JP6043562B2 - Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article - Google Patents

Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article Download PDF

Info

Publication number
JP6043562B2
JP6043562B2 JP2012214057A JP2012214057A JP6043562B2 JP 6043562 B2 JP6043562 B2 JP 6043562B2 JP 2012214057 A JP2012214057 A JP 2012214057A JP 2012214057 A JP2012214057 A JP 2012214057A JP 6043562 B2 JP6043562 B2 JP 6043562B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
producing
resin particles
resin
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012214057A
Other languages
Japanese (ja)
Other versions
JP2014065868A (en
Inventor
良輔 地海
良輔 地海
翔太 大野
翔太 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2012214057A priority Critical patent/JP6043562B2/en
Publication of JP2014065868A publication Critical patent/JP2014065868A/en
Application granted granted Critical
Publication of JP6043562B2 publication Critical patent/JP6043562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition

Description

本発明は、ポリスチレン系樹脂などの熱可塑性樹脂粒子とその製造方法、発泡性熱可塑性樹脂粒子とその製造方法、該発泡性熱可塑性樹脂粒子を用いて得られた予備発泡粒子及び発泡成形体に関する。前記熱可塑性樹脂粒子は、シード重合法などによって発泡性熱可塑性樹脂粒子を製造する際のシード(核)材料などとして好適に用いられる。   The present invention relates to thermoplastic resin particles such as polystyrene-based resin and a production method thereof, expandable thermoplastic resin particles and a production method thereof, pre-expanded particles obtained using the expandable thermoplastic resin particles, and a foam molded article. . The thermoplastic resin particles are suitably used as a seed (nucleus) material or the like when producing expandable thermoplastic resin particles by a seed polymerization method or the like.

ポリスチレン系樹脂発泡成形体などの熱可塑性樹脂発泡成形体は、発泡剤を含有する発泡性熱可塑性樹脂粒子を水蒸気などの加熱媒体によって加熱・発泡させて予備発泡粒子とし、この予備発泡粒子を成形型のキャビティ内に充填した上で、成形型内に水蒸気などの加熱媒体を圧入して予備発泡粒子を加熱、発泡させて発泡粒子間の隙間を埋めながら発泡圧によって互いに融着一体化させた後、得られた熱可塑性樹脂発泡成形体を型内にて冷却する冷却工程を経て製造されている。
従来、前記発泡性熱可塑性樹脂粒子の製造方法の一つとして、例えば、特許文献1,2に開示されている溶融押出法(水中カット法、ホットカット法などとも称される)が知られている。
Thermoplastic resin foam moldings such as polystyrene resin foam moldings are pre-expanded particles by heating and foaming foamable thermoplastic resin particles containing a foaming agent with a heating medium such as water vapor, and molding the pre-expanded particles. After filling the mold cavity, a heating medium such as water vapor is press-fitted into the mold to heat and foam the pre-foamed particles, and they are fused and integrated with each other by the foaming pressure while filling the gaps between the foamed particles. After that, it is manufactured through a cooling process in which the obtained thermoplastic resin foam molded article is cooled in a mold.
Conventionally, as one of the methods for producing the foamable thermoplastic resin particles, for example, a melt extrusion method (also referred to as an underwater cut method, a hot cut method, etc.) disclosed in Patent Documents 1 and 2 is known. Yes.

特許文献1には、ダイより押出した発泡剤含有溶融樹脂を回転カッターにより切断して樹脂粒子とする発泡性熱可塑性樹脂粒子の製造方法において、表面が断熱されたダイを使用し、かつダイ表面と非接触状態に回転カッターを配置することを特徴とする発泡性熱可塑性樹脂粒子の製造方法が開示されている。   Patent Document 1 discloses a method for producing foamable thermoplastic resin particles obtained by cutting a foaming agent-containing molten resin extruded from a die with a rotary cutter into resin particles, and using a die whose surface is thermally insulated, and a die surface And a method for producing expandable thermoplastic resin particles, characterized in that a rotating cutter is disposed in a non-contact state.

特許文献2には、造粒用ダイス内の発泡剤含有樹脂の温度(T1)と、造粒用ダイスの温度(T2)とがT1>T2であり、且つ冷却媒体の流量(L1)とノズルから吐出される発泡剤含有樹脂の吐出量(L2)との比(L1/L2)が100〜200の範囲となるように制御しつつ、発泡性熱可塑性樹脂粒子を得るホットカット法による発泡性熱可塑性樹脂粒子の製造方法が開示されている。   In Patent Document 2, the temperature (T1) of the foaming agent-containing resin in the granulation die and the temperature (T2) of the granulation die satisfy T1> T2, and the flow rate (L1) of the cooling medium and the nozzle Foamability by a hot cut method for obtaining expandable thermoplastic resin particles while controlling the ratio (L1 / L2) to the discharge amount (L2) of the foaming agent-containing resin to be discharged from 100 to 200 A method for producing thermoplastic resin particles is disclosed.

特開平6−31726号公報JP-A-6-31726 国際公開第2011/065561号International Publication No. 2011/066551

しかしながら、前述した従来技術には、次のような問題があった。
特許文献1に開示された製造方法は、ダイとカッターが接触していないため、カット不良により異形粒子が発生し易く、また樹脂粒子同士の合着が発生しやすいという問題がある。
特許文献2に開示された製造方法は、ダイ温度が樹脂温度よりも低いため、樹脂が詰まりやすく、ダイの小孔の開孔率が低くなるという課題が残されている。
However, the above-described conventional technique has the following problems.
Since the die and the cutter are not in contact with each other, the manufacturing method disclosed in Patent Document 1 has a problem in that irregularly shaped particles are likely to be generated due to cut defects and resin particles are likely to be bonded together.
In the manufacturing method disclosed in Patent Document 2, since the die temperature is lower than the resin temperature, there is a problem that the resin is easily clogged and the opening ratio of the small holes of the die is low.

本発明は、前記事情に鑑みてなされ、溶融押出法による熱可塑性樹脂粒子及び発泡性熱可塑性樹脂粒子の製造において、開孔率が高くなって生産効率が高く、異形粒子の発生も抑制でき、均一で略球状の樹脂粒子を得ることができ、さらに発泡剤含有樹脂の押出時のプレ発泡及び樹脂粒子同士の合着を抑制し得る、熱可塑性樹脂粒子及び発泡性熱可塑性樹脂粒子の製造方法の提供を課題とする。   The present invention was made in view of the above circumstances, in the production of thermoplastic resin particles and foamable thermoplastic resin particles by melt extrusion method, the porosity is high, the production efficiency is high, the generation of irregular particles can also be suppressed, Method for producing thermoplastic resin particles and expandable thermoplastic resin particles capable of obtaining uniform and substantially spherical resin particles, and further suppressing pre-foaming and resin particle coalescence during extrusion of the foaming agent-containing resin The issue is to provide

前記課題を達成するため、本発明は、樹脂供給装置内で溶融された熱可塑性樹脂を樹脂供給装置先端に付設されたダイの樹脂吐出面に形成された小孔から直接冷却媒体中に押し出し、前記ダイの樹脂吐出面に押圧された状態で設けられたカッターによって押出物を切断するとともに、押出物を冷却媒体との接触により冷却固化して熱可塑性樹脂粒子を得る、溶融押出法による熱可塑性樹脂粒子の製造方法において、冷却媒体の流量(L1)と樹脂吐出量(L2)との質量比(L1/L2)が40〜250の範囲であり、樹脂吐出面に対するカッターの押圧力が0.05〜2.0MPaの範囲となる条件下で熱可塑性樹脂粒子を得ることを特徴とする熱可塑性樹脂粒子の製造方法を提供する。   In order to achieve the above object, the present invention extrudes a thermoplastic resin melted in a resin supply device directly into a cooling medium from a small hole formed in a resin discharge surface of a die attached to the tip of the resin supply device, Thermoplastic by melt extrusion method that cuts the extrudate with a cutter provided in a state of being pressed against the resin discharge surface of the die, and obtains thermoplastic resin particles by cooling and solidifying the extrudate by contact with a cooling medium. In the resin particle manufacturing method, the mass ratio (L1 / L2) of the flow rate (L1) of the cooling medium and the resin discharge amount (L2) is in the range of 40 to 250, and the pressing force of the cutter against the resin discharge surface is 0. Provided is a method for producing thermoplastic resin particles, which is characterized in that thermoplastic resin particles are obtained under conditions of a range of 05 to 2.0 MPa.

本発明の熱可塑性樹脂粒子の製造方法において、冷却媒体の温度が20〜80℃の範囲であることが好ましい。   In the method for producing thermoplastic resin particles of the present invention, the temperature of the cooling medium is preferably in the range of 20 to 80 ° C.

本発明の熱可塑性樹脂粒子の製造方法において、冷却媒体の圧力が0.1〜2.0MPaの範囲であることが好ましい。   In the method for producing thermoplastic resin particles of the present invention, the pressure of the cooling medium is preferably in the range of 0.1 to 2.0 MPa.

また本発明は、樹脂供給装置内で溶融された熱可塑性樹脂に発泡剤を加えて混練し、発泡剤含有溶融樹脂を樹脂供給装置先端に付設されたダイの樹脂吐出面に形成された小孔から直接冷却媒体中に押し出し、前記ダイの樹脂吐出面に押圧された状態で設けられたカッターによって押出物を切断するとともに、押出物を冷却媒体との接触により冷却固化して発泡性熱可塑性樹脂粒子を得る、溶融押出法による発泡性熱可塑性樹脂粒子の製造方法において、冷却媒体の流量(L1)と樹脂吐出量(L2)との質量比(L1/L2)が40〜250の範囲であり、樹脂吐出面に対するカッターの押圧力が0.05〜2.0MPaの範囲となる条件下で発泡性熱可塑性樹脂粒子を得ることを特徴とする発泡性熱可塑性樹脂粒子の製造方法を提供する。   Further, the present invention provides a small hole formed in a resin discharge surface of a die attached to the tip of a resin supply device by adding a foaming agent to a thermoplastic resin melted in a resin supply device and kneading the mixture. The extruded product is extruded directly into a cooling medium from the die and cut by a cutter provided in a state of being pressed against the resin discharge surface of the die, and the extrudate is cooled and solidified by contact with the cooling medium to expand the thermoplastic resin. In the method for producing expandable thermoplastic resin particles by melt extrusion to obtain particles, the mass ratio (L1 / L2) of the flow rate (L1) of the cooling medium and the resin discharge amount (L2) is in the range of 40 to 250. There is provided a method for producing expandable thermoplastic resin particles, wherein expandable thermoplastic resin particles are obtained under a condition that the pressing force of a cutter against a resin discharge surface is in a range of 0.05 to 2.0 MPa.

本発明の発泡性熱可塑性樹脂粒子の製造方法において、冷却媒体の温度が20〜80℃の範囲であることが好ましい。   In the method for producing expandable thermoplastic resin particles of the present invention, the temperature of the cooling medium is preferably in the range of 20 to 80 ° C.

本発明の発泡性熱可塑性樹脂粒子の製造方法において、冷却媒体の圧力が0.1〜2.0MPaの範囲であることが好ましい。   In the method for producing expandable thermoplastic resin particles of the present invention, the pressure of the cooling medium is preferably in the range of 0.1 to 2.0 MPa.

また本発明は、前記熱可塑性樹脂粒子の製造方法によって得られた熱可塑性樹脂粒子を提供する。   Moreover, this invention provides the thermoplastic resin particle obtained by the manufacturing method of the said thermoplastic resin particle.

また本発明は、前記発泡性熱可塑性樹脂粒子の製造方法によって得られた発泡性熱可塑性樹脂粒子を提供する。   Moreover, this invention provides the expandable thermoplastic resin particle obtained by the manufacturing method of the said expandable thermoplastic resin particle.

また本発明は、前記発泡性熱可塑性樹脂粒子を加熱し発泡させて得られた予備発泡粒子を提供する。   The present invention also provides pre-expanded particles obtained by heating and foaming the expandable thermoplastic resin particles.

また本発明は、前記予備発泡粒子を成形型のキャビティに充填し、加熱して型内発泡成形して得られた発泡成形体を提供する。   The present invention also provides a foamed molded article obtained by filling the pre-expanded particles into a cavity of a mold and heating and molding in-mold.

本発明の熱可塑性樹脂粒子の製造方法は、樹脂供給装置内で溶融された熱可塑性樹脂を樹脂供給装置先端に付設されたダイの樹脂吐出面に形成された小孔から直接冷却媒体中に押し出し、前記ダイの樹脂吐出面に押圧された状態で設けられたカッターによって押出物を切断するとともに、押出物を冷却媒体との接触により冷却固化して熱可塑性樹脂粒子を得る際に、冷却媒体の流量(L1)と樹脂吐出量(L2)との質量比(L1/L2)が40〜250の範囲であり、樹脂吐出面に対するカッターの押圧力が0.05〜2.0MPaの範囲となる条件下で熱可塑性樹脂粒子を得ることによって、ダイ小孔の開孔率を高率で維持することができ、熱可塑性樹脂粒子の生産効率を高く維持することができる。
また、異形粒子の発生及び樹脂粒子同士の合着を抑制し得るので、均一で略球状の熱可塑性樹脂粒子を効率よく生産することができる。
The method for producing thermoplastic resin particles of the present invention is such that a thermoplastic resin melted in a resin supply device is extruded directly into a cooling medium from a small hole formed in a resin discharge surface of a die attached to the tip of the resin supply device. When cutting the extrudate with a cutter provided in a state of being pressed against the resin discharge surface of the die, and cooling and solidifying the extrudate by contact with the cooling medium to obtain thermoplastic resin particles, The condition that the mass ratio (L1 / L2) between the flow rate (L1) and the resin discharge amount (L2) is in the range of 40 to 250, and the pressing force of the cutter against the resin discharge surface is in the range of 0.05 to 2.0 MPa. By obtaining the thermoplastic resin particles below, it is possible to maintain a high rate of opening of the die small holes and to maintain high production efficiency of the thermoplastic resin particles.
Moreover, since generation | occurrence | production of irregular-shaped particle | grains and coalescence of resin particles can be suppressed, uniform and substantially spherical thermoplastic resin particles can be produced efficiently.

本発明の発泡性熱可塑性樹脂粒子の製造方法は、樹脂供給装置内で溶融された熱可塑性樹脂に発泡剤を加えて混練し、発泡剤含有溶融樹脂を樹脂供給装置先端に付設されたダイの樹脂吐出面に形成された小孔から直接冷却媒体中に押し出し、前記ダイの樹脂吐出面に押圧された状態で設けられたカッターによって押出物を切断するとともに、押出物を冷却媒体との接触により冷却固化して発泡性熱可塑性樹脂粒子を得る際に、冷却媒体の流量(L1)と樹脂吐出量(L2)との質量比(L1/L2)が40〜250の範囲であり、樹脂吐出面に対するカッターの押圧力が0.05〜2.0MPaの範囲となる条件下で発泡性熱可塑性樹脂粒子を得ることによって、ダイ小孔の開孔率を高率で維持することができ、発泡性熱可塑性樹脂粒子の生産効率を高く維持することができる。また、異形粒子の発生及び樹脂粒子同士の合着を抑制し得るので、均一で略球状の発泡性熱可塑性樹脂粒子を効率よく生産することができる。   The method for producing expandable thermoplastic resin particles according to the present invention includes adding a foaming agent to a thermoplastic resin melted in a resin supply device and kneading the foamed thermoplastic resin particles in a die attached to the tip of the resin supply device. The extrusion is directly extruded into the cooling medium from the small holes formed in the resin discharge surface, and the extrudate is cut by a cutter provided in a state of being pressed against the resin discharge surface of the die, and the extrudate is contacted with the cooling medium. When solidifying by cooling to obtain expandable thermoplastic resin particles, the mass ratio (L1 / L2) of the flow rate (L1) of the cooling medium to the resin discharge amount (L2) is in the range of 40 to 250, and the resin discharge surface By obtaining expandable thermoplastic resin particles under the condition that the pressing force of the cutter against the range of 0.05 to 2.0 MPa, it is possible to maintain a high opening ratio of the die small holes, and foamability Production of thermoplastic resin particles It is possible to maintain high efficiency. Moreover, since generation | occurrence | production of irregular-shaped particle | grains and coalescence of resin particles can be suppressed, uniform and substantially spherical foamable thermoplastic resin particles can be produced efficiently.

溶融押出法による熱可塑性樹脂粒子及び発泡性熱可塑性樹脂粒子の製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus of the thermoplastic resin particle by a melt extrusion method, and an expandable thermoplastic resin particle. 図1の製造装置の要部拡大断面図である。It is a principal part expanded sectional view of the manufacturing apparatus of FIG.

以下、図面を参照して本発明の実施形態を説明する。
本発明の熱可塑性樹脂粒子の製造方法は、樹脂供給装置内で溶融された熱可塑性樹脂を樹脂供給装置先端に付設されたダイの樹脂吐出面に形成された小孔から直接冷却媒体中に押し出し、前記ダイの樹脂吐出面に押圧された状態で設けられたカッターによって押出物を切断するとともに、押出物を冷却媒体との接触により冷却固化して熱可塑性樹脂粒子を得る、溶融押出法による熱可塑性樹脂粒子の製造方法において、冷却媒体の流量(L1)と樹脂吐出量(L2)との質量比(L1/L2)が40〜250の範囲であり、樹脂吐出面に対するカッターの押圧力が0.05〜2.0MPaの範囲となる条件下で熱可塑性樹脂粒子を得ることを特徴とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The method for producing thermoplastic resin particles of the present invention is such that a thermoplastic resin melted in a resin supply device is extruded directly into a cooling medium from a small hole formed in a resin discharge surface of a die attached to the tip of the resin supply device. In addition, the extruded product is cut by a cutter provided while pressed against the resin discharge surface of the die, and the extruded product is cooled and solidified by contact with a cooling medium to obtain thermoplastic resin particles. In the method for producing plastic resin particles, the mass ratio (L1 / L2) between the flow rate of the cooling medium (L1) and the resin discharge amount (L2) is in the range of 40 to 250, and the pressing force of the cutter against the resin discharge surface is 0. It is characterized in that thermoplastic resin particles are obtained under the condition of 0.05 to 2.0 MPa.

本発明の熱可塑性樹脂粒子の製造方法により得られた熱可塑性樹脂粒子は、ほぼ均一な粒径や質量を持った略球状の樹脂粒子であり、様々な用途において使用することができる。例えば、本発明の熱可塑性樹脂粒子は、シード重合法などによって発泡性熱可塑性樹脂粒子を製造する際のシード(核)材料などとして好適に用いられる。   The thermoplastic resin particles obtained by the method for producing thermoplastic resin particles of the present invention are substantially spherical resin particles having a substantially uniform particle size and mass, and can be used in various applications. For example, the thermoplastic resin particles of the present invention are suitably used as a seed (core) material or the like when producing expandable thermoplastic resin particles by a seed polymerization method or the like.

また、本発明の発泡性熱可塑性樹脂粒子の製造方法は、樹脂供給装置内で溶融された熱可塑性樹脂に発泡剤を加えて混練し、発泡剤含有溶融樹脂を樹脂供給装置先端に付設されたダイの樹脂吐出面に形成された小孔から直接冷却媒体中に押し出し、前記ダイの樹脂吐出面に押圧された状態で設けられたカッターによって押出物を切断するとともに、押出物を冷却媒体との接触により冷却固化して発泡性熱可塑性樹脂粒子を得る、溶融押出法による発泡性熱可塑性樹脂粒子の製造方法において、冷却媒体の流量(L1)と樹脂吐出量(L2)との質量比(L1/L2)が40〜250の範囲であり、樹脂吐出面に対するカッターの押圧力が0.05〜2.0MPaの範囲となる条件下で発泡性熱可塑性樹脂粒子を得ることを特徴とする。   Further, in the method for producing expandable thermoplastic resin particles of the present invention, a foaming agent is added to and kneaded with a thermoplastic resin melted in a resin supply device, and the foaming agent-containing molten resin is attached to the tip of the resin supply device. The extrusion is directly extruded into the cooling medium from the small holes formed on the resin discharge surface of the die, and the extrudate is cut by a cutter provided in a state of being pressed against the resin discharge surface of the die. In the method for producing expandable thermoplastic resin particles by melt extrusion, which is cooled and solidified by contact to obtain expandable thermoplastic resin particles, the mass ratio (L1) between the flow rate of the cooling medium (L1) and the resin discharge amount (L2) / L2) is in the range of 40 to 250, and expandable thermoplastic resin particles are obtained under conditions where the pressing force of the cutter against the resin discharge surface is in the range of 0.05 to 2.0 MPa.

本発明において、熱可塑性樹脂の種類は限定されないが、例えばポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、ABS樹脂、AS樹脂等を単独もしくは2種類以上混合して使用することができる。さらに樹脂製品として一旦使用されてから回収して得られた熱可塑性樹脂の回収樹脂を使用することもできる。特に非晶性であるポリスチレン(GPPS)、ハイインパクトポリスチレン(HIPS)などのポリスチレン系樹脂が好適に用いられる。   In the present invention, the type of thermoplastic resin is not limited. For example, a polystyrene resin, a polyethylene resin, a polypropylene resin, a polyester resin, a vinyl chloride resin, an ABS resin, an AS resin, or the like can be used alone or in combination. Can be used. Furthermore, it is possible to use a recovered resin of a thermoplastic resin obtained after being used once as a resin product. In particular, polystyrene resins such as amorphous polystyrene (GPPS) and high impact polystyrene (HIPS) are preferably used.

ポリスチレン系樹脂としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。   Examples of polystyrene resins include homopolymers of styrene monomers such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, or copolymers thereof. A polystyrene-based resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable. Further, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. As, for example, alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl In addition to fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.

また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよく、添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などが挙げられる。また、原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料を用いることができる。また、使用することができるリサイクル原料は、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたもの以外にも、家電製品(例えば、テレビ、冷蔵庫、洗濯機、エアコンなど)や事務用機器(例えば、複写機、ファクシミリ、プリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混練してリペレットしたものを用いることができる。   If a polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foam molded article. Examples thereof include rubber-modified polystyrene resins to which a diene rubbery polymer such as a polymer, ethylene-propylene-nonconjugated diene three-dimensional copolymer is added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given. In addition, as a polystyrene resin as a raw material, a polystyrene resin (virgin polystyrene) that is not a recycled raw material, such as a commercially available ordinary polystyrene resin, a polystyrene resin newly produced by a method such as a suspension polymerization method, or the like is used. In addition to being usable, it is possible to use a recycled material obtained by regenerating a used polystyrene resin foam molded article. As this recycled material, used polystyrene-based resin foam moldings such as fish boxes, household appliance cushioning materials, food packaging trays, etc. are collected, and recycled materials that are regenerated by the limonene dissolution method or heating volume reduction method are used. Can do. Recyclable raw materials that can be used include home appliances (eg, TVs, refrigerators, washing machines, air conditioners) and office work, in addition to those obtained by reprocessing used polystyrene-based resin foam moldings. A non-foamed polystyrene resin molded product that has been separated and collected from an industrial machine (for example, a copying machine, a facsimile machine, a printer, etc.), pulverized, melt-kneaded, and repelletized can be used.

本発明の発泡性熱可塑性樹脂粒子に用いられる発泡剤は、特に限定されないが、例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン等の脂肪族炭化水素、ジメチルエーテル、ジエチルエーテル等のエーテル類、メタノール、エタノール等の各種アルコール類、炭酸ガス、窒素、水等が使用可能である。この内、脂肪族炭化水素が好適であり、更には、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン単独もしくはこれらの混合物がより好適である。また、炭素数5の炭化水素であるノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン単独もしくはこれらの混合物が特に好適である。その中でもイソペンタンとノルマルペンタンとの一方又は両方の混合物であることが好ましい。また、前記炭素数5の炭化水素を主体とし、沸点が20℃以下であり、炭素数5の炭化水素以外の発泡剤(例えばノルマルブタン、イソブタン、プロパン、炭酸ガス等)を含んでいてもよい。
この発泡剤の添加量は、熱可塑性樹脂100質量部に対し1〜15質量部の範囲が好ましく、1〜10質量部の範囲がより好ましく、2〜8質量部の範囲が特に好ましい。
The foaming agent used in the foamable thermoplastic resin particles of the present invention is not particularly limited, but examples thereof include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, and cyclopentane, dimethyl ether, diethyl ether, and the like. Ethers, various alcohols such as methanol and ethanol, carbon dioxide, nitrogen, water and the like can be used. Of these, aliphatic hydrocarbons are preferred, and normal butane, isobutane, normal pentane, isopentane alone or a mixture thereof is more preferred. Further, normal pentane, isopentane, neopentane, cyclopentane, cyclopentadiene alone or a mixture thereof, which is a hydrocarbon having 5 carbon atoms, is particularly suitable. Of these, a mixture of one or both of isopentane and normal pentane is preferable. Further, it mainly comprises the hydrocarbon having 5 carbon atoms, has a boiling point of 20 ° C. or less, and may contain a blowing agent other than the hydrocarbon having 5 carbon atoms (for example, normal butane, isobutane, propane, carbon dioxide gas, etc.). .
The amount of the foaming agent added is preferably 1 to 15 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 8 parts by mass with respect to 100 parts by mass of the thermoplastic resin.

本発明において、前記熱可塑性樹脂には、発泡核剤として、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の無機又は有機微粉末を添加することが望ましい。前記発泡核剤の添加量は、熱可塑性樹脂100質量部に対し1.5質量部以下が好ましく、0.1〜1.0質量部の範囲がより好ましい。   In the present invention, the thermoplastic resin contains, as a foam nucleating agent, inorganic or organic fine particles such as talc, calcium silicate, synthetically or naturally produced silicon dioxide, ethylene bis-stearic acid amide, and methacrylic acid ester copolymers. It is desirable to add powder. The amount of the foam nucleating agent added is preferably 1.5 parts by mass or less, more preferably 0.1 to 1.0 part by mass with respect to 100 parts by mass of the thermoplastic resin.

本発明において、前記熱可塑性樹脂には、発泡剤及び発泡核剤の他に、得られる予備発泡粒子の物性を損なわない範囲内において、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよい。   In the present invention, the thermoplastic resin includes, in addition to the foaming agent and the foaming nucleating agent, a binding inhibitor, a bubble regulator, a crosslinking agent, a filler, a difficult agent within the range that does not impair the physical properties of the obtained prefoamed particles. You may add additives, such as a flame retardant, a flame-retardant adjuvant, a lubricant, and a coloring agent.

図1は、本発明の熱可塑性樹脂粒子の製造方法、及び発泡性熱可塑性樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図である。本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられ多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水等の冷却媒体(以下、冷却水と記す)が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる樹脂粒子を冷却水と分離すると共に脱水乾燥して樹脂粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された樹脂粒子を貯留する貯留容器11とを備えて構成されている。
図1に示す製造装置を用い、熱可塑性樹脂粒子の製造方法を実施する場合は、高圧ポンプ4を使用せず、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入しない。一方、発泡性熱可塑性樹脂の製造方法を実施する場合は、高圧ポンプ4を使用して、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する。
FIG. 1 is a configuration diagram illustrating an example of a production apparatus used in the method for producing thermoplastic resin particles and the method for producing foamable thermoplastic resin particles of the present invention. The manufacturing apparatus of this example includes an extruder 1 as a resin supply device, a die 2 attached to the tip of the extruder 1 and having a large number of small holes, and a raw material supply hopper 3 for charging a resin raw material into the extruder 1. And a high pressure pump 4 for press-fitting the foaming agent into the molten resin in the extruder 1 through the foaming agent supply port 5 and a resin discharge surface in which a small hole of the die 2 is made to contact the cooling water, A cutting chamber 7 in which a cooling medium such as cooling water (hereinafter referred to as cooling water) is circulated and supplied into the chamber, and a rotation inside the cutting chamber 7 is provided so that the resin extruded from the small hole of the die 2 can be cut. A cutter 6, a dehydrating dryer 10 having a solid-liquid separation function for separating resin particles carried along with the flow of cooling water from the cutting chamber 7 from the cooling water and dehydrating and drying to obtain resin particles; To dehydrating dryer 10 with separation function A water tank 8 for storing the separated cooling water, a high-pressure pump 9 for sending the cooling water in the water tank 8 to the cutting chamber 7, and a storage for storing the resin particles dehydrated and dried by the dehydration dryer 10 with a solid-liquid separation function. And a container 11.
When the manufacturing apparatus shown in FIG. 1 is used and the thermoplastic resin particle manufacturing method is performed, the high-pressure pump 4 is not used, and the foaming agent is not pressed into the molten resin in the extruder 1 through the foaming agent supply port 5. On the other hand, when implementing the manufacturing method of a foamable thermoplastic resin, the foaming agent is press-fitted into the molten resin in the extruder 1 through the foaming agent supply port 5 using the high-pressure pump 4.

なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。   As the extruder 1, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.

図2は、図1に示す製造装置におけるダイ2及びカッティング室7の部分を拡大・断面視した要部拡大断面図である。
押出機1の先端に取り付けられたダイ2は、複数本の樹脂流路22が形成され、それぞれの樹脂流路22の先端部には、多数の小孔21が形成されており、押出機1から送られた溶融樹脂20がダイ2に圧入され、各樹脂流路22を通り、さらに多数の小孔21を通過して、ダイ2の樹脂吐出面23側から押し出されるようになっている。
小孔21から溶融樹脂20が押し出される樹脂吐出面23は、室内に冷却水が循環供給されるカッティング室7につながっている。このカッティング室7には、カッター6が回転可能に配置されている。このカッター6の切刃先端は、樹脂吐出面23に接触し、且つ押圧力Pをもって押圧された状態になっている。
ダイ2の樹脂吐出面23の適所、例えば中心部には、断熱材24を設け、冷却水によってダイ2が過度に冷却されて小孔21が固化した樹脂によって塞がれ、開孔率が低下してしまうことを防ぐことが好ましい。また、ダイ2には、複数のヒータ25,26,27,28と温度センサ29とが挿入され、ダイ2を所定温度に保温できるようになっている。
FIG. 2 is an enlarged cross-sectional view of a main part in which the die 2 and the cutting chamber 7 in the manufacturing apparatus shown in FIG.
The die 2 attached to the front end of the extruder 1 has a plurality of resin flow paths 22, and a plurality of small holes 21 are formed at the front ends of the respective resin flow paths 22. The molten resin 20 fed from is pressed into the die 2, passes through each resin flow path 22, passes through a large number of small holes 21, and is extruded from the resin discharge surface 23 side of the die 2.
The resin discharge surface 23 through which the molten resin 20 is pushed out from the small hole 21 is connected to the cutting chamber 7 in which cooling water is circulated and supplied into the chamber. A cutter 6 is rotatably disposed in the cutting chamber 7. The cutting edge tip of the cutter 6 is in contact with the resin discharge surface 23 and pressed with a pressing force P.
A heat insulating material 24 is provided at an appropriate place of the resin discharge surface 23 of the die 2, for example, in the center portion, and the die 2 is excessively cooled by cooling water and the small holes 21 are blocked by the solidified resin, and the hole area ratio is reduced. It is preferable to prevent this. A plurality of heaters 25, 26, 27, and 28 and a temperature sensor 29 are inserted into the die 2 so that the die 2 can be kept at a predetermined temperature.

図1及び図2に示す製造装置を用い、発泡性熱可塑性樹脂粒子を製造するには、まず、原料のポリスチレン系樹脂などの熱可塑性樹脂、発泡核剤、必要に応じて添加される難燃剤などの所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料の熱可塑性樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。   In order to produce expandable thermoplastic resin particles using the production apparatus shown in FIGS. 1 and 2, first, a thermoplastic resin such as polystyrene resin as a raw material, a foam nucleating agent, and a flame retardant added as necessary A desired additive such as the above is weighed and charged into the extruder 1 from the raw material supply hopper 3. The raw material thermoplastic resin may be mixed in advance in the form of pellets or granules and then charged from one raw material supply hopper. For example, when a plurality of lots are used, the supply amount for each lot may be reduced. A plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.

押出機1内に熱可塑性樹脂、発泡助剤、その他の添加剤を供給後、樹脂を加熱溶融し、その溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入して溶融樹脂20に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融樹脂20をさらに混練しながら先端側に移動させ、溶融樹脂20を押出機1の先端に付設したダイ2の小孔21から押し出す。   After supplying thermoplastic resin, foaming aid, and other additives into the extruder 1, the resin is heated and melted, and foamed by the high-pressure pump 4 from the foaming agent supply port 5 while transferring the molten resin to the die 2 side. The blowing agent is mixed into the molten resin 20 by press-fitting the agent, and the molten resin 20 is moved to the tip side while being further kneaded through a foreign matter removing screen provided in the extruder 1 as necessary. Is extruded from the small hole 21 of the die 2 attached to the tip of the extruder 1.

ダイ2の小孔21が穿設された樹脂吐出面23は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融樹脂20を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融樹脂20は粒状に切断され、冷却水と接触して急冷され、発泡性熱可塑性樹脂粒子となる。   The resin discharge surface 23 in which the small hole 21 of the die 2 is formed is disposed in the cutting chamber 7 in which cooling water is circulated and supplied into the chamber, and the resin extruded from the small hole is placed in the cutting chamber 7. A cutter 6 is rotatably provided so that it can be cut. When the molten resin 20 to which the foaming agent has been added is extruded from the small hole of the die 2 attached to the tip of the extruder 1, the molten resin 20 is cut into granules, rapidly cooled in contact with cooling water, and expandable thermoplastic resin particles It becomes.

本発明の熱可塑性樹脂粒子の製造方法、及び発泡性熱可塑性樹脂粒子の製造方法において、冷却水の流量(L1)と樹脂吐出量(L2)との質量比(L1/L2)は、40〜250の範囲とする。この質量比(L1/L2)は、50〜150の範囲とすることが好ましく、60〜120の範囲とすることがより好ましい。この質量比(L1/L2)が40未満であると、切断された樹脂粒子の冷却状態が悪くなって、樹脂粒子同士が合着し易くなってしまう。この質量比(L1/L2)が250を超えると、ダイ2の樹脂吐出面23が過度に冷却されることにより、小孔21が固化した樹脂によって塞がれ、開孔率が低下してしまう。   In the method for producing thermoplastic resin particles and the method for producing expandable thermoplastic resin particles of the present invention, the mass ratio (L1 / L2) between the flow rate of cooling water (L1) and the amount of discharged resin (L2) is 40 to 40. The range is 250. This mass ratio (L1 / L2) is preferably in the range of 50 to 150, and more preferably in the range of 60 to 120. When the mass ratio (L1 / L2) is less than 40, the cooled state of the cut resin particles is deteriorated, and the resin particles are easily bonded to each other. When the mass ratio (L1 / L2) exceeds 250, the resin discharge surface 23 of the die 2 is excessively cooled, so that the small holes 21 are blocked by the solidified resin, and the hole area ratio is reduced. .

本発明の熱可塑性樹脂粒子の製造方法、及び発泡性熱可塑性樹脂粒子の製造方法において、樹脂吐出面23に対するカッター6の押圧力Pは、0.05〜2.0MPaの範囲とする。この押圧力Pは、0.10〜1.2MPaの範囲が好ましく、0.2〜0.8MPaの範囲がより好ましい。この押圧力Pが0.05MPa未満であると、冷却水の供給水圧や樹脂供給圧力などによってカッター6が樹脂吐出面23から離れ易くなり、押出物の安定した切断ができなくなり、異形粒子や合着粒子の発生率が高くなる。この押圧力Pが2.0MPaを超えると、樹脂吐出面23に対するカッター6の摩擦抵抗が大きくなり、カッター6の回転が不安定となり、得られる樹脂粒子の大きさにバラツキを生じ易くなる。   In the method for producing thermoplastic resin particles and the method for producing foamable thermoplastic resin particles of the present invention, the pressing force P of the cutter 6 against the resin discharge surface 23 is set in the range of 0.05 to 2.0 MPa. The pressing force P is preferably in the range of 0.10 to 1.2 MPa, and more preferably in the range of 0.2 to 0.8 MPa. If the pressing force P is less than 0.05 MPa, the cutter 6 is likely to be separated from the resin discharge surface 23 due to the supply water pressure of the cooling water, the resin supply pressure, etc., and the extrudate cannot be stably cut. Incidence generation rate increases. When the pressing force P exceeds 2.0 MPa, the frictional resistance of the cutter 6 against the resin discharge surface 23 increases, the rotation of the cutter 6 becomes unstable, and the size of the obtained resin particles tends to vary.

本発明の熱可塑性樹脂粒子の製造方法、及び発泡性熱可塑性樹脂粒子の製造方法において、冷却水の温度は、20〜80℃の範囲とすることが好ましく、25〜70℃の範囲がより好ましく、30〜60℃の範囲がさらに好ましい。   In the method for producing thermoplastic resin particles and the method for producing expandable thermoplastic resin particles of the present invention, the temperature of the cooling water is preferably in the range of 20 to 80 ° C, more preferably in the range of 25 to 70 ° C. A range of 30 to 60 ° C. is more preferable.

本発明の熱可塑性樹脂粒子の製造方法、及び発泡性熱可塑性樹脂粒子の製造方法において、冷却水の圧力は、0.1〜2.0MPaの範囲とすることが好ましく、0.15〜1.8MPaの範囲がより好ましく、0.2〜1.6MPaの範囲がさらに好ましい。   In the method for producing thermoplastic resin particles and the method for producing expandable thermoplastic resin particles of the present invention, the pressure of the cooling water is preferably in the range of 0.1 to 2.0 MPa, and 0.15 to 1. The range of 8 MPa is more preferable, and the range of 0.2 to 1.6 MPa is more preferable.

本発明の熱可塑性樹脂粒子の製造方法、及び発泡性熱可塑性樹脂粒子の製造方法において、ダイ温度(T1)が、樹脂温度(T2)よりも高い(T1>T2)ことが好ましく、樹脂温度よりも5〜150℃高くすることがより好ましく、30〜120℃高くすることがさらに好ましい。   In the method for producing the thermoplastic resin particles and the method for producing the foamable thermoplastic resin particles of the present invention, the die temperature (T1) is preferably higher than the resin temperature (T2) (T1> T2), more preferably than the resin temperature. Is preferably 5 to 150 ° C., more preferably 30 to 120 ° C.

形成された発泡性熱可塑性樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで発泡性熱可塑性樹脂粒子を冷却水と分離すると共に脱水乾燥する。乾燥された発泡性熱可塑性樹脂粒子は、貯留容器11に貯留される。   The formed expandable thermoplastic resin particles are transferred from the cutting chamber 7 to the flow of cooling water and carried to the dehydrating dryer 10 with a solid-liquid separation function, where the expandable thermoplastic resin particles are separated from the cooling water. And dehydrated and dried. The dried foamable thermoplastic resin particles are stored in the storage container 11.

本発明の発泡性熱可塑性樹脂粒子の製造方法は、樹脂供給装置内で溶融された熱可塑性樹脂に発泡剤を加えて混練し、発泡剤含有溶融樹脂を樹脂供給装置先端に付設されたダイの樹脂吐出面に形成された小孔から直接冷却媒体中に押し出し、前記ダイの樹脂吐出面に押圧された状態で設けられたカッターによって押出物を切断するとともに、押出物を冷却媒体との接触により冷却固化して発泡性熱可塑性樹脂粒子を得る際に、冷却媒体の流量(L1)と樹脂吐出量(L2)との質量比(L1/L2)が40〜250の範囲であり、樹脂吐出面に対するカッターの押圧力が0.05〜2.0MPaの範囲となる条件下で発泡性熱可塑性樹脂粒子を得ることによって、ダイ小孔の開孔率を高率で維持することができ、発泡性熱可塑性樹脂粒子の生産効率を高く維持することができる。また、異形粒子の発生及び樹脂粒子同士の合着を抑制し得るので、均一で略球状の発泡性熱可塑性樹脂粒子を効率よく生産することができる。   The method for producing expandable thermoplastic resin particles according to the present invention includes adding a foaming agent to a thermoplastic resin melted in a resin supply device and kneading the foamed thermoplastic resin particles in a die attached to the tip of the resin supply device. The extrusion is directly extruded into the cooling medium from the small holes formed in the resin discharge surface, and the extrudate is cut by a cutter provided in a state of being pressed against the resin discharge surface of the die, and the extrudate is contacted with the cooling medium. When solidifying by cooling to obtain expandable thermoplastic resin particles, the mass ratio (L1 / L2) of the flow rate (L1) of the cooling medium to the resin discharge amount (L2) is in the range of 40 to 250, and the resin discharge surface By obtaining expandable thermoplastic resin particles under the condition that the pressing force of the cutter against the range of 0.05 to 2.0 MPa, it is possible to maintain a high opening ratio of the die small holes, and foamability Production of thermoplastic resin particles It is possible to maintain high efficiency. Moreover, since generation | occurrence | production of irregular-shaped particle | grains and coalescence of resin particles can be suppressed, uniform and substantially spherical foamable thermoplastic resin particles can be produced efficiently.

本発明の発泡性熱可塑性樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、予備発泡粒子とする。この予備発泡粒子は、製造するべき発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度は限定されないが、通常は0.010〜0.10g/cmの範囲内とし、0.015〜0.050g/cmの範囲内とするのが好ましい。 The foamable thermoplastic resin particles of the present invention are pre-foamed by heating with steam heating or the like using a well-known apparatus and technique in the field of foamed resin molding production to obtain pre-foamed particles. The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the foamed molded product to be manufactured. In the present invention, its bulk density is not limited, usually in the range of 0.010~0.10g / cm 3, preferably in the range of 0.015~0.050g / cm 3.

なお、本発明において予備発泡粒子の嵩密度とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<予備発泡粒子の嵩密度>
先ず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積VcmをJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて予備発泡粒子の嵩密度を測定する。
嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
In the present invention, the bulk density of the pre-expanded particles refers to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
First, Wg was sampled from pre-expanded particles as a measurement sample, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was measured using an apparent density measuring instrument based on JIS K6911. The bulk density of the pre-expanded particles is measured based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)

<予備発泡粒子の嵩発泡倍数>
また、予備発泡粒子の嵩発泡倍数は、次式により算出される数値である。
嵩発泡倍数=1/嵩密度(g/cm
<Bulk expansion ratio of pre-expanded particles>
Moreover, the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
Bulk foaming factor = 1 / bulk density (g / cm 3 )

前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、該予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、熱可塑性樹脂発泡成形体(以下、発泡成形体と記す)を製造する。
本発明の発泡成形体の密度は特に限定されないが、通常は0.010〜0.10g/cmの範囲内とし、0.015〜0.050g/cmの範囲内とするのが好ましい。
The pre-expanded particles are filled in a cavity of a mold using a well-known apparatus and method in the field of manufacturing a foamed resin molded body, heated by steam heating or the like, and subjected to in-mold foam molding, A plastic resin foam molded article (hereinafter referred to as a foam molded article) is produced.
Although the density of the foamed molded article of the present invention is not particularly limited, usually in the range of 0.010~0.10g / cm 3, preferably in the range of 0.015~0.050g / cm 3.

なお、本発明において発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した発泡成形体密度のことである。
<発泡成形体の密度>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
In the present invention, the density of the foamed molded product refers to the density of the foamed molded product measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Density of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test piece condition adjustment and measurement test pieces were cut out from samples that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C. ± 2 ° C. × 50% ± 5% or 27 ° C. ± 2 ° C. × 65% ± 5%. It has been left for more than an hour.

<発泡成形体の発泡倍数>
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数=1/密度(g/cm
<Folding multiple of foamed molded product>
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )

[実施例1]
(発泡性熱可塑性樹脂粒子の製造)
熱可塑性樹脂として重量平均分子量(Mw)20万のポリスチレン樹脂(東洋スチレン社製、商品名「HRM10N」)100質量部に対し、微粉末タルク0.3質量部を加え、これらを口径90mmの単軸押出機に、連続供給した。押出機内温度としては、最高温度210℃に設定し、樹脂を溶融させた後、発泡剤として樹脂100質量部に対して5質量部のペンタン(イソペンタン:ノルマルペンタン=20:80(質量比))を押出機の途中から圧入した。押出機内で樹脂と発泡剤を混練するとともに冷却し、押出機の先端からダイに流入してきた溶融樹脂の温度を180℃、ダイの温度を溶融樹脂の温度より105℃高い温度とし、ダイの樹脂導入部の圧力を12MPaに保持して、直径0.6mmでランド長さが3.0mmの小孔が200個配置されたダイより、このダイの吐出側に連結され、冷却水の温度40℃、冷却水の圧力0.5MPa、冷却水の流量18000(kg/hr)の冷却水が循環するカッティング室内に、発泡剤含有溶融樹脂を樹脂吐出量170(kg/hr)で押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターにて押出物を切断した。冷却水の流量/樹脂吐出量の質量比は106であった。カッターの樹脂吐出面に対する押圧力は、0.4MPaに設定した。溶融樹脂の温度は図2に示す押出機1の出口からダイ2の入口までの間で測定し、ダイの温度は図2に示すダイ2の厚みの約1/2厚み部分に設けた熱電対の温度センサ29の先端部で測定した。切断した粒子を循環する冷却水で冷却しながら、粒子分離器に搬送し、粒子を冷却水と分離した。さらに、捕集した粒子を脱水・乾燥して発泡性ポリスチレン系樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子は、変形、ヒゲ等の発生もなく、ほぼ完全な球体であり、平均粒径は約1.1mmであった。
得られた発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.15質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部を発泡性ポリスチレン系樹脂粒子の表面全面に均一に被覆した。
[Example 1]
(Manufacture of foamable thermoplastic resin particles)
As a thermoplastic resin, 0.3 parts by mass of fine powder talc is added to 100 parts by mass of a polystyrene resin having a weight average molecular weight (Mw) of 200,000 (trade name “HRM10N”, manufactured by Toyo Styrene Co., Ltd.). Continuous supply to the screw extruder. As the extruder internal temperature, the maximum temperature was set to 210 ° C., and after the resin was melted, 5 parts by weight of pentane (isopentane: normal pentane = 20: 80 (mass ratio)) as a blowing agent with respect to 100 parts by weight of the resin. Was press-fitted from the middle of the extruder. The resin and foaming agent are kneaded and cooled in the extruder, the temperature of the molten resin flowing into the die from the tip of the extruder is 180 ° C., the die temperature is 105 ° C. higher than the temperature of the molten resin, and the die resin The pressure of the introduction portion is maintained at 12 MPa, and a die having 200 holes having a diameter of 0.6 mm and a land length of 3.0 mm is connected to the discharge side of the die, and the temperature of the cooling water is 40 ° C. In addition, the foaming agent-containing molten resin is extruded at a resin discharge rate of 170 (kg / hr) into a cutting chamber in which cooling water is circulated at a cooling water pressure of 0.5 MPa and a cooling water flow rate of 18000 (kg / hr). The extrudate was cut with a high-speed rotary cutter having 10 blades in the circumferential direction. The mass ratio of the cooling water flow rate / resin discharge amount was 106. The pressing force against the resin discharge surface of the cutter was set to 0.4 MPa. The temperature of the molten resin is measured between the outlet of the extruder 1 shown in FIG. 2 and the inlet of the die 2, and the die temperature is a thermocouple provided at a thickness about half the thickness of the die 2 shown in FIG. 2. The temperature was measured at the tip of the temperature sensor 29. While cooling the cut particles with circulating cooling water, the particles were conveyed to a particle separator to separate the particles from the cooling water. Further, the collected particles were dehydrated and dried to obtain expandable polystyrene resin particles. The obtained expandable polystyrene resin particles were almost perfect spheres without the occurrence of deformation or beard, and the average particle size was about 1.1 mm.
Polyethylene glycol 0.03 parts by mass, zinc stearate 0.15 parts by mass, stearic acid monoglyceride 0.05 parts by mass, hydroxystearic acid triglyceride 0.05 parts by mass with respect to 100 parts by mass of the obtained expandable polystyrene resin particles. The part was uniformly coated on the entire surface of the expandable polystyrene resin particles.

(発泡成形体の製造)
前記の通り製造した発泡性ポリスチレン系樹脂粒子は、15℃の保冷庫中に入れ、72時間に亘って放置した後、円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.020g/cm(嵩発泡倍数50倍)であった。
続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ50mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、その後、成形型のキャビティ内を水蒸気でゲージ圧0.08MPaの圧力で20秒間に亘って加熱し、その後、成形型のキャビティ内の圧力が0.01MPaになるまで冷却し、その後成形型を開き、長さ400mm×幅300mm×高さ50mmの長方形状の発泡成形体を取り出した。得られた発泡成形体は、密度0.020g/cm(発泡倍数50倍)であった。
前述した通りの方法で製造した実施例1の発泡性ポリスチレン系樹脂粒子の製造時、以下の<開孔率>、<合着粒子の割合>についての評価試験を行い、それぞれの結果に基づいて<総合評価の判定基準>に基づいて評価した。その結果を表1に記す。
(Manufacture of foam moldings)
The expandable polystyrene resin particles produced as described above are placed in a 15 ° C. cool box and allowed to stand for 72 hours, and then supplied to a cylindrical batch type pre-foaming machine to generate steam with a blowing pressure of 0.05 MPa. To obtain pre-expanded particles. The obtained pre-expanded particles had a bulk density of 0.020 g / cm 3 (bulk expansion ratio: 50 times).
Subsequently, the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 50 mm. Thereafter, the inside of the cavity of the mold is heated with water vapor at a gauge pressure of 0.08 MPa for 20 seconds, and then cooled until the pressure in the cavity of the mold reaches 0.01 MPa. Opened, a rectangular foam molded body having a length of 400 mm, a width of 300 mm, and a height of 50 mm was taken out. The obtained foamed molded article had a density of 0.020 g / cm 3 (foaming factor: 50 times).
At the time of producing the expandable polystyrene resin particles of Example 1 produced by the method as described above, an evaluation test on the following <aperture ratio> and <ratio of coalesced particles> was performed, and based on the respective results. It evaluated based on <judgment criteria of comprehensive evaluation>. The results are shown in Table 1.

<開孔率>
発泡性樹脂粒子の製造開始から1時間経過後、ダイの樹脂吐出面を調べ、小孔の開孔率を次のように算出した。
開孔率(ダイ表面の小孔の押出時開孔率)=開孔数/ダイ全小孔数×100(%)
吐出量(kg/hr)=1時間当たり、カッターで切り出される全発泡性樹脂粒子の総質量
=開孔数×切り出し個数×1粒質量
=開孔数×カッター刃数×カッター回転数×1粒質量
よって開孔数は、
開孔数=吐出量(kg/hr)/〔カッター刃数×カッター回転数(rph)×1粒質量(kg/個)となるため、開孔率は次式で算出できる。
開孔率(E)=開孔数/全小孔数×100(%)
=〔Q/(N×R×60×(M/100)/1000)〕/H×100(%)
(式中、Qは吐出量(kg/hr)、Nはカッター刃の枚数、Rはカッター回転数(rpm)、Mは100粒質量(g)(発泡性樹脂粒子から任意の100粒を選び、最小目盛0.000lgの電子天秤で計量した100粒質量とした、Hはダイの全小孔数をそれぞれ表す。)
開孔率は以下の基準で評価した。
良好(○) : 70%以上
やや良好(△) : 50%以上70%未満
不良(×) : 50%未満
<Aperture ratio>
One hour after the start of the production of the expandable resin particles, the resin discharge surface of the die was examined, and the aperture ratio of small holes was calculated as follows.
Opening rate (opening rate during extrusion of small holes on the die surface) = number of holes / total number of small holes of the die × 100 (%)
Discharge rate (kg / hr) = total mass of all expandable resin particles cut out by a cutter per hour = number of holes × number of cuts × 1 particle mass = number of holes × number of cutter blades × number of cutter rotations × 1 particle The number of apertures by mass is
Since the number of holes = discharge amount (kg / hr) / [number of cutter blades × cutter rotation speed (rph) × 1 grain mass (kg / piece), the hole area ratio can be calculated by the following equation.
Opening ratio (E) = number of holes / total number of small holes × 100 (%)
= [Q / (N × R × 60 × (M / 100) / 1000)] / H × 100 (%)
(In the formula, Q is the discharge amount (kg / hr), N is the number of cutter blades, R is the number of revolutions of the cutter (rpm), M is 100 grains mass (g) (choose any 100 grains from foamable resin particles) The mass of 100 grains weighed with an electronic balance having a minimum graduation of 0.000 lg, H represents the total number of small holes in the die.)
The hole area ratio was evaluated according to the following criteria.
Good (◯): 70% or more Slightly good (△): 50% or more and less than 70% Defect (x): Less than 50%

<合着粒子の割合>
任意に選んだ発泡性樹脂粒子約1gを電子天秤にて精秤し質量を求めた(W1)。そのなかから2個以上合着している粒子を選別し、同様に電子天秤にて精秤して質量(W2)を求めて次式により算出した。
合着粒子率=W2/W1×100(%)
合着粒子は以下の基準で評価した。
良好(○) : 0.5%未満
やや良好(△) : 0.5以上、1.0%未満
不良(×) : 1.0%以上
<Ratio of coalescing particles>
About 1 g of the arbitrarily selected expandable resin particles was precisely weighed with an electronic balance to determine the mass (W1). Among them, two or more bonded particles were selected and similarly weighed with an electronic balance to determine the mass (W2) and calculated according to the following formula.
Fused particle ratio = W2 / W1 × 100 (%)
The coalesced particles were evaluated according to the following criteria.
Good (◯): Less than 0.5% Slightly good (△): 0.5 or more, less than 1.0% Defect (x): 1.0% or more

<総合評価の判定基準>
特に良好(◎) : 開孔率、合着率の両方が○
良好(○) : 開孔率、合着率のいずれか一つが○又は△或いは両方とも△
不良(×) : 開孔率、合着率のいずれか一つが×或いは両方とも×
<Criteria for comprehensive evaluation>
Particularly good (◎): Both the open area ratio and the coalescence ratio are ○
Good (O): Either one of the open area ratio or the bonding ratio is O or Δ, or both are Δ
Defect (x): Either one of the hole area ratio or the bonding rate is x or both are x

[実施例2]
冷却水圧力を1.0MPaに変更した以外は実施例1と同様に実施した。発泡性ポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表1に記す。
[Example 2]
The same operation as in Example 1 was performed except that the cooling water pressure was changed to 1.0 MPa. During the production of the expandable polystyrene resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 1.

[実施例3]
冷却水圧力を1.7MPaに変更した以外は実施例1と同様に実施した。発泡性ポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表1に記す。
[Example 3]
The same operation as in Example 1 was performed except that the cooling water pressure was changed to 1.7 MPa. During the production of the expandable polystyrene resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 1.

[実施例4]
カッターの押圧力を0.1MPaに変更した以外は実施例1と同様に実施した。発泡性ポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表1に記す。
[Example 4]
It implemented similarly to Example 1 except having changed the pressing force of the cutter into 0.1 MPa. During the production of the expandable polystyrene resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 1.

[実施例5]
カッターの押圧力を0.2MPaに変更した以外は実施例1と同様に実施した。発泡性ポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表1に記す。
[Example 5]
It implemented similarly to Example 1 except having changed the pressing force of the cutter into 0.2 MPa. During the production of the expandable polystyrene resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 1.

[実施例6]
カッターの押圧力を1.2MPaに変更した以外は実施例1と同様に実施した。発泡性ポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表1に記す。
[Example 6]
It implemented similarly to Example 1 except having changed the pressing force of the cutter into 1.2 MPa. During the production of the expandable polystyrene resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 1.

[実施例7]
カッターの押圧力を0.8MPaに変更した以外は実施例1と同様に実施した。発泡性ポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表1に記す。
[Example 7]
It implemented similarly to Example 1 except having changed the pressing force of the cutter into 0.8 MPa. During the production of the expandable polystyrene resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 1.

[実施例8]
発泡剤を使用しないこと以外は、実施例1と同様に実施し、発泡剤を含まないポリスチレン系樹脂粒子を得た。このポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表2に記す。
[Example 8]
Except not using a foaming agent, it implemented similarly to Example 1 and obtained the polystyrene-type resin particle which does not contain a foaming agent. During the production of the polystyrene-based resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 2.

[実施例9]
熱可塑性樹脂としてエチレン−酢酸ビニル共重合体(旭化成ケミカルズ社製、製品名「サンテックEF0510」)を使用し、樹脂温度を250℃、冷却媒体の温度を60℃に変更したこと以外は、実施例8と同様に実施し、熱可塑性樹脂粒子を得た。この熱可塑性樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表2に記す。
[Example 9]
Except that ethylene-vinyl acetate copolymer (manufactured by Asahi Kasei Chemicals Corporation, product name “Suntech EF0510”) was used as the thermoplastic resin, the resin temperature was changed to 250 ° C., and the temperature of the cooling medium was changed to 60 ° C. In the same manner as in No. 8, thermoplastic resin particles were obtained. At the time of production of the thermoplastic resin particles, evaluation tests were conducted on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 2.

[実施例10]
熱可塑性樹脂としてポリプロピレン(プライムポリマー社製、製品名「F−744NP」)を使用し、樹脂温度を260℃、冷却媒体の温度を60℃に変更したこと以外は、実施例8と同様に実施し、熱可塑性樹脂粒子を得た。この熱可塑性樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表2に記す。
[Example 10]
Performed in the same manner as in Example 8 except that polypropylene (product name “F-744NP” manufactured by Prime Polymer Co., Ltd.) was used as the thermoplastic resin, the resin temperature was changed to 260 ° C., and the temperature of the cooling medium was changed to 60 ° C. Thus, thermoplastic resin particles were obtained. At the time of production of the thermoplastic resin particles, evaluation tests were conducted on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 2.

[比較例1]
冷却水の流量を6000kg/hrとし、冷却水の流量/樹脂吐出量の質量比を35に変更した以外は実施例1と同様に実施した。発泡性ポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表3に記す。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the cooling water flow rate was 6000 kg / hr and the mass ratio of the cooling water flow rate / resin discharge amount was changed to 35. During the production of the expandable polystyrene resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 3.

[比較例2]
カッターの押圧力を0.04MPaに変更した以外は実施例1と同様に実施した。発泡性ポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表3に記す。
[Comparative Example 2]
The same operation as in Example 1 was performed except that the pressing force of the cutter was changed to 0.04 MPa. During the production of the expandable polystyrene resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 3.

[比較例3]
カッターの押圧力を2.5MPaに変更した以外は実施例1と同様に実施した。発泡性ポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表3に記す。
比較例3では、カッターの押圧力による負荷により、押出機が停止し、連続運転が困難であった。
[Comparative Example 3]
The same operation as in Example 1 was performed except that the pressing force of the cutter was changed to 2.5 MPa. During the production of the expandable polystyrene resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 3.
In Comparative Example 3, the extruder stopped due to the load due to the pressing force of the cutter, and continuous operation was difficult.

[比較例4]
冷却水の流量を44200kg/hrとし、冷却水の流量/樹脂吐出量の質量比を260に変更した以外は実施例1と同様に実施した。発泡性ポリスチレン系樹脂粒子の製造時、実施例1と同様に開孔率、合着粒子の割合について評価試験を行い、それぞれの結果に基づいて総合評価した。その結果を表3に記す。
[Comparative Example 4]
The same procedure as in Example 1 was performed except that the cooling water flow rate was 44200 kg / hr and the mass ratio of the cooling water flow rate / resin discharge amount was changed to 260. During the production of the expandable polystyrene resin particles, an evaluation test was performed on the porosity and the ratio of coalesced particles in the same manner as in Example 1, and comprehensive evaluation was performed based on the respective results. The results are shown in Table 3.

Figure 0006043562
Figure 0006043562

Figure 0006043562
Figure 0006043562

Figure 0006043562
Figure 0006043562

表1〜表3の結果より、冷却水の流量/樹脂吐出量との質量比が40〜250の範囲であり、樹脂吐出面に対するカッターの押圧力が0.05〜2.0MPaの範囲となる条件下で熱可塑性樹脂粒子を製造した、本発明に係る実施例1〜10は、ダイ小孔の開孔率を高率で維持することができ、熱可塑性樹脂粒子の生産効率を高く維持することができた。
また、異形粒子の発生及び樹脂粒子同士の合着を抑制し得るので、均一で略球状の熱可塑性樹脂粒子を効率よく生産することができた。
From the results of Tables 1 to 3, the mass ratio of the cooling water flow rate / resin discharge amount is in the range of 40 to 250, and the pressing force of the cutter against the resin discharge surface is in the range of 0.05 to 2.0 MPa. Examples 1 to 10 according to the present invention, in which thermoplastic resin particles were produced under conditions, can maintain a high rate of die small hole opening, and maintain high production efficiency of thermoplastic resin particles. I was able to.
Moreover, since generation | occurrence | production of irregular shaped particle | grains and coalescence of resin particles can be suppressed, the uniform and substantially spherical thermoplastic resin particle was able to be produced efficiently.

一方、冷却水の流量/樹脂吐出量との質量比が本発明の範囲を下回る、35とした条件下で樹脂粒子の製造を行った比較例1は、合着粒子率が高くなり、総合評価は不良となった。
また、カッターの押圧力が本発明の範囲を下回る、0.04MPaとした条件下で樹脂粒子の製造を行った比較例2は、合着粒子率が実施例1〜10よりも高くなり、総合評価は不良となった。
また、カッターの押圧力が本発明の範囲を上回る、2.5MPaとした条件で樹脂粒子の製造を行った比較例3は、合着粒子率が高く、且つ開孔率が低くなり、総合評価は不良となった。さらに、比較例3では、カッターの押圧力による負荷により、押出機が停止し、連続運転が困難であった。
また、冷却水の流量/樹脂吐出量との質量比が本発明の範囲を上回る、260とした条件下で樹脂粒子の製造を行った比較例4は、開孔率が非常に低くなり、総合評価は不良となった。
On the other hand, Comparative Example 1 in which the resin particles were produced under the condition that the mass ratio of the flow rate of the cooling water / the amount of the discharged resin was lower than the range of the present invention was 35. Became bad.
Moreover, the comparative example 2 which manufactured the resin particle on the conditions which made the pressing force of a cutter less than the range of this invention and was 0.04 Mpa becomes higher than Examples 1-10, and the coalescence particle rate becomes higher. Evaluation was poor.
Further, Comparative Example 3 in which the resin particles were produced under the condition that the pressing force of the cutter exceeded the range of the present invention was set to 2.5 MPa had a high coalescing particle ratio and a low hole area ratio. Became bad. Furthermore, in Comparative Example 3, the extruder stopped due to the load due to the pressing force of the cutter, and continuous operation was difficult.
Moreover, the comparative example 4 which manufactured the resin particle on the conditions made into 260 which the mass ratio with the flow volume / resin discharge amount of a cooling water exceeds the range of this invention has a very low opening rate, and is comprehensive. Evaluation was poor.

本発明は、溶融押出法による熱可塑性樹脂粒子及び発泡性熱可塑性樹脂粒子の製造において、開孔率が高くなって生産効率が高く、異形粒子の発生も抑制でき、均一で略球状の樹脂粒子を得ることができ、さらに発泡剤含有樹脂の押出時のプレ発泡及び樹脂粒子同士の合着を抑制し得る、熱可塑性樹脂粒子及び発泡性熱可塑性樹脂粒子の製造方法を提供する。   In the production of thermoplastic resin particles and expandable thermoplastic resin particles by the melt extrusion method, the present invention has a high porosity, high production efficiency, can suppress the generation of irregularly shaped particles, and is uniform and substantially spherical resin particles. Further, the present invention provides a method for producing thermoplastic resin particles and expandable thermoplastic resin particles, which can further suppress pre-foaming and extrusion of resin particles during extrusion of the foaming agent-containing resin.

1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器、20…溶融樹脂、21…小孔、22…樹脂流路、23…樹脂吐出面、24…断熱材、25,26,27,28…ヒータ、29…温度センサ。   DESCRIPTION OF SYMBOLS 1 ... Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, DESCRIPTION OF SYMBOLS 10 ... Dehydration dryer with a solid-liquid separation function, 11 ... Storage container, 20 ... Molten resin, 21 ... Small hole, 22 ... Resin flow path, 23 ... Resin discharge surface, 24 ... Thermal insulation, 25, 26, 27, 28 ... heater, 29 ... temperature sensor.

Claims (8)

樹脂供給装置内で溶融された熱可塑性樹脂を樹脂供給装置先端に付設されたダイの樹脂吐出面に形成された小孔から直接冷却媒体中に押し出し、前記ダイの樹脂吐出面に押圧された状態で設けられたカッターによって押出物を切断するとともに、押出物を冷却媒体との接触により冷却固化して熱可塑性樹脂粒子を得る、溶融押出法による熱可塑性樹脂粒子の製造方法において、
冷却媒体の流量(L1)と樹脂吐出量(L2)との質量比(L1/L2)が40〜250の範囲であり、樹脂吐出面に対するカッターの押圧力が0.10〜1.2MPaの範囲であり、ダイ温度(T1)と樹脂温度(T2)との関係が、T1>T2となる条件下で熱可塑性樹脂粒子を得ることを特徴とする熱可塑性樹脂粒子の製造方法。
A state in which the thermoplastic resin melted in the resin supply device is directly extruded into a cooling medium from a small hole formed in the resin discharge surface of the die attached to the tip of the resin supply device, and is pressed by the resin discharge surface of the die In the method for producing thermoplastic resin particles by the melt extrusion method, the extrudate is cut by the cutter provided in the above, and the extrudate is cooled and solidified by contact with a cooling medium to obtain thermoplastic resin particles.
The mass ratio (L1 / L2) of the flow rate (L1) of the cooling medium and the resin discharge amount (L2) is in the range of 40 to 250, and the pressing force of the cutter against the resin discharge surface is in the range of 0.10 to 1.2 MPa . A method for producing thermoplastic resin particles, characterized in that thermoplastic resin particles are obtained under a condition in which a relationship between a die temperature (T1) and a resin temperature (T2) satisfies T1> T2 .
冷却媒体の温度が20〜80℃の範囲であることを特徴とする請求項1に記載の熱可塑性樹脂粒子の製造方法。   The temperature of a cooling medium is the range of 20-80 degreeC, The manufacturing method of the thermoplastic resin particle of Claim 1 characterized by the above-mentioned. 冷却媒体の圧力が0.1〜2.0MPaの範囲であることを特徴とする請求項1又は2に記載の熱可塑性樹脂粒子の製造方法。   The method for producing thermoplastic resin particles according to claim 1 or 2, wherein the pressure of the cooling medium is in the range of 0.1 to 2.0 MPa. 樹脂供給装置内で溶融された熱可塑性樹脂に発泡剤を加えて混練し、発泡剤含有溶融樹脂を樹脂供給装置先端に付設されたダイの樹脂吐出面に形成された小孔から直接冷却媒体中に押し出し、前記ダイの樹脂吐出面に押圧された状態で設けられたカッターによって押出物を切断するとともに、押出物を冷却媒体との接触により冷却固化して発泡性熱可塑性樹脂粒子を得る、溶融押出法による発泡性熱可塑性樹脂粒子の製造方法において、
冷却媒体の流量(L1)と樹脂吐出量(L2)との質量比(L1/L2)が40〜250の範囲であり、樹脂吐出面に対するカッターの押圧力が0.10〜1.2MPaの範囲であり、ダイ温度(T1)と樹脂温度(T2)との関係が、T1>T2となる条件下で発泡性熱可塑性樹脂粒子を得ることを特徴とする発泡性熱可塑性樹脂粒子の製造方法。
A foaming agent is added to the thermoplastic resin melted in the resin supply device and kneaded, and the foaming agent-containing molten resin is directly put into the cooling medium from a small hole formed on the resin discharge surface of the die attached to the tip of the resin supply device. The extrudate is cut by a cutter provided in a state where it is pressed against the resin discharge surface of the die, and the extrudate is cooled and solidified by contact with a cooling medium to obtain expandable thermoplastic resin particles. In the method for producing expandable thermoplastic resin particles by an extrusion method,
The mass ratio (L1 / L2) of the flow rate (L1) of the cooling medium and the resin discharge amount (L2) is in the range of 40 to 250, and the pressing force of the cutter against the resin discharge surface is in the range of 0.10 to 1.2 MPa . A process for producing expandable thermoplastic resin particles, characterized in that expandable thermoplastic resin particles are obtained under a condition in which a relationship between a die temperature (T1) and a resin temperature (T2) satisfies T1> T2 .
冷却媒体の温度が20〜80℃の範囲であることを特徴とする請求項4に記載の発泡性熱可塑性樹脂粒子の製造方法。   The method for producing expandable thermoplastic resin particles according to claim 4, wherein the temperature of the cooling medium is in the range of 20 to 80 ° C. 冷却媒体の圧力が0.1〜2.0MPaの範囲であることを特徴とする請求項4又は5に記載の発泡性熱可塑性樹脂粒子の製造方法。   The method for producing expandable thermoplastic resin particles according to claim 4 or 5, wherein the pressure of the cooling medium is in the range of 0.1 to 2.0 MPa. 請求項4〜6のいずれか1項に記載の発泡性熱可塑性樹脂粒子の製造方法によって発泡性熱可塑性樹脂粒子を製造する工程と、前記発泡性熱可塑性樹脂粒子を加熱し発泡させる工程とを有する、予備発泡粒子の製造方法。 A step of producing a foamed thermoplastic resin particles by the method for producing expandable thermoplastic resin particles according to any one of claims 4 to 6, thereby the expandable thermoplastic resin particles by heating the foam A process for producing pre-expanded particles. 請求項7に記載の予備発泡粒子の製造方法によって予備発泡粒子を製造する工程と、前記予備発泡粒子を成形型のキャビティに充填し、加熱して型内発泡成形する工程とを有する、発泡成形体の製造方法。 Foam molding comprising the steps of producing pre-foamed particles by the method of producing pre-foamed particles according to claim 7, and filling the pre-foamed particles into a cavity of a mold and heating to mold in- mold. Body manufacturing method.
JP2012214057A 2012-09-27 2012-09-27 Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article Active JP6043562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214057A JP6043562B2 (en) 2012-09-27 2012-09-27 Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214057A JP6043562B2 (en) 2012-09-27 2012-09-27 Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article

Publications (2)

Publication Number Publication Date
JP2014065868A JP2014065868A (en) 2014-04-17
JP6043562B2 true JP6043562B2 (en) 2016-12-14

Family

ID=50742570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214057A Active JP6043562B2 (en) 2012-09-27 2012-09-27 Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article

Country Status (1)

Country Link
JP (1) JP6043562B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110815629B (en) * 2019-11-14 2020-08-18 泰兴汤臣压克力有限公司 Water flow guide type polymer underwater granulator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234212A (en) * 1988-03-14 1989-09-19 Mitsubishi Yuka Badische Co Ltd Manufacture of fine particle of thermoplastic resin
WO2008102874A1 (en) * 2007-02-23 2008-08-28 Sekisui Plastics Co., Ltd. Granulating die, granulating apparatus, and process for producing expandable thermoplastic resin grain
JP2009066974A (en) * 2007-09-14 2009-04-02 Kobe Steel Ltd Underwater cutting and granulating method, and underwater cut granulator
JP2010179627A (en) * 2009-02-09 2010-08-19 Sekisui Plastics Co Ltd Production method for foaming thermoplastic resin particle, foamed thermoplastic resin particle, and foamed thermoplastic resin molding
TW201127889A (en) * 2009-11-30 2011-08-16 Sekisui Plastics Foamable thermoplastic resin particle and production method thereof
JP5552308B2 (en) * 2009-12-16 2014-07-16 積水化成品工業株式会社 Production apparatus and production method for thermoplastic resin particles

Also Published As

Publication number Publication date
JP2014065868A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5372783B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
WO2011118706A1 (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
WO2010090046A1 (en) Method for manufacturing foamable thermoplastic resin particles, method for manufacturing thermoplastic resin foam particles, and method for manufacturing thermoplastic resin foam molded article
WO2013111368A1 (en) Expandable polystyrene-type resin particles and method for producing same, and molded foam
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5756003B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP5986410B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP2012207186A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2012207156A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP5809508B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding
JP2012072231A (en) Expandable polystyrene-based resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP5734611B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP2012207157A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP5710465B2 (en) Expandable polystyrene resin particles and method for producing expandable polystyrene resin particles
JP2012077115A (en) Heat insulator and method for producing the same
JP2013203821A (en) Foamable polystyrene-based resin particle, method for producing the same, preliminary foamable particle and foam-molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6043562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150