JP2013071998A - Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact - Google Patents

Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact Download PDF

Info

Publication number
JP2013071998A
JP2013071998A JP2011211723A JP2011211723A JP2013071998A JP 2013071998 A JP2013071998 A JP 2013071998A JP 2011211723 A JP2011211723 A JP 2011211723A JP 2011211723 A JP2011211723 A JP 2011211723A JP 2013071998 A JP2013071998 A JP 2013071998A
Authority
JP
Japan
Prior art keywords
polystyrene resin
expandable polystyrene
plasticizer
resin particles
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011211723A
Other languages
Japanese (ja)
Inventor
Kenji Hirai
賢治 平井
Saburo Fujii
三朗 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2011211723A priority Critical patent/JP2013071998A/en
Publication of JP2013071998A publication Critical patent/JP2013071998A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: foamable polystyrene-based resin particles that produce a foamed compact having excellent mechanical strength and a high expansion ratio; a method for producing the same; polystyrene-based resin pre-foamed particles; and a polystyrene-based resin foamed compact.SOLUTION: The foamable polystyrene-based resin particles are obtained by forming a foaming agent-containing polystyrene-based resin into a particle shape. The foamable polystyrene-based resin particles have a plasticizer having a boiling point of ≥50°C uniformly contained in the inside of the particles.

Description

本発明は、発泡剤を含むポリスチレン系樹脂粒子からなる発泡性ポリスチレン系樹脂粒子とその製造方法に関し、可塑剤を添加することにより容易に高倍発泡が可能な発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体に関する。   TECHNICAL FIELD The present invention relates to an expandable polystyrene resin particle comprising a polystyrene resin particle containing a foaming agent and a method for producing the same, and an expandable polystyrene resin particle capable of being easily expanded at a high magnification by adding a plasticizer and the method for producing the same. Further, the present invention relates to a polystyrene resin pre-expanded particle and a polystyrene resin foam molded article.

発泡性ポリスチレン系樹脂粒子の製造方法の一つとして、懸濁重合法やシード重合法によって水系媒体中でスチレン系単量体を重合してポリスチレン系樹脂粒子を得、さらにオートクレーブ中で該ポリスチレン系樹脂粒子に発泡剤を含浸させて発泡性ポリスチレン系樹脂粒子を得る含浸法が知られている。
また、従来の含浸法において、ポリスチレン樹脂粒子にシクロヘキサンやアジピン酸ジイソブチルのような可塑剤を含有させる技術が提案されている(例えば、特許文献1参照。)。
As one of the methods for producing expandable polystyrene resin particles, a polystyrene resin particle is obtained by polymerizing a styrene monomer in an aqueous medium by suspension polymerization or seed polymerization, and further, the polystyrene series in an autoclave. There is known an impregnation method in which resin particles are impregnated with a foaming agent to obtain expandable polystyrene resin particles.
In addition, in a conventional impregnation method, a technique has been proposed in which polystyrene resin particles contain a plasticizer such as cyclohexane or diisobutyl adipate (for example, see Patent Document 1).

特許文献1には、ポリスチレン、スチレンの共重合体又はスチレンのグラフト重合体からなる樹脂の粒子中に、該樹脂の軟化点より低い沸点を持った脂肪族炭化水素又は環式脂肪族炭化水素を、該樹脂に対して1〜15重量%と、アジピン酸ジイソブチルを0.2〜3.0質量%含ませたことを特徴とする、発泡性熱可塑性樹脂粒子が開示されている。   In Patent Document 1, an aliphatic hydrocarbon or a cyclic aliphatic hydrocarbon having a boiling point lower than the softening point of the resin is contained in a resin particle made of polystyrene, a styrene copolymer or a styrene graft polymer. Expandable thermoplastic resin particles characterized by containing 1 to 15% by weight of the resin and 0.2 to 3.0% by mass of diisobutyl adipate are disclosed.

特許第3292634号公報Japanese Patent No. 3292634

従来の含浸法において可塑剤を含有させる場合、ポリスチレン系樹脂粒子の表面から含浸を行うため、得られた発泡性ポリスチレン系樹脂粒子は、中心部から表層に向かって可塑剤の濃度が高くなるような濃度分布となり、樹脂粒子中に均一に可塑剤を存在させることができない。このように中心部から表層に向かって可塑剤の濃度が高くなるような濃度分布を持った発泡性ポリスチレン系樹脂粒子は、該樹脂粒子を加熱して発泡させ、予備発泡粒子とする工程で、発泡性能が悪くなり、高い発泡倍数の予備発泡粒子を得ることが難しいという問題がある。   When the plasticizer is included in the conventional impregnation method, since the impregnation is performed from the surface of the polystyrene resin particles, the obtained expandable polystyrene resin particles have a plasticizer concentration that increases from the center toward the surface layer. Therefore, the plasticizer cannot be uniformly present in the resin particles. In this way, the expandable polystyrene resin particles having a concentration distribution such that the concentration of the plasticizer increases from the central portion toward the surface layer is expanded by heating the resin particles to form pre-expanded particles. There is a problem that the foaming performance is deteriorated and it is difficult to obtain pre-expanded particles having a high expansion ratio.

本発明は前記事情に鑑みてなされ、高い発泡倍数の予備発泡粒子を得ることができ、軽量で十分な機械的強度を有する発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子の提供を課題としている。   The present invention has been made in view of the above circumstances, and it is an object to provide expandable polystyrene-based resin particles that can obtain pre-expanded particles having a high expansion ratio and that can produce a foamed molded article that is lightweight and has sufficient mechanical strength. Yes.

前記課題を達成するため、本発明は、発泡剤を含有するポリスチレン系樹脂を粒子状としてなる発泡性ポリスチレン系樹脂粒子であって、沸点が50℃以上の可塑剤が粒子内部に均一に含有された発泡性ポリスチレン系樹脂粒子を提供する。   In order to achieve the above object, the present invention is an expandable polystyrene resin particle in which a polystyrene resin containing a foaming agent is in the form of particles, and a plasticizer having a boiling point of 50 ° C. or higher is uniformly contained inside the particle. Expandable polystyrene resin particles are provided.

本発明の発泡性ポリスチレン系樹脂粒子は、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法によって得られたものであることが好ましい。   The expandable polystyrene resin particles of the present invention are obtained by press-fitting and kneading a foaming agent into a polystyrene resin melted in a resin supply device, and a small hole in a die provided with a foaming agent-containing molten resin at the tip of the resin supply device. It is obtained by a melt extrusion method that extrudes directly into a cooling liquid and simultaneously cuts the extrudate with a high-speed rotary blade and cools and solidifies the extrudate by contact with the liquid to obtain expandable polystyrene resin particles. It is preferable that

本発明の発泡性ポリスチレン系樹脂粒子において、前記可塑剤が、沸点が150℃以上の高沸点可塑剤を含んでいることが好ましい。   In the expandable polystyrene resin particles of the present invention, the plasticizer preferably contains a high boiling point plasticizer having a boiling point of 150 ° C. or higher.

本発明の発泡性ポリスチレン系樹脂粒子において、前記高沸点可塑剤がエステル系の可塑剤であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the high boiling point plasticizer is preferably an ester plasticizer.

本発明の発泡性ポリスチレン系樹脂粒子において、前記高沸点可塑剤がアジピン酸エステル系の可塑剤であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the high boiling point plasticizer is preferably an adipate ester plasticizer.

本発明の発泡性ポリスチレン系樹脂粒子において、前記高沸点可塑剤がアジピン酸ジイソブチルであることが好ましい。   In the expandable polystyrene resin particles of the present invention, the high boiling point plasticizer is preferably diisobutyl adipate.

本発明の発泡性ポリスチレン系樹脂粒子において、前記高沸点可塑剤の含有量が、樹脂100質量部に対し0.2〜7質量部の範囲であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the content of the high-boiling plasticizer is preferably in the range of 0.2 to 7 parts by mass with respect to 100 parts by mass of the resin.

本発明の発泡性ポリスチレン系樹脂粒子において、前記高沸点可塑剤の含有量が、樹脂100質量部に対し0.2〜5質量部の範囲であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the content of the high boiling point plasticizer is preferably in the range of 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin.

本発明の発泡性ポリスチレン系樹脂粒子において、前記可塑剤が、沸点が50℃以上の炭化水素を含むことが好ましい。   In the expandable polystyrene resin particles of the present invention, the plasticizer preferably contains a hydrocarbon having a boiling point of 50 ° C. or higher.

本発明の発泡性ポリスチレン系樹脂粒子において、前記炭化水素の含有量が、樹脂100質量部に対し0.2〜7質量部の範囲であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the hydrocarbon content is preferably in the range of 0.2 to 7 parts by mass with respect to 100 parts by mass of the resin.

本発明の発泡性ポリスチレン系樹脂粒子において、前記炭化水素の含有量が、樹脂100質量部に対し0.2〜5質量部の範囲であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the hydrocarbon content is preferably in the range of 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin.

本発明の発泡性ポリスチレン系樹脂粒子において、前記発泡剤としてブタンを含むことが好ましい。   The expandable polystyrene resin particles of the present invention preferably contain butane as the foaming agent.

また本発明は、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、ポリスチレン系樹脂に、沸点が50℃以上の可塑剤を添加し、該可塑剤が粒子内部に均一に含有された発泡性ポリスチレン系樹脂粒子を得る発泡性ポリスチレン系樹脂粒子の製造方法を提供する。   In addition, the present invention is a method in which a foaming agent is press-fitted and kneaded into a polystyrene resin melted in a resin supply device, and the foaming agent-containing molten resin is directly contained in a cooling liquid from a small hole of a die attached to the tip of the resin supply device The extrudate is cut with a high-speed rotary blade at the same time as extrusion and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. Production of expandable polystyrene resin particles by melt extrusion A method for producing expandable polystyrene resin particles, wherein a plasticizer having a boiling point of 50 ° C. or higher is added to a polystyrene resin to obtain expandable polystyrene resin particles in which the plasticizer is uniformly contained inside the particles. provide.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記可塑剤が、沸点が150℃以上の高沸点可塑剤を含んでいることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the plasticizer preferably contains a high boiling point plasticizer having a boiling point of 150 ° C. or higher.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記高沸点可塑剤がエステル系の可塑剤であることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the high boiling point plasticizer is preferably an ester plasticizer.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記高沸点可塑剤がアジピン酸エステル系の可塑剤であることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the high boiling point plasticizer is preferably an adipate ester plasticizer.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記高沸点可塑剤がアジピン酸ジイソブチルであることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the high boiling point plasticizer is preferably diisobutyl adipate.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記高沸点可塑剤の含有量が、樹脂100質量部に対し0.2〜7質量部の範囲であることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the content of the high-boiling plasticizer is preferably in the range of 0.2 to 7 parts by mass with respect to 100 parts by mass of the resin.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記高沸点可塑剤の含有量が、樹脂100質量部に対し0.2〜5質量部の範囲であることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the content of the high-boiling plasticizer is preferably in the range of 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記可塑剤が、沸点が50℃以上の炭化水素を含むことが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the plasticizer preferably contains a hydrocarbon having a boiling point of 50 ° C. or higher.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記炭化水素の含有量が、樹脂100質量部に対し0.2〜7質量部の範囲であることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the hydrocarbon content is preferably in the range of 0.2 to 7 parts by mass with respect to 100 parts by mass of the resin.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記炭化水素の含有量が、樹脂100質量部に対し0.2〜5質量部の範囲であることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the hydrocarbon content is preferably in the range of 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記発泡剤としてブタンを含むことが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, it is preferable that butane is included as the foaming agent.

また本発明は、前記発泡性ポリスチレン系樹脂粒子を加熱し発泡させて得られたポリスチレン系樹脂予備発泡粒子を提供する。   The present invention also provides polystyrene resin pre-expanded particles obtained by heating and foaming the expandable polystyrene resin particles.

本発明のポリスチレン系樹脂予備発泡粒子において、嵩発泡倍数50倍に予備発泡させた状態での平均気泡径が50〜300μmの範囲内であることが好ましい。   In the polystyrene-based resin pre-expanded particles of the present invention, it is preferable that the average cell diameter in the state of being pre-expanded to a bulk expansion ratio of 50 times is in the range of 50 to 300 μm.

また本発明は、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティに充填し、加熱して型内発泡成形して得られたポリスチレン系樹脂発泡成形体を提供する。   The present invention also provides a polystyrene resin foam molded article obtained by filling the polystyrene resin pre-expanded particles into a cavity of a molding die and heating and molding in-mold foam molding.

また本発明は、発泡倍数50倍に発泡させた状態での平均気泡径が50〜300μmの範囲内であることが好ましい。   Further, in the present invention, it is preferable that the average cell diameter in a state where the foaming ratio is 50 times is within a range of 50 to 300 μm.

本発明の発泡性ポリスチレン系樹脂粒子は、発泡剤を含有するポリスチレン系樹脂を粒子状としてなり沸点が50℃以上の可塑剤が粒子内部に均一に含有されたものなので、高い発泡倍数の予備発泡粒子を得ることができ、軽量で十分な機械的強度を有する発泡成形体を製造することができる。   The expandable polystyrene resin particles of the present invention are made of polystyrene resin containing a foaming agent in the form of particles, and a plasticizer having a boiling point of 50 ° C. or higher is uniformly contained inside the particles. Particles can be obtained, and a foamed molded article having a light weight and sufficient mechanical strength can be produced.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、溶融押出法によって発泡性ポリスチレン系樹脂粒子を製造する際に、ポリスチレン系樹脂に、沸点が50℃以上の可塑剤を添加し、該可塑剤が粒子内部に均一に含有された発泡性ポリスチレン系樹脂粒子を得るようにしたので、高い発泡倍数の予備発泡粒子を得ることができ、軽量で十分な機械的強度を有する発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子を効率よく製造することができる。   In the method for producing expandable polystyrene resin particles of the present invention, when producing expandable polystyrene resin particles by a melt extrusion method, a plasticizer having a boiling point of 50 ° C. or more is added to the polystyrene resin, and the plasticizer Expanded polystyrene resin particles that are uniformly contained in the inside of the particles so that pre-expanded particles with a high expansion ratio can be obtained, and foamed molded articles that are lightweight and have sufficient mechanical strength can be produced. It is possible to efficiently produce expandable polystyrene resin particles.

溶融押出法による発泡性ポリスチレン系樹脂粒子の製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus of the expandable polystyrene-type resin particle by a melt extrusion method. 実施例1で製造した発泡性ポリスチレン系樹脂粒子の断面の吸光度比(D1730/D1600)の測定結果を示す概略図である。It is the schematic which shows the measurement result of the light absorbency ratio (D1730 / D1600) of the cross section of the expandable polystyrene-type resin particle manufactured in Example 1. FIG. 比較例3で製造した発泡性ポリスチレン系樹脂粒子の断面の吸光度比(D1730/D1600)の測定結果を示す概略図である。It is the schematic which shows the measurement result of the light absorbency ratio (D1730 / D1600) of the cross section of the expandable polystyrene-type resin particle manufactured by the comparative example 3. FIG.

(発泡性ポリスチレン系樹脂粒子)
本発明の発泡性ポリスチレン系樹脂粒子は、発泡剤を含有するポリスチレン系樹脂を粒子状としてなり、沸点が50℃以上の可塑剤が粒子内部に均一に含有されていることを特徴としている。
なお、本発明において可塑剤の「沸点」とは、1気圧下における沸点のことを指す。
(Expandable polystyrene resin particles)
The expandable polystyrene resin particles of the present invention are characterized in that a polystyrene resin containing a foaming agent is in the form of particles, and a plasticizer having a boiling point of 50 ° C. or higher is uniformly contained inside the particles.
In the present invention, the “boiling point” of a plasticizer refers to the boiling point under 1 atm.

本発明の発泡性ポリスチレン系樹脂粒子に用いられるポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。   The polystyrene resin used for the expandable polystyrene resin particles of the present invention is not particularly limited. For example, styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromo Examples thereof include homopolymers of styrene monomers such as styrene or copolymers thereof, and polystyrene resins containing 50% by mass or more of styrene are preferable, and polystyrene is more preferable.

また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。   Further, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. As, for example, alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl In addition to fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.

また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよく、添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などが挙げられる。   If a polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foam molded article. Examples thereof include rubber-modified polystyrene resins to which a diene rubbery polymer such as a polymer, ethylene-propylene-nonconjugated diene three-dimensional copolymer is added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.

原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、再生品ではないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られた再生ポリスチレン系樹脂を使用することができる。
この再生ポリスチレン系樹脂としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したポリスチレン系樹脂を用いることができる。また、使用することができる再生ポリスチレン系樹脂は、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたもの以外にも、家電製品(例えば、テレビ、冷蔵庫、洗濯機、エアコンなど)や事務用機器(例えば、複写機、ファクシミリ、プリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混練してリペレットした再生ポリスチレン系樹脂を用いることができる。
The polystyrene resin used as a raw material is a non-recycled polystyrene resin (virgin polystyrene) such as a commercially available ordinary polystyrene resin or a polystyrene resin newly produced by a method such as suspension polymerization. In addition, a regenerated polystyrene resin obtained by regenerating a used polystyrene resin foam molded article can be used.
As this recycled polystyrene-based resin, used polystyrene-based resin foam molded products, for example, fish boxes, household appliance cushioning materials, food packaging trays, etc. are recovered and recycled by the limonene dissolution method or heating volume reduction method. Can be used. In addition, recycled polystyrene resins that can be used are not only those obtained by reprocessing used polystyrene resin foam moldings, but also household electrical appliances (for example, televisions, refrigerators, washing machines, air conditioners, etc.) In addition, a recycled polystyrene resin obtained by pulverizing, melt-kneading, and re-pelletizing a non-foamed polystyrene resin molded product separated and collected from office equipment (for example, a copying machine, a facsimile machine, a printer, etc.) can be used.

本発明の発泡性ポリスチレン系樹脂粒子に含有させる発泡剤としては、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン等の脂肪族炭化水素、1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、1,1−ジクロロ−2,2,2−トリフルオロエタン(HCFC−123)、クロロジフルオロメタン(HCFC−22)、1−クロロ−1,2,2,2−テトラフルオロエタン(HCFC−124)等のクロロフルオロカーボン、1,1−ジフルオロエタン(HFC−152a)、1,1,1−トリフルオロエタン(HFC−143a)、1,1,1,2−テトラフルオロエタン(HFC−134a)、ジフルオロメタン(HFC−32)等のフルオロカーボン、各種アルコール、二酸化炭素、水、及び窒素などの物理発泡剤が挙げられ、これらの中の1種又は2種以上を併用して使用することができる。これらのうち、好ましい発泡剤としては、n−ブタン、イソブタン、n−ペンタン、イソペンタン及びこれらを二種以上混合した発泡剤が挙げられ、特に好ましい発泡剤としては、n−ブタン、イソブタン、及びこれらを混合した発泡剤が挙げられる。発泡剤の添加量は、ポリスチレン系樹脂100質量部に対して1〜15質量部の範囲とされ、より好ましくは3〜12質量部の範囲とされる。   Examples of the foaming agent contained in the expandable polystyrene resin particles of the present invention include aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, and neopentane, 1,1-dichloro-1-fluoroethane ( HCFC-141b), 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), chlorodifluoromethane (HCFC-22), 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) and other chlorofluorocarbons, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC- 134a), fluorocarbons such as difluoromethane (HFC-32), various alcohols, carbon dioxide, water And physical blowing agents can be mentioned such as nitrogen, can be used in combination one or more of these. Among these, preferable blowing agents include n-butane, isobutane, n-pentane, isopentane, and a blowing agent obtained by mixing two or more of these, and particularly preferable blowing agents include n-butane, isobutane, and these. The foaming agent which mixed these. The addition amount of a foaming agent shall be the range of 1-15 mass parts with respect to 100 mass parts of polystyrene-type resins, More preferably, it shall be the range of 3-12 mass parts.

本発明の発泡性ポリスチレン系樹脂粒子に含有させる可塑剤は、沸点が50℃以上であり、ポリスチレン系樹脂に添加することによって可塑剤としての効果を発揮し得るものであればよく、各種の可塑剤の中から適宜選択して使用することができ、例えば、エステル系可塑剤、芳香族炭化水素、脂環族炭化水素、テルペン系炭化水素などが挙げられる。   The plasticizer contained in the expandable polystyrene resin particles of the present invention may be any plasticizer that has a boiling point of 50 ° C. or higher and can exert an effect as a plasticizer when added to the polystyrene resin. It can be used by appropriately selecting from the agents, and examples thereof include ester plasticizers, aromatic hydrocarbons, alicyclic hydrocarbons, and terpene hydrocarbons.

前記エステル系可塑剤としては、例えば、アジピン酸ジイソブチル、アジピン酸イソノニル、アジピン酸ジオクチルなどのアジピン酸エステル、セバシン酸ジブチル、セバシン酸ジオクチルなどのセバシン酸エステル、リン酸トリクレジルなどのリン酸エステル、グリセリンジアセトモノラウレートなどの脂肪酸グリセリドなどが挙げられる。
前記芳香族炭化水素としては、トルエン、キシレン、スチレンなどが挙げられる。
前記脂環族炭化水素としては、シクロヘキサン、シクロペンタンなどが挙げられる。
、前記テルペン系炭化水素としては、リモネン、ピネンなどが挙げられる。
Examples of the ester plasticizer include adipic acid esters such as diisobutyl adipate, isononyl adipate and dioctyl adipate, sebacic acid esters such as dibutyl sebacate and dioctyl sebacate, phosphate esters such as tricresyl phosphate, and glycerin. Examples include fatty acid glycerides such as diacetomonolaurate.
Examples of the aromatic hydrocarbon include toluene, xylene, and styrene.
Examples of the alicyclic hydrocarbon include cyclohexane and cyclopentane.
Examples of the terpene hydrocarbon include limonene and pinene.

本発明の好ましい実施形態において、前記可塑剤は、沸点が150℃以上の高沸点可塑剤を含んでいることが好ましい。
前記高沸点可塑剤としては、エステル系の可塑剤であることが好ましく、その中でもアジピン酸ジイソブチル、アジピン酸イソノニル、アジピン酸ジオクチルなどのアジピン酸エステルがより好ましく、特にアジピン酸ジイソブチル(DIBA)が好ましい。前記高沸点可塑剤は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。
In preferable embodiment of this invention, it is preferable that the said plasticizer contains the high boiling point plasticizer whose boiling point is 150 degreeC or more.
The high-boiling plasticizer is preferably an ester plasticizer, and among them, adipic acid esters such as diisobutyl adipate, isononyl adipate and dioctyl adipate are more preferred, and diisobutyl adipate (DIBA) is particularly preferred. . The high boiling point plasticizer may be used alone or in combination of two or more.

前記高沸点可塑剤の含有量は、樹脂100質量部に対し0.2〜7質量部の範囲であることが好ましく、0.2〜5質量部の範囲であることがより好ましい。高沸点可塑剤の含有量が前記範囲よりも少ないと、可塑剤による可塑効果が十分に得られなくなり、高い発泡倍数の予備発泡粒子を得ることが困難、軽量で十分な機械的強度を有する発泡成形体を製造することが難しくなる。高沸点可塑剤の含有量が前記範囲よりも多くなると、得られる発泡成形体の機械的強度が低下し、また発泡成形体の外観が悪くなるおそれがある。   The content of the high boiling point plasticizer is preferably in the range of 0.2 to 7 parts by mass, more preferably in the range of 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin. When the content of the high-boiling plasticizer is less than the above range, the plasticizing effect by the plasticizer cannot be sufficiently obtained, it is difficult to obtain pre-foamed particles having a high expansion ratio, and the foam has light weight and sufficient mechanical strength. It becomes difficult to manufacture a molded body. If the content of the high-boiling plasticizer is larger than the above range, the mechanical strength of the obtained foamed molded product may be lowered, and the appearance of the foamed molded product may be deteriorated.

本発明の好ましい実施形態において、前記可塑剤は、沸点が50℃以上の炭化水素を含むことが好ましい。
前記炭化水素としては、脂環族炭化水素、芳香族炭化水素などが挙げられ、それらの中でもシクロヘキサン、スチレンが好ましい。
In a preferred embodiment of the present invention, the plasticizer preferably contains a hydrocarbon having a boiling point of 50 ° C. or higher.
Examples of the hydrocarbon include alicyclic hydrocarbons and aromatic hydrocarbons. Among them, cyclohexane and styrene are preferable.

前記炭化水素の含有量は、樹脂100質量部に対し0.2〜7質量部の範囲であることが好ましく、0.2〜5質量部の範囲であることがより好ましい。
前記炭化水素の含有量が前記範囲よりも少ないと、可塑剤による可塑効果が十分に得られなくなり、高い発泡倍数の予備発泡粒子を得ることが困難、軽量で十分な機械的強度を有する発泡成形体を製造することが難しくなる。前記炭化水素の含有量が前記範囲よりも多くなると、得られる発泡成形体の機械的強度が低下し、また発泡成形体の外観が悪くなるおそれがある。
The hydrocarbon content is preferably in the range of 0.2 to 7 parts by mass, more preferably in the range of 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin.
When the hydrocarbon content is less than the above range, the plasticizing effect by the plasticizer cannot be sufficiently obtained, it is difficult to obtain pre-expanded particles having a high expansion ratio, and the foam molding has a light weight and sufficient mechanical strength. It becomes difficult to manufacture the body. When the content of the hydrocarbon is larger than the above range, the mechanical strength of the obtained foamed molded product may be lowered, and the appearance of the foamed molded product may be deteriorated.

本発明の発泡性ポリスチレン系樹脂粒子には、発泡剤及び可塑剤の他、無機発泡核剤が均一に含有されていることが好ましい。無機発泡核剤としては、タルク、シリカ、その他の無機粉体が挙げられ、これらの中でもタルクが好ましい。
無機発泡核剤の量は、ポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内であることが好ましく、0.1〜2質量部の範囲がより好ましい。
使用する無機発泡核剤の平均粒径は、0.1〜30μmの範囲内であることが好ましく、0.5〜10μmの範囲内であることがより好ましい。
発泡性ポリスチレン系樹脂粒子に可塑剤とともにタルクなどの無機発泡核剤を含有させることで、予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果を高めることができる。
無機発泡核剤は、発泡性ポリスチレン系樹脂粒子全体にわたり均一に含有している必要がある。樹脂粒子の局部、例えば、樹脂粒子の表層部分に無機発泡核剤が偏在していると、得られる発泡成形体の機械強度が低下するおそれがある。
In addition to the foaming agent and the plasticizer, the foamable polystyrene resin particles of the present invention preferably contain an inorganic foam nucleating agent uniformly. Examples of the inorganic foam nucleating agent include talc, silica, and other inorganic powders. Among these, talc is preferable.
The amount of the inorganic foam nucleating agent is preferably in the range of 0.05 to 5 parts by mass, more preferably in the range of 0.1 to 2 parts by mass with respect to 100 parts by mass of the polystyrene resin.
The average particle diameter of the inorganic foam nucleating agent to be used is preferably in the range of 0.1 to 30 μm, and more preferably in the range of 0.5 to 10 μm.
By incorporating an expandable polystyrene resin particle with an inorganic foam nucleating agent such as talc together with a plasticizer, the effect of increasing the bulk expansion ratio of the pre-expanded particles and the effect of improving the mechanical strength of the foamed molded product can be enhanced.
The inorganic foam nucleating agent needs to be uniformly contained throughout the expandable polystyrene resin particles. If the inorganic foam nucleating agent is unevenly distributed in a local part of the resin particle, for example, a surface layer part of the resin particle, the mechanical strength of the obtained foamed molded product may be lowered.

本発明の発泡性ポリスチレン系樹脂粒子には、物性を損なわない範囲内において、架橋剤、可塑剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよく、又、ジンクステアレート等の粉末状金属石鹸類を前記発泡性スチレン樹脂粒子の表面に塗布しておけば、発泡性ポリスチレン系樹脂粒子の予備発泡工程においてポリスチレン系樹脂予備発泡粒子同士の結合を減少させることができて好ましい。   In the foamable polystyrene resin particles of the present invention, additives such as a crosslinking agent, a plasticizer, a filler, a flame retardant, a flame retardant aid, a lubricant, and a colorant may be added within a range that does not impair the physical properties. Well, if powder metal soaps such as zinc stearate are applied on the surface of the expandable styrene resin particles, the polystyrene resin pre-expanded particles are bonded together in the pre-expanding step of the expandable polystyrene resin particles. Is preferable.

本発明の発泡性ポリスチレン系樹脂粒子の粒径は、特に限定されないが、通常は0.5〜3.0mmの範囲が好ましく、0.7〜2.0mmの範囲がより好ましい。また、粒子の形状は、特に限定されないが、球状乃至略球状であることが好ましい。   The particle size of the expandable polystyrene resin particles of the present invention is not particularly limited, but is usually preferably in the range of 0.5 to 3.0 mm, more preferably in the range of 0.7 to 2.0 mm. The shape of the particles is not particularly limited, but is preferably spherical or substantially spherical.

本発明の発泡性ポリスチレン系樹脂粒子は、発泡性ポリスチレン系樹脂粒子全体に発泡剤を含有するポリスチレン系樹脂を粒子状としてなり沸点が50℃以上の可塑剤が粒子内部に均一に含有されたものなので、高い発泡倍数の予備発泡粒子を得ることができ、軽量で十分な機械的強度を有する発泡成形体を製造することができる。   The expandable polystyrene resin particles of the present invention are those in which a polystyrene resin containing a foaming agent is formed into particles in the entire expandable polystyrene resin particles, and a plasticizer having a boiling point of 50 ° C. or more is uniformly contained inside the particles. Therefore, pre-expanded particles having a high expansion ratio can be obtained, and a foamed molded article having a light weight and sufficient mechanical strength can be produced.

(発泡性ポリスチレン系樹脂粒子の製造方法)
本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、ポリスチレン系樹脂に、沸点が50℃以上の可塑剤を添加し、該可塑剤が粒子内部に均一に含有された発泡性ポリスチレン系樹脂粒子を得ることを特徴としている。
(Method for producing expandable polystyrene resin particles)
The method for producing expandable polystyrene resin particles according to the present invention includes a die in which a foaming agent is press-fitted and kneaded into a polystyrene resin melted in a resin supply device, and a foamed agent-containing molten resin is attached to the tip of the resin supply device. Extrusion into the cooling liquid directly from the small holes of the glass, and simultaneously extruding, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with the liquid to obtain expandable polystyrene resin particles. In the method for producing expandable polystyrene resin particles according to the method, a plasticizer having a boiling point of 50 ° C. or higher is added to the polystyrene resin to obtain expandable polystyrene resin particles in which the plasticizer is uniformly contained inside the particles. It is characterized by.

図1は、本発明の発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図であり、本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥して発泡性ポリスチレン系樹脂粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性ポリスチレン系樹脂粒子を貯留する貯留容器11とを備えて構成されている。   FIG. 1 is a configuration diagram showing an example of a production apparatus used in the method for producing expandable polystyrene resin particles of the present invention. The production apparatus of this example includes an extruder 1 as a resin supply apparatus, and an extruder 1. A die 2 having a large number of small holes attached to the tip of the resin, a raw material supply hopper 3 for introducing a resin raw material or the like into the extruder 1, and a foaming agent through the foaming agent supply port 5 to the molten resin in the extruder 1. A high pressure pump 4 to be press-fitted, a cutting chamber 7 provided so that cooling water is brought into contact with a resin discharge surface in which a small hole of the die 2 is formed, and cooling water is circulated and supplied into the chamber, and a small hole of the die 2 The cutter 6 is rotatably provided in the cutting chamber 7 so as to cut the resin extruded from the resin, and the expandable polystyrene resin particles carried along with the flow of cooling water from the cutting chamber 7 are separated from the cooling water. And dehydration Dehydration dryer 10 with a solid-liquid separation function to obtain expandable polystyrene resin particles by drying, a water tank 8 for storing cooling water separated by the dehydration dryer 10 with a solid-liquid separation function, and cooling in the water tank 8 A high-pressure pump 9 for sending water to the cutting chamber 7 and a storage container 11 for storing expandable polystyrene resin particles dehydrated and dried by a dehydration dryer 10 with a solid-liquid separation function are configured.

なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。   As the extruder 1, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.

図1に示す製造装置を用い、発泡性ポリスチレン系樹脂粒子を製造するには、まず、原料の前記ポリスチレン系樹脂、可塑剤、無機発泡核剤や必要に応じて添加される発泡核剤などの所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。また、可塑剤、無機発泡核剤などの添加成分は、予めポリスチレン系樹脂などの熱可塑性樹脂に添加成分を高濃度で添加したマスターバッチを作成して添加することが好ましい。   In order to produce expandable polystyrene resin particles using the production apparatus shown in FIG. 1, first, the raw material polystyrene resin, plasticizer, inorganic foam nucleating agent, foam nucleating agent added as necessary, etc. The desired additive is weighed and charged into the extruder 1 from the raw material supply hopper 3. The raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount for each lot may be reduced. A plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it. In addition, it is preferable to add additive components such as a plasticizer and an inorganic foam nucleating agent in advance by preparing a master batch in which the additive component is added in high concentration to a thermoplastic resin such as a polystyrene resin.

押出機1内にポリスチレン系樹脂、可塑剤、無機発泡核剤やその他の添加剤を供給後、樹脂を加熱溶融し、その溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入して溶融樹脂に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。また、可塑剤、無機発泡核剤は押出機横の供給口から圧入して添加してもよい。   After supplying polystyrene-based resin, plasticizer, inorganic foam nucleating agent and other additives into the extruder 1, the resin is heated and melted, and the molten resin is transferred to the die 2 side. A foaming agent is injected by a pump 4 to mix the foaming agent with the molten resin, and is passed through a screen for removing foreign substances provided in the extruder 1 as necessary. The melt added with the agent is extruded from a small hole in the die 2 attached to the tip of the extruder 1. Further, the plasticizer and the inorganic foam nucleating agent may be added by press-fitting from a supply port beside the extruder.

ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡が抑えられたまま固化して発泡性ポリスチレン系樹脂粒子となる。   The resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 in which cooling water is circulated and supplied into the chamber, and the resin extruded from the small holes of the die 2 is placed in the cutting chamber 7. A cutter 6 is provided so as to be rotatable. Extruding the melt with the blowing agent added through a small hole in the die 2 attached to the tip of the extruder 1 causes the melt to be cut into granules, and at the same time, brought into contact with cooling water and rapidly cooled to solidify while suppressing foaming. Thus, expandable polystyrene resin particles are obtained.

形成された発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥する。乾燥された発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。   The formed expandable polystyrene resin particles are transferred from the cutting chamber 7 to the dewatering dryer 10 with a solid-liquid separation function along with the flow of the cooling water, where the expandable polystyrene resin particles are separated from the cooling water. And dehydrated and dried. The dried expandable polystyrene resin particles are stored in the storage container 11.

本発明のポリスチレン系樹脂発泡成形体の製造方法は、溶融押出法によって発泡性ポリスチレン系樹脂粒子を製造する際に、ポリスチレン系樹脂に、沸点が50℃以上の可塑剤を添加し、該可塑剤が粒子内部に均一に含有された発泡性ポリスチレン系樹脂粒子を得るようにしたので、可塑剤を樹脂粒子に含浸させる従来技術と比べ、高い発泡倍数の予備発泡粒子を得ることができ、軽量で十分な機械的強度を有する発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子を効率よく製造することができる。   The method for producing a polystyrene resin foam molded article of the present invention comprises adding a plasticizer having a boiling point of 50 ° C. or higher to a polystyrene resin when producing expandable polystyrene resin particles by a melt extrusion method. As a result, it is possible to obtain pre-expanded particles having a high expansion ratio compared to the conventional technique in which a resin particle is impregnated with a plasticizer. It is possible to efficiently produce expandable polystyrene resin particles capable of producing a foamed molded article having sufficient mechanical strength.

(ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体)
本発明の発泡性ポリスチレン系樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、ポリスチレン系樹脂予備発泡粒子(以下、予備発泡粒子と記す)とする。この予備発泡粒子は、製造するべき発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度は限定されないが、通常は0.010〜0.10g/cmの範囲内とし、0.015〜0.050g/cmの範囲内とするのが好ましい。
(Polystyrene resin pre-expanded particles and polystyrene resin foam molding)
The expandable polystyrene resin particles of the present invention are pre-expanded by heating with water vapor heating or the like using a well-known apparatus and method in the field of manufacturing foamed resin molded articles, and then polystyrene-based resin pre-expanded particles (hereinafter referred to as pre-expanded particles). ). The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the foamed molded product to be manufactured. In the present invention, its bulk density is not limited, usually in the range of 0.010~0.10g / cm 3, preferably in the range of 0.015~0.050g / cm 3.

なお、本発明において予備発泡粒子の嵩密度とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<予備発泡粒子の嵩密度>
先ず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積VcmをJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて予備発泡粒子の嵩密度を測定する。
嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
In the present invention, the bulk density of the pre-expanded particles refers to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
First, Wg was sampled from pre-expanded particles as a measurement sample, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was measured using an apparent density measuring instrument based on JIS K6911. The bulk density of the pre-expanded particles is measured based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)

<予備発泡粒子の嵩発泡倍数>
また、予備発泡粒子の嵩発泡倍数は、次式により算出される数値である。
嵩発泡倍数=1/嵩密度(g/cm
<Bulk expansion ratio of pre-expanded particles>
Moreover, the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
Bulk foaming factor = 1 / bulk density (g / cm 3 )

前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、該予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、ポリスチレン系樹脂発泡成形体(以下、発泡成形体と記す)を製造する。
本発明の発泡成形体の密度は特に限定されないが、通常は0.010〜0.10g/cmの範囲内とし、0.015〜0.050g/cmの範囲内とするのが好ましい。
The pre-expanded particles are filled in a cavity of a mold using a well-known apparatus and method in the field of manufacturing a foamed resin molded article, heated by steam heating or the like, and subjected to in-mold foam molding. -Based resin foam molded body (hereinafter referred to as foam molded body) is produced.
Although the density of the foamed molded article of the present invention is not particularly limited, usually in the range of 0.010~0.10g / cm 3, preferably in the range of 0.015~0.050g / cm 3.

なお、本発明において発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した発泡成形体密度のことである。
<発泡成形体の密度>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
In the present invention, the density of the foamed molded product refers to the density of the foamed molded product measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Density of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test specimen condition adjustment and measurement specimens were cut from a sample that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C ± 2 ° C x 50% ± 5% or 27 ° C ± 2 ° C x 65% ± 5%. It has been left for more than an hour.

<発泡成形体の発泡倍数>
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数=1/密度(g/cm
<Folding multiple of foamed molded product>
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )

本発明の発泡成形体は、前述した本発明に係る発泡性ポリスチレン系樹脂粒子を加熱発泡させ、得られた予備発泡粒子を型内発泡成形して得られたものなので、高発泡倍数の発泡成形体を得ることができる。また、軽量で曲げ強度などの機械強度に優れた発泡成形体を得ることができる。   The foamed molded product of the present invention is obtained by heating and foaming the expandable polystyrene resin particles according to the present invention, and the resulting pre-foamed particles are obtained by in-mold foam molding. You can get a body. In addition, a foamed molded article that is lightweight and excellent in mechanical strength such as bending strength can be obtained.

[実施例1]
(マスターバッチの製造)
基材樹脂としてポリスチレン樹脂(PSジャパン社製、商品名「G9305」)を使用し、可塑剤としてアジピン酸ジイソブチル(沸点:293℃、田岡化学工業製、商品名「DI4A」)が10質量%となるようマスターバッチを作製した。
[Example 1]
(Manufacture of master batch)
Polystyrene resin (trade name “G9305” manufactured by PS Japan Co., Ltd.) is used as the base resin, and diisobutyl adipate (boiling point: 293 ° C., product name “DI4A” manufactured by Taoka Chemical Industries, Ltd.) is 10% by mass as the plasticizer. A master batch was prepared.

(発泡性ポリスチレン系樹脂粒子の製造)
基材樹脂としてポリスチレン樹脂(PSジャパン社製、商品名「G9305」)に対して、前記マスターバッチをポリスチレン樹脂100質量部に対しアジピン酸ジイソブチル2.1質量部となるように予め混合したものを時間当たり160kg/hrの割合で口径90mmの単軸押出機内へ供給し、樹脂を加熱溶融させた後、発泡剤として樹脂100質量部に対して6質量部のブタン(イソブタン:ノルマルブタン=30:70(質量比))を押出機途中より圧入した。そして、押出機内で樹脂と発泡剤を混練しつつ、押出機先端部での樹脂温度が170℃となるように冷却しながら、押出機に連接しヒーターにより290℃に保持した、直径0.6mm、ランド長さ3.0mmのノズルを200個有する造粒用ダイスを通して、温度50℃、水圧1.5MPaの冷却水が循環する水中カット室内に押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイスに密着させて、毎分3000回転で切断し、脱水乾燥して球形の発泡性ポリスチレン樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子は変形、ヒゲ等の発生もなく、平均粒径1.1mmであった。
次いで、内容積5.7リットルの攪拌機付オートクレーブに前記の発泡性ポリスチレン系樹脂粒子2000g、蒸留水2500g、ピロリン酸マグネシウム4g、ドデシルベンゼンスルホン酸ナトリウム0.2gを入れ、撹拌し懸濁させた。窒素でオードクレーブ内を2MPaに加圧した後、100℃まで昇温して、5分間保持した後、20℃まで冷却して取り出し、洗浄、脱水、乾燥した。
(Manufacture of expandable polystyrene resin particles)
What mixed previously the masterbatch with respect to polystyrene resin 100 mass part with respect to polystyrene resin (PS Japan company make, G9305) as base resin so that it may become 2.1 mass parts of diisobutyl adipate with respect to 100 mass parts of polystyrene resin. After feeding into a single screw extruder with a diameter of 90 mm at a rate of 160 kg / hr per hour and heating and melting the resin, 6 parts by weight of butane (isobutane: normal butane = 30: 70 (mass ratio)) was pressed from the middle of the extruder. Then, while kneading the resin and the foaming agent in the extruder, while cooling so that the resin temperature at the tip of the extruder is 170 ° C., the diameter is 0.6 mm, connected to the extruder and held at 290 ° C. by the heater. Then, through a granulation die having 200 nozzles with a land length of 3.0 mm, it was extruded into an underwater cutting chamber in which cooling water with a temperature of 50 ° C. and a water pressure of 1.5 MPa circulated, and at the same time, 10 blades in the circumferential direction A high-speed rotating cutter having the above structure was brought into close contact with a die, cut at 3000 rpm, dehydrated and dried to obtain spherical expandable polystyrene resin particles. The obtained expandable polystyrene resin particles had an average particle size of 1.1 mm without the occurrence of deformation or beard.
Next, 2000 g of the above expandable polystyrene resin particles, 2500 g of distilled water, 4 g of magnesium pyrophosphate, and 0.2 g of sodium dodecylbenzenesulfonate were placed in an autoclave with a stirrer having an internal volume of 5.7 liters, and suspended by stirring. After pressurizing the inside of the autoclave to 2 MPa with nitrogen, the temperature was raised to 100 ° C. and held for 5 minutes, then cooled to 20 ° C., taken out, washed, dehydrated and dried.

(発泡性ポリスチレン系樹脂粒子の表面被覆)
前記の通り得られた発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.05質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部を発泡性ポリスチレン系樹脂粒子の表面全面に均一に被覆した。
(Surface coating of expandable polystyrene resin particles)
Polyethylene glycol 0.03 parts by mass, zinc stearate 0.05 parts by mass, stearic acid monoglyceride 0.05 parts by mass, hydroxystearic acid triglyceride 0 with respect to 100 parts by mass of the expandable polystyrene resin particles obtained as described above. 0.05 part by mass was uniformly coated on the entire surface of the expandable polystyrene resin particles.

(発泡成形体の製造)
続いて、発泡性ポリスチレン系樹脂粒子を円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.020g/cm(嵩発泡倍数50倍)であった。
続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ25mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、成形スチーム圧0.08MPa(ゲージ圧力)、金型加熱3秒、一方加熱10秒、逆一方加熱3秒、両面加熱10秒、水冷5秒、設定取出面圧0.02MPaの条件で成形を行った。得られた発泡性形体は密度0.020g/cm(発泡倍数50倍)であった。
このようにして作製した発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体について、以下の各測定・評価を行った。その結果を表1に記す。
(Manufacture of foam moldings)
Subsequently, the expandable polystyrene resin particles were supplied to a cylindrical batch type pre-foaming machine and heated with steam having a blowing pressure of 0.05 MPa to obtain pre-foamed particles. The obtained pre-expanded particles had a bulk density of 0.020 g / cm 3 (bulk expansion ratio: 50 times).
Subsequently, the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 25 mm. , Molding steam pressure 0.08 MPa (gauge pressure), mold heating 3 seconds, one heating 10 seconds, reverse one heating 3 seconds, double side heating 10 seconds, water cooling 5 seconds, set extraction surface pressure 0.02 MPa went. The obtained foamable form had a density of 0.020 g / cm 3 (foaming factor: 50 times).
The following measurements / evaluations were performed on the expandable polystyrene resin particles, the pre-expanded particles, and the foamed molded product thus produced. The results are shown in Table 1.

<発泡性の測定>
得られた発泡性ポリスチレン系樹脂粒子の発泡性を調べる為に、発泡槽の中で発泡スチーム圧0.01MPa(ゲージ圧力)の蒸気にて発泡させた。その時の加熱時間を2分、5分、10分と変えて発泡させ、この発泡粒2gをメスシリンダーに入れて体積を測り、質量2gで除して見かけの発泡倍数(cm/g)を求めた。
加熱時間を2分、5分、10分と変えて発泡させた見かけの発泡倍数の最大値を次の評価基準:
最大の発泡倍数が55倍以上を特に良好(◎)
最大の発泡倍数が45倍以上55倍未満を良好(○)
最大の発泡倍数が45倍未満を不良(×)
に基づき評価した。
<Measurement of foamability>
In order to examine the foamability of the obtained expandable polystyrene-based resin particles, foaming was performed in a foaming tank with steam having a foaming steam pressure of 0.01 MPa (gauge pressure). The heating time at that time was changed to 2 minutes, 5 minutes, and 10 minutes to foam, and 2 g of this foamed particle was placed in a graduated cylinder, the volume was measured, and the apparent foaming factor (cm 3 / g) was divided by 2 g of mass. Asked.
The maximum value of the apparent expansion ratio of foaming by changing the heating time to 2 minutes, 5 minutes and 10 minutes is as follows:
Especially good when the maximum expansion ratio is 55 times or more (◎)
Excellent foaming ratio of 45 times to less than 55 times is good (○)
If the maximum foaming factor is less than 45 times, it is defective (×)
Based on the evaluation.

<強度の評価>
実施例(及び比較例)で得られた発泡成形体について、JISA9511:2006「発泡プラスチック保温材」記載の方法に準じて曲げ強度を測定した。すなわち、テンシロン万能試験機UCT−10T(オリエンテック社製)を用い、試験体サイズは75mm×300mm×50mmとし、圧縮速度を10mm/min、先端治具は加圧くさび10R、支持台10Rで、支点間距離200mmの条件として測定し、次式にて曲げ強度を算出した。試験片の数は3個とし、その平均値を求めた。
曲げ強度(MPa)=3FL/2bh(ここで、Fは曲げ最大荷重(N)を表し、Lは支点間距離(mm)を表し、bは試験片の幅(mm)を表し、hは試験片の厚み(mm)を表す。)
このようにして曲げ強度の平均値を求め、次の評価基準:
曲げ強度が0.31MPa以上を特に良好(◎)、
曲げ強度が0.28MPa以上0.31MPa未満を良好(O)、
曲げ強度が0.28MPa未満を不良(×)、
に基づき、強度を評価した。
<Strength evaluation>
About the foaming molding obtained in the Example (and comparative example), bending strength was measured according to the method of JISA9511: 2006 "foaming plastic heat insulating material". That is, using a Tensilon universal testing machine UCT-10T (manufactured by Orientec Co., Ltd.), the specimen size is 75 mm × 300 mm × 50 mm, the compression speed is 10 mm / min, the tip jig is a pressure wedge 10R, and a support base 10R. Measurement was performed under the condition of a distance between fulcrums of 200 mm, and the bending strength was calculated by the following formula. The number of test pieces was three, and the average value was obtained.
Bending strength (MPa) = 3FL / 2bh 2 (where F represents the bending maximum load (N), L represents the distance between supporting points (mm), b represents the width (mm) of the test piece, h represents Represents the thickness (mm) of the test piece.)
In this way, the average value of the bending strength is obtained, and the following evaluation criteria:
Particularly good when bending strength is 0.31 MPa or more (◎),
The bending strength is good (O) when the bending strength is 0.28 MPa or more and less than 0.31 MPa,
Bending strength of less than 0.28 MPa is poor (x),
Based on this, the strength was evaluated.

<発泡成形体の外観評価>
発泡成形体の外観を目視にて評価した。次の評価基準:
成形品表面の発泡粒子が接合した境界部分が非常に平滑である場合を特に良好(◎)
成形品表面の発泡粒子が接合した境界部分の平滑がやや劣る場合を良好(○)
成形品表面の発泡粒子の境界部分に凹凸があり平滑性が劣る場合を不良(×)
に基づき、外観を評価した。
<Appearance evaluation of foam molding>
The appearance of the foamed molded product was visually evaluated. The following evaluation criteria:
Especially good when the boundary part where the foam particles on the surface of the molded product are joined is very smooth (◎)
Good when the smoothness of the boundary part where the foam particles on the surface of the molded product are joined is slightly inferior (○)
If the boundary of the foam particles on the surface of the molded product has irregularities and the smoothness is inferior (×)
Based on this, the appearance was evaluated.

<融着率の評価>
得られた箱形の発泡成形体を衝撃によって破断させ、その破断面の発泡粒子に100〜150個を含む任意の範囲について、全粒子数(A)と粒子内で破断している粒子数(B)を計数し、以下の式により融着率(%)を算出した。
融着率=(B)×100/(A)
次の評価基準:
80%以上、100%未満を特に良好(◎)
60%以上、80%未満を良好(○)
60%未満を不良(×)
に基づき、外観を評価した。
<Evaluation of fusion rate>
The obtained box-shaped foamed molded article was ruptured by impact, and the total number of particles (A) and the number of particles broken in the particles (in an arbitrary range including 100 to 150 expanded particles on the fracture surface ( B) was counted, and the fusion rate (%) was calculated by the following formula.
Fusing rate = (B) × 100 / (A)
The following evaluation criteria:
80% or more and less than 100% are particularly good (◎)
60% or more and less than 80% are good (○)
Less than 60% is defective (×)
Based on this, the appearance was evaluated.

<総合評価>
総合評価は発泡性、外観、融着、強度の4つの評価が次の評価基準:
×がなく、◎が3つ以上を特に良好(◎)
×がないものを良好(○)
×が一つでもあるものを不良(×)
に基づき評価を行った。
<Comprehensive evaluation>
The overall evaluation is based on the following four evaluation criteria: foamability, appearance, fusion and strength.
There is no x and ◎ is particularly good when 3 or more (◎)
Good with no cross (○)
Defects with at least one × (×)
Based on the evaluation.

[実施例2]
実施例1に記載のマスターバッチを、樹脂100質量部に対しアジピン酸ジイソブチル0.1質量部となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Example 2]
Except having used the masterbatch described in Example 1 to be 0.1 parts by mass of diisobutyl adipate with respect to 100 parts by mass of the resin, a foam molded article was produced in the same manner as in Example 1, and the same Measurement and evaluation were performed. The results are shown in Table 1.

[実施例3]
実施例1に記載のマスターバッチを、樹脂100質量部に対しアジピン酸ジイソブチル0.23質量部となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Example 3]
Except that the master batch described in Example 1 was used in an amount of 0.23 parts by mass of diisobutyl adipate with respect to 100 parts by mass of the resin, a foam molded article was produced in the same manner as in Example 1, and the same Measurement and evaluation were performed. The results are shown in Table 1.

[実施例4]
実施例1に記載のマスターバッチを、樹脂100質量部に対しアジピン酸ジイソブチル5.1質量部となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Example 4]
A foam molded article was produced in the same manner as in Example 1 except that the master batch described in Example 1 was used in an amount of 5.1 parts by mass of diisobutyl adipate with respect to 100 parts by mass of the resin. Measurement and evaluation were performed. The results are shown in Table 1.

[実施例5]
実施例1に記載のマスターバッチを、樹脂100質量部に対しアジピン酸ジイソブチル7.4質量部となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Example 5]
A foam molded article was produced in the same manner as in Example 1 except that the master batch described in Example 1 was used so as to be 7.4 parts by mass of diisobutyl adipate with respect to 100 parts by mass of the resin. Measurement and evaluation were performed. The results are shown in Table 1.

[実施例6]
実施例1のマスターバッチの製造時にアジピン酸ジイソブチルの代わりにグリセリンジアセトモノラウレート(沸点:401.6℃、理研ビタミン社製、商品名「リケマールPL−102」)を使用し、発泡性ポリスチレン系樹脂粒子の製造時に該マスターバッチを樹脂100質量部に対しグリセリンジアセトモノラウレートが2.1質量部となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
[Example 6]
In the production of the master batch of Example 1, glycerin diacetomonolaurate (boiling point: 401.6 ° C., manufactured by Riken Vitamin Co., Ltd., trade name “Riquemar PL-102”) was used instead of diisobutyl adipate, and an expandable polystyrene type Except that the master batch was used so that the glycerin diacetomonolaurate was 2.1 parts by mass with respect to 100 parts by mass of the resin during the production of the resin particles, a foam molded article was produced in the same manner as in Example 1, Similar measurements were made. The results are shown in Table 1.

[実施例7]
実施例1のマスターバッチの製造時にアジピン酸ジイソブチルの代わりにアジピン酸ジオクチル(沸点:335℃、田岡化学工業製、商品名「DOA」)を使用し、発泡性ポリスチレン系樹脂粒子の製造時に該マスターバッチを樹脂100質量部に対しアジピン酸ジオクチルが2.1質量部となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Example 7]
Dioctyl adipate (boiling point: 335 ° C., Taoka Chemical Industries, trade name “DOA”) was used in place of diisobutyl adipate during the production of the master batch of Example 1, and the master was produced during the production of expandable polystyrene resin particles. Except that the batch was used so that dioctyl adipate was 2.1 parts by mass with respect to 100 parts by mass of the resin, a foamed molded article was produced in the same manner as in Example 1, and the same measurement and evaluation were performed. The results are shown in Table 1.

[実施例8]
実施例1のマスターバッチの製造時にアジピン酸ジイソブチルの代わりにリン酸トリクレジル(沸点:410℃、味の素社製、商品名「デュラッドTCP」)を使用し、発泡性ポリスチレン系樹脂粒子の製造時に該マスターバッチを樹脂100質量部に対しリン酸トリクレジルが2.1質量部となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Example 8]
In the production of the master batch of Example 1, tricresyl phosphate (boiling point: 410 ° C., trade name “Durad TCP”) was used instead of diisobutyl adipate, and the master was produced during the production of expandable polystyrene resin particles. Except that the batch was used so that tricresyl phosphate was 2.1 parts by mass with respect to 100 parts by mass of the resin, a foamed molded article was produced in the same manner as in Example 1, and the same measurement and evaluation were performed. The results are shown in Table 1.

[実施例9]
実施例1のアジピン酸ジイソブチルのマスターバッチの製造において、シクロヘキサン(沸点:80.7℃、ジャパンエナジー、商品名「カクタスソルベントCHX」)が10質量%となるようにさらに加えてマスターバッチを作製し、発泡性ポリスチレン系樹脂粒子の製造時に樹脂100質量部に対しアジピン酸ジイソブチル2.1質量部、シクロヘキサンが1.1質量部となるよう該マスターバッチを使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Example 9]
In the production of the master batch of diisobutyl adipate of Example 1, a master batch was prepared by further adding cyclohexane (boiling point: 80.7 ° C., Japan Energy, trade name “Cactus Solvent CHX”) to 10% by mass. The same as in Example 1 except that the masterbatch was used so that diisobutyl adipate was 2.1 parts by mass and cyclohexane was 1.1 parts by mass with respect to 100 parts by mass of the resin during the production of expandable polystyrene resin particles. A foamed molded article was produced by the method described above, and the same measurement and evaluation were performed. The results are shown in Table 1.

[実施例10]
実施例1のマスターバッチの製造時にアジピン酸ジイソブチルの代わりにシクロヘキサンを使用し、発泡性ポリスチレン系樹脂粒子の製造時に該マスターバッチを樹脂100質量部に対してシクロヘキサンが2.1質量部となるよう使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Example 10]
Cyclohexane is used in place of diisobutyl adipate in the production of the master batch of Example 1, and the mass of the master batch is 2.1 parts by mass with respect to 100 parts by mass of the resin in the production of expandable polystyrene resin particles. A foamed molded article was produced in the same manner as in Example 1 except that it was used, and the same measurement and evaluation were performed. The results are shown in Table 1.

[実施例11]
実施例1の発泡性ポリスチレン系樹脂粒子の製造時に発泡剤にブタンを使用する代わりにイソブタンを使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Example 11]
A foamed molded article was produced in the same manner as in Example 1 except that isobutane was used instead of butane as the foaming agent during the production of the expandable polystyrene resin particles of Example 1, and the same measurement / evaluation was performed. Went. The results are shown in Table 1.

[比較例1]
実施例1の発泡性ポリスチレン系樹脂粒子の製造時にアジピン酸ジイソブチルのマスターバッチを使用しなかったこと(可塑剤添加無し)以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Comparative Example 1]
A foamed molded article was produced in the same manner as in Example 1 except that the masterbatch of diisobutyl adipate was not used at the production of the expandable polystyrene resin particles of Example 1 (no plasticizer added). Was measured and evaluated. The results are shown in Table 1.

[比較例2]
実施例1の発泡性ポリスチレン系樹脂粒子の製造時にアジピン酸ジイソブチルのマスターバッチを使用せず(可塑剤添加無し)、発泡剤にブタンを使用する代わりにイソペンタンを使用したこと以外は、実施例1と同様の方法で発泡成形体を製造し、同様の測定・評価を行った。その結果を表1に記す。
[Comparative Example 2]
Example 1 except that no diisobutyl adipate masterbatch was used in the production of the expandable polystyrene resin particles of Example 1 (no plasticizer added), and isopentane was used instead of butane as the foaming agent. A foamed molded product was produced in the same manner as described above, and the same measurement and evaluation were performed. The results are shown in Table 1.

[比較例3]
(スチレン系重合体種粒子の作製)
内容積100リットルの攪拌機付オートクレーブ(以下、反応器ともいう)にリン酸三カルシウム(大平化学社製)120g、ドデシルベンゼンスルホン酸ナトリウム4g、過酸化ベンゾイル(純度75%)140g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート30g、イオン交換水40kg及びスチレン単量体40kgを投入した後、100rpmの撹拌下で溶解及び分散させて懸濁液を形成した。
引き続き、攪拌羽を100rpmで撹拌しながらオートクレーブ内の温度を90℃まで昇温した後、90℃で6時間保持した。
その後、さらにオートクレーブ内の温度を120℃まで昇温し、120℃で2時間保持した後、オートクレーブ内の温度を25℃まで冷却し、オートクレーブから内容物を取り出し、脱水・乾燥・分級して粒子径が0.5〜0.7mmで重量平均分子量が30万のスチレン系重合体種粒子を得た。
[Comparative Example 3]
(Preparation of styrene polymer seed particles)
An autoclave with a stirrer having an internal volume of 100 liters (hereinafter also referred to as a reactor) 120 g of tricalcium phosphate (manufactured by Ohira Chemical Co., Ltd.), 4 g of sodium dodecylbenzenesulfonate, 140 g of benzoyl peroxide (purity 75%), t-butyl per After charging 30 g of oxy-2-ethylhexyl monocarbonate, 40 kg of ion exchange water and 40 kg of styrene monomer, the mixture was dissolved and dispersed under stirring at 100 rpm to form a suspension.
Subsequently, the temperature in the autoclave was raised to 90 ° C. while stirring the stirring blade at 100 rpm, and then held at 90 ° C. for 6 hours.
After that, the temperature inside the autoclave is further raised to 120 ° C. and held at 120 ° C. for 2 hours, then the temperature inside the autoclave is cooled to 25 ° C., the contents are taken out from the autoclave, dehydrated, dried and classified. Styrenic polymer seed particles having a diameter of 0.5 to 0.7 mm and a weight average molecular weight of 300,000 were obtained.

(発泡性スチレン系樹脂粒子の作製)
次いで、内容積50リットルの攪拌機付オートクレーブに前記のスチレン系重合体種粒子5.2kg、蒸留水19.5kg、ピロリン酸マグネシウム161g、ドデシルベンゼンスルホン酸ナトリウム1.8gを入れ、撹拌し懸濁させた。
次いで予め用意した蒸留水2000g、ピロリン酸マグネシウム36g、ドデシルベンゼンスルホン酸ナトリウム0.9g及びスチレン1350gをホモミキサーで攪拌して懸濁液を調製し、この懸濁液を72℃に保持した反応器に添加し、15分間ポリスチレン粒子にスチレンを吸収させた。
続いて、重合開始剤として過酸化ベンゾイル(純度75%)61g及びt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート26.5gをスチレン1000gに溶解し、ドデシルベンゼンスルホン酸ナトリウム0.4g、蒸留水2000gと共にホモミキサーで攪拌して調製した懸濁液を72℃に保持した反応器に加えた。
重合開始剤を含む懸濁液を反応器に加え始めた時点から60分間、反応器内温度を72℃に保持し、スチレン樹脂種粒子にスチレンと重合開始剤を吸収させた後、スチレン15kgを反応器内に連続的に3時間で供給するとともに、スチレン供給終了時に109℃となるように反応器内温度を連続的に昇温した。
引き続き120℃まで昇温して60分保持した後、蒸留水700gにピロリン酸マグネシウム22g、ドデシルベゼンスルホン酸ナトリウム2gに発泡助剤としてエステル系可塑剤としてアジピン酸ジイソブチル64gを加えてホモミキサーで攪拌して懸濁液を調製し、この懸濁液を反応器内に圧入した。その後、100℃まで冷却して、発泡剤であるブタン(イソブタン:ノルマルブタン=30:70(質量比))2250gを圧入して100℃で2時間保持した後、20℃まで冷却して取り出し、洗浄、脱水、乾燥した。発泡性ポリスチレン粒子の洗浄時に、JIS1000μm篩を通過しない合着粒子、及びJIS500μm篩を通過する微粉末状重合体を除き、その重量を各々測定した。さらに発泡後の気泡径が完全に安定するまで15℃で5日間熟成させて、メジアン径0.85mmの発泡性スチレン系重合体粒子を得た。
発泡性スチレン系樹脂粒子の作製以降は実施例1と同様の方法で発泡成形体を製造し、同様の測定を行った。その結果を表1に記す。
(Production of expandable styrene resin particles)
Next, 5.2 kg of the above styrene polymer seed particles, 19.5 kg of distilled water, 161 g of magnesium pyrophosphate, and 1.8 g of sodium dodecylbenzenesulfonate are placed in an autoclave equipped with a stirrer with an internal volume of 50 liters, stirred and suspended. It was.
Next, 2000 g of distilled water prepared in advance, 36 g of magnesium pyrophosphate, 0.9 g of sodium dodecylbenzenesulfonate and 1350 g of styrene were stirred with a homomixer to prepare a suspension, and the reactor was maintained at 72 ° C. The polystyrene particles were allowed to absorb styrene for 15 minutes.
Subsequently, 61 g of benzoyl peroxide (purity 75%) as a polymerization initiator and 26.5 g of t-butylperoxy-2-ethylhexyl monocarbonate were dissolved in 1000 g of styrene, 0.4 g of sodium dodecylbenzenesulfonate, and 2000 g of distilled water. A suspension prepared by stirring with a homomixer was added to a reactor maintained at 72 ° C.
The reactor internal temperature is maintained at 72 ° C. for 60 minutes from the start of adding the suspension containing the polymerization initiator to the reactor, and the styrene resin seed particles absorb styrene and the polymerization initiator. While continuously supplying into the reactor in 3 hours, the temperature in the reactor was continuously increased so as to reach 109 ° C. at the end of the styrene supply.
Subsequently, the temperature was raised to 120 ° C. and held for 60 minutes, and then added with 700 g of distilled water 22 g of magnesium pyrophosphate and 2 g of sodium dodecylbezene sulfonate 64 g of diisobutyl adipate as an ester plasticizer was added as a foaming aid. A suspension was prepared by stirring and the suspension was pressed into the reactor. Then, after cooling to 100 ° C., 2250 g of butane (isobutane: normal butane = 30: 70 (mass ratio)) as a blowing agent was injected and held at 100 ° C. for 2 hours, then cooled to 20 ° C. and taken out, Washed, dehydrated and dried. When the expandable polystyrene particles were washed, the coalesced particles that did not pass through the JIS 1000 μm sieve and the fine powdery polymer that passed through the JIS 500 μm sieve were removed, and their weights were measured. Further, the foamed styrene polymer particles having a median diameter of 0.85 mm were obtained by aging at 15 ° C. for 5 days until the bubble diameter after foaming was completely stabilized.
After the production of the expandable styrene resin particles, a foamed molded product was produced in the same manner as in Example 1, and the same measurement was performed. The results are shown in Table 1.

Figure 2013071998
Figure 2013071998

表1の結果から、本発明に係る実施例1〜11において得られた発泡性ポリスチレン系樹脂粒子は、発泡性が良好であり、高い発泡倍数の予備発泡樹脂粒子及び発泡成形体を得ることができた。また、実施例1〜11において得られた発泡成形体は、外観に優れ、発泡粒子同士の融着あ良好であり、強度にも優れていた。   From the results of Table 1, the expandable polystyrene resin particles obtained in Examples 1 to 11 according to the present invention have good expandability, and can obtain pre-expanded resin particles and expanded molded articles having a high expansion ratio. did it. Moreover, the foaming molding obtained in Examples 1-11 was excellent in the external appearance, the melt | fusion of foaming particle | grains was favorable, and was excellent also in intensity | strength.

一方、可塑剤を添加しなかった比較例1,2で得られた発泡性ポリスチレン系樹脂粒子は、発泡性能が悪く、発泡成形体の外観、融着度合、強度のいずれかが劣っていた。
さらに、含浸法によって可塑剤を添加した比較例3で得られた発泡性ポリスチレン系樹脂粒子は、発泡性能が悪く、高い発泡倍数の予備発泡樹脂粒子及び発泡成形体を得ることが難しかった。
On the other hand, the expandable polystyrene resin particles obtained in Comparative Examples 1 and 2 to which no plasticizer was added had poor foaming performance, and any of the appearance, the degree of fusion, and the strength of the foamed molded product was inferior.
Furthermore, the expandable polystyrene resin particles obtained in Comparative Example 3 to which a plasticizer was added by an impregnation method had poor foaming performance, and it was difficult to obtain pre-foamed resin particles and foamed molded articles having a high expansion ratio.

<吸光度比の測定>
実施例1、比較例3でそれぞれ製造した発泡性ポリスチレン系樹脂粒子の断面について、ATR法赤外分光分析により粒子表面分析を行って、吸光度比(D1730/D1600)を求め、可塑剤(アジピン酸ジイソブチル)の分布状態を調べた。
吸光度比(D1730/D1600)は下記の要領で測定される。
即ち、無作為に選択した10個の各樹脂粒子の表面(図2中の符号A)、及び粒子を中心を通って切断した断面の中心部(図2中の符号B)について、ATR法赤外分光分析により粒子表面分析を行って赤外線吸収スペクトルを得る。
各赤外線吸収スペクトルから吸光度比(D1730/D1600)をそれぞれ算出し、表面Aについて算出した吸光度比の相加平均を吸光度比(A)とし、中心部Bについて算出した吸光度比の相加平均を吸光度比(B)とする。
吸光度D1730及び、D1600は、たとえばNicolet社から商品名「フーリエ変換赤外分光分析計 MAGMA560」で販売されている測定装置を用いて測定する。
尚、赤外吸収スペクトルから得られる1600cm−1での吸光度D1600は、ポリスチレン系樹脂に含まれるベンゼン環の面内振動に由来する1600cm−1付近に現れるピークの高さをいう。
また、赤外吸収スペクトルから得られる1730cm−1での吸光度D1730は、アクリル酸エステルに含まれるエステル基のC=0間の伸縮振動に由来する1730cm−1付近に現れるピークの高さをいう。
<Measurement of absorbance ratio>
The cross-sections of the expandable polystyrene resin particles produced in Example 1 and Comparative Example 3 were subjected to particle surface analysis by ATR infrared spectroscopy to determine the absorbance ratio (D1730 / D1600), and the plasticizer (adipic acid The distribution state of (diisobutyl) was examined.
The absorbance ratio (D1730 / D1600) is measured as follows.
That is, the ATR method red is used for the surface of each of 10 resin particles selected at random (reference A in FIG. 2) and the central portion of the cross section cut through the center (reference B in FIG. 2). An infrared absorption spectrum is obtained by particle surface analysis by external spectroscopic analysis.
The absorbance ratio (D1730 / D1600) was calculated from each infrared absorption spectrum, the arithmetic average of the absorbance ratio calculated for surface A was defined as the absorbance ratio (A), and the arithmetic average of the absorbance ratio calculated for center B was the absorbance. The ratio (B).
The absorbances D1730 and D1600 are measured using a measuring device sold by, for example, Nicolet Corporation under the trade name “Fourier Transform Infrared Spectrometer MAGMA 560”.
The absorbance D1600 at 1600 cm −1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 1600 cm −1 derived from the in-plane vibration of the benzene ring contained in the polystyrene resin.
Further, the absorbance D 1730 at 1730 cm −1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 1730 cm −1 derived from stretching vibration between C = 0 of the ester group contained in the acrylate ester.

図2は、実施例1で製造した発泡性ポリスチレン系樹脂粒子の断面の吸光度比(D1730/D1600)の測定結果を示す概略図である。実施例1の発泡性ポリスチレン系樹脂粒子20は、樹脂粒子全体にわたって吸光度比(D1730/D1600)が均一となり、可塑剤が樹脂粒子全体にわたって均一な濃度で含まれていた。
図3は、比較例3で製造した発泡性ポリスチレン系樹脂粒子の断面の吸光度比(D1730/D1600)の測定結果を示す概略図である。含浸法で可塑剤を樹脂粒子に含浸させた比較例3の発泡性ポリスチレン系樹脂粒子30は、可塑剤が表層部31に局在し、中心部32には可塑剤が殆ど含まれていない。
FIG. 2 is a schematic view showing the measurement result of the absorbance ratio (D1730 / D1600) of the cross section of the expandable polystyrene resin particles produced in Example 1. FIG. The expandable polystyrene resin particles 20 of Example 1 had a uniform absorbance ratio (D1730 / D1600) over the entire resin particles, and contained a plasticizer at a uniform concentration throughout the resin particles.
FIG. 3 is a schematic diagram showing the measurement result of the absorbance ratio (D1730 / D1600) of the cross section of the expandable polystyrene resin particles produced in Comparative Example 3. In the expandable polystyrene resin particles 30 of Comparative Example 3 in which the resin particles are impregnated with the plasticizer by the impregnation method, the plasticizer is localized in the surface layer portion 31 and the central portion 32 contains almost no plasticizer.

本発明は、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法に関し、高発泡倍数で機械強度に優れた発泡成形体を得ることが可能な発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体に関する。   The present invention relates to a method for producing expandable polystyrene resin particles by melt extrusion, and relates to a foamable polystyrene resin particle capable of obtaining a foamed molded article having a high expansion ratio and excellent mechanical strength, a method for producing the same, and a polystyrene type The present invention relates to resin pre-expanded particles and polystyrene-based resin foam moldings.

1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器、20…発泡性ポリスチレン系樹脂粒子、30…発泡性ポリスチレン系樹脂粒子、31…表層部、32…中心部。   DESCRIPTION OF SYMBOLS 1 ... Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, DESCRIPTION OF SYMBOLS 10 ... Dehydration dryer with a solid-liquid separation function, 11 ... Storage container, 20 ... Expandable polystyrene resin particle, 30 ... Expandable polystyrene resin particle, 31 ... Surface layer part, 32 ... Center part.

Claims (27)

発泡剤を含有するポリスチレン系樹脂を粒子状としてなる発泡性ポリスチレン系樹脂粒子であって、
沸点が50℃以上の可塑剤が粒子内部に均一に含有された発泡性ポリスチレン系樹脂粒子。
Expandable polystyrene resin particles having a polystyrene resin containing a foaming agent in the form of particles,
Expandable polystyrene resin particles in which a plasticizer having a boiling point of 50 ° C. or higher is uniformly contained inside the particles.
樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法によって得られた請求項1に記載の発泡性ポリスチレン系樹脂粒子。   When a foaming agent is press-fitted and kneaded into the polystyrene resin melted in the resin supply device, the molten resin containing the foaming agent is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device. The expandable polystyrene system according to claim 1, obtained by a melt extrusion method, wherein the extrudate is simultaneously cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. Resin particles. 前記可塑剤が、沸点が150℃以上の高沸点可塑剤を含んでいる請求項1又は2に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 1 or 2, wherein the plasticizer contains a high-boiling plasticizer having a boiling point of 150 ° C or higher. 前記高沸点可塑剤がエステル系の可塑剤である請求項3に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 3, wherein the high boiling point plasticizer is an ester plasticizer. 前記高沸点可塑剤がアジピン酸エステル系の可塑剤である請求項4に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 4, wherein the high-boiling plasticizer is an adipate ester plasticizer. 前記高沸点可塑剤がアジピン酸ジイソブチルである請求項5に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 5, wherein the high-boiling plasticizer is diisobutyl adipate. 前記高沸点可塑剤の含有量が、樹脂100質量部に対し0.2〜7質量部の範囲である請求項3〜6のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子。   Content of the said high boiling point plasticizer is the range of 0.2-7 mass parts with respect to 100 mass parts of resin, The expandable polystyrene resin particle of any one of Claims 3-6. 前記高沸点可塑剤の含有量が、樹脂100質量部に対し0.2〜5質量部の範囲である請求項3〜7のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子。   Content of the said high boiling point plasticizer is the range of 0.2-5 mass parts with respect to 100 mass parts of resin, The expandable polystyrene resin particle of any one of Claims 3-7. 前記可塑剤が、沸点が50℃以上の炭化水素を含む請求項1〜8のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particle according to any one of claims 1 to 8, wherein the plasticizer contains a hydrocarbon having a boiling point of 50 ° C or higher. 前記炭化水素の含有量が、樹脂100質量部に対し0.2〜7質量部の範囲である請求項9に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 9, wherein the hydrocarbon content is in the range of 0.2 to 7 parts by mass with respect to 100 parts by mass of the resin. 前記炭化水素の含有量が、樹脂100質量部に対し0.2〜5質量部の範囲である請求項9又は10に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 9 or 10, wherein a content of the hydrocarbon is in a range of 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin. 前記発泡剤としてブタンを含む請求項1〜11のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particle according to any one of claims 1 to 11, comprising butane as the foaming agent. 樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、
ポリスチレン系樹脂に、沸点が50℃以上の可塑剤を添加し、該可塑剤が粒子内部に均一に含有された発泡性ポリスチレン系樹脂粒子を得る発泡性ポリスチレン系樹脂粒子の製造方法。
When a foaming agent is press-fitted and kneaded into the polystyrene resin melted in the resin supply device, the molten resin containing the foaming agent is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device. At the same time, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. In the method for producing expandable polystyrene resin particles by melt extrusion,
A method for producing expandable polystyrene resin particles, wherein a plasticizer having a boiling point of 50 ° C. or more is added to a polystyrene resin to obtain expandable polystyrene resin particles in which the plasticizer is uniformly contained inside the particles.
前記可塑剤が、沸点が150℃以上の高沸点可塑剤を含んでいる請求項13に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to claim 13, wherein the plasticizer contains a high-boiling plasticizer having a boiling point of 150 ° C or higher. 前記高沸点可塑剤がエステル系の可塑剤である請求項14に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to claim 14, wherein the high boiling point plasticizer is an ester plasticizer. 前記高沸点可塑剤がアジピン酸エステル系の可塑剤である請求項15に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to claim 15, wherein the high boiling point plasticizer is an adipate ester plasticizer. 前記高沸点可塑剤がアジピン酸ジイソブチルである請求項16に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to claim 16, wherein the high-boiling plasticizer is diisobutyl adipate. 前記高沸点可塑剤の含有量が、樹脂100質量部に対し0.2〜7質量部の範囲である請求項14〜17のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to any one of claims 14 to 17, wherein a content of the high-boiling plasticizer is in a range of 0.2 to 7 parts by mass with respect to 100 parts by mass of the resin. 前記高沸点可塑剤の含有量が、樹脂100質量部に対し0.2〜5質量部の範囲である請求項14〜18のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to any one of claims 14 to 18, wherein a content of the high-boiling plasticizer is in a range of 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin. 前記可塑剤が、沸点が50℃以上の炭化水素を含む請求項13〜19のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to any one of claims 13 to 19, wherein the plasticizer contains a hydrocarbon having a boiling point of 50 ° C or higher. 前記炭化水素の含有量が、樹脂100質量部に対し0.2〜7質量部の範囲である請求項20に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to claim 20, wherein the hydrocarbon content is in the range of 0.2 to 7 parts by mass with respect to 100 parts by mass of the resin. 前記炭化水素の含有量が、樹脂100質量部に対し0.2〜5質量部の範囲である請求項20又は21に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to claim 20 or 21, wherein a content of the hydrocarbon is in a range of 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin. 前記発泡剤としてブタンを含む請求項13〜22のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to any one of claims 13 to 22, comprising butane as the foaming agent. 請求項1〜12のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子を加熱し発泡させて得られたポリスチレン系樹脂予備発泡粒子。   Polystyrene resin pre-expanded particles obtained by heating and foaming the expandable polystyrene resin particles according to any one of claims 1 to 12. 嵩発泡倍数50倍に予備発泡させた状態での平均気泡径が50〜300μmの範囲内である請求項24に記載のポリスチレン系樹脂予備発泡粒子。   The polystyrene-based resin pre-expanded particles according to claim 24, wherein an average cell diameter in a state of being pre-expanded to a bulk expansion ratio of 50 times is in a range of 50 to 300 µm. 請求項24又は25に記載のポリスチレン系樹脂予備発泡粒子を成形型のキャビティに充填し、加熱して型内発泡成形して得られたポリスチレン系樹脂発泡成形体。   A polystyrene-based resin foam molded article obtained by filling the polystyrene-based resin pre-expanded particles according to claim 24 or 25 in a cavity of a molding die and heating and molding the resin in-mold. 発泡倍数50倍に発泡させた状態での平均気泡径が50〜300μmの範囲内である請求項26に記載のポリスチレン系樹脂発泡成形体。   27. The polystyrene-based resin foam molded article according to claim 26, wherein an average cell diameter in a state where the foaming ratio is 50 times is within a range of 50 to 300 [mu] m.
JP2011211723A 2011-09-28 2011-09-28 Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact Withdrawn JP2013071998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211723A JP2013071998A (en) 2011-09-28 2011-09-28 Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211723A JP2013071998A (en) 2011-09-28 2011-09-28 Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact

Publications (1)

Publication Number Publication Date
JP2013071998A true JP2013071998A (en) 2013-04-22

Family

ID=48476763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211723A Withdrawn JP2013071998A (en) 2011-09-28 2011-09-28 Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact

Country Status (1)

Country Link
JP (1) JP2013071998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193764A (en) * 2014-03-31 2015-11-05 積水化成品工業株式会社 Polystyrene resin composition for extrusion foaming and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193764A (en) * 2014-03-31 2015-11-05 積水化成品工業株式会社 Polystyrene resin composition for extrusion foaming and application thereof

Similar Documents

Publication Publication Date Title
JP5372783B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
TWI529205B (en) Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form
JP5969938B2 (en) Expandable thermoplastic resin particles and production method thereof, pre-expanded particles, foamed molded product, resin composition for producing antistatic resin molded product
TWI588160B (en) Foaming polystyrene resin particle and manufacturing method thereof, pre-foamed particle and foamed molded article
WO2013111368A1 (en) Expandable polystyrene-type resin particles and method for producing same, and molded foam
JP6063792B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP6130700B2 (en) Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article
JP5756003B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP6223097B2 (en) Expandable polystyrene resin particles and production method thereof, and polystyrene resin pre-expanded particles and expanded molded body
JPH07314438A (en) Production of foamable thermoplastic resin granule
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP5986410B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5809508B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JPH07316335A (en) Production of expandable thermoplastic resin particle
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2013071996A (en) Expandable thermoplastic resin particle, process for producing the same, thermoplastic resin prefoamed particle, and thermoplastic resin foam molded product
JP2013071995A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP2013203821A (en) Foamable polystyrene-based resin particle, method for producing the same, preliminary foamable particle and foam-molded article

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202