JP5986410B2 - Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding - Google Patents

Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding Download PDF

Info

Publication number
JP5986410B2
JP5986410B2 JP2012072728A JP2012072728A JP5986410B2 JP 5986410 B2 JP5986410 B2 JP 5986410B2 JP 2012072728 A JP2012072728 A JP 2012072728A JP 2012072728 A JP2012072728 A JP 2012072728A JP 5986410 B2 JP5986410 B2 JP 5986410B2
Authority
JP
Japan
Prior art keywords
polystyrene resin
expandable polystyrene
particles
resin particles
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012072728A
Other languages
Japanese (ja)
Other versions
JP2012214751A (en
Inventor
賢治 平井
賢治 平井
良輔 地海
良輔 地海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2012072728A priority Critical patent/JP5986410B2/en
Publication of JP2012214751A publication Critical patent/JP2012214751A/en
Application granted granted Critical
Publication of JP5986410B2 publication Critical patent/JP5986410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、曲げ強度、圧縮強度などの機械強度及び断熱性に優れたポリスチレン系樹脂発泡成形体が得られる発泡性ポリスチレン系樹脂粒子に関する。   The present invention relates to an expandable polystyrene resin particle from which a polystyrene resin foam molded article excellent in mechanical strength such as bending strength and compressive strength and heat insulation can be obtained.

発泡性ポリスチレン系樹脂粒子を発泡成形して得られるポリスチレン系樹脂発泡成形体は、耐圧縮性、軽量性、断熱性、経済性などに優れており、断熱材、緩衝材などとして広く用いられている。ポリスチレン系樹脂発泡成形体の機械的強度(曲げ強度や圧縮強度)は、同じ発泡倍数、例えば発泡倍数50倍程度の発泡成形体で比較したとき、発泡成形体の気泡径が均一であり、且つ平均気泡径が所定範囲内であれば、機械的強度が特に優れた発泡成形体が得られることが知られている。   Polystyrene resin foam molded products obtained by foam molding of expandable polystyrene resin particles are excellent in compression resistance, light weight, heat insulation, economy, etc., and are widely used as heat insulation materials, buffer materials, etc. Yes. The mechanical strength (bending strength and compressive strength) of the polystyrene-based resin foam molded product is uniform when compared with a foam molded product having the same foam multiple, for example, a foam multiple of about 50 times, and It is known that if the average cell diameter is within a predetermined range, a foamed molded article having particularly excellent mechanical strength can be obtained.

発泡性ポリスチレン系樹脂粒子の製造方法の一つとして、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、所謂、溶融押出法が知られている。一般に、溶融押出法で製造された発泡性ポリスチレン系樹脂粒子は、加熱発泡させて得られる発泡粒子中の気泡が粗くなり、気泡径が不均一になる傾向が見られるために、発泡粒子中の気泡の微細化及び均一化のための研究が種々行われている。
従来、溶融押出法に関して、発泡成形体の平均気泡径が適度な大きさとなるような発泡性ポリスチレン系樹脂粒子を提供するための製造方法として、例えば、特許文献1に開示された技術が提案されている。
As one of the methods for producing expandable polystyrene resin particles, a foaming agent is press-fitted and kneaded into polystyrene resin melted in an extruder, and a small hole in a die provided with a foaming agent-containing molten resin at the tip of the extruder A so-called melt extrusion method in which extrudates are extruded directly into a cooling liquid from the same time, and at the same time the extrudate is cut with a high-speed rotary blade and the extrudate is cooled and solidified by contact with the liquid to obtain expandable polystyrene resin particles Are known. In general, expandable polystyrene resin particles produced by a melt extrusion method tend to have coarse bubbles in the expanded particles obtained by heating and foaming, and the bubble diameter tends to be non-uniform. Various studies have been conducted for the refinement and uniformization of bubbles.
Conventionally, with respect to the melt extrusion method, for example, a technique disclosed in Patent Document 1 has been proposed as a production method for providing an expandable polystyrene resin particle in which the average cell diameter of the foamed molded product has an appropriate size. ing.

特許文献1には、(a)発泡剤配合重合体をダイヘッド部を通じ、該発泡性重合体のTg値以上の高温に保持する水浴又は流体浴中に押し出す工程 (b)該発泡性重合体のTg値以上の高温に保持する水浴又は流体浴中において、ダイヘッド部出口で重合体を即時切断し、顆粒とする工程 (c)該顆粒を該発泡性重合体のTg値以下の温度に冷却する工程の連続工程において、顆粒の冷却を、少なくとも(Tg+5)℃から(Tg−5)℃まで毎分3℃より少ない割合で徐冷し、また重合体の顆粒への切断および顆粒の冷却は2bar以上の圧力下で行うことを特徴とする無配向性及び無応力性の熱可塑性スチレン重合体の発泡性顆粒の押出式製造方法が開示されている。
この特許文献1の製造方法によれば、加熱発泡させた後の発泡粒子の平均気泡径が80〜200μm程度となる発泡性ポリスチレン系樹脂粒子が得られることが記載されている。しかし、この特許文献1の製造方法は、溶融押出法によって得られる発泡性ポリスチレン系樹脂粒子の残留応力を緩和するために大型の圧力容器が必要となり、大掛かりな設備が必要なことから、設備コストが嵩み、設置面積が多大に必要になるという問題がある。
In Patent Document 1, (a) a step of extruding a foaming agent-containing polymer through a die head part into a water bath or a fluid bath maintained at a high temperature equal to or higher than the Tg value of the foamable polymer (b) In a water bath or fluid bath maintained at a high temperature equal to or higher than the Tg value, the polymer is immediately cut at the outlet of the die head to form granules. (C) The granules are cooled to a temperature not higher than the Tg value of the foamable polymer. In a continuous process, the cooling of the granules is slow cooling at a rate of less than 3 ° C. per minute from at least (Tg + 5) ° C. to (Tg−5) ° C., and the cutting of the polymer into granules and the cooling of the granules is 2 bar. An extrusion-type production method of foamable granules of a non-oriented and stress-free thermoplastic styrene polymer, which is performed under the above pressure, is disclosed.
According to the production method of Patent Document 1, it is described that expandable polystyrene resin particles having an average cell diameter of about 80 to 200 μm of foamed particles after being heated and foamed are described. However, since the manufacturing method of Patent Document 1 requires a large pressure vessel to relieve the residual stress of the expandable polystyrene resin particles obtained by the melt extrusion method, and requires large-scale equipment, the equipment cost However, there is a problem that a large installation area is required.

また、発泡後の平均気泡径が所定範囲内になるとともに、成形サイクルを短縮することができる発泡性ポリスチレン系樹脂粒子として、例えば、特許文献2に開示された技術が提案されている。
特許文献2には、発泡剤を含有するスチレン系樹脂からなり、嵩発泡倍数60倍に発泡させたときの発泡粒子表層部の平均気泡径Dが、40μm≦D≦150μmの関係を満たす発泡性スチレン系樹脂粒子本体100質量部に対して、25℃での屈折率が1.45以上であるメチルフェニルシリコーンオイル0.01〜0.2質量部と、高級脂肪酸の金属塩0.05〜0.2質量部とが粒子表面に被覆され、かつ、分子中に水酸基を有しない高級脂肪酸トリグリセライドの被覆量が0.05質量部未満であることを特徴とする発泡性スチレン系樹脂粒子が開示されている。
しかし、特許文献2の実施例に記載された発泡性ポリスチレン系樹脂粒子は、溶融押出法ではなく、従来周知の懸濁重合法又はシード重合法によってポリスチレン系樹脂粒子を製造し、その後発泡剤を含浸させる所謂重合含浸法によって製造された発泡性ポリスチレン系樹脂粒子を対象としており、溶融押出法で製造された発泡性ポリスチレン系樹脂粒子の表面に前記被覆を施した場合に同様の効果が得られることについては実証されていない。本発明者らが実証した結果、溶融押出法で製造された発泡性ポリスチレン系樹脂粒子の表面に前記被覆を施した場合には、発泡粒子の気泡の微細化や均一化の効果が得られないという結果が得られた。
For example, a technique disclosed in Patent Document 2 has been proposed as an expandable polystyrene resin particle capable of shortening the molding cycle while the average cell diameter after foaming is within a predetermined range.
Patent Document 2 discloses a foaming property that is made of a styrene resin containing a foaming agent, and that the average cell diameter D of the foamed particle surface layer when foamed to a bulk foaming ratio of 60 times satisfies the relationship of 40 μm ≦ D ≦ 150 μm. 0.01 to 0.2 parts by mass of a methylphenyl silicone oil having a refractive index of 1.45 or more at 25 ° C. and a metal salt of a higher fatty acid 0.05 to 0 with respect to 100 parts by mass of the styrene resin particle body Disclosed is an expandable styrenic resin particle characterized in that 2 parts by mass is coated on the particle surface and the coating amount of the higher fatty acid triglyceride having no hydroxyl group in the molecule is less than 0.05 parts by mass. ing.
However, the expandable polystyrene resin particles described in the examples of Patent Document 2 are not melt extrusion methods, but are produced by conventional well-known suspension polymerization methods or seed polymerization methods. It is intended for expandable polystyrene resin particles produced by the so-called polymerization impregnation method to be impregnated, and the same effect can be obtained when the surface of the expandable polystyrene resin particles produced by the melt extrusion method is coated. This has not been proven. As a result of verification by the present inventors, when the coating is applied to the surface of the expandable polystyrene resin particles produced by the melt extrusion method, the effect of miniaturizing and uniformizing the bubbles of the expanded particles cannot be obtained. The result was obtained.

溶融押出法とは異なり、前記重合含浸法によって製造された発泡性ポリスチレン系樹脂粒子については、発泡性ポリスチレン系樹脂粒子を製造後、所定の時間保管しておくと、発泡粒子の気泡が微細化される「熟成」と称される現象が生じ、これによって気泡が微細な発泡粒子を製造可能な発泡性ポリスチレン系樹脂粒子を得ることができる。重合含浸法によって製造された発泡性ポリスチレン系樹脂粒子に起こる「熟成」に関して、例えば、特許文献3の段落[0007]には、「一般に、発泡性粒子は、発泡剤を含ませて発泡性粒子としたあとで、数日ないし数拾日間低温下に貯蔵したのちでなければ、これを発泡に供し得ないとされた。なぜならば、発泡剤を含ませた直後のポリスチレン粒子を加熱して予備発泡させると、得られた発泡性粒子は、不均一に発泡したり、気泡が粗大になったり、高倍率に発泡させることができなかったりしたからである。ところが、上記のように低温下に貯蔵したのち予備発泡させると、微細な気泡を持って均一によく発泡するに至ったからである。発泡性粒子を製造した後の上述の貯蔵は、一般に熟成と呼ばれ、発泡性粒子の製造においては欠くべからざる工程だとされて来た。」と記載されている。   Unlike the melt-extrusion method, the expandable polystyrene resin particles produced by the above-described polymerization impregnation method are refined if the foamed polystyrene resin particles are stored for a predetermined time after being produced. The phenomenon called “aging” occurs, and thereby expandable polystyrene resin particles capable of producing expanded particles with fine bubbles can be obtained. Regarding “ripening” that occurs in expandable polystyrene resin particles produced by a polymerization impregnation method, for example, paragraph [0007] of Patent Document 3 states that “in general, expandable particles contain a foaming agent and expandable particles. After that, it was determined that it could only be used for foaming after being stored at low temperature for several days to several days, because the polystyrene particles immediately after containing the foaming agent were heated to be preliminarily heated. When foamed, the resulting foamable particles foamed non-uniformly, bubbles became coarse, or could not be foamed at a high magnification. This is because pre-foaming after storage leads to uniform and good foaming with fine bubbles.The above-mentioned storage after producing expandable particles is generally called aging and is used in the production of expandable particles. Is Came is that it is Ku Bekara forced process. Has been described as ".

また、前記重合含浸法によって製造された発泡性ポリスチレン系樹脂粒子において、前記熟成の完了を促進させて発泡性樹脂粒子の製造効率を向上させる技術が、例えば特許文献4に開示されている。
特許文献4には、スチレン系単量体を懸濁重合して得られる平均粒子径が0.05〜2.0mmであって、易揮発性発泡剤を3〜10重量%含有してなる発泡性スチレン系樹脂粒子において、その内部にポリエーテル変性シリコーン化合物が含浸された発泡性スチレン系樹脂粒子組成物が開示されている。
しかし、この特許文献4においては、懸濁重合により樹脂粒子を製造し、これに発泡剤を含浸させる重合含浸法により得られた発泡性ポリスチレン系樹脂粒子、すなわち熟成が生じる樹脂粒子に対し、その熟成の完了を促進させることを意図しており、別異の製造方法である溶融押出法で製造された発泡性ポリスチレン系樹脂粒子については全く記載が無く、示唆すらされていない。また特許文献4の段落[0024]には、懸濁重合法にって樹脂粒子を製造後に、シクロヘキサンに溶解したポリエーテル変性シリコーンと発泡剤(ブタン)とを添加して樹脂粒子に含浸させて発泡性樹脂粒子を製造することが記載されており、添加したポリエーテル変性シリコーンは発泡性樹脂粒子の表面に含浸されるのみであって、発泡性樹脂粒子の内部全体に均一に含有されているものとは認められない。
Further, for example, Patent Document 4 discloses a technique for improving the production efficiency of the expandable resin particles by promoting the completion of the ripening in the expandable polystyrene resin particles manufactured by the polymerization impregnation method.
In Patent Document 4, an average particle size obtained by suspension polymerization of a styrene-based monomer is 0.05 to 2.0 mm, and the foaming contains 3 to 10% by weight of a volatile foaming agent. An expandable styrene resin particle composition in which a polyether-modified silicone compound is impregnated in the styrene resin particle is disclosed.
However, in Patent Document 4, resin particles are produced by suspension polymerization, and expandable polystyrene resin particles obtained by a polymerization impregnation method in which the resin particles are impregnated with a foaming agent, that is, resin particles that undergo aging, It is intended to promote the completion of ripening, and there is no description and no suggestion about expandable polystyrene resin particles produced by a melt extrusion method, which is a different production method. In paragraph [0024] of Patent Document 4, after resin particles are produced by suspension polymerization, polyether-modified silicone dissolved in cyclohexane and a blowing agent (butane) are added to impregnate the resin particles. The production of expandable resin particles is described, and the added polyether-modified silicone is impregnated only on the surface of the expandable resin particles and is uniformly contained throughout the interior of the expandable resin particles. It is not recognized as a thing.

特開平6−32932号公報JP-A-6-32932 特開2007−246705号公報JP 2007-246705 A 特許第2736721号公報Japanese Patent No. 2737721 特開平11−172035号公報JP-A-11-172035

溶融押出法によって製造した発泡性ポリスチレン系樹脂粒子は、加熱発泡させて得られる発泡粒子中の気泡が粗くなり、気泡径が不均一になる傾向が見られ、さらに、発泡性樹脂粒子を製造後に長期間保管しても前記「熟成」現象を生じることが殆ど無く、実質的に気泡の微細化が生じないという特徴がある。
溶融押出法によって製造した発泡性ポリスチレン系樹脂粒子について気泡の微細化、均一化を図るには、前述した特許文献1に開示されているように押出した溶融樹脂の切断及び冷却を加圧下で行う方法が提案されているが、該方法では大型の圧力容器が必要となり、大掛かりな設備が必要なことから、設備コストが嵩み、設置面積が多大に必要になるという問題がある。そして当該技術分野では、大掛かりな設備を必要とせず、簡易な方法によって発泡粒子の気泡を微細化、均一化が求められていたが、現在までその実現には至っていない。
Expandable polystyrene resin particles produced by the melt extrusion method tend to have coarse bubbles in the expanded particles obtained by heating and foaming, and the bubble diameter tends to be non-uniform. Even when stored for a long period of time, the “ripening” phenomenon hardly occurs, and there is a feature that bubbles are not refined.
In order to make the foamed polystyrene resin particles produced by the melt extrusion method finer and uniform, the extruded molten resin is cut and cooled under pressure as disclosed in Patent Document 1 described above. Although a method has been proposed, this method requires a large pressure vessel and requires a large-scale facility, so that there is a problem that the equipment cost increases and the installation area is greatly required. In this technical field, there has been a demand for miniaturization and uniformization of the bubbles of the expanded particles by a simple method without requiring large-scale equipment. However, this has not been achieved until now.

本発明は、前記事情に鑑みてなされ、大型設備を用いることなく、気泡が微細且つ均一であり、機械的強度に優れたポリスチレン系樹脂発泡成形体を製造し得る発泡性ポリスチレン系樹脂粒子とその製造方法の提供を課題とする。   The present invention has been made in view of the above circumstances, and expandable polystyrene resin particles capable of producing a polystyrene resin foam molded article having fine and uniform air bubbles and excellent mechanical strength without using a large facility and its It is an object to provide a manufacturing method.

前記課題を達成するため、本発明は、ポリスチレン系樹脂粒子中に炭素数6以下の炭化水素からなる発泡剤を含む発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に炭素数7以上の有機化合物が均一に含有されてなり、前記有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たすものであることを特徴とする発泡性ポリスチレン系樹脂粒子を提供する。
In order to achieve the above object, the present invention provides an expandable polystyrene resin particle containing a foaming agent composed of a hydrocarbon having 6 or less carbon atoms in the polystyrene resin particle. The organic compound having 7 or more carbon atoms is uniformly contained in the organic compound, and the solubility parameter (A) of the organic compound is the following formula (a) with respect to the solubility parameter (B) of the blowing agent:
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
Expandable polystyrene resin particles characterized by satisfying the above relationship are provided.

また本発明は、樹脂供給装置内で溶融されたポリスチレン系樹脂に炭素数6以下の炭化水素からなる発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に炭素数7以上の有機化合物が均一に含有されてなり、前記有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たすものであることを特徴とする発泡性ポリスチレン系樹脂粒子を提供する。
Further, the present invention provides a die in which a foaming agent comprising a hydrocarbon having 6 or less carbon atoms is press-fitted and kneaded into a polystyrene resin melted in a resin supply device, and the foaming agent-containing molten resin is attached to the tip of the resin supply device. By extruding directly into the cooling liquid from the small holes of the glass, and simultaneously extruding the extrudate with a high-speed rotary blade, and cooling and solidifying the extrudate by contact with the liquid to obtain expandable polystyrene resin particles In the obtained expandable polystyrene resin particles, the entire expandable polystyrene resin particles (excluding internal bubbles) uniformly contain an organic compound having 7 or more carbon atoms, and the solubility parameter (A ) For the solubility parameter (B) of the blowing agent, the following formula (a)
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
Expandable polystyrene resin particles characterized by satisfying the above relationship are provided.

本発明の発泡性ポリスチレン系樹脂粒子において、前記有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(b)
(B)≦(A)≦((B)+1.5) ・・・(b)
の関係を満たすものであることが好ましい。
In the expandable polystyrene resin particles of the present invention, the solubility parameter (A) of the organic compound is the following formula (b) with respect to the solubility parameter (B) of the foaming agent.
(B) ≦ (A) ≦ ((B) +1.5) (b)
It is preferable that the relationship is satisfied.

本発明の発泡性ポリスチレン系樹脂粒子において、前記発泡剤がプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタンからなる群から選択される1種又は2種以上の混合物であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the foaming agent is preferably one or a mixture of two or more selected from the group consisting of propane, normal butane, isobutane, normal pentane, and isopentane.

本発明の発泡性ポリスチレン系樹脂粒子において、前記有機化合物が樹脂分中に0.01〜3質量部の範囲で含有されたことが好ましい。   In the expandable polystyrene resin particles of the present invention, the organic compound is preferably contained in the range of 0.01 to 3 parts by mass in the resin component.

本発明の発泡性ポリスチレン系樹脂粒子は、熟成完了後に加熱して嵩発泡倍数X倍に発泡させたときの発泡粒子の平均気泡径D’を、次式(1) The expandable polystyrene-based resin particles of the present invention have an average cell diameter D 1 ′ of the expanded particles when heated to be expanded to a bulk expansion ratio X times after completion of aging, by the following formula (1):

(式中、Dは嵩発泡倍数50倍に換算した発泡粒子の平均気泡径(μm)を表し、D’は嵩発泡倍数X倍に発泡させたときの発泡粒子の平均気泡径(μm)を表す)を用いて嵩発泡倍数50倍に換算した発泡粒子の平均気泡径Dが、50μm≦D≦250μmの関係を満たすことが好ましい。 (In the formula, D 1 represents an average cell diameter (μm) of the expanded particles converted to a bulk expansion ratio of 50 times, and D 1 ′ represents an average cell diameter (μm) of the expanded particles when expanded to a bulk expansion ratio X times ) average cell diameter D 1 of the expanded beads in terms of 50-fold volume expansion ratio using the representative), it is preferable to satisfy the relation of 50μm ≦ D 1 ≦ 250μm.

本発明の発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に、高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸ビスアミド、無機気泡核剤から選択される1種又は2種以上が均一に含有されたことが好ましい。   In the expandable polystyrene resin particles of the present invention, the entire expandable polystyrene resin particles (excluding internal bubbles), from higher fatty acid metal salts, higher fatty acid esters, higher fatty acid amides, higher fatty acid bisamides, and inorganic cell nucleating agents. It is preferable that the 1 type (s) or 2 or more types selected were contained uniformly.

また本発明は、樹脂供給装置内で溶融されたポリスチレン系樹脂に炭素数6以下の炭化水素からなる発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、前記ポリスチレン樹脂に炭素数7以上の有機化合物[ここで、該有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たす]を添加し、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に前記有機化合物が均一に含有された発泡性ポリスチレン系樹脂粒子を得ることを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法を提供する。
Further, the present invention provides a die in which a foaming agent comprising a hydrocarbon having 6 or less carbon atoms is press-fitted and kneaded into a polystyrene resin melted in a resin supply device, and the foaming agent-containing molten resin is attached to the tip of the resin supply device. By extruding directly into the cooling liquid from the small holes of the glass, and simultaneously extruding the extrudate with a high-speed rotary blade, and cooling and solidifying the extrudate by contact with the liquid to obtain expandable polystyrene resin particles In the method for producing expandable polystyrene resin particles, the polystyrene resin is an organic compound having 7 or more carbon atoms [wherein the solubility parameter (A) of the organic compound is the following with respect to the solubility parameter (B) of the foaming agent). Formula (a)
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
To obtain expandable polystyrene resin particles in which the organic compound is uniformly contained in the entire expandable polystyrene resin particles (excluding internal bubbles). A method for producing resin particles is provided.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記有機化合物はその溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(b)
(B)≦(A)≦((B)+1.5) ・・・(b)
の関係を満たすものであることが好ましい。
In the method for producing expandable polystyrene-based resin particles of the present invention, the organic compound has a solubility parameter (A) with respect to the solubility parameter (B) of the foaming agent.
(B) ≦ (A) ≦ ((B) +1.5) (b)
It is preferable that the relationship is satisfied.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記発泡剤がプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタンからなる群から選択される1種又は2種以上の混合物であることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the foaming agent is preferably one or a mixture of two or more selected from the group consisting of propane, normal butane, isobutane, normal pentane, and isopentane.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記有機化合物を樹脂分中に0.01〜3質量部の範囲で添加することが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, it is preferable to add the organic compound in a resin content in the range of 0.01 to 3 parts by mass.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、溶融押出法によって得られた発泡性ポリスチレン系樹脂粒子を、40℃以下の雰囲気下で1時間以上貯蔵する熟成工程を行って発泡性ポリスチレン系樹脂粒子を得ることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the expandable polystyrene resin particles obtained by the melt extrusion method are subjected to an aging step in which the expandable polystyrene resin particles are stored in an atmosphere of 40 ° C. or less for 1 hour or more. It is preferable to obtain resin particles.

本発明の発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に、高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸ビスアミド、無機気泡核剤から選択される1種又は2種以上が均一に含有されたことが好ましい。   In the expandable polystyrene resin particles of the present invention, the entire expandable polystyrene resin particles (excluding internal bubbles), from higher fatty acid metal salts, higher fatty acid esters, higher fatty acid amides, higher fatty acid bisamides, and inorganic cell nucleating agents. It is preferable that the 1 type (s) or 2 or more types selected were contained uniformly.

また本発明は、前記発泡性ポリスチレン系樹脂粒子を熟成後、加熱し予備発泡して得られたポリスチレン系樹脂予備発泡粒子を提供する。   The present invention also provides polystyrene resin pre-expanded particles obtained by aging the expandable polystyrene resin particles, followed by heating and pre-expanding.

また本発明は、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し、成形型を蒸気加熱し、型内発泡成形して得られたポリスチレン系樹脂発泡成形体を提供する。   The present invention also provides a polystyrene resin foam molded article obtained by filling the polystyrene resin pre-expanded particles in a cavity of a mold, steam-heating the mold, and performing in-mold foam molding.

本発明のポリスチレン系樹脂発泡成形体において、発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の平均気泡径D’を、次式(2) In the polystyrene-based resin foam molded article of the present invention, the average cell diameter D 2 ′ of the foamed particles fused together in the foam molded article in the state when foam-molded to a multiple of X times is expressed by the following formula ( 2)

(式中、Dは発泡倍数50倍に換算した発泡成形体中の発泡粒子の平均気泡径(μm)を表し、D’は発泡倍数X倍に発泡させたときの発泡成形体中の発泡粒子の平均気泡径(μm)を表す)を用いて発泡倍数50倍に換算した発泡成形体中の発泡粒子の平均気泡径Dが、50μm≦D≦250μmの関係を満たすことが好ましい。 (Wherein, D 2 represents the average cell diameter of the expanded beads of foamed molded body in terms of 50-fold expansion ratio ([mu] m), D 2 'is foamed molded product when foamed in expansion ratio X times average cell diameter D 2 of the average cell diameter expanded beads of the foamed molded body in terms of expansion ratio 50 times using a representative of the ([mu] m)) of the expanded particles, it is preferable to satisfy the relation of 50 [mu] m ≦ D 2 ≦ 250 [mu] m .

本発明の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂粒子中に炭素数6以下の炭化水素からなる発泡剤を含む発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に炭素数7以上の有機化合物が均一に含有されてなり、前記有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たすものである構成としたことで、溶融押出法によって該樹脂粒子を製造した場合に、製造後に該樹脂粒子を貯蔵しておくことで、該樹脂粒子を加熱発泡して得られる発泡粒子は、製造直後に発泡させた発泡粒子と比べ気泡が微細化する熟成現象が生じるものとなる。従って、本発明の発泡性ポリスチレン系樹脂粒子は、大型設備を用いることなく、溶融押出法によって製造した場合でも、気泡が微細且つ均一であり、機械的強度に優れたポリスチレン系樹脂発泡成形体を製造し得る発泡性ポリスチレン系樹脂粒子を提供することができる。
The expandable polystyrene resin particle of the present invention is an expandable polystyrene resin particle containing a foaming agent composed of a hydrocarbon having 6 or less carbon atoms in the polystyrene resin particle. The organic compound having 7 or more carbon atoms is uniformly contained in the organic compound, and the solubility parameter (A) of the organic compound is the following formula (a) with respect to the solubility parameter (B) of the blowing agent:
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
When the resin particles are produced by a melt extrusion method, the foaming obtained by heating and foaming the resin particles by storing the resin particles after production. The particles undergo a ripening phenomenon in which the bubbles become finer than foamed particles that are foamed immediately after production. Therefore, even when the expandable polystyrene resin particles of the present invention are produced by a melt extrusion method without using a large facility, the foamed polystyrene resin particles are fine and uniform, and have excellent mechanical strength. Expandable polystyrene resin particles that can be produced can be provided.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、樹脂供給装置内で溶融されたポリスチレン系樹脂に炭素数6以下の炭化水素からなる発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、前記ポリスチレン樹脂に炭素数7以上の有機化合物[ここで、該有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たす]を添加し、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に前記有機化合物が均一に含有された発泡性ポリスチレン系樹脂粒子を得る構成としたことによって、製造後に該樹脂粒子を貯蔵しておくことで、該樹脂粒子を加熱発泡して得られる発泡粒子は、製造直後に発泡させた発泡粒子と比べ気泡が微細化する熟成現象が生じるものが得られる。従って、本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、大型設備を用いることなく、製造後に熟成させることによって、気泡が微細且つ均一であり、機械的強度に優れたポリスチレン系樹脂発泡成形体を製造し得る発泡性ポリスチレン系樹脂粒子を容易に製造することができる。
In the method for producing expandable polystyrene resin particles of the present invention, a foaming agent comprising a hydrocarbon having 6 or less carbon atoms is press-fitted and kneaded into a polystyrene resin melted in a resin supply device, and a foaming agent-containing molten resin is obtained. Extruded directly from the small hole of the die attached to the tip of the resin supply device into the cooling liquid, and at the same time, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with the liquid. In the method for producing expandable polystyrene resin particles by melt extrusion method for obtaining resin particles, an organic compound having 7 or more carbon atoms in the polystyrene resin [wherein the solubility parameter (A) of the organic compound is the solubility of the foaming agent] For parameter (B), the following equation (a)
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
Is satisfied, and after the production, the foamable polystyrene resin particles in which the organic compound is uniformly contained in the entire expandable polystyrene resin particles (excluding internal bubbles) are obtained. By storing the resin particles, foamed particles obtained by heating and foaming the resin particles can be obtained such that a ripening phenomenon occurs in which bubbles become finer than foamed particles that are foamed immediately after production. Therefore, the method for producing expandable polystyrene resin particles of the present invention is a polystyrene resin foam molded article having fine and uniform air bubbles and excellent mechanical strength by aging after production without using a large facility. Can be easily produced.

本発明のポリスチレン系樹脂発泡成形体は、前記発泡性ポリスチレン系樹脂粒子を加熱し予備発泡して得られたポリスチレン系樹脂予備発泡粒子を、成形型のキャビティ内に充填し、成形型を蒸気加熱し、型内発泡成形して得られたものなので、気泡が微細且つ均一であり、機械的強度に優れたものとなる。   The polystyrene resin foam molded article of the present invention is prepared by filling the polystyrene resin pre-expanded particles obtained by heating and foaming the expandable polystyrene resin particles in a cavity of the mold, and heating the mold with steam. However, since it is obtained by in-mold foam molding, the bubbles are fine and uniform, and the mechanical strength is excellent.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus used for the manufacturing method of the expandable polystyrene-type resin particle of this invention. 実施例1で作製した予備発泡粒子の断面の拡大画像であり、(a)は押出直後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子、(b)は熟成後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子、(c)は熟成中の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子である。It is an enlarged image of the cross section of the pre-expanded particle produced in Example 1, (a) is the pre-expanded particle which pre-expanded the expandable polystyrene resin particle immediately after extrusion, (b) is the expandable polystyrene-based resin after aging. Pre-expanded particles obtained by pre-expanding particles, and (c) are pre-expanded particles obtained by pre-expanding expandable polystyrene resin particles during aging. 実施例2で作製した予備発泡粒子の断面の拡大画像であり、(a)は押出直後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子、(b)は熟成後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子である。It is an enlarged image of the cross section of the pre-expanded particle produced in Example 2, (a) is the pre-expanded particle which pre-expanded the expandable polystyrene resin particle immediately after extrusion, (b) is the expandable polystyrene resin after aging. Pre-expanded particles obtained by pre-expanding the particles. 実施例6で作製した予備発泡粒子の断面の拡大画像であり、(a)は押出直後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子、(b)は熟成後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子、(c)は熟成中の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子である。It is an enlarged image of the cross section of the pre-expanded particle produced in Example 6, (a) is the pre-expanded particle which pre-expanded the expandable polystyrene resin particle immediately after extrusion, (b) is the expandable polystyrene resin after aging. Pre-expanded particles obtained by pre-expanding particles, and (c) are pre-expanded particles obtained by pre-expanding expandable polystyrene resin particles during aging.

(発泡性ポリスチレン系樹脂粒子)
本発明の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂粒子中に炭素数6以下の炭化水素からなる発泡剤を含む発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く。以下「樹脂粒子全体」の語句については同様とする。)に炭素数7以上の有機化合物が均一に含有されてなり、前記有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たすものであることを特徴とする。
(Expandable polystyrene resin particles)
The expandable polystyrene resin particle of the present invention is an expandable polystyrene resin particle containing a foaming agent composed of a hydrocarbon having 6 or less carbon atoms in the polystyrene resin particle. The same applies to the phrase “whole resin particles” hereinafter.) The organic compound having 7 or more carbon atoms is uniformly contained, and the solubility parameter (A) of the organic compound is the solubility parameter of the blowing agent. For (B), the following equation (a)
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
It is characterized by satisfying the relationship.

本発明において、前記溶解度パラメータ(SP値とも称される)とは、次式(c)によって算出された値のことをいう。
溶解度パラメータ(SP値)=dΣG/M ・・・(c)
(式中、Mは分子量、dは比重を表し、またGは分子中の原子又は置換基の引力恒数であり、この引力恒数は、Small[P.A.Small,J.Appl.Chem. 3,71(1953)]によって求められた値を示す。)
In the present invention, the solubility parameter (also referred to as SP value) refers to a value calculated by the following equation (c).
Solubility parameter (SP value) = dΣG / M (c)
(In the formula, M represents molecular weight, d represents specific gravity, and G represents an attractive constant of an atom or substituent in the molecule. This attractive constant is small [PASmall, J. Appl. Chem. 3, 71. (1953)] is shown.)

本発明の好ましい実施形態において、発泡性ポリスチレン系樹脂粒子は、樹脂供給装置内で溶融されたポリスチレン系樹脂に炭素数6以下の炭化水素からなる発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体に炭素数7以上の有機化合物が均一に含有されてなり、前記有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たすものであることが好ましい。この溶融押出法によれば、発泡性ポリスチレン系樹脂粒子全体に前記有機化合物が均一に含有された本発明の発泡性ポリスチレン系樹脂粒子を簡単に得ることができる。
In a preferred embodiment of the present invention, the expandable polystyrene resin particles are obtained by press-fitting and kneading a foaming agent composed of a hydrocarbon having 6 or less carbon atoms into a polystyrene resin melted in a resin supply apparatus, and containing a foaming agent-containing melt. Resin is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device. At the same time, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with the liquid to foam. In the expandable polystyrene resin particles obtained by the melt extrusion method for obtaining the expandable polystyrene resin particles, the entire expandable polystyrene resin particles uniformly contain an organic compound having 7 or more carbon atoms, and the solubility of the organic compound When the parameter (A) is the solubility parameter (B) of the foaming agent, the following formula (a)
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
It is preferable that the relationship is satisfied. According to this melt extrusion method, the expandable polystyrene resin particles of the present invention in which the organic compound is uniformly contained in the entire expandable polystyrene resin particles can be easily obtained.

発泡剤として、溶解度パラメータ(以下、SP値と記す)が7.0のノルマルペンタンを用いた場合、前記式(a)の関係を満たす有機化合物としては、SP値が6.5〜8.5の範囲である炭素数7以上の有機化合物が用いられる。
前記条件を満たす有機化合物としては、例えば、ポリメチルフェニルシロキサン(SP値:7.6)、ポリジメチルシロキサン(SP値:7.1)、ポリエーテル変性シリコーン(SP値:7.9)、ポリエチレンワックス(SP値:8.1)、デカメチルシクロペンタシロキサン(SP値:7.1)、スクワラン(SP値:7.7)、オリーブ油(SP値:8.2)、ホホバ油(SP値:8.3)などが挙げられる。
また、発泡剤としてSP値が6.6のイソペンタンを用いた場合、前記式(a)の関係を満たす有機化合物としては、SP値が6.1〜8.1の範囲である炭素数7以上の有機化合物が用いられる。
前記条件を満たす有機化合物としては、例えば、ポリテトラフルオロエチレン(SP値:6.2)、ポリメチルフェニルシロキサン(SP値:7.6)、ポリジメチルシロキサン(SP値:7.1)、ポリエーテル変性シリコーン(SP値:7.9)、ポリエチレンワックス(SP値:8.1)、デカメチルシクロペンタシロキサン(SP値:7.1)、スクワラン(SP値:7.7)等が挙げられる。
また、発泡剤としてSP値が6.8のノルマルブタンを用いた場合、前記式(a)の関係を満たす有機化合物としては、SP値が6.3〜8.3の範囲である炭素数7以上の有機化合物が用いられる。
前記条件を満たす有機化合物としては、例えば、ポリメチルフェニルシロキサン(SP値:7.6)、ポリジメチルシロキサン(SP値:7.1)、ポリエーテル変性シリコーン(SP値:7.9)、ポリエチレンワックス(SP値:8.1)、デカメチルシクロペンタシロキサン(SP値:7.1)、スクワラン(SP値:7.7)、オリーブ油(SP値:8.2)、ホホバ油(SP値:8.3)等が挙げられる。
また、発泡剤としてSP値が6.6のイソブタンを用いた場合、前記式(a)の関係を満たす有機化合物としては、SP値が6.1〜8.1の範囲である炭素数7以上の有機化合物が用いられる。
前記条件を満たす有機化合物としては、例えば、ポリテトラフルオロエチレン(SP値:6.2)、ポリメチルフェニルシロキサン(SP値:7.6)、ポリジメチルシロキサン(SP値:7.1)、ポリエーテル変性シリコーン(SP値:7.9)、ポリエチレンワックス(SP値:8.1)、デカメチルシクロペンタシロキサン(SP値:7.1)、スクワラン(SP値:7.7)等が挙げられる。
When normal pentane having a solubility parameter (hereinafter referred to as SP value) of 7.0 is used as the foaming agent, the organic compound satisfying the relationship of the above formula (a) has an SP value of 6.5 to 8.5. An organic compound having 7 or more carbon atoms in the range is used.
Examples of the organic compound that satisfies the above conditions include polymethylphenylsiloxane (SP value: 7.6), polydimethylsiloxane (SP value: 7.1), polyether-modified silicone (SP value: 7.9), and polyethylene. Wax (SP value: 8.1), decamethylcyclopentasiloxane (SP value: 7.1), squalane (SP value: 7.7), olive oil (SP value: 8.2), jojoba oil (SP value: 8.3).
Further, when isopentane having an SP value of 6.6 is used as the foaming agent, the organic compound satisfying the relationship of the formula (a) has 7 or more carbon atoms having an SP value in the range of 6.1 to 8.1. These organic compounds are used.
Examples of the organic compound that satisfies the above conditions include polytetrafluoroethylene (SP value: 6.2), polymethylphenylsiloxane (SP value: 7.6), polydimethylsiloxane (SP value: 7.1), poly Examples include ether-modified silicone (SP value: 7.9), polyethylene wax (SP value: 8.1), decamethylcyclopentasiloxane (SP value: 7.1), squalane (SP value: 7.7), and the like. .
When normal butane having an SP value of 6.8 is used as the foaming agent, the organic compound satisfying the relationship of the formula (a) has a carbon number of 7 having an SP value in the range of 6.3 to 8.3. The above organic compounds are used.
Examples of the organic compound that satisfies the above conditions include polymethylphenylsiloxane (SP value: 7.6), polydimethylsiloxane (SP value: 7.1), polyether-modified silicone (SP value: 7.9), and polyethylene. Wax (SP value: 8.1), decamethylcyclopentasiloxane (SP value: 7.1), squalane (SP value: 7.7), olive oil (SP value: 8.2), jojoba oil (SP value: 8.3).
In addition, when isobutane having an SP value of 6.6 is used as the foaming agent, the organic compound satisfying the relationship of the formula (a) has 7 or more carbon atoms having an SP value in the range of 6.1 to 8.1. These organic compounds are used.
Examples of the organic compound that satisfies the above conditions include polytetrafluoroethylene (SP value: 6.2), polymethylphenylsiloxane (SP value: 7.6), polydimethylsiloxane (SP value: 7.1), poly Examples include ether-modified silicone (SP value: 7.9), polyethylene wax (SP value: 8.1), decamethylcyclopentasiloxane (SP value: 7.1), squalane (SP value: 7.7), and the like. .

本発明の好ましい実施形態において、前記有機化合物はそのSP値(A)が前記発泡剤のSP値(B)に対して、次式(b)
(B)≦(A)≦((B)+1.5) ・・・(b)
の関係を満たすものであることが好ましい。
In a preferred embodiment of the present invention, the organic compound has an SP value (A) of the following formula (b) with respect to the SP value (B) of the foaming agent.
(B) ≦ (A) ≦ ((B) +1.5) (b)
It is preferable that the relationship is satisfied.

本発明の発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、なかでもポリスチレンがより好ましい。ポリスチレンの質量平均分子量は、12〜40万の範囲が好ましく、15〜40万の範囲がより好ましい。   In the expandable polystyrene resin particles of the present invention, the polystyrene resin is not particularly limited. For example, styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene. Homopolymers of styrene monomers such as these, copolymers thereof, and the like, and polystyrene resins containing 50% by mass or more of styrene are preferable, and polystyrene is more preferable. The mass average molecular weight of polystyrene is preferably in the range of 12 to 400,000, and more preferably in the range of 15 to 400,000.

また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。   Further, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. As, for example, alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl In addition to fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.

また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよく、添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などが挙げられる。   If a polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foam molded article. Examples thereof include rubber-modified polystyrene resins to which a diene rubbery polymer such as a polymer, ethylene-propylene-nonconjugated diene three-dimensional copolymer is added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.

原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料の中から、質量平均分子量Mwが12万〜40万の範囲となる原料を適宜選択し、又は質量平均分子量Mwが異なる複数のリサイクル原料を適宜組み合わせて用いることができる。   As a polystyrene resin used as a raw material, a polystyrene resin (virgin polystyrene) that is not a recycled material, such as a commercially available ordinary polystyrene resin, a polystyrene resin newly produced by a method such as suspension polymerization, can be used. In addition, a recycled raw material obtained by regenerating a used polystyrene-based resin foam molded article can be used. As this recycled material, used polystyrene-based resin foam moldings such as fish boxes, household appliance cushioning materials, food packaging trays, etc. are collected and recycled from the recycled materials recovered by the limonene dissolution method or heating volume reduction method. A raw material having a mass average molecular weight Mw in the range of 120,000 to 400,000 can be appropriately selected, or a plurality of recycled raw materials having different mass average molecular weights Mw can be used in appropriate combination.

本発明の発泡性ポリスチレン系樹脂粒子に用いられる発泡剤は、炭素数6以下の炭化水素、例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン等の脂肪族炭化水素が好適であり、更には、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン単独もしくはこれらの混合物がより好適である。
この発泡剤の添加量は、ポリスチレン系樹脂100質量部に対し2〜10質量部の範囲が好ましく、3〜8質量部の範囲がより好ましく、4〜7質量部の範囲が特に好ましい。
The foaming agent used for the expandable polystyrene resin particles of the present invention is preferably a hydrocarbon having 6 or less carbon atoms, for example, an aliphatic hydrocarbon such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, cyclopentane and the like. Further, normal butane, isobutane, normal pentane, isopentane alone or a mixture thereof is more preferable.
The amount of the foaming agent added is preferably in the range of 2 to 10 parts by mass, more preferably in the range of 3 to 8 parts by mass, and particularly preferably in the range of 4 to 7 parts by mass with respect to 100 parts by mass of the polystyrene resin.

本発明の発泡性ポリスチレン系樹脂粒子に添加される前記有機化合物の添加量は、樹脂分中に0.01〜3質量%の範囲が好ましく、0.05〜2.5質量%の範囲がより好ましく、0.1〜2.0質量%の範囲がさらに好ましい。該有機化合物の添加量が前記範囲未満であると、溶融押出法によって製造した発泡性ポリスチレン系樹脂粒子を貯蔵することで熟成現象を生じさせ、この熟成を行うことによって気泡が微細且つ均一であり、機械的強度に優れた発泡成形体が得られるという本発明の効果が十分に得られなくなる。該有機化合物の添加量が前記範囲を超えると、前記本発明の効果が頭打ちになり、却ってコスト増加、得られる発泡成形体の機械的強度の低下などを招いてしまう。   The amount of the organic compound added to the expandable polystyrene resin particles of the present invention is preferably in the range of 0.01 to 3% by mass in the resin content, more preferably in the range of 0.05 to 2.5% by mass. The range of 0.1 to 2.0% by mass is more preferable. When the addition amount of the organic compound is less than the above range, an aging phenomenon is caused by storing the expandable polystyrene resin particles produced by the melt extrusion method, and the bubbles are fine and uniform by performing this aging. Thus, the effect of the present invention that a foamed molded article having excellent mechanical strength can be obtained cannot be obtained sufficiently. When the addition amount of the organic compound exceeds the above range, the effect of the present invention reaches its peak, and on the contrary, the cost increases, and the mechanical strength of the resulting foamed molded product decreases.

ポリスチレン系樹脂に前記有機化合物を添加する方法としては、押出機に直接投入する方法、予めマスターバッチを作製しておいて押出機に投入する方法などがある。この内、予め該有機化合物を高濃度で含むポリスチレン樹脂からなるマスターバッチを作製しておき、この有機化合物含有マスターバッチとポリスチレン系樹脂とを前記樹脂供給装置に投入して発泡性ポリスチレン系樹脂粒子を製造することが好ましい。このような有機化合物含有マスターバッチを用いることで、発泡性ポリスチレン系樹脂粒子全体にわたり有機化合物が均一に含有された発泡性ポリスチレン系樹脂粒子を製造することができる。   As a method for adding the organic compound to the polystyrene-based resin, there are a method of directly feeding into an extruder, a method of preparing a master batch in advance and then feeding it into the extruder. Among these, a master batch made of a polystyrene resin containing the organic compound at a high concentration is prepared in advance, and the organic compound-containing master batch and the polystyrene resin are put into the resin supply device, and expandable polystyrene resin particles. It is preferable to manufacture. By using such an organic compound-containing masterbatch, expandable polystyrene resin particles in which an organic compound is uniformly contained over the entire expandable polystyrene resin particles can be produced.

この発泡性ポリスチレン系樹脂粒子は、前記発泡剤及び前記有機化合物の他に、高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸ビスアミド、無機気泡核剤から選択される1種又は2種以上を含有していてもよい。前記高級脂肪酸金属塩としては、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウムなどが挙げられる。また、前記高級脂肪酸エステルとしては、12−ヒドロキシステアリン酸トリグリセリド、ステアリン酸グリセリドなどが挙げられる。また、前記高級脂肪酸アミドとしては、ステアリン酸アミド、12−ヒドロキシステアリン酸アミドなどが挙げられる。また、前記高級脂肪酸ビスアミドとしては、エチレンビスステアリン酸アミド、メチレンビスステアリン酸アミドなどが挙げられる。また、前記無機気泡核剤としては、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素などが挙げられる。これらの添加量は、ポリスチレン系樹脂中に0.01〜3質量%の範囲が好ましい。
ポリスチレン系樹脂に、気泡核剤として高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸ビスアミド、無機気泡核剤から選択される1種または2種以上を、前記有機化合物と併用した場合、加熱発泡して得られる発泡粒子の平均気泡径は前記有機化合物単独使用時と比べより微細な気泡を得ることができる。
In addition to the foaming agent and the organic compound, the expandable polystyrene resin particles may be one or two selected from higher fatty acid metal salts, higher fatty acid esters, higher fatty acid amides, higher fatty acid bisamides, and inorganic cell nucleating agents. You may contain the above. Examples of the higher fatty acid metal salt include zinc stearate, calcium stearate, magnesium stearate and the like. Examples of the higher fatty acid ester include 12-hydroxystearic acid triglyceride and stearic acid glyceride. Examples of the higher fatty acid amide include stearic acid amide and 12-hydroxystearic acid amide. Examples of the higher fatty acid bisamide include ethylene bis stearic acid amide and methylene bis stearic acid amide. Examples of the inorganic cell nucleating agent include talc, calcium silicate, synthetically or naturally produced silicon dioxide, and the like. These addition amounts are preferably in the range of 0.01 to 3% by mass in the polystyrene-based resin.
When one or two or more kinds selected from a higher fatty acid metal salt, a higher fatty acid ester, a higher fatty acid amide, a higher fatty acid bisamide, and an inorganic cell nucleating agent are used in combination with the organic compound as polystyrene nucleating agent, The average cell diameter of the expanded particles obtained by heating and foaming can provide finer bubbles than when the organic compound is used alone.

高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸ビスアミド、無機気泡核剤などの気泡核剤を添加する場合、該気泡核剤をベース樹脂、好ましくはポリスチレン系樹脂中に均一に分散させたマスターバッチ型気泡核剤を用いることが好ましい。このマスターバッチ型気泡核剤を用いることによって、樹脂供給装置内でポリスチレン系樹脂と気泡核剤とを混合する際に、気泡核剤をポリスチレン系樹脂全体にわたり均一に含有させることができる。   When a cell nucleating agent such as a higher fatty acid metal salt, a higher fatty acid ester, a higher fatty acid amide, a higher fatty acid bisamide or an inorganic cell nucleating agent is added, the cell nucleating agent is uniformly dispersed in a base resin, preferably a polystyrene resin. It is preferable to use a masterbatch type cell nucleating agent. By using this master batch type cell nucleating agent, when mixing the polystyrene resin and the cell nucleating agent in the resin supply device, the cell nucleating agent can be uniformly contained throughout the polystyrene resin.

本発明の発泡性ポリスチレン系樹脂粒子には、その他に、発泡性ポリスチレン系樹脂粒子及び発泡成形体の物性を損なわない範囲内において、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよい。   In addition to the expandable polystyrene resin particles and the foamed molded article, the expandable polystyrene resin particles of the present invention are within the range that does not impair the physical properties of the expandable polystyrene resin particles and the foamed molded article. Additives such as flame retardant aids, lubricants, and colorants may be added.

本発明の発泡性ポリスチレン系樹脂粒子は、熟成完了後に加熱して嵩発泡倍数X倍に発泡させたときの発泡粒子の平均気泡径D’を、前記式(1)を用いて嵩発泡倍数50倍に換算した発泡粒子の平均気泡径Dが、35μm≦D≦300μmの関係を満たすことが好ましく、50μm≦D≦250μmの関係を満たすことがより好ましい。前記平均気泡径Dが前記範囲未満であると、連続気泡率が増加して独立気泡率が減少し、曲げ強度、圧縮強度、耐衝撃性などの機械的強度の低下や成形性が悪化してしまう。前記平均気泡径Dが前記範囲を超えると、得られる発泡成形体の機械的強度(曲げ強さや圧縮強度)が低下してしまう。 The expandable polystyrene resin particles of the present invention are obtained by using the above formula (1) to calculate the average cell diameter D 1 ′ of the expanded particles when heated and foamed to a bulk expansion ratio X times after completion of aging. The average cell diameter D 1 of the expanded particles converted to 50 times preferably satisfies the relationship of 35 μm ≦ D 1 ≦ 300 μm, and more preferably satisfies the relationship of 50 μm ≦ D 1 ≦ 250 μm. When the average cell diameter D 1 is less than the above range, closed cell ratio decreases the open cell ratio is increased, the bending strength, compressive strength, decrease and moldability of the mechanical strength such as impact resistance deteriorates End up. When the average cell diameter D 1 exceeds the above range, the mechanical strength of the foamed molded product obtained (bending strength and compression strength) decreases.

本発明の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂粒子中に炭素数6以下の炭化水素からなる発泡剤を含む発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体に炭素数7以上の有機化合物が均一に含有されてなり、前記有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たすものである構成としたことで、溶融押出法によって該樹脂粒子を製造した場合に、製造後に該樹脂粒子を貯蔵しておくことで、該樹脂粒子を加熱発泡して得られる発泡粒子は、製造直後に発泡させた発泡粒子と比べ気泡が微細化する熟成現象が生じるものとなる。従って、本発明の発泡性ポリスチレン系樹脂粒子は、大型設備を用いることなく、溶融押出法によって製造した場合でも、気泡が微細且つ均一であり、機械的強度に優れたポリスチレン系樹脂発泡成形体を製造し得る発泡性ポリスチレン系樹脂粒子を提供することができる。
The expandable polystyrene resin particle of the present invention is an expandable polystyrene resin particle containing a foaming agent composed of a hydrocarbon having 6 or less carbon atoms in the polystyrene resin particle, and the entire expandable polystyrene resin particle has 7 or more carbon atoms. The organic compound is uniformly contained, and the solubility parameter (A) of the organic compound is the following formula (a) with respect to the solubility parameter (B) of the blowing agent:
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
When the resin particles are produced by a melt extrusion method, the foaming obtained by heating and foaming the resin particles by storing the resin particles after production. The particles undergo a ripening phenomenon in which the bubbles become finer than foamed particles that are foamed immediately after production. Therefore, even when the expandable polystyrene resin particles of the present invention are produced by a melt extrusion method without using a large facility, the foamed polystyrene resin particles are fine and uniform, and have excellent mechanical strength. Expandable polystyrene resin particles that can be produced can be provided.

(発泡性ポリスチレン系樹脂粒子の製造方法)
次に、図面を参照して本発明に係る発泡性ポリスチレン系樹脂粒子の製造方法の実施形態を説明する。
本発明に係る発泡性ポリスチレン系樹脂粒子の製造方法は、樹脂供給装置内で溶融されたポリスチレン系樹脂に炭素数6以下の炭化水素からなる発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、前記ポリスチレン樹脂に炭素数7以上の有機化合物[ここで、該有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たす]を添加し、発泡性ポリスチレン系樹脂粒子全体に前記有機化合物が均一に含有された発泡性ポリスチレン系樹脂粒子を得ることを特徴とする。
(Method for producing expandable polystyrene resin particles)
Next, an embodiment of a method for producing expandable polystyrene resin particles according to the present invention will be described with reference to the drawings.
The method for producing expandable polystyrene resin particles according to the present invention includes the steps of press-fitting and kneading a foaming agent comprising a hydrocarbon having 6 or less carbon atoms into a polystyrene resin melted in a resin supply apparatus, and a foaming agent-containing molten resin. Is extruded directly from the small hole of the die attached to the tip of the resin supply device into the cooling liquid, and at the same time the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with the liquid to foam. In the method for producing expandable polystyrene resin particles by melt extrusion to obtain polystyrene resin particles, the polystyrene resin is an organic compound having 7 or more carbon atoms [wherein the solubility parameter (A) of the organic compound is that of the foaming agent. For the solubility parameter (B), the following equation (a)
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
The above-mentioned relationship is satisfied] to obtain expandable polystyrene resin particles in which the organic compound is uniformly contained throughout the expandable polystyrene resin particles.

図1は、前記造粒工程で発泡性ポリスチレン系樹脂粒子を製造するために用いられる製造装置の一例を示す構成図である。
本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性樹脂粒子を冷却水と分離すると共に脱水乾燥して発泡性樹脂粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性樹脂粒子を貯留する貯留容器11とを備えて構成されている。
FIG. 1 is a configuration diagram showing an example of a production apparatus used for producing expandable polystyrene resin particles in the granulation step.
The manufacturing apparatus of this example includes an extruder 1 as a resin supply apparatus, a die 2 having a large number of small holes attached to the tip of the extruder 1, and a raw material supply hopper that inputs resin raw materials into the extruder 1. 3, a high-pressure pump 4 for press-fitting the foaming agent into the molten resin in the extruder 1 through the foaming agent supply port 5, and a resin discharge surface provided with a small hole in the die 2 so as to contact the cooling water. Cooling from the cutting chamber 7 into which the cooling water is circulated and supplied to the room, the cutter 6 rotatably provided in the cutting chamber 7 so as to cut the resin extruded from the small hole of the die 2, and the cutting chamber 7 A dehydrating dryer 10 with a solid-liquid separation function and a dehydrating dryer 10 with a solid-liquid separation function are obtained by separating foamable resin particles carried along with the flow of water from cooling water and dehydrating and drying to obtain expandable resin particles. The cooling water separated in A water tank 8, a high-pressure pump 9 for sending cooling water in the water tank 8 to the cutting chamber 7, and a storage container 11 for storing foamable resin particles dehydrated and dried by a dehydration dryer 10 with a solid-liquid separation function; It is configured with.

なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。   As the extruder 1, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.

(造粒工程)
図1に示す製造装置を用い、発泡性ポリスチレン系樹脂粒子を製造するには、まず、原料のポリスチレン系樹脂、前記有機化合物、必要に応じて添加される気泡核剤などの所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。さらに、前記有機化合物等の添加成分は、予めポリスチレン樹脂に高濃度で添加したマスターバッチを加えることが好ましい。
(Granulation process)
In order to produce expandable polystyrene resin particles using the production apparatus shown in FIG. 1, first, a desired additive such as a polystyrene resin as a raw material, the organic compound, or a cell nucleating agent added as necessary is added. Weigh and put into the extruder 1 from the raw material supply hopper 3. The raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount for each lot may be reduced. A plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it. Furthermore, it is preferable to add the masterbatch previously added to the polystyrene resin at a high concentration as an additive component such as the organic compound.

押出機1内にポリスチレン系樹脂、前記有機化合物、その他の任意の添加剤を供給後、樹脂を加熱溶融し、その溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入して溶融樹脂に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。   After the polystyrene resin, the organic compound, and other optional additives are supplied into the extruder 1, the resin is heated and melted, and the molten resin is transferred to the die 2 side. The foaming agent is pressed into the melted resin, and the foaming agent is mixed with the molten resin. Through the foreign matter removing screen provided in the extruder 1 as necessary, the melt is further kneaded and moved to the tip side, The added melt is extruded through a small hole in the die 2 attached to the tip of the extruder 1.

ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡性ポリスチレン系樹脂粒子が得られる。   The resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 in which cooling water is circulated and supplied into the chamber, and the resin extruded from the small holes of the die 2 is placed in the cutting chamber 7. A cutter 6 is provided so as to be rotatable. When the melt with the blowing agent added is extruded through a small hole in the die 2 attached to the tip of the extruder 1, the melt is cut into granules and simultaneously cooled in contact with cooling water. can get.

得られた発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥する。乾燥された発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。   The obtained expandable polystyrene resin particles are transferred from the cutting chamber 7 to the flow of cooling water and carried to the dehydrating dryer 10 with a solid-liquid separation function, where the expandable polystyrene resin particles are separated from the cooling water. And dehydrated and dried. The dried expandable polystyrene resin particles are stored in the storage container 11.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記冷却水の温度は、20〜60℃の範囲とすることが好ましい。冷却水の温度が高すぎると発泡性ポリスチレン系樹脂粒子同士が融着し易くなり、多数個の粒子同士が結合して塊状になった不良品の発生率が高くなる。冷却水の温度が低すぎると、得られる発泡性ポリスチレン系樹脂粒子が球状化せず、また割れが生じる場合がある。   In the method for producing expandable polystyrene resin particles of the present invention, the temperature of the cooling water is preferably in the range of 20 to 60 ° C. If the temperature of the cooling water is too high, the expandable polystyrene resin particles are likely to be fused together, and the incidence of defective products in which a large number of particles are combined to form a lump is increased. When the temperature of the cooling water is too low, the resulting expandable polystyrene resin particles may not be spheroidized and cracks may occur.

また、前記冷却水は0.5MPa以上に加圧してもよい。冷却水を加圧するには、前記冷却水の循環流路のうち、高圧ポンプ9の吐出側からカッティング室7を通り、固液分離機能付き脱水乾燥機10の入口側に到る部分を加圧領域とし、高圧ポンプ9の吐出圧力を高めることにより実行し得る。前記冷却水を加圧する場合、その圧力は0.6〜2.0MPaの範囲とすることが好ましく、0.8〜1.5MPaの範囲がより好ましい。前記圧力範囲の上限程度の圧力であれば、大型耐圧容器や専用の加圧装置などの設備を用いることなく実施可能である。   The cooling water may be pressurized to 0.5 MPa or more. In order to pressurize the cooling water, the portion of the cooling water circulation passage that passes from the discharge side of the high-pressure pump 9 through the cutting chamber 7 to the inlet side of the dehydrating dryer 10 with a solid-liquid separation function is pressurized. This can be performed by increasing the discharge pressure of the high-pressure pump 9. When pressurizing the cooling water, the pressure is preferably in the range of 0.6 to 2.0 MPa, and more preferably in the range of 0.8 to 1.5 MPa. If it is the pressure of the upper limit of the said pressure range, it can implement, without using facilities, such as a large sized pressure vessel and a dedicated pressurization apparatus.

(熟成工程)
前記造粒工程で得られた発泡性ポリスチレン系樹脂粒子は、熟成工程を行うことによって、発泡粒子の微細化、均一化が可能となる。
熟成とは、樹脂に発泡剤を含ませて発泡性樹脂粒子としたあとで、数日ないし数拾日間低温下に貯蔵し、経日を置くことによって、表面部から気泡が微細化していき、熟成を完了させることによって微細な気泡を均一に良く発泡する発泡性ポリスチレン系樹脂粒子を得ることを指す。この熟成は、重合含浸法で製造した発泡性ポリスチレン系樹脂粒子では一般的なことである。しかし、溶融押出法にて製造された発泡性ポリスチレン系樹脂粒子については、この現象を観測することができなかった。本発明では溶融押出法にて発泡性ポリスチレン系樹脂粒子を製造する際に、有機化合物を樹脂中に均一に含有させて発泡性ポリスチレン系樹脂粒子を得ることによって、重合含浸法で製造した場合と同様に熟成現象を生じさせることができる。
(Aging process)
The expandable polystyrene resin particles obtained in the granulation step can be made fine and uniform by performing the aging step.
Aging means that after adding foaming agent to the resin to make expandable resin particles, it is stored under low temperature for several days or several days, and by aging, the bubbles become finer from the surface, It refers to obtaining expandable polystyrene resin particles that foam fine bubbles uniformly and well by completing aging. This aging is common for expandable polystyrene resin particles produced by a polymerization impregnation method. However, this phenomenon could not be observed for the expandable polystyrene resin particles produced by the melt extrusion method. In the present invention, when the expandable polystyrene resin particles are produced by the melt extrusion method, the organic compound is uniformly contained in the resin to obtain the expandable polystyrene resin particles. Similarly, an aging phenomenon can be caused.

この熟成工程は、40℃以下の温度の雰囲気中で行うことが好ましく、10〜40℃の範囲がより好ましい。
この熟成工程における貯蔵時間は、1時間以上が好ましく、6時間以上がより好ましく、12時間〜60日間程度がさらに好ましく、12時間〜7日間程度が最も好ましい。
This aging step is preferably performed in an atmosphere at a temperature of 40 ° C. or less, and more preferably in the range of 10 to 40 ° C.
The storage time in this aging step is preferably 1 hour or longer, more preferably 6 hours or longer, further preferably about 12 hours to 60 days, and most preferably about 12 hours to 7 days.

なお、前記熟成工程の前或いは後に、発泡性ポリスチレン系樹脂粒子の表面に、従来の発泡スチレン系樹脂粒子に対して通常行われているように、脂肪酸金属塩、脂肪酸エステル、帯電防止剤などの表面処理剤をコーティングすることができる。表面処理剤のコーティングを行うことで、発泡性ポリスチレン系樹脂粒子の流動性、予備発泡特性などを改善することもできる。前記表面処理剤の総添加量は、発泡性ポリスチレン系樹脂粒子100質量部に対して0.01〜2.0質量部程度の量が好ましい。   In addition, before or after the aging step, as usual with respect to conventional expanded styrene resin particles, the surface of the expandable polystyrene resin particles, such as fatty acid metal salts, fatty acid esters, antistatic agents, etc. A surface treatment agent can be coated. By coating the surface treatment agent, the flowability and pre-foaming characteristics of the expandable polystyrene resin particles can be improved. The total amount of the surface treatment agent is preferably about 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the expandable polystyrene resin particles.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、樹脂供給装置内で溶融されたポリスチレン系樹脂に炭素数6以下の炭化水素からなる発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、前記ポリスチレン樹脂に炭素数7以上の有機化合物[ここで、該有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たす]を添加し、発泡性ポリスチレン系樹脂粒子全体に前記有機化合物が均一に含有された発泡性ポリスチレン系樹脂粒子を得る構成としたことによって、製造後に該樹脂粒子を貯蔵しておくことで、該樹脂粒子を加熱発泡して得られる発泡粒子は、製造直後に発泡させた発泡粒子と比べ気泡が微細化する熟成現象が生じるものが得られる。従って、本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、大型設備を用いることなく、製造後に熟成させることによって、気泡が微細且つ均一であり、機械的強度に優れたポリスチレン系樹脂発泡成形体を製造し得る発泡性ポリスチレン系樹脂粒子を容易に製造することができる。
In the method for producing expandable polystyrene resin particles of the present invention, a foaming agent comprising a hydrocarbon having 6 or less carbon atoms is press-fitted and kneaded into a polystyrene resin melted in a resin supply device, and a foaming agent-containing molten resin is obtained. Extruded directly from the small hole of the die attached to the tip of the resin supply device into the cooling liquid, and at the same time, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with the liquid. In the method for producing expandable polystyrene resin particles by melt extrusion method for obtaining resin particles, an organic compound having 7 or more carbon atoms in the polystyrene resin [wherein the solubility parameter (A) of the organic compound is the solubility of the foaming agent] For parameter (B), the following equation (a)
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
Is satisfied, and the resin particles are stored after the production by obtaining the expandable polystyrene resin particles in which the organic compound is uniformly contained in the entire expandable polystyrene resin particles. As a result, the foamed particles obtained by heating and foaming the resin particles are those in which a ripening phenomenon occurs in which the bubbles become finer than the foamed particles foamed immediately after production. Therefore, the method for producing expandable polystyrene resin particles of the present invention is a polystyrene resin foam molded article having fine and uniform air bubbles and excellent mechanical strength by aging after production without using a large facility. Can be easily produced.

(ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体)
本発明の発泡性ポリスチレン系樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、ポリスチレン系樹脂予備発泡粒子(以下、予備発泡粒子と記す)とする。この予備発泡粒子は、製造するべきポリスチレン系樹脂発泡成形体(以下、発泡成形体と記す)の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度及び嵩発泡倍数は限定されないが、通常は0.010〜0.10g/cmの範囲内(嵩発泡倍数として10〜100倍の範囲内)とし、0.015〜0.050g/cmの範囲内とするのが好ましい。
(Polystyrene resin pre-expanded particles and polystyrene resin foam molding)
The expandable polystyrene resin particles of the present invention are pre-expanded by heating with water vapor heating or the like using a well-known apparatus and method in the field of manufacturing foamed resin molded articles, and then polystyrene-based resin pre-expanded particles (hereinafter referred to as pre-expanded particles). ). The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of a polystyrene-based resin foam-molded product to be manufactured (hereinafter referred to as a foam-molded product). In the present invention, the bulk density and the bulk foaming factor are not limited, but are usually in the range of 0.010 to 0.10 g / cm 3 (in the range of 10 to 100 times as the bulk foaming factor), 0.015 to It is preferable to be in the range of 0.050 g / cm 3 .

なお、本発明において予備発泡粒子の嵩密度及び嵩発泡倍数とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<予備発泡粒子の嵩密度>
メスシリンダに予備発泡粒子を500cmの目盛りまで充填する。但し、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cmの目盛りに達していれば、充填を終了する。次に、メスシリンダ内に充填した予備発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とする。次式により予備発泡粒子の嵩密度を算出する。
嵩密度(g/cm)=W/500
In the present invention, the bulk density and the bulk expansion ratio of the pre-expanded particles are those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
Fill the graduated cylinder with pre-expanded particles to a scale of 500 cm 3 . However, the graduated cylinder is visually observed from the horizontal direction, and if at least one pre-expanded particle reaches the scale of 500 cm 3 , the filling is finished. Next, the mass of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as W (g). The bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500

<予備発泡粒子の嵩発泡倍数>
また、予備発泡粒子の嵩発泡倍数は、次式により算出される数値である。
嵩発泡倍数=1/嵩密度(g/cm
<Bulk expansion ratio of pre-expanded particles>
Moreover, the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
Bulk foaming factor = 1 / bulk density (g / cm 3 )

前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、該予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、発泡成形体を製造する。本発明において、発泡成形体の密度及び発泡倍数は限定されないが、通常は0.010〜0.10g/cmの範囲内(発泡倍数として10〜100倍の範囲内)とし、0.015〜0.050g/cmの範囲内とするのが好ましい。 The pre-expanded particles are filled in the cavity of the mold using a well-known apparatus and method in the field of manufacturing a foamed resin molded body, heated by steam heating or the like, and subjected to in-mold foam molding, foaming A molded body is manufactured. In the present invention, the density and expansion ratio of the foamed molded product are not limited, but are usually within the range of 0.010 to 0.10 g / cm 3 (within the range of 10 to 100 times as the expansion ratio). It is preferable to be in the range of 0.050 g / cm 3 .

本発明の発泡成形体は、発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の平均気泡径D’は、前記式(2)を用いて発泡倍数50倍に換算し、その発泡成形体中の発泡粒子の平均気泡径Dが、35μm≦D≦300μmの関係を満たすことが好ましく、50μm≦D≦250μmの関係を満たすことがより好ましい。前記平均気泡径Dが前記範囲未満であると、型内発泡成形して得られる発泡成形体は連続気泡率が増加して独立気泡が減少し、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下したり、成形性が悪化してしまう。前記平均気泡径Dが前記範囲を超えると、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。 The foamed molded product of the present invention is in the state when foamed and molded at a multiple of X times, and the average cell diameter D 2 ′ of the fused foam particles in the foamed molded product is expressed by the above formula (2). in terms of expansion ratio 50-fold with its foamed molding average cell diameter D 2 of the expanded beads in the can, preferably satisfies 35 [mu] m ≦ D 2 ≦ 300 [mu] m relationship, satisfying the relation of 50 [mu] m ≦ D 2 ≦ 250 [mu] m It is more preferable. When the average cell diameter D 2 is less than the above range, the foamed molded product obtained by mold foaming closed cell decreases with increasing open cell ratio, bending strength, compression strength, such as impact resistance The mechanical strength is lowered or the moldability is deteriorated. When the average cell diameter D 2 exceeds the above range, bending strength, compression strength, mechanical strength such as impact resistance is lowered.

なお、本発明において発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した発泡成形体密度のことである。
<発泡成形体の密度>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上貯蔵したものである。
In the present invention, the density of the foamed molded product refers to the density of the foamed molded product measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Density of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test piece condition adjustment and measurement test pieces were cut out from samples that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C. ± 2 ° C. × 50% ± 5% or 27 ° C. ± 2 ° C. × 65% ± 5%. It has been stored for more than an hour.

<発泡成形体の発泡倍数>
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数=1/密度(g/cm
<Folding multiple of foamed molded product>
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )

本発明の発泡成形体は、前記発泡性ポリスチレン系樹脂粒子を熟成後に加熱し予備発泡して得られた予備発泡粒子を、成形型のキャビティ内に充填し、成形型を蒸気加熱し、型内発泡成形して得られたものなので、気泡が微細且つ均一であり、機械的強度に優れたものとなる。   The foamed molded article of the present invention is prepared by filling pre-expanded particles obtained by heating and pre-foaming the expandable polystyrene resin particles in the mold cavity, heating the mold with steam, Since it is obtained by foam molding, the bubbles are fine and uniform, and have excellent mechanical strength.

[実施例1]
(マスターバッチの製造)
基材樹脂としてポリスチレン樹脂(PSジャパン社製、商品名「G9305」)使用し、有機化合物としてポリメチルフェニルシロキサン(GE東芝シリコーン社製、商品名「TSF4300」、SP値:7.6)の含有量が5質量%となるよう添加してマスターバッチを作製した。
[Example 1]
(Manufacture of master batch)
Polystyrene resin (trade name “G9305” manufactured by PS Japan Co., Ltd.) is used as the base resin, and polymethylphenylsiloxane (trade name “TSF4300” manufactured by GE Toshiba Silicone Co., SP value: 7.6) is used as the organic compound. A master batch was prepared by adding the amount to 5% by mass.

(発泡性ポリスチレン系樹脂粒子の製造)
基材樹脂としてポリスチレン樹脂(PSジャパン社製、商品名「G9305」)に対して、上記マスターバッチを樹脂分中ポリメチルフェニルシロキサンが0.5質量%となるよう予め混合したものを時間当たり160kg/hrの割合で口径90mmの単軸押出機内へ供給し、樹脂を加熱溶融させた後、発泡剤として樹脂100質量部に対して7質量部のノルマルペンタン(SP値:7.0)を押出機途中より圧入した。そして、押出機内で樹脂と発泡剤を混練しつつ、押出機先端部での樹脂温度が170℃となるように冷却しながら、押出機に連接しヒーターにより290℃に保持した、直径0.6mm、ランド長さ3.0mmのノズルを200個有する造粒用ダイスを通して、温度50℃、水圧1.5MPaの冷却水が循環する水中カット室内に押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイスに密着させて、毎分3000回転で切断し、脱水乾燥して球形の発泡性ポリスチレン樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子は変形、ヒゲ等の発生もなく、平均粒径1.1mmであった。
(Manufacture of expandable polystyrene resin particles)
160 kg per hour of polystyrene resin (made by PS Japan Co., Ltd., trade name “G9305”) with the above master batch mixed in advance so that polymethylphenylsiloxane is 0.5 mass% in the resin component as the base resin. After feeding into a single screw extruder with a diameter of 90 mm at a rate of / hr and heating and melting the resin, 7 parts by weight of normal pentane (SP value: 7.0) is extruded as a foaming agent with respect to 100 parts by weight of the resin. Press-fitted from the middle of the machine. Then, while kneading the resin and the foaming agent in the extruder, while cooling so that the resin temperature at the tip of the extruder is 170 ° C., the diameter is 0.6 mm, connected to the extruder and held at 290 ° C. by the heater. Then, through a granulation die having 200 nozzles with a land length of 3.0 mm, it was extruded into an underwater cutting chamber in which cooling water with a temperature of 50 ° C. and a water pressure of 1.5 MPa circulated, and at the same time, 10 blades in the circumferential direction. A high-speed rotating cutter having the above structure was brought into close contact with a die, cut at 3000 rpm, dehydrated and dried to obtain spherical expandable polystyrene resin particles. The obtained expandable polystyrene resin particles had an average particle size of 1.1 mm without the occurrence of deformation or beard.

(発泡性ポリスチレン系樹脂粒子の熟成)
得られた発泡性ポリスチレン系樹脂粒子を、直ちに15℃の雰囲気下に置き熟成を行った。
(Maturation of expandable polystyrene resin particles)
The obtained expandable polystyrene resin particles were immediately placed in an atmosphere at 15 ° C. for aging.

(発泡性ポリスチレン系樹脂粒子の表面被覆)
前記の通り得られた発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.05質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部を発泡性ポリスチレン系樹脂粒子の表面全面に均一に被覆した。
(Surface coating of expandable polystyrene resin particles)
Polyethylene glycol 0.03 parts by mass, zinc stearate 0.05 parts by mass, stearic acid monoglyceride 0.05 parts by mass, hydroxystearic acid triglyceride 0 with respect to 100 parts by mass of the expandable polystyrene resin particles obtained as described above. 0.05 part by mass was uniformly coated on the entire surface of the expandable polystyrene resin particles.

(発泡成形品の製造)
続いて、発泡性ポリスチレン系樹脂粒子(以下、ビーズと記す場合がある)を円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.020g/cm(嵩発泡倍数50倍)であった。
続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ25mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、成形スチーム圧0.08MPa(ゲージ圧力)、金型加熱3秒、一方加熱10秒、逆一方加熱3秒、両面加熱10秒、水冷5秒、設定取出面圧0.02MPaの条件で成形を行った。
また、前記ビーズ、予備発泡粒子及び発泡成形体について、以下の測定法に従って、平均気泡径、表層部平均気泡径/中心部平均気泡径、熟成期間、曲げ強度、圧縮強度及び強度評価の各試験項目について測定した。その結果を表1に記す。
(Manufacture of foam molded products)
Subsequently, expandable polystyrene resin particles (hereinafter may be referred to as beads) were supplied to a cylindrical batch type pre-foaming machine and heated with steam having a blowing pressure of 0.05 MPa to obtain pre-foamed particles. The obtained pre-expanded particles had a bulk density of 0.020 g / cm 3 (bulk expansion ratio: 50 times).
Subsequently, the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 25 mm. , Molding steam pressure 0.08 MPa (gauge pressure), mold heating 3 seconds, one heating 10 seconds, reverse one heating 3 seconds, double side heating 10 seconds, water cooling 5 seconds, set extraction surface pressure 0.02 MPa went.
Further, for the beads, pre-expanded particles, and foamed molded article, according to the following measurement methods, each test of average cell diameter, surface layer average cell diameter / center average cell diameter, aging period, bending strength, compressive strength, and strength evaluation Items were measured. The results are shown in Table 1.

<予備発泡粒子の平均気泡径の測定>
予備発泡粒子の平均気泡径は、ASTM D3576−77の試験方法に準拠して測定されたものをいう。具体的には、予備発泡粒子の中心近傍を通る平面で剃刀歯で切断し、切断面を走査型電子顕微鏡(JOEL社製 商品名「JSM−6360LV」)を用いて30倍に拡大して撮影する。
次に、撮影した画像をA4用紙上に印刷し、予備発泡粒子の表層に内接する第1の円(内接円)を描く。この第1の円の内側の任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を下記式により算出する。
平均弦長t=60/(気泡数×写真の倍率)
なお、直線を描くにあたっては、できるだけ直線が気泡に点接触することなく貫通した状態となるようにする。又、一部の気泡が直線に点接触してしまう場合には、この気泡も気泡数に含め、更に、直線の両端部が気泡を貫通することなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含める。
そして、算出された平均弦長tに基づいて次式により平均気泡径を算出することができる。
平均気泡径(mm)D=t/0.616
更に、撮影した画像の任意の5箇所において上述と同様の要領で平均気泡径を算出し、これらの平均気泡径の相加平均値を予備発泡粒子の平均気泡径とする。
<Measurement of average cell diameter of pre-expanded particles>
The average cell diameter of pre-expanded particles refers to that measured according to the test method of ASTM D3576-77. Specifically, it is cut with a razor tooth on a plane passing through the vicinity of the center of the pre-expanded particles, and the cut surface is enlarged 30 times using a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL). To do.
Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the surface layer of the pre-expanded particles is drawn. A straight line having a length of 60 mm is drawn at an arbitrary position inside the first circle, and the average chord length (t) of the bubbles is calculated from the number of bubbles existing on the straight line by the following formula.
Average string length t = 60 / (number of bubbles × photo magnification)
When drawing a straight line, the straight line should be penetrated as much as possible without making point contact with the bubbles. Also, if some of the bubbles come into point contact with a straight line, this bubble is included in the number of bubbles, and if both ends of the straight line are located in the bubble without penetrating the bubbles Includes the bubbles in which both ends of the straight line are located in the number of bubbles.
Based on the calculated average chord length t, the average bubble diameter can be calculated by the following equation.
Average bubble diameter (mm) D = t / 0.616
Furthermore, the average bubble diameter is calculated in the same manner as described above at any five locations in the photographed image, and the arithmetic average value of these average bubble diameters is taken as the average bubble diameter of the pre-expanded particles.

<発泡成形体中の融着し合った発泡粒子の平均気泡径の測定>
発泡成形体中の融着し合った発泡粒子の平均気泡径は、前記予備発泡粒子の平均気泡径の測定方法に準拠して測定されたものをいう。
但し、前記予備発泡粒子の測定では、予備発泡粒子の表層に内接する第1の円(内接円)を描くこととしたが、発泡成形体中の融着し合った発泡粒子の測定では、融着層に内接する第1の円(内接円)を描くこととした。
<Measurement of the average cell diameter of the foam particles fused together in the foamed molded product>
The average cell diameter of the fused foam particles in the foamed molded product refers to those measured in accordance with the method for measuring the average cell diameter of the pre-expanded particles.
However, in the measurement of the pre-foamed particles, the first circle (inscribed circle) inscribed in the surface layer of the pre-foamed particles was drawn, but in the measurement of the fused foam particles in the foam molded article, The first circle (inscribed circle) inscribed in the fusion layer was drawn.

<熟成期間>
熟成中の発泡性ポリスチレン系樹脂粒子を発泡させて得られた発泡粒子は表層部から気泡が微細化し、熟成が進むと共に気泡の微細化が中心部に達し、発泡粒子全体が微細な均一気泡になる。表層部の平均気泡径と中心部の平均気泡径の比(表層部平均気泡径/中心部平均気泡径)が0.80以上となったときに熟成完了とし、その際に要した期間を熟成期間とした。また、熟成開始から60日を経過しても表層部からの気泡の微細化が開始しないものは熟成しないものとした。
また、表層部平均気泡径、内部平均気泡径とは、撮影した画像をA4用紙上に印刷し、予備発泡粒子の表層に内接する第1の円(内接円)を描き、この第1の円の直径の1/4の半径を有する第2の同心円を描き、表層から第2の円の間を表層部、第2の円の内部を中心部とし、前記予備発泡粒子の平均気泡径の測定方法に準拠して測定されたものをいう。
本実施例では、製造直後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子(図2(a))は、平均気泡径が550μmと大きな気泡径を有していた。熟成3時間後の発泡性粒子を予備発泡した予備発泡粒子(図2(c))は、表層部は気泡が微細化していたが中心部は微細化しておらず、表層部平均気泡径/中心部平均気泡径が0.66であり、熟成中の状態であった。熟成1日後の発泡性粒子を予備発泡した予備発泡粒子(図2(b))は、中心部まで気泡が微細化しており平均気泡径が150μm、表層部平均気泡径/中心部平均気泡径が1.06であり、熟成が完了していた。熟成期間は1日であった。
<Aging period>
Foamed particles obtained by foaming expandable polystyrene resin particles during aging are finer from the surface layer, and as the aging progresses, the finer bubbles reach the center, and the entire expanded particles become fine uniform bubbles. Become. Aging is completed when the ratio of the average cell diameter in the surface layer to the average cell diameter in the center (surface layer average cell diameter / center average cell diameter) is 0.80 or more, and the period required at that time is aged The period. Moreover, even if 60 days have passed since the start of aging, those that did not start to refine the bubbles from the surface layer portion were not aged.
Further, the surface layer portion average bubble diameter and the internal average bubble diameter are obtained by printing a photographed image on A4 paper and drawing a first circle (inscribed circle) inscribed in the surface layer of the pre-foamed particles. A second concentric circle having a radius of ¼ of the diameter of the circle is drawn, the surface layer portion is between the surface layer and the second circle, the inside of the second circle is the center portion, and the average cell diameter of the pre-expanded particles is The one measured according to the measuring method.
In this example, the pre-expanded particles (FIG. 2A) obtained by pre-expanding the expandable polystyrene resin particles immediately after production had a large cell diameter of 550 μm. The pre-expanded particles (FIG. 2 (c)) obtained by pre-expanding the expandable particles after aging for 3 hours had fine bubbles in the surface layer but not in the center, and average cell diameter / center in the surface layer. The part average bubble diameter was 0.66, and it was in the state of aging. The pre-expanded particles (FIG. 2 (b)) obtained by pre-expanding the expandable particles after one day of aging are such that the bubbles are miniaturized to the center, the average cell diameter is 150 μm, and the surface layer average cell diameter / center average cell bubble diameter is The aging was completed. The aging period was 1 day.

<曲げ強度>
発泡成形体から、縦300mm×横75mm×厚さ25mmの試験片を切り出し、この試験片の曲げ試験をJIS−A9511に準拠して行い、曲げ強度[MPa]を算出した。
<Bending strength>
A test piece having a length of 300 mm, a width of 75 mm, and a thickness of 25 mm was cut out from the foamed molded product, and a bending test of the test piece was performed according to JIS-A9511 to calculate a bending strength [MPa].

<圧縮強度>
発泡成形体から、縦50mm×横50mm×厚さ25mmの試験片を切り出し、この試験片の圧縮試験をJIS−A9511に準拠して行い、圧縮強度[MPa]を算出した。
<Compressive strength>
A test piece having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm was cut out from the foamed molded article, and a compression test of the test piece was performed in accordance with JIS-A9511 to calculate the compressive strength [MPa].

<強度評価>
前記曲げ強度及び圧縮強度の結果から、以下の基準により強度評価した。
極めて良好(◎):曲げ強度0.31MPa以上、かつ圧縮強度0.12MPa以上を満たすもの。
良好(○):曲げ強度0.28MPa以上、0.31MPa未満、かつ圧縮強度0.11MPa以上、0.12MPa未満を満たすもの。
不良(×):曲げ強度と圧縮強度の少なくとも一方が前記基準を下回るもの。
<Strength evaluation>
From the results of the bending strength and compressive strength, the strength was evaluated according to the following criteria.
Very good ((): satisfying bending strength of 0.31 MPa or more and compressive strength of 0.12 MPa or more.
Good (O): A bending strength of 0.28 MPa or more and less than 0.31 MPa and a compressive strength of 0.11 MPa or more and less than 0.12 MPa.
Defect (x): At least one of bending strength and compressive strength is lower than the above standard.

[実施例2]
実施例1に記載のマスターバッチを、樹脂分中ポリメチルフェニルシロキサンが0.2質量%となるように使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本実施例の熟成期間は1日であった。
[Example 2]
A foam molded article was produced in the same manner as in Example 1 except that the master batch described in Example 1 was used so that polymethylphenylsiloxane was 0.2% by mass in the resin component. Measurements were made. The results are shown in Table 1. The aging period of this example was 1 day.

[実施例3]
実施例1のマスターバッチの製造時にポリメチルフェニルシロキサンの代わりにポリエーテル変性シリコーン(信越化学社製、商品名「KF945A」)(SP値:7.8)を使用し、発泡性ポリスチレン系樹脂粒子の製造時に該マスターバッチを樹脂分中ポリエーテル変性シリコーンが0.2質量%となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本実施例の熟成期間は30日であった。
[Example 3]
Polyether-modified silicone (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KF945A”) (SP value: 7.8) was used instead of polymethylphenylsiloxane during the production of the masterbatch of Example 1, and expandable polystyrene resin particles. A foamed molded article was produced in the same manner as in Example 1 except that the master batch was used so that the amount of the polyether-modified silicone in the resin component was 0.2% by mass, and the same measurement was performed. . The results are shown in Table 1. The aging period of this example was 30 days.

[実施例4]
実施例1のマスターバッチの製造時にポリメチルフェニルシロキサンの代わりにポリテトラフルオロエチレン(三井・デュポンフルオロケミカル社製)「MP−1100」(SP値:6.2)を使用し、発泡性ポリスチレン系樹脂粒子の製造時に該マスターバッチを樹脂分中ポリテトラフルオロエチレンが0.2質量%となるよう使用し、発泡剤としてノルマルペンタンの代わりにイソペンタン(SP値:6.6)を使用したこと以外は実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本実施例の熟成期間は1日であった。
[Example 4]
Polytetrafluoroethylene (Mitsui / DuPont Fluoro Chemical) “MP-1100” (SP value: 6.2) was used instead of polymethylphenylsiloxane during the production of the masterbatch of Example 1, and an expandable polystyrene system. Other than using the master batch at the time of production of the resin particles so that the polytetrafluoroethylene in the resin content is 0.2% by mass, and using isopentane (SP value: 6.6) instead of normal pentane as the foaming agent. Produced a foamed molded product by the same method as in Example 1, and performed the same measurement. The results are shown in Table 1. The aging period of this example was 1 day.

[実施例5]
実施例1のマスターバッチの製造時にポリメチルフェニルシロキサンに代えてポリエチレンワックス(三洋化成社製、商品名「サンワックス131−P」)(SP値:8.1)を含むものとし、発泡性ポリスチレン系樹脂粒子の製造時に該マスターバッチを樹脂分中ポリエチレンワックスが0.2質量%となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本実施例の熟成期間は3日であった。
ただし、実施例5は、参考例である。
[Example 5]
In the production of the masterbatch of Example 1, polyethylene wax (trade name “Sunwax 131-P”, manufactured by Sanyo Chemical Co., Ltd.) (SP value: 8.1) is substituted for polymethylphenylsiloxane, and an expandable polystyrene type A foamed molded article was produced in the same manner as in Example 1 except that the master batch was used so that the polyethylene wax was 0.2% by mass in the resin during production of the resin particles, and the same measurement was performed. . The results are shown in Table 1. The aging period of this example was 3 days.
However, Example 5 is a reference example.

[実施例6]
実施例1のマスターバッチの製造時にポリメチルフェニルシロキサンとステアリン酸マグネシウムのマスターバッチをそれぞれ作製し、樹脂分中ポリメチルフェニルシロキサン含有量が0.2質量%、ステアリン酸マグネシウムが0.05質量%となるように使用した以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本実施例の熟成期間は1日であった。また、熟成3時間後(熟成中)の気泡状態を図4(c)に示す。
[Example 6]
A master batch of polymethylphenylsiloxane and magnesium stearate was prepared at the time of manufacturing the masterbatch of Example 1, and the content of polymethylphenylsiloxane in the resin content was 0.2% by mass, and magnesium stearate was 0.05% by mass. A foamed molded article was produced in the same manner as in Example 1 except that it was used so that the same measurement was performed. The results are shown in Table 1. The aging period of this example was 1 day. In addition, FIG. 4C shows the bubble state after 3 hours of aging (during aging).

[実施例7]
発泡剤として樹脂100質量部に対して6質量部のブタン(イソブタン:ノルマルブタン=30:70(質量比))(SP値:6.7)を使用したこと以外は、実施例2と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本実施例の熟成期間は1日であった。
[Example 7]
Except for using 6 parts by weight of butane (isobutane: normal butane = 30: 70 (mass ratio)) (SP value: 6.7) with respect to 100 parts by weight of the resin as the foaming agent, the same as in Example 2 A foam molded article was produced by the method, and the same measurement was performed. The results are shown in Table 1. The aging period of this example was 1 day.

[実施例8]
(マスターバッチの製造)
基材樹脂としてポリスチレン樹脂(PSジャパン社製、商品名「G9305」)を使用し、可塑剤としてアジピン酸ジイソブチル(沸点:293℃、田岡化学工業製、商品名「DI4A」)が10質量%となるようマスターバッチを作製した。
発泡剤として樹脂100質量部に対して6質量部のブタン(イソブタン:ノルマルブタン=30:70(質量比))(SP値:6.7)を添加し、マスターバッチを、樹脂100質量部に対しアジピン酸ジイソブチルが2.5質量部となるように使用したこと以外は、実施例2と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本実施例の熟成期間は1日であった。
[Example 8]
(Manufacture of master batch)
Polystyrene resin (trade name “G9305” manufactured by PS Japan Co., Ltd.) is used as the base resin, and diisobutyl adipate (boiling point: 293 ° C., product name “DI4A” manufactured by Taoka Chemical Industries, Ltd.) is 10% by mass as the plasticizer. A master batch was prepared.
As a foaming agent, 6 parts by mass of butane (isobutane: normal butane = 30: 70 (mass ratio)) (SP value: 6.7) is added to 100 parts by mass of the resin, and the master batch is added to 100 parts by mass of the resin. On the other hand, a foamed molded article was produced in the same manner as in Example 2 except that diisobutyl adipate was used at 2.5 parts by mass, and the same measurement was performed. The results are shown in Table 1. The aging period of this example was 1 day.

[比較例1]
実施例1でポリメチルフェニルシロキサン及びそのマスターバッチを使用しなかったこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本比較例は熟成しなかった。
[Comparative Example 1]
A foamed molded article was produced in the same manner as in Example 1 except that polymethylphenylsiloxane and its masterbatch were not used in Example 1, and the same measurement was performed. The results are shown in Table 1. This comparative example did not age.

[比較例2]
実施例1のマスターバッチの製造および発泡性ポリスチレン系樹脂粒子の製造時にポリメチルフェニルシロキサン及びそのマスターバッチを使用せず、発泡性ポリスチレン系樹脂粒子の被覆時に、ポリメチルフェニルシロキサンを樹脂粒子100質量部に対して0.1質量部被覆させたこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本比較例は熟成しなかった。
[Comparative Example 2]
In the production of the master batch of Example 1 and the production of expandable polystyrene resin particles, polymethylphenylsiloxane and its master batch are not used, and the polymethylphenylsiloxane is coated with 100 masses of resin particles when the expandable polystyrene resin particles are coated. A foamed molded article was produced in the same manner as in Example 1 except that 0.1 part by mass was coated on the part, and the same measurement was performed. The results are shown in Table 1. This comparative example did not age.

[比較例3]
実施例1のマスターバッチの製造時にポリメチルフェニルシロキサンの代わりジイソブチルアジペート(SP値:8.7)を使用し、発泡性ポリスチレン系樹脂粒子の製造時に該マスターバッチを、樹脂分中ジイソブチルアジペートが0.5質量%となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本比較例は熟成しなかった。
[Comparative Example 3]
Instead of polymethylphenylsiloxane, diisobutyl adipate (SP value: 8.7) was used in the production of the masterbatch of Example 1, and when the expandable polystyrene resin particles were produced, the masterbatch had 0 diisobutyladipate in the resin content. A foamed molded article was produced in the same manner as in Example 1 except that it was used so as to be 5% by mass, and the same measurement was performed. The results are shown in Table 1. This comparative example did not age.

[比較例4]
実施例1のマスターバッチの製造時にポリメチルフェニルシロキサンに代えてキシレン(SP値:8.8)を使用し、発泡性ポリスチレン系樹脂粒子の製造時に該マスターバッチを、樹脂分中キシレンが0.5質量%となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本比較例は熟成しなかった。
[Comparative Example 4]
Xylene (SP value: 8.8) was used in place of polymethylphenylsiloxane in the production of the masterbatch of Example 1, and the masterbatch was produced in the resin component with a xylene content of 0.00 in the production of expandable polystyrene resin particles. A foamed molded article was produced in the same manner as in Example 1 except that it was used so as to be 5% by mass, and the same measurement was performed. The results are shown in Table 1. This comparative example did not age.

[比較例5]
実施例1でポリメチルフェニルシロキサン及びそのマスターバッチの代わりに、ステアリン酸マグネシウムマスターバッチを使用し、樹脂分中ステアリン酸マグネシウム0.05質量%となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。本比較例は熟成しなかった。
[Comparative Example 5]
The same as Example 1 except that instead of polymethylphenylsiloxane and its masterbatch in Example 1, a magnesium stearate masterbatch was used and the magnesium content was 0.05% by mass in the resin content. A foamed molded article was produced by the method described above, and the same measurement was performed. The results are shown in Table 1. This comparative example did not age.

表1の結果から、本発明に係る実施例1〜8で製造した発泡性ポリスチレン系樹脂粒子は、製造直後の発泡性ポリスチレン系樹脂粒子を予備発泡させた状態(熟成開始前)では、予備発泡粒子中の平均気泡径が400μm以上あったが、該樹脂粒子を熟成することによって、熟成後に作製した予備発泡粒子の平均気泡径が熟成前と比べて半分以下に微細化した。これによって本発明に係る実施例1〜8で製造した発泡性ポリスチレン系樹脂粒子は、溶融押出法で製造した場合でも、熟成処理することによって発泡粒子の気泡を微細化できることが実証された。
また、実施例1〜8で得られた発泡成形体の曲げ強度及び圧縮強度は良好であり、その中でも実施例1、3、4、5、6、7及び8については極めて良好であった。
一方、本発明における有機化合物を添加しなかった比較例1、5では、熟成の前と後で作製した予備発泡粒子の平均気泡径が全く変化せず、熟成による気泡の微細化効果が得られなかった。
また、有機化合物を造粒時に添加せず、溶融押出法で造粒した後の発泡性ポリスチレン系樹脂粒子の表面に有機化合物を被覆した比較例2についても、熟成の前と後で作製した予備発泡粒子の平均気泡径が全く変化せず、熟成による気泡の微細化効果が得られなかった。
さらに、本発明の有機化合物に代えて、SP値が本発明の範囲から外れた有機化合物を添加した比較例3、4についても、熟成の前と後で作製した予備発泡粒子の平均気泡径が全く変化せず、熟成による気泡の微細化効果が得られなかった。
From the results shown in Table 1, the expandable polystyrene resin particles produced in Examples 1 to 8 according to the present invention were prefoamed in the state (before ripening start) in which the expandable polystyrene resin particles immediately after production were prefoamed. Although the average cell diameter in the particles was 400 μm or more, by aging the resin particles, the average cell diameter of the pre-expanded particles prepared after aging was reduced to half or less than that before aging. Thus, it was proved that the expandable polystyrene resin particles produced in Examples 1 to 8 according to the present invention can refine the bubbles of the foamed particles by aging treatment even when produced by the melt extrusion method.
Moreover, the bending strength and the compressive strength of the foam molded articles obtained in Examples 1 to 8 were good, and among them, Examples 1, 3, 4, 5, 6, 7 and 8 were extremely good.
On the other hand, in Comparative Examples 1 and 5 in which the organic compound in the present invention was not added, the average cell diameter of the pre-expanded particles prepared before and after the aging did not change at all, and the effect of refining the bubbles by aging was obtained. There wasn't.
In addition, Comparative Example 2 in which the organic compound was coated on the surface of the expandable polystyrene resin particles after granulation by the melt extrusion method without adding the organic compound at the time of granulation was also prepared before and after aging. The average cell diameter of the expanded particles did not change at all, and the effect of refining the cells by aging was not obtained.
Further, in Comparative Examples 3 and 4 in which an organic compound having an SP value outside the scope of the present invention was added in place of the organic compound of the present invention, the average cell diameter of the pre-expanded particles prepared before and after aging was also high. There was no change at all, and the effect of refining bubbles by aging was not obtained.

図2は、実施例1で作製した予備発泡粒子の断面の拡大画像であり、(a)は押出直後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子、(b)は熟成後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子、(c)は熟成中の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子である。
図3は、実施例2で作製した予備発泡粒子の断面の拡大画像であり、(a)は押出直後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子、(b)は熟成後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子である。
図4は、実施例6で作製した予備発泡粒子の断面の拡大画像であり、(a)は押出直後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子、(b)は熟成後の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子、(c)は熟成中の発泡性ポリスチレン系樹脂粒子を予備発泡した予備発泡粒子である。
これらの図2〜図4から、本発明に係る実施例1〜8で製造した発泡性ポリスチレン系樹脂粒子は、溶融押出法で製造した場合でも、熟成処理することによって発泡粒子の気泡を微細化できることがわかる。
FIG. 2 is an enlarged image of the cross section of the pre-expanded particles produced in Example 1, (a) is pre-expanded particles obtained by pre-expanding expandable polystyrene resin particles immediately after extrusion, and (b) is expanded foam after aging. (C) is pre-expanded particles obtained by pre-expanding expandable polystyrene-based resin particles during aging.
FIG. 3 is an enlarged image of a cross section of the pre-expanded particles produced in Example 2. (a) is pre-expanded particles obtained by pre-expanding expandable polystyrene resin particles immediately after extrusion, and (b) is expanded after aging. It is a pre-foamed particle obtained by pre-foaming a functional polystyrene resin particle.
FIG. 4 is an enlarged image of a cross section of the pre-expanded particles produced in Example 6, (a) is pre-expanded particles obtained by pre-expanding expandable polystyrene resin particles immediately after extrusion, and (b) is an expanded foam after aging. (C) is pre-expanded particles obtained by pre-expanding expandable polystyrene-based resin particles during aging.
From FIG. 2 to FIG. 4, the foamable polystyrene resin particles produced in Examples 1 to 8 according to the present invention are refined by subjecting them to aging treatment even when they are produced by melt extrusion. I understand that I can do it.

本発明は、曲げ強度、圧縮強度などの機械強度に優れたポリスチレン系樹脂発泡成形体が得られる発泡性ポリスチレン系樹脂粒子に関する。本発明のポリスチレン系樹脂発泡成形体は、断熱材や緩衝材などの各種用途に使用できる。   The present invention relates to an expandable polystyrene resin particle from which a polystyrene resin foam molded article excellent in mechanical strength such as bending strength and compressive strength can be obtained. The polystyrene resin foam molded article of the present invention can be used for various applications such as a heat insulating material and a buffer material.

1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器。   DESCRIPTION OF SYMBOLS 1 ... Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, 10: Dehydration dryer with solid-liquid separation function, 11: Storage container.

Claims (15)

ポリスチレン系樹脂粒子中に炭素数6以下の炭化水素からなる発泡剤を含む発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に炭素数7以上の有機化合物(但し、ポリエチレンワックスを除く)が均一に含有されてなり、前記有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たすものであることを特徴とする発泡性ポリスチレン系樹脂粒子。
An expandable polystyrene resin particle containing a foaming agent composed of a hydrocarbon having 6 or less carbon atoms in the polystyrene resin particle, the organic compound having 7 or more carbon atoms in the entire expandable polystyrene resin particle (excluding internal bubbles). (Excluding polyethylene wax), and the solubility parameter (A) of the organic compound is the following formula (a) with respect to the solubility parameter (B) of the foaming agent.
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
Expandable polystyrene resin particles characterized by satisfying the above relationship.
前記有機化合物はその溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(b)
(B)≦(A)≦((B)+1.5) ・・・(b)
の関係を満たすものであることを特徴とする請求項に記載の発泡性ポリスチレン系樹脂粒子。
The organic compound has a solubility parameter (A) in which the solubility parameter (B) of the blowing agent is
(B) ≦ (A) ≦ ((B) +1.5) (b)
The expandable polystyrene resin particles according to claim 1 , which satisfy the relationship:
前記発泡剤がプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタンからなる群から選択される1種又は2種以上の混合物であることを特徴とする請求項1又は2に記載の発泡性ポリスチレン系樹脂粒子。 The expandable polystyrene resin according to claim 1 or 2 , wherein the blowing agent is one or a mixture of two or more selected from the group consisting of propane, normal butane, isobutane, normal pentane, and isopentane. particle. 前記有機化合物が樹脂分中に0.01〜3質量%の範囲で含有されたことを特徴とする請求項1〜3のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子。 The expandable polystyrene resin particles according to any one of claims 1 to 3 , wherein the organic compound is contained in a resin content in a range of 0.01 to 3% by mass. 熟成完了後に加熱して嵩発泡倍数X倍に発泡させたときの発泡粒子の平均気泡径D’を、次式(1)
(式中、Dは嵩発泡倍数50倍に換算した発泡粒子の平均気泡径(μm)を表し、D’は嵩発泡倍数X倍に発泡させたときの発泡粒子の平均気泡径(μm)を表す)を用いて嵩発泡倍数50倍に換算した発泡粒子の平均気泡径Dが、50μm≦D≦250μmの関係を満たすことを特徴とする請求項1〜4のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子。
The average cell diameter D 1 ′ of the expanded particles when heated to be expanded to a bulk expansion ratio X times after completion of aging is expressed by the following formula (1)
(In the formula, D 1 represents an average cell diameter (μm) of the expanded particles converted to a bulk expansion ratio of 50 times, and D 1 ′ represents an average cell diameter (μm) of the expanded particles when expanded to a bulk expansion ratio X times ) using a representative) an average cell diameter D 1 of the terms the expanded beads 50 times volume expansion ratio is, any one of claims 1 to 4, characterized by satisfying the relation of 50 [mu] m ≦ D 1 ≦ 250 [mu] m Expandable polystyrene resin particles as described in 1.
発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に、高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸ビスアミド、無機気泡核剤から選択される1種又は2種以上が均一に含有されたことを特徴とする請求項1〜5のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子。 1 type or 2 types or more selected from higher fatty acid metal salts, higher fatty acid esters, higher fatty acid amides, higher fatty acid bisamides, and inorganic cell nucleating agents are uniform on the entire expandable polystyrene resin particles (excluding internal bubbles) The expandable polystyrene resin particles according to claim 1 , wherein the expandable polystyrene resin particles are contained in 樹脂供給装置内で溶融されたポリスチレン系樹脂に炭素数6以下の炭化水素からなる発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、前記ポリスチレン樹脂に炭素数7以上の有機化合物(但し、ポリエチレンワックスを除く)[ここで、該有機化合物の溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(a)
((B)−0.5)≦(A)≦((B)+1.5) ・・・(a)
の関係を満たす]を添加し、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に前記有機化合物が均一に含有された発泡性ポリスチレン系樹脂粒子を得ることを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法。
A foaming agent composed of a hydrocarbon having 6 or less carbon atoms is press-fitted and kneaded into a polystyrene resin melted in the resin supply device, and the foaming agent-containing molten resin is directly from a small hole of a die attached to the tip of the resin supply device. Expandable polystyrene resin by melt extrusion method that extrudes into cooling liquid and simultaneously extrudes and cuts the extrudate with a high-speed rotary blade and cools and solidifies the extrudate by contact with the liquid to obtain expandable polystyrene resin particles In the method for producing particles, the polystyrene resin has an organic compound having 7 or more carbon atoms (excluding polyethylene wax) [wherein the solubility parameter (A) of the organic compound is smaller than the solubility parameter (B) of the blowing agent) The following formula (a)
((B) −0.5) ≦ (A) ≦ ((B) +1.5) (a)
To obtain expandable polystyrene resin particles in which the organic compound is uniformly contained in the entire expandable polystyrene resin particles (excluding internal bubbles). For producing resin-based resin particles.
前記有機化合物はその溶解度パラメータ(A)が前記発泡剤の溶解度パラメータ(B)に対して、次式(b)
(B)≦(A)≦((B)+1.5) ・・・(b)
の関係を満たすものであることを特徴とする請求項に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
The organic compound has a solubility parameter (A) in which the solubility parameter (B) of the blowing agent is
(B) ≦ (A) ≦ ((B) +1.5) (b)
The method for producing expandable polystyrene resin particles according to claim 7 , wherein the relationship is satisfied.
前記発泡剤がプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタンからなる群から選択される1種又は2種以上の混合物であることを特徴とする請求項7又は8に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 The expandable polystyrene resin according to claim 7 or 8 , wherein the blowing agent is one or a mixture of two or more selected from the group consisting of propane, normal butane, isobutane, normal pentane, and isopentane. Particle manufacturing method. 前記有機化合物を樹脂分中に0.01〜3質量部の範囲で添加することを特徴とする請求項7〜9のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 The method for producing expandable polystyrene resin particles according to any one of claims 7 to 9 , wherein the organic compound is added to the resin component in an amount of 0.01 to 3 parts by mass. 溶融押出法によって得られた発泡性ポリスチレン系樹脂粒子を、40℃以下の雰囲気下で貯蔵する熟成工程を行って発泡性ポリスチレン系樹脂粒子を得ることを特徴とする請求項7〜10のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 Claim 7-10, characterized in that the expandable polystyrene resin particles obtained by melt extrusion method to obtain expandable polystyrene resin particles by performing an aging step of storing in an atmosphere of 40 ° C. or less 2. A method for producing an expandable polystyrene resin particle according to item 1. 前記ポリスチレン系樹脂に、高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸ビスアミド、無機気泡核剤から選択される1種又は2種以上を添加し、樹脂粒子全体(但し、内部気泡は除く)に均一に含有させることを特徴とする請求項7〜11のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 One or more kinds selected from higher fatty acid metal salts, higher fatty acid esters, higher fatty acid amides, higher fatty acid bisamides, and inorganic cell nucleating agents are added to the polystyrene resin, and the resin particles as a whole (however, the internal bubbles are The method for producing expandable polystyrene resin particles according to any one of claims 7 to 11 , characterized in that it is uniformly contained. 請求項1〜6のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子を熟成後、加熱し予備発泡して得られたポリスチレン系樹脂予備発泡粒子。 Polystyrene resin pre-expanded particles obtained by aging the expandable polystyrene resin particles according to any one of claims 1 to 6 and then heating and pre-expanding. 請求項13に記載のポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し、成形型を蒸気加熱し、型内発泡成形して得られたポリスチレン系樹脂発泡成形体。 A polystyrene-based resin foam molded article obtained by filling the polystyrene-based resin pre-expanded particles according to claim 13 in a cavity of a mold, heating the mold with steam, and performing in-mold foam molding. 発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の平均気泡径D’を、次式(2)
(式中、Dは発泡倍数50倍に換算した発泡成形体中の発泡粒子の平均気泡径(μm)を表し、D’は発泡倍数X倍に発泡させたときの発泡成形体中の発泡粒子の平均気泡径(μm)を表す)を用いて発泡倍数50倍に換算した発泡成形体中の発泡粒子の平均気泡径Dが、50μm≦D≦250μmの関係を満たすことを特徴とする請求項14に記載のポリスチレン系樹脂発泡成形体。
The average cell diameter D 2 ′ of the foam particles fused together in this foam molded product in the state of foam molding at the expansion factor X times is expressed by the following formula (2)
(Wherein, D 2 represents the average cell diameter of the expanded beads of foamed molded body in terms of 50-fold expansion ratio ([mu] m), D 2 'is foamed molded product when foamed in expansion ratio X times average cell diameter D 2 of the average cell diameter expanded beads of the foamed molded body in terms of expansion ratio 50 times using a representative of the ([mu] m)) of the expanded particles, characterized by satisfying the relation of 50 [mu] m ≦ D 2 ≦ 250 [mu] m The polystyrene-based resin foam molded article according to claim 14 .
JP2012072728A 2011-03-30 2012-03-28 Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding Active JP5986410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072728A JP5986410B2 (en) 2011-03-30 2012-03-28 Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011076675 2011-03-30
JP2011076675 2011-03-30
JP2012072728A JP5986410B2 (en) 2011-03-30 2012-03-28 Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding

Publications (2)

Publication Number Publication Date
JP2012214751A JP2012214751A (en) 2012-11-08
JP5986410B2 true JP5986410B2 (en) 2016-09-06

Family

ID=47267829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072728A Active JP5986410B2 (en) 2011-03-30 2012-03-28 Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding

Country Status (1)

Country Link
JP (1) JP5986410B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018061263A1 (en) 2016-09-27 2019-07-18 積水化成品工業株式会社 Foamed particles, foam molded articles, fiber reinforced composites and parts for automobiles
JP6866199B2 (en) * 2017-03-22 2021-04-28 株式会社カネカ Method for manufacturing foamable thermoplastic resin particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116935A (en) * 1984-07-02 1986-01-24 Asahi Chem Ind Co Ltd Ab resin foam having high expansion and its preparation
JPH0859877A (en) * 1994-08-25 1996-03-05 Sekisui Plastics Co Ltd Expandable as resin particle and heat-insulation material
JP2001164028A (en) * 1999-12-14 2001-06-19 Achilles Corp Expandable styrene-based resin particle and method for producing the same particle
JP2001181434A (en) * 1999-12-28 2001-07-03 Achilles Corp Expandable styrene-based resin particle and colored expandable styrene-based resin particle
ITMI20020584A1 (en) * 2002-03-20 2003-09-22 Polimeri Europa Spa COMPOSITIONS BASED ON VINYLAROMATIC POLYMERS EXPANDABLE WITH IMPROVED EXPANDABILITY
JP5258147B2 (en) * 2005-01-28 2013-08-07 積水化成品工業株式会社 Expandable thermoplastic resin particles and method for producing the same, antistatic agent composition for expandable thermoplastic resin particles, and antistatic method for expandable thermoplastic resin particles
JP2008255293A (en) * 2007-04-09 2008-10-23 Kaneka Corp Expandable resin particle
WO2009096341A1 (en) * 2008-01-30 2009-08-06 Sekisui Plastics Co., Ltd. Expandable polystyrene resin beads, process for production thereof and expanded moldings

Also Published As

Publication number Publication date
JP2012214751A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
TWI457379B (en) Expandable polystyrene type resin particle and production method thereof, and molded form
TWI529205B (en) Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP4933913B2 (en) Expandable styrene resin particles and production method thereof, styrene resin foam particles and styrene resin foam molded article
JP5882070B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP5986410B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP6063792B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2012214750A (en) Foamable polystyrene-based resin particle and production method therefor, polystyrene-based resin pre-foamed particle, and polystyrene-based resin foamed molding
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5756003B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP5734611B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP2012076753A (en) Cushioning material and method for manufacturing the same
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP2012077115A (en) Heat insulator and method for producing the same
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP2012207186A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding
JP2011173273A (en) Foamed resin molded article using recycled resin in part
JP5710465B2 (en) Expandable polystyrene resin particles and method for producing expandable polystyrene resin particles
JP2012072231A (en) Expandable polystyrene-based resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160805

R150 Certificate of patent or registration of utility model

Ref document number: 5986410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150