス冷媒には、圧縮機シェル15内の冷凍機油50が含まれている。
圧縮機1から吐出した高温高圧のガス冷媒は、圧縮機1の吐出側の配管10を流通し、膨張機3の入口部41から膨張機シェル34内に流入する。膨張機シェル34内に流入したガス冷媒は、膨張機シェル34内で、ガス冷媒に含まれる冷凍機油50の少なくとも一部が分離され、分離された冷凍機油50が膨張機シェル34内に貯留される。そして、ガス冷媒及びこのガス冷媒に含まれる残りの冷凍機油50が、出口部42からガス配管11へ流出する。
このように、圧縮機1から吐出した高温高圧のガス冷媒の全てが、膨張機シェル34内に流入し、膨張機シェル34内で、ガス冷媒に含まれる冷凍機油50が分離されて膨張機シェル34内に貯留される。膨張機シェル34内に貯留された冷凍機油50は、回転軸33を介して、電動機部17及び圧縮部18へ供給され、潤滑に利用される。
膨張機3の出口部42からガス配管11へ流出したガス冷媒は、第1四方弁5を通過して、凝縮器(COのような超臨界冷媒の場合は冷却器)として作用する負荷側熱交換器2で凝縮され、液冷媒となって負荷側熱交換器2から流出する。その後、負荷側熱交換器2を流出した液冷媒は、第2四方弁6を通過し、流入配管35を介して、膨張機3内の膨張部入口43へ流入する。膨張部入口43へ流入した液冷媒は、膨張部31で膨張され、低圧二相冷媒となって膨張部出口44から流出配管36から流出する。このとき、膨張部31の駆動力によって、回転軸33に連結された発電機32が回転する。
膨張部31から流出した低圧二相冷媒は、第2四方弁6を通過して、蒸発器として作用する熱源側熱交換器4へ流入する。熱源側熱交換器4へ流入した低圧二相冷媒は、熱源側媒体(外気)と熱交換して吸熱、蒸発し、低圧のガス冷媒となって、熱源側熱交換器4から流出する。熱源側熱交換器4から流出した低圧のガス冷媒は、第1四方弁5を通過し、圧縮機1の低圧側の配管21を介して、圧縮機1へ吸入される。
<冷房運転時の冷媒の動作>
上記暖房運転との相違点を中心に説明する。
冷房運転時は、第1四方弁5及び第2四方弁6が、図1の実線で示される状態に切り替えられる。
圧縮機1から吐出されたガス冷媒は、膨張機3の膨張機シェル34内を通過し、ガス配管11へ流出する。ガス配管11へ流出したガス冷媒は、第1四方弁5を通過して、凝縮器(COのような超臨界冷媒の場合は冷却器)として作用する熱源側熱交換器4で凝縮され、液冷媒となって熱源側熱交換器4から流出する。その後、熱源側熱交換器4を流出した液冷媒は、第2四方弁6及び流入配管35を通過し、膨張部31で膨張され、低圧二相冷媒となって流出する。
膨張部31から流出した低圧二相冷媒は、第2四方弁6を通過して、蒸発器として作用する負荷側熱交換器2へ流入する。負荷側熱交換器2へ流入した低圧二相冷媒は、負荷側媒体(空気)と熱交換して吸熱、蒸発し、低圧のガス冷媒となって、負荷側熱交換器2から流出する。負荷側熱交換器2から流出した低圧のガス冷媒は、第1四方弁5を通過し、圧縮機1の低圧側の配管21を介して、圧縮機1へ吸入される。
<膨張機シェル34に流入する冷凍機油50の油量と、流出する油量との関係>
上述したように、膨張機シェル34内に流入したガス冷媒は、膨張機シェル34内で、ガス冷媒に含まれる冷凍機油50の少なくとも一部が分離され、分離された冷凍機油50が膨張機シェル34内に貯留される。そして、ガス冷媒及びこのガス冷媒に含まれる残りの冷凍機油50が、出口部42からガス配管11へ流出する。
即ち、圧縮機1から膨張機シェル34へ流入する冷凍機油50の油量Go1は、膨張機シェル34内に貯留される冷凍機油50の油量Go2と、膨張機シェル34からガス配管11へ流出する冷凍機油50の油量Go3との和に等しい。
つまり、圧縮機1から吐出するガス冷媒に含まれる冷凍機油50の油量Go1に対して、膨張機シェル34から流出するガス冷媒に含まれる冷凍機油50の油量Go3は少なくなる。
これにより、凝縮器(負荷側熱交換器2または熱源側熱交換器4)へ流入する冷凍機油50の油量も減ることから、配管での圧力損失が低減し、凝縮器内での油の溜まりこみによる伝熱性能低下を抑制することができる。
なお、膨張機シェル34内に貯留された冷凍機油50が増加し、冷凍機油50の油面が、膨張機シェル34の出口部42に到達すると、膨張機シェル34から流出するガス冷媒に含まれる冷凍機油50の油量Go3は、油量Go1とほぼ同じとなる。
なお、膨張機シェル34内に貯留された冷凍機油50は、膨張部31及び発電機32へ供給されることで消費される。例えば、膨張部31へ供給された冷凍機油50の一部は、膨張部31内の冷媒に混入し、冷媒流路を経て圧縮機1内に流入する。このため、膨張機シェル34内に貯留された冷凍機油50の油量Go2は、減少する場合がある。
以上のように本実施の形態1においては、膨張機3は、外郭を構成する膨張機シェル34と、膨張機シェル34内に配置され、凝縮器から流出した冷媒を膨張させ駆動力を発生し、膨張させた冷媒を蒸発器へ流入させる膨張部31と、膨張機シェル34内に配置され、膨張部31の駆動力によって回転する発電機32と、を有している。
このため、冷媒を膨張する際の動力を電力として回収することができる。
また本実施の形態1においては、膨張機シェル34は、圧縮機1から吐出された冷媒に含まれる冷凍機油50が貯留され、冷凍機油50が膨張部31及び発電機32の少なくとも一方に供給される。また、膨張機シェル34は、圧縮機1から吐出された冷媒が流入する入口部41と、入口部41から流入した冷媒を凝縮器へ流出させる出口部42と、が形成されている。
このため、膨張機シェル34内に貯留された冷凍機油50を膨張部31及び発電機32に供給でき、膨張機シェル34内における冷凍機油50の枯渇を抑制することができる。
また、圧縮機1から吐出された冷媒に含まれる冷凍機油50を、膨張機シェル34内で分離することができる。よって、凝縮器(負荷側熱交換器2または熱源側熱交換器4)へ流入する冷凍機油50の油量を減少させることができ、高圧側の配管での圧力損失が低減し、凝縮器内での油の溜まりこみによる伝熱性能低下を抑制することができる。
また、特許文献2に記載の技術のような給油管を設けないため、冷凍機油50内に溶け込んだ冷媒が発泡することがなく、潤滑不良を抑制することができる。また、圧縮機1の起動時など過渡的な状態であっても、膨張機シェル34内に貯留された冷凍機油50によって膨張部31及び発電機32を潤滑することができる。
また、圧縮機1から配管10へ吐出された冷媒が、膨張機シェル34へ流入するので、圧縮機シェル15の内圧(高圧シェルまたは低圧シェル)によらず、膨張機シェル34内へガス冷媒を流入させることができ、膨張機シェル34内に冷凍機油50を貯留することができる。
また、膨張機シェル34内に発電機32が配置される。そして、圧縮機1から配管10へ吐出されたガス冷媒が、膨張機シェル34内を通過し、凝縮器へ流入する。
このため、発電機32によって発生した熱(例えば、巻線での銅損及びステータなどの鉄損による熱)とガス冷媒とが熱交換し、発電機32を冷却することができる。また、ガス冷媒が加熱されることで、暖房運転の場合には、加熱能力を向上することができる。
実施の形態2.
本実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
図2は、本発明の実施の形態2に係る冷凍サイクル装置100の膨張機3の構成図である。
図2(a)に示すように、膨張機シェル34の出口部42は、膨張機シェル34の側面に設けられた開口によって構成されている。この出口部42は、当該膨張機シェル34内に、予め設定された必要量の冷凍機油50が貯留されたときの油面(Ln)よりも高い位置(Lm)に設けられている。ここで、予め設定された必要量は、膨張機3の仕様等によって規定される最低限必要な油の量である。
なお、図2(b)に示すように、膨張機シェル34の内外を連通する配管を設けて、配管の端部の開口によって出口部42を構成しても良い。この場合においても、出口部42は、当該膨張機シェル34内に、予め設定された必要量の冷凍機油50が貯留されたときの油面(Ln)よりも高い位置(Lm)に設けられている。
以上の構成により、膨張機シェル34内に、予め設定された必要量の冷凍機油50を貯留することができる。よって、膨張機3が必要とする最低限の油量を確保することができる。
実施の形態3.
本実施の形態3では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
図3は、本発明の実施の形態3に係る冷凍サイクル装置100の構成図である。
図3に示すように、実施の形態3に係る冷凍サイクル装置100は、上記実施の形態1の構成に加え、圧縮機1の吐出側の配管10を分岐し、ガス配管11に合流させる第1バイパス配管12を、更に備えている。つまり、第1バイパス配管12は、圧縮機1から膨張機シェル34の入口部41へ至る流路を分岐し、膨張機シェル34の出口部42から凝縮器(負荷側熱交換器2または熱源側熱交換器4)へ至る流路に合流させる。
ここで、膨張機3内の膨張部31は、凝縮器(負荷側熱交換器2または熱源側熱交換器4)で液化された冷媒が流入するため、膨張部31を流通する冷媒の温度は、膨張機シェル34内に流入するガス冷媒に比べて温度が低い。このため、膨張部31内の冷媒と膨張機シェル34内に流入したガス冷媒とが熱交換する。
本実施の形態3においては、圧縮機1から吐出された冷媒の一部が配管10から膨張機シェル34内に流入し、他の一部が第1バイパス配管12からガス配管11へ流入する。
このため、圧縮機1から吐出した冷媒の全てが膨張機シェル34内に流入する場合と比較して、膨張機シェル34内に流入する冷媒流量が少なくなる。よって、膨張部31内の冷媒と膨張機シェル34内に流入したガス冷媒との熱交換量を少なくすることができる。
従って、蒸発器に流入する冷媒のエンタルピーの増加を抑制し、冷凍能力の低下を軽減することができる。また、凝縮器に流入する冷媒の温度の低下を抑制し、加熱能力の低下も軽減することができる。
さらに、膨張機シェル34内への冷凍機油50の過剰な供給を抑制できる。よって、膨張機シェル34内の冷凍機油50の油面が発電機32まで到達することを抑制できる。また、膨張機シェル34内の冷凍機油50が、膨張機シェル34外へ急激に持ち出されることを抑制し、冷媒回路における高圧側の配管での圧力損失の増加を抑制し、熱交換器性能の低下を抑制できる。
なお、上記構成において、膨張機3の大きさは圧縮機1に対して小さいため、膨張機シェル34から流出する冷媒に含まれる冷凍機油50の量(持ち出される油流量)は、圧縮機1から吐出された冷媒に含まれる冷凍機油50の量より少ない。つまり、圧縮機1から持ち出される油流量よりも少ない油量を、膨張機3へ供給すればよい。
このため、第1バイパス配管12を通過する冷媒の流量よりも、配管10を通過する冷媒の流量が少なくなるように、配管10もしくはガス配管11の長さ及び径を選定する。
このように、適正な冷媒流量及び油流量を膨張機3へ供給することにより、膨張部31での熱交換量を抑制できるとともに、膨張機シェル34内における冷凍機油50の枯渇を抑制することができる。
なお、配管10または第1バイパス配管12に流量調整弁等を設けて、膨張機シェル34内に流入する冷媒流量を調整するようにしても良い。例えば、制御装置200は、膨張機シェル34内の冷凍機油50の油量が予め設定した油量より少ない場合に、膨張機シェル34内に流入する冷媒流量を増加させ、貯留される冷凍機油50の油量を増加させるようにしても良い。
なお、膨張機シェル34内の油量は、例えば油量計を設けても良いし、サーミスタ等の温度センサによってシェル温度を計測することで油量を判定しても良い。
実施の形態4.
本実施の形態4では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
図4は、本発明の実施の形態4に係る冷凍サイクル装置100の構成図である。
図4に示すように、実施の形態4に係る冷凍サイクル装置100は、上記実施の形態1の構成に加え、膨張機シェル34内の冷凍機油50を、圧縮機1の吸入側の配管21に流入させる返油配管51を、更に備えている。
返油配管51は、膨張機シェル34の底部に設けられた油出口45と、圧縮機1の吸入側の配管21とを接続する。また、返油配管51には、キャピラリーチューブ53などの減圧手段と、流路を開閉する開閉弁54とが並列に設けられている。
制御装置200は、開閉弁54の開閉を制御する。制御装置200は、例えば、圧縮機シェル15内の冷凍機油50の油量が予め設定した油量より少ない場合に、開閉弁54を開き、膨張機シェル34内の冷凍機油50の一部を圧縮機シェル15内へ返油する。
なお、圧縮機シェル15内の油量は、例えば油量計を設けても良いし、サーミスタ等の温度センサによってシェル温度を計測することで油量を判定しても良い。
なお、上記の説明では、キャピラリーチューブ53などの減圧手段と、流路を開閉する開閉弁54とが並列に設けられている場合を説明したが、これに代えて、開度を可変可能な膨張弁を設けても良い。また、開閉弁54を省略して、常時、少量の冷凍機油50を返油するようにしても良い。
以上の構成により、膨張機シェル34内の冷凍機油50を圧縮機1へ戻せるので、例えば起動時など、圧縮機1から吐出される冷媒に含まれる冷凍機油50の量(持ち出される油量)が多い場合に、圧縮機シェル15内における冷凍機油50の枯渇を抑制することができる。
(変形例)
なお、上記実施の形態3で説明した構成と、本実施の形態4で説明した構成とを組み合わせても良い。
例えば図5に示すように、上記実施の形態1の構成に加え、膨張機シェル34内の冷凍機油50を圧縮機1の吸入側の配管21に流入させる返油配管51と、圧縮機1から膨張機シェル34の入口部41へ至る流路を分岐し、膨張機シェル34の出口部42から凝縮器へ至る流路に合流させる第1バイパス配管12と、を更に備える構成でも良い。このような構成においても、上述した効果と同様の効果を奏することができる。
実施の形態5.
本実施の形態5では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
図6は、本発明の実施の形態5に係る冷凍サイクル装置100の構成図である。
図6に示すように、実施の形態5に係る冷凍サイクル装置100は、上記実施の形態1の構成に加え、圧縮機1から吐出された冷媒に含まれる冷凍機油50を分離する油分離器7を、更に備えている。
本実施の形態5における膨張機シェル34は、入口部41が流出管13によって油分離器7と接続されている。また、実施の形態5では、圧縮機1の吐出側の配管10は、油分離器7と接続されている。また、ガス配管11は、油分離器7と接続されている。
また、実施の形態5に係る冷凍サイクル装置100は、膨張機シェル34内の冷凍機油50を、圧縮機1の吸入側の配管21に流入させる返油配管51を備えている。
返油配管51は、膨張機シェル34の底部に設けられた油出口45と、圧縮機1の吸入側の配管21とを接続する。また、返油配管51には、キャピラリーチューブ53などの減圧手段と、流路を開閉する開閉弁54とが並列に設けられている。
なお、キャピラリーチューブ53及び開閉弁54に代えて、開度を可変可能な膨張弁を設けても良い。また、開閉弁54を省略して、常時、少量の冷凍機油50を返油するようにしても良い。
本実施の形態5に係る冷凍サイクル装置100おいては、圧縮機1から吐出された冷媒の全てが、配管10を通過して油分離器7に流入する。油分離器7では、冷媒に含まれる冷凍機油50の少なくとも一部が分離される。油分離器7によって分離された冷凍機油50は、流出管13を介して入口部41から膨張機シェル34内に流入する。一方、油分離器7によって分離されたガス冷媒は、ガス配管11を通過し、第1四方弁5を介して凝縮器(負荷側熱交換器2または熱源側熱交換器4)へ流入する。
膨張機シェル34内に貯留された冷凍機油50は、回転軸33を介して、電動機部17及び圧縮部18へ供給され、潤滑及び冷却に利用される。また、膨張機シェル34内に貯留された冷凍機油50の一部は、返油配管51を通過して、圧縮機1の吸入側の配管21から圧縮機1へと返油される。
以上の構成により、油分離器7で分離した冷凍機油50が膨張機シェル34へ流入する。このため、圧縮機1から吐出された冷媒が膨張機シェル34内に流入する場合と比較して、膨張部31内の冷媒と膨張機シェル34内のガス冷媒との熱交換が行われにくくなり、膨張部31から蒸発器に流入する冷媒のエンタルピーの増加を抑制し、冷凍能力の低下を軽減することができる。
また、圧縮機1から吐出された冷媒が、膨張機シェル34を通過せずに凝縮器に流入する。このため、凝縮器に流入する冷媒の温度の低下を抑制し、加熱能力の低下も軽減することができる。
また、圧縮機1から吐出された高温の冷媒が膨張機シェル34内に流入しないので、膨張機シェル34内部の温度上昇を抑制することができる。これにより、発電機32の温度上昇も抑制でき、発電機32の効率低下を抑制することができる。
なお、流出管13と返油配管51の配管径及び長さを調整することによって、膨張機シェル34内の圧力及び温度を調節することができる。または、流出管13と返油配管51に減圧手段を設けることで膨張機シェル34内の圧力及び温度を調節することができる。そこで、膨張機シェル34内の温度を、膨張部31の入口部41に流入する冷媒の温度以下に調整することで、膨張部31内の冷媒の温度上昇を抑制でき、蒸発器に流入する冷媒のエンタルピーの増加を抑制できる。また、膨張機シェル34内の温度を低下させることによって、発電機32の温度上昇を抑制することができ、発電機32の効率低下を抑制することができる。
実施の形態6.
本実施の形態6では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
図7は、本発明の実施の形態6に係る冷凍サイクル装置100の構成図である。
図7に示すように、実施の形態6に係る冷凍サイクル装置100は、上記実施の形態1の構成に加え、流入配管35を分岐し流出配管36に合流させる第2バイパス配管37と、第2バイパス配管37に設けられ冷媒を膨張する第2膨張弁38と、を更に備えている。
第2バイパス配管37は、凝縮器から膨張部31へ至る流路(流入配管35)を分岐し、膨張部31から蒸発器へ至る流路(流出配管36)に合流させる。
第2膨張弁38は、例えば開度を可変可能な電子制御式膨張弁等により構成されている。制御装置200は、予め設定した条件に応じて、第2膨張弁38の開度を制御する。
なお、第2バイパス配管37の流路を開閉する開閉弁を設け、第2膨張弁38の開度が固定の構成でも良い。この場合、制御装置200は、開閉弁を制御する。
第2膨張弁38の開度が全閉の場合、流入配管35を冷媒は第2バイパス配管37を流通しない。この場合は上述した実施の形態1と同様の動作となる。
一方、第2膨張弁38を開くと、流入配管35を流通する冷媒が第2バイパス配管37を流通する。第2バイパス配管37を流通する冷媒は、第2膨張弁38によって減圧される。このとき、膨張部31へ流れる冷媒流量が減少するため、膨張部31の駆動が停止する。なお、流入配管35または流出配管36に開閉弁等を設けて、膨張部31へ流入する冷媒を完全に停止しても良い。
第2膨張弁38によって減圧された冷媒は、流出配管36に合流し、第2四方弁6を通過して蒸発器に流入する。
次に、制御装置200による第2膨張弁38の制御について説明する。
制御装置200は、予め設定した条件を満たす場合、第2膨張弁38を開き、第2バイパス配管37に冷媒を流通させ、膨張部31の駆動を停止させる。
ここで、予め設定した条件は、例えば以下の(1)〜(3)の少なくとも一つの場合である。
(1)圧縮機1の起動からの経過時間が、予め設定した時間以下である場合
(2)膨張機シェル34内の冷凍機油50の量が、予め設定した量以下である場合
(3)膨張部31の回転数が、予め設定した上限値以上もしくは下限値以下である場合
以上の構成により、予め設定した条件を満たす場合には、膨張部31の駆動を停止させることができる。
また、圧縮機1の起動からの経過時間が予め設定した時間以下である場合に、膨張部31の駆動を停止させことで、圧縮機1の吐出圧力が十分上昇するまでは、膨張部31が駆動することを防止でき、圧縮機1への液バック等を抑制することができる。
また、膨張機シェル34内の冷凍機油50が減少し、予め設定した量以下となった場合に、膨張部31の駆動を停止させことで、膨張機3の破損を防止することができる。
また、膨張部31の回転数が、予め設定した上限値以上もしくは下限値以下である場合に、膨張部31の駆動を停止させことで、回転数が所望の範囲を外れることなく膨張部31を駆動することができる。
なお、本実施の形態6の構成は、上述した実施の形態1〜5の何れの構成にも適用することができる。
1 圧縮機、2 負荷側熱交換器、3 膨張機、4 熱源側熱交換器、5 第1四方弁、6 第2四方弁、7 油分離器、10 配管、11 ガス配管、12 第1バイパス配管、13 流出管、15 圧縮機シェル、17 電動機部、18 圧縮部、21 配管、31 膨張部、32 発電機、33 回転軸、34 膨張機シェル、35 流入配管、36 流出配管、37 第2バイパス配管、38 第2膨張弁、41 入口部、42 出口部、43 膨張部入口、44 膨張部出口、45 油出口、50 冷凍機油、51 返油配管、53 キャピラリーチューブ、54 開閉弁、100 冷凍サイクル装置、200 制御装置。

Claims (9)

  1. 圧縮機、凝縮器、膨張機、及び蒸発器が配管で接続され、冷媒が循環する冷媒回路を備え、
    前記膨張機は、
    外郭を構成する膨張機シェルと、
    前記膨張機シェル内に配置され、前記凝縮器から流出した前記冷媒を膨張させ駆動力を発生し、膨張させた前記冷媒を前記蒸発器へ流入させる膨張部と、
    前記膨張機シェル内に配置され、前記膨張部の駆動力によって回転する発電機と、
    を有し、
    前記膨張機シェルは、
    前記圧縮機から吐出された前記冷媒と前記冷媒に含まれる冷凍機油とが流入する入口部と、
    前記冷媒と前記冷凍機油とを前記入口部から流入させた後、前記膨張機シェル内を経由して前記凝縮器へ流出させる出口部と、が形成され、
    前記膨張機シェル内が高圧であり、
    前記圧縮機の吐出配管から吐出された前記冷媒に含まれる前記冷凍機油が貯留され、前記冷凍機油が前記膨張部及び前記発電機の少なくとも一方に供給される
    冷凍サイクル装置。
  2. 前記圧縮機の吐出配管が前記膨張機シェルの入口部に接続された
    請求項に記載の冷凍サイクル装置。
  3. 前記膨張機シェルの前記出口部は、
    当該膨張機シェル内に、予め設定された必要量の前記冷凍機油が貯留されたときの油面よりも高い位置に設けられた
    請求項またはに記載の冷凍サイクル装置。
  4. 前記圧縮機から前記膨張機シェルの前記入口部へ至る流路を分岐し、前記膨張機シェルの前記出口部から前記凝縮器へ至る流路に合流させる第1バイパス配管を、更に備えた
    請求項の何れか一項に記載の冷凍サイクル装置。
  5. 前記膨張機シェルの前記入口部から流入する前記冷媒の流量が、
    前記第1バイパス配管を通過する前記冷媒の流量よりも少ない
    請求項に記載の冷凍サイクル装置。
  6. 前記膨張機シェル内の前記冷凍機油を、前記圧縮機の吸入側の配管に流入させる返油配管を、更に備えた
    請求項の何れか一項に記載の冷凍サイクル装置。
  7. 前記圧縮機から吐出された前記冷媒に含まれる前記冷凍機油を分離する油分離器を、更に備え、
    前記膨張機シェルは、
    前記油分離器によって分離した前記冷凍機油が流入する入口部と、
    前記膨張機シェル内の前記冷凍機油を、前記圧縮機の吸入側の配管へ流出させる出口部と、が形成された
    請求項1に記載の冷凍サイクル装置。
  8. 前記凝縮器から前記膨張部へ至る流路を分岐し、前記膨張部から前記蒸発器へ至る流路に合流させる第2バイパス配管と、
    前記第2バイパス配管に設けられ、前記冷媒を膨張する第2膨張弁と、を更に備え、
    予め設定した条件を満たす場合、前記第2バイパス配管に前記冷媒を流通させる
    請求項1〜の何れか一項に記載の冷凍サイクル装置。
  9. 前記予め設定した条件は、
    前記圧縮機の起動からの経過時間が、予め設定した時間以下である場合、
    前記膨張機シェル内の前記冷凍機油の量が、予め設定した量以下である場合、
    及び、前記膨張部の回転数が、予め設定した上限値以上もしくは下限値以下である場合、の少なくとも一つである
    請求項に記載の冷凍サイクル装置。
JP2015556680A 2014-01-09 2014-01-09 冷凍サイクル装置 Active JP6150906B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050256 WO2015104822A1 (ja) 2014-01-09 2014-01-09 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2015104822A1 JPWO2015104822A1 (ja) 2017-03-23
JP6150906B2 true JP6150906B2 (ja) 2017-06-21

Family

ID=53523670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015556680A Active JP6150906B2 (ja) 2014-01-09 2014-01-09 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3104101A4 (ja)
JP (1) JP6150906B2 (ja)
WO (1) WO2015104822A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105492A1 (ja) 2016-12-06 2018-06-14 日本化薬株式会社 3-(ピリジル-2-アミノ)プロピオニトリル及びその類縁体の製造方法
IT201900014685A1 (it) * 2019-08-12 2021-02-12 Carbon & Steel S R L Sistema di condizionamento e climatizzazione ambientale o di refrigerazione perfezionato

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075429B2 (ja) * 2002-03-26 2008-04-16 三菱電機株式会社 冷凍空調装置
JP4516127B2 (ja) * 2005-08-26 2010-08-04 三菱電機株式会社 冷凍空調装置
JP4591402B2 (ja) * 2006-04-20 2010-12-01 ダイキン工業株式会社 冷凍装置
JP4967435B2 (ja) * 2006-04-20 2012-07-04 ダイキン工業株式会社 冷凍装置
JP5103952B2 (ja) 2007-03-08 2012-12-19 ダイキン工業株式会社 冷凍装置
JP5036593B2 (ja) * 2008-02-27 2012-09-26 パナソニック株式会社 冷凍サイクル装置
JP5521709B2 (ja) * 2010-03-31 2014-06-18 ダイキン工業株式会社 冷凍装置
JP2012042110A (ja) * 2010-08-18 2012-03-01 Panasonic Corp 冷凍サイクル装置
JPWO2012029203A1 (ja) * 2010-09-02 2013-10-28 三菱電機株式会社 膨張機および冷凍サイクル装置
JP2013139890A (ja) * 2011-12-28 2013-07-18 Daikin Industries Ltd 冷凍装置

Also Published As

Publication number Publication date
EP3104101A4 (en) 2017-10-25
JPWO2015104822A1 (ja) 2017-03-23
WO2015104822A1 (ja) 2015-07-16
EP3104101A1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP4816220B2 (ja) 冷凍装置
KR100990782B1 (ko) 냉동장치
CN106461278B (zh) 运行冷却器的方法
JP2011133209A (ja) 冷凍装置
JP5759076B2 (ja) 冷凍装置
JP2010107181A (ja) 冷凍装置
JP6150906B2 (ja) 冷凍サイクル装置
JP2006226590A (ja) 冷凍サイクル装置
JP4665736B2 (ja) 冷凍サイクル装置の制御方法およびそれを用いた冷凍サイクル装置
JP4591402B2 (ja) 冷凍装置
JP2009092060A (ja) オイルセパレータ
JP6150907B2 (ja) 冷凍サイクル装置
JP2009063247A (ja) 冷凍サイクル装置およびそれに用いる流体機械
JP2007147211A5 (ja)
JP2013139890A (ja) 冷凍装置
JP2004150749A (ja) 冷凍サイクル装置
JP2007187332A (ja) 冷凍サイクル装置
JP2004286322A (ja) 冷媒サイクル装置
JP2007315638A (ja) 冷凍サイクル装置
JP2011141078A (ja) 冷凍サイクル装置
JP2007232296A (ja) ヒートポンプ装置
JP2010091206A (ja) 冷凍装置
JP2021004687A (ja) 冷凍サイクル装置及びそれを備えた流体加熱装置
JP2013139904A (ja) 冷凍装置
JP2013139898A (ja) 冷凍装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R150 Certificate of patent or registration of utility model

Ref document number: 6150906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250