WO2012043439A1 - Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium - Google Patents

Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium Download PDF

Info

Publication number
WO2012043439A1
WO2012043439A1 PCT/JP2011/071811 JP2011071811W WO2012043439A1 WO 2012043439 A1 WO2012043439 A1 WO 2012043439A1 JP 2011071811 W JP2011071811 W JP 2011071811W WO 2012043439 A1 WO2012043439 A1 WO 2012043439A1
Authority
WO
WIPO (PCT)
Prior art keywords
polystyrene resin
particles
polystyrene
resin particles
expandable polystyrene
Prior art date
Application number
PCT/JP2011/071811
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 平井
樽本 裕之
翔太 遠藤
和人 佐藤
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010221062A external-priority patent/JP2012077115A/en
Priority claimed from JP2010221061A external-priority patent/JP5734611B2/en
Priority claimed from JP2010221063A external-priority patent/JP2012076753A/en
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to CN201180047076.4A priority Critical patent/CN103140545B/en
Publication of WO2012043439A1 publication Critical patent/WO2012043439A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Definitions

  • the present invention relates to a polystyrene-based resin foam molded article excellent in mechanical strength such as bending strength, compressive strength, impact resistance, heat insulating properties, and buffering properties, and expandable polystyrene-based resin particles used in the production thereof.
  • the present application includes Japanese Patent Application No. 2010-222101, filed in Japan on September 30, 2010, Japanese Patent Application No. 2010-222102, filed in Japan on September 30, 2010, and Japan, on September 30, 2010. Priority is claimed based on Japanese Patent Application No. 2010-2221063 filed in Japan, the contents of which are incorporated herein by reference.
  • a polystyrene resin foam molded article obtained by foam molding of expandable polystyrene resin particles is excellent in compression resistance, light weight, heat insulation, buffering properties, economy, and the like.
  • This polystyrene-based resin foam molded product is widely used as a heat insulating material such as a cold storage container for food, a heat insulating material for a house, a cooler box, or a cushioning material such as a packing material for transportation or a shock absorbing material between contacting members.
  • melt extrusion method As one method for producing expandable polystyrene resin particles, a so-called melt extrusion method is known.
  • a foaming agent is added to a polystyrene resin melted in an extruder and kneaded, and the foaming agent-containing molten resin is directly put into a cooling liquid from a small hole of a die provided at the tip of the extruder.
  • the extrudate is cut with a high-speed rotary blade at the same time as extrusion, and the extrudate is cooled and solidified by contact with a cooling liquid to produce expandable polystyrene resin particles.
  • Patent Documents 1 to 3 have been proposed regarding a method for producing expandable polystyrene resin particles by a melt extrusion method.
  • Patent Document 1 includes (a) a step of extruding a foaming agent-containing polymer through a die head portion in a water bath or a fluid bath that is maintained at a temperature higher than the glass transition temperature (hereinafter abbreviated as Tg) of the foamable polymer. (B) a step of immediately cutting the polymer at the outlet of the die head to form granules in a water bath or fluid bath maintained at a temperature higher than the Tg value of the foamable polymer; and (c) foaming the granules into the foam.
  • Tg glass transition temperature
  • an extrusion-type production method of expandable granules made of a non-oriented and stress-free thermoplastic styrene polymer is disclosed.
  • the granules are gradually cooled from Tg + 5 ° C. to Tg ⁇ 5 ° C. at a cooling rate slower than 3 ° C. per minute, and the polymer is cut into granules and the granules Is cooled under a pressure of 2 bar or more.
  • thermoplastic resin and a foaming agent are melt-kneaded, and then extruded from the extrusion hole of the die head into a heated and pressurized liquid of Tg + 5 ° C. or higher of the foamable thermoplastic resin particles, and obtained by immediate cutting.
  • a method for producing expandable thermoplastic resin particles is disclosed in which the particles are kept at the same temperature or higher in a heated and pressurized liquid to relieve residual stress in the particles, and then cooled.
  • Patent Document 3 discloses a step of melt-kneading the thermoplastic resin (A) and the foaming agent (B) (step 1), and the obtained melt-kneaded product from the extrusion hole of the die head to the thermoplastic resin (A). And a step of immediately cutting (Step 2) and the resulting particles (foaming) after extrusion into a heated and pressurized liquid heated and pressurized to a temperature and pressure at which the melt-kneaded product of the foaming agent (B) does not foam
  • DSC differential thermal analyzer
  • step 4 the step of aging the particles in a liquid at normal pressure heated to a temperature range of 30 to (T1 + 15) ° C., where T1 is the peak temperature on the low temperature side (step 4) , A method for producing expandable thermoplastic resin particles is disclosed
  • Patent Document 1 when the resin extruded from the die head part is cut into granules, the extrusion and cutting are performed in a heated and pressurized liquid maintained at a high temperature equal to or higher than the Tg value of the foamable polymer. Therefore, the particles obtained by cutting are easily fused together, and the incidence of defective products in which a large number of particles are bonded together to form a lump is high.
  • Patent Document 3 is a method for obtaining pre-expanded particles having a large cell diameter (bubble diameter).
  • cell diameter in the cell structure of the pre-expanded particles is increased, the mechanical strength of the foam molded product obtained by in-mold foam molding of the pre-expanded particles is decreased, or the heat conductivity is increased to increase the heat insulation performance. It may get worse.
  • the present invention has been made in view of the above circumstances, and has a polystyrene resin foam molded article excellent in mechanical strength, heat insulation, and buffering property, and a method for producing the same, and a foamable polystyrene resin particle used in the production and a method for producing the same.
  • the purpose is to provide.
  • the expandable polystyrene resin particles are resin particles containing a foaming agent in the polystyrene resin particles, and the resin particles are heated and expanded to a bulk expansion ratio of 50 times.
  • the internal average bubble diameter is in the range of 35 to 140 ⁇ m
  • the surface layer average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20
  • the open cells It has a bubble structure with a rate of 10% or less.
  • the internal average cell diameter D 1 ′ of the expanded particles when expanded to the bulk expansion ratio X times is expressed by the following formula (1) (where D 1 is the inside of the expanded particles converted to the bulk expansion ratio 50 times). Expanded particle which represents an average cell diameter ( ⁇ m), and D 1 ′ is converted to a bulk foaming factor of 50 times using an internal average cell diameter ( ⁇ m) of the foamed particle when foamed to a bulk foaming factor X times. It is preferable that the internal average bubble diameter D 1 satisfies the relationship of 35 ⁇ m ⁇ D 1 ⁇ 140 ⁇ m.
  • the internal average bubble diameter is preferably within a range of 40 to 120 ⁇ m.
  • the open cell ratio is preferably 8% or less.
  • the value of the surface layer average bubble diameter / internal average bubble diameter is in the range of 0.90 to 1.10.
  • the inorganic cell nucleating agent is contained in an amount of 5.0 parts by mass or less with respect to 100 parts by mass of the polystyrene resin.
  • the inorganic cell nucleating agent is talc.
  • a foaming agent is added to and kneaded with polystyrene resin in a resin supply device, and the foaming agent-containing molten resin is added to the resin supply device.
  • the temperature of the cooling liquid when cutting the extrudate is preferably in the range of 20 to 60 ° C.
  • the inorganic cell nucleating agent it is preferable to add 5.0 parts by mass or less of the inorganic cell nucleating agent with respect to 100 parts by mass of the polystyrene-based resin.
  • the inorganic cell nucleating agent is talc.
  • the present invention also includes polystyrene resin pre-expanded particles obtained by heating and pre-expanding the expandable polystyrene resin particles.
  • the present invention also includes a polystyrene resin foam molded article obtained by filling the polystyrene resin pre-foamed particles in a cavity of a molding die and heating and foam molding in the mold.
  • the polystyrene-based resin foam molded article is molded from polystyrene-based resin pre-expanded particles obtained by heating expandable polystyrene-based resin particles containing a foaming agent in the polystyrene-based resin particles. Filled into the mold cavity and heated, foamed in-mold, and obtained by pre-expanded particles obtained by heating the expandable polystyrene resin particles to be expanded to a bulk expansion ratio of 50 times.
  • the internal average cell diameter D 2 ′ of the pre-expanded particles when expanded to the bulk expansion ratio X times is expressed by the following formula (2) (where D 2 is the expansion ratio of the expanded particles converted to the bulk expansion ratio 50 times).
  • the inside average cell diameter ( ⁇ m) is represented, and D 2 ′ is a preliminary value converted into a bulk foaming factor of 50 times using an internal average cell diameter ( ⁇ m) of foamed particles when foamed to a bulk foaming factor X times. It is preferable that the internal average cell diameter D 2 of the expanded particles satisfies the relationship of 35 ⁇ m ⁇ D 2 ⁇ 140 ⁇ m.
  • the internal average bubble diameter is preferably within a range of 40 to 120 ⁇ m.
  • the open cell ratio is preferably 8% or less.
  • the value of the surface layer average bubble diameter / internal average bubble diameter is in the range of 0.90 to 1.10.
  • the inorganic cell nucleating agent is contained in an amount of 5.0 parts by mass or less with respect to 100 parts by mass of the polystyrene resin.
  • the inorganic cell nucleating agent is talc.
  • a polystyrene resin foam molded article is obtained by filling polystyrene resin pre-expanded particles in a cavity of a mold, steam-heating the mold, and in-mold foam molding.
  • the internal average cell diameter D 3 ′ of the foam particles fused together in this foam molded product in the state when foam-molded at the expansion factor X times is expressed by the following formula (3) (where D 3 is Represents the internal average cell diameter ( ⁇ m) of the foamed particles in the foamed molded product converted to a foaming multiple of 50 times, and D 3 ′ is the internal average cell size of the foamed particles in the foamed molded product when foamed to a foamed multiple of X times.
  • the heat insulating material is made of the polystyrene-based resin foam molding.
  • the buffer material is made of the polystyrene resin foam molded article.
  • a foaming agent is added to and kneaded with polystyrene resin in a resin supply device, and the foaming agent-containing molten resin is added to the resin supply device.
  • Internal average cell diameter D 2 of the pre-expanded particles is in the range of 35 ⁇ 140 .mu.m
  • values of the surface layer portion average cell diameter / average internal cell diameter is in the range of 0.80 to 1.20
  • continuous A third step of producing polystyrene resin pre-expanded particles having a cell structure with a cell ratio of 10% or less, and then filling the polystyrene resin pre-expanded particles in a cavity of a mold and heating the mold,
  • a fourth step of inner foam molding is
  • the temperature of the cooling liquid when cutting the extrudate is preferably in the range of 20 to 60 ° C.
  • the inorganic cell nucleating agent it is preferable to add 5.0 parts by mass or less of the inorganic cell nucleating agent with respect to 100 parts by mass of the polystyrene-based resin.
  • the inorganic cell nucleating agent is talc.
  • the polystyrene resin pre-expanded particles may be filled in a cavity of a molding die and heated, and in-mold foam molding may be performed to obtain a heat insulating material.
  • the polystyrene resin pre-expanded particles may be filled in a cavity of a mold and heated, and foamed in-mold to obtain a buffer material.
  • the expandable polystyrene resin particles are in the form of expanded particles expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 ⁇ m, and the surface layer portion average cell diameter / internal It has a cell structure in which the average cell diameter is in the range of 0.80 to 1.20, and the open cell rate is 10% or less. Therefore, relatively small, uniform, and independent bubbles are formed throughout the foam particles, and the foam molded product obtained by in-mold foam molding of the foam particles has mechanical strength such as bending strength, compression strength, and impact resistance, and heat insulation. Excellent in buffering properties.
  • the method for producing expandable polystyrene resin particles is obtained by converting expandable polystyrene resin particles obtained by a melt extrusion method to (glass transition temperature Tg-5 of expandable polystyrene resin particles) of not less than
  • This is a method of obtaining expandable polystyrene resin particles by heating at a temperature. Therefore, when the obtained expandable polystyrene resin particles are heated and foamed, relatively small, uniform and independent bubbles are formed over the entire expanded particles.
  • Efficient foamable polystyrene resin particles to produce foamed products with excellent mechanical strength such as bending strength, compressive strength, impact resistance, heat insulation, and buffering by foaming these foamed particles in-mold Can be manufactured well.
  • the polystyrene-based resin foam molded article has the internal average cell diameter D 3 ′ of the fused foam particles in the foam molded article in a state where the foam-molded article is foam-molded to X times the expansion ratio.
  • formula (3) is the average internal cell diameter D 3 of the expanded beads of foamed molded body in terms of expansion ratio 50-fold with, satisfy the relationship of 35 [mu] m ⁇ D 3 ⁇ 140 .mu.m, the surface layer portion average cell of the foamed particles It has a cell structure in which the value of the diameter / internal average cell size is in the range of 0.80 to 1.20, and the open cell ratio of the foamed molded product is 10% or less. Therefore, relatively small, uniform and independent bubbles are formed over the entire foamed molded product, and this foamed molded product is excellent in bending strength, compressive strength, mechanical strength such as impact resistance, heat insulation, and buffering properties.
  • the expandable polystyrene resin particles of the present invention are expandable polystyrene resin particles containing a foaming agent in polystyrene resin particles, and in the state of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, an internal average A cell structure in which the cell diameter is in the range of 35 to 140 ⁇ m, the surface layer part average bubble diameter / internal average cell diameter is in the range of 0.80 to 1.20, and the open cell ratio is 10% or less.
  • the bulk foaming factor of the said foamed particle refers to the bulk foaming factor measured by the measuring method of the bulk foaming multiple of the polystyrene-type resin pre-expanded particle mentioned later.
  • the internal average cell diameter D 1 ′ of the expanded particles is expressed by the above formula (1). It is converted into a bulk expansion ratio of 50 times, and the internal average bubble diameter D 1 satisfies the relationship of 35 ⁇ m ⁇ D 1 ⁇ 140 ⁇ m. The same applies to the cell structure of the polystyrene resin pre-expanded particles and the polystyrene resin foam molded article according to the present invention.
  • the expandable polystyrene resin particles of the present invention are in the form of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 ⁇ m, and further in the range of 40 to 120 ⁇ m. It is preferable that When the internal average cell diameter is less than 35 ⁇ m, the polystyrene-based resin foam molded article obtained by in-mold foam molding increases the open cell ratio and decreases closed cells, so that bending strength, compressive strength, impact resistance are increased. Such as mechanical strength will be reduced. When the internal average bubble diameter exceeds 140 ⁇ m, mechanical strength such as bending strength, compressive strength, and impact resistance is lowered.
  • the expandable polystyrene resin particles of the present invention are in the form of expanded particles heated to be expanded to a bulk expansion ratio of 50 times, and the value of the surface layer part average cell diameter / internal average cell diameter is 0.80 to 1.20. It is preferably within the range, and more preferably within the range of 0.90 to 1.10.
  • the mechanical strength such as bending strength, compressive strength, impact resistance, etc. of the polystyrene-based resin foam molded product obtained by in-mold foam molding decreases. Resulting in.
  • the “surface layer part average cell diameter” is a cross-section obtained by cutting the foamed particles so as to pass through the center in the state of foamed particles obtained by foaming expandable polystyrene resin particles to a bulk foaming factor of 50 times.
  • the region where the depth from the surface of the expanded particles is up to 1 ⁇ 4 of the diameter of the expanded particles is defined as “surface layer portion”, which means the average cell diameter of the bubbles in the surface layer portion.
  • the “internal average bubble diameter” is defined as “inside” a region deeper than the surface layer portion of the same foamed particle (region on the center side), and refers to the average bubble diameter of the bubbles in the inside. Yes.
  • the expandable polystyrene resin particles of the present invention are in the form of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, and the open cell ratio is preferably 10% or less, and more preferably 8% or less. If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the polystyrene-based resin foam molded product obtained by in-mold foam molding will decrease.
  • the polystyrene resin is not particularly limited.
  • styrene ⁇ -methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene.
  • a polystyrene resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable.
  • the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer.
  • vinyl monomers examples include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate,
  • alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate
  • bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.
  • the polystyrene resin is the main component, other resins may be added.
  • the resin to be added include diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product.
  • diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product.
  • examples thereof include rubber-modified polystyrene resins to which coalescing has been added, so-called high impact polystyrene.
  • a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.
  • a polystyrene resin used as a raw material a polystyrene resin (virgin polystyrene) that is not a recycled material, such as a commercially available ordinary polystyrene resin, a polystyrene resin newly produced by a method such as suspension polymerization, can be used.
  • a recycled raw material obtained by regenerating a used polystyrene resin foam molded article can also be used.
  • used polystyrene-based resin foam moldings such as fish boxes, household appliance cushioning materials, food packaging trays, etc. are collected and recycled from the recycled materials recovered by the limonene dissolution method or heating volume reduction method.
  • a raw material having a mass average molecular weight Mw in the range of 120,000 to 400,000 can be appropriately selected, or a plurality of recycled raw materials having different mass average molecular weights Mw can be appropriately used in combination.
  • the foaming agent used for the expandable polystyrene resin particles of the present invention is not particularly limited.
  • examples include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, and cyclopentane, ethers such as dimethyl ether and diethyl ether, various alcohols such as methanol and ethanol, carbon dioxide, nitrogen, water, etc. It can be used.
  • aliphatic hydrocarbons are preferred, and normal butane, isobutane, normal pentane, isopentane alone or a mixture thereof is more preferred.
  • normal pentane, isopentane, neopentane, cyclopentane, cyclopentadiene alone or a mixture thereof, which is a hydrocarbon having 5 carbon atoms is particularly suitable.
  • a mixture of one or both of isopentane and normal pentane is preferable.
  • it mainly comprises the hydrocarbon having 5 carbon atoms and has a boiling point of 20 ° C. or higher, and may contain a blowing agent other than the hydrocarbon having 5 carbon atoms (for example, normal butane, isobutane, propane, carbon dioxide gas, etc.). .
  • the amount of the foaming agent added is preferably in the range of 2 to 15 parts by mass, more preferably in the range of 3 to 8 parts by mass, and particularly preferably in the range of 4 to 7 parts by mass with respect to 100 parts by mass of the polystyrene resin.
  • an inorganic fine powder such as talc, calcium silicate, synthetically produced or naturally produced silicon dioxide as a cell nucleating agent with respect to 100 parts by mass of polystyrene resin.
  • a chemical foaming agent As the bubble nucleating agent, talc is particularly preferable.
  • the amount of the cell nucleating agent added is preferably 5 parts by mass or less, more preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the chemical foaming agent include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, 4,4′-oxybis (benzenesulfonylhydrazide), sodium hydrogen carbonate, and the like.
  • the cell nucleating agent it is preferable to use a master batch type cell nucleating agent in which an inorganic powder such as talc or a chemical foaming agent is uniformly dispersed in a base resin, preferably a polystyrene resin.
  • a master batch type cell nucleating agent when mixing polystyrene resin and cell nucleating agent in the resin feeder, inorganic powder or chemical foaming agent is dispersed in polystyrene resin in a very uniform state. Can be made.
  • a binding inhibitor and a cell adjustment in addition to the foaming agent and the cell nucleating agent, within the range that does not impair the physical properties of the resulting expandable polystyrene resin particles and the foamed molded product, a binding inhibitor and a cell adjustment You may add additives, such as an agent, a crosslinking agent, a filler, a flame retardant, a flame retardant adjuvant, a lubricant, and a coloring agent.
  • the expandable polystyrene resin particles of the present invention are in the form of expanded particles expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 ⁇ m, and the surface layer part average cell diameter / internal average cell diameter In the range of 0.80 to 1.20 and the open cell ratio is 10% or less. Therefore, relatively small, uniform, and independent bubbles are formed throughout the foam particles, and the foam molded product obtained by in-mold foam molding of the foam particles has mechanical strength such as bending strength, compression strength, and impact resistance, and heat insulation. Excellent in buffering properties.
  • a foaming agent is added to and kneaded with a polystyrene resin in a resin supply device, and a foaming agent-containing molten resin is provided on the tip of the resin supply device.
  • the foamed polystyrene resin particles are extruded from the pores into a cooling liquid having a temperature lower than the glass transition temperature Tg. At the same time, the extrudate is cut, and the extrudate is cooled and solidified by contact with the cooling liquid.
  • a granulating step for obtaining resin-based resin particles, and the obtained expandable polystyrene-based resin particles are heated at a temperature equal to or higher than (glass transition temperature Tg-5 of expandable polystyrene-based resin particles) ° C. And a reheating step for obtaining expandable polystyrene resin particles.
  • FIG. 1 is a configuration diagram showing an example of a production apparatus used for producing expandable polystyrene resin particles in the granulation step.
  • the manufacturing apparatus of this example includes an extruder 1 as a resin supply apparatus, a die 2 having a large number of small holes attached to the tip of the extruder 1, and a raw material supply hopper that inputs resin raw materials into the extruder 1. 3, a high-pressure pump 4 for press-fitting the foaming agent into the molten resin in the extruder 1 through the foaming agent supply port 5, and a resin discharge surface provided with a small hole in the die 2 so as to contact the cooling water.
  • a dehydrating dryer 10 with a solid-liquid separation function and a dehydrating dryer 10 with a solid-liquid separation function are obtained by separating foamable resin particles carried along with the flow of water from cooling water and dehydrating and drying to obtain expandable resin particles.
  • both an extruder using a screw or an extruder not using a screw can be used.
  • the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder.
  • the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder.
  • any extruder can use a static mixer.
  • an extruder using a screw is preferable from the viewpoint of productivity.
  • the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.
  • a desired additive such as a polystyrene resin as a raw material, a cell nucleating agent, or a flame retardant added as necessary is added.
  • the raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount is adjusted for each lot.
  • the raw materials may be fed from a plurality of raw material supply hoppers and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.
  • the resin After supplying polystyrene-based resin, bubble nucleating agent, and other optional additives into the extruder 1, the resin is heated and melted, and the molten resin is transferred to the die 2 side, and the high-pressure pump 4 is supplied from the blowing agent supply port 5.
  • the foaming agent is pressed in to mix the foaming agent with the molten resin.
  • a die provided at the front end of the extruder 1 by moving the melt to the front end side while further kneading through a foreign matter removing screen provided in the extruder 1 as necessary. Extrude through 2 small holes.
  • the resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 into which cooling water is circulated and supplied.
  • a cutter 6 is rotatably provided in the cutting chamber 7 so that the resin extruded from the small hole of the die 2 can be cut.
  • the obtained expandable polystyrene resin particles are transferred from the cutting chamber 7 to the flow of cooling water and carried to the dehydrating dryer 10 with a solid-liquid separation function.
  • the expandable polystyrene resin particles are separated from the cooling water by the dehydration dryer 10 with a solid-liquid separation function and dehydrated and dried.
  • the dried expandable polystyrene resin particles are stored in the storage container 11.
  • the temperature of the cooling water is lower than the glass transition temperature Tg of the expandable polystyrene resin particles, and is preferably in the range of 20 to 60 ° C. .
  • the temperature of the cooling water exceeds the glass transition temperature Tg of the expandable polystyrene resin particles, the expandable polystyrene resin particles are easily fused together, and a defective product in which a large number of particles are bonded to form a lump. Incidence increases. If the temperature of the cooling water is less than 20 ° C., the resulting expandable polystyrene resin particles may not be spheroidized and cracks may occur.
  • the cooling water is preferably pressurized to 0.5 MPa or more.
  • a portion of the circulation path of the cooling water passing through the cutting chamber 7 from the discharge side of the high-pressure pump 9 to the inlet side of the dehydrating dryer 10 with a solid-liquid separation function is added. It can be executed by increasing the discharge pressure of the high-pressure pump 9 in the pressure region.
  • the cooling water pressure is preferably in the range of 0.6 to 2.0 MPa, and more preferably in the range of 0.8 to 1.5 MPa.
  • the expandable polystyrene resin particles obtained in the granulation step are then heated at a temperature equal to or higher than (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C., whereby the expanded foam according to the present invention.
  • This reheating step may be carried out continuously immediately after producing the expandable polystyrene resin particles in the granulation step, or stored after producing the expandable polystyrene resin particles in the granulation step. In addition, it may be taken out after an arbitrary storage period and the reheating step may be performed.
  • a heat medium such as water is placed in a pressure-resistant container having a temperature control function, and heated and kept at a temperature within the temperature range.
  • the heating temperature in the reheating step may be a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher. Specifically, in the case of expandable polystyrene resin particles having a Tg of 61 ° C. used in Examples described later, the heating temperature is 56 ° C. or higher. Although heating temperature is good also as 150 degreeC or more, it is preferable to make about 150 degreeC into an upper limit from a viewpoint of reducing fusion
  • this heating temperature is less than (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C., the bubbles in the expanded particles obtained by heating and foaming the obtained expandable polystyrene resin particles do not become fine. There is a possibility that the mechanical strength of the foamed molded product obtained by foam-molding the foamed particles in the mold is lowered.
  • the pressure in the reheating step is 1.5 MPa or less, preferably 0.1 to 1.0 MPa, more preferably 0.1 to 0.5 MPa.
  • This pressure exceeds 1.5 MPa, the mechanical strength of the obtained foamed molded article may be lowered.
  • the heat treatment time in the reheating step is not particularly limited, but is preferably about 1 to 10 minutes, more preferably about 1 to 5 minutes. If this heat treatment time is short, the effect of improving the cellular structure of the expandable polystyrene resin particles obtained in the granulation step and improving the mechanical strength of the foamed molded article cannot be sufficiently obtained. On the other hand, if the heat treatment time is lengthened, the production efficiency of expandable polystyrene resin particles is lowered, leading to an increase in cost, which is not preferable.
  • the expandable polystyrene resin particles that have undergone this reheating step are used for the production of pre-expanded polystyrene resin particles after necessary post-treatments such as addition of additives such as surface modifiers and drying treatments.
  • expandable polystyrene resin particles obtained by melt extrusion are heated at a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher.
  • Tg-5 of expandable polystyrene resin particles ° C. or higher.
  • the expandable polystyrene resin particles of the present invention are pre-foamed by heating with steam or the like using a well-known apparatus and technique in the field of producing foamed resin moldings, and the polystyrene-based resin pre-expanded particles of the present invention (hereinafter, (Referred to as pre-expanded particles).
  • the pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of a polystyrene-based resin foam-molded product to be manufactured (hereinafter referred to as a foam-molded product).
  • the bulk density and the bulk foaming factor are not limited, but are usually in the range of 0.010 to 0.100 g / cm 3 (in the range of 10 to 100 times as the bulk foaming factor), and 0.015 to It is preferable to be in the range of 0.050 g / cm 3 .
  • the bulk density and the bulk expansion ratio of the pre-expanded particles refer to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
  • the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
  • Bulk foaming factor 1 / bulk density (g / cm 3 )
  • the pre-expanded particles are filled in a cavity of a molding die by using a well-known apparatus and method in the field of manufacturing a foamed resin molded body, heated by steam heating or the like, and subjected to in-mold foam molding, foaming A molded body is manufactured.
  • the polystyrene-based resin foam molded article of the present invention is in the state when foam-molded at a foam multiple X times, and the internal average cell diameter D 3 ′ of the foam particles fused together in this foam molded article is expressed by the above formula.
  • (3) is used to convert the expansion ratio to 50 times, and the internal average cell diameter D 3 of the expanded particles in the expanded molded product satisfies the relationship of 35 ⁇ m ⁇ D 3 ⁇ 140 ⁇ m. It has a cell structure in which the value of the diameter / internal average cell size is in the range of 0.80 to 1.20, and the open cell ratio of the foamed molded product is 10% or less.
  • the polystyrene-based resin foam molded article of the present invention is in the state when foam-molded at a foam multiple X times, and the internal average cell diameter D 3 ′ of the foam particles fused together in this foam molded article is expressed by the above formula.
  • the expansion ratio is converted to 50 times, and the internal average cell diameter D 3 of the expanded particles in the expanded molded product satisfies the relationship of 35 ⁇ m ⁇ D 3 ⁇ 140 ⁇ m.
  • the internal average cell diameter D 3 is less than 35 [mu] m, a polystyrene type resin foamed molded product obtained by mold foaming closed cell decreases with increasing open cell ratio, bending strength, compression strength, impact The mechanical strength such as property will decrease.
  • D 3 When the internal average cell diameter D 3 greater than 140 .mu.m, flexural strength, compressive strength, mechanical strength such as impact resistance is lowered.
  • a preferable range of D 3 is 40 ⁇ m ⁇ D 3 ⁇ 120 ⁇ m, and a more preferable range is 45 ⁇ m ⁇ D 3 ⁇ 115 ⁇ m.
  • the value of the surface layer part average cell diameter / internal average cell diameter of the expanded particles is in the range of 0.80 to 1.20.
  • the mechanical strength such as bending strength, compressive strength, impact resistance, etc. of the polystyrene-based resin foam molded product obtained by in-mold foam molding decreases. Resulting in.
  • a preferred range is 0.90 to 1.10, and a more preferred range is 0.93 to 1.06.
  • the open cell ratio of the foam molded article is 10% or less, preferably 8% or less. If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the polystyrene-based resin foam molded product obtained by in-mold foam molding will decrease.
  • the density of the foamed molded product of the present invention is not particularly limited, but is usually in the range of 0.010 to 0.100 g / cm 3 (10 to 100 times as the bulk foaming factor), and 0.015 to 0.050 g / cm 3. It is preferable to be within the range of 3 .
  • the density of the foamed molded article refers to the density of the foamed molded article measured by the method described in JIS K7122: 1999 “Foamed Plastics and Rubber—Measurement of Apparent Density”.
  • ⁇ Density of foam molding> A specimen of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and the density was calculated by the following formula.
  • Density (g / cm 3 ) Test piece mass (g) / Test piece volume (cm 3 ) Test specimens are cut from a sample that has passed 72 hours or more after molding, and atmospheric conditions (temperature and humidity conditions) of 23 ° C. ⁇ 2 ° C. ⁇ 50% ⁇ 5% or 27 ° C. ⁇ 2 ° C. ⁇ 65% ⁇ 5% The test piece was allowed to stand for 16 hours or longer.
  • the foamed molded article of the present invention is manufactured using the expandable polystyrene resin particles, compared to the conventional product not subjected to the reheating step, mechanical strength such as bending strength, compressive strength, impact resistance, Excellent heat insulation and buffering properties.
  • the polystyrene resin foam molded article of the present invention is obtained by filling polystyrene resin pre-expanded particles obtained by heating expandable polystyrene resin particles containing a foaming agent in polystyrene resin particles into the mold cavity. It is obtained by heating and in-mold foam molding.
  • the polystyrene-based resin foam molded article of the present invention is a pre-expanded particle state in which the expandable polystyrene-based resin particles are heated and expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 ⁇ m.
  • the surface layer part average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20, and the open cell ratio is 10% or less.
  • the bulk expansion ratio of the pre-expanded particles refers to a bulk expansion ratio measured by a method for measuring the bulk expansion ratio of polystyrene resin pre-expanded particles described later.
  • the internal average cell diameter D 2 ′ of the pre-expanded particles is expressed by the above formula (2). It is preferably converted to a bulk foaming ratio of 50 times, and the internal average bubble diameter D 2 preferably satisfies the relationship of 35 ⁇ m ⁇ D 2 ⁇ 140 ⁇ m.
  • the expandable polystyrene resin particles are in the form of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 ⁇ m, and further in the range of 40 to 120 ⁇ m. It is preferable.
  • the internal average cell diameter is less than 35 ⁇ m, the polystyrene-based resin foam molded article obtained by in-mold foam molding increases the open cell ratio and decreases closed cells, so that bending strength, compressive strength, impact resistance are increased. Such as mechanical strength will be reduced.
  • the internal average bubble diameter exceeds 140 ⁇ m, mechanical strength such as bending strength, compressive strength, and impact resistance is lowered.
  • the expandable polystyrene resin particles are in the form of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, and the surface layer part average cell diameter / internal average cell diameter value is within the range of 0.80 to 1.20. In addition, it is preferably in the range of 0.90 to 1.10.
  • the mechanical strength such as bending strength, compressive strength, impact resistance, etc. of the polystyrene-based resin foam molded product obtained by in-mold foam molding decreases. Resulting in.
  • the “surface layer average cell diameter” means a state of pre-expanded particles obtained by expanding expandable polystyrene resin particles to a bulk expansion ratio of 50 times, and cutting the pre-expanded particles so as to pass through the center thereof.
  • the region where the depth from the surface of the pre-expanded particles is up to 1/4 of the diameter of the expanded particles is defined as “surface layer portion”, which means the average cell diameter of the bubbles in the surface layer portion.
  • the “inner average bubble diameter” is defined as “inner” as a region deeper than the surface layer portion of the same pre-expanded particle (region on the center side), and refers to the average bubble diameter of the bubbles inside. Yes.
  • the expandable polystyrene resin particles are in the form of expanded particles heated to be expanded to a bulk expansion ratio of 50 times, and the open cell ratio is preferably 10% or less, and more preferably 8% or less. If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the polystyrene-based resin foam molded product obtained by in-mold foam molding will decrease.
  • the polystyrene resin is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and the like. Examples include homopolymers of styrene monomers or copolymers thereof. A polystyrene resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable.
  • the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer.
  • vinyl monomers examples include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate,
  • alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate
  • bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.
  • the polystyrene resin is the main component, other resins may be added.
  • the resin to be added include diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product.
  • diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product.
  • examples thereof include rubber-modified polystyrene resins to which coalescing has been added, so-called high impact polystyrene.
  • a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.
  • a polystyrene resin used as a raw material a polystyrene resin (virgin polystyrene) that is not a recycled material, such as a commercially available ordinary polystyrene resin, a polystyrene resin newly produced by a method such as suspension polymerization, can be used.
  • a recycled raw material obtained by regenerating a used polystyrene resin foam molded article can also be used.
  • used polystyrene-based resin foam moldings such as fish boxes, heat insulating materials for household appliances, trays for food packaging, etc. are collected and recycled from the recycled materials recovered by the limonene dissolution method or heating volume reduction method.
  • a raw material having a mass average molecular weight Mw in the range of 120,000 to 400,000 can be appropriately selected, or a plurality of recycled raw materials having different mass average molecular weights Mw can be appropriately used in combination.
  • the foaming agent used for the expandable polystyrene resin particles is not particularly limited.
  • examples include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, and cyclopentane, ethers such as dimethyl ether and diethyl ether, various alcohols such as methanol and ethanol, carbon dioxide, nitrogen, water, etc. It can be used. Of these, aliphatic hydrocarbons are preferred, and normal butane, isobutane, normal pentane, isopentane alone or a mixture thereof is more preferred.
  • normal pentane, isopentane, neopentane, cyclopentane, cyclopentadiene alone or a mixture thereof, which is a hydrocarbon having 5 carbon atoms is particularly suitable.
  • a mixture of one or both of isopentane and normal pentane is preferable.
  • it mainly comprises the hydrocarbon having 5 carbon atoms and has a boiling point of 20 ° C. or higher, and may contain a blowing agent other than the hydrocarbon having 5 carbon atoms (for example, normal butane, isobutane, propane, carbon dioxide gas, etc.). .
  • the amount of the foaming agent added is preferably in the range of 2 to 15 parts by mass, more preferably in the range of 3 to 8 parts by mass, and particularly preferably in the range of 4 to 7 parts by mass with respect to 100 parts by mass of the polystyrene resin.
  • an inorganic fine powder such as talc, calcium silicate, synthetically or naturally produced silicon dioxide as a cell nucleating agent with respect to 100 parts by mass of polystyrene resin.
  • talc is particularly preferable.
  • the amount of the cell nucleating agent added is preferably 5 parts by mass or less, more preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the chemical foaming agent include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, 4,4′-oxybis (benzenesulfonylhydrazide), sodium hydrogen carbonate, and the like.
  • the cell nucleating agent it is preferable to use a master batch type cell nucleating agent in which an inorganic powder such as talc or a chemical foaming agent is uniformly dispersed in a base resin, preferably a polystyrene resin.
  • a master batch type cell nucleating agent when mixing polystyrene resin and cell nucleating agent in the resin feeder, inorganic powder or chemical foaming agent is dispersed in polystyrene resin in a very uniform state. Can be made.
  • a binding inhibitor in addition to the foaming agent and the cell nucleating agent, in the range that does not impair the properties of the resulting expandable polystyrene resin particles and the foamed molded article, a binding inhibitor, a cell regulator, You may add additives, such as a crosslinking agent, a filler, a flame retardant, a flame retardant adjuvant, a lubricant, and a coloring agent.
  • the polystyrene-based resin foam molded article of the present invention is a state of pre-expanded particles in which expandable polystyrene-based resin particles are heated and expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 ⁇ m.
  • the foam-molded product obtained by in-mold foam molding of the pre-expanded particles has mechanical strength such as bending strength, compressive strength, and impact resistance. , Excellent heat insulating properties and buffer properties.
  • a heat insulating material having excellent heat insulating properties or a buffer material having excellent buffering properties can be produced.
  • the method for producing a polystyrene-based resin foam molded article according to the present invention includes adding a foaming agent to a polystyrene-based resin in a resin supply apparatus and kneading, and a foam-containing molten resin at the tip of the resin supply apparatus.
  • the foamed polystyrene resin particles are extruded from the pores into a cooling liquid having a temperature lower than the glass transition temperature Tg.
  • FIG. 1 is a configuration diagram showing an example of a production apparatus used for producing expandable polystyrene resin particles in the granulation step.
  • the manufacturing apparatus in this embodiment includes an extruder 1 as a resin supply device, a die 2 having a large number of small holes attached to the tip of the extruder 1, and a raw material supply for charging a resin raw material or the like into the extruder 1.
  • a hopper 3, a high-pressure pump 4 for press-fitting the foaming agent into the molten resin in the extruder 1 through the foaming agent supply port 5, and a resin discharge surface in which a small hole of the die 2 is drilled are provided in contact with the cooling water.
  • the cutter 6 From the cutting chamber 7 into which the cooling water is circulated and supplied to the room, the cutter 6 rotatably provided in the cutting chamber 7 so as to cut the resin extruded from the small hole of the die 2, and the cutting chamber 7
  • a water tank 8 for storing the cooling water
  • a high-pressure pump 9 for sending the cooling water in the water tank 8 to the cutting chamber 7, and a storage for storing the expandable resin particles dehydrated and dried by the dehydrating dryer 10 with a solid-liquid separation function.
  • a container 11 A dehydrating dryer 10 with a solid-liquid separation function that separates foamable resin particles carried along with the flow of cooling water from cooling water and dehydrating and drying to obtain expandable resin particles
  • both an extruder using a screw or an extruder not using a screw can be used.
  • the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder.
  • the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder.
  • any extruder can use a static mixer.
  • an extruder using a screw is preferable from the viewpoint of productivity.
  • the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.
  • a desired additive such as a polystyrene resin as a raw material, a cell nucleating agent, or a flame retardant added as necessary is added.
  • the raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount is adjusted for each lot.
  • the raw materials may be fed from a plurality of raw material supply hoppers and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.
  • the resin After supplying polystyrene-based resin, bubble nucleating agent, and other optional additives into the extruder 1, the resin is heated and melted, and the molten resin is transferred to the die 2 side, and the high-pressure pump 4 is supplied from the blowing agent supply port 5.
  • the foaming agent is pressed in to mix the foaming agent with the molten resin.
  • a die provided at the front end of the extruder 1 by moving the melt to the front end side while further kneading through a foreign matter removing screen provided in the extruder 1 as necessary. Extrude through 2 small holes.
  • the resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 into which cooling water is circulated and supplied.
  • a cutter 6 is rotatably provided in the cutting chamber 7 so that the resin extruded from the small hole of the die 2 can be cut.
  • the obtained expandable polystyrene resin particles are transferred from the cutting chamber 7 to the flow of cooling water and carried to the dehydrating dryer 10 with a solid-liquid separation function.
  • the expandable polystyrene resin particles are separated from the cooling water by the dehydration dryer 10 with a solid-liquid separation function and dehydrated and dried.
  • the dried expandable polystyrene resin particles are stored in the storage container 11.
  • the temperature of the cooling water is lower than the glass transition temperature Tg of the expandable polystyrene resin particles, and is preferably in the range of 20 to 60 ° C.
  • Tg glass transition temperature
  • the expandable polystyrene resin particles are easily fused together, and a defective product in which a large number of particles are bonded to form a lump. Incidence increases. If the temperature of the cooling water is less than 20 ° C., the resulting expandable polystyrene resin particles may not be spheroidized and cracks may occur.
  • the cooling water is preferably pressurized to 0.5 MPa or more.
  • a portion of the circulation path of the cooling water passing through the cutting chamber 7 from the discharge side of the high-pressure pump 9 to the inlet side of the dehydrating dryer 10 with a solid-liquid separation function is added. It can be executed by increasing the discharge pressure of the high-pressure pump 9 in the pressure region.
  • the cooling water pressure is preferably in the range of 0.6 to 2.0 MPa, and more preferably in the range of 0.8 to 1.5 MPa.
  • the expandable polystyrene resin particles obtained in the granulation step are then heated at a temperature equal to or higher than (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C., whereby the expanded foam according to the present invention.
  • This reheating step may be carried out continuously immediately after producing the expandable polystyrene resin particles in the granulation step, or stored after producing the expandable polystyrene resin particles in the granulation step. In addition, it may be taken out after an arbitrary storage period and the reheating step may be performed.
  • a heat medium such as water is placed in a pressure-resistant container having a temperature control function, and heated and kept at a temperature within the temperature range.
  • the heating temperature in the reheating step may be a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher. Specifically, in the case of expandable polystyrene resin particles having a Tg of 61 ° C. used in Examples described later, the heating temperature is 56 ° C. or higher. Although heating temperature is good also as 150 degreeC or more, it is preferable to make about 150 degreeC into an upper limit from a viewpoint of reducing fusion
  • this heating temperature is less than (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C., the bubbles in the expanded particles obtained by heating and foaming the obtained expandable polystyrene resin particles do not become fine. There is a possibility that the mechanical strength of the foamed molded product obtained by foam-molding the foamed particles in the mold is lowered.
  • the pressure in the reheating step is 1.5 MPa or less, preferably 0.1 to 1.0 MPa, more preferably 0.1 to 0.5 MPa.
  • This pressure exceeds 1.5 MPa, the mechanical strength of the obtained foamed molded article may be lowered.
  • the heat treatment time in the reheating step is not particularly limited, but is preferably about 1 to 10 minutes, more preferably about 1 to 5 minutes. If this heat treatment time is short, the effect of improving the cellular structure of the expandable polystyrene resin particles obtained in the granulation step and improving the mechanical strength of the foamed molded article cannot be sufficiently obtained. On the other hand, if the heat treatment time is lengthened, the production efficiency of expandable polystyrene resin particles is lowered, leading to an increase in cost, which is not preferable.
  • Expandable polystyrene resin particles that have undergone this reheating step are subjected to the necessary post-treatments such as addition of additives such as surface modifiers and drying treatment, and then through polystyrene resin pre-expanded particles, polystyrene resin foam molding Used for the production of the body.
  • the expandable polystyrene resin particles obtained by the reheating treatment are pre-expanded by heating with water vapor heating or the like using a well-known apparatus and method in the field of manufacturing a foamed resin molded article.
  • pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the polystyrene-based resin foam molding to be manufactured.
  • the bulk density and the bulk foaming factor are not limited, but are usually in the range of 0.010 to 0.100 g / cm 3 (in the range of 10 to 100 times as the bulk foaming factor), and 0.015 to It is preferable to be in the range of 0.050 g / cm 3 .
  • the bulk density and the bulk expansion ratio of the pre-expanded particles refer to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
  • the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
  • Bulk foaming factor 1 / bulk density (g / cm 3 )
  • the pre-expanded particles are filled into a cavity of a molding die, heated by steam heating or the like, and subjected to in-mold foam molding, and a polystyrene-based resin foam molded body is obtained.
  • the pre-expanded particles are filled in a cavity of a molding die, heated, and subjected to in-mold foam molding to obtain a heat insulating material or a buffer material as a polystyrene-based resin foam molding.
  • the polystyrene-based resin foam molded article of the present invention is in a state where it is foam-molded to a multiple of X times, and the internal average cell diameter D 3 ′ of the fused particles in the foam molded article is expressed by the above formula ( 3), the internal average cell diameter D 3 of the expanded particles in the expanded molded product satisfies the relationship of 35 ⁇ m ⁇ D 3 ⁇ 140 ⁇ m, and the surface layer portion average cell diameter of the expanded particles /
  • the cell has a cell structure in which the value of the internal average cell diameter is in the range of 0.80 to 1.20, and the open cell ratio of the foamed molded product is 10% or less.
  • the polystyrene-based resin foam molded article of the present invention is in a state where it is foam-molded to a multiple of X times, and the internal average cell diameter D 3 ′ of the fused particles in the foam molded article is expressed by the above formula ( 3) is used to convert the expansion ratio to 50 times, and the internal average cell diameter D 3 of the expanded particles in the expanded molded product satisfies the relationship of 35 ⁇ m ⁇ D 3 ⁇ 140 ⁇ m.
  • the internal average cell diameter D 3 is less than 35 [mu] m, a polystyrene type resin foamed molded product obtained by mold foaming closed cell decreases with increasing open cell ratio, bending strength, compression strength, impact The mechanical strength such as property will decrease.
  • D 3 When the internal average cell diameter D 3 greater than 140 .mu.m, flexural strength, compressive strength, mechanical strength such as impact resistance is lowered.
  • a preferable range of D 3 is 40 ⁇ m ⁇ D 3 ⁇ 120 ⁇ m, and a more preferable range is 45 ⁇ m ⁇ D 3 ⁇ 115 ⁇ m.
  • the value of the surface layer part average cell diameter / internal average cell diameter of the expanded particles is in the range of 0.80 to 1.20.
  • the mechanical strength such as bending strength, compressive strength, impact resistance, etc. of the polystyrene-based resin foam molded product obtained by in-mold foam molding decreases. Resulting in.
  • a preferred range is 0.90 to 1.10, and a more preferred range is 0.93 to 1.06.
  • the open cell ratio of the foam molded article is 10% or less, and preferably 8% or less. If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the polystyrene-based resin foam molded product obtained by in-mold foam molding will decrease.
  • the density of the polystyrene resin foam molded article of the present invention is not particularly limited, but is usually within the range of 0.010 to 0.100 g / cm 3 (10 to 100 times as the bulk foaming factor), and 0.015 to 0.00. It is preferable to be within the range of 050 g / cm 3 .
  • the density of the polystyrene resin foam molded article refers to the density of the foam molded article measured by the method described in JIS K7122: 1999 “Measurement of Foamed Plastics and Rubber—Apparent Density”.
  • ⁇ Density of foam molding> A specimen of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and the density was calculated by the following formula.
  • Density (g / cm 3 ) Test piece mass (g) / Test piece volume (cm 3 ) Test specimens are cut from a sample that has passed 72 hours or more after molding, and atmospheric conditions (temperature and humidity conditions) of 23 ° C. ⁇ 2 ° C. ⁇ 50% ⁇ 5% or 27 ° C. ⁇ 2 ° C. ⁇ 65% ⁇ 5% The test piece was allowed to stand for 16 hours or longer.
  • expandable polystyrene resin particles obtained by melt extrusion are used at a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher.
  • This is a method of obtaining expandable polystyrene resin particles by performing heat treatment at a pressure of 0.5 MPa or less. Therefore, when heated and foamed, relatively small, uniform, and independent bubbles are formed throughout the foamed particles, and the foamed particles are subjected to in-mold foam molding to provide mechanical strength such as bending strength, compressive strength, impact resistance, and heat insulation.
  • a polystyrene-based resin foam molded article, a heat insulating material, or a buffer material excellent in properties and buffering properties can be obtained.
  • Example 1 Manufacture of expandable polystyrene resin particles
  • talc master batch polystyrene resin 40% by mass, talc 60% by mass
  • polystyrene resin trade name “HRM-10N” manufactured by Toyo Styrene Co., Ltd.
  • HRM-10N polystyrene resin
  • 6 parts by mass of isopentane as a foaming agent was added to 100 parts by mass of the resin from the middle of the extruder. Press-fitted.
  • the diameter of 0.6 mm is maintained at 290 ° C. by a heater installed in the extruder. Then, through a granulation die having 200 nozzles with a land length of 3.0 mm, it was extruded into an underwater cutting chamber in which cooling water with a temperature of 50 ° C. and a water pressure of 1.5 MPa circulated, and at the same time, 10 blades in the circumferential direction.
  • the resin was cut by bringing a high-speed rotary cutter having close contact with the die and rotating at 3000 rpm, and dehydrated and dried to obtain spherical expandable polystyrene resin particles.
  • the obtained expandable polystyrene resin particles had an average particle size of 1.1 mm without the occurrence of deformation or beard.
  • 2000 g of the above expandable polystyrene resin particles, 2500 g of distilled water, and 0.5 g of sodium dodecylbenzenesulfonate were placed in an autoclave with a stirrer having an internal volume of 5.7 liters, and stirred and dispersed. .
  • This dispersion was pressurized to 0.2 MPa with nitrogen, heated to 80 ° C., held for 3 minutes, then cooled, taken out, washed, dehydrated, and dried.
  • the expandable polystyrene resin particles (hereinafter may be referred to as beads) obtained as described above are supplied to a cylindrical batch type pre-foaming machine, heated by steam with a blowing pressure of 0.05 MPa, and foamed. Expanded particles were obtained.
  • the obtained pre-expanded particles had a bulk density of 0.020 g / cm 3 (bulk expansion ratio: 50 times).
  • the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm ⁇ width 300 mm ⁇ height 25 mm. , Molding steam pressure 0.08 MPa (gauge pressure), mold heating 3 seconds, one heating 10 seconds, reverse one heating 3 seconds, double side heating 10 seconds, water cooling 5 seconds, set extraction surface pressure 0.02 MPa went.
  • the gas content, Tg of expandable polystyrene resin particles, internal average cell diameter, surface layer average cell diameter, open cell ratio, flexural strength, compression according to the following measurement method It measured about each test item of an intensity
  • Tg was measured according to the test method of JIS K7121. Specifically, using a differential scanning calorimeter DSC6220 type (manufactured by SII NanoTechnology Co., Ltd.), 6.5 mg of a sample bead is filled in a measurement container, and a nitrogen gas flow rate of 25 ml / min is 20 ° C./min. The temperature was raised from 30 ° C. to 200 ° C. at a rate of temperature rise, and the midpoint glass transition temperature was taken as the glass transition temperature.
  • the internal average cell diameter of the pre-expanded particles is measured in accordance with the test method of ASTM D2842-69. Specifically, first, a razor tooth is used to cut a plane passing through the vicinity of the center of the pre-foamed particles, and the cut surface is enlarged 15 times using a scanning electron microscope (JOEL product name “JSM-6360LV”). To shoot. Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the surface layer of the pre-expanded particles is drawn.
  • a second concentric circle having a diameter of 1 ⁇ 2 (a radius of 1 ⁇ 4) is drawn with respect to the diameter of the first circle, and a straight line having a length of 60 mm is placed at an arbitrary position inside the second circle.
  • This drawing is performed, and the average chord length (t) of the bubbles is calculated from the number of bubbles existing on this straight line by the following formula.
  • Average string length t 60 / (number of bubbles ⁇ photo magnification)
  • ⁇ Surface layer average cell diameter of pre-expanded particles> A razor tooth is used to cut a plane passing through the vicinity of the center of the pre-foamed particles, and the cut surface is photographed at a magnification of 15 times using a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL). Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the surface layer of the pre-expanded particles is drawn. A second concentric circle having a diameter of 1 ⁇ 2 (a radius of 1 ⁇ 4) is drawn with respect to the diameter of the first circle, and a length of 60 mm is provided at an arbitrary position between the second circle from the surface layer. A straight line is drawn, and the average chord length (t) of the bubbles is calculated in the same manner as the internal average bubble diameter from the number of bubbles existing on the straight line, and is used as the surface layer average bubble diameter.
  • the foamed molded product is cut with a razor tooth, and the cut surface is photographed with a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL) at a magnification of 15 times.
  • the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the grain boundary portion of the fused foam particles existing on the cut surface is drawn.
  • the foamed molded product is cut with a razor tooth, and the cut surface is photographed with a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL) at a magnification of 15 times.
  • the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the grain boundary portion of the fused foam particles existing on the cut surface is drawn.
  • a second concentric circle having a diameter of 1 ⁇ 2 (a radius of 1 ⁇ 4) is drawn with respect to the diameter of the first circle, and the length is set at an arbitrary position between the second circle from the grain boundary portion.
  • a straight line of 60 mm is drawn, and the average chord length (t) of the bubbles is calculated from the number of bubbles existing on the straight line in the same manner as the internal average bubble size of the pre-expanded particles. Asked.
  • ⁇ Bending strength> A test piece having a length of 300 mm, a width of 75 mm, and a thickness of 25 mm was cut out from the foamed molded article, and a bending test was performed on the test piece in accordance with JIS-A9511 to calculate a bending strength.
  • thermo conductivity ⁇ Insulation (thermal conductivity)>
  • a rectangular parallelepiped test piece having a length of 200 mm, a width of 200 mm, and a thickness of 25 mm was cut out from the polystyrene-based resin foam molding.
  • the thermal conductivity of the test piece was measured at a measurement temperature of 23 ° C. using a thermal conductivity meter (AUTO- ⁇ HC-072) manufactured by Eihiro Seiki Co., Ltd. according to JIS A1412.
  • ⁇ Drop test> A plane rectangular test piece having a length of 215 mm, a width of 40 mm, and a thickness of 20 mm is cut out from the polystyrene-based resin foam molded body, and tested between a pair of fulcrums arranged at intervals of 150 mm in accordance with JIS K7211. The piece was installed and a 198 g steel ball was dropped, and the falling ball impact value, that is, the 50% breaking height was calculated based on the following formula.
  • Example 2 A foamed molded article was produced in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 150 ° C. and the pressure was 0.5 MPa, and the same measurement was performed. The results are shown in Table 1.
  • Example 3 A foamed molded article was produced in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 60 ° C., and the same measurement was performed. The results are shown in Table 1.
  • Example 4 A foamed molded article was produced in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 57 ° C., and the same measurement was performed. The results are shown in Table 1.
  • Example 5 A foamed molded article was produced in the same manner as in Example 1 except that the same amount of butane was used as the foaming agent and the pressure during the reheating treatment was 0.5 MPa, and the same measurement was performed. The results are shown in Table 1.
  • Example 1 A foamed molded article was produced in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 100 ° C., and the same measurement was performed. The results are shown in Table 1.
  • Example 2 The foamed molded article was produced in the same manner as in Example 1 except that the cooling water temperature in the underwater cut chamber was 70 ° C., the pressure during the reheating treatment was 1.5 MPa, and the reheating treatment time was 5 minutes after heating. The same measurement was performed. The results are shown in Table 1.
  • Example 3 A foamed molded article was produced in the same manner as in Example 1 except that the reheating treatment was not performed, and the same measurement was performed. The results are shown in Table 1.
  • Example 4 A foamed molded article was produced in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 40 ° C., and the same measurement was performed. The results are shown in Table 1.
  • Example 5 A foamed molded article was produced in the same manner as in Example 1 except that the heating time after the temperature increase during the reheating treatment was 1 minute, and the same measurement was performed. The results are shown in Table 1.
  • the foamed molded products obtained in Examples 1 to 5 according to the present invention are in the form of expanded particles expanded to a bulk expansion ratio of 50 times and have an internal average cell diameter of 35 to 140 ⁇ m.
  • the surface layer portion average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20, and the cell has a bubble structure in which the open cell ratio is 10% or less.
  • a foamed molded product obtained by in-mold foam molding of pre-foamed particles foamed to a bulk foaming factor of 50 times has a low open cell ratio, a large number of closed cells, and is not subjected to reheating treatment.
  • the bending strength and compressive strength of the foamed molded product were higher than those of the foamed molded product.
  • the foamed molded product of Comparative Example 1 had a high open cell ratio and a small number of closed cells, and therefore the bending strength and compressive strength of the foamed molded product were low. Moreover, since the internal average bubble diameter of the foaming molding of the comparative example 2 exceeded the range of this invention, the bending strength and compressive strength of the foaming molding were low. Moreover, since the internal average bubble diameter exceeded the range of this invention as a result of the foaming molding of the comparative example 3 not performing a reheating process, the bending strength and compressive strength of the foaming molding were low.
  • the foaming molding of the comparative example 4 had low bending strength and compressive strength.
  • the foamed molded product of Comparative Example 5 had low bending strength and compressive strength.
  • the expandable polystyrene resin particles of the present invention can be widely applied to the production of polystyrene resin foam molded articles having excellent mechanical strength such as bending strength, compressive strength, impact resistance, heat insulation, and buffering properties. Moreover, the polystyrene resin foam molded article of the present invention can be widely applied to various uses such as a heat insulating material and a buffer material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

These expandable polystyrene resin particles are resin particles comprising polystyrene resin particles and a blowing agent contained therein. When heated and expanded 50 times in terms of bulk expansion ratio, the resin particles give expanded beads that have a cell structure in which the inner part has an average cell diameter of 35-140 µm, the ratio of the surface-layer-part average cell diameter to the inner-part average cell diameter is 0.80-1.20, and the proportion of open cells is 10% or less.

Description

発泡性ポリスチレン系樹脂粒子及びその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体及びその製造方法、断熱材、並びに緩衝材Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding and production method thereof, heat insulating material, and buffer material
 本発明は、曲げ強度、圧縮強度、耐衝撃性などの機械強度、断熱性、及び緩衝性に優れたポリスチレン系樹脂発泡成形体、並びにその製造に用いられる発泡性ポリスチレン系樹脂粒子に関する。
 本願は、2010年9月30日に日本に出願された特願2010-221061号、2010年9月30日に日本に出願された特願2010-221062号、及び2010年9月30日に日本に出願された特願2010-221063号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a polystyrene-based resin foam molded article excellent in mechanical strength such as bending strength, compressive strength, impact resistance, heat insulating properties, and buffering properties, and expandable polystyrene-based resin particles used in the production thereof.
The present application includes Japanese Patent Application No. 2010-222101, filed in Japan on September 30, 2010, Japanese Patent Application No. 2010-222102, filed in Japan on September 30, 2010, and Japan, on September 30, 2010. Priority is claimed based on Japanese Patent Application No. 2010-2221063 filed in Japan, the contents of which are incorporated herein by reference.
 発泡性ポリスチレン系樹脂粒子を発泡成形して得られるポリスチレン系樹脂発泡成形体は、耐圧縮性、軽量性、断熱性、緩衝性、経済性などに優れている。このポリスチレン系樹脂発泡成形体は、食品用保冷容器、住宅用断熱材、クーラーボックス等の断熱材、又は輸送用梱包材、接触する部材間の衝撃吸収材等の緩衝材などとして広く用いられている。 A polystyrene resin foam molded article obtained by foam molding of expandable polystyrene resin particles is excellent in compression resistance, light weight, heat insulation, buffering properties, economy, and the like. This polystyrene-based resin foam molded product is widely used as a heat insulating material such as a cold storage container for food, a heat insulating material for a house, a cooler box, or a cushioning material such as a packing material for transportation or a shock absorbing material between contacting members. Yes.
 発泡性ポリスチレン系樹脂粒子の製造方法の一つとして、所謂、溶融押出法が知られている。溶融押出法では、押出機内で溶融されたポリスチレン系樹脂に発泡剤を添加して混練し、発泡剤含有の溶融樹脂を押出機先端に設けられたダイの小孔から直接に冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断し、押出物を冷却用液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を製造する。
 従来、溶融押出法により発泡性ポリスチレン系樹脂粒子を製造する方法に関して、例えば、特許文献1~3に開示された技術が提案されている。
As one method for producing expandable polystyrene resin particles, a so-called melt extrusion method is known. In the melt extrusion method, a foaming agent is added to a polystyrene resin melted in an extruder and kneaded, and the foaming agent-containing molten resin is directly put into a cooling liquid from a small hole of a die provided at the tip of the extruder. The extrudate is cut with a high-speed rotary blade at the same time as extrusion, and the extrudate is cooled and solidified by contact with a cooling liquid to produce expandable polystyrene resin particles.
Conventionally, for example, techniques disclosed in Patent Documents 1 to 3 have been proposed regarding a method for producing expandable polystyrene resin particles by a melt extrusion method.
 特許文献1には、(a)発泡剤配合重合体を、この発泡性重合体のガラス転移温度(以下、Tgと略す)以上の高温に保持する水浴又は流体浴中にダイヘッド部を通じて押し出す工程と、(b)上記発泡性重合体のTg値以上の高温に保持する水浴又は流体浴中において、ダイヘッド部出口で重合体を即時切断し、顆粒とする工程と、(c)この顆粒を上記発泡性重合体のTg値以下の温度に冷却する工程と、を有する、無配向性及び無応力性の熱可塑性スチレン重合体からなる発泡性顆粒の押出式製造方法が開示されている。この押出式製造方法では、上記連続工程において、顆粒の冷却を、少なくともTg+5℃からTg-5℃まで毎分3℃より遅い冷却速度で徐冷し、また、重合体の顆粒への切断および顆粒の冷却は2bar以上の圧力下で行う。 Patent Document 1 includes (a) a step of extruding a foaming agent-containing polymer through a die head portion in a water bath or a fluid bath that is maintained at a temperature higher than the glass transition temperature (hereinafter abbreviated as Tg) of the foamable polymer. (B) a step of immediately cutting the polymer at the outlet of the die head to form granules in a water bath or fluid bath maintained at a temperature higher than the Tg value of the foamable polymer; and (c) foaming the granules into the foam. And a step of cooling to a temperature equal to or lower than the Tg value of the expandable polymer, an extrusion-type production method of expandable granules made of a non-oriented and stress-free thermoplastic styrene polymer is disclosed. In this extrusion-type production method, in the continuous process, the granules are gradually cooled from Tg + 5 ° C. to Tg−5 ° C. at a cooling rate slower than 3 ° C. per minute, and the polymer is cut into granules and the granules Is cooled under a pressure of 2 bar or more.
 特許文献2には、熱可塑性樹脂と発泡剤とを溶融混練し、次いでこれをダイヘッドの押出孔から発泡性熱可塑性樹脂粒子のTg+5℃以上の加熱加圧液中に押し出し、即時切断して得た粒子を、加熱加圧液中で同温度以上に保持してこの粒子内の残留応力を緩和し、次いで冷却する発泡性熱可塑性樹脂粒子の製法が開示されている。 In Patent Document 2, a thermoplastic resin and a foaming agent are melt-kneaded, and then extruded from the extrusion hole of the die head into a heated and pressurized liquid of Tg + 5 ° C. or higher of the foamable thermoplastic resin particles, and obtained by immediate cutting. A method for producing expandable thermoplastic resin particles is disclosed in which the particles are kept at the same temperature or higher in a heated and pressurized liquid to relieve residual stress in the particles, and then cooled.
 特許文献3には、熱可塑性樹脂(A)と、発泡剤(B)とを溶融混練する工程と(工程1)、得られた溶融混練物をダイヘッドの押出孔から、熱可塑性樹脂(A)と発泡剤(B)との溶融混練物が発泡しない温度・圧力に加熱・加圧された加熱加圧液中に押し出した後、即時切断する工程と(工程2)、得られた粒子(発泡性熱可塑性樹脂)を常圧で発泡しない温度まで冷却する工程と(工程3)、発泡性熱可塑性樹脂を示差熱分析装置(DSC)で測定した場合に、40~120℃の領域で出現する二つの吸熱ピークのうち、低温側のピーク温度をT1とした場合の30~(T1+15)℃の温度範囲に加熱された、常圧の液中で上記粒子を熟成処理する工程と(工程4)、を有する発泡性熱可塑性樹脂粒子の製造方法が開示されている。 Patent Document 3 discloses a step of melt-kneading the thermoplastic resin (A) and the foaming agent (B) (step 1), and the obtained melt-kneaded product from the extrusion hole of the die head to the thermoplastic resin (A). And a step of immediately cutting (Step 2) and the resulting particles (foaming) after extrusion into a heated and pressurized liquid heated and pressurized to a temperature and pressure at which the melt-kneaded product of the foaming agent (B) does not foam When the temperature of the foamable thermoplastic resin is measured with a differential thermal analyzer (DSC) (step 3) and the temperature is cooled to a temperature at which the thermoplastic resin is not foamed at normal pressure (step 3). Of the two endothermic peaks, the step of aging the particles in a liquid at normal pressure heated to a temperature range of 30 to (T1 + 15) ° C., where T1 is the peak temperature on the low temperature side (step 4) , A method for producing expandable thermoplastic resin particles is disclosed
特公平5-59138号公報Japanese Patent Publication No. 5-59138 特開平6-32932号公報JP-A-6-32932 特開平7-314438号公報JP-A-7-314438
 しかしながら、特許文献1の製造方法は、ダイヘッド部から押し出した樹脂を切断して顆粒にする際に、発泡性重合体のTg値以上の高温に保持した加熱加圧液中で前記押し出し、切断を行っているので、切断して得られた粒子同士が融着し易くなり、多数個の粒子同士が結合して塊状になった不良品の発生率が高い。 However, in the production method of Patent Document 1, when the resin extruded from the die head part is cut into granules, the extrusion and cutting are performed in a heated and pressurized liquid maintained at a high temperature equal to or higher than the Tg value of the foamable polymer. Therefore, the particles obtained by cutting are easily fused together, and the incidence of defective products in which a large number of particles are bonded together to form a lump is high.
 特許文献2の製造方法は、即時切断して得た粒子を加熱加圧液中でTg+5℃以上に保持してこの粒子内の残留応力を緩和し、次いで冷却して発泡性熱可塑性樹脂粒子を製造している。しかしながら、特許文献2の実施例に記載された製造条件で発泡性熱可塑性樹脂粒子を製造した場合、切断して得られた粒子同士が融着し易くなり、多数個の粒子同士が結合して塊状になった不良品の発生率が高い。また、この製造方法で得られた発泡性ポリスチレン系樹脂粒子を加熱して予備発泡させた場合、得られる予備発泡樹脂粒子の平均気泡径が大きくなりやすい。平均気泡径が大きくなると、この予備発泡粒子を型内発泡成形して得られる発泡成形体の機械強度が低下したり、熱伝導率が高くなって断熱性能が悪化したりする可能性がある。 In the production method of Patent Document 2, particles obtained by immediate cutting are maintained in a heated and pressurized liquid at Tg + 5 ° C. or higher to relieve residual stress in the particles, and then cooled to obtain expandable thermoplastic resin particles. Manufacture. However, when foamable thermoplastic resin particles are produced under the production conditions described in the examples of Patent Document 2, the particles obtained by cutting are easily fused, and a large number of particles are bonded together. The incidence of defective products that have become clumped is high. Further, when the expandable polystyrene resin particles obtained by this production method are heated and pre-expanded, the average cell diameter of the obtained pre-expanded resin particles tends to be large. When the average cell diameter is increased, there is a possibility that the mechanical strength of the foam molded product obtained by in-mold foam molding of the pre-expanded particles may be reduced, or the heat conductivity may be increased to deteriorate the heat insulation performance.
 特許文献3の製造方法は、大きなセル径(気泡径)の予備発泡粒子を得るための方法である。しかし、予備発泡粒子の気泡構造におけるセル径が大きくなると、この予備発泡粒子を型内発泡成形して得られた発泡成形体の機械強度が低下したり、熱伝導率が高くなって断熱性能が悪化したりする可能性がある。 The production method of Patent Document 3 is a method for obtaining pre-expanded particles having a large cell diameter (bubble diameter). However, when the cell diameter in the cell structure of the pre-expanded particles is increased, the mechanical strength of the foam molded product obtained by in-mold foam molding of the pre-expanded particles is decreased, or the heat conductivity is increased to increase the heat insulation performance. It may get worse.
 本発明は、前記事情に鑑みてなされ、機械強度、断熱性、及び緩衝性に優れたポリスチレン系樹脂発泡成形体及びその製造方法、並びにその製造に用いられる発泡性ポリスチレン系樹脂粒子及びその製造方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and has a polystyrene resin foam molded article excellent in mechanical strength, heat insulation, and buffering property, and a method for producing the same, and a foamable polystyrene resin particle used in the production and a method for producing the same. The purpose is to provide.
 本発明の第1の態様によれば、発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂粒子中に発泡剤を含む樹脂粒子であって、前記樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有する。 According to the first aspect of the present invention, the expandable polystyrene resin particles are resin particles containing a foaming agent in the polystyrene resin particles, and the resin particles are heated and expanded to a bulk expansion ratio of 50 times. In the state of the expanded particles, the internal average bubble diameter is in the range of 35 to 140 μm, the surface layer average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20, and the open cells It has a bubble structure with a rate of 10% or less.
 この場合、嵩発泡倍数X倍に発泡させたときの発泡粒子の内部平均気泡径D’を、次式(1)(式中、Dは嵩発泡倍数50倍に換算した発泡粒子の内部平均気泡径(μm)を表し、D’は嵩発泡倍数X倍に発泡させたときの発泡粒子の内部平均気泡径(μm)を表す)を用いて嵩発泡倍数50倍に換算した発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たすことが好ましい。 In this case, the internal average cell diameter D 1 ′ of the expanded particles when expanded to the bulk expansion ratio X times is expressed by the following formula (1) (where D 1 is the inside of the expanded particles converted to the bulk expansion ratio 50 times). Expanded particle which represents an average cell diameter (μm), and D 1 ′ is converted to a bulk foaming factor of 50 times using an internal average cell diameter (μm) of the foamed particle when foamed to a bulk foaming factor X times. It is preferable that the internal average bubble diameter D 1 satisfies the relationship of 35 μm ≦ D 1 ≦ 140 μm.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、前記内部平均気泡径が40~120μmの範囲内であることが好ましい。 Further, the internal average bubble diameter is preferably within a range of 40 to 120 μm.
 また、前記連続気泡率が8%以下であることが好ましい。 Further, the open cell ratio is preferably 8% or less.
 また、前記表層部平均気泡径/内部平均気泡径の値が0.90~1.10の範囲内であることが好ましい。 Further, it is preferable that the value of the surface layer average bubble diameter / internal average bubble diameter is in the range of 0.90 to 1.10.
 また、ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を含むことが好ましい。 Moreover, it is preferable that the inorganic cell nucleating agent is contained in an amount of 5.0 parts by mass or less with respect to 100 parts by mass of the polystyrene resin.
 また、前記無機気泡核剤がタルクであることが好ましい。 Moreover, it is preferable that the inorganic cell nucleating agent is talc.
 本発明の第2の態様によれば、発泡性ポリスチレン系樹脂粒子の製造方法は、樹脂供給装置内でポリスチレン系樹脂に発泡剤を添加して混練し、発泡剤含有溶融樹脂を前記樹脂供給装置先端に設けられたダイの小孔から発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度の冷却用液体中に押し出し、押し出すと同時に押出物を切断し、押出物を冷却用液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る工程と、得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度で加熱して、前記発泡性ポリスチレン系樹脂粒子を得る工程と、を有する。 According to the second aspect of the present invention, in the method for producing expandable polystyrene resin particles, a foaming agent is added to and kneaded with polystyrene resin in a resin supply device, and the foaming agent-containing molten resin is added to the resin supply device. Extrude into the cooling liquid having a temperature lower than the glass transition temperature Tg of the expandable polystyrene resin particles from the small hole of the die provided at the tip, and at the same time, extrudate is cut, and the extrudate is brought into contact with the cooling liquid. By cooling and solidifying to obtain expandable polystyrene resin particles, and heating the obtained expandable polystyrene resin particles at a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher. And obtaining the expandable polystyrene resin particles.
 この場合、前記押出物を切断する際の冷却用液体の温度が20~60℃の範囲内であることが好ましい。 In this case, the temperature of the cooling liquid when cutting the extrudate is preferably in the range of 20 to 60 ° C.
 また、ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を添加することが好ましい。 Moreover, it is preferable to add 5.0 parts by mass or less of the inorganic cell nucleating agent with respect to 100 parts by mass of the polystyrene-based resin.
 また、前記無機気泡核剤がタルクであることが好ましい。 Moreover, it is preferable that the inorganic cell nucleating agent is talc.
 また、本発明には、前記発泡性ポリスチレン系樹脂粒子を加熱し、予備発泡して得られるポリスチレン系樹脂予備発泡粒子も含まれる。 The present invention also includes polystyrene resin pre-expanded particles obtained by heating and pre-expanding the expandable polystyrene resin particles.
 また、本発明には、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形して得られるポリスチレン系樹脂発泡成形体も含まれる。 The present invention also includes a polystyrene resin foam molded article obtained by filling the polystyrene resin pre-foamed particles in a cavity of a molding die and heating and foam molding in the mold.
 本発明の第3の態様によれば、ポリスチレン系樹脂発泡成形体は、ポリスチレン系樹脂粒子中に発泡剤を含む発泡性ポリスチレン系樹脂粒子を加熱して得られたポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形して得られ、前記発泡性ポリスチレン系樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有する。 According to the third aspect of the present invention, the polystyrene-based resin foam molded article is molded from polystyrene-based resin pre-expanded particles obtained by heating expandable polystyrene-based resin particles containing a foaming agent in the polystyrene-based resin particles. Filled into the mold cavity and heated, foamed in-mold, and obtained by pre-expanded particles obtained by heating the expandable polystyrene resin particles to be expanded to a bulk expansion ratio of 50 times. A cell structure in which the diameter is in the range of 35 to 140 μm, the value of the surface layer part average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20, and the open cell ratio is 10% or less. Have.
 この場合、嵩発泡倍数X倍に発泡させたときの予備発泡粒子の内部平均気泡径D’を、次式(2)(式中、Dは嵩発泡倍数50倍に換算した発泡粒子の内部平均気泡径(μm)を表し、D’は嵩発泡倍数X倍に発泡させたときの発泡粒子の内部平均気泡径(μm)を表す)を用いて嵩発泡倍数50倍に換算した予備発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たすことが好ましい。 In this case, the internal average cell diameter D 2 ′ of the pre-expanded particles when expanded to the bulk expansion ratio X times is expressed by the following formula (2) (where D 2 is the expansion ratio of the expanded particles converted to the bulk expansion ratio 50 times). The inside average cell diameter (μm) is represented, and D 2 ′ is a preliminary value converted into a bulk foaming factor of 50 times using an internal average cell diameter (μm) of foamed particles when foamed to a bulk foaming factor X times. It is preferable that the internal average cell diameter D 2 of the expanded particles satisfies the relationship of 35 μm ≦ D 2 ≦ 140 μm.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、前記内部平均気泡径が40~120μmの範囲内であることが好ましい。 Further, the internal average bubble diameter is preferably within a range of 40 to 120 μm.
 また、前記連続気泡率が8%以下であることが好ましい。 Further, the open cell ratio is preferably 8% or less.
 また、前記表層部平均気泡径/内部平均気泡径の値が0.90~1.10の範囲内であることが好ましい。 Further, it is preferable that the value of the surface layer average bubble diameter / internal average bubble diameter is in the range of 0.90 to 1.10.
 また、ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を含むことが好ましい。 Moreover, it is preferable that the inorganic cell nucleating agent is contained in an amount of 5.0 parts by mass or less with respect to 100 parts by mass of the polystyrene resin.
 また、前記無機気泡核剤がタルクであることが好ましい。 Moreover, it is preferable that the inorganic cell nucleating agent is talc.
 本発明の第4の態様によれば、ポリスチレン系樹脂発泡成形体は、ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し、成形型を蒸気加熱し、型内発泡成形して得られ、発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’を、次式(3)(式中、Dは発泡倍数50倍に換算した発泡成形体中の発泡粒子の内部平均気泡径(μm)を表し、D’は発泡倍数X倍に発泡させたときの発泡成形体中の発泡粒子の内部平均気泡径(μm)を表す)を用いて発泡倍数50倍に換算した発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たし、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ発泡成形体の連続気泡率が10%以下である気泡構造を有する。 According to the fourth aspect of the present invention, a polystyrene resin foam molded article is obtained by filling polystyrene resin pre-expanded particles in a cavity of a mold, steam-heating the mold, and in-mold foam molding. The internal average cell diameter D 3 ′ of the foam particles fused together in this foam molded product in the state when foam-molded at the expansion factor X times is expressed by the following formula (3) (where D 3 is Represents the internal average cell diameter (μm) of the foamed particles in the foamed molded product converted to a foaming multiple of 50 times, and D 3 ′ is the internal average cell size of the foamed particles in the foamed molded product when foamed to a foamed multiple of X times. diameter ([mu] m) using a representative) of the foamed molded body in terms of expansion ratio 50 times foamed average internal cell diameter D 3 of the particles satisfy the relationship of 35μm ≦ D 3 ≦ 140μm, a surface layer portion of the expanded particles Within the range of average bubble diameter / internal average bubble diameter of 0.80 to 1.20 Ri, and continuous cell ratio of the foamed molded product has a cellular structure is 10% or less.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 本発明の第5の態様によれば、断熱材は、前記ポリスチレン系樹脂発泡成形体からなる。 According to the fifth aspect of the present invention, the heat insulating material is made of the polystyrene-based resin foam molding.
 本発明の第6の態様によれば、緩衝材は、前記ポリスチレン系樹脂発泡成形体からなる。 According to the sixth aspect of the present invention, the buffer material is made of the polystyrene resin foam molded article.
 本発明の第7の態様によれば、ポリスチレン系樹脂発泡成形体の製造方法は、樹脂供給装置内でポリスチレン系樹脂に発泡剤を添加して混練し、発泡剤含有溶融樹脂を前記樹脂供給装置先端に設けられたダイの小孔から発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度の冷却用液体中に押し出し、押し出すと同時に押出物を切断し、押出物を冷却用液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る第1の工程と、得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度で加熱して発泡性ポリスチレン系樹脂粒子を得る第2の工程と、次いで、得られた発泡性ポリスチレン系樹脂粒子を加熱し、前記式(2)を用いて嵩発泡倍数50倍に換算した予備発泡粒子の内部平均気泡径Dが、35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有するポリスチレン系樹脂予備発泡粒子を作製する第3の工程と、次いで、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形する第4の工程と、を含む。 According to the seventh aspect of the present invention, in the method for producing a polystyrene resin foam molded article, a foaming agent is added to and kneaded with polystyrene resin in a resin supply device, and the foaming agent-containing molten resin is added to the resin supply device. Extrude into the cooling liquid having a temperature lower than the glass transition temperature Tg of the expandable polystyrene resin particles from the small hole of the die provided at the tip, and at the same time, extrudate is cut, and the extrudate is brought into contact with the cooling liquid. The first step of obtaining the expandable polystyrene resin particles by cooling and solidifying by the above, and the obtained expandable polystyrene resin particles at a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher The second step of obtaining expandable polystyrene resin particles by heating, and then heating the obtained expandable polystyrene resin particles, and converting to a bulk expansion ratio of 50 times using the formula (2) Internal average cell diameter D 2 of the pre-expanded particles is in the range of 35 ~ 140 .mu.m, values of the surface layer portion average cell diameter / average internal cell diameter is in the range of 0.80 to 1.20, and continuous A third step of producing polystyrene resin pre-expanded particles having a cell structure with a cell ratio of 10% or less, and then filling the polystyrene resin pre-expanded particles in a cavity of a mold and heating the mold, A fourth step of inner foam molding.
 この場合、前記押出物を切断する際の冷却用液体の温度が20~60℃の範囲内であることが好ましい。 In this case, the temperature of the cooling liquid when cutting the extrudate is preferably in the range of 20 to 60 ° C.
 また、ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を添加することが好ましい。 Moreover, it is preferable to add 5.0 parts by mass or less of the inorganic cell nucleating agent with respect to 100 parts by mass of the polystyrene-based resin.
 また、前記無機気泡核剤がタルクであることが好ましい。 Moreover, it is preferable that the inorganic cell nucleating agent is talc.
 また、前記第4の工程では、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形して断熱材を得てもよい。 In the fourth step, the polystyrene resin pre-expanded particles may be filled in a cavity of a molding die and heated, and in-mold foam molding may be performed to obtain a heat insulating material.
 また、前記第4の工程では、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形して緩衝材を得てもよい。 Further, in the fourth step, the polystyrene resin pre-expanded particles may be filled in a cavity of a mold and heated, and foamed in-mold to obtain a buffer material.
 本発明によれば、発泡性ポリスチレン系樹脂粒子は、嵩発泡倍数50倍に発泡させた発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有する。そのため、発泡粒子全体にわたって比較的小さく均一で独立した気泡が形成され、この発泡粒子を型内発泡成形して得られる発泡成形体は、曲げ強度、圧縮強度、耐衝撃性などの機械強度、断熱性、及び緩衝性に優れる。 According to the present invention, the expandable polystyrene resin particles are in the form of expanded particles expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 μm, and the surface layer portion average cell diameter / internal It has a cell structure in which the average cell diameter is in the range of 0.80 to 1.20, and the open cell rate is 10% or less. Therefore, relatively small, uniform, and independent bubbles are formed throughout the foam particles, and the foam molded product obtained by in-mold foam molding of the foam particles has mechanical strength such as bending strength, compression strength, and impact resistance, and heat insulation. Excellent in buffering properties.
 本発明によれば、発泡性ポリスチレン系樹脂粒子の製造方法は、溶融押出法によって得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度で加熱して、発泡性ポリスチレン系樹脂粒子を得る方法である。そのため、得られた発泡性ポリスチレン系樹脂粒子を加熱発泡させた際に、発泡粒子全体にわたって比較的小さく均一で独立した気泡が形成される。この発泡粒子を型内発泡成形することによって曲げ強度、圧縮強度、耐衝撃性などの機械強度、断熱性、及び緩衝性に優れた発泡成形体を製造するための発泡性ポリスチレン系樹脂粒子を効率よく製造することができる。 According to the present invention, the method for producing expandable polystyrene resin particles is obtained by converting expandable polystyrene resin particles obtained by a melt extrusion method to (glass transition temperature Tg-5 of expandable polystyrene resin particles) of not less than This is a method of obtaining expandable polystyrene resin particles by heating at a temperature. Therefore, when the obtained expandable polystyrene resin particles are heated and foamed, relatively small, uniform and independent bubbles are formed over the entire expanded particles. Efficient foamable polystyrene resin particles to produce foamed products with excellent mechanical strength such as bending strength, compressive strength, impact resistance, heat insulation, and buffering by foaming these foamed particles in-mold Can be manufactured well.
 本発明によれば、ポリスチレン系樹脂発泡成形体は、発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’を前記式(3)を用いて発泡倍数50倍に換算した発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たし、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ発泡成形体の連続気泡率が10%以下である気泡構造を有する。そのため、発泡成形体全体にわたって比較的小さく均一で独立した気泡が形成され、この発泡成形体は曲げ強度、圧縮強度、耐衝撃性などの機械強度、断熱性、及び緩衝性に優れる。 According to the present invention, the polystyrene-based resin foam molded article has the internal average cell diameter D 3 ′ of the fused foam particles in the foam molded article in a state where the foam-molded article is foam-molded to X times the expansion ratio. formula (3) is the average internal cell diameter D 3 of the expanded beads of foamed molded body in terms of expansion ratio 50-fold with, satisfy the relationship of 35 [mu] m ≦ D 3 ≦ 140 .mu.m, the surface layer portion average cell of the foamed particles It has a cell structure in which the value of the diameter / internal average cell size is in the range of 0.80 to 1.20, and the open cell ratio of the foamed molded product is 10% or less. Therefore, relatively small, uniform and independent bubbles are formed over the entire foamed molded product, and this foamed molded product is excellent in bending strength, compressive strength, mechanical strength such as impact resistance, heat insulation, and buffering properties.
本発明の発泡性ポリスチレン系樹脂粒子の製造に用いられる製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus used for manufacture of the expandable polystyrene-type resin particle of this invention.
(発泡性ポリスチレン系樹脂粒子)
 本発明の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂粒子中に発泡剤を含む発泡性ポリスチレン系樹脂粒子であり、加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有する。なお、前記発泡粒子の嵩発泡倍数とは、後述するポリスチレン系樹脂予備発泡粒子の嵩発泡倍数の測定方法によって測定された嵩発泡倍数のことを指す。
(Expandable polystyrene resin particles)
The expandable polystyrene resin particles of the present invention are expandable polystyrene resin particles containing a foaming agent in polystyrene resin particles, and in the state of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, an internal average A cell structure in which the cell diameter is in the range of 35 to 140 μm, the surface layer part average bubble diameter / internal average cell diameter is in the range of 0.80 to 1.20, and the open cell ratio is 10% or less. Have In addition, the bulk foaming factor of the said foamed particle refers to the bulk foaming factor measured by the measuring method of the bulk foaming multiple of the polystyrene-type resin pre-expanded particle mentioned later.
 本発明の発泡性ポリスチレン系樹脂粒子において、加熱して発泡させた発泡粒子の嵩発泡倍数が50倍以外である場合、その発泡粒子の内部平均気泡径D’は、前記式(1)を用いて嵩発泡倍数50倍に換算し、その内部平均気泡径Dが35μm≦D≦140μmの関係を満たす。これは、本発明に係るポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体の気泡構造についても同じである。 In the expandable polystyrene-based resin particles of the present invention, when the expanded foamed foam particles heated and expanded are other than 50 times, the internal average cell diameter D 1 ′ of the expanded particles is expressed by the above formula (1). It is converted into a bulk expansion ratio of 50 times, and the internal average bubble diameter D 1 satisfies the relationship of 35 μm ≦ D 1 ≦ 140 μm. The same applies to the cell structure of the polystyrene resin pre-expanded particles and the polystyrene resin foam molded article according to the present invention.
 本発明の発泡性ポリスチレン系樹脂粒子は、加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、さらに40~120μmの範囲内であることが好ましい。前記内部平均気泡径が35μm未満であると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体は連続気泡率が増加して独立気泡が減少するため、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。前記内部平均気泡径が140μmを超えると、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。 The expandable polystyrene resin particles of the present invention are in the form of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 μm, and further in the range of 40 to 120 μm. It is preferable that When the internal average cell diameter is less than 35 μm, the polystyrene-based resin foam molded article obtained by in-mold foam molding increases the open cell ratio and decreases closed cells, so that bending strength, compressive strength, impact resistance are increased. Such as mechanical strength will be reduced. When the internal average bubble diameter exceeds 140 μm, mechanical strength such as bending strength, compressive strength, and impact resistance is lowered.
 本発明の発泡性ポリスチレン系樹脂粒子は、加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、さらに0.90~1.10の範囲内であることが好ましい。この表層部平均気泡径/内部平均気泡径の値が前記範囲から外れると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。なお、本発明において「表層部平均気泡径」とは、発泡性ポリスチレン系樹脂粒子を嵩発泡倍数50倍に発泡させた発泡粒子の状態で、その中心を通るようにこの発泡粒子を切断した断面において、発泡粒子の表面からの深さが発泡粒子の直径の1/4までの領域を「表層部」と定義し、この表層部にある気泡の平均気泡径のことを指している。また、「内部平均気泡径」とは、同じ発泡粒子の上記表層部よりも深い領域(中心側の領域)を「内部」と定義し、この内部にある気泡の平均気泡径のことを指している。 The expandable polystyrene resin particles of the present invention are in the form of expanded particles heated to be expanded to a bulk expansion ratio of 50 times, and the value of the surface layer part average cell diameter / internal average cell diameter is 0.80 to 1.20. It is preferably within the range, and more preferably within the range of 0.90 to 1.10. When the value of the surface layer part average cell diameter / internal average cell diameter is out of the above range, the mechanical strength such as bending strength, compressive strength, impact resistance, etc. of the polystyrene-based resin foam molded product obtained by in-mold foam molding decreases. Resulting in. In the present invention, the “surface layer part average cell diameter” is a cross-section obtained by cutting the foamed particles so as to pass through the center in the state of foamed particles obtained by foaming expandable polystyrene resin particles to a bulk foaming factor of 50 times. , The region where the depth from the surface of the expanded particles is up to ¼ of the diameter of the expanded particles is defined as “surface layer portion”, which means the average cell diameter of the bubbles in the surface layer portion. The “internal average bubble diameter” is defined as “inside” a region deeper than the surface layer portion of the same foamed particle (region on the center side), and refers to the average bubble diameter of the bubbles in the inside. Yes.
 本発明の発泡性ポリスチレン系樹脂粒子は、加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、連続気泡率が10%以下であり、さらに8%以下であることが好ましい。前記連続気泡率が10%を超えると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。 The expandable polystyrene resin particles of the present invention are in the form of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, and the open cell ratio is preferably 10% or less, and more preferably 8% or less. If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the polystyrene-based resin foam molded product obtained by in-mold foam molding will decrease.
 本発明の発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i-プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられる。なお、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、なかでもポリスチレンがより好ましい。 In the expandable polystyrene resin particles of the present invention, the polystyrene resin is not particularly limited. For example, styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene. Homopolymers of styrene monomers such as these, or copolymers thereof. A polystyrene resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable.
 また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよい。このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。 Also, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. Examples of such vinyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, In addition to dimethyl fumarate, diethyl fumarate, and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.
 また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよい。添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン-ブタジエン共重合体、エチレン-プロピレン-非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。 If the polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product. Examples thereof include rubber-modified polystyrene resins to which coalescing has been added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.
 原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(バージンポリスチレン)を使用できると共に、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することもできる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料の中から、質量平均分子量Mwが12万~40万の範囲となる原料を適宜選択し、又は質量平均分子量Mwが異なる複数のリサイクル原料を適宜組み合わせて用いることができる。 As a polystyrene resin used as a raw material, a polystyrene resin (virgin polystyrene) that is not a recycled material, such as a commercially available ordinary polystyrene resin, a polystyrene resin newly produced by a method such as suspension polymerization, can be used. In addition, a recycled raw material obtained by regenerating a used polystyrene resin foam molded article can also be used. As this recycled material, used polystyrene-based resin foam moldings such as fish boxes, household appliance cushioning materials, food packaging trays, etc. are collected and recycled from the recycled materials recovered by the limonene dissolution method or heating volume reduction method. A raw material having a mass average molecular weight Mw in the range of 120,000 to 400,000 can be appropriately selected, or a plurality of recycled raw materials having different mass average molecular weights Mw can be appropriately used in combination.
 本発明の発泡性ポリスチレン系樹脂粒子に用いられる発泡剤は、特に限定されない。例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン等の脂肪族炭化水素、ジメチルエーテル、ジエチルエーテル等のエーテル類、メタノール、エタノール等の各種アルコール類、炭酸ガス、窒素、水等が使用可能である。この内、脂肪族炭化水素が好適であり、更には、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン単独もしくはこれらの混合物がより好適である。また、炭素数5の炭化水素であるノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン単独もしくはこれらの混合物が特に好適である。その中でもイソペンタンとノルマルペンタンとの一方又は両方の混合物であることが好ましい。また、前記炭素数5の炭化水素を主体とし、沸点が20℃以上であり、炭素数5の炭化水素以外の発泡剤(例えばノルマルブタン、イソブタン、プロパン、炭酸ガス等)を含んでいてもよい。
 この発泡剤の添加量は、ポリスチレン系樹脂100質量部に対し2~15質量部の範囲が好ましく、3~8質量部の範囲がより好ましく、4~7質量部の範囲が特に好ましい。
The foaming agent used for the expandable polystyrene resin particles of the present invention is not particularly limited. Examples include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, and cyclopentane, ethers such as dimethyl ether and diethyl ether, various alcohols such as methanol and ethanol, carbon dioxide, nitrogen, water, etc. It can be used. Of these, aliphatic hydrocarbons are preferred, and normal butane, isobutane, normal pentane, isopentane alone or a mixture thereof is more preferred. Further, normal pentane, isopentane, neopentane, cyclopentane, cyclopentadiene alone or a mixture thereof, which is a hydrocarbon having 5 carbon atoms, is particularly suitable. Of these, a mixture of one or both of isopentane and normal pentane is preferable. Further, it mainly comprises the hydrocarbon having 5 carbon atoms and has a boiling point of 20 ° C. or higher, and may contain a blowing agent other than the hydrocarbon having 5 carbon atoms (for example, normal butane, isobutane, propane, carbon dioxide gas, etc.). .
The amount of the foaming agent added is preferably in the range of 2 to 15 parts by mass, more preferably in the range of 3 to 8 parts by mass, and particularly preferably in the range of 4 to 7 parts by mass with respect to 100 parts by mass of the polystyrene resin.
 この発泡性ポリスチレン系樹脂粒子には、ポリスチレン系樹脂100質量部に対し、気泡核剤として、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素などの無機微粉末(無機気泡核剤)または化学発泡剤を添加することが好ましい。この気泡核剤としては、タルクが特に好ましい。前記気泡核剤の添加量は、熱可塑性樹脂100質量部に対し5質量部以下が好ましく、0.05~2.0質量部の範囲がより好ましい。前記化学発泡剤としては、例えば、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、炭酸水素ナトリウムなどが挙げられる。 In the foamable polystyrene resin particles, an inorganic fine powder (inorganic bubble nucleating agent) such as talc, calcium silicate, synthetically produced or naturally produced silicon dioxide as a cell nucleating agent with respect to 100 parts by mass of polystyrene resin. It is preferable to add a chemical foaming agent. As the bubble nucleating agent, talc is particularly preferable. The amount of the cell nucleating agent added is preferably 5 parts by mass or less, more preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin. Examples of the chemical foaming agent include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, 4,4′-oxybis (benzenesulfonylhydrazide), sodium hydrogen carbonate, and the like.
 また、前記気泡核剤として、タルクなどの無機粉末又は化学発泡剤をベース樹脂、好ましくはポリスチレン系樹脂中に均一に分散させたマスターバッチ型気泡核剤を用いることが好ましい。このマスターバッチ型気泡核剤を用いることによって、樹脂供給装置内でポリスチレン系樹脂と気泡核剤とを混合する際に、無機粉末又は化学発泡剤をポリスチレン系樹脂中に非常に均一な状態で分散させることができる。 Further, as the cell nucleating agent, it is preferable to use a master batch type cell nucleating agent in which an inorganic powder such as talc or a chemical foaming agent is uniformly dispersed in a base resin, preferably a polystyrene resin. By using this master batch type cell nucleating agent, when mixing polystyrene resin and cell nucleating agent in the resin feeder, inorganic powder or chemical foaming agent is dispersed in polystyrene resin in a very uniform state. Can be made.
 本発明の発泡性ポリスチレン系樹脂粒子には、前記発泡剤及び気泡核剤の他に、得られる発泡性ポリスチレン系樹脂粒子及び発泡成形体の物性を損なわない範囲内において、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよい。 In the expandable polystyrene resin particles of the present invention, in addition to the foaming agent and the cell nucleating agent, within the range that does not impair the physical properties of the resulting expandable polystyrene resin particles and the foamed molded product, a binding inhibitor and a cell adjustment You may add additives, such as an agent, a crosslinking agent, a filler, a flame retardant, a flame retardant adjuvant, a lubricant, and a coloring agent.
 本発明の発泡性ポリスチレン系樹脂粒子は、嵩発泡倍数50倍に発泡させた発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有する。そのため、発泡粒子全体にわたって比較的小さく均一で独立した気泡が形成され、この発泡粒子を型内発泡成形して得られる発泡成形体は、曲げ強度、圧縮強度、耐衝撃性などの機械強度、断熱性、及び緩衝性に優れる。 The expandable polystyrene resin particles of the present invention are in the form of expanded particles expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 μm, and the surface layer part average cell diameter / internal average cell diameter In the range of 0.80 to 1.20 and the open cell ratio is 10% or less. Therefore, relatively small, uniform, and independent bubbles are formed throughout the foam particles, and the foam molded product obtained by in-mold foam molding of the foam particles has mechanical strength such as bending strength, compression strength, and impact resistance, and heat insulation. Excellent in buffering properties.
(発泡性ポリスチレン系樹脂粒子の製造方法)
 次に、図面を参照して本発明に係る発泡性ポリスチレン系樹脂粒子の製造方法を説明する。
 本発明に係る発泡性ポリスチレン系樹脂粒子の製造方法は、樹脂供給装置内でポリスチレン系樹脂に発泡剤を添加して混練し、発泡剤含有溶融樹脂を樹脂供給装置先端に設けられたダイの小孔から発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度の冷却用液体中に押し出し、押し出すと同時に押出物を切断し、押出物を冷却用液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る造粒工程と、得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度で加熱して、本発明に係る前記発泡性ポリスチレン系樹脂粒子を得る再加熱工程と、を有する。
(Method for producing expandable polystyrene resin particles)
Next, a method for producing expandable polystyrene resin particles according to the present invention will be described with reference to the drawings.
In the method for producing expandable polystyrene resin particles according to the present invention, a foaming agent is added to and kneaded with a polystyrene resin in a resin supply device, and a foaming agent-containing molten resin is provided on the tip of the resin supply device. The foamed polystyrene resin particles are extruded from the pores into a cooling liquid having a temperature lower than the glass transition temperature Tg. At the same time, the extrudate is cut, and the extrudate is cooled and solidified by contact with the cooling liquid. A granulating step for obtaining resin-based resin particles, and the obtained expandable polystyrene-based resin particles are heated at a temperature equal to or higher than (glass transition temperature Tg-5 of expandable polystyrene-based resin particles) ° C. And a reheating step for obtaining expandable polystyrene resin particles.
(造粒工程)
 図1は、前記造粒工程で発泡性ポリスチレン系樹脂粒子を製造するために用いられる製造装置の一例を示す構成図である。
 本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性樹脂粒子を冷却水と分離すると共に脱水乾燥して発泡性樹脂粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性樹脂粒子を貯留する貯留容器11と、を備えて構成されている。
(Granulation process)
FIG. 1 is a configuration diagram showing an example of a production apparatus used for producing expandable polystyrene resin particles in the granulation step.
The manufacturing apparatus of this example includes an extruder 1 as a resin supply apparatus, a die 2 having a large number of small holes attached to the tip of the extruder 1, and a raw material supply hopper that inputs resin raw materials into the extruder 1. 3, a high-pressure pump 4 for press-fitting the foaming agent into the molten resin in the extruder 1 through the foaming agent supply port 5, and a resin discharge surface provided with a small hole in the die 2 so as to contact the cooling water. Cooling from the cutting chamber 7 into which the cooling water is circulated and supplied to the room, the cutter 6 rotatably provided in the cutting chamber 7 so as to cut the resin extruded from the small hole of the die 2, and the cutting chamber 7 A dehydrating dryer 10 with a solid-liquid separation function and a dehydrating dryer 10 with a solid-liquid separation function are obtained by separating foamable resin particles carried along with the flow of water from cooling water and dehydrating and drying to obtain expandable resin particles. The cooling water separated in A water tank 8, a high-pressure pump 9 for sending cooling water in the water tank 8 to the cutting chamber 7, and a storage container 11 for storing foamable resin particles dehydrated and dried by a dehydration dryer 10 with a solid-liquid separation function; , And is configured.
 なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機をいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。 In addition, as the extruder 1, both an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.
 図1に示す製造装置を用い、発泡性ポリスチレン系樹脂粒子を製造するためには、まず、原料のポリスチレン系樹脂、気泡核剤、必要に応じて添加される難燃剤などの所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合はロットごとに供給量を調整した複数の原料供給ホッパーから原料を投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。 In order to produce expandable polystyrene resin particles using the production apparatus shown in FIG. 1, first, a desired additive such as a polystyrene resin as a raw material, a cell nucleating agent, or a flame retardant added as necessary is added. Weigh and put into the extruder 1 from the raw material supply hopper 3. The raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount is adjusted for each lot. The raw materials may be fed from a plurality of raw material supply hoppers and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.
 押出機1内にポリスチレン系樹脂、気泡核剤、その他の任意の添加剤を供給後、樹脂を加熱溶融し、その溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入して溶融樹脂に発泡剤を混合する。押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤が添加された溶融物を押出機1の先端に設けられたダイ2の小孔から押し出す。 After supplying polystyrene-based resin, bubble nucleating agent, and other optional additives into the extruder 1, the resin is heated and melted, and the molten resin is transferred to the die 2 side, and the high-pressure pump 4 is supplied from the blowing agent supply port 5. The foaming agent is pressed in to mix the foaming agent with the molten resin. A die provided at the front end of the extruder 1 by moving the melt to the front end side while further kneading through a foreign matter removing screen provided in the extruder 1 as necessary. Extrude through 2 small holes.
 ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置されている。また、カッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に設けられたダイ2の小孔から押し出すと、カッター6により溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡性ポリスチレン系樹脂粒子が得られる。 The resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 into which cooling water is circulated and supplied. A cutter 6 is rotatably provided in the cutting chamber 7 so that the resin extruded from the small hole of the die 2 can be cut. When the melted product added with the foaming agent is extruded from the small hole of the die 2 provided at the tip of the extruder 1, the melted product is cut into granules by the cutter 6 and simultaneously cooled in contact with cooling water to expand the expanded polystyrene. System resin particles are obtained.
 得られた発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれる。発泡性ポリスチレン系樹脂粒子は、固液分離機能付き脱水乾燥機10で冷却水と分離されると共に脱水乾燥される。乾燥された発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。 The obtained expandable polystyrene resin particles are transferred from the cutting chamber 7 to the flow of cooling water and carried to the dehydrating dryer 10 with a solid-liquid separation function. The expandable polystyrene resin particles are separated from the cooling water by the dehydration dryer 10 with a solid-liquid separation function and dehydrated and dried. The dried expandable polystyrene resin particles are stored in the storage container 11.
 本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記冷却水の温度は、発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度であり、さらに20~60℃の範囲とすることが好ましい。冷却水の温度が発泡性ポリスチレン系樹脂粒子のガラス転移温度Tgを超えると、発泡性ポリスチレン系樹脂粒子同士が融着し易くなり、多数個の粒子同士が結合して塊状になった不良品の発生率が高くなる。
 冷却水の温度が20℃未満であると、得られる発泡性ポリスチレン系樹脂粒子が球状化せず、また割れが生じる場合がある。
In the method for producing expandable polystyrene resin particles of the present invention, the temperature of the cooling water is lower than the glass transition temperature Tg of the expandable polystyrene resin particles, and is preferably in the range of 20 to 60 ° C. . When the temperature of the cooling water exceeds the glass transition temperature Tg of the expandable polystyrene resin particles, the expandable polystyrene resin particles are easily fused together, and a defective product in which a large number of particles are bonded to form a lump. Incidence increases.
If the temperature of the cooling water is less than 20 ° C., the resulting expandable polystyrene resin particles may not be spheroidized and cracks may occur.
 また、前記冷却水は0.5MPa以上に加圧しておくことが好ましい。この冷却水を加圧するには、前記冷却水の循環流路のうち、高圧ポンプ9の吐出側からカッティング室7を通り、固液分離機能付き脱水乾燥機10の入口側に到る部分を加圧領域とし、高圧ポンプ9の吐出圧力を高めることにより実行し得る。前記冷却水の圧力は、0.6~2.0MPaの範囲とすることが好ましく、0.8~1.5MPaの範囲がより好ましい。 The cooling water is preferably pressurized to 0.5 MPa or more. In order to pressurize the cooling water, a portion of the circulation path of the cooling water passing through the cutting chamber 7 from the discharge side of the high-pressure pump 9 to the inlet side of the dehydrating dryer 10 with a solid-liquid separation function is added. It can be executed by increasing the discharge pressure of the high-pressure pump 9 in the pressure region. The cooling water pressure is preferably in the range of 0.6 to 2.0 MPa, and more preferably in the range of 0.8 to 1.5 MPa.
(再加熱工程)
 前記造粒工程で得られた発泡性ポリスチレン系樹脂粒子は、次に、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度で加熱することにより、本発明に係る前記発泡性ポリスチレン系樹脂粒子となる。
 この再加熱工程は、前記造粒工程で発泡性ポリスチレン系樹脂粒子を製造した直後に、連続して実施してもよいし、前記造粒工程で発泡性ポリスチレン系樹脂粒子を製造後、貯蔵しておき、任意の貯蔵期間経過後に取り出して再加熱工程を実施してもよい。
(Reheating process)
The expandable polystyrene resin particles obtained in the granulation step are then heated at a temperature equal to or higher than (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C., whereby the expanded foam according to the present invention. Polystyrene resin particles.
This reheating step may be carried out continuously immediately after producing the expandable polystyrene resin particles in the granulation step, or stored after producing the expandable polystyrene resin particles in the granulation step. In addition, it may be taken out after an arbitrary storage period and the reheating step may be performed.
 この再加熱工程は、例えば、温度調節機能を持った耐圧容器内に、熱媒体、例えば水を入れ、前記温度範囲内の温度に加熱・保温しておき、この熱媒体に前記造粒工程で得られた発泡性ポリスチレン系樹脂粒子を投入することによって効率よく行うことができる。 In this reheating step, for example, a heat medium such as water is placed in a pressure-resistant container having a temperature control function, and heated and kept at a temperature within the temperature range. By introducing the obtained expandable polystyrene resin particles, it can be carried out efficiently.
 前記再加熱工程の加熱温度は、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度であればよい。具体的には、後述する実施例で用いているTgが61℃の発泡性ポリスチレン系樹脂粒子の場合には、加熱温度は56℃以上とする。加熱温度は150℃以上としても良いが、樹脂粒子同士の融着を少なくする観点から150℃程度を上限とすることが好ましい。この場合の加熱温度は、60~90℃の範囲とすることがより好ましい。この加熱温度が(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃未満であると、得られる発泡性ポリスチレン系樹脂粒子を加熱発泡させて得られた発泡粒子内の気泡が細かくならず、この発泡粒子を型内発泡成形して得られた発泡成形体の機械強度が低下する可能性がある。 The heating temperature in the reheating step may be a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher. Specifically, in the case of expandable polystyrene resin particles having a Tg of 61 ° C. used in Examples described later, the heating temperature is 56 ° C. or higher. Although heating temperature is good also as 150 degreeC or more, it is preferable to make about 150 degreeC into an upper limit from a viewpoint of reducing fusion | melting of resin particles. In this case, the heating temperature is more preferably in the range of 60 to 90 ° C. When this heating temperature is less than (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C., the bubbles in the expanded particles obtained by heating and foaming the obtained expandable polystyrene resin particles do not become fine. There is a possibility that the mechanical strength of the foamed molded product obtained by foam-molding the foamed particles in the mold is lowered.
 前記再加熱工程での圧力は、1.5MPa以下であり、さらに0.1~1.0MPaの範囲が好ましく、0.1~0.5MPaの範囲がより好ましい。この圧力が1.5MPaを超えると、得られる発泡成形体の機械強度が低下する可能性がある。さらに再加熱工程で用いる耐圧容器の耐圧性能を上げる為に容器を肉厚にする必要があり、耐圧容器の質量が重くなることから好ましくない。 The pressure in the reheating step is 1.5 MPa or less, preferably 0.1 to 1.0 MPa, more preferably 0.1 to 0.5 MPa. When this pressure exceeds 1.5 MPa, the mechanical strength of the obtained foamed molded article may be lowered. Furthermore, it is necessary to make the container thicker in order to increase the pressure resistance of the pressure vessel used in the reheating process, which is not preferable because the mass of the pressure vessel becomes heavy.
 前記再加熱工程の加熱処理時間は、特に限定されないが、1~10分間程度とすることが好ましく、1~5分間程度がより好ましい。この加熱処理時間が短いと、造粒工程で得られた発泡性ポリスチレン系樹脂粒子の気泡構造を改善して発泡成形体の機械強度を向上させる効果が十分に得られなくなる。一方、加熱処理時間を長くすると、発泡性ポリスチレン系樹脂粒子の製造効率が低下してコスト上昇に繋がることから好ましくない。 The heat treatment time in the reheating step is not particularly limited, but is preferably about 1 to 10 minutes, more preferably about 1 to 5 minutes. If this heat treatment time is short, the effect of improving the cellular structure of the expandable polystyrene resin particles obtained in the granulation step and improving the mechanical strength of the foamed molded article cannot be sufficiently obtained. On the other hand, if the heat treatment time is lengthened, the production efficiency of expandable polystyrene resin particles is lowered, leading to an increase in cost, which is not preferable.
 この再加熱工程を終えた発泡性ポリスチレン系樹脂粒子は、表面改質剤などの添加剤の添加、乾燥処理などの必要な後処理後、ポリスチレン系樹脂予備発泡粒子の製造に利用される。
 本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、溶融押出法によって得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度で加熱して、発泡性ポリスチレン系樹脂粒子を得る方法である。そのため、得られた発泡性ポリスチレン系樹脂粒子を加熱発泡させた際に、発泡粒子全体にわたって比較的小さく均一で独立した気泡が形成される。この発泡粒子を型内発泡成形することによって曲げ強度、圧縮強度、耐衝撃性などの機械強度、断熱性、及び緩衝性に優れた発泡成形体を製造するための発泡性ポリスチレン系樹脂粒子を効率よく製造することができる。
The expandable polystyrene resin particles that have undergone this reheating step are used for the production of pre-expanded polystyrene resin particles after necessary post-treatments such as addition of additives such as surface modifiers and drying treatments.
In the method for producing expandable polystyrene resin particles of the present invention, expandable polystyrene resin particles obtained by melt extrusion are heated at a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher. Thus, it is a method of obtaining expandable polystyrene resin particles. Therefore, when the obtained expandable polystyrene resin particles are heated and foamed, relatively small, uniform and independent bubbles are formed over the entire expanded particles. Efficient foamable polystyrene resin particles to produce foamed products with excellent mechanical strength such as bending strength, compressive strength, impact resistance, heat insulation, and buffering by foaming these foamed particles in-mold Can be manufactured well.
(ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体)
 本発明の発泡性ポリスチレン系樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡させ、本発明のポリスチレン系樹脂予備発泡粒子(以下、予備発泡粒子と記す)とする。この予備発泡粒子は、製造するべきポリスチレン系樹脂発泡成形体(以下、発泡成形体と記す)の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度及び嵩発泡倍数は限定されないが、通常は0.010~0.100g/cmの範囲内(嵩発泡倍数として10~100倍の範囲内)とし、0.015~0.050g/cmの範囲内とするのが好ましい。
(Polystyrene resin pre-expanded particles and polystyrene resin foam molding)
The expandable polystyrene resin particles of the present invention are pre-foamed by heating with steam or the like using a well-known apparatus and technique in the field of producing foamed resin moldings, and the polystyrene-based resin pre-expanded particles of the present invention (hereinafter, (Referred to as pre-expanded particles). The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of a polystyrene-based resin foam-molded product to be manufactured (hereinafter referred to as a foam-molded product). In the present invention, the bulk density and the bulk foaming factor are not limited, but are usually in the range of 0.010 to 0.100 g / cm 3 (in the range of 10 to 100 times as the bulk foaming factor), and 0.015 to It is preferable to be in the range of 0.050 g / cm 3 .
 なお、本発明において予備発泡粒子の嵩密度及び嵩発泡倍数とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものを指す。
<予備発泡粒子の嵩密度>
 メスシリンダに予備発泡粒子を500cmの目盛りまで充填する。但し、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cmの目盛りに達していれば、充填を終了する。次に、メスシリンダ内に充填された予備発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とする。次式により予備発泡粒子の嵩密度を算出する。
 嵩密度(g/cm)=W/500
In the present invention, the bulk density and the bulk expansion ratio of the pre-expanded particles refer to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
Fill the graduated cylinder with pre-expanded particles to a scale of 500 cm 3 . However, the graduated cylinder is visually observed from the horizontal direction, and if at least one pre-expanded particle reaches the scale of 500 cm 3 , the filling is finished. Next, the mass of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as W (g). The bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500
<予備発泡粒子の嵩発泡倍数>
 また、予備発泡粒子の嵩発泡倍数は、次式により算出される数値である。
 嵩発泡倍数=1/嵩密度(g/cm
<Bulk expansion ratio of pre-expanded particles>
Moreover, the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
Bulk foaming factor = 1 / bulk density (g / cm 3 )
 前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、この予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、発泡成形体を製造する。 The pre-expanded particles are filled in a cavity of a molding die by using a well-known apparatus and method in the field of manufacturing a foamed resin molded body, heated by steam heating or the like, and subjected to in-mold foam molding, foaming A molded body is manufactured.
 本発明のポリスチレン系樹脂発泡成形体は、発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’は、前記式(3)を用いて発泡倍数50倍に換算し、その発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たし、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ発泡成形体の連続気泡率が10%以下である気泡構造を有する。 The polystyrene-based resin foam molded article of the present invention is in the state when foam-molded at a foam multiple X times, and the internal average cell diameter D 3 ′ of the foam particles fused together in this foam molded article is expressed by the above formula. (3) is used to convert the expansion ratio to 50 times, and the internal average cell diameter D 3 of the expanded particles in the expanded molded product satisfies the relationship of 35 μm ≦ D 3 ≦ 140 μm. It has a cell structure in which the value of the diameter / internal average cell size is in the range of 0.80 to 1.20, and the open cell ratio of the foamed molded product is 10% or less.
 本発明のポリスチレン系樹脂発泡成形体は、発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’は、前記式(3)を用いて発泡倍数50倍に換算し、その発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たす。前記内部平均気泡径Dが35μm未満であると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体は連続気泡率が増加して独立気泡が減少し、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。前記内部平均気泡径Dが140μmを超えると、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。好ましいDの範囲は、40μm≦D≦120μmであり、より好ましい範囲は、45μm≦D≦115μmである。 The polystyrene-based resin foam molded article of the present invention is in the state when foam-molded at a foam multiple X times, and the internal average cell diameter D 3 ′ of the foam particles fused together in this foam molded article is expressed by the above formula. Using (3), the expansion ratio is converted to 50 times, and the internal average cell diameter D 3 of the expanded particles in the expanded molded product satisfies the relationship of 35 μm ≦ D 3 ≦ 140 μm. When the internal average cell diameter D 3 is less than 35 [mu] m, a polystyrene type resin foamed molded product obtained by mold foaming closed cell decreases with increasing open cell ratio, bending strength, compression strength, impact The mechanical strength such as property will decrease. When the internal average cell diameter D 3 greater than 140 .mu.m, flexural strength, compressive strength, mechanical strength such as impact resistance is lowered. A preferable range of D 3 is 40 μm ≦ D 3 ≦ 120 μm, and a more preferable range is 45 μm ≦ D 3 ≦ 115 μm.
 本発明のスチレン系樹脂発泡成形体は、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内である。この表層部平均気泡径/内部平均気泡径の値が前記範囲から外れると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。好ましい範囲は、0.90~1.10であり、より好ましい範囲は、0.93~1.06である。 In the styrenic resin foam molded article of the present invention, the value of the surface layer part average cell diameter / internal average cell diameter of the expanded particles is in the range of 0.80 to 1.20. When the value of the surface layer part average cell diameter / internal average cell diameter is out of the above range, the mechanical strength such as bending strength, compressive strength, impact resistance, etc. of the polystyrene-based resin foam molded product obtained by in-mold foam molding decreases. Resulting in. A preferred range is 0.90 to 1.10, and a more preferred range is 0.93 to 1.06.
 本発明のスチレン系樹脂発泡成形体は、発泡成形体の連続気泡率が10%以下であり、さらに8%以下であることが好ましい。前記連続気泡率が10%を超えると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。 In the styrene resin foam molded article of the present invention, the open cell ratio of the foam molded article is 10% or less, preferably 8% or less. If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the polystyrene-based resin foam molded product obtained by in-mold foam molding will decrease.
 本発明の発泡成形体の密度は特に限定されないが、通常は0.010~0.100g/cm(嵩発泡倍数として10~100倍)の範囲内とし、0.015~0.050g/cmの範囲内とするのが好ましい。 The density of the foamed molded product of the present invention is not particularly limited, but is usually in the range of 0.010 to 0.100 g / cm 3 (10 to 100 times as the bulk foaming factor), and 0.015 to 0.050 g / cm 3. It is preferable to be within the range of 3 .
 なお、本発明において発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム-見掛け密度の測定」記載の方法で測定した発泡成形体密度のことを指す。
<発泡成形体の密度>
 50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を、材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により密度を算出した。
 密度(g/cm)=試験片質量(g)/試験片体積(cm
 測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件(温度と湿度の条件)に16時間以上放置した試験片である。
In the present invention, the density of the foamed molded article refers to the density of the foamed molded article measured by the method described in JIS K7122: 1999 “Foamed Plastics and Rubber—Measurement of Apparent Density”.
<Density of foam molding>
A specimen of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and the density was calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test specimens are cut from a sample that has passed 72 hours or more after molding, and atmospheric conditions (temperature and humidity conditions) of 23 ° C. ± 2 ° C. × 50% ± 5% or 27 ° C. ± 2 ° C. × 65% ± 5% The test piece was allowed to stand for 16 hours or longer.
<発泡成形体の発泡倍数>
 また、発泡成形体の発泡倍数は次式により算出される数値である。
 発泡倍数=1/密度(g/cm
<Folding multiple of foamed molded product>
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )
 本発明の発泡成形体は、前記発泡性ポリスチレン系樹脂粒子を用いて製造されるため、前記再加熱工程を施していない従来品と比べ、曲げ強度、圧縮強度、耐衝撃性などの機械強度、断熱性、及び緩衝性に優れる。
 なお、本発明の発泡成形体を用いて、断熱材または緩衝材を製造してもよい。本発明の発泡成形体を用いることにより、優れた断熱性を有する断熱材、または優れた緩衝性を有する緩衝材を製造することができる。
Since the foamed molded article of the present invention is manufactured using the expandable polystyrene resin particles, compared to the conventional product not subjected to the reheating step, mechanical strength such as bending strength, compressive strength, impact resistance, Excellent heat insulation and buffering properties.
In addition, you may manufacture a heat insulating material or a buffering material using the foaming molding of this invention. By using the foamed molded article of the present invention, a heat insulating material having excellent heat insulating properties or a buffer material having excellent buffer properties can be produced.
(ポリスチレン系樹脂発泡成形体、断熱材、及び緩衝材)
 本発明のポリスチレン系樹脂発泡成形体は、ポリスチレン系樹脂粒子中に発泡剤を含む発泡性ポリスチレン系樹脂粒子を加熱して得られたポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形して得られる。また、本発明のポリスチレン系樹脂発泡成形体は、前記発泡性ポリスチレン系樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有する。なお、前記予備発泡粒子の嵩発泡倍数とは、後述するポリスチレン系樹脂予備発泡粒子の嵩発泡倍数の測定方法によって測定された嵩発泡倍数のことを指す。
(Polystyrene resin foam molding, heat insulating material, and cushioning material)
The polystyrene resin foam molded article of the present invention is obtained by filling polystyrene resin pre-expanded particles obtained by heating expandable polystyrene resin particles containing a foaming agent in polystyrene resin particles into the mold cavity. It is obtained by heating and in-mold foam molding. The polystyrene-based resin foam molded article of the present invention is a pre-expanded particle state in which the expandable polystyrene-based resin particles are heated and expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 μm. And the surface layer part average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20, and the open cell ratio is 10% or less. The bulk expansion ratio of the pre-expanded particles refers to a bulk expansion ratio measured by a method for measuring the bulk expansion ratio of polystyrene resin pre-expanded particles described later.
 前記発泡性ポリスチレン系樹脂粒子において、加熱して発泡させた予備発泡粒子の嵩発泡倍数が50倍以外である場合、その予備発泡粒子の内部平均気泡径D’は、前記式(2)を用いて嵩発泡倍数50倍に換算し、その内部平均気泡径Dが35μm≦D≦140μmの関係を満たすことが好ましい。これは、この予備発泡粒子を型内発泡成型して得られたポリスチレン系樹脂発泡成形体からなる断熱材または緩衝材の気泡構造についても同じである。 In the expandable polystyrene resin particles, when the bulk expansion ratio of the pre-expanded particles heated and expanded is other than 50 times, the internal average cell diameter D 2 ′ of the pre-expanded particles is expressed by the above formula (2). It is preferably converted to a bulk foaming ratio of 50 times, and the internal average bubble diameter D 2 preferably satisfies the relationship of 35 μm ≦ D 2 ≦ 140 μm. The same applies to the cell structure of a heat insulating material or a buffer material made of a polystyrene resin foam molded product obtained by in-mold foam molding of the pre-expanded particles.
 前記発泡性ポリスチレン系樹脂粒子は、加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、さらに40~120μmの範囲内であることが好ましい。前記内部平均気泡径が35μm未満であると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体は連続気泡率が増加して独立気泡が減少するため、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。前記内部平均気泡径が140μmを超えると、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。 The expandable polystyrene resin particles are in the form of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 μm, and further in the range of 40 to 120 μm. It is preferable. When the internal average cell diameter is less than 35 μm, the polystyrene-based resin foam molded article obtained by in-mold foam molding increases the open cell ratio and decreases closed cells, so that bending strength, compressive strength, impact resistance are increased. Such as mechanical strength will be reduced. When the internal average bubble diameter exceeds 140 μm, mechanical strength such as bending strength, compressive strength, and impact resistance is lowered.
 前記発泡性ポリスチレン系樹脂粒子は、加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、さらに0.90~1.10の範囲内であることが好ましい。この表層部平均気泡径/内部平均気泡径の値が前記範囲から外れると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。なお、本発明において「表層部平均気泡径」とは、発泡性ポリスチレン系樹脂粒子を嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、その中心を通るようにこの予備発泡粒子を切断した断面において、予備発泡粒子の表面からの深さが発泡粒子の直径の1/4までの領域を「表層部」と定義し、この表層部にある気泡の平均気泡径のことを指している。また「内部平均気泡径」とは、同じ予備発泡粒子の上記表層部よりも深い領域(中心側の領域)を「内部」と定義し、この内部にある気泡の平均気泡径のことを指している。 The expandable polystyrene resin particles are in the form of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, and the surface layer part average cell diameter / internal average cell diameter value is within the range of 0.80 to 1.20. In addition, it is preferably in the range of 0.90 to 1.10. When the value of the surface layer part average cell diameter / internal average cell diameter is out of the above range, the mechanical strength such as bending strength, compressive strength, impact resistance, etc. of the polystyrene-based resin foam molded product obtained by in-mold foam molding decreases. Resulting in. In the present invention, the “surface layer average cell diameter” means a state of pre-expanded particles obtained by expanding expandable polystyrene resin particles to a bulk expansion ratio of 50 times, and cutting the pre-expanded particles so as to pass through the center thereof. In the cross section, the region where the depth from the surface of the pre-expanded particles is up to 1/4 of the diameter of the expanded particles is defined as “surface layer portion”, which means the average cell diameter of the bubbles in the surface layer portion. . In addition, the “inner average bubble diameter” is defined as “inner” as a region deeper than the surface layer portion of the same pre-expanded particle (region on the center side), and refers to the average bubble diameter of the bubbles inside. Yes.
 前記発泡性ポリスチレン系樹脂粒子は、加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、連続気泡率が10%以下であり、さらに8%以下であることが好ましい。
 前記連続気泡率が10%を超えると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。
The expandable polystyrene resin particles are in the form of expanded particles heated to be expanded to a bulk expansion ratio of 50 times, and the open cell ratio is preferably 10% or less, and more preferably 8% or less.
If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the polystyrene-based resin foam molded product obtained by in-mold foam molding will decrease.
 前記発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i-プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられる。なお、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、なかでもポリスチレンがより好ましい。 In the expandable polystyrene resin particles, the polystyrene resin is not particularly limited, and examples thereof include styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and the like. Examples include homopolymers of styrene monomers or copolymers thereof. A polystyrene resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable.
 また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよい。このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。 Also, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. Examples of such vinyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, In addition to dimethyl fumarate, diethyl fumarate, and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.
 また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよい。添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン-ブタジエン共重合体、エチレン-プロピレン-非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。 If the polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product. Examples thereof include rubber-modified polystyrene resins to which coalescing has been added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.
 原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(バージンポリスチレン)を使用できると共に、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することもできる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電断熱材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料の中から、質量平均分子量Mwが12万~40万の範囲となる原料を適宜選択し、又は質量平均分子量Mwが異なる複数のリサイクル原料を適宜組み合わせて用いることができる。 As a polystyrene resin used as a raw material, a polystyrene resin (virgin polystyrene) that is not a recycled material, such as a commercially available ordinary polystyrene resin, a polystyrene resin newly produced by a method such as suspension polymerization, can be used. In addition, a recycled raw material obtained by regenerating a used polystyrene resin foam molded article can also be used. As this recycled material, used polystyrene-based resin foam moldings such as fish boxes, heat insulating materials for household appliances, trays for food packaging, etc. are collected and recycled from the recycled materials recovered by the limonene dissolution method or heating volume reduction method. A raw material having a mass average molecular weight Mw in the range of 120,000 to 400,000 can be appropriately selected, or a plurality of recycled raw materials having different mass average molecular weights Mw can be appropriately used in combination.
 前記発泡性ポリスチレン系樹脂粒子に用いられる発泡剤は、特に限定されない。例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン等の脂肪族炭化水素、ジメチルエーテル、ジエチルエーテル等のエーテル類、メタノール、エタノール等の各種アルコール類、炭酸ガス、窒素、水等が使用可能である。この内、脂肪族炭化水素が好適であり、更には、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン単独もしくはこれらの混合物がより好適である。また、炭素数5の炭化水素であるノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン単独もしくはこれらの混合物が特に好適である。その中でもイソペンタンとノルマルペンタンとの一方又は両方の混合物であることが好ましい。また、前記炭素数5の炭化水素を主体とし、沸点が20℃以上であり、炭素数5の炭化水素以外の発泡剤(例えばノルマルブタン、イソブタン、プロパン、炭酸ガス等)を含んでいてもよい。
 この発泡剤の添加量は、ポリスチレン系樹脂100質量部に対し2~15質量部の範囲が好ましく、3~8質量部の範囲がより好ましく、4~7質量部の範囲が特に好ましい。
The foaming agent used for the expandable polystyrene resin particles is not particularly limited. Examples include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, and cyclopentane, ethers such as dimethyl ether and diethyl ether, various alcohols such as methanol and ethanol, carbon dioxide, nitrogen, water, etc. It can be used. Of these, aliphatic hydrocarbons are preferred, and normal butane, isobutane, normal pentane, isopentane alone or a mixture thereof is more preferred. Further, normal pentane, isopentane, neopentane, cyclopentane, cyclopentadiene alone or a mixture thereof, which is a hydrocarbon having 5 carbon atoms, is particularly suitable. Of these, a mixture of one or both of isopentane and normal pentane is preferable. Further, it mainly comprises the hydrocarbon having 5 carbon atoms and has a boiling point of 20 ° C. or higher, and may contain a blowing agent other than the hydrocarbon having 5 carbon atoms (for example, normal butane, isobutane, propane, carbon dioxide gas, etc.). .
The amount of the foaming agent added is preferably in the range of 2 to 15 parts by mass, more preferably in the range of 3 to 8 parts by mass, and particularly preferably in the range of 4 to 7 parts by mass with respect to 100 parts by mass of the polystyrene resin.
 前記発泡性ポリスチレン系樹脂粒子には、ポリスチレン系樹脂100質量部に対し、気泡核剤として、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素などの無機微粉末(無機気泡核剤)または化学発泡剤を添加することが好ましい。この気泡核剤としては、タルクが特に好ましい。前記気泡核剤の添加量は、熱可塑性樹脂100質量部に対し5質量部以下が好ましく、0.05~2.0質量部の範囲がより好ましい。前記化学発泡剤としては、例えば、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、炭酸水素ナトリウムなどが挙げられる。 In the foamable polystyrene resin particles, an inorganic fine powder (inorganic bubble nucleating agent) such as talc, calcium silicate, synthetically or naturally produced silicon dioxide as a cell nucleating agent with respect to 100 parts by mass of polystyrene resin. It is preferable to add a chemical foaming agent. As the bubble nucleating agent, talc is particularly preferable. The amount of the cell nucleating agent added is preferably 5 parts by mass or less, more preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin. Examples of the chemical foaming agent include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, 4,4′-oxybis (benzenesulfonylhydrazide), sodium hydrogen carbonate, and the like.
 また、前記気泡核剤として、タルクなどの無機粉末又は化学発泡剤をベース樹脂、好ましくはポリスチレン系樹脂中に均一に分散させたマスターバッチ型気泡核剤を用いることが好ましい。このマスターバッチ型気泡核剤を用いることによって、樹脂供給装置内でポリスチレン系樹脂と気泡核剤とを混合する際に、無機粉末又は化学発泡剤をポリスチレン系樹脂中に非常に均一な状態で分散させることができる。 Further, as the cell nucleating agent, it is preferable to use a master batch type cell nucleating agent in which an inorganic powder such as talc or a chemical foaming agent is uniformly dispersed in a base resin, preferably a polystyrene resin. By using this master batch type cell nucleating agent, when mixing polystyrene resin and cell nucleating agent in the resin feeder, inorganic powder or chemical foaming agent is dispersed in polystyrene resin in a very uniform state. Can be made.
 前記発泡性ポリスチレン系樹脂粒子には、前記発泡剤及び気泡核剤の他に、得られる発泡性ポリスチレン系樹脂粒子及び発泡成形体の物性を損なわない範囲内において、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよい。 In the expandable polystyrene resin particles, in addition to the foaming agent and the cell nucleating agent, in the range that does not impair the properties of the resulting expandable polystyrene resin particles and the foamed molded article, a binding inhibitor, a cell regulator, You may add additives, such as a crosslinking agent, a filler, a flame retardant, a flame retardant adjuvant, a lubricant, and a coloring agent.
 本発明のポリスチレン系樹脂発泡成形体は、発泡性ポリスチレン系樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有する予備発泡粒子を、型内発泡成形して得られる。そのため、予備発泡粒子全体にわたって比較的小さく均一で独立した気泡が形成され、この予備発泡粒子を型内発泡成形して得られる発泡成形体は、曲げ強度、圧縮強度、耐衝撃性などの機械強度、断熱性、及び緩衝性に優れる。
 なお、本発明のポリスチレン系樹脂発泡成形体を用いて、断熱材または緩衝材を製造してもよい。本発明のポリスチレン系樹脂発泡成形体を用いることにより、優れた断熱性を有する断熱材、または優れた緩衝性を有する緩衝材を製造することができる。
The polystyrene-based resin foam molded article of the present invention is a state of pre-expanded particles in which expandable polystyrene-based resin particles are heated and expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 μm. In-mold foam molding of pre-expanded particles having a cell structure in which the surface layer average cell diameter / internal average cell diameter is in the range of 0.80 to 1.20 and the open cell ratio is 10% or less. Is obtained. Therefore, relatively small, uniform, and independent bubbles are formed throughout the pre-expanded particles, and the foam-molded product obtained by in-mold foam molding of the pre-expanded particles has mechanical strength such as bending strength, compressive strength, and impact resistance. , Excellent heat insulating properties and buffer properties.
In addition, you may manufacture a heat insulating material or a buffering material using the polystyrene-type resin foaming molding of this invention. By using the polystyrene resin foam molded article of the present invention, a heat insulating material having excellent heat insulating properties or a buffer material having excellent buffering properties can be produced.
(ポリスチレン系樹脂発泡成形体の製造方法)
 次に、図面を参照して本発明に係るポリスチレン系樹脂発泡成形体の製造方法を説明する。
 本発明に係るポリスチレン系樹脂発泡成形体の製造方法は、樹脂供給装置内でポリスチレン系樹脂に発泡剤を添加して混練し、発泡剤含有溶融樹脂を樹脂供給装置先端に設けられたダイの小孔から発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度の冷却用液体中に押し出し、押し出すと同時に押出物を切断し、押出物を冷却用液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る造粒工程(第1の工程)と、得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度で加熱して発泡性ポリスチレン系樹脂粒子を得る再加熱工程(第2の工程)と、次いで、得られた発泡性ポリスチレン系樹脂粒子を加熱し、前記式(2)を用いて嵩発泡倍数50倍に換算した予備発泡粒子の内部平均気泡径Dが、35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有するポリスチレン系樹脂予備発泡粒子を作製する予備発泡工程(第3の工程)と、次いで、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形する成形工程(第4の工程)と、を含む。
(Production method of polystyrene resin foam molding)
Next, a method for producing a polystyrene resin foam molded article according to the present invention will be described with reference to the drawings.
The method for producing a polystyrene-based resin foam molded article according to the present invention includes adding a foaming agent to a polystyrene-based resin in a resin supply apparatus and kneading, and a foam-containing molten resin at the tip of the resin supply apparatus. The foamed polystyrene resin particles are extruded from the pores into a cooling liquid having a temperature lower than the glass transition temperature Tg. At the same time, the extrudate is cut, and the extrudate is cooled and solidified by contact with the cooling liquid. A granulation step (first step) for obtaining resin-based resin particles, and the obtained expandable polystyrene-based resin particles are heated at a temperature of (glass transition temperature Tg-5 of expandable polystyrene-based resin particles) ° C. or higher. Reheating step (second step) for obtaining expandable polystyrene resin particles, and then heating the obtained expandable polystyrene resin particles, and using the above formula (2), the bulk expansion ratio is 50 times Convert to average internal cell diameter D 2 of the pre-expanded particles, in the range of 35 ~ 140 .mu.m, values of the surface layer portion average cell diameter / average internal cell diameter is in the range of 0.80 to 1.20, and A pre-foaming step (third step) for producing polystyrene-based resin pre-foamed particles having a cell structure with an open cell ratio of 10% or less, and then filling the polystyrene-based pre-foamed particles in the mold cavity And a molding process (fourth process) for heating and in-mold foam molding.
(造粒工程)
 図1は、前記造粒工程で発泡性ポリスチレン系樹脂粒子を製造するために用いられる製造装置の一例を示す構成図である。
 本実施形態における製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性樹脂粒子を冷却水と分離すると共に脱水乾燥して発泡性樹脂粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性樹脂粒子を貯留する貯留容器11と、を備えて構成されている。
(Granulation process)
FIG. 1 is a configuration diagram showing an example of a production apparatus used for producing expandable polystyrene resin particles in the granulation step.
The manufacturing apparatus in this embodiment includes an extruder 1 as a resin supply device, a die 2 having a large number of small holes attached to the tip of the extruder 1, and a raw material supply for charging a resin raw material or the like into the extruder 1. A hopper 3, a high-pressure pump 4 for press-fitting the foaming agent into the molten resin in the extruder 1 through the foaming agent supply port 5, and a resin discharge surface in which a small hole of the die 2 is drilled are provided in contact with the cooling water. From the cutting chamber 7 into which the cooling water is circulated and supplied to the room, the cutter 6 rotatably provided in the cutting chamber 7 so as to cut the resin extruded from the small hole of the die 2, and the cutting chamber 7 A dehydrating dryer 10 with a solid-liquid separation function that separates foamable resin particles carried along with the flow of cooling water from cooling water and dehydrating and drying to obtain expandable resin particles, and a dehydrating dryer with a solid-liquid separation function 10 separated A water tank 8 for storing the cooling water, a high-pressure pump 9 for sending the cooling water in the water tank 8 to the cutting chamber 7, and a storage for storing the expandable resin particles dehydrated and dried by the dehydrating dryer 10 with a solid-liquid separation function. And a container 11.
 なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機をいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。 In addition, as the extruder 1, both an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.
 図1に示す製造装置を用い、発泡性ポリスチレン系樹脂粒子を製造するためには、まず、原料のポリスチレン系樹脂、気泡核剤、必要に応じて添加される難燃剤などの所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合はロットごとに供給量を調整した複数の原料供給ホッパーから原料を投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。 In order to produce expandable polystyrene resin particles using the production apparatus shown in FIG. 1, first, a desired additive such as a polystyrene resin as a raw material, a cell nucleating agent, or a flame retardant added as necessary is added. Weigh and put into the extruder 1 from the raw material supply hopper 3. The raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount is adjusted for each lot. The raw materials may be fed from a plurality of raw material supply hoppers and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.
 押出機1内にポリスチレン系樹脂、気泡核剤、その他の任意の添加剤を供給後、樹脂を加熱溶融し、その溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入して溶融樹脂に発泡剤を混合する。押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤が添加された溶融物を押出機1の先端に設けられたダイ2の小孔から押し出す。 After supplying polystyrene-based resin, bubble nucleating agent, and other optional additives into the extruder 1, the resin is heated and melted, and the molten resin is transferred to the die 2 side, and the high-pressure pump 4 is supplied from the blowing agent supply port 5. The foaming agent is pressed in to mix the foaming agent with the molten resin. A die provided at the front end of the extruder 1 by moving the melt to the front end side while further kneading through a foreign matter removing screen provided in the extruder 1 as necessary. Extrude through 2 small holes.
 ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置されている。また、カッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に設けられたダイ2の小孔から押し出すと、カーター6により溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡性ポリスチレン系樹脂粒子が得られる。 The resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 into which cooling water is circulated and supplied. A cutter 6 is rotatably provided in the cutting chamber 7 so that the resin extruded from the small hole of the die 2 can be cut. When the melt added with the foaming agent is extruded from the small hole of the die 2 provided at the tip of the extruder 1, the melt is cut into particles by the carter 6, and at the same time, brought into contact with cooling water and rapidly cooled, and expandable polystyrene. System resin particles are obtained.
 得られた発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれる。発泡性ポリスチレン系樹脂粒子は、固液分離機能付き脱水乾燥機10で冷却水と分離されると共に脱水乾燥される。乾燥された発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。 The obtained expandable polystyrene resin particles are transferred from the cutting chamber 7 to the flow of cooling water and carried to the dehydrating dryer 10 with a solid-liquid separation function. The expandable polystyrene resin particles are separated from the cooling water by the dehydration dryer 10 with a solid-liquid separation function and dehydrated and dried. The dried expandable polystyrene resin particles are stored in the storage container 11.
 前記造粒工程において、前記冷却水の温度は、発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度であり、さらに20~60℃の範囲とすることが好ましい。冷却水の温度が発泡性ポリスチレン系樹脂粒子のガラス転移温度Tgを超えると、発泡性ポリスチレン系樹脂粒子同士が融着し易くなり、多数個の粒子同士が結合して塊状になった不良品の発生率が高くなる。冷却水の温度が20℃未満であると、得られる発泡性ポリスチレン系樹脂粒子が球状化せず、また割れが生じる場合がある。 In the granulation step, the temperature of the cooling water is lower than the glass transition temperature Tg of the expandable polystyrene resin particles, and is preferably in the range of 20 to 60 ° C. When the temperature of the cooling water exceeds the glass transition temperature Tg of the expandable polystyrene resin particles, the expandable polystyrene resin particles are easily fused together, and a defective product in which a large number of particles are bonded to form a lump. Incidence increases. If the temperature of the cooling water is less than 20 ° C., the resulting expandable polystyrene resin particles may not be spheroidized and cracks may occur.
 また、前記冷却水は0.5MPa以上に加圧しておくことが好ましい。この冷却水を加圧するには、前記冷却水の循環流路のうち、高圧ポンプ9の吐出側からカッティング室7を通り、固液分離機能付き脱水乾燥機10の入口側に到る部分を加圧領域とし、高圧ポンプ9の吐出圧力を高めることにより実行し得る。前記冷却水の圧力は、0.6~2.0MPaの範囲とすることが好ましく、0.8~1.5MPaの範囲がより好ましい。 The cooling water is preferably pressurized to 0.5 MPa or more. In order to pressurize the cooling water, a portion of the circulation path of the cooling water passing through the cutting chamber 7 from the discharge side of the high-pressure pump 9 to the inlet side of the dehydrating dryer 10 with a solid-liquid separation function is added. It can be executed by increasing the discharge pressure of the high-pressure pump 9 in the pressure region. The cooling water pressure is preferably in the range of 0.6 to 2.0 MPa, and more preferably in the range of 0.8 to 1.5 MPa.
(再加熱工程)
 前記造粒工程で得られた発泡性ポリスチレン系樹脂粒子は、次に、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度で加熱することにより、本発明に係る前記発泡性ポリスチレン系樹脂粒子となる。
 この再加熱工程は、前記造粒工程で発泡性ポリスチレン系樹脂粒子を製造した直後に、連続して実施してもよいし、前記造粒工程で発泡性ポリスチレン系樹脂粒子を製造後、貯蔵しておき、任意の貯蔵期間経過後に取り出して再加熱工程を実施してもよい。
(Reheating process)
The expandable polystyrene resin particles obtained in the granulation step are then heated at a temperature equal to or higher than (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C., whereby the expanded foam according to the present invention. Polystyrene resin particles.
This reheating step may be carried out continuously immediately after producing the expandable polystyrene resin particles in the granulation step, or stored after producing the expandable polystyrene resin particles in the granulation step. In addition, it may be taken out after an arbitrary storage period and the reheating step may be performed.
 この再加熱工程は、例えば、温度調節機能を持った耐圧容器内に、熱媒体、例えば水を入れ、前記温度範囲内の温度に加熱・保温しておき、この熱媒体に前記造粒工程で得られた発泡性ポリスチレン系樹脂粒子を投入することによって効率よく行うことができる。 In this reheating step, for example, a heat medium such as water is placed in a pressure-resistant container having a temperature control function, and heated and kept at a temperature within the temperature range. By introducing the obtained expandable polystyrene resin particles, it can be carried out efficiently.
 前記再加熱工程の加熱温度は、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度であればよい。具体的には、後述する実施例で用いているTgが61℃の発泡性ポリスチレン系樹脂粒子の場合には、加熱温度は56℃以上とする。加熱温度は150℃以上としても良いが、樹脂粒子同士の融着を少なくする観点から150℃程度を上限とすることが好ましい。この場合の加熱温度は、60~90℃の範囲とすることがより好ましい。この加熱温度が(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃未満であると、得られる発泡性ポリスチレン系樹脂粒子を加熱発泡させて得られた発泡粒子内の気泡が細かくならず、この発泡粒子を型内発泡成形して得られた発泡成形体の機械強度が低下する可能性がある。 The heating temperature in the reheating step may be a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher. Specifically, in the case of expandable polystyrene resin particles having a Tg of 61 ° C. used in Examples described later, the heating temperature is 56 ° C. or higher. Although heating temperature is good also as 150 degreeC or more, it is preferable to make about 150 degreeC into an upper limit from a viewpoint of reducing fusion | melting of resin particles. In this case, the heating temperature is more preferably in the range of 60 to 90 ° C. When this heating temperature is less than (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C., the bubbles in the expanded particles obtained by heating and foaming the obtained expandable polystyrene resin particles do not become fine. There is a possibility that the mechanical strength of the foamed molded product obtained by foam-molding the foamed particles in the mold is lowered.
 前記再加熱工程での圧力は、1.5MPa以下であり、さらに0.1~1.0MPaの範囲が好ましく、0.1~0.5MPaの範囲がより好ましい。この圧力が1.5MPaを超えると、得られる発泡成形体の機械強度が低下する可能性がある。さらに再加熱工程で用いる耐圧容器の耐圧性能を上げる為に容器を肉厚にする必要があり、耐圧容器の質量が重くなることから好ましくない。 The pressure in the reheating step is 1.5 MPa or less, preferably 0.1 to 1.0 MPa, more preferably 0.1 to 0.5 MPa. When this pressure exceeds 1.5 MPa, the mechanical strength of the obtained foamed molded article may be lowered. Furthermore, it is necessary to make the container thicker in order to increase the pressure resistance of the pressure vessel used in the reheating process, which is not preferable because the mass of the pressure vessel becomes heavy.
 前記再加熱工程の加熱処理時間は、特に限定されないが、1~10分間程度とすることが好ましく、1~5分間程度がより好ましい。この加熱処理時間が短いと、造粒工程で得られた発泡性ポリスチレン系樹脂粒子の気泡構造を改善して発泡成形体の機械強度を向上させる効果が十分に得られなくなる。一方、加熱処理時間を長くすると、発泡性ポリスチレン系樹脂粒子の製造効率が低下してコスト上昇に繋がることから好ましくない。 The heat treatment time in the reheating step is not particularly limited, but is preferably about 1 to 10 minutes, more preferably about 1 to 5 minutes. If this heat treatment time is short, the effect of improving the cellular structure of the expandable polystyrene resin particles obtained in the granulation step and improving the mechanical strength of the foamed molded article cannot be sufficiently obtained. On the other hand, if the heat treatment time is lengthened, the production efficiency of expandable polystyrene resin particles is lowered, leading to an increase in cost, which is not preferable.
 この再加熱工程を終えた発泡性ポリスチレン系樹脂粒子は、表面改質剤などの添加剤の添加、乾燥処理などの必要な後処理後、ポリスチレン系樹脂予備発泡粒子を経て、ポリスチレン系樹脂発泡成形体の製造に利用される。 Expandable polystyrene resin particles that have undergone this reheating step are subjected to the necessary post-treatments such as addition of additives such as surface modifiers and drying treatment, and then through polystyrene resin pre-expanded particles, polystyrene resin foam molding Used for the production of the body.
(予備発泡工程)
 再加熱処理して得られた発泡性ポリスチレン系樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡させ、ポリスチレン系樹脂予備発泡粒子(以下、予備発泡粒子と記す)とする。この予備発泡粒子は、製造するべきポリスチレン系樹脂発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度及び嵩発泡倍数は限定されないが、通常は0.010~0.100g/cmの範囲内(嵩発泡倍数として10~100倍の範囲内)とし、0.015~0.050g/cmの範囲内とするのが好ましい。
(Pre-foaming process)
The expandable polystyrene resin particles obtained by the reheating treatment are pre-expanded by heating with water vapor heating or the like using a well-known apparatus and method in the field of manufacturing a foamed resin molded article. Hereinafter referred to as pre-expanded particles). The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the polystyrene-based resin foam molding to be manufactured. In the present invention, the bulk density and the bulk foaming factor are not limited, but are usually in the range of 0.010 to 0.100 g / cm 3 (in the range of 10 to 100 times as the bulk foaming factor), and 0.015 to It is preferable to be in the range of 0.050 g / cm 3 .
 なお、本発明において予備発泡粒子の嵩密度及び嵩発泡倍数とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものを指す。
<予備発泡粒子の嵩密度>
 メスシリンダに予備発泡粒子を500cmの目盛りまで充填する。但し、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cmの目盛りに達していれば、充填を終了する。次に、メスシリンダ内に充填された予備発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とする。次式により予備発泡粒子の嵩密度を算出する。
 嵩密度(g/cm)=W/500
In the present invention, the bulk density and the bulk expansion ratio of the pre-expanded particles refer to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
Fill the graduated cylinder with pre-expanded particles to a scale of 500 cm 3 . However, the graduated cylinder is visually observed from the horizontal direction, and if at least one pre-expanded particle reaches the scale of 500 cm 3 , the filling is finished. Next, the mass of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as W (g). The bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500
<予備発泡粒子の嵩発泡倍数>
 また、予備発泡粒子の嵩発泡倍数は、次式により算出される数値である。
 嵩発泡倍数=1/嵩密度(g/cm
<Bulk expansion ratio of pre-expanded particles>
Moreover, the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
Bulk foaming factor = 1 / bulk density (g / cm 3 )
 発泡樹脂成形体の製造分野において周知の装置及び手法を用い、前記予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、ポリスチレン系樹脂発泡成形体を製造する。例えば、前記予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形して、ポリスチレン系樹脂発泡成形体としての断熱材または緩衝材を得る。 Using a well-known apparatus and method in the field of manufacturing a foamed resin molded body, the pre-expanded particles are filled into a cavity of a molding die, heated by steam heating or the like, and subjected to in-mold foam molding, and a polystyrene-based resin foam molded body is obtained. To manufacture. For example, the pre-expanded particles are filled in a cavity of a molding die, heated, and subjected to in-mold foam molding to obtain a heat insulating material or a buffer material as a polystyrene-based resin foam molding.
 本発明のポリスチレン系樹脂発泡成形体は、発泡倍数X倍に発泡成形させたときの状態で、発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’は、前記式(3)を用いて発泡倍数50倍に換算し、その発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たし、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ発泡成形体の連続気泡率が10%以下である気泡構造を有する。 The polystyrene-based resin foam molded article of the present invention is in a state where it is foam-molded to a multiple of X times, and the internal average cell diameter D 3 ′ of the fused particles in the foam molded article is expressed by the above formula ( 3), the internal average cell diameter D 3 of the expanded particles in the expanded molded product satisfies the relationship of 35 μm ≦ D 3 ≦ 140 μm, and the surface layer portion average cell diameter of the expanded particles / The cell has a cell structure in which the value of the internal average cell diameter is in the range of 0.80 to 1.20, and the open cell ratio of the foamed molded product is 10% or less.
 本発明のポリスチレン系樹脂発泡成形体は、発泡倍数X倍に発泡成形させたときの状態で、発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’は、前記式(3)を用いて発泡倍数50倍に換算し、その発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たす。前記内部平均気泡径Dが35μm未満であると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体は連続気泡率が増加して独立気泡が減少し、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。前記内部平均気泡径Dが140μmを超えると、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。好ましいDの範囲は、40μm≦D≦120μmであり、より好ましい範囲は、45μm≦D≦115μmである。 The polystyrene-based resin foam molded article of the present invention is in a state where it is foam-molded to a multiple of X times, and the internal average cell diameter D 3 ′ of the fused particles in the foam molded article is expressed by the above formula ( 3) is used to convert the expansion ratio to 50 times, and the internal average cell diameter D 3 of the expanded particles in the expanded molded product satisfies the relationship of 35 μm ≦ D 3 ≦ 140 μm. When the internal average cell diameter D 3 is less than 35 [mu] m, a polystyrene type resin foamed molded product obtained by mold foaming closed cell decreases with increasing open cell ratio, bending strength, compression strength, impact The mechanical strength such as property will decrease. When the internal average cell diameter D 3 greater than 140 .mu.m, flexural strength, compressive strength, mechanical strength such as impact resistance is lowered. A preferable range of D 3 is 40 μm ≦ D 3 ≦ 120 μm, and a more preferable range is 45 μm ≦ D 3 ≦ 115 μm.
 本発明のポリスチレン系樹脂発泡成形体は、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内である。この表層部平均気泡径/内部平均気泡径の値が前記範囲から外れると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。
 好ましい範囲は、0.90~1.10であり、より好ましい範囲は、0.93~1.06である。
In the polystyrene resin foam molded article of the present invention, the value of the surface layer part average cell diameter / internal average cell diameter of the expanded particles is in the range of 0.80 to 1.20. When the value of the surface layer part average cell diameter / internal average cell diameter is out of the above range, the mechanical strength such as bending strength, compressive strength, impact resistance, etc. of the polystyrene-based resin foam molded product obtained by in-mold foam molding decreases. Resulting in.
A preferred range is 0.90 to 1.10, and a more preferred range is 0.93 to 1.06.
 本発明のポリスチレン系樹脂発泡成形体は、発泡成形体の連続気泡率が10%以下であり、さらに8%以下であることが好ましい。前記連続気泡率が10%を超えると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。 In the polystyrene resin foam molded article of the present invention, the open cell ratio of the foam molded article is 10% or less, and preferably 8% or less. If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the polystyrene-based resin foam molded product obtained by in-mold foam molding will decrease.
 本発明のポリスチレン系樹脂発泡成形体の密度は特に限定されないが、通常は0.010~0.100g/cm(嵩発泡倍数として10~100倍)の範囲内とし、0.015~0.050g/cmの範囲内とするのが好ましい。 The density of the polystyrene resin foam molded article of the present invention is not particularly limited, but is usually within the range of 0.010 to 0.100 g / cm 3 (10 to 100 times as the bulk foaming factor), and 0.015 to 0.00. It is preferable to be within the range of 050 g / cm 3 .
 なお、本発明においてポリスチレン系樹脂発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム-見掛け密度の測定」記載の方法で測定した発泡成形体密度のことを指す。
<発泡成形体の密度>
 50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を、材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により密度を算出した。
 密度(g/cm)=試験片質量(g)/試験片体積(cm
 測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件(温度と湿度の条件)に16時間以上放置した試験片である。
In the present invention, the density of the polystyrene resin foam molded article refers to the density of the foam molded article measured by the method described in JIS K7122: 1999 “Measurement of Foamed Plastics and Rubber—Apparent Density”.
<Density of foam molding>
A specimen of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and the density was calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test specimens are cut from a sample that has passed 72 hours or more after molding, and atmospheric conditions (temperature and humidity conditions) of 23 ° C. ± 2 ° C. × 50% ± 5% or 27 ° C. ± 2 ° C. × 65% ± 5% The test piece was allowed to stand for 16 hours or longer.
<発泡成形体の発泡倍数>
 また、発泡成形体の発泡倍数は次式により算出される数値である。
 発泡倍数=1/密度(g/cm
<Folding multiple of foamed molded product>
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )
 本発明のポリスチレン系樹脂発泡成形体の製造方法は、溶融押出法によって得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5)℃以上の温度で且つ圧力0.5MPa以下の圧力で加熱処理を行って、発泡性ポリスチレン系樹脂粒子を得る方法である。そのため、加熱発泡させた際に発泡粒子全体にわたって比較的小さく均一で独立した気泡が形成され、この発泡粒子を型内発泡成形することによって曲げ強度、圧縮強度、耐衝撃性などの機械強度、断熱性、及び緩衝性に優れたポリスチレン系樹脂発泡成形体、断熱材、又は緩衝材を得ることができる。 In the method for producing a polystyrene resin foam molded article of the present invention, expandable polystyrene resin particles obtained by melt extrusion are used at a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher. This is a method of obtaining expandable polystyrene resin particles by performing heat treatment at a pressure of 0.5 MPa or less. Therefore, when heated and foamed, relatively small, uniform, and independent bubbles are formed throughout the foamed particles, and the foamed particles are subjected to in-mold foam molding to provide mechanical strength such as bending strength, compressive strength, impact resistance, and heat insulation. A polystyrene-based resin foam molded article, a heat insulating material, or a buffer material excellent in properties and buffering properties can be obtained.
[実施例1]
(発泡性ポリスチレン系樹脂粒子の製造)
 基材樹脂としてポリスチレン樹脂(東洋スチレン社製、商品名「HRM-10N」)100質量部に対して、タルクマスターバッチ(ポリスチレン樹脂 40質量%、タルク 60質量%)0.5質量部を予め混合したものを時間当たり160kg/hrの割合で口径90mmの単軸押出機内へ供給し、樹脂を加熱溶融させた後、発泡剤として樹脂100質量部に対して6質量部のイソペンタンを押出機途中より圧入した。押出機内で樹脂と発泡剤を混練しつつ、押出機先端部での樹脂温度が170℃となるように冷却しながら、押出機に設置されるヒーターにより290℃に保持された、直径0.6mm、ランド長さ3.0mmのノズルを200個有する造粒用ダイスを通して、温度50℃、水圧1.5MPaの冷却水が循環する水中カット室内に押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイスに密着させて、毎分3000回転で回転させることにより樹脂を切断し、脱水乾燥して球形の発泡性ポリスチレン樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子は変形、ヒゲ等の発生もなく、平均粒径1.1mmであった。
 次いで、再加熱処理を行うために内容積5.7リットルの攪拌機付オートクレーブに前記の発泡性ポリスチレン系樹脂粒子2000g、蒸留水2500g、ドデシルベンゼンスルホン酸ナトリウム0.5gを入れ、撹拌し分散させた。この分散液を窒素により0.2MPaに加圧し、80℃に昇温、3分間保持した後に冷却を行い、取り出し、洗浄、脱水、乾燥を行った。
 得られた発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.05質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部によって発泡性ポリスチレン系樹脂粒子の表面全面を均一に被覆した。
[Example 1]
(Manufacture of expandable polystyrene resin particles)
As a base resin, 0.5 part by mass of talc master batch (polystyrene resin 40% by mass, talc 60% by mass) is premixed with 100 parts by mass of polystyrene resin (trade name “HRM-10N” manufactured by Toyo Styrene Co., Ltd.). Was supplied into a single-screw extruder with a diameter of 90 mm at a rate of 160 kg / hr per hour, and the resin was heated and melted. Then, 6 parts by mass of isopentane as a foaming agent was added to 100 parts by mass of the resin from the middle of the extruder. Press-fitted. While kneading the resin and the foaming agent in the extruder and cooling so that the resin temperature at the front end of the extruder is 170 ° C., the diameter of 0.6 mm is maintained at 290 ° C. by a heater installed in the extruder. Then, through a granulation die having 200 nozzles with a land length of 3.0 mm, it was extruded into an underwater cutting chamber in which cooling water with a temperature of 50 ° C. and a water pressure of 1.5 MPa circulated, and at the same time, 10 blades in the circumferential direction. The resin was cut by bringing a high-speed rotary cutter having close contact with the die and rotating at 3000 rpm, and dehydrated and dried to obtain spherical expandable polystyrene resin particles. The obtained expandable polystyrene resin particles had an average particle size of 1.1 mm without the occurrence of deformation or beard.
Next, in order to perform the reheating treatment, 2000 g of the above expandable polystyrene resin particles, 2500 g of distilled water, and 0.5 g of sodium dodecylbenzenesulfonate were placed in an autoclave with a stirrer having an internal volume of 5.7 liters, and stirred and dispersed. . This dispersion was pressurized to 0.2 MPa with nitrogen, heated to 80 ° C., held for 3 minutes, then cooled, taken out, washed, dehydrated, and dried.
Polyethylene glycol 0.03 parts by mass, zinc stearate 0.05 parts by mass, stearic acid monoglyceride 0.05 parts by mass, hydroxystearic acid triglyceride 0.05 parts by mass with respect to 100 parts by mass of the obtained expandable polystyrene resin particles. The entire surface of the expandable polystyrene resin particles was uniformly coated with the part.
(発泡成形品の製造)
 前記の通り得られた発泡性ポリスチレン系樹脂粒子(以下、ビーズと記す場合がある)を円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱して発泡させ、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.020g/cm(嵩発泡倍数50倍)であった。
 続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ25mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、成形スチーム圧0.08MPa(ゲージ圧力)、金型加熱3秒、一方加熱10秒、逆一方加熱3秒、両面加熱10秒、水冷5秒、設定取出面圧0.02MPaの条件で成形を行った。
(Manufacture of foam molded products)
The expandable polystyrene resin particles (hereinafter may be referred to as beads) obtained as described above are supplied to a cylindrical batch type pre-foaming machine, heated by steam with a blowing pressure of 0.05 MPa, and foamed. Expanded particles were obtained. The obtained pre-expanded particles had a bulk density of 0.020 g / cm 3 (bulk expansion ratio: 50 times).
Subsequently, the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 25 mm. , Molding steam pressure 0.08 MPa (gauge pressure), mold heating 3 seconds, one heating 10 seconds, reverse one heating 3 seconds, double side heating 10 seconds, water cooling 5 seconds, set extraction surface pressure 0.02 MPa went.
 前記ビーズ、予備発泡粒子及び発泡成形体について、以下の測定法に従って、含有ガス量、発泡性ポリスチレン系樹脂粒子のTg、内部平均気泡径、表層部平均気泡径、連続気泡率、曲げ強度、圧縮強度、断熱性(熱伝導率)及び落下試験の各試験項目について測定した。その結果を表1に記す。 For the beads, pre-expanded particles, and foamed molded article, the gas content, Tg of expandable polystyrene resin particles, internal average cell diameter, surface layer average cell diameter, open cell ratio, flexural strength, compression according to the following measurement method It measured about each test item of an intensity | strength, heat insulation (thermal conductivity), and a drop test. The results are shown in Table 1.
<含有ガス量>
 前記ビーズについて、加熱温度145℃、2時間で加熱減量を測定し、含有ガス量を算出した。
<Contained gas amount>
With respect to the beads, the heating loss was measured at a heating temperature of 145 ° C. for 2 hours, and the amount of gas contained was calculated.
<発泡性ポリスチレン系樹脂粒子のTgの測定>
 Tgの測定は、JIS K7121の試験方法に準拠して測定した。具体的には、示差走査熱量計装置DSC6220型(エスアイアイ・ナノテクノロジー社製)を用い、測定容器に試料ビーズを6.5mg充填し、窒素ガス流量25ml/minのもと20℃/minの昇温速度で30℃から200℃まで昇温し、中間点ガラス転移温度をガラス転移温度とした。
<Measurement of Tg of Expandable Polystyrene Resin Particle>
Tg was measured according to the test method of JIS K7121. Specifically, using a differential scanning calorimeter DSC6220 type (manufactured by SII NanoTechnology Co., Ltd.), 6.5 mg of a sample bead is filled in a measurement container, and a nitrogen gas flow rate of 25 ml / min is 20 ° C./min. The temperature was raised from 30 ° C. to 200 ° C. at a rate of temperature rise, and the midpoint glass transition temperature was taken as the glass transition temperature.
<予備発泡粒子の内部平均気泡径の測定>
 予備発泡粒子の内部平均気泡径は、ASTM D2842-69の試験方法に準拠して測定されたものをいう。具体的には、まず、剃刀歯により予備発泡粒子の中心近傍を通る平面で切断し、切断面を走査型電子顕微鏡(JOEL社製 商品名「JSM-6360LV」)を用いて15倍に拡大して撮影する。
 次に、撮影した画像をA4用紙上に印刷し、予備発泡粒子の表層に内接する第1の円(内接円)を描く。この第1の円の直径に対して、1/2の直径(1/4の半径)を有する第2の同心円を描きその第2の円の内側の任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を下記式により算出する。
 平均弦長t=60/(気泡数×写真の倍率)
 なお、直線を描くにあたっては、できるだけ直線が気泡に点接触することなく貫通した状態となるようにする。又、一部の気泡が直線に点接触してしまう場合には、この気泡も気泡数に含め、更に、直線の両端部が気泡を貫通することなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含める。
 算出された平均弦長tに基づいて次式により平均気泡径を算出することができる。
 平均気泡径(mm)D=t/0.616 
 更に、撮影した画像の任意の5箇所において上述と同様の要領で平均気泡径を算出し、これらの平均気泡径の相加平均値を予備発泡粒子の内部平均気泡径とする。
<Measurement of internal average cell diameter of pre-expanded particles>
The internal average cell diameter of the pre-expanded particles is measured in accordance with the test method of ASTM D2842-69. Specifically, first, a razor tooth is used to cut a plane passing through the vicinity of the center of the pre-foamed particles, and the cut surface is enlarged 15 times using a scanning electron microscope (JOEL product name “JSM-6360LV”). To shoot.
Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the surface layer of the pre-expanded particles is drawn. A second concentric circle having a diameter of ½ (a radius of ¼) is drawn with respect to the diameter of the first circle, and a straight line having a length of 60 mm is placed at an arbitrary position inside the second circle. This drawing is performed, and the average chord length (t) of the bubbles is calculated from the number of bubbles existing on this straight line by the following formula.
Average string length t = 60 / (number of bubbles × photo magnification)
When drawing a straight line, the straight line should be penetrated as much as possible without making point contact with the bubbles. Also, if some of the bubbles come into point contact with a straight line, this bubble is included in the number of bubbles, and if both ends of the straight line are located in the bubble without penetrating the bubbles Includes the bubbles in which both ends of the straight line are located in the number of bubbles.
Based on the calculated average chord length t, the average bubble diameter can be calculated by the following equation.
Average bubble diameter (mm) D = t / 0.616
Furthermore, the average bubble diameter is calculated in the same manner as described above at any five locations in the photographed image, and the arithmetic average value of these average bubble diameters is used as the internal average bubble diameter of the pre-expanded particles.
<予備発泡粒子の表層部平均気泡径>
 剃刀歯により予備発泡粒子の中心近傍を通る平面で切断し、切断面を走査型電子顕微鏡(JOEL社製 商品名「JSM-6360LV」)を用いて15倍に拡大して撮影する。
 次に、撮影した画像をA4用紙上に印刷し、予備発泡粒子の表層に内接する第1の円(内接円)を描く。この第1の円の直径に対して、1/2の直径(1/4の半径)を有する第2の同心円を描き、表層からその第2の円の間で任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を内部平均気泡径と同様にして算出し表層部平均気泡径とする。
<Surface layer average cell diameter of pre-expanded particles>
A razor tooth is used to cut a plane passing through the vicinity of the center of the pre-foamed particles, and the cut surface is photographed at a magnification of 15 times using a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL).
Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the surface layer of the pre-expanded particles is drawn. A second concentric circle having a diameter of ½ (a radius of ¼) is drawn with respect to the diameter of the first circle, and a length of 60 mm is provided at an arbitrary position between the second circle from the surface layer. A straight line is drawn, and the average chord length (t) of the bubbles is calculated in the same manner as the internal average bubble diameter from the number of bubbles existing on the straight line, and is used as the surface layer average bubble diameter.
<発泡成形体の内部平均気泡径の測定>
 発泡成形体を剃刀歯で切断し、その切断面を走査型電子顕微鏡(JOEL社製 商品名「JSM-6360LV」)を用いて15倍に拡大して撮影する。
 次に、撮影した画像をA4用紙上に印刷し、切断面に存在する融着し合った発泡粒子の粒界部に内接する第1の円(内接円)を描く。この第1の円の直径に対して、1/2の直径(1/4の半径)を有する第2の同心円を描き、その第2の円の内側の任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を予備発泡粒子の内部平均気泡径と同様にして算出し、発泡成形品の内部平均気泡径を求めた。
<Measurement of internal average cell diameter of foam molded article>
The foamed molded product is cut with a razor tooth, and the cut surface is photographed with a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL) at a magnification of 15 times.
Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the grain boundary portion of the fused foam particles existing on the cut surface is drawn. Draw a second concentric circle having a diameter of 1/2 (1/4 radius) with respect to the diameter of the first circle, and form a straight line with a length of 60 mm at any location inside the second circle. One bubble was drawn, and the average chord length (t) of the bubbles was calculated from the number of bubbles present on this straight line in the same manner as the internal average cell diameter of the pre-expanded particles, and the internal average cell size of the foam molded product was obtained.
<発泡成形体の表層部平均気泡径の測定>
 発泡成形体を剃刀歯で切断し、その切断面を走査型電子顕微鏡(JOEL社製 商品名「JSM-6360LV」)を用いて15倍に拡大して撮影する。
 次に、撮影した画像をA4用紙上に印刷し、切断面に存在する融着し合った発泡粒子の粒界部に内接する第1の円(内接円)を描く。この第1の円の直径に対して、1/2の直径(1/4の半径)を有する第2の同心円を描き、粒界部からその第2の円の間で任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を予備発泡粒子の内部平均気泡径と同様にして算出し、発泡成形品の表層部平均気泡径を求めた。
<Measurement of average cell diameter of surface layer of foam molded article>
The foamed molded product is cut with a razor tooth, and the cut surface is photographed with a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL) at a magnification of 15 times.
Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the grain boundary portion of the fused foam particles existing on the cut surface is drawn. A second concentric circle having a diameter of ½ (a radius of ¼) is drawn with respect to the diameter of the first circle, and the length is set at an arbitrary position between the second circle from the grain boundary portion. A straight line of 60 mm is drawn, and the average chord length (t) of the bubbles is calculated from the number of bubbles existing on the straight line in the same manner as the internal average bubble size of the pre-expanded particles. Asked.
<予備発泡粒子の連続気泡率の測定>
 下記(1)~(3)の各試験を行って、予備発泡粒子の連続気泡率(%)を求めた。
(1)予備発泡粒子の質量および体積測定
 空気比較式比重計(東京サイエンス社製 1000型)の試料カップに約80%程度入る予備発泡粒子の質量をあらかじめ測定した〔予備発泡粒子質量A(g)〕。
 つぎに予備発泡粒子をカップに入れ、そのカップを上記の比重計にセットし、1-1/2-1気圧法によって体積を測定した〔予備発泡粒子の体積B(cm)〕。
(2)予備発泡粒子の見かけ体積測定
 電子天秤(大和製衡社製 HB3000)の計量皿を取り外して、その取り付け金具に金網製の容器を吊した状態で、上記容器を水中に浸漬して、水中での容器の質量を測定した〔水中での容器質量C(g)〕。
 つぎに同容器に上記(1)で測定した予備発泡粒子の全量を入れ、同様にして水中に浸漬した状態で、容器と予備発泡粒子の合計の質量を測定した〔水中での合計質量D(g)〕。
 次式により、予備発泡粒子の見かけ体積E(cm)を求めた。なお水1gは体積1cmとして換算した。
 E=A+(C-D)
(3)連続気泡率
 上記(1)(2)の結果から、次式により連続気泡率〔%〕を求めた。
 連続気泡率(%)=(E-B)/E×100
<Measurement of open cell ratio of pre-expanded particles>
The following tests (1) to (3) were performed to determine the open cell ratio (%) of the pre-expanded particles.
(1) Mass and volume measurement of pre-expanded particles The mass of the pre-expanded particles that are about 80% into the sample cup of an air-comparing hydrometer (1000 type, manufactured by Tokyo Science) was measured in advance [pre-expanded particle mass A (g )]].
Next, the pre-expanded particles were put in a cup, and the cup was set in the above-described specific gravity meter, and the volume was measured by the 1-1 / 2-1 atmospheric pressure method [volume B (cm 3 ) of the pre-expanded particles].
(2) Apparent volume measurement of pre-expanded particles Remove the weighing pan from the electronic balance (HB3000, manufactured by Daiwa Seikan Co., Ltd.) and immerse the container in water with the wire mesh container suspended from the mounting bracket. The mass of the container in water was measured [the container mass C (g) in water].
Next, the total amount of the pre-expanded particles measured in the above (1) was put in the same container, and the total mass of the container and the pre-expanded particles was measured in the same manner as described above [total mass D in water D ( g)].
The apparent volume E (cm 3 ) of the pre-expanded particles was determined by the following formula. In addition, 1 g of water was converted as a volume of 1 cm 3 .
E = A + (CD)
(3) Open cell ratio From the results of (1) and (2) above, the open cell ratio [%] was determined by the following equation.
Open cell ratio (%) = (EB) / E × 100
<発泡成形体の連続気泡率の測定>
 発泡成形体について、ASTM D2856-87記載の測定方法に準じて連続気泡率の測定を行った。すなわち、6面共成形面等の表皮を有しない切断面で構成された試験体(25mmの立方体)を試料5個切り出し、ノギスを用いて見掛けの体積を測定し、次に空気比較式比重系(東京サイエンス社製 1000型)を用いて1-1/2-1気圧法により体積を測定した。
 連続気泡率(%)=(見かけの体積-空気比較式比重計での測定体積)/見かけ体積×100
<Measurement of open cell ratio of foam molded article>
For the foamed molded article, the open cell ratio was measured according to the measurement method described in ASTM D2856-87. That is, five specimens (25 mm cubes) composed of a cut surface having no skin such as a six-side co-molded surface were cut out, the apparent volume was measured using a caliper, and then the air comparison specific gravity system The volume was measured by the 1-1 / 2-1 atmospheric pressure method using (1000 type manufactured by Tokyo Science).
Open cell ratio (%) = (apparent volume−volume measured with a comparative hydrometer) / apparent volume × 100
<曲げ強度>
 発泡成形体から、縦300mm×横75mm×厚さ25mmの試験片を切り出し、この試験片の曲げ試験をJIS-A9511に準拠して行い、曲げ強度を算出した。
<Bending strength>
A test piece having a length of 300 mm, a width of 75 mm, and a thickness of 25 mm was cut out from the foamed molded article, and a bending test was performed on the test piece in accordance with JIS-A9511 to calculate a bending strength.
<圧縮強度>
 発泡成形体から、縦50mm×横50mm×厚さ25mmの試験片を切り出し、この試験片の曲げ試験をJIS-A9511に準拠して行い、曲げ強度とした。
<Compressive strength>
A test piece having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm was cut out from the foamed molded product, and a bending test of the test piece was performed in accordance with JIS-A9511 to obtain a bending strength.
<断熱性(熱伝導率)>
 ポリスチレン系樹脂発泡成形体から縦200mm×横200mm×厚さ25mmの直方体形状の試験片を切り出した。この試験片の熱伝導率をJIS A1412に準拠して英弘精機社製の熱伝導率計(AUTO-Λ HC-072) を用いて測定温度23℃で測定した。
<Insulation (thermal conductivity)>
A rectangular parallelepiped test piece having a length of 200 mm, a width of 200 mm, and a thickness of 25 mm was cut out from the polystyrene-based resin foam molding. The thermal conductivity of the test piece was measured at a measurement temperature of 23 ° C. using a thermal conductivity meter (AUTO-Λ HC-072) manufactured by Eihiro Seiki Co., Ltd. according to JIS A1412.
<落下試験>
 ポリスチレン系樹脂発泡成形体からから縦215mm×横40mm×厚み20mmの平面長方形状の試験片を切り出し、JIS K7211に準拠して、150mmの間隔を存して配設された一対の支点間に試験片を架設して198gの鋼球を落とし、落球衝撃値、即ち、50%破壊高さを下記式に基づいて算出した。
 落球衝撃値=H50=Hi―ΔH×(S/100-1/2)
 但し、
 H50:50%破壊高さ(cm)、
 Hi:100%破壊するときの最低高さ(cm)、
 ΔH:試験片の高さを上下させるときの高さ間隔(cm)、
 S:各高さで破壊した%の総合計(%)、
とする。
<Drop test>
A plane rectangular test piece having a length of 215 mm, a width of 40 mm, and a thickness of 20 mm is cut out from the polystyrene-based resin foam molded body, and tested between a pair of fulcrums arranged at intervals of 150 mm in accordance with JIS K7211. The piece was installed and a 198 g steel ball was dropped, and the falling ball impact value, that is, the 50% breaking height was calculated based on the following formula.
Falling ball impact value = H50 = Hi−ΔH × (S / 100−1 / 2)
However,
H50: 50% fracture height (cm),
Hi: Minimum height (cm) at which 100% destruction occurs,
ΔH: Height interval (cm) when raising and lowering the height of the test piece,
S: Total of% destroyed at each height (%),
And
[実施例2]
 再加熱処理時の加熱温度を150℃、圧力を0.5MPaとしたこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
[Example 2]
A foamed molded article was produced in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 150 ° C. and the pressure was 0.5 MPa, and the same measurement was performed. The results are shown in Table 1.
[実施例3]
 再加熱処理時の加熱温度を60℃としたこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
[Example 3]
A foamed molded article was produced in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 60 ° C., and the same measurement was performed. The results are shown in Table 1.
[実施例4]
 再加熱処理時の加熱温度を57℃としたこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
[Example 4]
A foamed molded article was produced in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 57 ° C., and the same measurement was performed. The results are shown in Table 1.
[実施例5]
 発泡剤としてブタンを同量使用し、再加熱処理時の圧力を0.5MPaとしたこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
[Example 5]
A foamed molded article was produced in the same manner as in Example 1 except that the same amount of butane was used as the foaming agent and the pressure during the reheating treatment was 0.5 MPa, and the same measurement was performed. The results are shown in Table 1.
[比較例1]
 再加熱処理時の加熱温度を100℃としたこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
[Comparative Example 1]
A foamed molded article was produced in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 100 ° C., and the same measurement was performed. The results are shown in Table 1.
[比較例2]
 水中カット室の冷却水温度を70℃、再加熱処理時の圧力を1.5MPa、再加熱処理時間を昇温後5分間加熱としたこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
[Comparative Example 2]
The foamed molded article was produced in the same manner as in Example 1 except that the cooling water temperature in the underwater cut chamber was 70 ° C., the pressure during the reheating treatment was 1.5 MPa, and the reheating treatment time was 5 minutes after heating. The same measurement was performed. The results are shown in Table 1.
[比較例3]
 再加熱処理を行わなかったこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
[Comparative Example 3]
A foamed molded article was produced in the same manner as in Example 1 except that the reheating treatment was not performed, and the same measurement was performed. The results are shown in Table 1.
[比較例4]
 再加熱処理時の加熱温度を40℃としたこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
[Comparative Example 4]
A foamed molded article was produced in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 40 ° C., and the same measurement was performed. The results are shown in Table 1.
[比較例5]
 再加熱処理時の昇温後の加熱時間を1分間としたこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
[Comparative Example 5]
A foamed molded article was produced in the same manner as in Example 1 except that the heating time after the temperature increase during the reheating treatment was 1 minute, and the same measurement was performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に記した結果から、本発明に係る実施例1~5で得られた発泡成形体は、嵩発泡倍数50倍に発泡させた発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有している。また、嵩発泡倍数50倍に発泡させた予備発泡粒子を型内発泡成形して得られた発泡成形体は、連続気泡率が低くて独立気泡が多く、再加熱処理を行っていない比較例3の発泡成形体と比べ、発泡成形体の曲げ強度及び圧縮強度が高くなった。 From the results shown in Table 1, the foamed molded products obtained in Examples 1 to 5 according to the present invention are in the form of expanded particles expanded to a bulk expansion ratio of 50 times and have an internal average cell diameter of 35 to 140 μm. Within the range, the surface layer portion average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20, and the cell has a bubble structure in which the open cell ratio is 10% or less. Further, a foamed molded product obtained by in-mold foam molding of pre-foamed particles foamed to a bulk foaming factor of 50 times has a low open cell ratio, a large number of closed cells, and is not subjected to reheating treatment. The bending strength and compressive strength of the foamed molded product were higher than those of the foamed molded product.
 一方、比較例1の発泡成形体は、連続気泡率が高く、独立気泡が少ないため、発泡成形体の曲げ強度及び圧縮強度が低かった。
 また比較例2の発泡成形体は、内部平均気泡径が本発明の範囲を超えているため、発泡成形体の曲げ強度及び圧縮強度が低かった。
 また比較例3の発泡成形体は、再加熱処理を行わなかった結果、内部平均気泡径が本発明の範囲を超えているため、発泡成形体の曲げ強度及び圧縮強度が低かった。
 また比較例4の発泡成形体は、再加熱処理を低温で行った結果、内部平均気泡径が本発明の範囲を超えているため、発泡成形体の曲げ強度及び圧縮強度が低かった。
 また比較例5の発泡成形体は、表層部平均気泡径/内部平均気泡径の値が本発明の範囲外となっているため、発泡成形体の曲げ強度及び圧縮強度が低かった。
On the other hand, the foamed molded product of Comparative Example 1 had a high open cell ratio and a small number of closed cells, and therefore the bending strength and compressive strength of the foamed molded product were low.
Moreover, since the internal average bubble diameter of the foaming molding of the comparative example 2 exceeded the range of this invention, the bending strength and compressive strength of the foaming molding were low.
Moreover, since the internal average bubble diameter exceeded the range of this invention as a result of the foaming molding of the comparative example 3 not performing a reheating process, the bending strength and compressive strength of the foaming molding were low.
Moreover, since the internal average bubble diameter exceeded the range of this invention as a result of performing the reheating process at low temperature, the foaming molding of the comparative example 4 had low bending strength and compressive strength.
Moreover, since the value of surface layer part average cell diameter / internal average cell diameter was outside the scope of the present invention, the foamed molded product of Comparative Example 5 had low bending strength and compressive strength.
 本発明の発泡性ポリスチレン系樹脂粒子は、曲げ強度、圧縮強度、耐衝撃性などの機械強度、断熱性、及び緩衝性に優れたポリスチレン系樹脂発泡成形体の製造に広く適用可能である。
 また、本発明のポリスチレン系樹脂発泡成形体は、断熱材や緩衝材などの各種用途に広く適用可能である。
The expandable polystyrene resin particles of the present invention can be widely applied to the production of polystyrene resin foam molded articles having excellent mechanical strength such as bending strength, compressive strength, impact resistance, heat insulation, and buffering properties.
Moreover, the polystyrene resin foam molded article of the present invention can be widely applied to various uses such as a heat insulating material and a buffer material.
1…押出機(樹脂供給装置)
2…ダイ
3…原料供給ホッパー
4…高圧ポンプ
5…発泡剤供給口
6…カッター
7…カッティング室
8…水槽
9…高圧ポンプ
10…固液分離機能付き脱水乾燥機
11…貯留容器
1 ... Extruder (resin feeder)
2 ... Die 3 ... Raw material supply hopper 4 ... High pressure pump 5 ... Foaming agent supply port 6 ... Cutter 7 ... Cutting chamber 8 ... Water tank 9 ... High pressure pump 10 ... Dehydration dryer 11 with solid-liquid separation function ... Storage container

Claims (31)

  1.  ポリスチレン系樹脂粒子中に発泡剤を含む発泡性ポリスチレン系樹脂粒子であって、
     前記発泡性ポリスチレン系樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有する発泡性ポリスチレン系樹脂粒子。
    Expandable polystyrene resin particles containing a foaming agent in polystyrene resin particles,
    In the state of expanded particles obtained by heating the expandable polystyrene resin particles to expand to a bulk expansion ratio of 50 times, the internal average cell diameter is in the range of 35 to 140 μm, and the surface layer part average cell diameter / internal average cell diameter Expandable polystyrene resin particles having a cell structure in which the value of is in the range of 0.80 to 1.20 and the open cell rate is 10% or less.
  2.  嵩発泡倍数X倍に発泡させたときの発泡粒子の内部平均気泡径D’を、次式(1)
    Figure JPOXMLDOC01-appb-M000001
    を用いて嵩発泡倍数50倍に換算した発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たす請求項1に記載の発泡性ポリスチレン系樹脂粒子。
    The internal average cell diameter D 1 ′ of the expanded particles when expanded to a bulk expansion ratio X times is expressed by the following formula (1)
    Figure JPOXMLDOC01-appb-M000001
    2. The expandable polystyrene resin particles according to claim 1, wherein an internal average cell diameter D 1 of the expanded particles converted to a bulk expansion ratio of 50 times using the above satisfies a relationship of 35 μm ≦ D 1 ≦ 140 μm.
  3.  前記内部平均気泡径が40~120μmの範囲内である請求項1に記載の発泡性ポリスチレン系樹脂粒子。 The expandable polystyrene resin particles according to claim 1, wherein the internal average cell diameter is in the range of 40 to 120 µm.
  4.  前記連続気泡率が8%以下である請求項1に記載の発泡性ポリスチレン系樹脂粒子。 The expandable polystyrene resin particles according to claim 1, wherein the open cell ratio is 8% or less.
  5.  前記表層部平均気泡径/内部平均気泡径の値が0.90~1.10の範囲内である請求項1に記載の発泡性ポリスチレン系樹脂粒子。 2. The expandable polystyrene resin particles according to claim 1, wherein the value of the surface layer average cell diameter / internal average cell diameter is in the range of 0.90 to 1.10.
  6.  ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を含む請求項1に記載の発泡性ポリスチレン系樹脂粒子。 The expandable polystyrene resin particle according to claim 1, comprising 5.0 parts by mass or less of an inorganic cell nucleating agent with respect to 100 parts by mass of the polystyrene resin.
  7.  前記無機気泡核剤がタルクである請求項6に記載の発泡性ポリスチレン系樹脂粒子。 The expandable polystyrene resin particles according to claim 6, wherein the inorganic cell nucleating agent is talc.
  8.  樹脂供給装置内でポリスチレン系樹脂に発泡剤を添加して混練し、発泡剤含有溶融樹脂を前記樹脂供給装置先端に設けられたダイの小孔から発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度の冷却用液体中に押し出し、押し出すと同時に押出物を切断し、押出物を冷却用液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る工程と、
     得られた発泡性ポリスチレン系樹脂粒子を、発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5℃以上の温度で加熱して、請求項1~5のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子を得る工程と、を有する発泡性ポリスチレン系樹脂粒子の製造方法。
    A foaming agent is added to and kneaded with a polystyrene resin in a resin supply device, and the foaming agent-containing molten resin is less than the glass transition temperature Tg of the expandable polystyrene resin particles from the small holes of the die provided at the tip of the resin supply device. Extruding into a cooling liquid at the temperature of, and simultaneously extruding and cutting the extrudate, cooling and solidifying the extrudate by contact with the cooling liquid to obtain expandable polystyrene resin particles,
    The expandable polystyrene resin particles according to any one of claims 1 to 5, wherein the expandable polystyrene resin particles obtained are heated at a glass transition temperature Tg of -5 ° C or higher of the expandable polystyrene resin particles. A step of obtaining resin particles, and a method for producing expandable polystyrene resin particles.
  9.  前記押出物を切断する際の冷却用液体の温度が20~60℃の範囲内である請求項8に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 The method for producing expandable polystyrene resin particles according to claim 8, wherein the temperature of the cooling liquid when cutting the extrudate is in the range of 20 to 60 ° C.
  10.  ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を添加する請求項8に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 The method for producing expandable polystyrene resin particles according to claim 8, wherein an inorganic cell nucleating agent of 5.0 parts by mass or less is added to 100 parts by mass of the polystyrene resin.
  11.  前記無機気泡核剤がタルクである請求項10に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 The method for producing expandable polystyrene resin particles according to claim 10, wherein the inorganic cell nucleating agent is talc.
  12.  請求項1~7のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子を加熱し、予備発泡して得られるポリスチレン系樹脂予備発泡粒子。 Polystyrene resin pre-expanded particles obtained by heating and pre-expanding the expandable polystyrene resin particles according to any one of claims 1 to 7.
  13.  請求項12に記載のポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し、成形型を蒸気加熱し、型内発泡成形して得られるポリスチレン系樹脂発泡成形体。 A polystyrene-based resin foam molded article obtained by filling the polystyrene-based resin pre-expanded particles according to claim 12 into a cavity of a mold, heating the mold with steam, and performing in-mold foam molding.
  14.  ポリスチレン系樹脂粒子中に発泡剤を含む発泡性ポリスチレン系樹脂粒子を加熱して得られたポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形して得られるポリスチレン系樹脂発泡成形体であって、
     前記発泡性ポリスチレン系樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、内部平均気泡径が35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有するポリスチレン系樹脂発泡成形体。
    Obtained by filling polystyrene resin pre-expanded particles obtained by heating expandable polystyrene resin particles containing a foaming agent in polystyrene resin particles into a mold cavity, heating, and in-mold foam molding. A polystyrene resin foam molded article,
    In the state of pre-expanded particles in which the expandable polystyrene resin particles are heated and expanded to a bulk expansion ratio of 50 times, the internal average cell diameter is in the range of 35 to 140 μm, and the surface layer part average cell diameter / internal average cell A polystyrene-based resin foam molded article having a cell structure having a diameter value in the range of 0.80 to 1.20 and an open cell ratio of 10% or less.
  15.  嵩発泡倍数X倍に発泡させたときの予備発泡粒子の内部平均気泡径D’を、次式(2)
    Figure JPOXMLDOC01-appb-M000002
    を用いて嵩発泡倍数50倍に換算した予備発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たす請求項14に記載のポリスチレン系樹脂発泡成形体。
    The internal average cell diameter D 2 ′ of the pre-expanded particles when expanded to a bulk expansion ratio X times is expressed by the following formula (2)
    Figure JPOXMLDOC01-appb-M000002
    The polystyrene-based resin foam-molded article according to claim 14, wherein the internal average cell diameter D 2 of the pre-expanded particles converted to a bulk expansion ratio of 50 times using the above satisfies a relationship of 35 μm ≦ D 2 ≦ 140 μm.
  16.  前記内部平均気泡径が40~120μmの範囲内である請求項14に記載のポリスチレン系樹脂発泡成形体。 The polystyrene-based resin foam molded article according to claim 14, wherein the internal average cell diameter is in the range of 40 to 120 µm.
  17.  前記連続気泡率が8%以下である請求項14に記載のポリスチレン系樹脂発泡成形体。 The polystyrene-based resin foam molded article according to claim 14, wherein the open cell ratio is 8% or less.
  18.  前記表層部平均気泡径/内部平均気泡径の値が0.90~1.10の範囲内である請求項14に記載のポリスチレン系樹脂発泡成形体。 15. The polystyrene-based resin foam molded article according to claim 14, wherein the value of the surface layer part average cell diameter / internal average cell diameter is in the range of 0.90 to 1.10.
  19.  ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を含む請求項14に記載のポリスチレン系樹脂発泡成形体。 The polystyrene-based resin foam-molded article according to claim 14, comprising 5.0 parts by mass or less of an inorganic cell nucleating agent with respect to 100 parts by mass of the polystyrene-based resin.
  20.  前記無機気泡核剤がタルクである請求項19に記載のポリスチレン系樹脂発泡成形体。 The polystyrene-based resin foam molded article according to claim 19, wherein the inorganic cell nucleating agent is talc.
  21.  請求項14のポリスチレン系樹脂発泡成形体からなる断熱材。 The heat insulating material which consists of a polystyrene-type resin foaming molding of Claim 14.
  22.  請求項14のポリスチレン系樹脂発泡成形体からなる緩衝材。 A cushioning material comprising the polystyrene-based resin foam molded article according to claim 14.
  23.  ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し、成形型を蒸気加熱し、型内発泡成形して得られるポリスチレン系樹脂発泡成形体であって、
     発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’を、次式(3)
    Figure JPOXMLDOC01-appb-M000003
    を用いて発泡倍数50倍に換算した前記発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たし、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ発泡成形体の連続気泡率が10%以下である気泡構造を有するポリスチレン系樹脂発泡成形体。
    A polystyrene-based resin foam molded article obtained by filling polystyrene-based resin pre-expanded particles into a cavity of a mold, heating the mold with steam, and foam-molding in the mold,
    In the state when foaming is performed at the expansion ratio X times, the internal average cell diameter D 3 ′ of the foam particles fused together in the foamed molded product is expressed by the following formula (3):
    Figure JPOXMLDOC01-appb-M000003
    Internal average cell diameter D 3 of the foamed particles in the foamed molded product in terms of expansion ratio 50-fold with, satisfy the relationship of 35μm ≦ D 3 ≦ 140μm, a surface layer portion average cell diameter / average internal of the foamed particles A polystyrene-based resin foam molded article having a cell structure in which the value of the cell diameter is in the range of 0.80 to 1.20 and the open cell ratio of the foam molded article is 10% or less.
  24.  請求項23のポリスチレン系樹脂発泡成形体からなる断熱材。 A heat insulating material comprising the polystyrene-based resin foam molded article according to claim 23.
  25.  請求項23のポリスチレン系樹脂発泡成形体からなる緩衝材。 A cushioning material comprising the polystyrene-based resin foam molded article according to claim 23.
  26.  樹脂供給装置内でポリスチレン系樹脂に発泡剤を添加して混練し、発泡剤含有溶融樹脂を前記樹脂供給装置先端に設けられたダイの小孔から発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度の冷却用液体中に押し出し、押し出すと同時に押出物を切断し、押出物を冷却用液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る第1の工程と、
     得られた発泡性ポリスチレン系樹脂粒子を、発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg-5℃以上の温度で加熱して発泡性ポリスチレン系樹脂粒子を得る第2の工程と、
     次いで、得られた発泡性ポリスチレン系樹脂粒子を加熱し、請求項15の前記式(2)を用いて嵩発泡倍数50倍に換算した予備発泡粒子の内部平均気泡径Dが、35~140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80~1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有するポリスチレン系樹脂予備発泡粒子を作製する第3の工程と、
     次いで、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形する第4の工程と、を含むポリスチレン系樹脂発泡成形体の製造方法。
    A foaming agent is added to and kneaded with a polystyrene resin in a resin supply device, and the foaming agent-containing molten resin is less than the glass transition temperature Tg of the expandable polystyrene resin particles from the small holes of the die provided at the tip of the resin supply device. A first step of extruding into a cooling liquid at a temperature of 5 ° C, cutting the extrudate at the same time as extruding, and cooling and solidifying the extrudate by contact with a cooling liquid to obtain expandable polystyrene resin particles;
    A second step of obtaining the expandable polystyrene resin particles by heating the expandable polystyrene resin particles obtained at a glass transition temperature Tg of -5 ° C or higher of the expandable polystyrene resin particles;
    Then heated resulting expandable polystyrene resin particles, the average internal cell diameter D 2 of the pre-expanded particles in terms of 50-fold volume expansion ratio by using the formula of claim 15 (2), 35 ~ 140μm A polystyrene-based resin reserve having a cell structure in which the value of the surface layer part average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20 and the open cell ratio is 10% or less A third step of producing expanded particles;
    Next, a method for producing a polystyrene-based resin foam molded article, comprising: a fourth step of filling the polystyrene-based resin pre-expanded particles in a cavity of a molding die and heating the foamed resin in-mold foam molding.
  27.  前記押出物を切断する際の冷却用液体の温度が20~60℃の範囲内である請求項26に記載のポリスチレン系樹脂発泡成形体の製造方法。 The method for producing a polystyrene resin foam molded article according to claim 26, wherein the temperature of the cooling liquid when cutting the extrudate is in the range of 20 to 60 ° C.
  28.  ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を添加する請求項26に記載のポリスチレン系樹脂発泡成形体の製造方法。 The manufacturing method of the polystyrene-type resin foam molding of Claim 26 which adds 5.0 mass parts or less inorganic cell nucleating agent with respect to 100 mass parts of polystyrene-type resins.
  29.  前記無機気泡核剤がタルクである請求項28に記載のポリスチレン系樹脂発泡成形体の製造方法。 The method for producing a polystyrene resin foam molded article according to claim 28, wherein the inorganic cell nucleating agent is talc.
  30.  前記第4の工程では、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形して断熱材を得る請求項26に記載のポリスチレン系樹脂発泡成形体の製造方法。 27. In the fourth step, the polystyrene resin pre-expanded particles are filled in a cavity of a mold and heated, and foam-molded in the mold to obtain a heat insulating material. Production method.
  31.  前記第4の工程では、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱し、型内発泡成形して緩衝材を得る請求項26に記載のポリスチレン系樹脂発泡成形体の製造方法。 27. In the fourth step, the polystyrene resin pre-foamed particles are filled in a cavity of a mold and heated, and foam-molded in the mold to obtain a buffer material. Production method.
PCT/JP2011/071811 2010-09-30 2011-09-26 Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium WO2012043439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180047076.4A CN103140545B (en) 2010-09-30 2011-09-26 Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010221062A JP2012077115A (en) 2010-09-30 2010-09-30 Heat insulator and method for producing the same
JP2010221061A JP5734611B2 (en) 2010-09-30 2010-09-30 Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP2010-221062 2010-09-30
JP2010221063A JP2012076753A (en) 2010-09-30 2010-09-30 Cushioning material and method for manufacturing the same
JP2010-221063 2010-09-30
JP2010-221061 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043439A1 true WO2012043439A1 (en) 2012-04-05

Family

ID=45892885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071811 WO2012043439A1 (en) 2010-09-30 2011-09-26 Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium

Country Status (3)

Country Link
CN (1) CN103140545B (en)
TW (1) TWI464203B (en)
WO (1) WO2012043439A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030755A (en) * 2013-07-31 2015-02-16 積水化成品工業株式会社 In-mold foam molded body, fiber-reinforced composite, and method for producing in-mold foam molded body
EP2907647A4 (en) * 2012-10-10 2016-11-16 Kyoraku Co Ltd Foam molding and molding method therefor
JP2017177550A (en) * 2016-03-30 2017-10-05 積水化成品工業株式会社 Method for producing resin particle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179212A (en) * 2016-03-31 2017-10-05 株式会社ジェイエスピー Composite resin foam particle and composite resin foam particle molded body
CN113231177B (en) * 2021-05-11 2022-04-26 锦太洋(连云港)新材料有限公司 AC foaming agent crushing method suitable for normal-pressure foaming process
CN116003867A (en) * 2022-10-28 2023-04-25 友达光电股份有限公司 Foam composite material and packaging buffer material formed by same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116935A (en) * 1984-07-02 1986-01-24 Asahi Chem Ind Co Ltd Ab resin foam having high expansion and its preparation
JP2004115690A (en) * 2002-09-27 2004-04-15 Sekisui Plastics Co Ltd Method for manufacturing expandable particle of styrene type resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI361201B (en) * 2006-10-26 2012-04-01 Sekisui Plastics Formable polystyrene resin particles and production process thereof, pre-foamed particles and foam molded product
WO2009096341A1 (en) * 2008-01-30 2009-08-06 Sekisui Plastics Co., Ltd. Expandable polystyrene resin beads, process for production thereof and expanded moldings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116935A (en) * 1984-07-02 1986-01-24 Asahi Chem Ind Co Ltd Ab resin foam having high expansion and its preparation
JP2004115690A (en) * 2002-09-27 2004-04-15 Sekisui Plastics Co Ltd Method for manufacturing expandable particle of styrene type resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2907647A4 (en) * 2012-10-10 2016-11-16 Kyoraku Co Ltd Foam molding and molding method therefor
JP2015030755A (en) * 2013-07-31 2015-02-16 積水化成品工業株式会社 In-mold foam molded body, fiber-reinforced composite, and method for producing in-mold foam molded body
JP2017177550A (en) * 2016-03-30 2017-10-05 積水化成品工業株式会社 Method for producing resin particle

Also Published As

Publication number Publication date
TW201219468A (en) 2012-05-16
CN103140545B (en) 2015-03-18
TWI464203B (en) 2014-12-11
CN103140545A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
US8961859B2 (en) Expandable polystyrene resin particles, method for production thereof, and molded foam product
TWI529205B (en) Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP4933913B2 (en) Expandable styrene resin particles and production method thereof, styrene resin foam particles and styrene resin foam molded article
WO2013111368A1 (en) Expandable polystyrene-type resin particles and method for producing same, and molded foam
JP2008274133A (en) Expandable resin particles and method for producing the same
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP5986410B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5734611B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2012076753A (en) Cushioning material and method for manufacturing the same
JP2012077115A (en) Heat insulator and method for producing the same
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP2012214750A (en) Foamable polystyrene-based resin particle and production method therefor, polystyrene-based resin pre-foamed particle, and polystyrene-based resin foamed molding
JP6436575B2 (en) Foam and production method thereof
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP2007002265A (en) Expandable styrene resin particles, expandable beads, and foamed article
JP2007262345A (en) Expandable styrene-based resin particle, styrene-based resin expandable particle and styrene-based resin expanded molding
JP2013203821A (en) Foamable polystyrene-based resin particle, method for producing the same, preliminary foamable particle and foam-molded article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047076.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828993

Country of ref document: EP

Kind code of ref document: A1