JP2013071996A - Expandable thermoplastic resin particle, process for producing the same, thermoplastic resin prefoamed particle, and thermoplastic resin foam molded product - Google Patents

Expandable thermoplastic resin particle, process for producing the same, thermoplastic resin prefoamed particle, and thermoplastic resin foam molded product Download PDF

Info

Publication number
JP2013071996A
JP2013071996A JP2011211709A JP2011211709A JP2013071996A JP 2013071996 A JP2013071996 A JP 2013071996A JP 2011211709 A JP2011211709 A JP 2011211709A JP 2011211709 A JP2011211709 A JP 2011211709A JP 2013071996 A JP2013071996 A JP 2013071996A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
mass
monomer unit
styrene
methyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011211709A
Other languages
Japanese (ja)
Inventor
Osamu Kato
治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2011211709A priority Critical patent/JP2013071996A/en
Publication of JP2013071996A publication Critical patent/JP2013071996A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an expandable thermoplastic resin particle having excellent heat resistance, mechanical strength and foaming properties; a prefoamed particle thereof; and a foam molded product.SOLUTION: The expandable thermoplastic resin particle consists of a particle of a thermoplastic resin containing a foaming agent. The thermoplastic resin is a styrene-methacrylate-methyl methacrylate copolymer.

Description

本発明は、耐熱性、機械的強度に優れたスチレン−メタクリル酸−メタクリル酸メチル共重合体を主成分とする熱可塑性樹脂を用いた発泡性熱可塑性樹脂粒子及び予備発泡粒子、発泡成形体に関する。   TECHNICAL FIELD The present invention relates to expandable thermoplastic resin particles, pre-expanded particles, and a foam-molded product using a thermoplastic resin mainly composed of a styrene-methacrylic acid-methyl methacrylate copolymer having excellent heat resistance and mechanical strength. .

ポリスチレン系樹脂発泡成形体は、軽量であり、優れた断熱性、比較的良好な機械強度を有し、成形容易性に優れ、しかも低コストであることから、各種の容器、梱包材、緩衝材、断熱材などとして汎用されている。従来、ポリスチレン系樹脂発泡成形体の使用樹脂として、ポリスチレン樹脂よりも耐熱性に優れた樹脂材料を用い、発泡成形体の耐熱性を向上させて更なる性能向上や用途の拡大を図る提案がなされている。   Polystyrene-based resin foam moldings are lightweight, have excellent heat insulation, relatively good mechanical strength, excellent moldability, and low cost, so various containers, packing materials, cushioning materials It is widely used as a heat insulating material. Conventionally, as resin used for polystyrene resin foam moldings, resin materials with better heat resistance than polystyrene resins have been proposed, and the heat resistance of foam moldings has been improved to further improve performance and expand applications. ing.

例えば特許文献1には、DSC法によって測定されるガラス転移点温度が110℃以上の耐熱性樹脂、又は該耐熱性樹脂とポリスチレン系樹脂との混合樹脂からなる熱可塑性樹脂に揮発性発泡剤を含有させた発泡性熱可塑性樹脂粒子であって、前記熱可塑性樹脂100質量部に対し、融点が65℃以上の高級脂肪酸系滑剤0.01〜1.0質量部を含有させたことを特徴とする発泡性熱可塑性樹脂粒子が開示されている。また特許文献1には、前記耐熱性樹脂として、スチレン−メタクリル酸共重合体、又はスチレン−無水マレイン酸共重合体、スチレン−マレイミド共重合体、ポリフェニレンエーテル系樹脂、スチレン−ポリフェニレンエーテル共重合体から選択される樹脂が挙げられている。   For example, in Patent Document 1, a volatile foaming agent is added to a heat-resistant resin having a glass transition temperature measured by a DSC method of 110 ° C. or higher, or a thermoplastic resin composed of a mixed resin of the heat-resistant resin and a polystyrene resin. Foamed thermoplastic resin particles contained, characterized in that 0.01 to 1.0 parts by mass of a higher fatty acid-based lubricant having a melting point of 65 ° C. or higher is contained with respect to 100 parts by mass of the thermoplastic resin. Expandable thermoplastic resin particles are disclosed. In Patent Document 1, as the heat-resistant resin, a styrene-methacrylic acid copolymer, or a styrene-maleic anhydride copolymer, a styrene-maleimide copolymer, a polyphenylene ether resin, and a styrene-polyphenylene ether copolymer. Resins selected from are listed.

特開2010−229205号公報JP 2010-229205 A

しかし、前記従来技術による発泡性熱可塑性樹脂粒子は、耐熱性や揮発性有機化合物の低減には寄与できるものの、得られる発泡成形体の強度と発泡性を両立することに関しては未だ不十分であった。   However, although the foamable thermoplastic resin particles according to the above-mentioned prior art can contribute to the reduction of heat resistance and volatile organic compounds, it is still insufficient for achieving both the strength and foamability of the obtained foamed molded product. It was.

本発明は前記事情に鑑みてなされ、耐熱性、機械的強度及び発泡性に優れた発泡性熱可塑性樹脂粒子その予備発泡粒子、及び発泡性形体の提供を課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the foamable thermoplastic resin particle which was excellent in heat resistance, mechanical strength, and foamability, its pre-expanded particle, and a foamable form.

前記課題を達成するため、本発明は、発泡剤を含む熱可塑性樹脂粒子からなる発泡性熱可塑性樹脂粒子であって、前記熱可塑性樹脂が、スチレン−メタクリル酸−メタクリル酸メチル共重合体であることを特徴とする発泡性熱可塑性樹脂粒子を提供する。   In order to achieve the above object, the present invention is an expandable thermoplastic resin particle comprising thermoplastic resin particles containing a foaming agent, wherein the thermoplastic resin is a styrene-methacrylic acid-methyl methacrylate copolymer. An expandable thermoplastic resin particle is provided.

本発明の発泡性熱可塑性樹脂粒子において、前記共重合体は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときに、メタクリル酸メチル単量体単位の含有量が2〜20質量%の範囲内であることが好ましい。   In the foamable thermoplastic resin particles of the present invention, the copolymer has a total content of styrene monomer units, methacrylic acid monomer units, and methyl methacrylate monomer units of 100% by mass. The content of the methyl methacrylate monomer unit is preferably in the range of 2 to 20% by mass.

本発明の発泡性熱可塑性樹脂粒子において、前記共重合体は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときに、メタクリル酸メチル単量体単位の含有量が5〜10質量%の範囲内であることが好ましい。   In the foamable thermoplastic resin particles of the present invention, the copolymer has a total content of styrene monomer units, methacrylic acid monomer units, and methyl methacrylate monomer units of 100% by mass. The content of the methyl methacrylate monomer unit is preferably in the range of 5 to 10% by mass.

本発明の発泡性熱可塑性樹脂粒子において、前記熱可塑性樹脂中のスチレンの二量体及び三量体の残存量が0.6質量%であり、且つスチレン単量体の残存量が熱可塑性樹脂中700ppm以下であることが好ましい。   In the foamable thermoplastic resin particles of the present invention, the residual amount of styrene dimer and trimer in the thermoplastic resin is 0.6 mass%, and the residual amount of styrene monomer is the thermoplastic resin. The content is preferably 700 ppm or less.

本発明の発泡性熱可塑性樹脂粒子において、前記熱可塑性樹脂は、重量平均分子量(Mw)が10万〜35万の範囲内であり、且つZ平均分子量(Mz)の重量平均分子量(Mw)に対する比(Mz/Mw)が1.6〜3.5の範囲内であることが好ましい。   In the foamable thermoplastic resin particles of the present invention, the thermoplastic resin has a weight average molecular weight (Mw) in the range of 100,000 to 350,000, and a Z average molecular weight (Mz) with respect to the weight average molecular weight (Mw). The ratio (Mz / Mw) is preferably in the range of 1.6 to 3.5.

本発明の発泡性熱可塑性樹脂粒子において、前記熱可塑性樹脂中に、炭素数14以上の脂肪族第1アルコールを0.02〜1.0質量%の範囲で含有することが好ましい。   In the foamable thermoplastic resin particles of the present invention, the thermoplastic resin preferably contains an aliphatic primary alcohol having 14 or more carbon atoms in a range of 0.02 to 1.0 mass%.

また本発明は、スチレン−メタクリル酸−メタクリル酸メチル共重合体を、樹脂供給装置内で溶融して発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から押し出して粒子状に形成する溶融押出法によって発泡性熱可塑性樹脂粒子を得ることを特徴とする発泡性熱可塑性樹脂粒子の製造方法を提供する。   The present invention also provides a die in which a styrene-methacrylic acid-methyl methacrylate copolymer is melted in a resin supply device, a foaming agent is press-fitted and kneaded, and a molten resin containing the foaming agent is attached to the tip of the resin supply device. There is provided a method for producing expandable thermoplastic resin particles, characterized in that expandable thermoplastic resin particles are obtained by a melt extrusion method in which particles are formed by extrusion from small holes.

また本発明は、スチレン−メタクリル酸−メタクリル酸メチル共重合体を、樹脂供給装置内で溶融して発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性熱可塑性樹脂粒子を得ることを特徴とする発泡性熱可塑性樹脂粒子の製造方法を提供する。   The present invention also provides a die in which a styrene-methacrylic acid-methyl methacrylate copolymer is melted in a resin supply device, a foaming agent is press-fitted and kneaded, and a molten resin containing the foaming agent is attached to the tip of the resin supply device. The extrudate is extruded with a high-speed rotary blade at the same time as it is extruded into the cooling liquid directly from the small holes of the material, and the extrudate is cooled and solidified by contact with the liquid to obtain expandable thermoplastic resin particles. A method for producing expandable thermoplastic resin particles is provided.

本発明の発泡性熱可塑性樹脂粒子の製造方法において、前記共重合体は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときに、メタクリル酸メチル単量体単位の含有量が2〜20質量%の範囲内であることが好ましい。   In the method for producing expandable thermoplastic resin particles of the present invention, the copolymer has a total content of styrene monomer units, methacrylic acid monomer units, and methyl methacrylate monomer units as 100% by mass. When it does, it is preferable that content of a methyl methacrylate monomer unit exists in the range of 2-20 mass%.

本発明の発泡性熱可塑性樹脂粒子の製造方法において、前記共重合体は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときに、メタクリル酸メチル単量体単位の含有量が5〜10質量%の範囲内であることが好ましい。   In the method for producing expandable thermoplastic resin particles of the present invention, the copolymer has a total content of styrene monomer units, methacrylic acid monomer units, and methyl methacrylate monomer units as 100% by mass. When it does, it is preferable that content of a methyl methacrylate monomer unit exists in the range of 5-10 mass%.

本発明の発泡性熱可塑性樹脂粒子の製造方法において、前記熱可塑性樹脂中のスチレンの二量体及び三量体の残存量が0.6質量%であり、且つスチレン単量体の残存量が熱可塑性樹脂中700ppm以下であることが好ましい。   In the method for producing expandable thermoplastic resin particles of the present invention, the residual amount of styrene dimer and trimer in the thermoplastic resin is 0.6% by mass, and the residual amount of styrene monomer is It is preferably 700 ppm or less in the thermoplastic resin.

本発明の発泡性熱可塑性樹脂粒子の製造方法において、前記熱可塑性樹脂は、重量平均分子量(Mw)が10万〜35万の範囲内であり、且つZ平均分子量(Mz)の重量平均分子量(Mw)に対する比(Mz/Mw)が1.6〜3.5の範囲内であることが好ましい。   In the method for producing expandable thermoplastic resin particles of the present invention, the thermoplastic resin has a weight average molecular weight (Mw) in the range of 100,000 to 350,000 and a weight average molecular weight of Z average molecular weight (Mz) ( The ratio (Mz / Mw) to Mw) is preferably in the range of 1.6 to 3.5.

本発明の発泡性熱可塑性樹脂粒子の製造方法において、前記熱可塑性樹脂中に、炭素数14以上の脂肪族第1アルコールを0.02〜1.0質量%の範囲で含有することが好ましい。   In the method for producing expandable thermoplastic resin particles of the present invention, the thermoplastic resin preferably contains an aliphatic primary alcohol having 14 or more carbon atoms in the range of 0.02 to 1.0% by mass.

また本発明は、前記発泡性熱可塑性樹脂粒子を加熱し発泡させて得られた熱可塑性樹脂予備発泡粒子を提供する。   The present invention also provides thermoplastic resin pre-expanded particles obtained by heating and foaming the expandable thermoplastic resin particles.

また本発明は、前記熱可塑性樹脂予備発泡粒子を成形型のキャビティに充填し、加熱して型内発泡成形して得られた熱可塑性樹脂発泡成形体を提供する。   The present invention also provides a thermoplastic resin foam molded article obtained by filling the thermoplastic resin pre-expanded particles in a cavity of a molding die and heating to form in-mold foam molding.

本発明の発泡性熱可塑性樹脂粒子は、発泡剤を含む熱可塑性樹脂粒子からなり、該熱可塑性樹脂が、スチレン−メタクリル酸−メタクリル酸メチル共重合体であるものなので、耐熱性に優れ、高い発泡倍数の予備発泡粒子を得ることができ、軽量で十分な機械的強度を有する発泡成形体を製造することができる。   The expandable thermoplastic resin particles of the present invention are composed of thermoplastic resin particles containing a foaming agent, and since the thermoplastic resin is a styrene-methacrylic acid-methyl methacrylate copolymer, it is excellent in heat resistance and high. Pre-expanded particles having a multiple of expansion can be obtained, and a foamed molded article having a light weight and sufficient mechanical strength can be produced.

本発明の発泡性熱可塑性樹脂粒子の製造方法は、スチレン−メタクリル酸−メタクリル酸メチル共重合体を、樹脂供給装置内で溶融して発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から押し出して粒子状に形成する溶融押出法によって発泡性熱可塑性樹脂粒子を得るようにしたので、耐熱性に優れ、高い発泡倍数の予備発泡粒子を得ることができ、軽量で十分な機械的強度を有する発泡成形体を製造可能な発泡性熱可塑性樹脂粒子を効率よく製造することができる。   The method for producing the foamable thermoplastic resin particles of the present invention comprises melting a styrene-methacrylic acid-methyl methacrylate copolymer in a resin supply apparatus, press-fitting and kneading the foaming agent, Expandable thermoplastic resin particles are obtained by a melt extrusion method in which particles are formed by extruding from a small hole in a die attached to the tip of the resin supply device, so that pre-expanded particles with excellent heat resistance and high expansion ratio can be obtained. It is possible to efficiently produce foamable thermoplastic resin particles that can be obtained and can produce a foamed molded article that is lightweight and has sufficient mechanical strength.

溶融押出法による発泡性熱可塑性樹脂粒子の製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus of the foamable thermoplastic resin particle by a melt extrusion method.

(発泡性熱可塑性樹脂粒子)
本発明の発泡性熱可塑性樹脂粒子は、発泡剤を含む熱可塑性樹脂粒子からなる発泡性熱可塑性樹脂粒子であって、前記熱可塑性樹脂が、スチレン−メタクリル酸−メタクリル酸メチル共重合体であることを特徴とする。
(Foaming thermoplastic resin particles)
The expandable thermoplastic resin particles of the present invention are expandable thermoplastic resin particles made of thermoplastic resin particles containing a foaming agent, and the thermoplastic resin is a styrene-methacrylic acid-methyl methacrylate copolymer. It is characterized by that.

前記熱可塑性樹脂は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位を任意の比率で含む共重合体とすることができ、各単量体単位の割合は特に限定されない。
本発明の好ましい実施形態において、前記共重合体は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときに、メタクリル酸メチル単量体単位の含有量が2〜20質量%の範囲内であることが好ましい。
熱可塑性樹脂中のメタクリル酸メチル単量体単位の含有量を2〜20質量%の範囲内とすることによって、耐熱性に優れ、高い発泡倍数の予備発泡粒子を得ることができ、軽量で十分な機械的強度を有する発泡成形体が得られる。
The thermoplastic resin may be a copolymer containing a styrene monomer unit, a methacrylic acid monomer unit, and a methyl methacrylate monomer unit in an arbitrary ratio, and the ratio of each monomer unit is There is no particular limitation.
In a preferred embodiment of the present invention, the copolymer contains methacrylic acid when the total content of styrene monomer units, methacrylic acid monomer units, and methyl methacrylate monomer units is 100% by mass. The methyl monomer unit content is preferably in the range of 2 to 20% by mass.
By setting the content of the methyl methacrylate monomer unit in the thermoplastic resin within the range of 2 to 20% by mass, it is possible to obtain pre-expanded particles having excellent heat resistance and a high expansion ratio. A foamed molded article having a high mechanical strength can be obtained.

本発明のさらに好ましい実施形態において、前記共重合体は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときに、メタクリル酸メチル単量体単位の含有量が5〜10質量%の範囲内であることが好ましい。   In a further preferred embodiment of the present invention, the copolymer has a methacrylic acid content when the total content of styrene monomer units, methacrylic acid monomer units, and methyl methacrylate monomer units is 100% by mass. The content of the acid methyl monomer unit is preferably in the range of 5 to 10% by mass.

前記熱可塑性樹脂は、該熱可塑性樹脂中のスチレンの二量体及び三量体の残存量が0.6質量%であり、且つスチレン単量体の残存量が熱可塑性樹脂中700ppm以下であることが好ましい。スチレンの二量体及び三量体の残存量が0.6質量%を超えると、熱可塑性樹脂の耐熱性が悪くなるおそれがある。スチレンの二量体及び三量体の残存量は、0.5質量%以下であることがより好ましく、0.4質量%以下であることがさらに好ましい。また、スチレン単量体の残存量が700ppmを超えた場合にも、熱可塑性樹脂の耐熱性が悪くなるおそれがある。   In the thermoplastic resin, the residual amount of styrene dimer and trimer in the thermoplastic resin is 0.6% by mass, and the residual amount of styrene monomer is 700 ppm or less in the thermoplastic resin. It is preferable. When the residual amount of styrene dimer and trimer exceeds 0.6% by mass, the heat resistance of the thermoplastic resin may be deteriorated. The residual amount of styrene dimer and trimer is more preferably 0.5% by mass or less, and further preferably 0.4% by mass or less. Further, when the residual amount of the styrene monomer exceeds 700 ppm, the heat resistance of the thermoplastic resin may be deteriorated.

本発明の発泡性熱可塑性樹脂粒子において、前記熱可塑性樹脂は、重量平均分子量(Mw)が10万〜35万の範囲内であることが好ましく、13万〜30万の範囲内であることがより好ましく、16万〜25万の範囲内であることがさらに好ましい。重量平均分子量(Mw)が10万未満であると、得られる発泡成形体の機械的強度が低下するおそれがある。重量平均分子量(Mw)が35万を超えると、発泡性熱可塑性樹脂粒子を加熱して予備発泡粒子を作製する際に発泡性が悪くなり、高い発泡倍数の発泡成形体が得難くなる。   In the foamable thermoplastic resin particles of the present invention, the thermoplastic resin preferably has a weight average molecular weight (Mw) in the range of 100,000 to 350,000, and preferably in the range of 130,000 to 300,000. More preferably, it is still more preferably in the range of 160,000 to 250,000. If the weight average molecular weight (Mw) is less than 100,000, the mechanical strength of the resulting foamed molded article may be lowered. When the weight average molecular weight (Mw) exceeds 350,000, the foamability deteriorates when the foamed thermoplastic resin particles are heated to prepare the pre-foamed particles, and it becomes difficult to obtain a foamed molded article having a high expansion ratio.

本発明の発泡性熱可塑性樹脂粒子において、前記熱可塑性樹脂は、Z平均分子量(Mz)の重量平均分子量(Mw)に対する比(Mz/Mw)が1.6〜3.5の範囲内であることが好ましく、1.7〜3.0の範囲内であることがより好ましく、1.7〜2.5の範囲内であることがさらに好ましい。前記比(Mz/Mw)が1.6未満であると、得られる発泡成形体の機械的強度が低下するおそれがある。前記比(Mz/Mw)が3.5を超えると、発泡性熱可塑性樹脂粒子を加熱して予備発泡粒子を作製する際に発泡性が悪くなり、高い発泡倍数の発泡成形体が得難くなる。   In the foamable thermoplastic resin particles of the present invention, the thermoplastic resin has a ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) in the range of 1.6 to 3.5. It is preferably within a range of 1.7 to 3.0, more preferably within a range of 1.7 to 2.5. If the ratio (Mz / Mw) is less than 1.6, the mechanical strength of the obtained foamed molded article may be lowered. When the ratio (Mz / Mw) exceeds 3.5, the foamability deteriorates when the foamable thermoplastic resin particles are heated to prepare the prefoamed particles, and it becomes difficult to obtain a foamed molded article having a high expansion ratio. .

本発明の発泡性熱可塑性樹脂粒子において、前記熱可塑性樹脂中に、炭素数14以上の脂肪族第1アルコールを含有することが好ましい。炭素数14以上の脂肪族第1アルコールとしては、炭素数14以上の直鎖脂肪族第1アルコール、分岐脂肪族第1アルコールなどから選択でき、例えば、イソヘキサデカノール、イソオクタデカノール、イソエイコサノールなどが挙げられる。
この脂肪族第1アルコールの含有量は、熱可塑性樹脂中0.02〜1.0質量%の範囲内であることがで含有することが好ましく、0.05〜0.9質量%の範囲がより好ましく、0.1〜0.8質量%の範囲がさらに好ましい。脂肪族第1アルコールの含有量が0.02質量%未満であると、該アルコール添加による発泡性の向上効果が不十分となる。脂肪族第1アルコールの含有量が1.0質量%を超えると、得られる発泡成形体に溶けを生じ易くなり、外観不良となるおそれがある。
また、この脂肪族第1アルコールの炭素数が14未満であると、得られる発泡成形体に溶けを生じ易くなり、外観不良となるおそれがある。
In the foamable thermoplastic resin particles of the present invention, it is preferable that the thermoplastic resin contains an aliphatic primary alcohol having 14 or more carbon atoms. The aliphatic primary alcohol having 14 or more carbon atoms can be selected from linear aliphatic primary alcohols having 14 or more carbon atoms, branched aliphatic primary alcohols, etc., for example, isohexadecanol, isooctadecanol, Examples include eicosanol.
The content of the aliphatic primary alcohol is preferably in the range of 0.02 to 1.0% by mass in the thermoplastic resin, preferably in the range of 0.05 to 0.9% by mass. More preferably, the range of 0.1-0.8 mass% is further more preferable. When the content of the aliphatic primary alcohol is less than 0.02% by mass, the effect of improving foamability due to the addition of the alcohol becomes insufficient. When the content of the aliphatic primary alcohol exceeds 1.0% by mass, the resulting foamed molded product tends to be melted, which may cause poor appearance.
Moreover, when the number of carbon atoms of the aliphatic primary alcohol is less than 14, the resulting foamed molded product is likely to be melted, which may cause poor appearance.

本発明の発泡性熱可塑性樹脂粒子に含有させる発泡剤としては、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン等の脂肪族炭化水素、1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、1,1−ジクロロ−2,2,2−トリフルオロエタン(HCFC−123)、クロロジフルオロメタン(HCFC−22)、1−クロロ−1,2,2,2−テトラフルオロエタン(HCFC−124)等のクロロフルオロカーボン、1,1−ジフルオロエタン(HFC−152a)、1,1,1−トリフルオロエタン(HFC−143a)、1,1,1,2−テトラフルオロエタン(HFC−134a)、ジフルオロメタン(HFC−32)等のフルオロカーボン、各種アルコール、二酸化炭素、水、及び窒素などの物理発泡剤が挙げられ、これらの中の1種又は2種以上を併用して使用することができる。これらのうち、好ましい発泡剤としては、n−ブタン、イソブタン、n−ペンタン、イソペンタン及びこれらを二種以上混合した発泡剤が挙げられる。発泡剤の添加量は、ポリスチレン系樹脂100質量部に対して1〜15質量部の範囲とされ、より好ましくは3〜12質量部の範囲とされる。   Examples of the foaming agent contained in the expandable thermoplastic resin particles of the present invention include propane, n-butane, isobutane, n-pentane, isopentane, neopentane and other aliphatic hydrocarbons, 1,1-dichloro-1-fluoroethane ( HCFC-141b), 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), chlorodifluoromethane (HCFC-22), 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) and other chlorofluorocarbons, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC- 134a), fluorocarbons such as difluoromethane (HFC-32), various alcohols, carbon dioxide, water, and Include physical blowing agents such as iodine, it can be used in combination one or more of these. Among these, preferable foaming agents include n-butane, isobutane, n-pentane, isopentane, and a foaming agent obtained by mixing two or more thereof. The addition amount of a foaming agent shall be the range of 1-15 mass parts with respect to 100 mass parts of polystyrene-type resins, More preferably, it shall be the range of 3-12 mass parts.

本発明の発泡性熱可塑性樹脂粒子には、発泡剤及び脂肪族第1アルコールの他、無機発泡核剤が均一に含有されていることが好ましい。無機発泡核剤としては、タルク、シリカ、その他の無機粉体が挙げられ、これらの中でもタルクが好ましい。
無機発泡核剤の量は、ポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内であることが好ましく、0.1〜2質量部の範囲がより好ましい。
使用する無機発泡核剤の平均粒径は、0.1〜30μmの範囲内であることが好ましく、0.5〜10μmの範囲内であることがより好ましい。
発泡性熱可塑性樹脂粒子に可塑剤とともにタルクなどの無機発泡核剤を含有させることで、予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果を高めることができる。
無機発泡核剤は、発泡性熱可塑性樹脂粒子全体にわたり均一に含有している必要がある。樹脂粒子の局部、例えば、樹脂粒子の表層部分に無機発泡核剤が偏在していると、得られる発泡成形体の機械強度が低下するおそれがある。
The foamable thermoplastic resin particles of the present invention preferably contain an inorganic foam nucleating agent in addition to the foaming agent and the aliphatic primary alcohol. Examples of the inorganic foam nucleating agent include talc, silica, and other inorganic powders. Among these, talc is preferable.
The amount of the inorganic foam nucleating agent is preferably in the range of 0.05 to 5 parts by mass, more preferably in the range of 0.1 to 2 parts by mass with respect to 100 parts by mass of the polystyrene resin.
The average particle diameter of the inorganic foam nucleating agent to be used is preferably in the range of 0.1 to 30 μm, and more preferably in the range of 0.5 to 10 μm.
By making the expandable thermoplastic resin particles contain an inorganic foam nucleating agent such as talc together with the plasticizer, the effect of increasing the bulk expansion ratio of the pre-expanded particles and the effect of improving the mechanical strength of the foamed molded product can be enhanced.
The inorganic foam nucleating agent needs to be uniformly contained throughout the foamable thermoplastic resin particles. If the inorganic foam nucleating agent is unevenly distributed in a local part of the resin particle, for example, a surface layer part of the resin particle, the mechanical strength of the obtained foamed molded product may be lowered.

本発明の発泡性熱可塑性樹脂粒子には、物性を損なわない範囲内において、架橋剤、可塑剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよく、又、ジンクステアレート等の粉末状金属石鹸類を前記発泡性スチレン樹脂粒子の表面に塗布しておけば、発泡性熱可塑性樹脂粒子の予備発泡工程において予備発泡粒子同士の結合を減少させることができて好ましい。   The foamable thermoplastic resin particles of the present invention may be added with additives such as a crosslinking agent, a plasticizer, a filler, a flame retardant, a flame retardant aid, a lubricant, and a colorant, as long as the physical properties are not impaired. In addition, if powder metal soaps such as zinc stearate are coated on the surface of the expandable styrene resin particles, the bonding between the preexpanded particles is reduced in the prefoaming step of the expandable thermoplastic resin particles. This is preferable.

本発明の発泡性熱可塑性樹脂粒子の粒径は、特に限定されないが、通常は0.5〜3.0mmの範囲が好ましく、0.7〜2.0mmの範囲がより好ましい。また、粒子の形状は、特に限定されないが、球状乃至略球状であることが好ましい。   The particle diameter of the expandable thermoplastic resin particles of the present invention is not particularly limited, but is usually preferably in the range of 0.5 to 3.0 mm, more preferably in the range of 0.7 to 2.0 mm. The shape of the particles is not particularly limited, but is preferably spherical or substantially spherical.

本発明の発泡性熱可塑性樹脂粒子は、発泡剤を含む熱可塑性樹脂粒子からなり、該熱可塑性樹脂が、スチレン−メタクリル酸−メタクリル酸メチル共重合体であるものなので、耐熱性に優れ、高い発泡倍数の予備発泡粒子を得ることができ、軽量で十分な機械的強度を有する発泡成形体を製造することができる。   The expandable thermoplastic resin particles of the present invention are composed of thermoplastic resin particles containing a foaming agent, and since the thermoplastic resin is a styrene-methacrylic acid-methyl methacrylate copolymer, it is excellent in heat resistance and high. Pre-expanded particles having a multiple of expansion can be obtained, and a foamed molded article having a light weight and sufficient mechanical strength can be produced.

(発泡性熱可塑性樹脂粒子の製造方法)
本発明の発泡性熱可塑性樹脂粒子の製造方法は、スチレン−メタクリル酸−メタクリル酸メチル共重合体を、樹脂供給装置内で溶融して発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から押し出して粒子状に形成する溶融押出法によって発泡性熱可塑性樹脂粒子を得ることを特徴としている。
この製造方法では、前記ダイの小孔から押し出した発泡剤含有溶融樹脂を、直ちに水中に導いて切断し、直接粒子状に形成するホットカット法を採用してもよいし、ストランド状に押し出して冷却し、冷却後に切断して粒子とするストランドカット法を採用してもよい。
(Method for producing foamable thermoplastic resin particles)
The method for producing the foamable thermoplastic resin particles of the present invention comprises melting a styrene-methacrylic acid-methyl methacrylate copolymer in a resin supply apparatus, press-fitting and kneading the foaming agent, It is characterized in that expandable thermoplastic resin particles are obtained by a melt extrusion method in which particles are formed by extruding from a small hole of a die attached to the tip of a resin supply device.
In this production method, the foaming agent-containing molten resin extruded from the small holes of the die may be immediately guided into water and cut, and directly formed into particles, or may be extruded into strands. A strand cut method may be employed in which the particles are cooled and cut after cooling to form particles.

本発明の発泡性熱可塑性樹脂粒子の製造方法において、スチレン−メタクリル酸−メタクリル酸メチル共重合体を、樹脂供給装置内で溶融して発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性熱可塑性樹脂粒子を得る方法がより好ましい。   In the method for producing foamable thermoplastic resin particles of the present invention, a styrene-methacrylic acid-methyl methacrylate copolymer is melted in a resin supply apparatus, and a foaming agent is press-fitted and kneaded to obtain a foaming agent-containing molten resin. Extrude directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device, and at the same time extrude is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with the liquid. A method of obtaining plastic resin particles is more preferable.

原料樹脂であるスチレン−メタクリル酸−メタクリル酸メチル共重合体の製造方法としては、ラジカル重合法、より具体的には塊状重合法又は溶液重合法によるラジカル重合法などが挙げられる。この共重合体の製造は、重合原料(単量体成分)を重合させる重合工程と、生成物から未反応モノマー、重合溶媒等の揮発分を除去する脱揮工程とを備えてることが好ましい。。   As a manufacturing method of styrene-methacrylic acid-methyl methacrylate copolymer which is a raw material resin, a radical polymerization method, more specifically, a radical polymerization method by a bulk polymerization method or a solution polymerization method, and the like can be given. The production of this copolymer preferably includes a polymerization step for polymerizing a polymerization raw material (monomer component) and a devolatilization step for removing volatile components such as unreacted monomers and polymerization solvent from the product. .

前記共重合体の製造において、重合原料を重合させる際には、重合原料組成物中に、重合開始剤を配合する。この重合開始剤としては、2,2−ビス(4,4−ジターシャリーブチルパーオキシシクロヘキシル)プロパン、2,2−ビス(t−ブチルペルオキシ)ブタン、2,2−ビス(t−ブチルペルオキシ)オクタン、1,1−ビス(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、1,1ービス(t−ブチルペルオキシ)シクロヘキサン、n−ブチル−4,4ービス(t−ブチルペルオキシ)バレレート、ジ−t−ブチルペルオキシド、t−ブチルクミルペルオキシド、ジクミルペルオキシド、α,α’−ビス(t−ブチルペルオキシイソブロピル)ベンゼン、アセチルペルオキシド、イソブチリルペルオキシド、オクタノイルペルオキシド、ジイソプロピルペルオキシジカーボネート、ジー2−エチルヘキシルペルオキシジカーボネート、ジーn−プロピルペルオキシジカーボネート、t−ブチルペルオキシアセテート、t―ブチルペルオキシイソブチレート、アセチルアセトンペルオキシド、メチルエチルケトンペルオキシド、t一ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジイソプロピルペルベンゼンヒドロペルオキシド等を挙げることができる。
また、重合原料組成物中には、前記重合開始剤とともに、n−ドデシルメルカプタン、t−ドデシルメルカプタン、α−メチルスチレンリニアダイマー、n−オクチルメルカプタン、1−フェニルー2−フルオレン、ジベンテン等の連鎖移動剤を添加してもよい。
In the production of the copolymer, when the polymerization raw material is polymerized, a polymerization initiator is blended in the polymerization raw material composition. As this polymerization initiator, 2,2-bis (4,4-ditertiarybutylperoxycyclohexyl) propane, 2,2-bis (t-butylperoxy) butane, 2,2-bis (t-butylperoxy) Octane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, n-butyl-4,4-bis (t-butylperoxy) valerate , Di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, α, α′-bis (t-butylperoxyisopropyl) benzene, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, diisopropyl peroxide Carbonate, 2-ethylhexyl peroxydi -Bonate, di-n-propyl peroxydicarbonate, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, acetylacetone peroxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, cumene hydroperoxide, diisopropyl perbenzene hydroperoxide, etc. it can.
In the polymerization raw material composition, together with the polymerization initiator, chain transfer of n-dodecyl mercaptan, t-dodecyl mercaptan, α-methylstyrene linear dimer, n-octyl mercaptan, 1-phenyl-2-fluorene, dibenten and the like An agent may be added.

重合原料組成物中に加える重合溶媒としては、芳香族炭化水素類、例えばトルエン、キシレン、エチルベンゼン、ジアルキルケトン類、及び、例えばメチルエチルケトン等が挙げられ、それぞれ単独で、或いは2種類以上を混合して用いることができる。   Examples of the polymerization solvent added to the polymerization raw material composition include aromatic hydrocarbons such as toluene, xylene, ethylbenzene, dialkyl ketones and, for example, methyl ethyl ketone, each alone or in combination of two or more. Can be used.

塊状重合法又は溶液重合法によるラジカル重合法などによって製造されたスチレン−メタクリル酸−メタクリル酸メチル共重合体は、無機発泡核剤などの所望の添加剤とともに樹脂供給装置内に投入し、溶融押出法によって発泡性熱可塑性樹脂粒子を得る。
なお、前記脂肪族第1アルコールを添加する場合、スチレン−メタクリル酸−メタクリル酸メチル共重合体の製造途中に添加してもよいし、該共重合体とともに樹脂供給装置内に投入してもよい。
A styrene-methacrylic acid-methyl methacrylate copolymer produced by a bulk polymerization method or a radical polymerization method by a solution polymerization method is put into a resin supply apparatus together with a desired additive such as an inorganic foam nucleating agent, and melt extrusion. Expandable thermoplastic resin particles are obtained by the method.
In addition, when adding the said aliphatic primary alcohol, you may add in the middle of manufacture of a styrene-methacrylic acid-methyl methacrylate copolymer, and you may throw in into a resin supply apparatus with this copolymer. .

図1は、本発明の発泡性熱可塑性樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図であり、本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性熱可塑性樹脂粒子を冷却水と分離すると共に脱水乾燥して発泡性熱可塑性樹脂粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性熱可塑性樹脂粒子を貯留する貯留容器11とを備えて構成されている。   FIG. 1 is a configuration diagram showing an example of a production apparatus used in the method for producing expandable thermoplastic resin particles of the present invention. The production apparatus of this example includes an extruder 1 as a resin supply apparatus, and an extruder 1. A die 2 having a large number of small holes attached to the tip of the resin, a raw material supply hopper 3 for introducing a resin raw material or the like into the extruder 1, and a foaming agent through the foaming agent supply port 5 to the molten resin in the extruder 1. A high pressure pump 4 to be press-fitted, a cutting chamber 7 provided so that cooling water is brought into contact with a resin discharge surface in which a small hole of the die 2 is formed, and cooling water is circulated and supplied into the chamber; a small hole of the die 2 The cutter 6 is rotatably provided in the cutting chamber 7 so as to cut the resin extruded from the chamber, and the foaming thermoplastic resin particles carried along with the flow of the cooling water from the cutting chamber 7 are separated from the cooling water. And dehydrated and dried to foam A dehydration dryer 10 with a solid-liquid separation function for obtaining thermoplastic resin particles, a water tank 8 for storing cooling water separated by the dehydration dryer 10 with a solid-liquid separation function, and a cutting chamber 7 for cooling water in the water tank 8 And a storage container 11 for storing foamable thermoplastic resin particles dehydrated and dried by a dehydration dryer 10 having a solid-liquid separation function.

なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。   As the extruder 1, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.

図1に示す製造装置を用い、発泡性熱可塑性樹脂粒子を製造するには、まず、原料の前記スチレン−メタクリル酸−メタクリル酸メチル共重合体、及び無機発泡核剤などの所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。   In order to produce foamable thermoplastic resin particles using the production apparatus shown in FIG. 1, first, desired additives such as the raw material styrene-methacrylic acid-methyl methacrylate copolymer and inorganic foam nucleating agent are added. Weigh and put into the extruder 1 from the raw material supply hopper 3. The raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount for each lot may be reduced. A plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder.

押出機1内にスチレン−メタクリル酸−メタクリル酸メチル共重合体、及び無機発泡核剤などの所望の添加剤を供給後、樹脂を加熱溶融し、その溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入して溶融樹脂に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。   While supplying desired additives such as a styrene-methacrylic acid-methyl methacrylate copolymer and an inorganic foam nucleating agent into the extruder 1, the resin is heated and melted, and the molten resin is transferred to the die 2 side. The foaming agent is injected from the foaming agent supply port 5 by the high-pressure pump 4 to mix the foaming agent with the molten resin, and the melt is further kneaded through a foreign matter removing screen provided in the extruder 1 as necessary. It moves to the front end side, and the melted material to which the foaming agent is added is pushed out from the small hole of the die 2 attached to the front end of the extruder 1.

ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡が抑えられたまま固化して発泡性熱可塑性樹脂粒子となる。   The resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 in which cooling water is circulated and supplied into the chamber, and the resin extruded from the small holes of the die 2 is placed in the cutting chamber 7. A cutter 6 is provided so as to be rotatable. Extruding the melt with the blowing agent added through a small hole in the die 2 attached to the tip of the extruder 1 causes the melt to be cut into granules, and at the same time, brought into contact with cooling water and rapidly cooled to solidify while suppressing foaming. Thus, expandable thermoplastic resin particles are obtained.

形成された発泡性熱可塑性樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで発泡性熱可塑性樹脂粒子を冷却水と分離すると共に脱水乾燥する。乾燥された発泡性熱可塑性樹脂粒子は、貯留容器11に貯留される。   The formed expandable thermoplastic resin particles are transferred from the cutting chamber 7 to the flow of cooling water and carried to the dehydrating dryer 10 with a solid-liquid separation function, where the expandable thermoplastic resin particles are separated from the cooling water. And dehydrated and dried. The dried foamable thermoplastic resin particles are stored in the storage container 11.

本発明の発泡性熱可塑性樹脂粒子の製造方法は、スチレン−メタクリル酸−メタクリル酸メチル共重合体を、樹脂供給装置内で溶融して発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から押し出して粒子状に形成する溶融押出法によって発泡性熱可塑性樹脂粒子を得るようにしたので、耐熱性に優れ、高い発泡倍数の予備発泡粒子を得ることができ、軽量で十分な機械的強度を有する発泡成形体を製造可能な発泡性熱可塑性樹脂粒子を効率よく製造することができる。   The method for producing the foamable thermoplastic resin particles of the present invention comprises melting a styrene-methacrylic acid-methyl methacrylate copolymer in a resin supply apparatus, press-fitting and kneading the foaming agent, Expandable thermoplastic resin particles are obtained by a melt extrusion method in which particles are formed by extruding from a small hole in a die attached to the tip of the resin supply device, so that pre-expanded particles with excellent heat resistance and high expansion ratio can be obtained. It is possible to efficiently produce foamable thermoplastic resin particles that can be obtained and can produce a foamed molded article that is lightweight and has sufficient mechanical strength.

(熱可塑性樹脂予備発泡粒子及び熱可塑性樹脂発泡成形体)
本発明の発泡性熱可塑性樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、熱可塑性樹脂予備発泡粒子(以下、予備発泡粒子と記す)とする。この予備発泡粒子は、製造するべき発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度は限定されないが、通常は0.010〜0.10g/cmの範囲内とし、0.015〜0.050g/cmの範囲内とするのが好ましい。
(Thermoplastic resin pre-expanded particles and thermoplastic resin foam molding)
The foamable thermoplastic resin particles of the present invention are pre-foamed by heating with steam or the like using a well-known apparatus and method in the field of foamed resin moldings, and are pre-foamed thermoplastic resin particles (hereinafter referred to as pre-foamed particles). ). The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the foamed molded product to be manufactured. In the present invention, its bulk density is not limited, usually in the range of 0.010~0.10g / cm 3, preferably in the range of 0.015~0.050g / cm 3.

なお、本発明において予備発泡粒子の嵩密度とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<予備発泡粒子の嵩密度>
先ず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積VcmをJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて予備発泡粒子の嵩密度を測定する。
嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
In the present invention, the bulk density of the pre-expanded particles refers to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
First, Wg was sampled from pre-expanded particles as a measurement sample, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was measured using an apparent density measuring instrument based on JIS K6911. The bulk density of the pre-expanded particles is measured based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)

<予備発泡粒子の嵩発泡倍数>
また、予備発泡粒子の嵩発泡倍数は、次式により算出される数値である。
嵩発泡倍数=1/嵩密度(g/cm
<Bulk expansion ratio of pre-expanded particles>
Moreover, the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
Bulk foaming factor = 1 / bulk density (g / cm 3 )

前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、該予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、熱可塑性樹脂発泡成形体(以下、発泡成形体と記す)を製造する。
本発明の発泡成形体の密度は特に限定されないが、通常は0.010〜0.10g/cmの範囲内とし、0.015〜0.050g/cmの範囲内とするのが好ましい。
The pre-expanded particles are filled in a cavity of a mold using a well-known apparatus and method in the field of manufacturing a foamed resin molded body, heated by steam heating or the like, and subjected to in-mold foam molding, A plastic resin foam molded article (hereinafter referred to as a foam molded article) is produced.
Although the density of the foamed molded article of the present invention is not particularly limited, usually in the range of 0.010~0.10g / cm 3, preferably in the range of 0.015~0.050g / cm 3.

なお、本発明において発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した発泡成形体密度のことである。
<発泡成形体の密度>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
In the present invention, the density of the foamed molded product refers to the density of the foamed molded product measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Density of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test specimen condition adjustment and measurement specimens were cut from a sample that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C ± 2 ° C x 50% ± 5% or 27 ° C ± 2 ° C x 65% ± 5%. It has been left for more than an hour.

<発泡成形体の発泡倍数>
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数=1/密度(g/cm
<Folding multiple of foamed molded product>
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )

本発明の発泡成形体は、前述した本発明に係る発泡性熱可塑性樹脂粒子を加熱発泡させ、得られた予備発泡粒子を型内発泡成形して得られたものなので、高発泡倍数の発泡成形体を得ることができる。また、軽量で曲げ強度などの機械強度に優れた発泡成形体を得ることができる。   The foamed molded article of the present invention is obtained by heating and foaming the expandable thermoplastic resin particles according to the present invention described above, and the resulting pre-foamed particles are obtained by in-mold foam molding. You can get a body. In addition, a foamed molded article that is lightweight and excellent in mechanical strength such as bending strength can be obtained.

次に本発明を実施例及び比較例により詳しく説明するが、本発明はこれら実施例に限定される訳ではない。なお、実施例及び比較例における樹脂及び発泡性樹脂粒子等の分析、評価方法は、下記の通りである。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention in detail, this invention is not necessarily limited to these Examples. In addition, the analysis and evaluation methods for the resin, the expandable resin particles, and the like in Examples and Comparative Examples are as follows.

[樹脂の性状]
(1)加熱減量方法
発泡性熱可塑性樹脂粒子の質量をA(g)とし、アルミホイルに包んで再度秤量し、これをB(g)とした。145℃のオーブンで1時間熱処理し、完全に該粒子内のガスを飛ばした。その後、デジケーターにて10分静置し、ガスの抜けた樹脂表面に付着したガス分を吸着させ、このガスの抜けた樹脂をアルミホイルに包んだ状態で再度秤量し、これをC(g)とし、下記する計算式にて発泡性粒子内に残っている残存ガス量を計算した。
残存ガス量 (%)=(B(g)−C(g))/A(g)×100
ガスを完全に除去した樹脂は、下記測定項目(2)〜(5)の測定用樹脂試料として用いた。
[Properties of resin]
(1) Heat loss method The mass of the foamable thermoplastic resin particles was set to A (g), wrapped in an aluminum foil and weighed again, and this was set to B (g). It heat-processed for 1 hour in 145 degreeC oven, and the gas in this particle | grain was blown completely. After that, it is allowed to stand for 10 minutes with a desiccator to adsorb the gas component adhering to the resin surface from which gas has been released, and the resin from which gas has been released is weighed again in an aluminum foil, and this is measured as C (g) And the amount of residual gas remaining in the expandable particles was calculated by the following formula.
Residual gas amount (%) = (B (g) −C (g)) / A (g) × 100
The resin from which the gas was completely removed was used as a measurement resin sample for the following measurement items (2) to (5).

(2)スチレン、メタクリル酸およびメタクリル酸メチルの各々の単量体単位の含有量
プロトン核磁気共鳴(H−NMR)測定機で測定したスペクトルの積分比から、樹脂組成を定量した。
試料調製: 樹脂試料30mgをd6−DMSO 0.75mLに60℃で4〜6時間加熱溶解した。
測定機器: 日本電子社製、JNMECA−500
測定条件: 測定温度25℃、観測核1H、積算回数64回、繰り返し時間11秒、スペクトルの帰属:ジメチルスルホキシド重溶媒中で測定されたスペクトルの帰属は、0.5〜1.5ppmのピークはメタクリル酸、メタクリル酸メチル及び六員環酸無水物のα−メチル基の水素、1.6〜2.1ppmのピークはポリマー主鎖のメチレン基の水素、3.5ppmのピークはメタクリル酸メチルのカルボン酸エステル(−COOCH)の水素、12.4ppmのピークはメタクリル酸のカルボン酸の水素である。また6.5〜7.5ppmのピークはスチレンの芳香族環の水素である。
(2) Content of each monomer unit of styrene, methacrylic acid and methyl methacrylate The resin composition was quantified from the integral ratio of the spectrum measured with a proton nuclear magnetic resonance ( 1 H-NMR) measuring machine.
Sample preparation: 30 mg of a resin sample was dissolved in 0.75 mL of d6-DMSO by heating at 60 ° C. for 4 to 6 hours.
Measuring instrument: JNMECA-500, manufactured by JEOL Ltd.
Measurement conditions: Measurement temperature 25 ° C., observation nucleus 1H, integration number 64 times, repetition time 11 seconds, spectrum assignment: spectrum assignment measured in dimethyl sulfoxide heavy solvent has a peak of 0.5 to 1.5 ppm. Α-methyl group hydrogen of methacrylic acid, methyl methacrylate and 6-membered cyclic acid anhydride, peak of 1.6 to 2.1 ppm is hydrogen of methylene group of polymer main chain, peak of 3.5 ppm is methyl methacrylate The hydrogen of the carboxylic acid ester (—COOCH 3 ), the peak at 12.4 ppm is the hydrogen of the carboxylic acid of methacrylic acid. The peak at 6.5 to 7.5 ppm is hydrogen in the aromatic ring of styrene.

(3)ビカット軟化温度の測定
ISO306に準拠して測定した。荷重は49Nとした。
(3) Measurement of Vicat softening temperature It measured based on ISO306. The load was 49N.

(4)スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときのスチレン二量体(ダイマー)及び三量体(トリマー)の残存量の測定
試料調製:樹脂試料0.2gを秤量し、この樹脂0.2gをメチルエチルケトン10mLに溶解しメタノール40mL中に滴下して再沈殿させる。次いで、50mLナスフラスコに内部標準溶液(メチルエチルケトン100mLにエイコサン0.2gを溶解させたもの)を1mL加え、再沈殿液をNo.5Aろ紙にてろ過し、先ほどの内部標準液にメスアップする。これをGC/MC(島津製作所社製、商品名GC17A)で測定し、カラムクロマトグラムのうちダイマーピーク5本の面積と内部標準物質の相対感度を同一として測定した。ダイマー、トリマーのピークの確認は関東化学製の標準物質を用いて行った。
装置:島津製作所社製、商品名GC17A
カラム:商品名DB−1(J&W社製、0.25mmφ×30m、膜圧0.1μm)
注入口温度:240℃
検出器(FID)温度:260℃
キャリアガス(He):圧力80psi
カラム温度:40℃(1分)〜50℃/分〜150℃(1分)〜5℃/分〜250℃(3分)〜50℃/分〜320℃(8分)
また、オリゴマー量はスチレンダイマーとトリマーの和とした。
(4) Styrene dimer (dimer) and trimer (trimer) when the total content of styrene monomer units, methacrylic acid monomer units, and methyl methacrylate monomer units is 100% by mass Preparation of measurement sample of residual amount: 0.2 g of resin sample is weighed, 0.2 g of this resin is dissolved in 10 mL of methyl ethyl ketone, and dropped into 40 mL of methanol for reprecipitation. Next, 1 mL of an internal standard solution (a solution obtained by dissolving 0.2 g of Eicosane in 100 mL of methyl ethyl ketone) was added to a 50 mL eggplant flask, and the reprecipitation liquid was No. 1 Filter with 5A filter paper and make up to the internal standard solution. This was measured by GC / MC (manufactured by Shimadzu Corporation, trade name GC17A), and the area of five dimer peaks in the column chromatogram and the relative sensitivity of the internal standard substance were measured to be the same. Confirmation of dimer and trimer peaks was performed using a standard substance manufactured by Kanto Chemical.
Apparatus: Product name GC17A manufactured by Shimadzu Corporation
Column: Product name DB-1 (manufactured by J & W, 0.25 mmφ × 30 m, membrane pressure 0.1 μm)
Inlet temperature: 240 ° C
Detector (FID) temperature: 260 ° C
Carrier gas (He): Pressure 80 psi
Column temperature: 40 ° C. (1 minute) to 50 ° C./minute to 150 ° C. (1 minute) to 5 ° C./minute to 250 ° C. (3 minutes) to 50 ° C./minute to 320 ° C. (8 minutes)
The amount of oligomer was the sum of styrene dimer and trimer.

(5)スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときのスチレン単量体の含有量の測定
試料調製:樹脂試料1gを精秤し、この1gの樹脂に、0.1体積%のシクロペンタノールを含有するジメチルホルムアミド溶液1mLを内部標準液として加えた後、更に、ジメチルホルムアミドを加えて25mLの測定溶液を作製した。そして、この測定溶液1.8μLをガスクロマトグラフ(島津製作所社製、商品名「GC−14A」)に供給して下記測定条件にて測定し、測定溶液中の化合物のチャートを得た。そして、予め測定しておいたスチレン単量体の検量線に基づいて、測定溶液中のスチレン単量体の量を算出することにより、樹脂中に残存するスチレン単量体量(ppm)を算出した。
検出器 :FID
カラム :ジーエルサイエンス社製(内径3mm×長さ2.5m)
液相(PEG−20M PT 25%)
担体(Chromosorb W AW−DWCS)
メッシュ:60/80
カラム温度:100℃
DET温度:230℃
検出器温度:230℃
キャリアーガス :窒素
キャリアーガス流量:40ミリリットル/分
(5) Measurement sample preparation of the content of the styrene monomer when the total content of the styrene monomer unit, the methacrylic acid monomer unit, and the methyl methacrylate monomer unit is 100% by mass: resin sample Weigh precisely 1 g, add 1 mL of dimethylformamide solution containing 0.1% by volume of cyclopentanol as an internal standard solution to 1 g of this resin, and then add dimethylformamide to prepare a 25 mL measurement solution. did. And 1.8 microliters of this measurement solution was supplied to the gas chromatograph (Shimadzu Corporation make, brand name "GC-14A"), and it measured on the following measurement conditions, and obtained the chart of the compound in a measurement solution. And based on the calibration curve of the styrene monomer measured in advance, the amount of styrene monomer (ppm) remaining in the resin is calculated by calculating the amount of styrene monomer in the measurement solution. did.
Detector: FID
Column: manufactured by GL Sciences Inc. (inner diameter 3 mm × length 2.5 m)
Liquid phase (PEG-20M PT 25%)
Carrier (Chromosorb W AW-DWCS)
Mesh: 60/80
Column temperature: 100 ° C
DET temperature: 230 ° C
Detector temperature: 230 ° C
Carrier gas: Nitrogen Carrier gas flow rate: 40ml / min

(6) 重量平均分子量及びZ 平均分子量の測定
試料調製 : テトラヒドロフランに樹脂試料を約0.05質量%となるように溶解させた。
測定条件
機器 : TOSHOHHLC−8220GPC
(ゲルパーミエイション・クロマトグラフィー)
カラム : super HZM−H
温度 : 40℃
キャリア : THF 0.35mL/min
検出器 : RI、UV:254nm
検量線 : TOSOH社製の標準PS使用
(6) Preparation of measurement sample of weight average molecular weight and Z average molecular weight: A resin sample was dissolved in tetrahydrofuran so as to be about 0.05% by mass.
Measurement condition equipment: TOSHOHHLC-8220GPC
(Gel permeation chromatography)
Column: super HZM-H
Temperature: 40 ° C
Carrier: THF 0.35 mL / min
Detector: RI, UV: 254 nm
Calibration curve: Standard PS made by TOSOH

(7)樹脂中の脂肪族第1級アルコールの測定
試料調製 : 下記計算式によって算出された樹脂0.5gを含む発泡性粒子A(g)をメチルエチルケトン20mLに溶解し下記測定条件にて測定した。
発泡性樹脂添加量: A(g)
= 樹脂 0.5g /〔 1−[ (1)によって算出された残存ガス量(%)]/100〕
測定条件
機器 : 島津製作所社製ガスクロマトグラフィー GC2010
カラム : DB−WAX 30m、0.25mmφ、df=0.5μm
温度 : 100℃→5℃/分→130℃→10℃/分→180℃−12分→20℃/分→220℃−20分
(7) Preparation of measurement sample of aliphatic primary alcohol in resin: Expandable particles A (g) containing 0.5 g of resin calculated by the following formula were dissolved in 20 mL of methyl ethyl ketone and measured under the following measurement conditions. .
Amount of foaming resin added: A (g)
= Resin 0.5g / [1- [Residual gas amount calculated by (1) (%)] / 100]
Measurement condition equipment: Shimadzu Corporation gas chromatography GC2010
Column: DB-WAX 30 m, 0.25 mmφ, df = 0.5 μm
Temperature: 100 ° C. → 5 ° C./min→130° C. → 10 ° C./min→180° C.-12 min → 20 ° C./min→220° C.-20 min

(8)予備発泡による発泡性の評価
発泡性熱可塑性樹脂粒子を15℃の保冷庫にて72時間に亘って放置した後、円筒型バッチ式予備発泡機に供給して、吹き込み圧0.1MPaの水蒸気により加熱して嵩発泡倍数40倍に達するまでの秒数を測定し、次の評価基準:
120秒以上:不良(×)
100秒以上、110秒未満:やや不良(△)
90秒以上、100病未満:良好(○)
90秒未満:特に良好(◎)
に基づいて発泡性を評価した。
(8) Evaluation of foamability by prefoaming The foamable thermoplastic resin particles were allowed to stand for 72 hours in a 15 ° C. cool box and then supplied to a cylindrical batch prefoaming machine. The number of seconds required for heating with water vapor to reach 40 times the bulk foaming ratio is measured, and the following evaluation criteria:
120 seconds or more: Defect (x)
100 seconds or more and less than 110 seconds: Somewhat bad (△)
90 seconds or more, less than 100 diseases: Good (○)
Less than 90 seconds: Particularly good (◎)
Was evaluated for foamability.

(9)発泡成形体の製造
発泡性熱可塑性樹脂粒子を15℃の保冷庫にて7 2 時間に亘って放置した後、円筒型バッチ式予備発泡機に供給して、吹き込み圧0.1MPaの水蒸気により加熱して嵩発泡倍数40倍の予備発泡粒子を得た。続いて、得られた予備発泡粒子を室温雰囲気下にて24時間に亘って放置した後、400mm×300mm×25mmの直方体形状のキャビティを有する成形型内に予備発泡粒子を充填した後、成形型のキャビティ内を水蒸気でゲージ圧0.9MPaの圧力でもって20秒間に亘って加熱し、しかる後、成形型のキャビティ内の圧力が0.15MPaになるまで冷却した後、成形型内から400mm×300mm×25mmの直方体形状の発泡成形体を得た。得られた発泡成形体の密度は0.028g/cmであった。
(9) Manufacture of foam molded article The foamable thermoplastic resin particles are allowed to stand for 72 hours in a 15 ° C cool box, and then supplied to a cylindrical batch type pre-foaming machine. Pre-expanded particles having a bulk expansion ratio of 40 times were obtained by heating with water vapor. Subsequently, the pre-expanded particles obtained were allowed to stand for 24 hours in a room temperature atmosphere, and after filling the pre-expanded particles in a mold having a rectangular parallelepiped cavity of 400 mm × 300 mm × 25 mm, the mold The inside of the cavity was heated with water vapor at a gauge pressure of 0.9 MPa for 20 seconds, and then cooled until the pressure in the cavity of the mold became 0.15 MPa. A 300 mm × 25 mm rectangular foam molded body was obtained. The density of the obtained foamed molded product was 0.028 g / cm 3 .

(10)発泡成形体の曲げ強度評価
実施例(及び比較例)で得られた発泡成形体について、JIS A9511:2006「発泡プラスチック保温材」記載の方法に準じて曲げ強度を測定した。
すなわち、テンシロン万能試験機UCT−10T(オリエンテック社製)を用い、試験体サイズは75mm×300mm×25mmとし、圧縮速度を10mm/min、先端治具は加圧くさび10R、支持台10Rで、支点間距離200mmの条件として測定し、次式にて曲げ強度を算出した。試験片の数は3個とし、その平均値を求めた。
曲げ強度(MPa)=3FL/2bh
[ここで、Fは曲げ最大荷重(N)を表し、Lは支点間距離(mm)を表し、bは試験片の幅(mm)を表し、hは試験片の厚み(mm)を表す。]
このようにして曲げ強度の平均値を求め、次の評価基準:
曲げ強度が0. 38MPa以上:特に良好(◎)、
曲げ強度が0.36MPa以上0.38MPa未満:良好(○)、
曲げ強度が0.35MPa以上0.36MPa未満:やや不良(△)、
曲げ強度が0.35MPa未満:不良(×)
に照らし、強度を評価した。
(10) Evaluation of flexural strength of foamed molded product The flexural strength of the foamed molded products obtained in the examples (and comparative examples) was measured according to the method described in JIS A9511: 2006 “Foamed plastic heat insulating material”.
That is, using a Tensilon universal testing machine UCT-10T (manufactured by Orientec Co., Ltd.), the specimen size is 75 mm × 300 mm × 25 mm, the compression speed is 10 mm / min, the tip jig is a pressure wedge 10R, and a support base 10R. Measurement was performed under the condition of a distance between supporting points of 200 mm, and the bending strength was calculated by the following formula. The number of test pieces was three, and the average value was obtained.
Bending strength (MPa) = 3FL / 2bh 2
[Where F represents the maximum bending load (N), L represents the distance between supporting points (mm), b represents the width (mm) of the test piece, and h represents the thickness (mm) of the test piece. ]
In this way, the average value of the bending strength is obtained, and the following evaluation criteria:
Bending strength is 0.38 MPa or more: particularly good (◎),
Bending strength is 0.36 MPa or more and less than 0.38 MPa: good (◯),
Bending strength is 0.35 MPa or more and less than 0.36 MPa: Somewhat poor (Δ),
Bending strength is less than 0.35 MPa: defective (x)
In light of the above, the strength was evaluated.

(11)耐熱性評価(加熱寸法変化)
長さ400mm、幅300mm、厚み25mmの平板形状の発泡成形体を成形型から取り出し、温度23℃、相対湿度50%の恒温恒湿室(JIS−K7100の標準温湿度状態)に24時間放置した後、この発泡成形体の中央部から上下面が平行で正方形状の平板(長さ150mm、巾150mm、厚み25mm)を切り出し、その中央部に縦及び横方向にそれぞれ互いに平行に3本の直線を50mm 間隔になるように記入して、JIS−K 6767 に従う試験片とした。この試験片の寸法(加熱前寸法:L1)を測定した後、100℃ に保った熱風循環式乾燥機の中に水平に置き、168時間加熱した後に取り出し、再び恒温恒湿室に1時間放置し、試験片の寸法(加熱後寸法:L2)を測定した。加熱試験の前後における寸法測定はJIS−K6767 に従って行い、寸法変化率は次の式に従って求めた。
寸法変化率(%)=(L2−L1)× 100/L1
(但し、L1は、型内成形後に23℃、相対湿度50%で24時間放置された発泡成形体から得られた試験片の寸法、L2は該成形体を100℃で168時間加熱した後の試験片の寸法である)
なお、寸法とは、発泡成形体から得られた試験片に記入した縦横それぞれ3本の直線の長さの平均値である。
(11) Evaluation of heat resistance (change in heating dimensions)
A flat foam molded body having a length of 400 mm, a width of 300 mm, and a thickness of 25 mm was taken out of the mold, and left in a constant temperature and humidity chamber (standard temperature and humidity state of JIS-K7100) at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours. Thereafter, a flat plate (length 150 mm, width 150 mm, thickness 25 mm) whose upper and lower surfaces are parallel is cut out from the central portion of the foamed molded body, and three straight lines are parallel to each other in the vertical and horizontal directions at the central portion. The test piece according to JIS-K 6767 was formed so that the distance was 50 mm. After measuring the dimensions of this test piece (dimension before heating: L1), place it horizontally in a hot-air circulating drier kept at 100 ° C., take it out after heating for 168 hours, and leave it in a constant temperature and humidity room for 1 hour again. Then, the dimension of the test piece (dimension after heating: L2) was measured. The dimensional measurement before and after the heating test was performed according to JIS-K6767, and the dimensional change rate was determined according to the following equation.
Dimensional change rate (%) = (L2-L1) × 100 / L1
(However, L1 is the size of a test piece obtained from a foamed molded product that was allowed to stand for 24 hours at 23 ° C. and 50% relative humidity after molding in the mold, and L2 is the value after heating the molded product at 100 ° C. for 168 hours. It is the size of the test piece)
In addition, a dimension is the average value of the length of three straight lines each written in the test piece obtained from the foaming molding.

[実施例1]
(スチレン−メタクリル酸−メタクリル酸メチル共重合体の製造)
スチレン76.9質量部、メタクリル酸5.4質量部、メタクリル酸メチル2.7質量部、重合溶媒としてエチルベンゼン15.0質量部、重合開始剤として2,2−ビス(4,4−ジターシャリーブチルパーオキシシクロヘキシル)プロパン0.02質量部からなる重合原料組成液を、1.2リットル/時の速度で、容量が4 リットルの完全混合型反応器、次いで2リットルの層流型反応器からなる重合装置に供給し、更には未反応モノマー、重合溶媒等の揮発分を除去する単軸押出機を連結した脱揮装置に連続的に順次供給し、共重合体を調製した。重合工程における重合反応条件は、完全混合反応器は重合温度122〜130℃、層流型反応器は温度125〜145℃とした。脱揮された未反応ガスは−5℃ の冷媒を通した凝縮器で凝縮し、未反応液として回収した。最終重合液中のポリマー分は、重合液を215℃、3kPaの減圧下で30分間乾燥後、(乾燥後の試料質量/乾燥前の試料質量×100%)により測定したところ、66.5質量%であった。最終重合液をペレット押出しして得られた樹脂ペレットを短軸押出機に投入し、表1に示す種類の脂肪族第1級アルコールを練り込み、スチレン−メタクリル酸−メタクリル酸メチル共重合体を得た。表1に示す樹脂中のアルコール含有量(質量%)はガスクロマトグラフィーで定量した。なお表1中のイソ脂肪族第1アルコールとしては日産化学社製の商品名「ファインオキソコール180」を用いた。
[Example 1]
(Production of styrene-methacrylic acid-methyl methacrylate copolymer)
76.9 parts by mass of styrene, 5.4 parts by mass of methacrylic acid, 2.7 parts by mass of methyl methacrylate, 15.0 parts by mass of ethylbenzene as a polymerization solvent, and 2,2-bis (4,4-ditertiary as a polymerization initiator A polymerization raw material composition solution comprising 0.02 part by weight of butylperoxycyclohexyl) propane is supplied from a fully mixed reactor having a capacity of 4 liters at a rate of 1.2 liters / hour and then from a 2 liter laminar flow reactor. Then, the copolymer was prepared by successively supplying the polymerizer continuously with a devolatilizer connected to a single-screw extruder for removing volatile components such as unreacted monomers and polymerization solvent. The polymerization reaction conditions in the polymerization step were a polymerization temperature of 122 to 130 ° C. for the complete mixing reactor and a temperature of 125 to 145 ° C. for the laminar flow reactor. The devolatilized unreacted gas was condensed by a condenser through which a refrigerant of -5 ° C was passed, and recovered as an unreacted liquid. The polymer content in the final polymerization solution was measured by (sample weight after drying / sample weight before drying × 100%) after drying the polymer solution at 215 ° C. under a reduced pressure of 3 kPa for 30 minutes. %Met. Resin pellets obtained by extruding the final polymerization liquid into pellets are put into a short-shaft extruder and kneaded with an aliphatic primary alcohol of the type shown in Table 1 to obtain a styrene-methacrylic acid-methyl methacrylate copolymer. Obtained. The alcohol content (% by mass) in the resin shown in Table 1 was quantified by gas chromatography. The product name “Fine Oxocol 180” manufactured by Nissan Chemical Co., Ltd. was used as the isoaliphatic primary alcohol in Table 1.

(発泡性熱可塑性樹脂粒子の製造)
前記脂肪族第1級アルコールを練り込んだ共重合体からなる熱可塑性樹脂100質量部に対し、微粉末タルク0.3質量部を、予めタンブラーミキサーにて均一に混合したものを、時間当たり160kg/hrの割合で口径90mmの単軸押出機押出機内へ供給し、樹脂を加熱溶融させた後、発泡剤として樹脂100質量部に対して6質量部のペンタン(イソペンタン/ノルマルペンタン=20/80混合物)を押出機途中より圧入した。そして、押出機内で樹脂と発泡剤を混練しつつ、押出機先端部での樹脂温度が190℃となるように冷却しながら、押出機に連接しヒーターにより320℃に保持した、直径0.6mm、ランド長さ3.0mmのノズルを200個有する造粒用ダイを通して、50℃の冷却水が循環するチャンバー内に押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイスに密着させて、毎分3000回転で切断し、脱水乾燥して球形の発泡性熱可塑性樹脂粒子を得た。
(Manufacture of foamable thermoplastic resin particles)
160 kg per hour is obtained by uniformly mixing 0.3 parts by mass of fine powder talc in advance with a tumbler mixer with respect to 100 parts by mass of a thermoplastic resin composed of a copolymer kneaded with the aliphatic primary alcohol. After feeding into a single-screw extruder having a diameter of 90 mm at a rate of / hr and heating and melting the resin, 6 parts by weight of pentane (isopentane / normal pentane = 20/80 as a blowing agent with respect to 100 parts by weight of the resin) The mixture was pressed from the middle of the extruder. Then, while kneading the resin and the foaming agent in the extruder, while cooling so that the resin temperature at the tip of the extruder is 190 ° C., it is connected to the extruder and held at 320 ° C. by a heater, diameter 0.6 mm Then, through a granulation die having 200 nozzles with a land length of 3.0 mm, it is extruded into a chamber in which cooling water at 50 ° C. circulates, and at the same time, a high-speed rotary cutter having 10 blades in the circumferential direction is used as a die. Adhered, cut at 3000 rpm, dehydrated and dried to obtain spherical foamable thermoplastic resin particles.

得られた発泡性熱可塑性樹脂粒子、及び該樹脂粒子から得られた予備発泡粒子と発泡成形体について、前述した各測定・評価を行った。その結果を表1に記す。
なお、実施例1で得られた発泡性熱可塑性樹脂粒子の樹脂中の各単量体単位の組成比は、スチレン(ST)単量体単位が82.1質量%、メタクリル酸(MAA)単量体単位が11.9質量%、メタクリル酸メチル(MMA)単量体単位が6.0質量%であった。
Each measurement and evaluation mentioned above were performed about the obtained expandable thermoplastic resin particle, the pre-expanded particle obtained from this resin particle, and the foaming molding. The results are shown in Table 1.
The composition ratio of each monomer unit in the resin of the expandable thermoplastic resin particles obtained in Example 1 was 82.1% by mass of the styrene (ST) monomer unit, and methacrylic acid (MAA) unit. The monomer unit was 11.9% by mass, and the methyl methacrylate (MMA) monomer unit was 6.0% by mass.

[実施例2]
各単量体の配合量を、得られた発泡性熱可塑性樹脂粒子の樹脂中の各単量体単位の組成比が、スチレン(ST)単量体単位81.9質量%、メタクリル酸(MAA)単量体単位8.2質量%、メタクリル酸メチル(MMA)単量体単位9.9質量%となるように変更し、それ以外は実施例1と同様にして発泡性熱可塑性樹脂粒子を製造し、得られた発泡性熱可塑性樹脂粒子、及び該樹脂粒子から得られた予備発泡粒子と発泡成形体について、実施例1と同様に前記各測定・評価を行った。その結果を表1に記す。
[Example 2]
The blending amount of each monomer is such that the composition ratio of each monomer unit in the resin of the obtained foamable thermoplastic resin particles is 81.9% by mass of a styrene (ST) monomer unit, methacrylic acid (MAA ) The monomer unit was changed to 8.2% by mass, and the methyl methacrylate (MMA) monomer unit was changed to 9.9% by mass. Otherwise, the expandable thermoplastic resin particles were obtained in the same manner as in Example 1. The foamed thermoplastic resin particles produced and obtained, the pre-foamed particles obtained from the resin particles, and the foamed molded article were measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例3]
各単量体の配合量を、得られた発泡性熱可塑性樹脂粒子の樹脂中の各単量体単位の組成比が、スチレン(ST)単量体単位88.8質量%、メタクリル酸(MAA)単量体単位6.0質量%、メタクリル酸メチル(MMA)単量体単位3.1質量%となるように変更し、それ以外は実施例1と同様にして発泡性熱可塑性樹脂粒子を製造し、得られた発泡性熱可塑性樹脂粒子、及び該樹脂粒子から得られた予備発泡粒子と発泡成形体について、実施例1と同様に前記各測定・評価を行った。その結果を表1に記す。
[Example 3]
The blending amount of each monomer is such that the composition ratio of each monomer unit in the resin of the obtained foamable thermoplastic resin particles is 88.8% by mass of a styrene (ST) monomer unit, methacrylic acid (MAA) The foamed thermoplastic resin particles were changed in the same manner as in Example 1 except that the monomer unit was 6.0% by mass and the methyl methacrylate (MMA) monomer unit was 3.1% by mass. The foamed thermoplastic resin particles produced and obtained, the pre-foamed particles obtained from the resin particles, and the foamed molded article were measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例4]
各単量体の配合量を、得られた発泡性熱可塑性樹脂粒子の樹脂中の各単量体単位の組成比が、スチレン(ST)単量体単位71.8質量%、メタクリル酸(MAA)単量体単位13.7質量%、メタクリル酸メチル(MMA)単量体単位14.5質量%となるように変更し、それ以外は実施例1と同様にして発泡性熱可塑性樹脂粒子を製造し、得られた発泡性熱可塑性樹脂粒子、及び該樹脂粒子から得られた予備発泡粒子と発泡成形体について、実施例1と同様に前記各測定・評価を行った。その結果を表1に記す。
[Example 4]
The blending amount of each monomer is such that the composition ratio of each monomer unit in the resin of the obtained foamable thermoplastic resin particles is 71.8% by mass of styrene (ST) monomer unit, methacrylic acid (MAA ) The monomer unit was changed to 13.7% by mass and the methyl methacrylate (MMA) monomer unit was 14.5% by mass. Otherwise, the expandable thermoplastic resin particles were obtained in the same manner as in Example 1. The foamed thermoplastic resin particles produced and obtained, the pre-foamed particles obtained from the resin particles, and the foamed molded article were measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例5]
各単量体の配合量を、得られた発泡性熱可塑性樹脂粒子の樹脂中の各単量体単位の組成比が、スチレン(ST)単量体単位81.9質量%、メタクリル酸(MAA)単量体単位8.2質量%、メタクリル酸メチル(MMA)単量体単位9.9質量%となるように変更し、それ以外は実施例1と同様にして発泡性熱可塑性樹脂粒子を製造し、得られた発泡性熱可塑性樹脂粒子、及び該樹脂粒子から得られた予備発泡粒子と発泡成形体について、実施例1と同様に前記各測定・評価を行った。その結果を表1に記す。
なお、この実施例5において製造した発泡性熱可塑性樹脂粒子は、樹脂中の各単量体単位の組成比が実施例2の樹脂と同じであったが、得られた樹脂のMz/Mwが異なっていた。
[Example 5]
The blending amount of each monomer is such that the composition ratio of each monomer unit in the resin of the obtained foamable thermoplastic resin particles is 81.9% by mass of a styrene (ST) monomer unit, methacrylic acid (MAA ) The monomer unit was changed to 8.2% by mass, and the methyl methacrylate (MMA) monomer unit was changed to 9.9% by mass. Otherwise, the expandable thermoplastic resin particles were obtained in the same manner as in Example 1. The foamed thermoplastic resin particles produced and obtained, the pre-foamed particles obtained from the resin particles, and the foamed molded article were measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.
The expandable thermoplastic resin particles produced in Example 5 had the same composition ratio of each monomer unit in the resin as that of Example 2, but the obtained resin had Mz / Mw of It was different.

[実施例6]
各単量体の配合量を、得られた発泡性熱可塑性樹脂粒子の樹脂中の各単量体単位の組成比が、スチレン(ST)単量体単位85.9質量%、メタクリル酸(MAA)単量体単位8.1質量%、メタクリル酸メチル(MMA)単量体単位6.0質量%となるように変更し、それ以外は実施例1と同様にして発泡性熱可塑性樹脂粒子を製造し、得られた発泡性熱可塑性樹脂粒子、及び該樹脂粒子から得られた予備発泡粒子と発泡成形体について、実施例1と同様に前記各測定・評価を行った。その結果を表1に記す。
[Example 6]
The blending amount of each monomer is such that the composition ratio of each monomer unit in the resin of the obtained foamable thermoplastic resin particles is 85.9% by mass of a styrene (ST) monomer unit, methacrylic acid (MAA ) The monomer unit was changed to 8.1% by mass and the methyl methacrylate (MMA) monomer unit to 6.0% by mass. The foamed thermoplastic resin particles produced and obtained, the pre-foamed particles obtained from the resin particles, and the foamed molded article were measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例7]
各単量体の配合量を、得られた発泡性熱可塑性樹脂粒子の樹脂中の各単量体単位の組成比が、スチレン(ST)単量体単位85.8質量%、メタクリル酸(MAA)単量体単位8.1質量%、メタクリル酸メチル(MMA)単量体単位6.1質量%となるように変更し、更にイソ脂肪酸第1級アルコールの代わりに2−エチルヘキシルアルコール(炭素数8)を用い、それ以外は実施例1と同様にして発泡性熱可塑性樹脂粒子を製造し、得られた発泡性熱可塑性樹脂粒子、及び該樹脂粒子から得られた予備発泡粒子と発泡成形体について、実施例1と同様に前記各測定・評価を行った。その結果を表1に記す。
[Example 7]
The blending amount of each monomer is such that the composition ratio of each monomer unit in the resin of the obtained foamable thermoplastic resin particles is 85.8% by mass of a styrene (ST) monomer unit, methacrylic acid (MAA) ) Monomer unit 8.1% by mass, methyl methacrylate (MMA) monomer unit 6.1% by mass, and 2-ethylhexyl alcohol (carbon number) instead of iso fatty acid primary alcohol 8), and other than that, expandable thermoplastic resin particles were produced in the same manner as in Example 1, and the obtained expandable thermoplastic resin particles, and pre-expanded particles and foamed molded products obtained from the resin particles were obtained. The above measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

[実施例8]
各単量体の配合量を、得られた発泡性熱可塑性樹脂粒子の樹脂中の各単量体単位の組成比が、スチレン(ST)単量体単位85.8質量%、メタクリル酸(MAA)単量体単位8.1質量%、メタクリル酸メチル(MMA)単量体単位16.5質量%となるように変更し、それ以外は実施例1と同様にして発泡性熱可塑性樹脂粒子を製造し、得られた発泡性熱可塑性樹脂粒子、及び該樹脂粒子から得られた予備発泡粒子と発泡成形体について、実施例1と同様に前記各測定・評価を行った。その結果を表1に記す。
[Example 8]
The blending amount of each monomer is such that the composition ratio of each monomer unit in the resin of the obtained foamable thermoplastic resin particles is 85.8% by mass of a styrene (ST) monomer unit, methacrylic acid (MAA) ) The monomer unit was changed to 8.1% by mass and the methyl methacrylate (MMA) monomer unit was 16.5% by mass. Otherwise, the foamable thermoplastic resin particles were prepared in the same manner as in Example 1. The foamed thermoplastic resin particles produced and obtained, the pre-foamed particles obtained from the resin particles, and the foamed molded article were measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.

[比較例1]
実施例1での共重合体に代えて、耐熱ポリスチレン系樹脂(東洋スチレン社製、スチレン−メタクリル酸共重合体、商品名「T−080」) とポリスチレン樹脂(東洋スチレン社製、ポリスチレン、商品名「HRM−10N」) を質量比40:60で配合した熱可塑性樹脂を用いた。この熱可塑性樹脂100質量部に対して、ステアリン酸モノグリセライド0.31質量部を予めタンブラーミキサーにて均一に混合したものを単軸押出機内へ供給した。その後、溶融押出法による発泡性熱可塑性樹脂粒子の製造、予備発泡及び発泡成形体の製造を実施例1と同様にして行い、実施例1と同様に前記各測定・評価を行った。その結果を表1に記す。
[Comparative Example 1]
Instead of the copolymer in Example 1, a heat-resistant polystyrene resin (manufactured by Toyo Styrene Co., Ltd., styrene-methacrylic acid copolymer, trade name “T-080”) and polystyrene resin (manufactured by Toyo Styrene Co., Ltd., polystyrene, commodity The thermoplastic resin which mix | blended name "HRM-10N" by mass ratio 40:60 was used. A mixture obtained by uniformly mixing 0.31 part by mass of stearic acid monoglyceride in advance with a tumbler mixer with respect to 100 parts by mass of this thermoplastic resin was supplied into a single screw extruder. Thereafter, production of foamable thermoplastic resin particles by melt extrusion, pre-foaming and production of a foamed molded article were carried out in the same manner as in Example 1, and each measurement and evaluation was carried out in the same manner as in Example 1. The results are shown in Table 1.

[比較例2]
メタクリル酸を使用せず、各単量体の配合量を、得られた発泡性熱可塑性樹脂粒子の樹脂中の各単量体単位の組成比が、スチレン(ST)単量体単位93.6質量%、メタクリル酸メチル(MMA)単量体単位6.4質量%となるように変更し、それ以外は実施例1と同様にして発泡性熱可塑性樹脂粒子を製造し、得られた発泡性熱可塑性樹脂粒子、及び該樹脂粒子から得られた予備発泡粒子と発泡成形体について、実施例1と同様に前記各測定・評価を行った。その結果を表1に記す。
[Comparative Example 2]
Without using methacrylic acid, the composition ratio of each monomer unit in the resin of the obtained foamable thermoplastic resin particles is the same as the styrene (ST) monomer unit 93.6. The foamable thermoplastic resin particles were produced in the same manner as in Example 1 except that the content was changed to be mass%, and methyl methacrylate (MMA) monomer unit was 6.4 mass%. The thermoplastic resin particles, the pre-foamed particles obtained from the resin particles, and the foamed molded article were measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.

Figure 2013071996
Figure 2013071996

表1の結果から、熱可塑性樹脂としてスチレン−メタクリル酸−メタクリル酸メチル共重合体を用いた実施例1〜8で製造した発泡性熱可塑性樹脂粒子は、予備発泡時の発泡性が良好であり、得られた発泡成形体の曲げ強度が高く、耐熱性にも優れていた。   From the results of Table 1, the expandable thermoplastic resin particles produced in Examples 1 to 8 using a styrene-methacrylic acid-methyl methacrylate copolymer as the thermoplastic resin have good foamability at the time of preliminary foaming. The resulting foamed molded article had high bending strength and excellent heat resistance.

一方、メタクリル酸メチル(MMA)を使用せず、スチレン−メタクリル酸共重合体を含む熱可塑性樹脂を用いた比較例1は、得られる発泡成形体の曲げ強度が低くなった。
またメタクリル酸(MAA)を使用せず、スチレン−メタクリル酸メチル共重合体を含む熱可塑性樹脂を用いた比較例2は、得られる発泡成形体の曲げ強度が低くなった。
On the other hand, in Comparative Example 1 using a thermoplastic resin containing a styrene-methacrylic acid copolymer without using methyl methacrylate (MMA), the bending strength of the obtained foamed molded product was low.
Moreover, the comparative example 2 which did not use methacrylic acid (MAA), and used the thermoplastic resin containing a styrene-methyl methacrylate copolymer, the bending strength of the obtained foaming molding became low.

本発明は、耐熱性、機械的強度に優れたスチレン−メタクリル酸−メタクリル酸メチル共重合体を主成分とする熱可塑性樹脂を用いた発泡性熱可塑性樹脂粒子及び予備発泡粒子、発泡成形体に関する。   TECHNICAL FIELD The present invention relates to expandable thermoplastic resin particles, pre-expanded particles, and a foam-molded product using a thermoplastic resin mainly composed of a styrene-methacrylic acid-methyl methacrylate copolymer having excellent heat resistance and mechanical strength. .

1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器。   DESCRIPTION OF SYMBOLS 1 ... Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, 10: Dehydration dryer with solid-liquid separation function, 11: Storage container.

Claims (15)

発泡剤を含む熱可塑性樹脂粒子からなる発泡性熱可塑性樹脂粒子であって、
前記熱可塑性樹脂が、スチレン−メタクリル酸−メタクリル酸メチル共重合体であることを特徴とする発泡性熱可塑性樹脂粒子。
Expandable thermoplastic resin particles comprising thermoplastic resin particles containing a foaming agent,
Expandable thermoplastic resin particles, wherein the thermoplastic resin is a styrene-methacrylic acid-methyl methacrylate copolymer.
前記共重合体は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときに、メタクリル酸メチル単量体単位の含有量が2〜20質量%の範囲内である請求項1に記載の発泡性熱可塑性樹脂粒子。   The copolymer has a methyl methacrylate monomer unit content when the total content of the styrene monomer unit, the methacrylic acid monomer unit, and the methyl methacrylate monomer unit is 100% by mass. The expandable thermoplastic resin particles according to claim 1, wherein is in the range of 2 to 20% by mass. 前記共重合体は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときに、メタクリル酸メチル単量体単位の含有量が5〜10質量%の範囲内である請求項1又は2に記載の発泡性熱可塑性樹脂粒子。   The copolymer has a methyl methacrylate monomer unit content when the total content of the styrene monomer unit, the methacrylic acid monomer unit, and the methyl methacrylate monomer unit is 100% by mass. The foamable thermoplastic resin particles according to claim 1 or 2, wherein the content is in the range of 5 to 10 mass%. 前記熱可塑性樹脂中のスチレンの二量体及び三量体の残存量が0.6質量%であり、且つスチレン単量体の残存量が熱可塑性樹脂中700ppm以下である請求項1〜3のいずれか1項に記載の発泡性熱可塑性樹脂粒子。   The residual amount of styrene dimer and trimer in the thermoplastic resin is 0.6% by mass, and the residual amount of styrene monomer is 700 ppm or less in the thermoplastic resin. The expandable thermoplastic resin particle according to any one of the above items. 前記熱可塑性樹脂は、重量平均分子量(Mw)が10万〜35万の範囲内であり、且つZ平均分子量(Mz)の重量平均分子量(Mw)に対する比(Mz/Mw)が1.6〜3.5の範囲内である請求項1〜4のいずれか1項に記載の発泡性熱可塑性樹脂粒子。   The thermoplastic resin has a weight average molecular weight (Mw) in the range of 100,000 to 350,000, and a ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) of 1.6 to The expandable thermoplastic resin particles according to any one of claims 1 to 4, which are within a range of 3.5. 前記熱可塑性樹脂中に、炭素数14以上の脂肪族第1アルコールを0.02〜1.0質量%の範囲で含有する請求項1〜4のいずれか1項に記載の発泡性熱可塑性樹脂粒子。   The foamable thermoplastic resin according to any one of claims 1 to 4, wherein the thermoplastic resin contains an aliphatic primary alcohol having 14 or more carbon atoms in a range of 0.02 to 1.0 mass%. particle. スチレン−メタクリル酸−メタクリル酸メチル共重合体を、樹脂供給装置内で溶融して発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から押し出して粒子状に形成する溶融押出法によって発泡性熱可塑性樹脂粒子を得ることを特徴とする発泡性熱可塑性樹脂粒子の製造方法。   Styrene-methacrylic acid-methyl methacrylate copolymer is melted in a resin supply device and a foaming agent is press-fitted and kneaded, and the molten resin containing the foaming agent is extruded from a small hole in a die attached to the tip of the resin supply device. A foamable thermoplastic resin particle production method, comprising: obtaining foamable thermoplastic resin particles by a melt extrusion method to form particles. スチレン−メタクリル酸−メタクリル酸メチル共重合体を、樹脂供給装置内で溶融して発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性熱可塑性樹脂粒子を得ることを特徴とする発泡性熱可塑性樹脂粒子の製造方法。   Styrene-methacrylic acid-methyl methacrylate copolymer is melted in a resin supply device, and a foaming agent is press-fitted and kneaded, and the molten resin containing the foaming agent is directly from the small hole of the die attached to the tip of the resin supply device. Foaming thermoplastic, characterized by extruding into a cooling liquid, cutting the extrudate with a high-speed rotating blade at the same time as extrusion, and cooling and solidifying the extrudate by contact with the liquid to obtain expandable thermoplastic resin particles A method for producing resin particles. 前記共重合体は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときに、メタクリル酸メチル単量体単位の含有量が2〜20質量%の範囲内である請求項7又は8に記載の発泡性熱可塑性樹脂粒子の製造方法。   The copolymer has a methyl methacrylate monomer unit content when the total content of the styrene monomer unit, the methacrylic acid monomer unit, and the methyl methacrylate monomer unit is 100% by mass. The method for producing expandable thermoplastic resin particles according to claim 7 or 8, wherein is in the range of 2 to 20% by mass. 前記共重合体は、スチレン単量体単位、メタクリル酸単量体単位、及びメタクリル酸メチル単量体単位の合計含有量を100質量%としたときに、メタクリル酸メチル単量体単位の含有量が5〜10質量%の範囲内である請求項7〜9のいずれか1項に記載の発泡性熱可塑性樹脂粒子の製造方法。   The copolymer has a methyl methacrylate monomer unit content when the total content of the styrene monomer unit, the methacrylic acid monomer unit, and the methyl methacrylate monomer unit is 100% by mass. The method for producing expandable thermoplastic resin particles according to any one of claims 7 to 9, wherein is in the range of 5 to 10% by mass. 前記熱可塑性樹脂中のスチレンの二量体及び三量体の残存量が0.6質量%であり、且つスチレン単量体の残存量が熱可塑性樹脂中700ppm以下である請求項7〜10のいずれか1項に記載の発泡性熱可塑性樹脂粒子の製造方法。   The residual amount of styrene dimer and trimer in the thermoplastic resin is 0.6 mass%, and the residual amount of styrene monomer is 700 ppm or less in the thermoplastic resin. The manufacturing method of the foamable thermoplastic resin particle of any one of Claims 1. 前記熱可塑性樹脂は、重量平均分子量(Mw)が10万〜35万の範囲内であり、且つZ平均分子量(Mz)の重量平均分子量(Mw)に対する比(Mz/Mw)が1.6〜3.5の範囲内である請求項7〜11のいずれか1項に記載の発泡性熱可塑性樹脂粒子の製造方法。   The thermoplastic resin has a weight average molecular weight (Mw) in the range of 100,000 to 350,000, and a ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) of 1.6 to It is in the range of 3.5, The manufacturing method of the expandable thermoplastic resin particle of any one of Claims 7-11. 前記熱可塑性樹脂中に、炭素数14以上の脂肪族第1アルコールを0.02〜1.0質量%の範囲で含有する請求項7〜12のいずれか1項に記載の発泡性熱可塑性樹脂粒子の製造方法。   The foamable thermoplastic resin according to any one of claims 7 to 12, wherein the thermoplastic resin contains an aliphatic primary alcohol having 14 or more carbon atoms in a range of 0.02 to 1.0 mass%. Particle production method. 請求項1〜6のいずれか1項に記載の発泡性熱可塑性樹脂粒子を加熱し発泡させて得られた熱可塑性樹脂予備発泡粒子。   Thermoplastic resin pre-expanded particles obtained by heating and foaming the expandable thermoplastic resin particles according to any one of claims 1 to 6. 請求項14に記載の熱可塑性樹脂予備発泡粒子を成形型のキャビティに充填し、加熱して型内発泡成形して得られた熱可塑性樹脂発泡成形体。   A thermoplastic resin foam molded article obtained by filling the thermoplastic resin pre-foamed particles according to claim 14 into a cavity of a molding die and heating and molding in-mold foam molding.
JP2011211709A 2011-09-28 2011-09-28 Expandable thermoplastic resin particle, process for producing the same, thermoplastic resin prefoamed particle, and thermoplastic resin foam molded product Withdrawn JP2013071996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211709A JP2013071996A (en) 2011-09-28 2011-09-28 Expandable thermoplastic resin particle, process for producing the same, thermoplastic resin prefoamed particle, and thermoplastic resin foam molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211709A JP2013071996A (en) 2011-09-28 2011-09-28 Expandable thermoplastic resin particle, process for producing the same, thermoplastic resin prefoamed particle, and thermoplastic resin foam molded product

Publications (1)

Publication Number Publication Date
JP2013071996A true JP2013071996A (en) 2013-04-22

Family

ID=48476761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211709A Withdrawn JP2013071996A (en) 2011-09-28 2011-09-28 Expandable thermoplastic resin particle, process for producing the same, thermoplastic resin prefoamed particle, and thermoplastic resin foam molded product

Country Status (1)

Country Link
JP (1) JP2013071996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030755A (en) * 2013-07-31 2015-02-16 積水化成品工業株式会社 In-mold foam molded body, fiber-reinforced composite, and method for producing in-mold foam molded body
US11089573B2 (en) 2014-10-31 2021-08-10 Sony Corporation Transmitter and receiver for multiple channel operation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030755A (en) * 2013-07-31 2015-02-16 積水化成品工業株式会社 In-mold foam molded body, fiber-reinforced composite, and method for producing in-mold foam molded body
US11089573B2 (en) 2014-10-31 2021-08-10 Sony Corporation Transmitter and receiver for multiple channel operation

Similar Documents

Publication Publication Date Title
TWI457379B (en) Expandable polystyrene type resin particle and production method thereof, and molded form
JP5350632B2 (en) Expanded and extruded thermoplastic foams made with methyl formate-based blowing agents
JP5969938B2 (en) Expandable thermoplastic resin particles and production method thereof, pre-expanded particles, foamed molded product, resin composition for producing antistatic resin molded product
WO2011118706A1 (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JP2007169408A (en) Styrenic resin expandable particle, method for producing the same and in-mold expansion molded product
WO2013111368A1 (en) Expandable polystyrene-type resin particles and method for producing same, and molded foam
CN101326225A (en) Method for preparing polystyrene foam using polymer processing additives
JP2010229205A (en) Expandable thermoplastic resin particle, process for producing the same, prefoamed particle and foam molded product
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP6063792B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP2013071996A (en) Expandable thermoplastic resin particle, process for producing the same, thermoplastic resin prefoamed particle, and thermoplastic resin foam molded product
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2017132970A (en) Styrenic resin foamable particle, foamed particle and foamed molding
JP5756003B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP6223097B2 (en) Expandable polystyrene resin particles and production method thereof, and polystyrene resin pre-expanded particles and expanded molded body
JP5986410B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP2014065868A (en) Thermoplastic resin particles and method for manufacturing the same, expandable thermoplastic resin particles and method for manufacturing the same, prefoamed particles, and foam molding
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP2012072230A (en) Expandable polystyrene-based resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article
JP2012201688A (en) Expandable polystyrene resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202