JP6130700B2 - Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article - Google Patents

Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article Download PDF

Info

Publication number
JP6130700B2
JP6130700B2 JP2013069051A JP2013069051A JP6130700B2 JP 6130700 B2 JP6130700 B2 JP 6130700B2 JP 2013069051 A JP2013069051 A JP 2013069051A JP 2013069051 A JP2013069051 A JP 2013069051A JP 6130700 B2 JP6130700 B2 JP 6130700B2
Authority
JP
Japan
Prior art keywords
particles
thermoplastic resin
particle size
sieve
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013069051A
Other languages
Japanese (ja)
Other versions
JP2014189743A (en
Inventor
良輔 地海
良輔 地海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2013069051A priority Critical patent/JP6130700B2/en
Publication of JP2014189743A publication Critical patent/JP2014189743A/en
Application granted granted Critical
Publication of JP6130700B2 publication Critical patent/JP6130700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発泡性熱可塑性樹脂粒子、熱可塑性樹脂発泡粒子及び発泡成形体に関する。   The present invention relates to an expandable thermoplastic resin particle, a thermoplastic resin expanded particle, and an expanded molded body.

魚箱、緩衝材、建材等には、軽量性、断熱性及び衝撃吸収性等に優れることから、発泡成形体が使用されることがある。
発泡成形体の製造方法としては、発泡性熱可塑性樹脂粒子を加熱して熱可塑性樹脂発泡粒子を作製し、その熱可塑性樹脂発泡粒子を成形型のキャビティ内に充填し、蒸気等で加熱して型内発泡成形する方法が知られている。
上記発泡成形体の製造方法では、成形型のキャビティに充填する熱可塑性樹脂発泡粒子の粒度分布が、得られる発泡成形体の性能に影響を与えることがある。例えば、特許文献1には、嵩倍数が異なる少なくとも2種の熱可塑性樹脂発泡粒子の混合物を発泡成形して、高倍数で強度に優れた発泡成形体を得ることが開示されている。
For fish boxes, cushioning materials, building materials, and the like, foamed molded bodies are sometimes used because they are excellent in lightness, heat insulation, shock absorption, and the like.
As a method for producing a foamed molded article, foamable thermoplastic resin particles are heated to produce thermoplastic resin foamed particles, and the thermoplastic resin foamed particles are filled into a mold cavity and heated with steam or the like. A method for in-mold foam molding is known.
In the method for producing a foamed molded product, the particle size distribution of the thermoplastic resin foam particles filled in the cavity of the mold may affect the performance of the resulting foamed molded product. For example, Patent Document 1 discloses that a foam molded article having a high multiple and excellent strength is obtained by foam molding a mixture of at least two thermoplastic resin foam particles having different bulk multiples.

特開2012−207165号公報JP 2012-207165 A

しかしながら、特許文献1に記載の熱可塑性樹脂発泡粒子は、成形型内への充填性が不充分であるため、その熱可塑性樹脂発泡粒子から得られる発泡成形体の強度、外観が不充分になることがあった。   However, the thermoplastic resin foam particles described in Patent Document 1 have insufficient filling properties in the mold, and therefore the strength and appearance of the foam molded product obtained from the thermoplastic resin foam particles are insufficient. There was a thing.

本発明の課題は、成形型内への充填性に優れた熱可塑性樹脂発泡粒子を容易に形成できる発泡性熱可塑性樹脂粒子を提供することにある。また、本発明の課題は、成形型内への充填性に優れた熱可塑性樹脂発泡粒子を提供すること、強度が高く、外観に優れた発泡成形体を提供することにある。   The subject of this invention is providing the expandable thermoplastic resin particle which can form easily the thermoplastic resin expanded particle excellent in the filling property in a shaping | molding die. Another object of the present invention is to provide foamed thermoplastic resin particles having excellent filling properties in a mold, and to provide a foamed molded article having high strength and excellent appearance.

本発明の発泡性熱可塑性樹脂粒子は、熱可塑性樹脂と発泡剤とを含む粒子からなり、下記(a)〜(c)を満たす粒度分布を有する。
(a)全粒子が、JIS標準篩(JIS Z8801−1:2000規定)における公称目開き11.2mmの篩を通過し且つ公称目開き0.355mmの篩を通過しない。
(b)JIS標準篩(JIS Z8801−1:2000規定)によって篩分された各粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が1〜15%である。
(c)JIS標準篩(JIS Z8801−1:2000規定)によって篩分した際に、粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲の粒子の質量割合が0.3〜10質量%である。
The expandable thermoplastic resin particles of the present invention comprise particles containing a thermoplastic resin and a foaming agent, and have a particle size distribution satisfying the following (a) to (c).
(A) All particles pass through a sieve having a nominal opening of 11.2 mm and not passing through a sieve having a nominal opening of 0.355 mm in a JIS standard sieve (JIS Z8801-1: 2000 standard).
(B) The coefficient of variation (CV value) of the particle size distribution determined from the mass ratio of the particles in each particle size range sieved by JIS standard sieve (JIS Z8801-1: 2000 standard) is 1 to 15%.
(C) When sieving with a JIS standard sieve (JIS Z8801-1: 2000 regulation), the mass ratio of particles having a particle size range that is two steps smaller from the highest particle mass range is 0.3 to 10 % By mass.

本発明の熱可塑性樹脂発泡粒子は、上記発泡性熱可塑性樹脂粒子を加熱して発泡させることによって得られたものである。
また、本発明の熱可塑性樹脂発泡粒子は、熱可塑性樹脂と発泡剤とを含む粒子を発泡させた発泡粒子からなり、下記(d)〜(f)を満たす粒度分布を有するものである。
(d)全粒子が、JIS標準篩(JIS Z8801−1:2000規定)における公称目開き16.0mmの篩を通過し且つ公称目開き0.355mmの篩を通過しない。
(e)JIS標準篩(JIS Z8801−1:2000規定)によって篩分された各粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が1〜15%である。
(f)JIS標準篩(JIS Z8801−1:2000規定)によって篩分した際に、粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲の粒子の質量割合が0.3〜10質量%である。
本発明の発泡成形体は、上記の熱可塑性樹脂発泡粒子を成形型のキャビティ内に充填し、加熱して型内発泡成形することによって得られたものである。
The foamed thermoplastic resin particles of the present invention are obtained by heating and foaming the expandable thermoplastic resin particles.
The foamed thermoplastic resin particles of the present invention are foamed particles obtained by foaming particles containing a thermoplastic resin and a foaming agent, and have a particle size distribution satisfying the following (d) to (f).
(D) All particles pass through a sieve having a nominal opening of 16.0 mm and not passing through a sieve having a nominal opening of 0.355 mm in a JIS standard sieve (JIS Z8801-1: 2000 standard).
(E) The coefficient of variation (CV value) of the particle size distribution obtained from the mass ratio of the particles in each particle size range sieved by JIS standard sieve (JIS Z8801-1: 2000 standard) is 1 to 15%.
(F) When sieving with a JIS standard sieve (JIS Z8801-1: 2000 regulation), the mass ratio of particles having a particle size range that is two steps smaller from the highest particle mass range is 0.3 to 10 % By mass.
The foamed molded article of the present invention is obtained by filling the above-mentioned thermoplastic resin foamed particles into a cavity of a molding die and heating to mold in-mold.

本発明の発泡性熱可塑性樹脂粒子は、成形型内への充填性に優れた熱可塑性樹脂発泡粒子を容易に形成できる。
本発明の熱可塑性樹脂発泡粒子は、成形型内への充填性に優れている。
本発明の発泡成形体は、強度が高く、外観に優れている。
The foamable thermoplastic resin particles of the present invention can easily form thermoplastic resin foam particles having excellent filling properties in a mold.
The thermoplastic resin foamed particles of the present invention are excellent in filling properties in a mold.
The foamed molded product of the present invention has high strength and excellent appearance.

[発泡性熱可塑性樹脂粒子]
本発明の発泡性熱可塑性樹脂粒子(「発泡性熱可塑性樹脂粒子」とも言う。)は、熱可塑性樹脂と発泡剤とを含む粒子からなり、下記(a)〜(c)を満たす粒度分布を有する。
(a)全粒子が、JIS標準篩(JIS Z8801−1:2000規定)における公称目開き11.2mmの篩を通過し且つ公称目開き0.355mmの篩を通過しない。
(b)JIS標準篩(JIS Z8801−1:2000規定)によって篩分され各粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が1〜15%である。
(c)JIS標準篩(JIS Z8801−1:2000規定)によって篩分した際に、粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲の粒子の質量割合Rが0.3〜10質量%である。
このような粒度分布を有する発泡性熱可塑性樹脂粒子は、成形型内への充填性に優れた熱可塑性樹脂発泡粒子(以下、「発泡粒子」と略す。)を容易に形成できる。
[Foaming thermoplastic resin particles]
The expandable thermoplastic resin particles of the present invention (also referred to as “expandable thermoplastic resin particles”) are particles comprising a thermoplastic resin and a foaming agent, and have a particle size distribution satisfying the following (a) to (c). Have.
(A) All particles pass through a sieve having a nominal aperture of 11.2 mm and not passing through a sieve having a nominal aperture of 0.355 mm in a JIS standard sieve (JIS Z8801-1: 2000 standard).
(B) The variation coefficient (CV value) of the particle size distribution obtained by sieving with a JIS standard sieve (JIS Z8801-1: 2000) is determined from the mass ratio of the particles in each particle size range is 1 to 15%.
(C) JIS standard sieve: when (JIS Z8801-1 2000 provisions) were sieved by, mass ratio R A of particles of two-stage small particle size range from the highest particle size range mass ratio of particles 0.3 -10 mass%.
The expandable thermoplastic resin particles having such a particle size distribution can easily form thermoplastic resin expanded particles (hereinafter abbreviated as “expanded particles”) having excellent filling properties in the mold.

(全粒子の粒径範囲)
上記(a)のように、発泡性熱可塑性樹脂粒子の全粒子は、JIS標準篩(JIS Z8801−1:2000規定)で、公称目開き11.2mmの篩を通過し且つ公称目開き0.355mmの篩を通過しない。発泡性熱可塑性樹脂粒子が、公称目開き11.2mmの篩を通過しない粒子を含むと、発泡性熱可塑性樹脂粒子より得られる発泡粒子の成形型への充填性が低下する。一方、発泡性熱可塑性樹脂粒子が、公称目開き0.355mmの篩を通過する粒子を含むと、高い発泡倍率の発泡粒子を得ることが困難になる。
発泡性熱可塑性樹脂粒子は、全粒子が、公称目開き4.00mmの篩を通過し且つ公称目開き0.425mmの篩を通過しないことが好ましく、公称目開き2.00mmの篩を通過し且つ公称目開き0.600mmの篩を通過しないことがより好ましい。
(Size range of all particles)
As described in the above (a), all of the foamable thermoplastic resin particles are JIS standard sieves (JIS Z8801-1: 2000 standard) and pass through a sieve having a nominal opening of 11.2 mm and a nominal opening of 0. Do not pass through a 355 mm sieve. When the expandable thermoplastic resin particles contain particles that do not pass through a sieve having a nominal opening of 11.2 mm, the filling properties of the expanded particles obtained from the expandable thermoplastic resin particles into the mold are lowered. On the other hand, when the expandable thermoplastic resin particles include particles that pass through a sieve having a nominal opening of 0.355 mm, it is difficult to obtain expanded particles having a high expansion ratio.
The foamable thermoplastic resin particles preferably pass through a sieve having a nominal opening of 4.00 mm and not through a sieve having a nominal opening of 0.425 mm, and pass through a sieve having a nominal opening of 2.00 mm. And it is more preferable not to pass through a sieve having a nominal aperture of 0.600 mm.

(平均粒子径)
発泡性熱可塑性樹脂粒子の平均粒子径は、高倍率で発泡できることから、0.6mm以上であることが好ましく、0.8mm以上であることがより好ましい。
(Average particle size)
The average particle diameter of the expandable thermoplastic resin particles is preferably 0.6 mm or more and more preferably 0.8 mm or more because foaming can be performed at a high magnification.

<平均粒子径の測定方法、粒径範囲の説明>
本発明において、粒子(熱可塑性樹脂粒子、発泡性熱可塑性樹脂粒子)の平均粒子径は、以下のように測定する
すなわち、粒子約20〜200gを、ロータップ型篩振とう機(飯田製作所社製)を用いて、10分間篩分して分級し、各篩上の粒子質量を測定する。その際、篩としては、JIS標準篩(JIS Z8801−1:2000規定)で、公称目開き16mm、13.2mm、11.2mm、9.5mm、8mm、6.7mm、5.6mm、4.75mm、4mm、3.35mm、2.8mm、2.36mm、2mm、1.7mm、1.4mm、1.18mm、1mm、0.850mm、0.710mm、0.600mm、0.500mm、0.425mm、0.355mm、0.300mmの篩を使用する。
篩分後の各篩上の粒子は、その篩の公称目開きより大きい粒径から、その篩よりも1段階大きい篩の公称目開き以下の粒径までの粒径範囲の粒子からなっている。
平均粒子径は、各粒径範囲の中心粒径D[mm]と各粒径範囲の粒子の質量割合R[%]を、{Σ(D・R)}/100の式に代入して求めることができる。なお、各粒径範囲の中心粒径Dは、各篩の公称目開きと、その篩よりも1段階大きい篩の公称目開きとの相加平均値である。例えば、公称目開き0.85mmの篩上に残留した粒子の中心粒径は、その篩の公称目開きの大きさ0.85mmと、その篩よりも1段階大きい篩の公称目開き1.00mmとの相加平均値、すなわち、(0.85+1.00)/2=0.925mmである。
各粒径範囲の中心粒径を表1に示す。
<Measuring method of average particle size, description of particle size range>
In the present invention, the average particle diameter of the particles (thermoplastic resin particles, expandable thermoplastic resin particles) is measured as follows. That is, about 20 to 200 g of particles are made from a low-tap type sieve shaker (manufactured by Iida Seisakusho). ) To classify by sieving for 10 minutes and measure the particle mass on each sieve. In that case, as a sieve, it is a JIS standard sieve (JIS Z8801-1: 2000 regulation), and the nominal openings are 16 mm, 13.2 mm, 11.2 mm, 9.5 mm, 8 mm, 6.7 mm, 5.6 mm, and 4. 75 mm, 4 mm, 3.35 mm, 2.8 mm, 2.36 mm, 2 mm, 1.7 mm, 1.4 mm, 1.18 mm, 1 mm, 0.850 mm, 0.710 mm, 0.600 mm, 0.500 mm,. Use 425mm, 0.355mm, 0.300mm sieves.
The particles on each sieve after sieving consist of particles in a particle size range from a particle size larger than the nominal opening of the sieve to a particle size less than the nominal opening of the sieve that is one step larger than the sieve. .
For the average particle size, the center particle size D n [mm] in each particle size range and the mass ratio R n [%] of the particles in each particle size range are expressed by the formula {Σ (D n · R n )} / 100. It can be obtained by substitution. The center particle size D n in each particle size range is an arithmetic average value of the nominal opening of each sieve and the nominal opening of the sieve that is one step larger than that sieve. For example, the center particle size of particles remaining on a sieve having a nominal aperture of 0.85 mm is the nominal aperture size of the screen is 0.85 mm, and the nominal aperture of the sieve that is one step larger than the sieve is 1.00 mm. And the arithmetic average value, that is, (0.85 + 1.00) /2=0.925 mm.
Table 1 shows the center particle size of each particle size range.

Figure 0006130700
Figure 0006130700

(CV値)
上記(b)のように、発泡性熱可塑性樹脂粒子の粒度分布のCV値は、1〜15%であり、1%未満であっても15%を超えても、発泡性熱可塑性樹脂粒子より得られる発泡粒子の成形型への充填性が低下する。
発泡性熱可塑性樹脂粒子の粒度分布のCV値は、7〜14%であることが好ましく、9〜12%であることがより好ましい。
(CV value)
As in (b) above, the CV value of the particle size distribution of the expandable thermoplastic resin particles is 1 to 15%, and even if it is less than 1% or more than 15%, it is more than the expandable thermoplastic resin particles. The filling property of the obtained expanded particles into the mold is lowered.
The CV value of the particle size distribution of the expandable thermoplastic resin particles is preferably 7 to 14%, and more preferably 9 to 12%.

<CV値の測定方法>
本発明において、粒子(発泡性熱可塑性樹脂粒子及び発泡粒子)の粒度分布のCV値は、粒子径の標準偏差(δ)及び下記の測定方法により求めた平均粒子径(x)を、下記式に代入することにより求めることができる。
CV値(%)=(δ/x)×100
<Measurement method of CV value>
In the present invention, the CV value of the particle size distribution of the particles (expandable thermoplastic resin particles and foamed particles) is expressed by the following equation: standard deviation of particle diameter (δ) and average particle diameter (x) determined by the following measurement method. Can be obtained by substituting for.
CV value (%) = (δ / x) × 100

(小粒径粒子の質量割合)
上記(c)のように、粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲の小粒径粒子の質量割合Rは、0.3〜10質量%であり、0.3質量%未満であっても10質量%を超えても、発泡性熱可塑性樹脂粒子より得られる発泡粒子の成形型への充填性が低下する。
発泡性熱可塑性樹脂粒子における前記Rは、0.5〜9.5質量%であることが好ましく、1.0〜8.0質量%であることがより好ましい。
(Mass ratio of small particle size particles)
As noted above (c), the mass ratio R A of the small particles of the two-stage small particle size range from the highest particle size range mass ratio of particles is 0.3 to 10 wt%, 0.3 Even if it is less than 10% by mass or more than 10% by mass, the filling property of the expanded particles obtained from the expandable thermoplastic resin particles into the mold is lowered.
Wherein R A in expandable thermoplastic resin particles is preferably from 0.5 to 9.5 wt%, and more preferably 1.0 to 8.0 mass%.

(発泡性熱可塑性樹脂粒子の構成成分)
本発明の発泡性熱可塑性樹脂粒子に含まれる熱可塑性樹脂の種類は限定されないが、例えば、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、ABS樹脂、AS樹脂等を単独もしくは2種類以上混合して使用することができる。
また、樹脂製品として一旦使用されてから回収された熱可塑性樹脂の回収樹脂を使用することもできる。
上記熱可塑性樹脂の中でも、非晶性であるポリスチレン(GPPS)等のポリスチレン系樹脂が特に好適に用いられる。
(Constituent component of expandable thermoplastic resin particles)
Although the kind of thermoplastic resin contained in the foamable thermoplastic resin particles of the present invention is not limited, for example, polystyrene resin, polyethylene resin, polypropylene resin, polyester resin, vinyl chloride resin, ABS resin, AS resin Etc. can be used alone or in admixture of two or more.
In addition, a recovered resin of a thermoplastic resin recovered once used as a resin product can also be used.
Among the thermoplastic resins, polystyrene resins such as amorphous polystyrene (GPPS) are particularly preferably used.

ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられる。ポリスチレン系樹脂の中でも、スチレン単位を50質量%以上含有する樹脂が好ましい。   The polystyrene resin is not particularly limited. For example, homopolymers of styrene monomers such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, or the like. And the like. Among the polystyrene resins, resins containing 50% by mass or more of styrene units are preferable.

また、前記ポリスチレン系樹脂としては、前記スチレン系モノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよい。このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレート等の単官能モノマーの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。   The polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. Examples of such vinyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, In addition to monofunctional monomers such as dimethyl fumarate, diethyl fumarate, and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate may be used.

また、ポリスチレン系樹脂が主成分であれば、他の樹脂を含んでもよい。他の樹脂としては、発泡成形体の耐衝撃性を向上させる樹脂として、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体などのジエン系のゴム状重合体を含むゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレン等の耐衝撃性ポリスチレン系樹脂が好ましい。
あるいは、他の樹脂として、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などが挙げられる。
Moreover, as long as a polystyrene-type resin is a main component, you may contain another resin. Other resins include diene rubber-like polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer as resins that improve the impact resistance of the foam molded article. An impact-resistant polystyrene resin such as a rubber-modified polystyrene resin containing so-called high impact polystyrene is preferable.
Alternatively, examples of other resins include polyethylene resins, polypropylene resins, acrylic resins, acrylonitrile-styrene copolymers, acrylonitrile-butadiene-styrene copolymers, and the like.

原料となるスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂など、再生品ではないポリスチレン系樹脂(バージンポリスチレン)などを使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られた再生ポリスチレン系樹脂を使用することもできる。
再生ポリスチレン系樹脂としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電梱包用緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したポリスチレン系樹脂を用いることができる。また、使用することができる再生ポリスチレン系樹脂は、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたもの以外にも、家電製品(例えば、テレビ、冷蔵庫、洗濯機、エアコンなど)や事務用機器(例えば、複写機、ファクシミリ、プリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混練し、リペレットした再生ポリスチレン系樹脂を用いることができる。
As raw material styrene resins, non-recycled polystyrene resins (virgin polystyrene) such as ordinary polystyrene resins available on the market, polystyrene resins newly prepared by suspension polymerization methods, etc. are used. In addition, a regenerated polystyrene resin obtained by regenerating a used polystyrene resin foam molded article can also be used.
Recycled polystyrene-based resins include used polystyrene-based resin foamed moldings such as fish boxes, home appliance packaging cushions, food packaging trays, etc., and polystyrene recovered by the limonene dissolution method or heating volume reduction method. Resin can be used. In addition, recycled polystyrene resins that can be used are not only those obtained by reprocessing used polystyrene resin foam moldings, but also household electrical appliances (for example, televisions, refrigerators, washing machines, air conditioners, etc.) In addition, it is possible to use a recycled polystyrene resin obtained by pulverizing, melt-kneading, and re-pelletizing a non-foamed polystyrene resin molded product that has been separately collected from office equipment (for example, a copying machine, a facsimile machine, or a printer).

本発明の発泡性熱可塑性樹脂粒子に含まれる発泡剤としては、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン等の脂肪族炭化水素、1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、1,1−ジクロロ−2,2,2−トリフルオロエタン(HCFC−123)、クロロジフルオロメタン(HCFC−22)、1−クロロ−1,2,2,2−テトラフルオロエタン(HCFC−124)等のクロロフルオロカーボン、1,1−ジフルオロエタン(HFC−152a)、1,1,1−トリフルオロエタン(HFC−143a)、1,1,1,2−テトラフルオロエタン(HFC−134a)、ジフルオロメタン(HFC−32)等のフルオロカーボン、各種アルコール、二酸化炭素、水、及び窒素などの物理発泡剤が挙げられ、これらの中の1種又は2種以上を併用して使用することができる。これらのうち、好ましい発泡剤としては、n−ブタン、イソブタン、n−ペンタン、イソペンタンが挙げられる。
発泡剤の含有量は、熱可塑性樹脂100質量部に対して1〜15質量部の範囲が好ましく、3〜12質量部の範囲がより好ましい。
Examples of the foaming agent contained in the expandable thermoplastic resin particles of the present invention include propane, n-butane, isobutane, n-pentane, isopentane, neopentane and other aliphatic hydrocarbons, 1,1-dichloro-1-fluoroethane ( HCFC-141b), 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), chlorodifluoromethane (HCFC-22), 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) and other chlorofluorocarbons, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC- 134a), fluorocarbons such as difluoromethane (HFC-32), various alcohols, carbon dioxide, water, and nitrogen Physical blowing agents can be mentioned such as may be used in combination one or more of these. Among these, preferable blowing agents include n-butane, isobutane, n-pentane, and isopentane.
The range of 1-15 mass parts is preferable with respect to 100 mass parts of thermoplastic resins, and, as for content of a foaming agent, the range of 3-12 mass parts is more preferable.

(発泡性熱可塑性樹脂粒子の製造方法)
発泡性熱可塑性樹脂粒子は、例えば、熱可塑性樹脂粒子に発泡剤を含有させる方法により製造することができる。
本発明における熱可塑性樹脂粒子は、公知の方法で製造されたものを用いることができ、例えば、(1)水性媒体、単量体及び重合開始剤をオートクレーブ内に供給し、オートクレーブ内において加熱、攪拌しながら単量体を懸濁重合させて熱可塑性樹脂粒子を製造する懸濁重合法、(2)水性媒体及び熱可塑性樹脂種粒子をオートクレーブ内に供給し、熱可塑性樹脂種粒子を水性媒体中に分散させた後、オートクレーブ内を加熱、攪拌しながら単量体を連続的に或いは断続的に供給して、熱可塑性樹脂種粒子に単量体を吸収させつつ重合開始剤の存在下にて重合させて熱可塑性樹脂粒子を製造するシード重合法などが挙げられる。なお、熱可塑性樹脂種粒子は、前記(1)の懸濁重合法により製造した後、分級して得てもよい。
(Method for producing foamable thermoplastic resin particles)
The expandable thermoplastic resin particles can be produced, for example, by a method of adding a foaming agent to the thermoplastic resin particles.
As the thermoplastic resin particles in the present invention, those produced by a known method can be used. For example, (1) an aqueous medium, a monomer, and a polymerization initiator are supplied into an autoclave and heated in the autoclave. Suspension polymerization method for producing thermoplastic resin particles by suspension polymerization of monomers while stirring, (2) supplying an aqueous medium and thermoplastic resin seed particles into an autoclave, and supplying the thermoplastic resin seed particles to an aqueous medium After being dispersed in the autoclave, the monomer is continuously or intermittently supplied while being heated and stirred to absorb the monomer in the thermoplastic resin seed particles and in the presence of the polymerization initiator. And a seed polymerization method for producing thermoplastic resin particles by polymerization. Note that the thermoplastic resin seed particles may be obtained by classification after production by the suspension polymerization method of (1) above.

上記単量体としては、スチレン系単量体、アクリル系単量体等が挙げられる。
スチレン系単量体としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレンなどが挙げられる。
アクリル系単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレートなどのアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートなどが挙げられる。
上記の単量体に加えて、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性単量体などを使用してもよい。
Examples of the monomer include a styrene monomer and an acrylic monomer.
Examples of the styrenic monomer include styrene, α-methylstyrene, vinyl toluene, chlorostyrene, ethyl styrene, isopropyl styrene, dimethyl styrene, bromostyrene, and the like.
Examples of acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, Examples thereof include dimethyl fumarate, diethyl fumarate, and ethyl fumarate.
In addition to the above monomers, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate may be used.

前記懸濁重合法及びシード重合法において用いられる重合開始剤としては、特に限定されず、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシベンゾエート、ジt−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシアセテート、2,2−ビス(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレートなどの有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物などが挙げられる。これら重合開始剤は1種を単独で用いてもよいし、2種以上を併用してもよい。   The polymerization initiator used in the suspension polymerization method and seed polymerization method is not particularly limited, and examples thereof include benzoyl peroxide, lauryl peroxide, t-butyl peroxybenzoate, di-t-butyl peroxide, and t-butyl. Peroxypivalate, t-butylperoxyisopropyl carbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyacetate, 2,2-bis Organic peroxides such as (t-butylperoxy) butane, t-butylperoxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, azobisisobutyronitrile, Azotization of azobisdimethylvaleronitrile, etc. Things and the like. These polymerization initiators may be used individually by 1 type, and may use 2 or more types together.

水性媒体は、水を主成分とし、アルコール、ケトン、エーテル等の水溶性有機溶媒を少量含んでもよい。
また、前記懸濁重合法又はシード重合法においては、単量体の液滴又は熱可塑性樹脂種粒子の分散性を安定させるために懸濁安定剤を水性媒体にあらかじめ添加してもよい。懸濁安定剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウムなどの難水溶性無機塩などが挙げられる。難水溶性無機塩を用いる場合には、アニオン界面活性剤が通常、併用される。
前記アニオン界面活性剤としては、例えば、ラウリル硫酸ナトリウムなどのアルキル硫酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、オレイン酸ナトリウムなどの高級脂肪酸塩、β−テトラヒドロキシナフタレンスルホン酸塩などが挙げられ、アルキルベンゼンスルホン酸塩が好ましい。
The aqueous medium contains water as a main component and may contain a small amount of a water-soluble organic solvent such as alcohol, ketone, or ether.
In the suspension polymerization method or seed polymerization method, a suspension stabilizer may be added in advance to the aqueous medium in order to stabilize the dispersibility of the monomer droplets or the thermoplastic resin seed particles. Examples of the suspension stabilizer include water-soluble polymers such as polyvinyl alcohol, methylcellulose, polyacrylamide, and polyvinylpyrrolidone, and poorly water-soluble inorganic salts such as tricalcium phosphate and magnesium pyrophosphate. When using a poorly water-soluble inorganic salt, an anionic surfactant is usually used in combination.
Examples of the anionic surfactant include alkyl sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, higher fatty acid salts such as sodium oleate, and β-tetrahydroxynaphthalene sulfonate. And alkylbenzene sulfonates are preferred.

熱可塑性樹脂粒子に発泡剤を含有させる方法としては、熱可塑性樹脂粒子に発泡剤を含浸させる方法が挙げられる。熱可塑性樹脂粒子に発泡剤を含浸させるためには、例えば、熱可塑性樹脂粒子が水系媒体に分散したスラリーを、オートクレーブなどの耐圧容器内に入れた後、発泡剤を耐圧容器内に供給し、一定時間保持すればよい。   Examples of the method of incorporating the foaming agent into the thermoplastic resin particles include a method of impregnating the thermoplastic resin particles with the foaming agent. In order to impregnate the thermoplastic resin particles with the foaming agent, for example, after the slurry in which the thermoplastic resin particles are dispersed in the aqueous medium is placed in a pressure vessel such as an autoclave, the foaming agent is supplied into the pressure vessel, What is necessary is just to hold | maintain for a fixed time.

また、発泡性熱可塑性樹脂粒子は、熱可塑性樹脂と発泡剤とを含有する溶融樹脂を粒状に成形する溶融押出法によって製造しても構わない。
溶融押出法としては、例えば、以下の方法が挙げられる。
まず、熱可塑性樹脂を含む溶融樹脂に、発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を得る。得られた発泡剤含有の溶融樹脂を小孔から直接に、冷却用液体中に押し出しつつ、得られた冷却用液体中で押出物を切断するとともに、押出物を冷却用液体との接触により冷却固化する。
溶融押出法を用いることで、発泡剤が熱可塑性樹脂中に均一に分散した発泡性熱可塑性樹脂粒子を得ることができる。
The foamable thermoplastic resin particles may be produced by a melt extrusion method in which a molten resin containing a thermoplastic resin and a foaming agent is formed into a granular shape.
Examples of the melt extrusion method include the following methods.
First, a foaming agent is press-fitted and kneaded into a molten resin containing a thermoplastic resin to obtain a foaming agent-containing molten resin. While extruding the obtained foaming agent-containing molten resin directly into the cooling liquid through the small holes, the extrudate is cut in the obtained cooling liquid, and the extrudate is cooled by contact with the cooling liquid. Solidify.
By using the melt extrusion method, foamable thermoplastic resin particles in which the foaming agent is uniformly dispersed in the thermoplastic resin can be obtained.

[熱可塑性樹脂発泡粒子]
本発明の熱可塑性樹脂発泡粒子(「熱可塑性樹脂発泡粒子群」とも言う。)は、上記の発泡性熱可塑性樹脂粒子を、周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡させたものであり、下記(d)〜(f)を満たす粒度分布を有する。
(d)全粒子が、JIS標準篩(JIS Z8801−1:2000規定)における公称目開き16.0mmの篩を通過し且つ公称目開き0.355mmの篩を通過しない。
(e)JIS標準篩(JIS Z8801−1:2000規定)によって篩分された各粒径範囲の粒子の質量割合より求めた粒度分布の変動係数CV値が1〜15%である。
(f)JIS標準篩(JIS Z8801−1:2000規定)によって篩分した際に、粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲の粒子の質量割合Rが0.3〜10質量%である。
このような粒度分布を有する発泡粒子は、成形型内への充填性に優れている。
[Thermoplastic resin foam particles]
The expanded thermoplastic resin particles of the present invention (also referred to as “thermoplastic resin expanded particle group”) are pre-expanded by heating the expandable thermoplastic resin particles by steam heating or the like using a known apparatus and method. And has a particle size distribution satisfying the following (d) to (f).
(D) All particles pass through a sieve having a nominal opening of 16.0 mm and not passing through a sieve having a nominal opening of 0.355 mm in a JIS standard sieve (JIS Z8801-1: 2000 standard).
(E) The coefficient of variation CV value of the particle size distribution determined from the mass ratio of the particles in each particle size range sieved by JIS standard sieve (JIS Z8801-1: 2000 standard) is 1 to 15%.
(F) JIS standard sieve: when (JIS Z8801-1 2000 provisions) were sieved by, the mass ratio R B of the particles of two-stage small particle size range from the highest particle size range mass ratio of particles 0.3 -10 mass%.
Expanded particles having such a particle size distribution are excellent in the filling property into the mold.

(全粒子の粒径範囲)
上記(d)のように、発泡粒子の全粒子は、JIS標準篩(JIS Z8801−1:2000規定)で、公称目開き16.0mmの篩を通過し且つ公称目開き0.355mmの篩を通過しない。発泡粒子が、公称目開き16.0mmの篩を通過しない粒子を含むと、成形型への充填性が低下する。一方、発泡粒子が、公称目開き0.355mmの篩を通過する粒子を含むと、発泡成形体の強度低下を招くことがある。
発泡粒子は、全粒子が、公称目開き8.00mmの篩を通過し且つ公称目開き0.425mmの篩を通過しないことが好ましく、公称目開き4.75mmの篩を通過し且つ公称目開き2.00mmの篩を通過しないことがより好ましい。
(Size range of all particles)
As shown in the above (d), all the foam particles are JIS standard sieves (JIS Z8801-1: 2000 standard), passed through a sieve having a nominal opening of 16.0 mm and a sieve having a nominal opening of 0.355 mm. Do not pass. When the expanded particles include particles that do not pass through a sieve having a nominal opening of 16.0 mm, the filling property into the mold is lowered. On the other hand, if the expanded particles include particles that pass through a sieve having a nominal opening of 0.355 mm, the strength of the expanded molded article may be reduced.
The expanded particles preferably pass through a sieve with a nominal opening of 8.00 mm and not through a sieve with a nominal opening of 0.425 mm, pass through a sieve with a nominal opening of 4.75 mm and have a nominal opening. More preferably, it does not pass through a 2.00 mm sieve.

(平均粒子径)
発泡粒子の平均粒子径は、高強度の発泡性形体が得られることから、1.0mm以上であることが好ましく、2.0mm以上であることがより好ましく、2.5mm以上であることがさらに好ましい。
(Average particle size)
The average particle diameter of the expanded particles is preferably 1.0 mm or more, more preferably 2.0 mm or more, and further preferably 2.5 mm or more, since a high-strength foamable shape can be obtained. preferable.

(CV値)
上記(e)のように、発泡粒子の粒度分布のCV値は、1〜15%であり、発泡粒子のCV値が1%未満であっても15%を超えても、発泡粒子の成形型への充填性が低下する。
発泡粒子のCV値は、7〜14%であることが好ましく、9〜12%であることがより好ましい。
(CV value)
As in the above (e), the CV value of the particle size distribution of the expanded particles is 1 to 15%, and the foamed particle molding die can be used regardless of whether the expanded particle CV value is less than 1% or more than 15%. The filling property to the lowers.
The CV value of the expanded particles is preferably 7 to 14%, and more preferably 9 to 12%.

(小粒径粒子の質量割合)
上記(f)のように、粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲の小粒径粒子の質量割合Rは、0.3〜10質量%であり、0.3質量%未満であっても10質量%を超えても、発泡粒子の成形型への充填性が低下する。
発泡粒子における前記Rは、0.5〜9.5質量%であることが好ましく、1.0〜8.0質量%であることがより好ましい。
(Mass ratio of small particle size particles)
As described above (f), the mass ratio R B of the small particles of the two-stage small particle size range from the highest particle size range mass ratio of particles is 0.3 to 10 wt%, 0.3 Even if it is less than 10% by mass or more than 10% by mass, the filling property of the foamed particles into the mold is lowered.
Wherein R B in expanded particles is preferably 0.5 to 9.5 wt%, and more preferably 1.0 to 8.0 mass%.

(嵩密度)
また、発泡粒子は、製造する発泡成形体の密度と同等の嵩密度となっていることが好ましい。本発明において、発泡粒子の嵩密度は限定されないが、通常は0.010〜0.50g/cmの範囲内とし、0.015〜0.20g/cmの範囲内とすることが好ましく、0.020〜0.10g/cmの範囲内とすることがより好ましい。
発泡粒子の嵩発泡倍数は、製造するべき発泡成形体の用途等を勘案して決定され、例えば、10倍以上(嵩密度0.10g/cm以下)が好ましく、30倍以上(嵩密度0.033g/cm以下)がより好ましく、40倍以上(嵩密度0.025g/cm以下)がさらに好ましい。上記嵩発泡倍数が上記下限値以上であれば、多種多様な用途の発泡成形体に適用できる。
(The bulk density)
Moreover, it is preferable that the foamed particle has a bulk density equivalent to the density of the foamed molded product to be produced. In the present invention, the bulk density of the expanded beads is not limited, usually in the range of 0.010~0.50g / cm 3, preferably in the range of 0.015~0.20g / cm 3, More preferably, it is in the range of 0.020 to 0.10 g / cm 3 .
The bulk expansion ratio of the expanded particles is determined in consideration of the use of the foamed molded article to be produced, and is preferably 10 times or more (bulk density of 0.10 g / cm 3 or less), preferably 30 times or more (bulk density of 0 0.033 g / cm 3 or less), more preferably 40 times or more (bulk density of 0.025 g / cm 3 or less). If the above-mentioned bulk foaming factor is not less than the above lower limit value, it can be applied to foam molded articles for various uses.

なお、本発明において発泡粒子の嵩密度とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<発泡粒子の嵩密度の測定方法>
発泡粒子の質量(W)gを小数以下2位で秤量する。次に、メスシリンダー内に秤量した発泡粒子を自然落下により充填し、メスシリンダー内に落下させた発泡粒子の体積VcmをJIS K6911に準拠した見掛け密度測定器を用いて測定する。そして、下記式に基づいて発泡粒子の嵩密度を求める。
嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
In the present invention, the bulk density of the expanded particles refers to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Method for measuring bulk density of expanded particles>
The mass (W) g of the expanded particles is weighed at the second decimal place. Next, the foamed particles weighed in the graduated cylinder are filled by natural dropping, and the volume Vcm 3 of the foamed particles dropped in the graduated cylinder is measured using an apparent density measuring instrument based on JIS K6911. Then, the bulk density of the expanded particles is obtained based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)

<発泡粒子の嵩発泡倍数>
発泡粒子の嵩発泡倍数は、次式により算出される数値である。
嵩発泡倍数=1/嵩密度(g/cm
<Bulk expansion ratio of expanded particles>
The bulk expansion ratio of the expanded particles is a numerical value calculated by the following formula.
Bulk foaming factor = 1 / bulk density (g / cm 3 )

[発泡成形体]
本発明の発泡成形体は、前記発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形して得たものである。
本発明の発泡成形体の密度は特に限定されないが、通常は0.010〜0.50g/cmの範囲内とし、0.015〜0.20g/cmの範囲内とすることが好ましく、0.020〜0.10g/cmの範囲内とすることがより好ましい。
発泡成形体の発泡倍数は、製造するべき発泡成形体の用途等を勘案して決定され、例えば、10倍以上(密度0.10g/cm以下)が好ましく、30倍以上(密度0.033g/cm以下)がより好ましく、40倍以上(密度0.025g/cm以下)がさらに好ましい。上記発泡倍数が上記下限値以上であれば、多種多様な用途の発泡成形体に適用できる。
[Foamed molded product]
The foamed molded product of the present invention is obtained by filling the foamed particles in a cavity of a molding die and heating it by steam heating or the like to perform in-mold foam molding.
Although the density of the foamed molded article of the present invention is not particularly limited, usually in the range of 0.010~0.50g / cm 3, preferably in the range of 0.015~0.20g / cm 3, More preferably, it is in the range of 0.020 to 0.10 g / cm 3 .
The expansion ratio of the foamed molded product is determined in consideration of the use of the foamed molded product to be manufactured, and is preferably 10 times or more (density 0.10 g / cm 3 or less), preferably 30 times or more (density 0.033 g). / Cm 3 or less), more preferably 40 times or more (density 0.025 g / cm 3 or less). If the expansion ratio is not less than the above lower limit value, it can be applied to foam molded articles for various uses.

なお、本発明において発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した発泡成形体密度のことである。
<発泡成形体の密度の測定方法>
50cm以上の試験片を材料の元のセル構造を変えないように切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片としては、成形後72時間以上経過した発泡成形体から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものを用いる。
In the present invention, the density of the foamed molded product refers to the density of the foamed molded product measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Method for measuring density of foam molded article>
A test piece of 50 cm 3 or more was cut so as not to change the original cell structure of the material, its mass was measured, and calculated according to the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
As a test piece, it was cut out from a foamed molded article that had passed 72 hours or more after molding, and was allowed to stand for 16 hours or more in an atmospheric condition of 23 ° C ± 2 ° C x 50% ± 5% or 27 ° C ± 2 ° C x 65% ± 5%. Use things.

<発泡成形体の発泡倍数>
発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数=1/密度(g/cm
<Folding multiple of foamed molded product>
The expansion ratio of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )

(作用効果)
本発明の発泡成形体は、上記の発泡粒子を使用して得たものであり、型内発泡成形の際の成形型内への充填性が高くなっている。そのため、本発明の発泡成形体は、強度が高く、外観に優れている。
(Function and effect)
The foam-molded article of the present invention is obtained by using the above-mentioned foamed particles, and has a high filling property in a mold during in-mold foam molding. Therefore, the foamed molded product of the present invention has high strength and excellent appearance.

以下に実施例及び比較例を示し、本発明をより具体的に説明する。ただし、実施例5〜7は、参考例である。なお、以下の例における「%」は「質量%」、「部」は「質量部」のことである。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, Examples 5-7 are reference examples. In the following examples, “%” means “% by mass”, and “part” means “part by mass”.

[製造例1]種粒子の製造
100リットルの攪拌機付オートクレーブ内に、複分解法で得られたピロリン酸マグネシウム64g、ドデシルベンゼンスルホン酸ナトリウム2.4g、ベンゾイルパーオキサイド(純度:75%)107g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート28g、イオン交換水40kg及びスチレン単量体40kgを供給し、攪拌翼を任意の回転数で回転させて攪拌することにより、懸濁液を調製した。
次に、攪拌翼の回転数を維持し、前記懸濁液を攪拌しながら、オートクレーブ内の温度を90℃まで昇温し、90℃にて6時間に亘って保持し、さらに、オートクレーブ内の温度を125℃まで昇温し、125℃で2時間に亘って保持した。これにより、スチレン単量体を懸濁重合した。
その後、オートクレーブ内の温度を25℃まで冷却し、オートクレーブ内から重合物を取り出した。その重合物の洗浄、脱水を複数回に亘って繰り返し、次いで、乾燥させた後、篩分して、表2に示す粒度分布を有し且つ質量平均分子量が30万のポリスチレン粒子A〜Dを得た。
[Production Example 1] Production of seed particles In a 100 liter autoclave with a stirrer, 64 g of magnesium pyrophosphate obtained by metathesis method, 2.4 g of sodium dodecylbenzenesulfonate, 107 g of benzoyl peroxide (purity: 75%), t -Suspension was prepared by supplying 28 g of butyl peroxy-2-ethylhexyl monocarbonate, 40 kg of ion-exchanged water, and 40 kg of styrene monomer, and stirring with a stirring blade rotating at an arbitrary rotational speed.
Next, while maintaining the rotation speed of the stirring blade and stirring the suspension, the temperature in the autoclave is raised to 90 ° C. and maintained at 90 ° C. for 6 hours. The temperature was raised to 125 ° C. and held at 125 ° C. for 2 hours. Thereby, the styrene monomer was subjected to suspension polymerization.
Thereafter, the temperature in the autoclave was cooled to 25 ° C., and the polymer was taken out from the autoclave. Washing and dehydration of the polymer were repeated a plurality of times, then dried and sieved to obtain polystyrene particles A to D having a particle size distribution shown in Table 2 and having a mass average molecular weight of 300,000. Obtained.

なお、ポリスチレン粒子Aは、攪拌翼の回転数を150rpmとし、公称目開き0.71mmの篩を通過しないものと、公称目開き0.425mmの篩を通過したものを除外したものである。
ポリスチレン粒子Bは、攪拌翼の回転数を180rpmとし、公称目開き0.60mmの篩を通過しないものと、公称目開き0.355mmの篩を通過したものを除外したものである。
ポリスチレン粒子Cは、攪拌翼の回転数を120rpmとし、公称目開き0.71mmの篩を通過しないものと、公称目開き0.425mmの篩を通過したものを除外したものである。
ポリスチレン粒子Dは、攪拌翼の回転数を200rpmとし、公称目開き0.60mmの篩を通過しないものと、公称目開き0.300mmの篩を通過したものを除外したものである。
In addition, the polystyrene particle | grains A remove | excluded what passed the sieve with a nominal opening of 0.425 mm, and the thing which does not pass the sieve with a nominal opening of 0.71 mm, and the rotation speed of a stirring blade shall be 150 rpm.
The polystyrene particles B are those in which the number of revolutions of the stirring blade is 180 rpm, and the particles that do not pass through a sieve having a nominal opening of 0.60 mm and those that pass through a sieve having a nominal opening of 0.355 mm are excluded.
Polystyrene particles C are obtained by excluding those in which the number of revolutions of the stirring blade is 120 rpm, and those that do not pass through a sieve having a nominal opening of 0.71 mm and those that pass through a sieve having a nominal opening of 0.425 mm.
The polystyrene particles D are those obtained by setting the number of revolutions of the stirring blade to 200 rpm and excluding those that do not pass through a sieve having a nominal opening of 0.60 mm and those that pass through a sieve having a nominal opening of 0.300 mm.

Figure 0006130700
Figure 0006130700

[実施例1]
(発泡性熱可塑性樹脂粒子の製造)
製造例1で使用したものとは別の100リットルの攪拌機付オートクレーブに、イオン交換水30kg、ドデシルベンゼンスルホン酸ナトリウム4g、ピロリン酸マグネシウム100gを供給した後、オートクレーブ内に上記ポリスチレン粒子A9.9kg及びポリスチレン粒子B1.1kgを種粒子として供給し、攪拌して水中に均一に分散させた。
また、イオン交換水6kgにドデシルベンゼンスルホン酸ナトリウム2g及びピロリン酸マグネシウム20gを分散させた分散液Aを調製し、スチレン単量体5kgに重合開始剤のベンゾイルパーオキサイド(純度75%)88g及びt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート50gを溶解させたスチレン単量体溶液を調製した。このスチレン単量体溶液を上記分散液Aに添加し、ホモミキサーを用いて攪拌し、乳濁化させて乳濁液を得た。
次いで、オートクレーブ内を75℃に加熱し、保持した後、オートクレーブ内に上記乳濁液を添加し、ポリスチレン種粒子中にスチレン単量体及びベンゾイルパーオキサイドが円滑に吸収されるように30分間に亘って保持した。次いで、オートクレーブ内を75℃から108℃まで0.2℃/分の昇温速度で昇温しながら、オートクレーブ内にスチレン単量体28kgを160分かけて連続的に滴下した。次いで、スチレン単量体の滴下が終了してから20分後に、1℃/分の昇温速度で120℃まで昇温して90分間に亘って保持し、シード重合させてポリスチレン粒子を得た。添加したスチレン単量体は全て重合で消費されていた。
また、イオン交換水2kgに界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.8g及び難水溶性無機塩として複分解法で得られたピロリン酸マグネシウム20gを添加して攪拌した。さらに、可塑剤としてアジピン酸ジイソブチル(田岡化学工業株式会社製 商品名「DI4A」)308gを添加し、7000rpmの回転速度で30分間に亘って攪拌して分散液Bを調製した。
次いで、上記重合後のオートクレーブ内を1℃/分の降温速度で90℃まで冷却した後、上記分散液Bをオートクレーブ内に供給した。
次いで、オートクレーブ内に分散液Bを供給してから30分経過後にオートクレーブを密閉し、発泡剤としてブタン(イソブタン/ノルマルブタン(質量比)=30/70)3520gを窒素加圧によってオートクレーブ内に30分間で圧入し、その状態で3時間保持した。これにより、ポリスチレン粒子に発泡性を付与した。
その後、オートクレーブ内を25℃まで冷却し、オートクレーブ内から発泡性付与粒子を取り出した。その発泡性付与粒子の洗浄、脱水を複数回に亘って繰り返し、次いで、乾燥させた後、篩分して、表3に示す粒度分布及び平均粒子径を有し且つ質量平均分子量が30万の発泡性熱可塑性樹脂粒子を得た。
[Example 1]
(Manufacture of foamable thermoplastic resin particles)
After supplying 30 kg of ion exchange water, 4 g of sodium dodecylbenzenesulfonate, and 100 g of magnesium pyrophosphate to a 100 liter autoclave with a stirrer different from that used in Production Example 1, 9.9 kg of the polystyrene particles A and 1.1 kg of polystyrene particles B were supplied as seed particles, and were stirred and dispersed uniformly in water.
A dispersion A was prepared by dispersing 2 g of sodium dodecylbenzenesulfonate and 20 g of magnesium pyrophosphate in 6 kg of ion-exchanged water, and 5 g of styrene monomer and 88 g of benzoyl peroxide (purity 75%) as a polymerization initiator and t. -A styrene monomer solution in which 50 g of butyl peroxy-2-ethylhexyl monocarbonate was dissolved was prepared. This styrene monomer solution was added to the dispersion A, stirred using a homomixer, and emulsified to obtain an emulsion.
Next, the autoclave is heated to 75 ° C. and held, and then the above emulsion is added to the autoclave, so that the styrene monomer and benzoyl peroxide are smoothly absorbed in the polystyrene seed particles for 30 minutes. Held over. Next, 28 kg of styrene monomer was continuously dropped into the autoclave over 160 minutes while increasing the temperature from 75 ° C. to 108 ° C. at a rate of 0.2 ° C./min. Next, 20 minutes after the completion of the dropping of the styrene monomer, the temperature was raised to 120 ° C. at a rate of 1 ° C./min and held for 90 minutes, and seed polymerization was performed to obtain polystyrene particles. . All of the added styrene monomer was consumed in the polymerization.
Further, 0.8 g of sodium dodecylbenzenesulfonate as a surfactant and 20 g of magnesium pyrophosphate obtained by metathesis as a poorly water-soluble inorganic salt were added to 2 kg of ion-exchanged water and stirred. Further, 308 g of diisobutyl adipate (trade name “DI4A” manufactured by Taoka Chemical Co., Ltd.) as a plasticizer was added and stirred at a rotational speed of 7000 rpm for 30 minutes to prepare dispersion B.
Subsequently, after the inside of the autoclave after the polymerization was cooled to 90 ° C. at a temperature lowering rate of 1 ° C./min, the dispersion B was supplied into the autoclave.
Next, 30 minutes after supplying the dispersion B into the autoclave, the autoclave was sealed, and 3520 g of butane (isobutane / normal butane (mass ratio) = 30/70) as a blowing agent was added to the autoclave by nitrogen pressurization. Press-fitted in minutes and held in that state for 3 hours. This imparted foamability to the polystyrene particles.
Thereafter, the inside of the autoclave was cooled to 25 ° C., and the foamability-imparting particles were taken out from the autoclave. The foamability-imparting particles are repeatedly washed and dehydrated several times, then dried and sieved to have a particle size distribution and an average particle size shown in Table 3 and a mass average molecular weight of 300,000. Expandable thermoplastic resin particles were obtained.

(発泡粒子の製造)
得られた発泡性熱可塑性樹脂粒子を15℃の保冷庫中に入れ、72時間に亘って放置した後、円筒型バッチ式予備発泡機に供給し、吹き込み圧0.05MPaの水蒸気により加熱して、発泡粒子を得た。得られた発泡粒子は、嵩密度0.0167g/cm(嵩発泡倍数60倍)であった。
(Manufacture of expanded particles)
The obtained expandable thermoplastic resin particles are put in a 15 ° C. cool box and allowed to stand for 72 hours, then supplied to a cylindrical batch type pre-foaming machine and heated with steam at a blowing pressure of 0.05 MPa. To obtain expanded particles. The obtained expanded particles had a bulk density of 0.0167 g / cm 3 (bulk expansion ratio: 60 times).

(発泡成形体の製造)
次いで、得られた発泡粒子を、室温雰囲気下に24時間に亘って放置した後、外形寸法300×400×100mm(肉厚30mm)で内部に肉厚8mm、15mm、40mmの中仕切部を有する成形型内に発泡粒子を充填した。次いで、成形型のキャビティ内を水蒸気によって、ゲージ圧0.08MPaの圧力で20秒間に亘って加熱した後、成形型のキャビティ内の圧力が0.02MPaになるまで冷却した。その後、成形型を開き、発泡成形体を取り出した。得られた発泡成形体は、密度0.0167g/cm(発泡倍数60倍)であった。
<発泡成形の詳細条件>
成形機 積水工機製作所製、ACE−3SP2型
成形蒸気圧 0.08MPa(ゲージ圧)
金型加熱 3秒
一方加熱(圧力設定) 0.03MPa(ゲージ圧)
逆一方加熱 2秒
両面加熱 20秒
水冷 10秒
設定取出し面圧 0.02MPa
(Manufacture of foam moldings)
Next, the obtained expanded particles are allowed to stand in a room temperature atmosphere for 24 hours, and then have an outer partition size of 300 × 400 × 100 mm (thickness of 30 mm) and inner partition portions of thicknesses of 8 mm, 15 mm, and 40 mm. The mold was filled with expanded particles. Next, the inside of the mold cavity was heated with water vapor at a gauge pressure of 0.08 MPa for 20 seconds, and then cooled until the pressure in the mold cavity reached 0.02 MPa. Thereafter, the mold was opened and the foamed molded product was taken out. The obtained foamed molded product had a density of 0.0167 g / cm 3 (expansion factor: 60 times).
<Detailed conditions for foam molding>
Molding machine Sekisui Koki Co., Ltd., ACE-3SP2 molding steam pressure 0.08MPa (gauge pressure)
Mold heating 3 seconds One-side heating (pressure setting) 0.03 MPa (gauge pressure)
Reverse one-side heating 2 seconds Double-sided heating 20 seconds Water cooling 10 seconds Set extraction surface pressure 0.02 MPa

[実施例2]
ポリスチレン粒子A9.9kg及びポリスチレン粒子B1.1kgを種粒子とする代わりに、ポリスチレン粒子B0.55kg及びポリスチレン粒子C10.45kgを種粒子とした以外は、実施例1と同様にして、表3に示す平均粒子径及び粒度分布を有し且つ質量平均分子量が30万の発泡性熱可塑性樹脂粒子を得た。
また、実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Example 2]
Table 3 shows the same procedure as in Example 1 except that 0.59 kg of polystyrene particles B and 10.45 kg of polystyrene particles C were used as seed particles instead of 9.9 kg of polystyrene particles A and 1.1 kg of polystyrene particles B. Expandable thermoplastic resin particles having an average particle size and a particle size distribution and having a mass average molecular weight of 300,000 were obtained.
Moreover, it carried out similarly to Example 1, and manufactured the foamed particle from the foamable thermoplastic resin particle, and manufactured the foaming molding using the foamed particle.

[実施例3]
ポリスチレン粒子A9.9kg及びポリスチレン粒子B1.1kgを種粒子とする代わりに、ポリスチレン粒子A6.6kg及びポリスチレン粒子B4.4kgを種粒子とした以外は、実施例1と同様にして、表3に示す平均粒子径及び粒度分布を有し且つ質量平均分子量が30万の発泡性熱可塑性樹脂粒子を得た。
また、実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Example 3]
Table 3 shows the same as in Example 1 except that 9.9 kg of polystyrene particles and 1.1 kg of polystyrene particles B are used as seed particles instead of 6.6 kg of polystyrene particles A and 4.4 kg of polystyrene particles B as seed particles. Expandable thermoplastic resin particles having an average particle size and a particle size distribution and having a mass average molecular weight of 300,000 were obtained.
Moreover, it carried out similarly to Example 1, and manufactured the foamed particle from the foamable thermoplastic resin particle, and manufactured the foaming molding using the foamed particle.

[実施例4]
ポリスチレン粒子A9.9kg及びポリスチレン粒子B1.1kgを種粒子とする代わりに、ポリスチレン粒子B0.22kg及びポリスチレン粒子C10.78kgを種粒子とした以外は、実施例1と同様にして、表3に示す平均粒子径及び粒度分布を有し且つ質量平均分子量が30万の発泡性熱可塑性樹脂粒子を得た。
また、実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Example 4]
Table 3 shows the same as in Example 1, except that 9.9 kg of polystyrene particles A and 1.1 kg of polystyrene particles B 1.1 are used as seed particles, but 0.22 kg of polystyrene particles B and 10.78 kg of polystyrene particles C are used as seed particles. Expandable thermoplastic resin particles having an average particle size and a particle size distribution and having a mass average molecular weight of 300,000 were obtained.
Moreover, it carried out similarly to Example 1, and manufactured the foamed particle from the foamable thermoplastic resin particle, and manufactured the foaming molding using the foamed particle.

[実施例5]
100リットルの攪拌機付オートクレーブ内に、複分解法で得られたピロリン酸マグネシウム64g、ドデシルベンゼンスルホン酸ナトリウム2.4g、ベンゾイルパーオキサイド(純度:75%)107g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート28g、イオン交換水40kg及びスチレン単量体40kgを供給し、攪拌翼を80rpmの回転速度にて回転させて攪拌することにより、懸濁液を調製した。
次に、攪拌速度80rpmで懸濁液を攪拌しながら、オートクレーブ内の温度を90℃まで昇温して90℃にて6時間に亘って保持し、さらに、オートクレーブ内の温度を125℃まで昇温し、125℃で2時間に亘って保持することによって、スチレン単量体を懸濁重合した。
その後、オートクレーブ内の温度を90℃まで冷却した。次いで、イオン交換水2kgに界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.8g及び難水溶性無機塩として複分解法で得られたピロリン酸マグネシウム20gを添加して攪拌した。さらに、可塑剤としてアジピン酸ジイソブチル(田岡化学工業株式会社製 商品名「DI4A」)308gを添加し、7000rpmの回転速度で30分間に亘って攪拌して分散液Bを調製した。
次いで、上記分散液Bをオートクレーブ内に供給した。その後、オートクレーブ内に分散液Bを供給してから30分経過後にオートクレーブを密閉した後、発泡剤としてブタン(イソブタン/ノルマルブタン(質量比)=30/70)3520gを窒素加圧によってオートクレーブ内に30分間で圧入し、その状態で3時間保持した。これにより、ポリスチレン粒子に発泡性を付与した。
その後、オートクレーブ内を25℃まで冷却し、オートクレーブ内から発泡性付与粒子を取り出した。その発泡性付与粒子の洗浄、脱水を複数回に亘って繰り返し、次いで、乾燥させた後、分級して、表3に示す粒度分布及び平均粒子径を有し且つ質量平均分子量が30万の発泡性熱可塑性樹脂粒子を得た。
また、実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Example 5]
In a 100 liter autoclave with a stirrer, 64 g of magnesium pyrophosphate obtained by the metathesis method, 2.4 g of sodium dodecylbenzenesulfonate, 107 g of benzoyl peroxide (purity: 75%), t-butylperoxy-2-ethylhexyl mono Suspension was prepared by supplying 28 g of carbonate, 40 kg of ion-exchanged water, and 40 kg of styrene monomer, and stirring by rotating a stirring blade at a rotational speed of 80 rpm.
Next, while stirring the suspension at a stirring speed of 80 rpm, the temperature in the autoclave is raised to 90 ° C. and held at 90 ° C. for 6 hours, and the temperature in the autoclave is further raised to 125 ° C. The styrene monomer was suspension polymerized by warming and holding at 125 ° C. for 2 hours.
Thereafter, the temperature in the autoclave was cooled to 90 ° C. Next, 0.8 g of sodium dodecylbenzenesulfonate as a surfactant and 20 g of magnesium pyrophosphate obtained by metathesis as a poorly water-soluble inorganic salt were added to 2 kg of ion-exchanged water and stirred. Further, 308 g of diisobutyl adipate (trade name “DI4A” manufactured by Taoka Chemical Co., Ltd.) as a plasticizer was added and stirred at a rotational speed of 7000 rpm for 30 minutes to prepare dispersion B.
Next, the dispersion B was supplied into the autoclave. Then, after 30 minutes have passed since the dispersion B was supplied into the autoclave, the autoclave was sealed, and then 3520 g of butane (isobutane / normal butane (mass ratio) = 30/70) as a blowing agent was added into the autoclave by nitrogen pressurization. Press-fitting was performed for 30 minutes, and this state was maintained for 3 hours. This imparted foamability to the polystyrene particles.
Thereafter, the inside of the autoclave was cooled to 25 ° C., and the foamability-imparting particles were taken out from the autoclave. The foamability-imparting particles are repeatedly washed and dehydrated a plurality of times, then dried, classified, and foamed having the particle size distribution and average particle diameter shown in Table 3 and a mass average molecular weight of 300,000. Thermoplastic resin particles were obtained.
Moreover, it carried out similarly to Example 1, and manufactured the foamed particle from the foamable thermoplastic resin particle, and manufactured the foaming molding using the foamed particle.

[実施例6]
エチレン−酢酸ビニル共重合体(EVA)(日本ユニカー社製 商品名「NUC−3221」、酢酸ビニル含有量:5%、融点:107℃、メルトフローレート:0.5g/10分、密度:0.93g/cm、メルトフローレート及び密度はJIS K6992−2に準拠して測定した値である)100部及び合成含水二酸化ケイ素0.5部を90mmの単軸押出機に、時間当たり150kgで連続供給して溶融混練した。溶融混練物を直径0.6mmでランド長さが3.0mmの小孔が200個配置されたダイから吐出し、水中カット方式によりカッター回転数2000rpmにて造粒して、楕円球状のポリオレフィン系樹脂粒子Eを得た。カッター回転数を3000rpmに変更した以外は同様にして造粒して、楕円球状のポリオレフィン系樹脂粒子Fを得た。
内径が1800mm、直胴部長さが1890mm、内容積が6.4mの重合容器内にV型パドル翼(攪拌翼根:3枚、攪拌翼根半径d:585mm、攪拌翼根幅d:315mm)を備えた重合装置を用意した。この重合装置の重合容器内に、70℃の水100部、ピロリン酸マグネシウム0.8部及びドデシルベンゼンスルホン酸ソーダ0.02部を、V型パドル翼で攪拌しながら供給して水性媒体を調製した。次いで、水性媒体中に上記ポリオレフィン系樹脂粒子60質量部(上記粒子E56質量部、粒子F4質量部)を、V型パドル翼で攪拌しながら懸濁させた。次いで、水性媒体を85℃に加熱した上で、これ以後の攪拌所要動力が0.20kw/mを維持するようにV型パドル翼の回転数を調整した。
これとは別に、重合開始剤としてベンゾイルパーオキサイド0.1部及びt−ブチルパーオキシベンゾエート0.01部、架橋剤としてジクミルパーオキサイド0.35部をスチレンモノマー10部に溶解させて第1のモノマー混合物を調製した。また、スチレンモノマー30部に気泡調整剤としてエチレンビスステアリン酸アミド0.04部を溶解させて第2のモノマー混合物を調製した。
次いで、第1のモノマー混合物を1時間当たり10部の割合で、上記水性媒体中に連続的に滴下し、スチレンモノマー、重合開始剤及び架橋剤をポリオレフィン系樹脂粒子中に含浸させながら、スチレンモノマーをポリオレフィン系樹脂粒子中にて重合させた。
第1のモノマー混合物の水性媒体への添加が終了した後、第2モノマー混合物を水性媒体中に1時間当たり15部の割合で連続的に滴下して、スチレンモノマー及び気泡調整剤をポリオレフィン系樹脂粒子中に含浸させながら、スチレンモノマーをポリオレフィン系樹脂粒子中にて重合させた。
さらに、水性媒体を攪拌しつつ、第2のモノマー混合物の水性媒体への滴下が終了してから1時間放置した後、水性媒体を140℃に加熱して3時間保持した。その後、重合容器を冷却して改質樹脂粒子を得た。
次いで、内容積が1mの耐圧V型回転混合機に、改質樹脂粒子100部、水1.0部、ステアリン酸モノグリセリド0.15部及びジイソブチルアジペート0.5部を供給し、混合機を回転させながら常温でブタン14部を圧入した。そして、回転混合機内を70℃に昇温して4時間保持した後に25℃まで冷却して発泡性の改質樹脂粒子を得た。
次いで、発泡性の改質樹脂粒子を円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、発泡粒子を得た。得られた発泡粒子は、嵩密度0.0556g/cm(嵩発泡倍数18倍)であった。
次いで、得られた発泡粒子を、室温雰囲気下、24時間に亘って放置した後、外形寸法300×400×100mm(肉厚30mm)で内部に肉厚8mm、15mm、40mmの中仕切部を有する成形型内に発泡粒子を充填した。次いで、成形型のキャビティ内を水蒸気でゲージ圧0.10MPaの圧力で20秒間に亘って加熱した。その後、成形型のキャビティ内の圧力が0.02MPaになるまで冷却した後、成形型を開き、発泡成形体を取り出した。得られた発泡成形体は、密度0.0556g/cm(発泡倍数18倍)であった。
[Example 6]
Ethylene-vinyl acetate copolymer (EVA) (trade name “NUC-3221” manufactured by Nippon Unicar Co., Ltd., vinyl acetate content: 5%, melting point: 107 ° C., melt flow rate: 0.5 g / 10 min, density: 0 .93 g / cm 3 , melt flow rate and density are values measured according to JIS K6992-2) 100 parts and synthetic hydrous silicon dioxide 0.5 part into a 90 mm single screw extruder at 150 kg per hour Continuous supply and melt-kneading. The melt-kneaded product is discharged from a die in which 200 small holes with a diameter of 0.6 mm and a land length of 3.0 mm are arranged, and granulated at an cutter rotation speed of 2000 rpm by an underwater cutting method, and an elliptical polyolefin type Resin particles E were obtained. Granulation was carried out in the same manner except that the rotation speed of the cutter was changed to 3000 rpm, and elliptical polyolefin resin particles F were obtained.
In a polymerization vessel having an inner diameter of 1800 mm, a straight body length of 1890 mm, and an internal volume of 6.4 m 3 , a V-shaped paddle blade (stirring blade root: 3 sheets, stirring blade root radius d 1 : 585 mm, stirring blade root width d 2 : 315 mm) was prepared. An aqueous medium was prepared by supplying 100 parts of water at 70 ° C., 0.8 part of magnesium pyrophosphate and 0.02 part of sodium dodecylbenzenesulfonate with stirring with a V-type paddle blade into the polymerization vessel of this polymerization apparatus. did. Next, 60 parts by mass of the polyolefin-based resin particles (56 parts by mass of the particles E and 4 parts by mass of the particles F) were suspended in an aqueous medium while stirring with a V-type paddle blade. Next, the aqueous medium was heated to 85 ° C., and the rotational speed of the V-type paddle blade was adjusted so that the required power for stirring thereafter would be maintained at 0.20 kw / m 3 .
Separately, 0.1 part of benzoyl peroxide and 0.01 part of t-butyl peroxybenzoate as a polymerization initiator and 0.35 part of dicumyl peroxide as a crosslinking agent were dissolved in 10 parts of styrene monomer to obtain a first. A monomer mixture was prepared. Further, 0.04 part of ethylenebisstearic acid amide was dissolved in 30 parts of styrene monomer as a bubble adjusting agent to prepare a second monomer mixture.
Next, the first monomer mixture is continuously dropped into the aqueous medium at a rate of 10 parts per hour, and the styrene monomer, the polymerization initiator and the crosslinking agent are impregnated in the polyolefin resin particles, while the styrene monomer is impregnated. Was polymerized in polyolefin resin particles.
After the addition of the first monomer mixture to the aqueous medium is completed, the second monomer mixture is continuously dropped into the aqueous medium at a rate of 15 parts per hour, and the styrene monomer and the bubble regulator are added to the polyolefin resin. While impregnating the particles, the styrene monomer was polymerized in the polyolefin resin particles.
Further, while stirring the aqueous medium, the dropping of the second monomer mixture to the aqueous medium was allowed to stand for 1 hour, and then the aqueous medium was heated to 140 ° C. and held for 3 hours. Thereafter, the polymerization vessel was cooled to obtain modified resin particles.
Next, 100 parts of modified resin particles, 1.0 part of water, 0.15 part of stearic acid monoglyceride and 0.5 part of diisobutyl adipate were supplied to a pressure-resistant V-type rotary mixer having an internal volume of 1 m 3 , While rotating, 14 parts of butane was press-fitted at room temperature. Then, the inside of the rotary mixer was heated to 70 ° C. and held for 4 hours, and then cooled to 25 ° C. to obtain expandable modified resin particles.
Next, the foamed modified resin particles were supplied to a cylindrical batch type pre-foaming machine and heated with steam having a blowing pressure of 0.05 MPa to obtain expanded particles. The obtained expanded particles had a bulk density of 0.0556 g / cm 3 (bulk expansion ratio: 18 times).
Next, after the obtained expanded particles are allowed to stand for 24 hours in a room temperature atmosphere, the outer dimensions are 300 × 400 × 100 mm (thickness 30 mm), and the inner partition portions are 8 mm, 15 mm, and 40 mm in thickness. The mold was filled with expanded particles. Next, the inside of the mold cavity was heated with water vapor at a gauge pressure of 0.10 MPa for 20 seconds. Then, after cooling until the pressure in the cavity of a shaping | molding mold became 0.02 MPa, the shaping | molding die was opened and the foaming molding was taken out. The obtained foamed molded product had a density of 0.0556 g / cm 3 (expansion ratio: 18 times).

[実施例7]
押出機内にエチレン−プロピレンランダム共重合体からなるポリプロピレン系樹脂(エチレン成分:5%、走査型示差熱量計で得られるDSC曲線における主吸熱ピーク温度:135℃、ビカット軟化温度:125℃、結晶化温度:95℃)を供給し、220℃にて加熱溶融した後、押出機のダイから樹脂を吐出させてストランドを形成させた。次いで、ポリプロピレン系樹脂のストランドを、電熱ヒーターによって加熱した90℃の湯水を入れた2mの水槽中を通過させて95℃まで冷却した(第一工程)。さらに、30℃の水を入れた1mの水槽中を通過させてストランドを40℃まで冷却した(第二工程)。その後、平均体積2mmになるようにストランドをカッターで切断して直径1.4mm、長さ1.3mmのペレット状の発泡用ポリプロピレン系樹脂粒子Gを得た。平均体積が1.1mmになるようにストランドをカッターで切断した以外は同様にして直径1.2mm、長さ1.1mmのペレット状の発泡用ポリプロピレン系樹脂粒子Hを得た。
次いで、内容積100Lのオートクレーブに、水50L、分散剤としての第3燐酸カルシウム600g、活性剤としてドデシルベンゼンスルホン酸ナトリウム30gを入れて水性媒体を調製した。
1日経過した上記発泡用ポリプロピレン系樹脂粒子30kg(上記粒子G21kg、粒子H9kg)を上記の水性媒体に懸濁させ、撹拌した。次いで、混合物を145℃まで加熱し、その温度で20分間保ち、冷却、脱水して生成物を取り出し、加熱処理された発泡用ポリプロピレン系樹脂粒子を得た。
次いで、内容積5Lのオートクレーブに、水、分散剤としての第3燐酸カルシウム30g、活性剤としてのドデシルベンゼンスルホン酸ナトリウム1gを入れて水性媒体を調製した。この水性媒体に、加熱処理した上記発泡用ポリプロピレン系樹脂粒子を加え、懸濁・撹拌した。次いで、オートクレーブ内にイソブタンを、窒素圧を利用して圧入し、オートクレーブ内の混合物を80℃まで加熱し、その温度で4時間以上保ってから、25℃まで冷却した。次いで、脱水して、発泡性ポリプロピレン系樹脂粒子を得た。
次いで、発泡性ポリプロピレン系樹脂粒子を円筒型バッチ式加圧予備発泡機に供給して、吹き込み圧0.1MPaの水蒸気により加熱し、発泡粒子を得た。得られた発泡粒子は、嵩密度0.0556g/cm(嵩発泡倍数18倍)であった。
次いで、得られた発泡粒子を、室温雰囲気下、24時間に亘って放置した後、外形寸法300×400×100mm(肉厚30mm)で内部に肉厚8mm、15mm、40mmの中仕切部を有する成形型内に発泡粒子を充填した。次いで、成形型のキャビティ内を水蒸気でゲージ圧0.2MPaの圧力で20秒間に亘って加熱した。その後、成形型のキャビティ内の圧力が0.02MPaになるまで冷却した後、成形型を開き、発泡成形体を取り出した。得られた発泡成形体は、密度0.0556g/cm(発泡倍数18倍)であった。
[Example 7]
Polypropylene resin made of ethylene-propylene random copolymer in the extruder (ethylene component: 5%, main endothermic peak temperature in DSC curve obtained by scanning differential calorimeter: 135 ° C, Vicat softening temperature: 125 ° C, crystallization (Temperature: 95 ° C.) and heated and melted at 220 ° C., and then a resin was discharged from the die of the extruder to form a strand. Next, the strand of polypropylene resin was cooled to 95 ° C. by passing through a 2 m water tank containing 90 ° C. hot water heated by an electric heater (first step). Further, the strand was cooled to 40 ° C. through a 1 m water tank containing 30 ° C. water (second step). Thereafter, the strand was cut with a cutter so as to have an average volume of 2 mm 3 to obtain a foamed polypropylene resin particle G for pellets having a diameter of 1.4 mm and a length of 1.3 mm. Except that the strands were cut with a cutter so that the average volume was 1.1 mm 3 , pelletized foaming polypropylene resin particles H having a diameter of 1.2 mm and a length of 1.1 mm were obtained.
Next, an aqueous medium was prepared by adding 50 L of water, 600 g of tricalcium phosphate as a dispersant, and 30 g of sodium dodecylbenzenesulfonate as an activator in an autoclave having an internal volume of 100 L.
After 30 days, 30 kg of the polypropylene resin particles for foaming (21 kg of the particles G, 9 kg of the particles H) were suspended in the aqueous medium and stirred. Next, the mixture was heated to 145 ° C., kept at that temperature for 20 minutes, cooled and dehydrated, and the product was taken out to obtain heat-treated polypropylene resin particles for foaming.
Next, an aqueous medium was prepared by putting water, 30 g of tricalcium phosphate as a dispersant, and 1 g of sodium dodecylbenzenesulfonate as an activator into an autoclave having an internal volume of 5 L. The foamed polypropylene resin particles that were heat-treated were added to this aqueous medium, and suspended and stirred. Next, isobutane was injected into the autoclave using nitrogen pressure, and the mixture in the autoclave was heated to 80 ° C., kept at that temperature for 4 hours or more, and then cooled to 25 ° C. Next, dehydration was performed to obtain expandable polypropylene resin particles.
Next, the expandable polypropylene resin particles were supplied to a cylindrical batch type pressure pre-foaming machine and heated with water vapor having a blowing pressure of 0.1 MPa to obtain expanded particles. The obtained expanded particles had a bulk density of 0.0556 g / cm 3 (bulk expansion ratio: 18 times).
Next, after the obtained expanded particles are allowed to stand for 24 hours in a room temperature atmosphere, the outer dimensions are 300 × 400 × 100 mm (thickness 30 mm), and the inner partition portions are 8 mm, 15 mm, and 40 mm in thickness. The mold was filled with expanded particles. Subsequently, the inside of the mold cavity was heated with water vapor at a gauge pressure of 0.2 MPa for 20 seconds. Then, after cooling until the pressure in the cavity of a shaping | molding mold became 0.02 MPa, the shaping | molding die was opened and the foaming molding was taken out. The obtained foamed molded product had a density of 0.0556 g / cm 3 (expansion ratio: 18 times).

[比較例1]
ポリスチレン粒子A9.9kg及びポリスチレン粒子B1.1kgを種粒子とする代わりに、ポリスチレン粒子A11kgを種粒子とした以外は、実施例1と同様にして、発泡性熱可塑性樹脂粒子を得た。
また、実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Comparative Example 1]
Expandable thermoplastic resin particles were obtained in the same manner as in Example 1, except that 9.9 kg of polystyrene particles A and 1.1 kg of polystyrene particles B were used as seed particles instead of polystyrene particles A11 kg as seed particles.
Moreover, it carried out similarly to Example 1, and manufactured the foamed particle from the foamable thermoplastic resin particle, and manufactured the foaming molding using the foamed particle.

[比較例2]
ポリスチレン粒子A9.9kg及びポリスチレン粒子B1.1kgを種粒子とする代わりに、ポリスチレン粒子D11kgを種粒子とした使用した以外は、実施例1と同様にして、発泡性熱可塑性樹脂粒子を得た。
また、実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Comparative Example 2]
Expandable thermoplastic resin particles were obtained in the same manner as in Example 1 except that 9.9 kg of polystyrene particles A and 1.1 kg of polystyrene particles B were used as seed particles instead of polystyrene particles D11 kg as seed particles.
Moreover, it carried out similarly to Example 1, and manufactured the foamed particle from the foamable thermoplastic resin particle, and manufactured the foaming molding using the foamed particle.

[比較例3]
ポリスチレン粒子A9.9kg及びポリスチレン粒子B1.1kgを種粒子とする代わりに、ポリスチレン粒子C5.5kgとポリスチレン粒子D5.5kgを種粒子とした使用した以外は、実施例1と同様にして、発泡性熱可塑性樹脂粒子を得た。
また、実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Comparative Example 3]
In the same manner as in Example 1, except that 9.9 kg of polystyrene particles A and 1.1 kg of polystyrene particles B were used as seed particles, polystyrene particles C5.5 kg and polystyrene particles D 5.5 kg were used as seed particles. Thermoplastic resin particles were obtained.
Moreover, it carried out similarly to Example 1, and manufactured the foamed particle from the foamable thermoplastic resin particle, and manufactured the foaming molding using the foamed particle.

[比較例4]
実施例1により得た篩分する前の発泡性付与粒子から、1.00mmパス0.850mmオンの粒径範囲の粒子99.95質量部と、0.710mmパス0.600mmオンの粒径範囲の粒子0.05質量部のみを選択的に採取し、これら粒子を混合して、発泡性熱可塑性樹脂粒子を得た。
また、実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Comparative Example 4]
From the foamability-imparting particles obtained in Example 1 before sieving, 99.95 parts by mass of particles in a particle size range of 1.00 mm pass 0.850 mm on and a particle size range of 0.710 mm pass 0.600 mm on Only 0.05 part by mass of the above particles were selectively collected and mixed to obtain expandable thermoplastic resin particles.
Moreover, it carried out similarly to Example 1, and manufactured the foamed particle from the foamable thermoplastic resin particle, and manufactured the foaming molding using the foamed particle.

[比較例5]
懸濁液調製時及び重合時のオートクレーブの回転数を70rpmにした以外は、実施例5と同様にして、発泡性熱可塑性樹脂粒子を得た。また、実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Comparative Example 5]
Expandable thermoplastic resin particles were obtained in the same manner as in Example 5 except that the number of rotations of the autoclave at the time of suspension preparation and polymerization was changed to 70 rpm. Moreover, it carried out similarly to Example 1, and manufactured the foamed particle from the foamable thermoplastic resin particle, and manufactured the foaming molding using the foamed particle.

[比較例6]
実施例6により得た発泡性の改質樹脂粒子から、公称目開き1.00mmの篩を通過した粒子を除外して、発泡性熱可塑性樹脂粒子を得た。また、実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Comparative Example 6]
From the expandable modified resin particles obtained in Example 6, particles that passed through a sieve having a nominal aperture of 1.00 mm were excluded to obtain expandable thermoplastic resin particles. Moreover, it carried out similarly to Example 1, and manufactured the foamed particle from the foamable thermoplastic resin particle, and manufactured the foaming molding using the foamed particle.

[比較例7]
実施例7により得た発泡性ポリプロピレン系樹脂粒子から、公称目開き1.00mmの篩を通過した粒子を除外して、発泡性熱可塑性樹脂粒子を得た。また、発泡粒子実施例1と同様にして、発泡性熱可塑性樹脂粒子より発泡粒子を製造し、その発泡粒子を用いて発泡成形体を製造した。
[Comparative Example 7]
From the expandable polypropylene resin particles obtained in Example 7, particles that passed through a sieve having a nominal aperture of 1.00 mm were excluded to obtain expandable thermoplastic resin particles. Further, in the same manner as in Example 1 of foamed particles, foamed particles were produced from the foamable thermoplastic resin particles, and a foamed molded product was produced using the foamed particles.

<粒度分布、平均粒子径及びCV値>
各実施例及び各比較例の発泡性熱可塑性樹脂粒子及び発泡粒子の粒度分布、平均粒子径及びCV値を表3〜6に示す。
<Particle size distribution, average particle size and CV value>
Tables 3 to 6 show the particle size distribution, average particle size, and CV value of the expandable thermoplastic resin particles and the expanded particles of each Example and each Comparative Example.

Figure 0006130700
Figure 0006130700

Figure 0006130700
Figure 0006130700

Figure 0006130700
Figure 0006130700

Figure 0006130700
Figure 0006130700

(評価)
各実施例及び各比較例の発泡粒子について金型への充填性を下記のように評価した。また、各実施例及び各比較例の発泡成形体について融着性を下記のように評価した。
(Evaluation)
With respect to the expanded particles of each Example and each Comparative Example, the filling property into the mold was evaluated as follows. Moreover, the fusion property was evaluated as follows about the foaming molding of each Example and each comparative example.

<発泡粒子の金型への充填性の評価>
上記の発泡成形体の製造方法により、発泡成形体を10個得た。得られた発泡成形体の内部仕切部分(8mm,15mm)を目視により観察し、下記により発泡粒子の金型充填性を評価した。評価結果を表7,8に示す。
◎:発泡成形体10個全てが、中仕切部分まで粒子が充分に充填されている。
○:発泡成形体10個のうち少なくとも1個以上が、中仕切部分への粒子の充填が不充分であり、過大発泡粒が認められるが、中仕切部は形成されている。
×:成形体10個のうち少なくとも1個以上が、中仕切部分に粒子充填不良による粒子欠損が見られ、中仕切部形成が不完全である。
<Evaluation of fillability of foam particles into mold>
Ten foamed molded articles were obtained by the method for producing a foamed molded article. The internal partition part (8 mm, 15 mm) of the obtained foamed molded article was visually observed, and the mold filling property of the foamed particles was evaluated as follows. The evaluation results are shown in Tables 7 and 8.
(Double-circle): The particle | grains are fully filled to all 10 foaming moldings to the middle partition part.
○: At least one of the 10 foamed molded articles is insufficiently filled with particles in the partition part, and excessive foam particles are observed, but the partition part is formed.
X: At least one of the 10 compacts has particle defects due to defective particle filling in the partition part, and the formation of the partition part is incomplete.

<発泡成形体の融着性の評価>
上記発泡成形体の内部仕切部分(8mm,15mm)から、バーチカルカッターを使用して、70mm×240mm×8mm、70×240mm×15mmの成形体を切出した。それら成形体に対し、一対の長辺の中間点同士を結ぶ直線に沿って、カッターナイフを用いて、深さ約2mmの切り込みを入れ、この切り込みに沿って成形体を破断して2分割した。その破断面に存在する発泡粒子のうち、任意に選択した100〜150個について、粒子自体の破断、粒子界面での剥離を目視により観察した。粒子自体が破断している個数をA、粒子界面で剥離している個数をBとし、下記式より成形体融着率を求めた。発泡成形体10個の成形体融着率平均値を算出し、下記の評価基準によって融着性を評価した。評価結果を表7,8に示す。
成形体融着率(%)=〔A/(A+B)〕×100
◎:融着率の平均値が80%以上
○:融着率の平均値が60%以上80%未満
×:融着率の平均値が60%未満
<Evaluation of fusion property of foamed molded product>
A 70 mm × 240 mm × 8 mm, 70 × 240 mm × 15 mm molded body was cut out from the internal partition portion (8 mm, 15 mm) of the foamed molded body using a vertical cutter. A cut with a depth of about 2 mm was made using a cutter knife along a straight line connecting the midpoints of the pair of long sides, and the molded body was broken along this cut into two parts. . Of the foamed particles present on the fracture surface, 100 to 150 arbitrarily selected particles were visually observed for breakage of the particles themselves and peeling at the particle interface. The number of broken particles themselves was A, and the number of particles peeled at the particle interface was B, and the compact fusion rate was determined from the following formula. The average value of the fusion rate of 10 molded molded articles was calculated, and the fusing property was evaluated according to the following evaluation criteria. The evaluation results are shown in Tables 7 and 8.
Molded body fusion rate (%) = [A / (A + B)] × 100
◎: Average value of fusion rate is 80% or more ○: Average value of fusion rate is 60% or more and less than 80% ×: Average value of fusion rate is less than 60%

Figure 0006130700
Figure 0006130700

Figure 0006130700
Figure 0006130700

<総合評価>
前記<発泡粒子の金型への充填性の評価>及び<発泡成形体の融着性の評価>における評価結果に基づいて、次の評価基準によって総合評価した。
非常に良好(◎):両評価とも◎
良好(○):両評価とも○、あるいは、一方の評価が○、他方の評価が◎
不良(×):少なくとも一方の評価が×
<Comprehensive evaluation>
Based on the evaluation results in <Evaluation of Fillability of Foamed Particles into Mold> and <Evaluation of Fusion Property of Foamed Molded Product>, comprehensive evaluation was performed according to the following evaluation criteria.
Very good (◎): Both evaluations are ◎
Good (O): Both evaluations are O, or one evaluation is O and the other evaluation is O
Defect (x): At least one evaluation is x

各実施例における発泡粒子は、発泡粒子の融着性を確保しつつも成形型内の充填性に優れていた。
これに対し、粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲の粒子の質量割合Rが0.3%未満であった比較例1,4,6,7では、発泡粒子の金型充填性が低かった。Rが10%を超えていた比較例3でも、発泡粒子の金型充填性が低かった。発泡粒子のCV値が15%を超えていた比較例5でも、発泡粒子の金型充填性が低かった。
発泡性熱可塑性樹脂粒子が公称目開き0.355mmの篩を通過する粒子を含んでいた比較例2では、発泡粒子を得ることができなかった。
The foamed particles in each Example were excellent in the filling property in the mold while ensuring the fusion property of the foamed particles.
In contrast, in Comparative Examples 1, 4, 6, 7 mass ratio R B of the particles of two-stage small particle size range from the highest particle size range mass ratio of particles was less than 0.3%, the foamed particles The mold filling property was low. Even Comparative Example 3 in which R B exceeds the 10% had lower mold filling of the expanded beads. Even in Comparative Example 5 in which the CV value of the expanded particles exceeded 15%, the mold filling property of the expanded particles was low.
In Comparative Example 2 in which the expandable thermoplastic resin particles included particles passing through a sieve having a nominal opening of 0.355 mm, the expanded particles could not be obtained.

Claims (4)

熱可塑性樹脂と発泡剤とを含む粒子からなり、下記(a)〜(c)を満たす粒度分布を有する発泡性熱可塑性樹脂粒子。
(a)全粒子が、JIS標準篩(JIS Z8801−1:2000規定)における公称目開き1.18mmの篩を通過し且つ公称目開き0.600mmの篩を通過しない。
(b)JIS標準篩(JIS Z8801−1:2000規定)によって篩分された各粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が1〜15%である。
(c)JIS標準篩(JIS Z8801−1:2000規定)によって篩分した際に、粒子の質量割合が最も高い粒径範囲の質量割合が、46.0〜63.7質量%であり、前記粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲の粒子の質量割合が0.3〜10質量%である。
Expandable thermoplastic resin particles composed of particles containing a thermoplastic resin and a foaming agent and having a particle size distribution satisfying the following (a) to (c).
(A) All particles pass through a sieve having a nominal opening of 1.18 mm in a JIS standard sieve (JIS Z8801-1: 2000) and not passing through a sieve having a nominal opening of 0.600 mm.
(B) The coefficient of variation (CV value) of the particle size distribution determined from the mass ratio of the particles in each particle size range sieved by JIS standard sieve (JIS Z8801-1: 2000 standard) is 1 to 15%.
(C) When sieving with a JIS standard sieve (JIS Z8801-1: 2000 regulation), the mass ratio of the particle size range in which the mass ratio of particles is the highest is 46.0 to 63.7 mass%, The mass ratio of particles having a particle size range that is two steps smaller from the highest particle size range is 0.3 to 10% by mass.
請求項1に記載の発泡性熱可塑性樹脂粒子を加熱して発泡させることによって得られた熱可塑性樹脂発泡粒子。   Thermoplastic resin foam particles obtained by heating and foaming the expandable thermoplastic resin particles according to claim 1. 熱可塑性樹脂と発泡剤とを含む粒子を発泡させた発泡粒子からなり、下記(d)〜(f)を満たす粒度分布を有する熱可塑性樹脂発泡粒子。
(d)全粒子が、JIS標準篩(JIS Z8801−1:2000規定)における公称目開き4.00mmの篩を通過し且つ公称目開き2.00mmの篩を通過しない。
(e)JIS標準篩(JIS Z8801−1:2000規定)によって篩分された各粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が1〜15%である。
(f)JIS標準篩(JIS Z8801−1:2000規定)によって篩分した際に、粒子の質量割合が最も高い粒径範囲の質量割合が、56.3〜71.質量%であり、前記粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲の粒子の質量割合が0.3〜10質量%である。
A thermoplastic resin foamed particle comprising a foamed particle obtained by foaming particles containing a thermoplastic resin and a foaming agent and having a particle size distribution satisfying the following (d) to (f).
(D) All particles pass through a sieve having a nominal aperture of 4.00 mm and not passing through a sieve having a nominal aperture of 2.00 mm in a JIS standard sieve (JIS Z8801-1: 2000 standard).
(E) The coefficient of variation (CV value) of the particle size distribution obtained from the mass ratio of the particles in each particle size range sieved by JIS standard sieve (JIS Z8801-1: 2000 standard) is 1 to 15%.
(F) When sieving with a JIS standard sieve (JIS Z8801-1: 2000 standard), the mass ratio of the particle size range in which the mass ratio of particles is the highest is 56.3 to 71. The mass ratio of the particles is 8 to 10 % by mass, and the mass ratio of the particles having a particle size range two steps smaller than the highest particle size range is 0.3 to 10% by mass.
請求項2または3に記載の熱可塑性樹脂発泡粒子を成形型のキャビティ内に充填し、加熱して型内発泡成形することによって得られた発泡成形体。   A foamed molded article obtained by filling the thermoplastic resin foamed particles according to claim 2 or 3 in a cavity of a molding die and heating and molding in-mold foaming.
JP2013069051A 2013-03-28 2013-03-28 Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article Active JP6130700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069051A JP6130700B2 (en) 2013-03-28 2013-03-28 Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069051A JP6130700B2 (en) 2013-03-28 2013-03-28 Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article

Publications (2)

Publication Number Publication Date
JP2014189743A JP2014189743A (en) 2014-10-06
JP6130700B2 true JP6130700B2 (en) 2017-05-17

Family

ID=51836337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069051A Active JP6130700B2 (en) 2013-03-28 2013-03-28 Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article

Country Status (1)

Country Link
JP (1) JP6130700B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20153233A1 (en) * 2015-08-26 2017-02-26 A P I Applicazioni Plastiche Ind S P A PROCEDURE FOR THE PRODUCTION OF EXPANDED POLYMER PARTICULAR PROVISIONS; PROVISIONS OF POLYMER PARTICLES EXPANSED AND RELATIVE ARTICLES
JP7262268B2 (en) * 2018-09-27 2023-04-21 積水化成品工業株式会社 Foamed thermoplastic resin particles for cushion, cushion body and expandable thermoplastic resin particles for cushion
WO2022186281A1 (en) * 2021-03-04 2022-09-09 株式会社カネカ Polyethylene resin foamed particles, polyethylene resin in-mold foam molded body, and method for manufacturing these

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1364758A (en) * 1972-03-02 1974-08-29 Monsanto Ltd Foamable resins production
JPS5770111A (en) * 1980-10-20 1982-04-30 Badische Yuka Co Ltd Production of styrene polymer particle
CA1166413A (en) * 1980-10-30 1984-05-01 Edward E. Timm Process and apparatus for preparing uniform size polymer beads
JP2637538B2 (en) * 1989-01-30 1997-08-06 鐘淵化学工業株式会社 Method for producing expandable thermoplastic polymer particles
JP3856534B2 (en) * 1997-07-29 2006-12-13 旭化成ライフ&リビング株式会社 Particulate styrene-based foamable resin, particulate styrene-based foamed resin, molded product thereof, and production method thereof
JP4035885B2 (en) * 1998-03-25 2008-01-23 日立化成工業株式会社 Method for producing regenerated expandable styrene resin particles
JP2005307075A (en) * 2004-04-23 2005-11-04 Sekisui Plastics Co Ltd Expandable styrenic resin particle
WO2010113874A1 (en) * 2009-03-30 2010-10-07 積水化成品工業株式会社 Expandable polystyrene resin particles and process for producing same
JP2011012103A (en) * 2009-06-30 2011-01-20 Sekisui Plastics Co Ltd Expandable polystyrenic resin particle for heat insulating material used as roof ground material and heat insulating material for roof ground material
JP5576678B2 (en) * 2010-03-05 2014-08-20 積水化成品工業株式会社 Styrene polymer particles, process for producing the same, expandable styrene polymer particles, and foamed molded article
JP5603628B2 (en) * 2010-03-26 2014-10-08 積水化成品工業株式会社 Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP5670816B2 (en) * 2011-04-21 2015-02-18 株式会社ジェイエスピー Method for producing polyolefin resin expanded particles

Also Published As

Publication number Publication date
JP2014189743A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP5372783B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
JP5873098B2 (en) Method for producing foamable thermoplastic beads with improved foamability
TWI529205B (en) Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form
CN108026311B (en) Expandable styrene resin particles, pre-expanded particles and molded body produced from the same, and method for producing the same
JP4837407B2 (en) Expandable polystyrene resin particles, polystyrene resin foam particles, polystyrene resin foam moldings, polystyrene resin foam slices, and methods for producing the same
JP6130700B2 (en) Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP6500619B2 (en) Expandable composite resin particles
WO2013111368A1 (en) Expandable polystyrene-type resin particles and method for producing same, and molded foam
JP6063792B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP2011068821A (en) Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article
JP6223097B2 (en) Expandable polystyrene resin particles and production method thereof, and polystyrene resin pre-expanded particles and expanded molded body
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5756003B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5809508B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP5885792B2 (en) Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article
JP4891586B2 (en) Expandable thermoplastic resin particles and process for producing the same, thermoplastic resin pre-expanded particles, and foam molded article
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP5734611B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170414

R150 Certificate of patent or registration of utility model

Ref document number: 6130700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150