JP6135981B2 - 蓄電素子及び車載用蓄電池システム - Google Patents

蓄電素子及び車載用蓄電池システム Download PDF

Info

Publication number
JP6135981B2
JP6135981B2 JP2013004110A JP2013004110A JP6135981B2 JP 6135981 B2 JP6135981 B2 JP 6135981B2 JP 2013004110 A JP2013004110 A JP 2013004110A JP 2013004110 A JP2013004110 A JP 2013004110A JP 6135981 B2 JP6135981 B2 JP 6135981B2
Authority
JP
Japan
Prior art keywords
container
separator
organic liquid
long side
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013004110A
Other languages
English (en)
Other versions
JP2014135255A (ja
Inventor
理史 ▲高▼野
理史 ▲高▼野
太郎 山福
太郎 山福
真規 増田
真規 増田
和輝 川口
和輝 川口
明彦 宮崎
明彦 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2013004110A priority Critical patent/JP6135981B2/ja
Publication of JP2014135255A publication Critical patent/JP2014135255A/ja
Application granted granted Critical
Publication of JP6135981B2 publication Critical patent/JP6135981B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、蓄電素子及び車載用蓄電池システムに関する。
近年、自動車、自動二輪車等の車両、携帯端末、ノート型パソコン等の各種機器などの動力源として、リチウムイオン電池、ニッケル水素電池等の電池、電気二重層キャパシタ等のキャパシタといった放充電可能な蓄電素子が採用されている。このような蓄電素子の一例としてのリチウムイオン二次電池は、例えば、特開2012−243672号公報(特許文献1)などに開示されている。
特許文献1のリチウムイオン二次電池は、正極と、負極と、セパレーターと、主電解液と、これらを収納する主容器と、副電解液と、この副電解液を収納する副容器とを備え、副容器は、リチウムイオン二次電池の利用とともに減少する主電解液を補充するように、副電解液を主容器に供給するようにされている。この特許文献1には、リチウムイオン二次電池を使用するにつれて徐々に減少していく電解液を電池を開封することなく補充することによって、長寿命なリチウム二次電池を提供できることが記載されている。
特開2012−243672号公報
上記特許文献1のリチウムイオン二次電池を使用すると、電解液が流出して、少なくとも部分的な液枯れが発生する場合や、電解液の偏在が発生する場合がある。液枯れや電解液の偏在が発生すると、リチウムイオン二次電池の抵抗が増大し、出力が低下するという問題がある。
本発明は、上記問題点に鑑み、出力の低下を抑制できる蓄電素子及び車載用蓄電池システムを提供することを課題とする。
本発明の一の局面における蓄電素子は、容器と、この容器に収容された発電要素と、この容器に収容され、かつ有機液体と、この有機液体に溶解された電解質とを有する電解液とを備え、発電要素は、正極と、負極と、この正極及び負極の間に配置されたセパレーターとを含み、セパレーターの少なくとも一部は、電解液と接触しており、セパレーターにおいて、容器の長側面方向(以下、長側面方向とも言う)の有機液体の吸上速度及び容器の高さ方向(以下、高さ方向とも言う)の有機液体の吸上速度は、0.08mm/分以上であり、有機液体の吸上速度は、浸漬後30〜90分の間の静置時間における吸上速度であり、容器における高さに対する長側面の長さの比をAとし、セパレーターにおける容器の高さ方向の有機液体の吸上速度に対する容器の長側面方向の有機液体の吸上速度の比をBとすると、B/Aが0.40以上2.40以下である。
本発明の一の局面における蓄電素子によれば、セパレーターの高さ方向及び長側面方向の電解液の吸上速度が0.08mm/分以上で、かつ、容器の長側面の長さ/高さ(=A)に対するセパレーターの長側面方向の吸上速度/高さ方向の吸上速度(=B)の比(A/B)を上記範囲内にしている。これにより、セパレーターの長側面方向及び高さ方向の電解液の吸上速度が蓄電素子の形状に対応しているので、部分的な液枯れ及び電解液の偏在を低減することができる。したがって、抵抗の増大を抑制できるので、出力の低下を抑制できる蓄電素子を提供することができる。
本発明の他の局面における蓄電素子は、容器と、この容器に収容された発電要素と、この容器に収容され、かつ有機液体と、前記有機液体に溶解された電解質とを有する電解液とを備え、発電要素は、正極と、負極と、この正極及び負極の間に配置されたセパレーターとを含み、セパレーターの少なくとも一部は、電解液と接触しており、セパレーターにおいて、容器の高さ方向の長さよりも容器の長側面方向の長さが大きく、セパレーターにおいて、容器の長側面方向の有機液体の吸上速度及び容器の高さ方向の有機液体の吸上速度は、0.08mm/分以上であり、有機液体の吸上速度は、浸漬後30〜90分の間の静置時間における吸上速度であり、セパレーターにおいて、容器の高さ方向の有機液体の吸上速度に対する容器の長側面方向の有機液体の吸上速度の比が0.60以上である。
本発明者は、高さ方向のセパレーターの電解液中の有機液体の吸上速度が速くても、セパレーターの長側面方向の電解液中の有機液体の吸上速度が所定以上でなければ、部分的な液枯れが発生する場合や、電解液の偏在が発生する場合があることを見出した。なお、本発明者は、電解液を吸上げる速度には、有機液体を吸上げる速度が主に支配的であることに着目して、電解液中の有機液体の速度で規定した。そこで、本発明の他の局面における横型の蓄電素子は、高さ方向の有機液体の吸上速度に対する長側面方向の有機液体の吸上速度を0.60以上として、セパレーターの長側面方向及び高さ方向の電解液の吸上速度を蓄電素子の形状に対応させているので、部分的な液枯れの発生、及び電解液の偏在を低減できる。したがって、横型の蓄電素子において、抵抗を抑制できるので、出力の低下を抑制できる蓄電素子を提供することができる。
上記本発明の他の局面における蓄電素子において好ましくは、容器の高さに対する長側面の長さの比をAとし、セパレーターにおける容器の高さ方向の有機液体の吸上速度に対するセパレーターにおける容器の長側面方向の有機液体の吸上速度の比をBとすると、B/Aが0.40以上2.40以下である。
セパレーターの長側面方向及び高さ方向の有機液体の吸上速度が蓄電素子の形状に対応しているので、部分的な液枯れが発生する場合、及び電解液の偏在が発生する場合をより低減することができる。したがって、蓄電素子の出力の低下をより抑制することができる。
本発明のさらに他の局面における蓄電素子は、容器と、この容器に収容された発電要素と、この容器に収容され、かつ有機液体と、この有機液体に溶解された電解質とを有する電解液とを備え、発電要素は、正極と、負極と、この正極及び負極の間に配置されたセパレーターとを含み、セパレーターの少なくとも一部は、電解液と接触しており、セパレーターにおいて、容器の長側面方向の長さよりも容器の高さ方向の長さが大きいまたは同じであって、セパレーターにおいて、容器の長側面方向の有機液体の吸上速度及び容器の高さ方向の有機液体の吸上速度は、0.08mm/分以上であり、有機液体の吸上速度は、浸漬後30〜90分の間の静置時間における吸上速度であり、セパレーターにおいて、容器の高さ方向の有機液体の吸上速度に対する容器の長側面方向の有機液体の吸上速度の比が0.60以上である。
本発明のさらに他の局面における蓄電素子によれば、セパレーターの高さ方向及び長側面方向の有機液体の吸上速度が0.08mm/分以上で、かつ、セパレーターの高さ方向の吸上速度/長側面方向の吸上速度(=B)を上記範囲内にしている。これにより、セパレーターの長側面方向及び高さ方向の電解液の吸上速度が、縦型の蓄電素子の形状に対応しているので、部分的な液枯れ及び電解液の偏在を低減することができる。したがって、抵抗の増大を抑制できるので、出力の低下を抑制できる蓄電素子を提供することができる。
上記さらに他の局面における蓄電素子において好ましくは、容器における高さに対する長側面の長さの比をAとし、セパレーターにおける容器の高さ方向の有機液体の吸上速度に対するセパレーターにおける容器の長側面方向の有機液体の吸上速度の比をBとすると、B/Aが0.40以上2.40以下である。
セパレーターの長側面方向及び高さ方向の電解液の吸上速度が、縦型の蓄電素子の形状に応じて適切であるので、部分的な液枯れ及び電解液の偏在をより低減することができる。したがって、蓄電素子の出力の低下をより抑制することができる。
本発明の車載用蓄電池システムは、上記いずれかの蓄電素子と、この蓄電素子の充放電の制御を行う制御部とを備えている。
本発明の車載用蓄電池システムによれば、出力の低下を抑制できる蓄電素子を備えている。したがって、車載用蓄電池システムは、出力の低下を抑制できる。
以上説明したように、本発明は、出力の低下を抑制できる蓄電素子及び車載用蓄電池システムを提供することができる。
本発明の実施の形態1における蓄電素子の一例である非水電解質二次電池を概略的に示す斜視図である。 本発明の実施の形態1における非水電解質二次電池の容器の内部を概略的に示す斜視図である。 図2におけるIII−III線に沿った断面図であり、本発明の実施の形態1における非水電解質二次電池を概略的に示す断面図である。 本発明の実施の形態1における非水電解質二次電池を構成する発電要素を概略的に示す模式図である。 本発明の実施の形態1における発電要素を構成する正極及び負極を概略的に示す拡大模式図である。 本発明の実施の形態2における非水電解質二次電池の内部を概略的に示す模式図である。 本発明の実施の形態3における蓄電池システム及びこれを車両に搭載した状態を示す模式図である。 実施例におけるセパレーターの吸上速度の測定方法を説明するための図である。 実施例におけるセパレーターの吸上速度を測定した結果を示す図である。 実施例におけるリチウムイオン二次電池の抵抗を測定した結果を示す図である。
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
(実施の形態1)
図1〜図5を参照して、本発明の一実施の形態である蓄電素子の一例である非水電解質二次電池1を説明する。本実施の形態の非水電解質二次電池1は、横型であって、巻回式の発電要素を備えている。
図1〜図3に示すように、本実施の形態の非水電解質二次電池1は、容器2と、この容器2に収容された電解液3と、容器2に取り付けられた外部ガスケット5と、この容器2に収容された発電要素10と、この発電要素10と電気的に接続された集電部7と、集電部7と電気的に接続された外部端子21とを備えている。
図1に示すように、容器2は、発電要素10を収容する本体部(ケース)2aと、本体部2aを覆う蓋部2bとを有している。本体部2a及び蓋部2bは、例えばステンレス鋼板で形成され、互いに溶接されている。
蓋部2bの外面には外部ガスケット5が配置され、蓋部2bの開口部と外部ガスケット5の開口部とが連なっている。外部ガスケット5は例えば凹部を有し、この凹部内に外部端子21が配置されている。
外部端子21は、発電要素10に接続された集電部7(図3参照)と接続され、発電要素10と電気的に接続されている。なお、集電部7の形状は特に限定されないが、例えば板状である。外部端子21は、例えばアルミニウム、アルミニウム合金等のアルミニウム系金属材料で形成されている。
外部ガスケット5及び外部端子21は、正極用と負極用とが設けられている。正極用の外部ガスケット5及び外部端子21は、蓋部2bの長手方向における一端側に配置され、負極用の外部ガスケット5及び外部端子21は、蓋部2bの長手方向における他端側に配置されている。
図2及び図3に示すように、本体部2aの内部には電解液3が収容され、発電要素10は電解液3に浸漬されている。図3に示すように、非水電解質二次電池1を載置したときに、電解液3は余剰電解液として容器2の下部に貯留され、発電要素10のセパレーター12の一部が余剰電解液としての電解液3と接触している。つまり、余剰電解液としての電解液3は、容器2の内部空間における発電要素10を除く領域の少なくとも一部に収容され、セパレーター12の少なくとも一部と接触している。
電解液3は、有機溶液(例えば有機溶媒)に電解質が溶解されている。有機溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等のエステル系溶媒や、エステル系溶媒にγ−ブチラクトン(γ−BL)、ジエトキシエタン(DEE)等のエーテル系溶媒等を配合してなる有機溶媒等が挙げられる。また、電解質としては、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)、六フッ化リン酸リチウム(LiPF6)などのリチウム塩等が挙げられる。
電解液3は、0.5〜1.4molの塩濃度を有し、0.8〜1.2molの塩濃度を有することが好ましい。この場合、後述するセパレーター12における電解液3中の有機溶液の吸上速度を所定範囲内に制御しやすい。
図2及び図3に示すように、本体部2aの内部には、発電要素10が収容されている。容器2内には、1つの発電要素が収容されていてもよく、複数の発電要素が収容されていてもよい。後者の場合には、複数の発電要素10は、電気的に並列に接続されている。
発電要素10は、高さよりも幅が大きい横長であり、巻回軸は幅方向(図3における長側面方向)である。
図4に示すように、発電要素10は、正極11と、セパレーター12と、負極13とを含んでいる。発電要素10は、負極13上にセパレーター12が配置され、このセパレーター12上に正極11が配置され、この正極11上にセパレーター12が配置された状態で巻回され、筒状に形成されている。即ち、発電要素10において、負極13の外周側にセパレーター12が形成され、このセパレーター12の外周側に正極11が形成され、この正極11の外周側にセパレーター12が形成されている。本実施の形態では、発電要素10において、正極11及び負極13の間に絶縁性のセパレーターが配置されているので、正極11と負極13とは電気的に接続されていない。
図5に示すように、発電要素10を構成する正極11は、正極集電箔11Aと、正極集電箔11Aに形成された正極合剤層11Bとを有している。発電要素10を構成する負極13は、負極集電箔13Aと、負極集電箔13Aに形成された負極合剤層13Bとを有している。本実施の形態では、正極集電箔11A及び負極集電箔13Aの表面及び裏面のそれぞれに、正極合剤層11B及び負極合剤層13Bが形成されているが、本発明はこの構造に特に限定されない。例えば、正極集電箔11A及び負極集電箔13Aの表面または裏面に、正極合剤層11B及び負極合剤層13Bが形成されていてもよい。ただし、正極合剤層11Bには、負極合剤層13Bが対面している。
なお、本実施の形態では、正極基材及び負極基材として、正極集電箔及び負極集電箔を例に挙げて説明しているが、本発明は、正極基材及び負極基材は箔状に限定されない。
正極合剤層11Bは、正極活物質と、導電助剤と、バインダとを有している。負極合剤層13Bは、負極活物質と、バインダとを有している。なお、負極合剤層13Bは、導電助剤をさらに有していてもよい。
正極活物質は、正極において充電反応及び放電反応の電極反応に寄与し得る物質である。正極活物質の材料は、特に限定されず、例えば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、コバルト酸リチウム(LiCoO2)等のリチウム複合酸化物などを用いることができる。
負極活物質は、負極において充電反応及び放電反応の電極反応に寄与し得る物質であり。負極活物質の材料は、特に限定されず、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、黒鉛等の炭素系物質などを用いることができる。
バインダは、特に限定されず、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレン、ポリカーボネートなどを用いることができる。
セパレーター12は、正極11及び負極13の間に配置され、正極11と負極13との電気的な接続を遮断しつつ、電解液3の通過を許容するものである。
セパレーター12は、好ましくは15μm以上25μm以下、より好ましくは20μm以上24μm以下の厚みを有する。これにより、セパレーター12の強度を維持できる。
ここで、上記セパレーター12の厚みは、マイクロメーター(MITSUTOYO社製)を用いて測定される値である。
セパレーター12は、好ましくは30秒/100cc以上300秒/100cc以下、より好ましくは80秒/100cc以上260秒/100cc以下の透気度を有する。これにより、セパレーター12の強度を維持できる。
上記透気度は、JIS P8117に準拠して測定される値である。
セパレーター12は、1層であってもよいが、基材と、この基材の一方面上に形成された無機層とを含んでいてもよい。
セパレーター12が基材と無機層とを含む場合、基材は、特に限定されず、樹脂多孔膜全般を用いることができ、例えば、ポリマー、天然繊維、炭化水素繊維、ガラス繊維またはセラミック繊維の織物、または不織繊維を用いることができる。
また、無機層は、無機塗工層とも言われ、例えば、無機粒子、バインダなどを含む。無機粒子は、特に限定されず、例えば、酸化鉄、SiO2、Al23、TiO2、BaTiO2、ZrO、アルミナ−シリカ複合酸化物などの酸化物微粒子、窒化アルミニウム、窒化ケイ素などの窒化物微粒子、フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子、シリコン、ダイヤモンドなどの共有結合性結晶微粒子、タルク、モンモリロナイトなどの粘土微粒子、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカなどの鉱物資源由来物質あるいはそれらの人造物などを用いることができる。
バインダは、正極及び負極が有するバインダと同様であるので、その説明は繰り返さない。
なお、基材及び無機層は、単一の層で構成されていてもよく、複数の層で構成されていてもよい。
セパレーター12において、所定の測定方法における幅方向(図3における長側面方向)及び高さ方向(図3における高さ方向)の電解液3中の有機溶液の吸上速度(セパレーター12の長側面方向及び高さ方向の吸上速度とも言う)は、0.08mm/分以上であり、0.09mm/分以上であることが好ましく、0.11mm/分以上であることがより好ましい。なお、セパレーター12において、長側面方向及び高さ方向以外の方向の吸上速度は特に限定されないが、長側面方向及び高さ方向以外の方向の吸上速度が0.08mm分以上であることが好ましい。
ここで、セパレーターの吸上速度とは、次の方法で測定される有機溶液(以下、有機溶媒を例に挙げる)を吸い上げる(吸液する)速度を意味する。具体的には、寸法2.5×8.0cmの大きさに切り出したセパレーターの試験片を準備し、試験片が入った密閉容器を有機溶媒の飽和蒸気圧で満たし、密閉容器内の温度を常温(25±3℃)にし、試験片の長手方向の片方の先端を固定して吊り下げ、もう片方の先端を有機溶媒に浸漬したのちに、所定時間毎に有機溶媒が吸い上げられた高さを測定し、高さの変化率を求めることによって測定ができる値である。測定用の有機溶媒には、例えばエチレンカーボネート(EC):ジエチルカーボネート(DEC)=1:1の混合溶媒が使用できる。
ここで、セパレーター12の長側面方向とは、底面12a1における長辺の方向、つまり図3における左右方向である。セパレーター12において容器2の高さ方向の長さ(高さT)よりも容器2の長側面方向の長さ(幅W)が大きく、かつ発電要素10の巻回軸が横方向(図3における左右方向)に巻回されている場合、セパレーター12における長側面方向とは、巻回軸に平行な方向、つまり、巻回前の長尺なシート状の短辺方向である。
また、セパレーター12の高さ方向とは、底面12a1に垂直な方向の長さであり、図3における上下方向である。セパレーター12において高さTよりも幅Wが大きく、かつ発電要素10の巻回軸が横方向(図3における左右方向)に巻回されている場合、セパレーター12の高さ方向とは、巻回軸に垂直な方向、つまり、巻回前の長尺なシート状の長辺方向である。
上記セパレーター12における幅Wとは、底面12a1における長辺の方向の長さであり、図3における左右方向(長側面方向)の長さである。セパレーター12において容器2の高さ方向の長さ(高さT)よりも容器2の長側面方向の長さ(幅W)が大きく、かつ発電要素10の巻回軸が横方向(図3における左右方向)に巻回されている場合、セパレーター12における幅Wとは、巻回軸に平行な方向の長さ、つまり、巻回前の長尺なシート状の短辺の長さである。
上記セパレーター12における高さTとは、底面12a1に垂直な方向の長さであり、図3における上下方向(高さ方向)である。セパレーター12において高さTよりも幅Wが大きく、かつ発電要素10の巻回軸が横方向(図3における左右方向)に巻回されている場合、セパレーター12における高さTとは、巻回軸に垂直な方向の長さ、つまり、巻回後の巻回物の端子側R部頂点と底面側R部頂点との間の長さである。
セパレーター12の長側面方向の吸上速度は、0.08mm/分以上であり、好ましくは0.09mm/分以上であり、より好ましくは0.11mm/分以上である。セパレーター12の高さ方向の吸上速度は、0.08mm/分以上であり、好ましくは0.12mm/分以上であり、より好ましくは0.14mm/分以上である。
セパレーター12において、高さ方向の吸上速度に対する長側面方向の吸上速度の比(B)は、0.60以上であり、好ましくは0.65以上であり、より好ましくは0.95以上である。上限は、例えば1.54以下である。これは、容器高さ方向の吸上げ速度に対する容器長側面方向の吸上速度の比(B)が高いほど、高さ方向に加えて長側面方向からも電解液が供給さることで、電解液を供給する経路が少なくとも2方向となり、より電解液の偏在や部分的な液枯れを抑制することが可能となるためである。
容器2の高さ(図3における高さL2)に対する幅(図3における幅L1)の比(幅L1/高さL2)をAとし、セパレーター12の高さ方向(図3における高さ方向)の吸上速度に対する幅方向(図3における長側面方向)の吸上速度の比をBとすると、B/Aが0.40以上2.40以下であり、好ましくは1.00以上2.00以下である。
ここで、容器2の幅L1とは、底面2a1における長辺(底面が長方形の場合)または長軸(底面が楕円形の場合)であり、図3における左右方向(長側面方向、巻回軸に平行な方向)の長さである。容器2の高さL2とは、底面2a1に垂直な方向の長さであり、図3における上下方向(高さ方向、巻回軸に垂直な方向)の長さである。
非水電解質二次電池1が複数の発電要素10を備えている場合、少なくとも1つの発電要素10を構成するセパレーター12が上記吸上速度を有していればよいが、全ての発電要素10を構成するセパレーター12が上記吸上速度を有していることが好ましい。
続いて、本実施の形態における非水電解質二次電池1の製造方法について説明する。
まず、発電要素10について説明する。
正極活物質と、導電助剤と、バインダとが混合され、この混合物が溶剤に加えられて混練りされて、正極合剤が形成される。この正極合剤が正極集電箔11Aの少なくとも一方面に塗布され、乾燥後、圧縮成形される。これにより、正極集電箔11A上に正極合剤層11Bが形成された正極11が作製される。圧縮成形後、真空乾燥を行う。
黒鉛、ハードカーボン、ソフトカーボンなどの負極活物質と、バインダとが混合され、この混合物が溶剤に加えられて混練りされて、負極合剤が形成される。この負極合剤が負極集電箔13Aの少なくとも一方面に塗布され、乾燥後、圧縮成形される。これにより、負極集電箔13A上に負極合剤層13Bが形成された負極13が作製される。圧縮成形後、真空乾燥を行う。
本実施の形態では、セパレーター12となる原料基材に関して、これをもちいた発電要素10の製造後に容器2の長側面方向に相当する吸上速度、および、容器2の高さ方向に相当する吸上速度が測定され、条件i)を満たし、かつ、条件ii)及び/または条件iii)を満たすように、長側面方向及び高さ方向が決定され、原料基材からセパレーター12が形成される。
条件i)長側面方向の吸上速度及び高さ方向の吸上速度が0.08mm/分以上である。
条件ii)容器2の高さL2に対する幅L1の比をAとし、セパレーター12の高さ方向の吸上速度に対する長側面方向の吸上速度の比をBとすると、B/Aが0.40以上2.40以下である。
条件iii)高さ方向の吸上速度に対する長側面方向の吸上速度の比が0.60以上である。
上記セパレーター12の原料基材は、樹脂シートであることが好ましく、例えばポリエチレンやポリプロピレンを主とした多孔膜であることがより好ましい。
上記セパレーター12の原料基材は、基材が準備され、この基材上にコート剤が塗布されることにより無機層が形成されることにより作製されてもよい。
ここで、セパレーターの製造方法による効果について、説明する。従来のセパレーターの製造法である2軸延伸法や1軸延伸法をもちいた方法では、長手方向の延伸倍率は、幅方向の延伸倍率よりもかなり大きい。しかし、従来の方法では、セパレーター内部の孔が長手方向を長辺とする楕円形状となるため、幅方向への液吸上を阻害し、幅方向の吸上速度が低下する傾向がある。このため、従来とは異なり、長手方向の延伸倍率を低く抑えるか、または幅方向の延伸倍率を高くすることで、延伸倍率の総対比を近づけることによって、容器長手方向(長側面方向)及び容器高さ方向の吸上速度を適切に制御したセパレーターを製造することが可能である。
次に、正極11と負極13とをセパレーター12を介して巻回される。これにより、発電要素10が作製される。その後、正極11及び負極13の各々に、集電部7が取り付けられる。
次に、発電要素10が容器2の本体部2aの内部に配置される。発電要素10が複数の場合には、例えば、各発電要素10の集電部を電気的に並列に接続して本体部2aの内部に配置される。次いで、集電部は、蓋部2bの外部ガスケット5内の外部端子21にそれぞれ溶着され、蓋部2bは本体部2aに取り付けられる。
次に、電解液が注液される。電解液は、特に限定されないが、塩濃度が0.8mol/L以上1.2mol/L以下であることが好ましい。このような電解液として、例えば、プロピレンカーボネート(PC):ジメチルカーボネート(DMC):エチルメチルカーボネート(EMC)=3:4:3(体積比)の混合溶媒に、LiPF6が調製されてもよい。また、公知の添加剤がさらに添加されてもよい。以上の工程により、図1〜図5に示す本実施の形態における非水電解質二次電池1が製造される。
(変形例)
変形例における非水電解質二次電池は、基本的には上述した実施の形態1と同様であるが、発電要素10が巻回式ではなく、積層式である点において異なる。
具体的には、発電要素は、負極13上にセパレーター12が配置され、このセパレーター12上に正極11が配置され、この正極11上にセパレーター12が配置された積層状態で、容器2の内部に収容される。
変形例において、セパレーターの幅方向は、底面における長辺の方向であり、図3における左右方向である。セパレーター12の高さ方向は、底面における短辺方向であり、図3における上下方向である。
以上説明したように、本実施の形態及びその変形例における蓄電素子の一例である非水電解質二次電池1は、容器2と、この容器2に収容された発電要素10と、容器2に収容され、かつ有機液体と、この有機液体に溶解された電解質とを有する電解液3とを備え、発電要素10は、正極11と、負極13と、正極11及び負極13の間に配置されたセパレーター12とを含み、セパレーター12の少なくとも一部は、電解液と接触しており、セパレーター12において、容器2の長側面方向(図3における長側面方向)の電解液3中の有機液体の吸上速度及び容器2の高さ方向(図3における高さ方向)の電解液3中の有機液体の吸上速度は、0.08mm/分以上であり、容器2における高さL2に対する幅(長側面の長さ)L1の比(L1/L2)をAとし、セパレーター12の容器2の高さ方向(図3における高さ方向)の有機液体の吸上速度に対する容器2の長側面方向(図3における長側面方向)の吸上速度の比をBとすると、B/Aが0.40以上2.40以下である。
本実施の形態及びその変形例における非水電解質二次電池1によれば、セパレーター12の高さ方向及び長側面方向の電解液中の有機液体の吸上速度が0.08mm/分以上であることにより、載置面が容器2の本体部2aの底面2a1(図1及び図3参照)である場合には、電解液3をセパレーター12の高さ方向及び長側面方向に向けて吸液することができる。つまり、セパレーター12に電解液3を供給する有効な経路が、セパレーター12の高さ方向だけでなく、高さ方向及び長側面方向の少なくとも2方向になる。
容器2の幅L1/高さL2(=A)に対するセパレーターの長側面方向の吸上速度/高さ方向の吸上速度(=B)の比(B/A)が0.40以上2.40以下であることにより、載置面が容器2の本体部2aの底面2a1(図1参照)である場合には、長側面方向及び高さ方向の両方の吸上速度が非水電解質二次電池1の形状に応じて適切であるので、電解液3をセパレーター12の全体に供給しやすくなる。このため、部分的な液枯れの発生、及び電解液3の偏在を低減することができるので、電解液3が枯渇することを抑制することで充放電反応を促進できる。したがって、電気抵抗の増大を抑制できるので、非水電解質二次電池1の出力の低下を抑制することができる。
また、本実施の形態及びその変形例における非水電解質二次電池1は、容器2と、この容器2に収容された発電要素10と、容器2に収容され、かつ有機液体と、この有機液体に溶解された電解質とを有する電解液3とを備え、発電要素10は、正極11と、負極13と、正極11及び負極13の間に配置されたセパレーター12とを含み、セパレーター12の少なくとも一部は、電解液3と接触しており、セパレーター12において、容器の高さ方向の長さ(高さT)よりも容器の長側面方向の長さ(幅W)が大きく、セパレーター12において、容器2の長側面方向(図3における長側面方向)の電解液3中の有機液体の吸上速度及び容器2の高さ方向(図3における高さ方向)の電解液3中の有機液体の吸上速度は0.08mm/分以上であり、セパレーター12において、容器2の高さ方向(図3における高さ方向)の有機液体の吸上速度に対する容器の長側面方向(図3における長側面方向)の吸上速度の比(B)が0.6以上である。
従来の非水電解質二次電池1においては、液枯れや電解液の偏在を低減するために、セパレーターの高さ方向の吸上速度を高めることが考えられてきた。しかし、本発明者は、セパレーター12の高さ方向の吸上速度が速くても、長側面方向の吸上速度が所定以上でなければ、部分的な液枯れが発生する場合や、電解液の偏在が発生する場合があることを見出した。このような場合には、電解液が枯渇した領域では充放電反応が進行せず、電解液を保持している領域では正極及び負極の充放電反応量が過度に大きくなってしまう。そこで、部分的な液枯れ及び電解液の偏在を低減できる長側面方向の吸上速度を検討した結果、載置面が容器2の本体部2aの底面2a1である場合には、高さ方向の吸上速度に対する長側面方向の吸上速度が0.6以上にすることにより、セパレーター12全体に電解液3を迅速に供給することを見出した。したがって、本実施の形態及びその変形例の横型の非水電解質二次電池1において、抵抗の増大を抑制できるので、出力の低下を抑制することができる。
なお、セパレーター12の強度を低くすることで、セパレーター12における電解液中の有機液体の吸上速度を高めることによって、セパレーター12における電解液の吸上速度を高めることができるが、本実施の形態の非水電解質二次電池1のセパレーター12は、強度を維持した上で、セパレーター12全体に電解液を迅速に供給することができる。
このように、本実施の形態及びその変形例における非水電解質二次電池1は、セパレーター12の強度を維持しつつ、出力の低下を抑制することができるので、高温かつ数千サイクルの充放電に耐えることができ、さらに大電流で充放電も可能である。したがって、本実施の形態における非水電解質二次電池1は、車載用のものであることが好ましく、ハイブリッド自動車用または電気自動車用のものであることがより好ましい。
(実施の形態2)
図6を参照して、実施の形態2における蓄電素子の一例である非水電解質二次電池30を説明する。実施の形態2の非水電解質二次電池30は、基本的には実施の形態1と同様であるが、縦型である点において異なる。
具体的には、非水電解質二次電池30の発電要素を構成するセパレーターにおいて、幅Wよりも高さTが大きいまたは同じである。
実施の形態1と同様に、セパレーターは、0.08mm/分以上の電解液中の有機液体の吸上速度を有している。つまり、セパレーター12の吸上速度は、幅方向(図6における長側面方向)及び高さ方向(図6における高さ方向)の有機液体を吸い上げる速度を意味する。
ここで、セパレーターにおいて高さTよりも幅Wが同じまたは小さく、かつ発電要素10の巻回軸が横方向(図6における左右方向)である場合、セパレーター12の幅方向とは巻回幅方向(巻回軸に平行な方向)であり、セパレーター12の高さ方向とは巻回周方向(巻き方向、巻回軸に垂直な方向)である。
セパレーター12において、長側面方向の吸上速度に対する高さ方向の吸上速度の比(高さ方向の吸上速度/長側面方向の吸上速度)は0.60以上である。
実施の形態1と同様に、容器2の高さ(図6における高さL2)に対する幅(図6における幅L1)の比(幅L1/高さL2)をAとし、セパレーターにおける高さ方向(図6における高さ方向)の吸上速度に対する幅方向(図6における長側面方向)の吸上速度の比(長側面方向の吸上速度/高さ方向の吸上速度)をBとすると、B/Aが0.40以上2.40以下である。
ここで、発電要素10の巻回軸が横方向(図6における左右方向)である場合、容器2の幅L1とは、長側面方向に平行な方向(巻回軸に平行な方向)の長さであって、長辺(底面が長方形の場合)または長軸(底面が楕円形の場合)の長さであり、容器2の高さL2とは、高さ方向(巻回軸に垂直な方向)の長さである。
(変形例)
変形例における非水電解質二次電池は、基本的には上述した実施の形態2と同様であるが、発電要素10が巻回式ではなく、積層式である点において異なる。
変形例において、セパレーターの幅方向は、図6における容器2の短側面方向であり、セパレーターの高さ方向は、図6における長側面方向である。
以上説明したように、本実施の形態及びその変形例における蓄電素子の一例である非水電解質二次電池30は、容器2と、この容器2に収容された発電要素10と、この容器2に収容され、かつ有機液体と、この有機液体に溶解された電解質とを有する電解液3とを備え、発電要素10は、正極と、負極と、正極及び負極の間に配置されたセパレーターとを含み、セパレーター12の少なくとも一部は、電解液3と接触しており、セパレーターにおいて、容器の長側面方向の長さ(図6における幅W)よりも容器2の高さ方向の長さ(図6における高さT)が大きいまたは同じであって、セパレーターにおいて、容器2の長側面方向(図6における長側面方向)の電解液中の有機液体の吸上速度及び容器2の高さ方向(図6における高さ方向、積層式では容器2の短側側面方向)の電解液中の有機液体の吸上速度は0.08mm/分以上であり、セパレーターにおいて、容器2の長側面方向(図6における長側面方向)の有機液体の吸上速度に対する容器2の高さ方向(図6における高さ方向、積層式では容器2の短側面方向)の有機液体の吸上速度が0.60以上である。
本実施の形態及びその変形例における非水電解質二次電池30によれば、セパレーターの高さ方向及び長側面方向の電解液中の有機液体の吸上速度が0.08mm/分以上であることにより、載置面が容器2の本体部2aの底面2a1である場合には、電解液をセパレーターの高さ方向及び長側面方向に向けて吸液することができる。つまり、セパレーターに電解液3を供給する有効な経路が、高さ方向及び長側面方向の少なくとも2方向になる。また、セパレーターの高さ方向の吸上速度/長側面方向の吸上速度(=B)を0.60以上にすることにより、セパレーターの長側面方向及び高さ方向の電解液の吸上速度が縦型の蓄電素子の形状に応じて適切であるので、部分的な液枯れ及び電解液の偏在を低減することができる。したがって、電気抵抗の増大を抑制できるので、非水電解質二次電池30の出力の低下を抑制することができる。
(実施の形態3)
図7に示すように、本実施の形態における車載用蓄電池システム100は、実施の形態1の蓄電素子としての非水電解質二次電池1及び/または実施の形態2の蓄電素子としての非水電解質二次電池30と、この非水電解質二次電池1の充放電の制御を行う制御部102とを備えている。具体的には、車載用蓄電池システム100は、複数の非水電解質二次電池1を複数有する蓄電池モジュール101と、非水電解質二次電池の充放電をハイレートで行い、その充放電の制御を行う制御部102とを備えている。
この車載用蓄電池システム100を車両110に搭載した場合には、図7に示すように、制御部102と、エンジンやモーター、駆動系、電装系等を制御する車両制御装置111とが、車載LAN、CANなどの車載用通信網112で接続される。制御部102と車両制御装置111とが通信を行い、その通信から得られる情報をもとに蓄電池システム100が制御される。これにより、蓄電池システム100を備えた車両を実現できる。
以上説明したように、本実施の形態の車載用蓄電池システムは、実施の形態1または2の蓄電素子としての非水電解質二次電池1、30と、この非水電解質二次電池1、30の充放電の制御を行う制御部102とを備えている。
本実施の形態の車載用蓄電池システム100によれば、出力の低下を抑制できる蓄電素子を備えている。したがって、車載用蓄電池システム100は、出力の低下を抑制できる。
本実施例では、容器の高さに対する幅の比をAとし、セパレーターの高さ方向の吸上速度に対する幅方向の吸上速度の比をBとしたときのB/Aと、セパレーターの電解液中の有機液体の吸上速度とが所定範囲内である場合の効果について調べた。また、本実施例では、セパレーターにおける高さ方向の吸上速度に対する幅方向の吸上速度の比Bと、セパレーターの電解液中の有機液体の吸上速度とが所定範囲内である場合の効果について調べた。
(実施例1)
<正極>
正極活物質としてのLi1.1Ni0.33Co0.33Mn0.332と、導電助剤としてのアセチレンブラックと、バインダとしてのPVDFとが90:5:5の比率で混合され、この混合物に、溶剤としてのN−メチルピロリドン(NMP)が加えられて、正極合剤が形成された。この正極合剤は、正極集電箔11AとしてのAl箔の両面に塗布された。乾燥後、ロールプレスで圧縮成形された。これにより、正極集電箔11A上に正極合剤層11Bが形成された正極11が作製された。
<負極>
負極活物質としてのハードカーボンと、バインダとしてのPVDFとが95:5の比率で混合され、この混合物に、溶剤としてのNMPが加えられて、負極合剤が形成された。この負極合剤は、負極集電箔13AとしてのCu箔の両面に塗布された。乾燥後、ロールプレスで圧縮成形された。これにより、負極集電箔13A上に負極合剤層13Bが形成された負極13が作製された。
<セパレーター>
実施例1のセパレーターは、以下のように作製された。具体的には、セパレーターの原料基材として、ポリプロピレンを主成分とした多孔質膜が準備された。この原料基材から、幅2.5cm、長さ8.0cmの大きさの試験片が切り出された。図8に示すように、試験片をクリップに挟み、電解液に含まれる有機液体である有機溶媒としてのエチレンカーボネート(EC):ジエチルカーボネート(DEC)=1:1の混合溶媒が注入され、密閉容器内が有機溶媒の飽和蒸気圧で満たされ,密閉容器内の温度が常温にされ、試験片の先端が有機溶媒に浸漬され、所定時間毎に、試験片において有機溶媒の液面から有機溶媒が吸上られた高さが測定された。その結果を図9に示す。
図9に示す30〜90分の間の静置時間において、液面からの高さの変化率として、図9から近似曲線が求められることにより、有機溶媒の吸上速度が求められた。そして、原料基材において、長側面方向及び高さ方向が決定され、セパレーターが切り出された。これにより、実施例1のセパレーター12が作製された。
このようにして作製された実施例1のセパレーター12における高さ方向の吸上速度に対する幅方向の吸上速度の比(B)を下記の表1及び表3に記載する。
また、実施例1のセパレーター12の厚み及び透気度を下記の表2に記載する。セパレーター12の厚みは、マイクロメーター(MITSUTOYO社製)を用いて測定された。セパレーター12の透気度は、JIS P8117に準拠して測定された。
<発電要素>
次に、図1〜図3に示すように、幅Wが高さTよりも大きくなるように、正極11と負極13とがセパレーター12を介して長円筒状に巻回された。これにより、発電要素10が作製された。
<組立>
幅L1が167.0mmで、高さL2が129.0mmの大きさ(幅L1>高さL2)の容器2が準備された。
発電要素10の正極11及び負極13の各々に、集電部7が取り付けられた。この発電要素10が容器2の本体部2aの内部に配置された。次いで、集電部7が、蓋部2bの外部端子21にそれぞれ溶着され、蓋部2bは本体部2aに取り付けられた。
次に、電解液3が注液された。電解液3は、プロピレンカーボネート(PC):ジメチルカーボネート(DMC):エチルメチルカーボネート(EMC)=1:1:1(体積比)の混合溶媒に、LiPF6が1mol/Lとなるように溶解させて調製された。余剰電解液として、容器2の底部に、液面高さが43.0mmとなるようにの電解液3が充填された。
以上の工程により、実施例1のリチウムイオン二次電池が製造された。実施例1のリチウムイオン二次電池において、電池寸法(容器の高さに対する幅の比A)及びB/Aを下記の表3に記載する。
(実施例2)
実施例2のリチウムイオン二次電池は、基本的には実施例1と同様であったが、セパレーター製造時の長手方向および幅方向の延伸倍率を低く設定した点において異なっていた。このため、下記の表1〜3に記載するように、セパレーターの厚み及び透気度、長側面方向及び高さ方向の吸上速度、A、及びB/Aが異なっていた。
(実施例3)
実施例3のリチウムイオン二次電池は、基本的には実施例1と同様であったが、実施例3は樹脂基材層の上に無機層を塗布した点において異なっていた。このため、セパレーターの透気度、長側面方向の引張強度、高さ方向の引張強度、長側面方向及び高さ方向の吸上速度、A、及びB/Aが異なっていた。
(実施例4)
実施例4のリチウムイオン二次電池は、基本的には実施例1と同様であったが、実施例4はセパレーター製造時の長手方向の延伸倍率を実施例1よりも高く設定した点において異なっていた。このため、セパレーターの透気度、長側面方向の引張強度、高さ方向の引張強度、長側面方向及び高さ方向の吸上速度、A、及びB/Aが異なっていた。
(実施例5)
実施例5のリチウムイオン二次電池は、基本的には実施例1と同様であったが、実施例5は容器2が実施例1と比較してより横長の容器を使用した点において異なっていた。このため、容器2の高さに対する幅の比A、及びB/Aが異なっていた。
Figure 0006135981
Figure 0006135981
(評価方法)
実施例1〜5のリチウムイオン二次電池について、サイクル開始前のDCR(直流抵抗)及び電流値60Aで1000サイクルのサイクルを実施したあとに各時間静置後のDCR(直流抵抗)を評価した。その結果を図10及び表3に示す。
(評価結果)
Figure 0006135981
表3及び図10に示すように、セパレーター12における長側面方向及び高さ方向の有機溶媒の吸上速度が0.08mm/分以上で、かつB/Aが0.4以上2.4以下である実施例1〜5は、抵抗の上昇を抑制できた。
表3及び図10に示すように、セパレーター12における長側面方向及び高さ方向の有機溶媒の吸上速度が0.08mm/分以上で、かつセパレーターにおいて、高さ方向の吸上速度に対する長側面向の吸上速度が0.60以上である実施例1〜5は、抵抗の上昇を抑制できた。
なお、表1に示すように、実施例1及び2のセパレーターは、厚み及び透気度を考慮すると、リチウムイオン二次電池に用いるセパレーターとして十分な強度を有している。このため、実施例1及び2のリチウムイオン二次電池のセパレーター12は、強度を維持し、かつ抵抗の上昇を抑制できることがわかった。
以上より、本実施例によれば、セパレーターにおける高さよりも幅が大きい横型のリチウム二次電池において、セパレーターにおいて、幅方向の吸上速度及び高さ方向の吸上速度は0.08mm/分以上であり、かつ容器の高さに対する幅の比をAとし、セパレーターの高さ方向の吸上速度に対する幅方向の吸上速度をBとすると、B/Aが0.40以上2.40以下であることにより、抵抗の増大を抑制できることが確認できた。また、本実施例によれば、セパレーターにおける高さよりも幅が大きい横型のリチウム二次電池において、セパレーターにおいて、幅方向の吸上速度及び高さ方向の吸上速度は0.08mm/分以上であり、かつセパレーターにおいて、高さ方向の吸上速度に対する幅方向の吸上速度の比が0.60以上であることにより、抵抗の増大を抑制できることが確認できた。
特に、セパレーターにおける高さよりも幅が大きい横型のリチウム二次電池において、セパレーターにおいて、幅方向の吸上速度及び高さ方向の吸上速度は0.08mm/分以上であり、かつかつセパレーターにおいて、高さ方向の吸上速度に対する幅方向の吸上速度が0.60以上であり、かつ容器の高さに対する幅の比をAとし、セパレーターの高さ方向の吸上速度に対する幅方向の吸上速度の比をBとすると、B/Aが0.40以上2.40以下であることにより、抵抗の増大を抑制できることが確認できた。
ここで、本実施例では、横型のリチウムイオン二次電池について、セパレーターの有機溶媒の吸上速度と、Bと、B/Aとについて調べたが、この知見を縦型のリチウムイオン二次電池に適用することができることも本発明者は検討した。その結果、縦型のリチウムイオン二次電池においては、セパレーターは、0.08mm/分以上の有機溶媒の吸上速度を有し、かつセパレーターにおいて、幅方向の吸上速度に対する高さ方向の吸上速度の比Bが0.60以上であることにより、抵抗の増大を抑制できることを見出した。
以上のように本発明の実施の形態及び実施例について説明を行なったが、各実施の形態及び実施例の特徴を適宜組み合わせることも当初から予定している。また、今回開示された実施の形態及び実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1,30 非水電解質二次電池、2 容器、2a 本体部、2a1 底面、2b 蓋部、3 電解液、5 外部ガスケット、7 集電部、10 発電要素、11 正極、11A 正極集電箔、11B 正極合剤層、12 セパレーター、13 負極、13A 負極集電箔、13B 負極合剤層、21 外部端子、100 蓄電池システム、101 蓄電池モジュール、102 制御部、110 車両、111 車両制御装置、112 通信網。

Claims (6)

  1. 容器と、
    前記容器に収容された発電要素と、
    前記容器に収容され、かつ有機液体と、前記有機液体に溶解された電解質とを有する電解液とを備え、
    前記発電要素は、正極と、負極と、前記正極及び前記負極の間に配置されたセパレーターとを含み、
    前記セパレーターの少なくとも一部は、前記電解液と接触しており、
    前記セパレーターにおいて、前記容器の長側面方向の前記有機液体の吸上速度及び前記容器の高さ方向の前記有機液体の吸上速度は、0.08mm/分以上であり、
    前記有機液体の吸上速度は、浸漬後30〜90分の間の静置時間における吸上速度であり、
    前記容器における高さに対する長側面の長さの比をAとし、前記セパレーターにおける前記容器の高さ方向の前記有機液体の吸上速度に対する前記容器の長側面方向の前記有機液体の吸上速度の比をBとすると、B/Aが0.40以上2.40以下である、蓄電素子。
  2. 容器と、
    前記容器に収容された発電要素と、
    前記容器に収容され、かつ有機液体と、前記有機液体に溶解された電解質とを有する電解液とを備え、
    前記発電要素は、正極と、負極と、前記正極及び前記負極の間に配置されたセパレーターとを含み、
    前記セパレーターの少なくとも一部は、前記電解液と接触しており、
    前記セパレーターにおいて、前記容器の高さ方向の長さよりも前記容器の長側面方向の長さが大きく、
    前記セパレーターにおいて、前記容器の長側面方向の前記有機液体の吸上速度及び前記容器の高さ方向の前記有機液体の吸上速度は、0.08mm/分以上であり、
    前記有機液体の吸上速度は、浸漬後30〜90分の間の静置時間における吸上速度であり、
    前記セパレーターにおいて、前記容器の高さ方向の前記有機液体の吸上速度に対する前記容器の長側面方向の前記有機液体の吸上速度の比が0.60以上である、蓄電素子。
  3. 前記容器の高さに対する長側面の長さの比をAとし、前記セパレーターにおける前記容器の高さ方向の前記有機液体の吸上速度に対する前記セパレーターにおける前記容器の長側面方向の前記有機液体の吸上速度の比をBとすると、B/Aが0.40以上2.40以下である、請求項2に記載の蓄電素子。
  4. 容器と、
    前記容器に収容された発電要素と、
    前記容器に収容され、かつ有機液体と、前記有機液体に溶解された電解質とを有する電解液とを備え、
    前記発電要素は、正極と、負極と、前記正極及び前記負極の間に配置されたセパレーターとを含み、
    前記セパレーターの少なくとも一部は、前記電解液と接触しており、
    前記セパレーターにおいて、前記容器の長側面方向の長さよりも前記容器の高さ方向の長さが大きいまたは同じであって、
    前記セパレーターにおいて、前記容器の長側面方向の前記有機液体の吸上速度及び前記容器の高さ方向の前記有機液体の吸上速度は、0.08mm/分以上であり、
    前記有機液体の吸上速度は、浸漬後30〜90分の間の静置時間における吸上速度であり、
    前記セパレーターにおいて、前記容器の高さ方向の前記有機液体の吸上速度に対する前記容器の長側面方向の前記有機液体の吸上速度の比が0.60以上である、蓄電素子。
  5. 前記容器における高さに対する長側面の長さの比をAとし、前記セパレーターにおける前記容器の高さ方向の前記有機液体の吸上速度に対する前記セパレーターにおける前記容器の長側面方向の前記有機液体の吸上速度の比をBとすると、B/Aが0.40以上2.40以下である、請求項4に記載の蓄電素子。
  6. 請求項1〜5のいずれか1項に記載の蓄電素子と、
    前記蓄電素子の充放電の制御を行う制御部とを備えた、車載用蓄電池システム。
JP2013004110A 2013-01-11 2013-01-11 蓄電素子及び車載用蓄電池システム Active JP6135981B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013004110A JP6135981B2 (ja) 2013-01-11 2013-01-11 蓄電素子及び車載用蓄電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004110A JP6135981B2 (ja) 2013-01-11 2013-01-11 蓄電素子及び車載用蓄電池システム

Publications (2)

Publication Number Publication Date
JP2014135255A JP2014135255A (ja) 2014-07-24
JP6135981B2 true JP6135981B2 (ja) 2017-05-31

Family

ID=51413377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004110A Active JP6135981B2 (ja) 2013-01-11 2013-01-11 蓄電素子及び車載用蓄電池システム

Country Status (1)

Country Link
JP (1) JP6135981B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657565B2 (ja) * 2015-02-17 2020-03-04 株式会社Gsユアサ 蓄電素子
CN110190221B (zh) * 2019-05-14 2020-09-04 宁德时代新能源科技股份有限公司 电池模块和电池包

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088774A1 (ja) * 2003-03-31 2004-10-14 Nippon Sheet Glass Company, Limited 蓄電池用セパレータ及び蓄電池
JP5267873B2 (ja) * 2009-06-12 2013-08-21 トヨタ自動車株式会社 二次電池およびその製造方法
JP5732853B2 (ja) * 2009-11-09 2015-06-10 東レ株式会社 多孔性フィルムおよび蓄電デバイス
JP2011103249A (ja) * 2009-11-11 2011-05-26 Honda Motor Co Ltd 二次電池

Also Published As

Publication number Publication date
JP2014135255A (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
JP4832430B2 (ja) リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
KR101726530B1 (ko) 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
KR101635336B1 (ko) 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
US8932767B2 (en) Nonaqueous electrolyte lithium secondary battery
JP6244679B2 (ja) 蓄電素子
JP6399380B2 (ja) 蓄電素子、蓄電システム、及びその製造方法
KR101846767B1 (ko) 비수 전해질 2차 전지
US10101405B2 (en) Method for sorting reuseable nonaqueous electrolyte secondary battery
JP2018106903A (ja) リチウムイオン二次電池
JP2017152199A (ja) リチウムイオン二次電池の製造方法
JP6137597B2 (ja) 蓄電素子及び蓄電素子パック
JP6135981B2 (ja) 蓄電素子及び車載用蓄電池システム
JP2009135540A (ja) 非水系リチウム型蓄電素子および製造方法
JP6994151B2 (ja) 非水電解液二次電池用セパレータ
CN109314216B (zh) 非水电解质二次电池
JP6972673B2 (ja) 非水電解質二次電池
JP2016122635A (ja) 非水電解液二次電池
JP2016134277A (ja) 非水電解液二次電池
JP2020057522A (ja) 非水電解液二次電池用捲回電極体
JP2005039139A (ja) 非水系リチウム型蓄電素子および製造方法
JP6413347B2 (ja) 蓄電素子
JP6595000B2 (ja) リチウムイオン二次電池の製造方法
JP6928873B2 (ja) 非水電解液二次電池
JP2016225223A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160819

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170413

R150 Certificate of patent or registration of utility model

Ref document number: 6135981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150