JP6139311B2 - 調節弁の制御方法及び制御装置、これらを使用した発電プラント - Google Patents

調節弁の制御方法及び制御装置、これらを使用した発電プラント Download PDF

Info

Publication number
JP6139311B2
JP6139311B2 JP2013148923A JP2013148923A JP6139311B2 JP 6139311 B2 JP6139311 B2 JP 6139311B2 JP 2013148923 A JP2013148923 A JP 2013148923A JP 2013148923 A JP2013148923 A JP 2013148923A JP 6139311 B2 JP6139311 B2 JP 6139311B2
Authority
JP
Japan
Prior art keywords
value
opening command
command value
control valve
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013148923A
Other languages
English (en)
Other versions
JP2015021407A (ja
Inventor
宏規 渡辺
宏規 渡辺
当房 昌幸
昌幸 当房
卓志 山崎
卓志 山崎
フィルマン ジャンサ
フィルマン ジャンサ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013148923A priority Critical patent/JP6139311B2/ja
Priority to TW103121806A priority patent/TWI593873B/zh
Priority to KR1020140089590A priority patent/KR101572115B1/ko
Priority to US14/333,619 priority patent/US9689280B2/en
Publication of JP2015021407A publication Critical patent/JP2015021407A/ja
Priority to US15/597,279 priority patent/US10557379B2/en
Application granted granted Critical
Publication of JP6139311B2 publication Critical patent/JP6139311B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/02Driving of auxiliaries from propulsion power plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L31/00Valve drive, valve adjustment during operation, or other valve control, not provided for in groups F01L15/00 - F01L29/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Ocean & Marine Engineering (AREA)
  • Thermal Sciences (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Description

本発明の実施形態は、産業プラントに使用される調節弁の制御方法及び制御装置に関する。また、本発明の実施形態は、これらの制御方法及び制御装置を使用した発電プラントに関する。
タービンバイパス弁や減温スプレー弁は産業プラントに使用される調節弁であるが、これらの制御方法は一般にPIDコントローラにより行われる。PIDコントローラは、設定値(SV値)とプロセス値(PV値)を入力して、PV値がSV値に等しくなるようにフィードバック制御により制御指令値(MV値)を算出する。
産業プラントに使用される調節弁のうち、ある種の調節弁は、MV値が100%となること、即ち調節弁が全開になる事態を回避することを重視する。このような調節弁は、例えば、特許文献1及び特許文献2に示すように、ガスタービンと蒸気タービン並びに排熱回収ボイラを組み合わせたコンバインドサイクル発電プラントにおいて、低圧タービンバイパス調節弁として使用される。
低圧タービンバイパス調節弁には、これを制御するPIDコントローラが設けられ、このPIDコントローラにSV値とPV値が入力される。PIDコントローラは、PV値がSV値に一致するようにMV値を演算する。MV値は低圧タービンバイパス調節弁への開度指令であり、これに従い同弁の開弁が行われる。この種のPIDコントローラにおいては、SV値を高く設定するとMV値は低下し、逆にSV値を低く設定するとMV値は増加する。
特開2011−138326号公報 特開2013−076388号公報
低圧タービンバイパス調節弁のSV値は高い値に設定すると、低圧ドラムの圧力が高くなり蒸気発生量が低下するため、極力低い値とするのが性能の面で得策である。しかし、コンバインドサイクル発電プラントの運転の様相は多様であり、想定外に低圧蒸発器や低圧過熱器での収熱が多い場合は、計画時に定めたSV値が低すぎて、低圧タービンバイパス調節弁が全開する問題がある。
例えば、蒸気タービンを起動する前のガスタービンの出力及び排ガス温度は、蒸気タービンのロータ部材の温度(代表的には第1段内面メタル温度、以下STメタル温度)に応じて制御される。例えば、STメタル温度が高いときはガスタービン出力及び排ガス温度を高くして、逆に同メタル温度が低いときはガスタービン出力及び排ガス温度を低くする。このガスタービン出力の大小により、低圧蒸発器や低圧過熱器の収熱が大きく異なり、低圧蒸気の発生量は変動する。
一方、プラントの基本計画段階においては、代表的な運転状態を想定してその熱収支バランスに基づき、保持されるべき低圧ドラムの器内圧力が求められ、低圧タービンバイパス調節弁のSV値が例えば0.7Mpaに設定される。
しかし、0.7Mpaはコンバインドサイクル発電プラントの「多様な運転様相」を全て勘案したものではないので、例えば実際のプラント試運転等では想定していた以上に低圧蒸気が発生して、そのために低圧タービンバイパス調節弁が全開するという問題が生じる。もし低圧タービンバイパス調節弁が全開した場合、その状態は低圧ドラムの圧力制御が喪失した状態であり、同ドラムの水位が極端に変動する等、安定運転に支障をきたす。
この対策としてSV値を極力高い値に設定して、「多様な運転様相」でも低圧タービンバイパス調節弁が全開しないようにする(例えば0.7Mpaを1.0Mpaとか1.5Mpaに上昇する)ことが一案として考えられる。しかし、高いSV値を選択すると低圧蒸気圧力は高くなり、低圧蒸発器での収熱が悪くなること、低圧蒸気の流量が減少し、蒸気タービンの出力が減少する等の不利が生じる。
本発明の実施形態は、上記のような従来技術の問題点を解決するために提案されたものである。本発明の実施形態は、調節弁が全開近傍になると、SV値の上昇に伴いMV値が低下してその全開を回避することができる調節弁の制御方法及び制御装置を提供することにある。本発明の他の目的は、前記のような調節弁の制御方法及び制御装置を備えた発電プラントを提供することにある。
本実施形態の発電プラントは、
ガスタービンと、
前記ガスタービンからの排出ガスを利用して蒸気を発生する排熱回収ボイラと、
前記排熱回収ボイラからの蒸気により回転駆動する蒸気タービンと、
前記蒸気タービンからの排気蒸気を凝縮して復水し、復水された水を前記排熱回収ボイラに供給する復水器と、
前記排熱回収ボイラからの蒸気を、バイパス調節弁を経由して前記復水器に流すタービンバイパス系と、
前記タービンバイパス系へ供給する蒸気を発生させる低圧ドラム内の圧力を検出する圧力センサと、
所定のサンプリング周期に従い、入力部から受信した設定値と前記圧力センサからのプロセス値に基づいて、プロセス値が設定値に等しくなるように調節弁に対して開度指令値を出力するコントローラとを備える発電プラントであって、
前記コントローラは、前記設定値が高くなると前記調節弁に対する前記開度指令値を低下させるよう制御し、
前記コントローラからの前記開度指令値が所定の値より大きくなった場合に、前記設定値を前記開度指令値が低下する方向に補正する補正部と、
を備えていることを特徴とする。
本実施形態のは調節弁の制御方法は、
所定のサンプリング周期に従い、設定値とプロセス値に基づいて、プロセス値が設定値に等しくなるように調節弁に対して開度指令値をコントローラより出力し、
前記設定値が高くなると、前記調節弁に対する前記開度指令値が低下する関係にある調節弁の制御方法において、
前記コントローラからの前記開度指令値が所定の値を逸脱して大きくなったときに、前記設定値を前記開度指令値が低下する方向に補正することを特徴とする。
本実施形態の調節弁の制御装置は、
設定値の入力部とプロセス値の入力部とを備え、所定のサンプリング周期に従い、前記各入力部から受信した設定値とプロセス値に基づいて、プロセス値が設定値に等しくなるように調節弁に対して開度指令値を出力する調節弁の制御装置であって、
前記設定値が高くなると、前記調節弁に対する前記開度指令値が低下する関係にあるコントローラと、
前記コントローラからの前記開度指令値が所定の値を逸脱して大きくなった場合に、前記入力部からの設定値を前記開度指令値が低下する方向に補正する補正部と、
を備えることを特徴とする。
コンバインドサイクル発電プラントの実施形態を示す回路図である。 図1の実施形態における低圧タービンバイパス調節弁の制御部を示す回路図である。
[1.発電プラント全体の構成]
図1は、コンバインドサイクル発電プラント201の構成例である。この発電プラント201は、ガスタービン221及び圧縮機220を有するガスタービンプラントに、蒸気タービン202及び復水器206を有する蒸気タービンプラントと、排熱回収ボイラ222とを組み合せたものである。ガスタービン221から出た排熱(排ガス)を利用して排熱回収ボイラ222で蒸気を発生させ、その蒸気を蒸気タービン202に供給して発電させる。
排熱回収ボイラ222は、排ガスの流れに沿って順次、高圧ドラム223を備える高圧蒸発器214、高圧過熱器215、低圧ドラム205を備える低圧蒸発器211、低圧過熱器212を備える。
高圧過熱器215の過熱蒸気は、高圧加減弁224を経て蒸気タービン202の初流段落に、低圧ドラム205の低圧蒸気は、低圧加減弁203を経て蒸気タービン202の後流段落にそれぞれ供給される。低圧ドラム205で発生した低圧蒸気圧力は、低圧ドラム205内に設けられた圧力センサ210により検出される。
発電プラント201は、起動運転時または系統事故運転時において、排熱回収ボイラ222から発生した蒸気を蒸気タービンプラントの復水器206に直接流すタービンバイパス系を備えている。このタービンバイパス系は、高圧タービンバイパス調節弁213を経由して高圧過熱器215からの蒸気を復水器206に流す高圧系と、低圧タービンバイパス調節弁204を経由して低圧過熱器212からの蒸気を復水器206に流す低圧系を有する。
低圧系において、蒸気タービン202が起動されて低圧加減弁203の開弁が行われる前は、低圧タービンバイパス調節弁204は低圧ドラム205に発生する低圧蒸気を復水器206に導くように開弁される。この低圧タービンバイパス調節弁204の開弁度合いの制御は、発電プラント201に設けられたDCS(Distributed Control System:分散制御装置)207によって行われる。DCS207は低圧ドラム205内部の圧力を適切な値に保持しながら、適切な低圧蒸気の流量を復水器206に逃がすように低圧タービンバイパス調節弁204の開度を制御する。
[2.調節弁制御装置の構成]
DCS207の全体が有する発電プラント全体の制御回路のうち、低圧タービンバイパス調節弁204の制御部208のみを図1及び図2に示す。
本実施形態のDCS207は、所定のサンプリング周期で演算されるディジタル演算方式を採用したものであり、コンバインドサイクル発電プラント201の各部を制御する装置である。本実施形態において、DCS207は一例として、250m秒のサンプリング周期で演算される。
DCS207に設けられた制御部208の内部には低圧タービンバイパス調節弁204を制御するPIDコントローラ209が設けられ、このPIDコントローラ209にSV値bとPV値cが入力される。SV値bは保持したい低圧ドラム205の器内圧力であり、SV値設定部226から入力され、本実施形態では、その値bは0.7Mpaとする。PV値cは低圧ドラム205の実際の器内圧力であり、低圧ドラム器205内に設けられた圧力センサ210により計測される。
PIDコントローラ209にこれらのSV値bとPV値cを入力して、PV値cがSV値bに一致するように制御指令(以下、MV値aという)を演算する。MV値aは低圧タービンバイパス調節弁204への開度指令であり、これに従い同弁の開弁が行われる。本実施形態において、SV値b(保持したい器内圧力)を高くすると復水器206に逃がす低圧蒸気の流量は小さくてよいためMV値a(調節弁の開度指令)は低下し、逆にSV値bが低いとMV値aは増加する。
制御部208には、PIDコントローラ209に入力されるSV値を補正する補正部100が設けられる。補正部100では、入力されるSV値を補正し、SV値bとして出力する。この補正部100は、切替器101、Z−1の記号で表されるサンプリング遅延器102、高値選択器103及び関数発生器104を備える。
切替器101は、2つの入力端子S,Rと出力端子Tが設けられている。入力端子Sには、PIDコントローラ209から出力されたMV値aが入力される。入力端子Rには、サンプリング遅延器102からの1周期前(250m秒前)のMAX_MV値d’が入力される。出力端子Tからの出力gは、高値選択器103の一方の入力端子に入力される。
切替器101には、切替制御信号が入力される。この切替制御信号は、切替器101の制御端子(図示せず)に接続された比較器106から出力される。比較器106にはPIDコントローラ209からのMV値aが入力される。比較器106は、MV値aが一例として40%以上のときは出力f=1を出力し、40%以下の値となったとき、出力f=0を出力する。
サンプリング遅延器102は、高値選択器103から出力される現在のMAX_MV値dを入力し、1周期前(250m秒前)のMAX_MV値d’を出力する。高値選択器103は、現在のMV値aと切替器101の出力gを入力して、両者の大きい値をMAX_MV値dとして出力する。
関数発生器104は、MAX_MV値dを入力してゲインeを出力するもので、MAX_MV値dからゲインeの変換は(X軸、Y軸)が(0%,1.0)と(80%,1.0)と(90%,1.5)と(100%,1.5)の4点の折れ点を有する関数により行う。この関数に従い、関数発生器104は、MAX_MV値dが80%より大きいときは、ゲインeが1.0以上の値となることでSV値を大きくする。
補正部100の出力側は、PIDコントローラ209の入力側に設けられた乗算器105に接続されている。乗算器105には、補正部100の関数発生器104の出力であるゲインeと、予め設定されたSV値(0.7Mpa)が入力される。乗算器105、この両者を乗算してSV値bを出力する。
[3.作用と効果]
次に、本実施形態の作用・効果を3つのケースについて以下に説明する。
本実施形態において、DCS207は250m秒のサンプリング周期で演算されると想定したので、以下の説明は各サンプリング周期の時刻:tとしてt=0、t=250m秒、t=500m秒・・・という250m秒きざみの離散系時間経過に対応して説明する。
実際の低圧タービンバイパス調節弁204の挙動や応答性はもっと緩慢であり、本文説明のように250m秒のような短時間で大きく数値が変わるものではないが、制御部208の作用効果を明らかにするため、このような値を使用する。
[3.1 ケース1]
ケース1は、SV値bが0.7Mpaより0.875Mpaに上昇したことにより、直ぐに次のサンプリング周期でMV値aが低下する場合である。以下、各サンプリング周期毎に、低圧タービンバイパス調節弁204の開度指令値がどのようになるかを説明する。
(1)t=0
(a)PIDコントローラ209にSV値bとして0.7Mpaが入力される。このSV値bと、PV値cに基づいて、PIDコントローラ209からMV値a=79%が出力される。
(b)このMV値a=79%は比較器106に入力される。比較器106の閾値は、MV値aが40%以上であることから、比較器106は出力f=1を切替器101に出力する。切替器101は出力f=1に基づいて入力端子R側に切り替える。
(c)このt=0の時点では切替器101が入力端子R側になってもサンプリング遅延器102からの出力されるd’は0%であるから、高値選択器103はPIDコントローラ209からのMV値a=79%をMAX_MV値d=79%として出力する。
(d)関数発生器104において、X軸=79%におけるY軸は1.00であるから、関数発生器104はゲインeとして1.00を出力する。乗算器105は、SV値b=0.7Mpaとゲインe=1.00を乗算して、SV値b=0.7Mpaを算出する。これよりPIDコントローラ209の入出力は(a)と同じ値となり、出力であるMV値a=79%により、低圧タービンバイパス調節弁204の制御が行われる。
(2)t=250m秒
(a)多量の低圧蒸気が発生してPV値cが上昇して、これに伴いPIDコントローラ209から出力されたMV値aが85%に上昇する。
(b)このMV値a=85%は比較器106に入力される。比較器106の閾値は、MV値aが40%以上であることから、比較器106は出力f=1を出力し、切替器101は入力端子R側の位置を保つ。
(c)高値選択器103には、サンプリング遅延器102から出力される1周期前であるt=0のときのMAX_MV値d’=79%と、PIDコントローラ209からのt=250m秒のときのMV値a=85%とが入力される。高値選択器103では、高値である85%が選択されてMAX_MV値d=85%として出力される。
(d)関数発生器104において、X軸=85%におけるY軸は1.25であるから、関数発生器104からのゲインeは1.25として出力される。
(e)乗算器105は0.7Mpaと1.25を乗算してSV値b=0.7Mpa×1.25=0.875Mpaを算出する。これよりPIDコントローラ209は、補正されたSV値b=0.875MpaとPV値cとに基づいて、MV値a=78%を算出する。低圧タービンバイパス調節弁204の開度制御は、MV値a=78%により行われる。
(3)t=500m秒
(a)SV値bが0.875Mpaに上昇したので、MV値aは78%に低下する。
(b)高値選択器103には、サンプリング遅延器102から出力されるt=250m秒のときのMAX_MV値d’=85%とt=500m秒のときのMV値a=78%が入力される。高値選択器103では、高値である85%が選択される。
(c)その結果、(2)のt=250m秒と同様にして、MAX_MV値d=85%の値が保持され、SV値bも0.875Mpaが保持される。これよりPIDコントローラ209は、補正されたSV値b=0.875MpaとPV値cとに基づいて、MV値a=78%を算出する。圧タービンバイパス調節弁204の開度制御は、MV値a=78%により行われる。
補正部100の各部分におけるサンプリング周期毎の値を一覧表に示すと、次の通りである。
Figure 0006139311

なお、本実施形態において、MV値を79%としたのは、ゲインが変化する閾値80%の直前の値であり、本実施形態の作用を分かり易く説明するためである。
(4)ケース1の効果
本実施形態によれば、ケース1ではMV値aが80%以下のときは、SV値bは初期の設定値である0.7Mpaを維持する。一方、MV値aが80%を越えて上昇(上記では85%)したときは、補正部100の作用によりSV値bを上昇させることで、MV値aを低下(上記では78%)させることが実現されており、低圧タービンバイパス調節弁204の全開という事態が回避されている。
特に、高値選択器103やサンプリング遅延器102を設けずに単純にMV値aが80%を超えて大きくなったときに、関数発生器104を用いてSV値を上昇させる方法では、SV値の上昇に伴いMV値が78%に低下したとき、SV値が元の0.7Mpaに引き戻され、SV値とMV値が互いに上昇と低下を繰り返し、収束が遅くなる或いは収束しなくなる問題があるこれに対し、本実施形態では、高値選択器103とサンプリング遅延器102を設置して、過去から現在までの最大のMV値aであるMAX_MV値dを選択し、SV値を補正することでかかる問題を解消できる。
[3.2 ケース2]
ケース2はt=0、t=250m秒まではケース1と同じ挙動を示すが、次のt=500m秒では更にMV値aが上昇し、その次のt=750m秒でMV値aが低下する場合である。
(1)t=0
ケース1と同様。
(2)t=250m秒
ケース1と同様。
(3)t=500m秒
(a)SV値bが0.875Mpaに上昇したにも係わらず、PV値が更に上昇すると、MV値aは88%に上昇する。
(b)高値選択器103には、サンプリング遅延器102から出力される1周期前であるt=250m秒のときのMAX_MV値d’=85%と、PIDコントローラ209からのt=500m秒のときのMV値a=88%が入力される。高値選択器103では、高値である88%が選択されてMAX_MV値d=88%として出力される。
(c)関数発生器104において、X軸=88%におけるY軸は1.3であるから、関数発生器104はゲインeとして1.3を出力する。
(d)乗算器105は0.7Mpaと1.3を乗算してSV値b=0.7Mpa×1.3=0.91Mpaを算出する。PIDコントローラ209は、補正されたSV値b=0.91MpaとPV値cとに基づいて、MV値a=84%を算出する。低圧タービンバイパス調節弁204の開度制御は、MV値a=84%により行われる。
(4)t=750m秒
(a)SV値bが0.91Mpaに上昇したので、MV値aは84%に低下する。
(b)高値選択器103には、サンプリング遅延器102から出力される1周期前であるt=500m秒のときのMAX_MV値d’=88%と、PIDコントローラ209からのt=750m秒のときのMV値a=84%が入力される。高値選択器103では、高値である88%が選択されてMAX_MV値d=88%の値が保持される。その結果、SV値bも0.91Mpaが保持され、(3)のt=500m秒の場合と同様に、MV値aが84%に保持される。
補正部100の各部分におけるサンプリング周期毎の値を一覧表に示すと、次の通りである。
Figure 0006139311
(5)ケース2の効果
本実施形態によれば、ケース2では、MV値aが85%から88%に上昇したときは、その値に応じてSV値bを更に高く0.91Mpaに上昇するように作用する。その一方で、MAX_MV値dの上昇が頭打ちになったとき(上記では=750m秒でMV値a=84%に低下したとき)、SV値bを保持(上記では0.91Mpa)するように作用する。
このように、本実施形態は、不必要にSV値bを上昇させるのではなく、低圧タービンバイパス調節弁204の全開を回避するのに必要な一番小さいSV値b(上記では0.91Mpa)が算出されるように作用する。
[3.3 ケース3]
ケース3はケース2の時刻t=750m秒に引き続き発生するシーケンスであり、t=1000m秒からの挙動である。
(1)t=1000m秒
(a)低圧加減弁203の開弁が開始される。
(b)これよりMV値aが低下する。ここでは例えば75%に低下したとする。
(c)高値選択器103には、サンプリング遅延器102から出力される1周期前であるt=750m秒のときのMAX_MV値d’=88%と、t=1000m秒のときのMV値a=75%とが入力される。高値選択器103では、高値である88%が選択されてMAX_MV値d=88%として出力される。
(d)従って、SV値b=0.91Mpaを保持する。t=750m秒の場合と同様に、MV値aが84%に保持される。
(2)t=1250m秒
(a)低圧加減弁203の開弁開度が更に増した結果、MV値aが39%に低下する。
(b)比較器106に入力されるはMV値aが40%以下になったため、比較器106からf=0が出力される。
(c)切替器101は、比較器106からの出力f=0に従い、S−Tの端子に切替える。その結果、切替器101からは出力gとしてMV値a=39%が出力される。
(e)高値選択器103には、切替器101からの出力g(39%)と、PIDコントローラ209からのMV値a(39%)とが入力される。この2つの値は同じ値であるため、高値選択器103からは、MAX_MV値d=39%が出力される。
(f)関数発生器104において、X軸=39%におけるY軸は1.0であるから、関数発生器104はゲインeとして1.0を出力する。乗算器105は0.7Mpaとゲインe=1.0を乗算してSV値b=0.7Mpaを算出する。その結果、PIDコントローラ209は、初期の設定値と同じSV値bとPV値cとに基づいて、MV値aを算出する。低圧タービンバイパス調節弁204の制御は、このMV値aにより行われる。
補正部100の各部分におけるサンプリング周期毎の値を一覧表に示すと、次の通りである。
Figure 0006139311
(3)ケース3の効果
本実施形態によれば、ケース3では、MV値aが40%より小さくなり、低圧タービンバイパス調節弁204が全開となる虞がなくなったときに、SV値を元の小さな値である0.7Mpaに戻すように作用する。
[3.4 本実施形態の効果]
以上の各ケースに示すように、本実施形態においては、サンプリング遅延器102を備えることで、現在から過去の期間の間で最も高いMV値であるMAX_MV値を選択し、MAX_MV値が所定の値を逸脱して大きくなったとき、SV値を上昇させることで、低圧タービンバイパス調節弁204が全開近傍になると、SV値の上昇に伴いMV値が低下して、同バイパス調節弁の全開を回避することができる。
[4.他の実施形態]
(1)本発明の実施形態は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
(2)図1において高圧タービンバイパス調節弁213も高圧蒸発器214や高圧過熱器215の収熱の影響を受けて、高圧蒸気の発生量は変動する。しかし、高圧蒸発器214や高圧過熱器215はガスタービン排ガスの流れに対する配置の観点では、これらは低圧蒸発器211や低圧過熱器212の上流側に配置されるので、高圧蒸気の発生量は比較的把握が容易であり、例えばそのSV値をSTメタル温度やガスタービン出力に応じた可変値とする従来技術が確立している。
これらにより高圧タービンバイパス調節弁213が全開する問題は比較的緩和されているが、高圧タービンバイパス調節弁213に対しても本発明の実施形態を適用することは、何らの問題はなく、寧ろ弁全開のリスク回避を担保するものとして推奨される。
(3)ゲインの決定部として、関数発生器104に代えて、MAX_MV値dとゲインeを対応付けたテーブルを用意しておき、これによって所定のゲインを選択して乗算器105に出力することもできる。また、関数発生器104と乗算器105に代えて、MAX_MV値dと補正後のSV値bを対応付けたテーブルを用意しておき、これによって所定の補正後のSV値bを選択することもできる。
(4)図示の実施形態におけるPIDコントローラ209に代えて、それと同等の機能(SV値とPV値を入力して、MV値を出力する機能)を有する他の種類のコントローラを使用することができる。
(5)コンバインドサイクル発電プラントのバイパス調節弁以外に、他のプラントなどの各所に使用される調節弁全般に広く使用できる。
(6)本実施形態では、DCS207は、250m秒のサンプリング周期で演算を行ったが、他のサンプリング周期で計算することもできる。また、サンプリング遅延器102では、1周期前のMAX_MV値d’を出力するが、1周期前のMAX_MV値d’に限定するものではない。すなわち、2周期前、3周期前のMAX_MV値d’を出力しても良い。
(7)本実施形態では、PIDコントローラ209でSV値とPV値を入力して、MV値を出力したが、PIDコントローラ209の前段に減算器225を設けることもできる。PIDコントローラ209では、その差分に基づきPV値を演算することもできる。
(8)本実施形態では、ケース3の(2)t=1250m秒において、切替器101を、比較器106からの出力f=0に従い、S−Tの端子に切替えた。この場合、サンプリング遅延器102側の回路は切断されるため、サンプリング遅延器102には、高値選択器103から出力されるMAX_MV値dが入力されないこととなる。一定期間この状態が続く場合には、サンプリング遅延器102のMAX_MV値dを0とすることもできる。これにより、PIDコントローラ209の開度指令値が、比較器106の出力f=0となる値以下に低下した場合に、SV値を初期の設定値に復帰させる。
100…補正部
101…切替器
102…サンプリング遅延器
103…高値選択器
104…関数発生器
105…乗算器
106…比較器
201…コンバインドサイクル発電プラント
202…蒸気タービン
203…低圧加減弁
204…低圧タービンバイパス調節弁
205…低圧ドラム
206…復水器
207…DCS
208…低圧タービンバイパス調節弁の制御部
209…PIDコントローラ
210…低圧ドラム内部圧力センサ
211…低圧蒸発器
212…低圧過熱器
213…高圧タービンバイパス調節弁
214…高圧蒸発器
215…高圧過熱器
220…圧縮機
221…ガスタービン
222…排熱回収ボイラ
223…高圧ドラム
224…高圧加減弁
225…減算器
226…SV値設定部
a…MV値
b…SV値
c…PV値
d…MAX_MV値
e…ゲイン
f…比較器106の出力

Claims (9)

  1. ガスタービンと、
    前記ガスタービンからの排出ガスを利用して蒸気を発生する排熱回収ボイラと、
    前記排熱回収ボイラからの蒸気により回転駆動する蒸気タービンと、
    前記蒸気タービンからの排気蒸気を凝縮して復水し、復水された水を前記排熱回収ボイラに供給する復水器と、
    前記排熱回収ボイラからの蒸気を、バイパス調節弁を経由して前記復水器に流すタービンバイパス系と、
    前記タービンバイパス系へ供給する蒸気を発生させる低圧ドラム内の圧力を検出する圧力センサと、
    所定のサンプリング周期に従い、入力部から受信した設定値と前記圧力センサからのプロセス値に基づいて、プロセス値が設定値に等しくなるように調節弁に対して開度指令値を出力するコントローラとを備える発電プラントであって、
    前記コントローラは、前記設定値が高くなると前記調節弁に対する前記開度指令値を低下させるよう制御し、
    前記コントローラからの前記開度指令値が所定の値より大きくなった場合に、前記設定値を前記開度指令値が低下する方向に補正する補正部と、
    を備えていることを特徴とする発電プラント。
  2. 前記補正部は、
    サンプリング周期毎に開度指令値を入力して、1周期前の開度指令値を出力するサンプリング遅延器と、
    前記コントローラからの開度指令値と、サンプリング遅延器からの1周期前の開度指令値を入力して、何れか一方を出力する切替器と、
    前記コントローラからの開度指令値と切替器からの出力される開度指令値とを比較して、その値の大きい方を出力する高値選択器と、
    前記高値選択器から出力された開度指令値に基づいて、入力部からの設定値を補正する乗算器と、
    を備えることを特徴とする請求項1に記載の発電プラント。
  3. 前記補正部は、
    前記高値選択器から出力された最大開度指令値に基づいてゲインを決定するゲイン決定部とを備え、
    前記乗算器では、前記ゲイン決定部から出力されたゲインに基づいて、入力部からの設定値を補正すること特徴とする請求項2に記載の発電プラント。
  4. 前記ゲイン決定部が、最大開度指令値とそれに対応するゲインとの関数に従い、入力された最大開度指令値に対応するゲインを出力する関数発生器からなることを特徴とする請求項3に記載の発電プラント。
  5. 前記補正部は、
    前記コントローラからの開度指令値と予め設定された閾値とを比較して、コントローラからの開度指令値が閾値よりも大きい場合には前記切替器をサンプリング遅延器側に、コントローラからの開度指令値が閾値よりも小さい場合には前記切替器をコントローラからの開度指令値側に切り替える比較部と、
    を備えることを特徴とする請求項2乃至4何れかに記載の発電プラント。
  6. 所定のサンプリング周期に従い、設定値とプロセス値に基づいて、プロセス値が設定値に等しくなるように調節弁に対して開度指令値をコントローラより出力し、
    前記設定値が高くなると、前記調節弁に対する前記開度指令値が低下する関係にある調節弁の制御方法において、
    前記コントローラからの前記開度指令値が所定の値を逸脱して大きくなったときに、前記設定値を前記開度指令値が低下する方向に補正することを特徴とする調節弁の制御方法。
  7. 前記補正は、現在から過去の期間の間で最も高い開度指令値に基づいて、前記設定値を上昇させる補正をすることを特徴とする請求項6に記載の調節弁の制御方法。
  8. 前記コントローラからの開度指令値が一定の閾値以下に低下した場合に、前記上昇した設定値を初期の設定値に復帰させることを特徴とする請求項7に記載の調節弁の制御方法。
  9. 設定値の入力部とプロセス値の入力部とを備え、所定のサンプリング周期に従い、前記各入力部から受信した設定値とプロセス値に基づいて、プロセス値が設定値に等しくなるように調節弁に対して開度指令値を出力する調節弁の制御装置であって、
    前記設定値が高くなると、前記調節弁に対する前記開度指令値が低下する関係にあるコントローラと、
    前記コントローラからの前記開度指令値が所定の値を逸脱して大きくなった場合に、前記入力部からの設定値を前記開度指令値が低下する方向に補正する補正部と、
    を備えることを特徴とする調節弁の制御装置。
JP2013148923A 2013-07-17 2013-07-17 調節弁の制御方法及び制御装置、これらを使用した発電プラント Active JP6139311B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013148923A JP6139311B2 (ja) 2013-07-17 2013-07-17 調節弁の制御方法及び制御装置、これらを使用した発電プラント
TW103121806A TWI593873B (zh) 2013-07-17 2014-06-25 調節閥的控制方法與控制裝置以及使用上述的發電廠
KR1020140089590A KR101572115B1 (ko) 2013-07-17 2014-07-16 조절 밸브의 제어 방법 및 제어 장치, 이들을 사용한 발전 플랜트
US14/333,619 US9689280B2 (en) 2013-07-17 2014-07-17 Control valve control method and control device, and power generating plant utilizing same
US15/597,279 US10557379B2 (en) 2013-07-17 2017-05-17 Control valve control method and control device, and power generating plant utilizing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013148923A JP6139311B2 (ja) 2013-07-17 2013-07-17 調節弁の制御方法及び制御装置、これらを使用した発電プラント

Publications (2)

Publication Number Publication Date
JP2015021407A JP2015021407A (ja) 2015-02-02
JP6139311B2 true JP6139311B2 (ja) 2017-05-31

Family

ID=52342457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013148923A Active JP6139311B2 (ja) 2013-07-17 2013-07-17 調節弁の制御方法及び制御装置、これらを使用した発電プラント

Country Status (4)

Country Link
US (2) US9689280B2 (ja)
JP (1) JP6139311B2 (ja)
KR (1) KR101572115B1 (ja)
TW (1) TWI593873B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3104107B1 (en) 2015-06-12 2018-08-08 General Electric Technology GmbH Steam dump device for a nuclear power plant
JP6543175B2 (ja) * 2015-11-24 2019-07-10 株式会社東芝 調節弁の制御装置及び制御方法
ITUB20159367A1 (it) * 2015-12-28 2017-06-28 A S En Ansaldo Sviluppo Energia S R L Metodo e dispositivo di controllo dello scambio termico in una caldaia a recupero di calore di un impianto a ciclo combinato e impianto a ciclo combinato
JP6723791B2 (ja) * 2016-03-31 2020-07-15 三菱重工マリンマシナリ株式会社 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収装置の制御方法
KR102343611B1 (ko) * 2017-11-30 2021-12-27 가부시키가이샤 후지킨 유량 제어 장치의 자기 진단 방법
CN108678931B (zh) * 2018-04-09 2019-06-18 华南理工大学 一种压气机抽气储能提高冷热电联产系统灵活性的方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342195A (en) * 1964-08-11 1967-09-19 Gen Electric Speed and motive fluid pressure control system for steam turbines
RO59735A (ja) * 1968-12-20 1976-05-15
US3953966A (en) * 1974-08-08 1976-05-04 Westinghouse Electric Corporation Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation
US4007596A (en) * 1975-04-24 1977-02-15 Westinghouse Electric Corporation Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply
US4081956A (en) * 1976-05-13 1978-04-04 General Electric Company Combined gas turbine and steam turbine power plant
JPS54113706A (en) * 1978-02-24 1979-09-05 Toshiba Corp Method of contolling turbine bypass system
DE3108915A1 (de) * 1981-03-09 1982-09-16 Siemens AG, 1000 Berlin und 8000 München Verfahren und einrichtung zur regelung eines turbosatzes
US4572110A (en) * 1985-03-01 1986-02-25 Energy Services Inc. Combined heat recovery and emission control system
JPH0678724B2 (ja) * 1986-04-25 1994-10-05 株式会社日立製作所 1軸コンバインドプラントにおける蒸気タービンのクーリング方法及びクーリング装置
JP2593578B2 (ja) * 1990-10-18 1997-03-26 株式会社東芝 コンバインドサイクル発電プラント
US5357746A (en) 1993-12-22 1994-10-25 Westinghouse Electric Corporation System for recovering waste heat
JP3804693B2 (ja) * 1996-06-21 2006-08-02 大阪瓦斯株式会社 排熱回収システム
JPH1150812A (ja) * 1997-07-31 1999-02-23 Toshiba Corp 排気再燃式コンバインドサイクル発電プラント
KR100311716B1 (ko) 1999-02-24 2001-11-02 윤영석 발전설비용 배열회수보일러의 증기온도제어밸브를 조절하는 장치
JP3333477B2 (ja) * 1999-09-01 2002-10-15 株式会社日立製作所 スロットル制御装置
US6565064B2 (en) * 2001-03-21 2003-05-20 Delphi Technologies, Inc. Model-based position control for a solenoid actuated valve
JP4365553B2 (ja) * 2001-12-26 2009-11-18 株式会社日立製作所 エンジンの燃料制御装置及びアイドリング時の空燃比制御方法
WO2009105094A1 (en) * 2008-02-20 2009-08-27 Utc Fire & Security Corporation Assisted commissioning method for combustion control systems
US7937928B2 (en) * 2008-02-29 2011-05-10 General Electric Company Systems and methods for channeling steam into turbines
JP2009264220A (ja) * 2008-04-24 2009-11-12 Toho Gas Co Ltd 蒸気噴射式ガスタービンの蒸気漏れ検出装置
JP4929226B2 (ja) * 2008-04-28 2012-05-09 三菱重工業株式会社 一軸型複合サイクルプラントのガスタービン制御装置及びその方法
CN102076949B (zh) * 2008-08-01 2013-06-05 三菱电机株式会社 阀控制装置和阀装置
CN102265012B (zh) * 2008-12-26 2013-07-17 三菱重工业株式会社 废热回收系统的控制装置
JP5491851B2 (ja) 2009-12-28 2014-05-14 株式会社東芝 フィードフォワード制御装置およびフィードフォワード制御方法
JP2012127243A (ja) * 2010-12-15 2012-07-05 Toshiba Corp タービンプラントおよびその運転方法
JP2012167571A (ja) * 2011-02-10 2012-09-06 Toshiba Corp 一軸型複合サイクル発電プラントおよびその運転方法
JP5694112B2 (ja) 2011-09-30 2015-04-01 株式会社東芝 一軸型複合サイクル発電プラント及びその運転方法

Also Published As

Publication number Publication date
US20150020499A1 (en) 2015-01-22
JP2015021407A (ja) 2015-02-02
US20170248042A1 (en) 2017-08-31
KR20150009931A (ko) 2015-01-27
US10557379B2 (en) 2020-02-11
TWI593873B (zh) 2017-08-01
US9689280B2 (en) 2017-06-27
KR101572115B1 (ko) 2015-11-26
TW201506241A (zh) 2015-02-16

Similar Documents

Publication Publication Date Title
JP6139311B2 (ja) 調節弁の制御方法及び制御装置、これらを使用した発電プラント
KR101862893B1 (ko) 가스 및 증기 터빈 복합 발전 설비의 작동 방법과, 이 방법을 실행하기 위해 제공된 가스 및 증기 터빈 복합 발전 설비와, 상응하는 조절 장치
JP5108644B2 (ja) ボイラ制御装置ならびにボイラ制御方法
KR101841316B1 (ko) 증기 터빈의 단기간 출력 상승을 조절하기 위한 방법
US9882453B2 (en) Method for providing a frequency response for a combined cycle power plant
KR101818021B1 (ko) 증기 터빈의 단기간 출력 상승을 조절하기 위한 조절 방법
US11255224B2 (en) Method for the short-term adjustment of the output of a combined-cycle power plant steam turbine, for primary frequency control
EP2867735B1 (en) A method for optimization of control and fault analysis in a thermal power plant
CN104074560A (zh) 用于燃气轮机联合循环发电机组蒸汽旁路控制的方法
JP5881470B2 (ja) 発電システム及びその制御方法
JP2013174223A (ja) 蒸気タービンの調速制御装置、その制御方法、および蒸気タービン
JP6543175B2 (ja) 調節弁の制御装置及び制御方法
US11125166B2 (en) Control system, gas turbine, power generation plant, and method of controlling fuel temperature
JP3673295B2 (ja) ボイラの再熱蒸気温度制御方法および装置
JP6775070B1 (ja) 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法
JP5542421B2 (ja) 火力プラント制御装置および方法
JP4518320B2 (ja) 火力発電プラントの周波数バイアス制御装置とその運用方法
JPH05272361A (ja) 複合サイクル発電プラントの負荷制御装置
JP6221359B2 (ja) 発電用ボイラプラントの先行指令制御方法及び装置
JPH10122507A (ja) スプレによるボイラ蒸気温度制御装置
JP2008274819A (ja) 複合発電プラント蒸気タービンの運転制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R151 Written notification of patent or utility model registration

Ref document number: 6139311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151