JP2013227537A - Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding - Google Patents

Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding Download PDF

Info

Publication number
JP2013227537A
JP2013227537A JP2013064471A JP2013064471A JP2013227537A JP 2013227537 A JP2013227537 A JP 2013227537A JP 2013064471 A JP2013064471 A JP 2013064471A JP 2013064471 A JP2013064471 A JP 2013064471A JP 2013227537 A JP2013227537 A JP 2013227537A
Authority
JP
Japan
Prior art keywords
polystyrene resin
expandable polystyrene
resin particles
particles
foaming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013064471A
Other languages
Japanese (ja)
Inventor
Ryosuke Chiumi
良輔 地海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2013064471A priority Critical patent/JP2013227537A/en
Publication of JP2013227537A publication Critical patent/JP2013227537A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a foamable polystyrene-based resin particle capable of obtaining a foamed molding excellent in strength, and to provide a manufacturing method thereof.SOLUTION: A foamable polystyrene-based resin particle containing a physical foaming agent and polystyrene resin whose melt flow rate (MFR) measured at 200°C is within a range of 1.0-10.0 g/10 minutes, and whose melt tension (MT) measured at 200°C is 5 cN or more.

Description

本発明は、外観良好で強度にも優れた発泡成形体を得ることが可能な発泡性ポリスチレン系樹脂粒子とその製造方法、該発泡性ポリスチレン系樹脂粒子を用いて得られる予備発泡粒子及び発泡成形体に関する。   The present invention relates to an expandable polystyrene resin particle capable of obtaining a foam molded article having a good appearance and excellent strength, a method for producing the same, pre-expanded particles obtained by using the expandable polystyrene resin particles, and foam molding About the body.

ポリスチレン系樹脂発泡成形体は、物理発泡剤を含有する発泡性ポリスチレン系樹脂粒子を水蒸気などの加熱媒体によって加熱・発泡させて予備発泡粒子とし、この予備発泡粒子を成形型のキャビティ内に充填した上で、成形型内に水蒸気などの加熱媒体を圧入して予備発泡粒子を加熱、発泡させて発泡粒子間の隙間を埋めながら発泡圧によって互いに融着一体化させた後、得られた発泡成形体を型内にて冷却する冷却工程を経て製造されている。
従来、ポリスチレン系樹脂発泡成形体(以下、発泡成形体と記す)の機械強度向上などを目的とし、発泡性ポリスチレン系樹脂粒子の原料として用いるポリスチレン系樹脂の溶融張力等に着目した技術としては、例えば、特許文献1に開示された技術が提案されている。
The polystyrene-based resin foam molded article is obtained by heating and foaming expandable polystyrene resin particles containing a physical foaming agent with a heating medium such as water vapor to form pre-expanded particles, and filling the pre-expanded particles into the mold cavity. Above, pressurize a heating medium such as water vapor into the mold to heat and foam the pre-foamed particles, and fuse and integrate them with each other by foaming pressure while filling the gaps between the foamed particles. It is manufactured through a cooling process in which the body is cooled in the mold.
Conventionally, for the purpose of improving the mechanical strength of polystyrene resin foam moldings (hereinafter referred to as foam moldings), as a technology focusing on the melt tension of polystyrene resins used as raw materials for expandable polystyrene resin particles, For example, a technique disclosed in Patent Document 1 has been proposed.

特許文献1には、密度ρが0.02〜0.008g/cmのスチレン系樹脂発泡体において、スチレン系樹脂の溶融張力が5〜40gfであり、平均気泡径d(μm)と上記密度ρとの間に、
35/ρ1/3 ≦ d ≦70/ρ1/3 ・・・(1)なる関係を有し、かつ熱伝導率λ(kcal/m・h・℃)と上記密度ρとの間に、
λ ≦ 0.0001×1/ρ+0.023 ・・・(2)
なる関係を有することを特徴とするスチレン系樹脂発泡体が開示されている。
このスチレン系樹脂発泡体は、スチレン系重合体粒子からなる種粒子を分散させた水性媒体中にて、スチレン系単量体を重合開始剤の存在下で懸濁重合させ、次いで得られた重合体粒子に発泡剤を含浸させることによって製造された発泡性スチレン系重合体粒子を加熱して予備発泡し、得られた予備発泡粒子を型内発泡成形して製造される。
In Patent Document 1, in a styrene resin foam having a density ρ of 0.02 to 0.008 g / cm 3 , the melt tension of the styrene resin is 5 to 40 gf, the average cell diameter d (μm) and the above density. Between ρ
35 / ρ 1/3 ≦ d ≦ 70 / ρ 1/3 (1) and between the thermal conductivity λ (kcal / m · h · ° C.) and the density ρ,
λ ≦ 0.0001 × 1 / ρ + 0.023 (2)
A styrenic resin foam characterized by the following relationship is disclosed.
This styrenic resin foam is obtained by subjecting a styrene monomer to suspension polymerization in the presence of a polymerization initiator in an aqueous medium in which seed particles composed of styrene polymer particles are dispersed. The foamable styrenic polymer particles produced by impregnating the coalesced particles with a foaming agent are heated and pre-foamed, and the obtained pre-foamed particles are produced by in-mold foam molding.

再公表WO97/17396号公報Republished WO97 / 17396

特許文献1に開示されたスチレン系樹脂発泡体は、低密度で有りながら、低い熱伝導率を有し、断熱性に優れているものの、発泡成形体の外観や強度に関しては未だ改善すべき点があった。   Although the styrenic resin foam disclosed in Patent Document 1 has a low density, it has a low thermal conductivity and is excellent in heat insulation properties, but it still has to be improved with respect to the appearance and strength of the foam molded article. was there.

本発明は、前記事情に鑑みてなされ、外観良好で強度にも優れた発泡成形体を得ることが可能な発泡性ポリスチレン系樹脂粒子とその製造方法、該発泡性ポリスチレン系樹脂粒子を用いて得られる予備発泡粒子及び発泡成形体の提供を課題とする。   The present invention has been made in view of the above circumstances, and is obtained by using an expandable polystyrene resin particle capable of obtaining an expanded molded article having a good appearance and excellent strength, a production method thereof, and the expandable polystyrene resin particle. An object of the present invention is to provide pre-expanded particles and a foam-molded article.

前記課題を達成するため、本発明は、物理発泡剤とポリスチレン系樹脂とを含有する発泡性ポリスチレン系樹脂粒子であって、前記ポリスチレン系樹脂は、200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、200℃で測定した溶融張力(MT)が5cN以上であることを特徴とする発泡性ポリスチレン系樹脂粒子を提供する。   In order to achieve the above object, the present invention is an expandable polystyrene resin particle containing a physical foaming agent and a polystyrene resin, and the polystyrene resin has a melt flow rate (MFR) measured at 200 ° C. Provided is an expandable polystyrene resin particle having a melt tension (MT) measured at 200 ° C. of 5 cN or more within a range of 1.0 to 10.0 g / 10 minutes.

本発明の発泡性ポリスチレン系樹脂粒子において、前記ポリスチレン系樹脂のメタノール可溶分が0.1〜5.0質量%の範囲であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the methanol-soluble content of the polystyrene resin is preferably in the range of 0.1 to 5.0% by mass.

本発明の発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に無機発泡核剤と化学発泡剤との一方又は両方が均一に含有されていることが好ましい。   In the expandable polystyrene resin particles of the present invention, it is preferable that one or both of the inorganic foam nucleating agent and the chemical foaming agent are uniformly contained in the entire expandable polystyrene resin particles (excluding internal bubbles). .

本発明の発泡性ポリスチレン系樹脂粒子は、樹脂供給装置内で溶融されたポリスチレン系樹脂に物理発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から冷却用液体中に直接押し出し、冷却用液体中に押し出した押出物を冷却用液体中にて回転刃で切断するとともに、押出物を液体との接触により冷却固化する溶融押出法によって製造されたことが好ましい。   The expandable polystyrene resin particles of the present invention are obtained by press-fitting and kneading a physical foaming agent into a polystyrene resin melted in a resin supply device, and a molten resin containing a foaming agent is attached to the tip of the resin supply device. Produced by a melt extrusion method that extrudes directly into the cooling liquid from the holes, cuts the extrudate extruded into the cooling liquid with a rotary blade in the cooling liquid, and cools and solidifies the extrudate by contact with the liquid. It is preferable.

また本発明は、樹脂供給装置内で溶融されたポリスチレン系樹脂に物理発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から冷却用液体中に直接押し出し、冷却用液体中に押し出した押出物を冷却用液体中にて回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、発泡性ポリスチレン系樹脂粒子中のポリスチレン系樹脂が、200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、200℃で測定した溶融張力(MT)が5cN以上であることを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法を提供する。   In addition, the present invention is a method in which a physical foaming agent is press-fitted and kneaded into a polystyrene resin melted in a resin supply device, and the foaming agent-containing molten resin is put into a cooling liquid from a small hole of a die attached to the tip of the resin supply device. The extrudate extruded directly into the cooling liquid is cut with a rotary blade in the cooling liquid, and the extrudate is cooled and solidified by contact with the liquid to obtain expandable polystyrene resin particles. In the method for producing expandable polystyrene resin particles by the method, the polystyrene resin in the expandable polystyrene resin particles has a melt flow rate (MFR) measured at 200 ° C. in the range of 1.0 to 10.0 g / 10 min. The melt tension (MT) measured at 200 degreeC is 5 cN or more, and the manufacturing method of the expandable polystyrene-type resin particle characterized by the above-mentioned is provided.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、発泡性ポリスチレン系樹脂粒子中のポリスチレン系樹脂のメタノール可溶分が0.1〜5.0質量%の範囲であることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the methanol-soluble content of the polystyrene resin in the expandable polystyrene resin particles is preferably in the range of 0.1 to 5.0% by mass.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記ポリスチレン系樹脂に無機発泡核剤と化学発泡剤との一方又は両方を添加し、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に無機発泡核剤と化学発泡剤との一方又は両方が均一に含有されている発泡性ポリスチレン系樹脂粒子を得ることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, one or both of an inorganic foam nucleating agent and a chemical foaming agent are added to the polystyrene resin, and the entire expandable polystyrene resin particles (excluding internal bubbles). It is preferable to obtain expandable polystyrene resin particles in which one or both of the inorganic foam nucleating agent and the chemical foaming agent are uniformly contained.

また本発明は、前記発泡性ポリスチレン系樹脂粒子を加熱し発泡させて得られた予備発泡粒子を提供する。   The present invention also provides pre-expanded particles obtained by heating and expanding the expandable polystyrene resin particles.

また本発明は、前記予備発泡粒子を成形型のキャビティに充填し、加熱して型内発泡成形して得られた発泡成形体を提供する。   The present invention also provides a foamed molded article obtained by filling the pre-expanded particles into a cavity of a mold and heating and molding in-mold.

本発明の発泡性ポリスチレン系樹脂粒子は、物理発泡剤とポリスチレン系樹脂とを含有する発泡性ポリスチレン系樹脂粒子であって、前記ポリスチレン系樹脂は、200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、200℃で測定した溶融張力(MT)が5cN以上である構成としたことによって、該樹脂粒子を加熱して予備発泡し、得られた予備発泡粒子を型内発泡成形して、外観良好で強度に優れた発泡成形体を得ることができる。   The expandable polystyrene resin particles of the present invention are expandable polystyrene resin particles containing a physical foaming agent and a polystyrene resin, and the polystyrene resin has a melt flow rate (MFR) measured at 200 ° C. It is within the range of 1.0 to 10.0 g / 10 min and the melt tension (MT) measured at 200 ° C. is 5 cN or more. The pre-expanded particles can be foam-molded in the mold to obtain a foam-molded article having a good appearance and excellent strength.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、発泡性ポリスチレン系樹脂粒子中のポリスチレン系樹脂が、200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、200℃で測定した溶融張力(MT)が5cN以上である構成としたので、外観良好で強度に優れた発泡成形体を得ることができる発泡性ポリスチレン系樹脂粒子を効率よく製造することができる。   The method for producing expandable polystyrene resin particles of the present invention is a melt flow rate in which the polystyrene resin in the expandable polystyrene resin particles is measured at 200 ° C. in the method for producing expandable polystyrene resin particles by melt extrusion. (MFR) is in the range of 1.0 to 10.0 g / 10 min, and the melt tension (MT) measured at 200 ° C. is 5 cN or more, so that the foam molded article has good appearance and excellent strength. Can be produced efficiently.

溶融押出法による発泡性ポリスチレン系樹脂粒子の製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus of the expandable polystyrene-type resin particle by a melt extrusion method.

(発泡性ポリスチレン系樹脂粒子)
本発明の発泡性ポリスチレン系樹脂粒子は、物理発泡剤とポリスチレン系樹脂とを含有する発泡性ポリスチレン系樹脂粒子であって、前記ポリスチレン系樹脂は、200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、200℃で測定した溶融張力(MT)が5cN以上であることを特徴とする。
(Expandable polystyrene resin particles)
The expandable polystyrene resin particles of the present invention are expandable polystyrene resin particles containing a physical foaming agent and a polystyrene resin, and the polystyrene resin has a melt flow rate (MFR) measured at 200 ° C. The melt tension (MT) measured at 200 ° C. is in the range of 1.0 to 10.0 g / 10 min and is 5 cN or more.

なお、本発明において、「メルトフローレイト(MFR)」、「溶融張力(MT)」及び「メタノール可溶分」は、それぞれ下記の測定方法により測定された値を指す。   In the present invention, “melt flow rate (MFR)”, “melt tension (MT)”, and “methanol-soluble component” refer to values measured by the following measuring methods, respectively.

<メルトフローレイト(MFR)>
メルトフローレイトは、JIS K 7210:1999「プラスチック−熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」B法記載の方法に準拠して測定したものをいう。)
具体的には、例えば、東洋精機製作所社から商品名「セミオートメルトインデクサー」で市販されている測定装置を用い、この測定装置のシリンダー内に試料を3〜8g充填して充填棒を用いて試料を圧縮し、試験温度200℃、荷重49.03N、予熱時間4分の測定条件下にてポリスチレン系樹脂のメルトフローレイトを測定する。そして、試験数を3個以上として、各測定にて得られたポリスチレン系樹脂のメルトフローレイトの相加平均値をポリスチレン系樹脂のメルトフローレイトとする。
<Melt flow rate (MFR)>
The melt flow rate is measured in accordance with the method described in JIS K 7210: 1999 “Plastics—Test methods for melt mass flow rate (MFR) and melt volume flow rate (MVR) of thermoplastics” B method. )
Specifically, for example, using a measuring device commercially available from Toyo Seiki Seisakusho Co., Ltd. under the trade name “Semi-Auto Melt Indexer”, 3-8 g of the sample is filled in the cylinder of this measuring device, and a filling rod is used. The sample is compressed, and the melt flow rate of the polystyrene resin is measured under the measurement conditions of a test temperature of 200 ° C., a load of 49.03 N, and a preheating time of 4 minutes. And let the number of tests be 3 or more, and let the arithmetic average value of the melt flow rate of the polystyrene resin obtained by each measurement be the melt flow rate of the polystyrene resin.

<溶融張力(MT)>
ツインボアキャピラリーレオメーターRheologic5000T(イタリア チアスト社製)を用いて測定した。具体的には、まず、試験温度200℃に加熱された径15mmのバレルに測定試料樹脂を充填後、5分間予熱した。次いで、上記測定装置のピストン押出式プラストメーターのオリフィス(口径2.095mm、長さ8mm、流入角度90度(コニカル))からピストン降下速度(0.07730mm/s)を一定に保持して紐状に押出しながら、得られた紐状物を上記オリフィスの下方27cmに位置する張力検出のプーリーに通過させた。その後、前記紐状物を、巻取りロールを用いて、その巻取り速度を初速3.94388mm/s、加速度12mm/sで徐々に増加させつつ巻き取った。そして、当紐状物が切断した点の直前の極大値・極小値の平均張力を試料樹脂の溶融張力(MT)とした。
<Melting tension (MT)>
Measurement was performed using a twin-bore capillary rheometer Rheological 5000T (Chiast, Italy). Specifically, first, a measurement sample resin was filled in a 15 mm diameter barrel heated to a test temperature of 200 ° C., and then preheated for 5 minutes. Next, the piston descending speed (0.07730 mm / s) is kept constant from the orifice (2.095 mm diameter, 8 mm length, inflow angle 90 degrees (conical)) of the piston extrusion type plastometer of the above measuring device, and the string shape The resulting string was passed through a tension detecting pulley located 27 cm below the orifice. Then, the said string-like thing was wound up gradually increasing the winding speed by the initial speed of 3.94388 mm / s and the acceleration of 12 mm / s 2 using the winding roll. And the average tension of the maximum value and the minimum value immediately before the point at which the string-like material was cut was taken as the melt tension (MT) of the sample resin.

<メタノール可溶分>
ポリスチレン系樹脂3.5gをトルエン溶媒100mLに溶解させる。次に、それをメタノール600mLに攪拌しながら徐々に入れ、メタノール不溶分を沈殿させる。メタノール不溶分を濾過分別した後、メタノール不溶分を乾燥し、メタノールを除去する。得られた乾燥サンプルの質量を測定し、次の式にてメタノール可溶分量を求める。
メタノール可溶分量={3.5−(a)}/3.5×100(質量%)
ここで、aは乾燥サンプルの質量(g)を表す。
<Methanol-soluble matter>
3.5 g of polystyrene resin is dissolved in 100 mL of toluene solvent. Next, it is gradually added to 600 mL of methanol with stirring to precipitate methanol insoluble matter. After the methanol insoluble matter is separated by filtration, the methanol insoluble matter is dried and the methanol is removed. The mass of the obtained dry sample is measured, and the methanol-soluble amount is determined by the following formula.
Methanol-soluble content = {3.5- (a)} / 3.5 × 100 (mass%)
Here, a represents the mass (g) of the dried sample.

本発明の発泡性ポリスチレン系樹脂粒子に用いられるポリスチレン系樹脂は、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。   The polystyrene resin used for the expandable polystyrene resin particles of the present invention is not particularly limited. For example, styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene. Homopolymers of styrene monomers such as these or copolymers thereof, and the like, polystyrene resins containing 50% by mass or more of styrene are preferable, and polystyrene is more preferable.

また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。   Further, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. As, for example, alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl In addition to fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.

また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよく、添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などが挙げられる。   If a polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foam molded article. Examples thereof include rubber-modified polystyrene resins to which a diene rubbery polymer such as a polymer, ethylene-propylene-nonconjugated diene three-dimensional copolymer is added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.

原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、再生品ではないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られた再生ポリスチレン系樹脂を使用することができる。
この再生ポリスチレン系樹脂としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したポリスチレン系樹脂を用いることができる。また、使用することができる再生ポリスチレン系樹脂は、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたもの以外にも、家電製品(例えば、テレビ、冷蔵庫、洗濯機、エアコンなど)や事務用機器(例えば、複写機、ファクシミリ、プリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混練してリペレットした再生ポリスチレン系樹脂を用いることができる。
The polystyrene resin used as a raw material is a non-recycled polystyrene resin (virgin polystyrene) such as a commercially available ordinary polystyrene resin or a polystyrene resin newly produced by a method such as suspension polymerization. In addition, a regenerated polystyrene resin obtained by regenerating a used polystyrene resin foam molded article can be used.
As this recycled polystyrene-based resin, used polystyrene-based resin foam molded products, for example, fish boxes, household appliance cushioning materials, food packaging trays, etc. are recovered and recycled by the limonene dissolution method or heating volume reduction method. Can be used. In addition, recycled polystyrene resins that can be used are not only those obtained by reprocessing used polystyrene resin foam moldings, but also household electrical appliances (for example, televisions, refrigerators, washing machines, air conditioners, etc.) In addition, a recycled polystyrene resin obtained by pulverizing, melt-kneading, and re-pelletizing a non-foamed polystyrene resin molded product separated and collected from office equipment (for example, a copying machine, a facsimile machine, a printer, etc.) can be used.

本発明の発泡性ポリスチレン系樹脂粒子に含有させる物理発泡剤としては、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン等の脂肪族炭化水素、1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、1,1−ジクロロ−2,2,2−トリフルオロエタン(HCFC−123)、クロロジフルオロメタン(HCFC−22)、1−クロロ−1,2,2,2−テトラフルオロエタン(HCFC−124)等のクロロフルオロカーボン、1,1−ジフルオロエタン(HFC−152a)、1,1,1−トリフルオロエタン(HFC−143a)、1,1,1,2−テトラフルオロエタン(HFC−134a)、ジフルオロメタン(HFC−32)等のフルオロカーボン、各種アルコール、二酸化炭素、水、及び窒素などが挙げられ、これらの中の1種又は2種以上を併用して使用することができる。これらのうち、好ましい発泡剤としては、炭素数4又は5の炭化水素系物理発泡剤が挙げられ、特に、n−ブタン、イソブタン、n−ペンタン、イソペンタンが挙げられる。
物理発泡剤の添加量は、ポリスチレン系樹脂100質量部に対し2〜10質量部の範囲内が好ましく、3〜8質量部の範囲内がより好ましい。
Examples of the physical foaming agent contained in the expandable polystyrene resin particles of the present invention include aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane and neopentane, and 1,1-dichloro-1-fluoroethane. (HCFC-141b), 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), chlorodifluoromethane (HCFC-22), 1-chloro-1,2,2,2-tetrafluoro Chlorofluorocarbons such as ethane (HCFC-124), 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC) -134a), fluorocarbons such as difluoromethane (HFC-32), various alcohols, carbon dioxide Water, and the like can be mentioned nitrogen, can be used in combination one or more of these. Among these, preferable examples of the blowing agent include hydrocarbon-based physical foaming agents having 4 or 5 carbon atoms, and in particular, n-butane, isobutane, n-pentane, and isopentane.
The addition amount of the physical foaming agent is preferably in the range of 2 to 10 parts by mass, more preferably in the range of 3 to 8 parts by mass with respect to 100 parts by mass of the polystyrene-based resin.

本発明の発泡性ポリスチレン系樹脂粒子は、無機発泡核剤と化学発泡剤との一方又は両方が均一に含有されていることが好ましい。
前記無機発泡核剤としては、タルク、シリカ、ケイ酸塩鉱物粉末、マイカ、クレー、ゼオライト、炭酸カルシウム等が挙げられ、それらの中でも特に、タルク、シリカ、ケイ酸塩鉱物粉末から選択される1種又は2種以上が好ましい。
前記無機発泡核剤の量は、ポリスチレン系樹脂100質量部に対し、0.05〜5.0質量部の範囲内が好ましく、0.1〜2.0質量部の範囲内がより好ましい。
The expandable polystyrene resin particles of the present invention preferably contain one or both of an inorganic foam nucleating agent and a chemical foaming agent uniformly.
Examples of the inorganic foam nucleating agent include talc, silica, silicate mineral powder, mica, clay, zeolite, calcium carbonate, and the like. Among them, talc, silica, silicate mineral powder is particularly selected 1 Species or two or more are preferred.
The amount of the inorganic foam nucleating agent is preferably in the range of 0.05 to 5.0 parts by mass and more preferably in the range of 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the polystyrene-based resin.

前記化学発泡剤としては、アゾジカルボンアミド、N,N’−ジニトロソペンタメチレンテトラミン、4,4’−オキシビス(ベンゼンスルホニルヒドラジド)、炭酸水素ナトリウム、炭酸水素ナトリウムとクエン酸の混合物等が挙げられ、それらの中でも特に、アゾジカルボンアミド、炭酸水素ナトリウム、炭酸水素ナトリウムとクエン酸の混合物から選択される1種又は2種以上が好ましい。
前記化学発泡剤の量は、ポリスチレン系樹脂100質量部に対し0.05〜5.0質量部の範囲内が好ましく、0.1〜3.0質量部の範囲内がより好ましい。
Examples of the chemical foaming agent include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, 4,4′-oxybis (benzenesulfonylhydrazide), sodium hydrogen carbonate, a mixture of sodium hydrogen carbonate and citric acid, and the like. Among these, one or more selected from azodicarbonamide, sodium hydrogen carbonate, a mixture of sodium hydrogen carbonate and citric acid are preferable.
The amount of the chemical foaming agent is preferably in the range of 0.05 to 5.0 parts by mass, more preferably in the range of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the polystyrene-based resin.

本発明の発泡性ポリスチレン系樹脂粒子には、物性を損なわない範囲内において、架橋剤、可塑剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよく、又、ジンクステアレート等の粉末状金属石鹸類を前記発泡性スチレン樹脂粒子の表面に塗布しておけば、発泡性ポリスチレン系樹脂粒子の予備発泡工程においてポリスチレン系樹脂予備発泡粒子同士の結合を減少させることができて好ましい。   In the foamable polystyrene resin particles of the present invention, additives such as a crosslinking agent, a plasticizer, a filler, a flame retardant, a flame retardant aid, a lubricant, and a colorant may be added within a range that does not impair the physical properties. Well, if powder metal soaps such as zinc stearate are applied on the surface of the expandable styrene resin particles, the polystyrene resin pre-expanded particles are bonded together in the pre-expanding step of the expandable polystyrene resin particles. Is preferable.

本発明の発泡性ポリスチレン系樹脂粒子の粒径は、特に限定されないが、通常は0.5〜3.0mmの範囲が好ましく、0.7〜2.0mmの範囲がより好ましい。また、粒子の形状は、特に限定されないが、球状乃至略球状であることが好ましい。   The particle size of the expandable polystyrene resin particles of the present invention is not particularly limited, but is usually preferably in the range of 0.5 to 3.0 mm, more preferably in the range of 0.7 to 2.0 mm. The shape of the particles is not particularly limited, but is preferably spherical or substantially spherical.

本発明の発泡性ポリスチレン系樹脂粒子は、該粒子中のポリスチレン系樹脂の200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、1.2〜8.0g/10分の範囲内であることがより好ましい。メルトフローレイト(MFR)が1.0g/10分未満であると、発泡性ポリスチレン系樹脂粒子を加熱して得られる発泡体の発泡倍数が高倍化できなくなるおそれがある。メルトフローレイト(MFR)が10.0グラム/10分を超えると、発泡性ポリスチレン系樹脂粒子を加熱して得られる発泡体の強度が低下するおそれがある。   The expandable polystyrene resin particles of the present invention have a melt flow rate (MFR) measured at 200 ° C. of the polystyrene resin in the particles in the range of 1.0 to 10.0 g / 10 min, 1.2 More preferably, it is in the range of ˜8.0 g / 10 minutes. If the melt flow rate (MFR) is less than 1.0 g / 10 min, the foaming factor of the foam obtained by heating the expandable polystyrene resin particles may not be increased. If the melt flow rate (MFR) exceeds 10.0 grams / 10 minutes, the strength of the foam obtained by heating the expandable polystyrene resin particles may be reduced.

本発明の発泡性ポリスチレン系樹脂粒子は、該粒子中のポリスチレン系樹脂の200℃で測定した溶融張力(MT)が5cN以上であり、7cN以上であることがより好ましい。溶融張力(MT)が5cN未満であると、発泡性ポリスチレン系樹脂粒子を加熱して得られる発泡体の強度が低下するおそれがある。溶融張力(MT)の上限は特に制限されないが、通常は30cN以下であることが好ましい。   The expandable polystyrene resin particles of the present invention have a melt tension (MT) measured at 200 ° C. of the polystyrene resin in the particles of 5 cN or more, and more preferably 7 cN or more. If the melt tension (MT) is less than 5 cN, the strength of the foam obtained by heating the expandable polystyrene resin particles may decrease. Although the upper limit of melt tension (MT) is not particularly limited, it is usually preferably 30 cN or less.

本発明の発泡性ポリスチレン系樹脂粒子は、該粒子中のポリスチレン系樹脂のメタノール可溶分が0.1〜5.0質量%の範囲であることが好ましく、0.5〜4.0質量%の範囲であることが好ましい。メタノール可溶分が0.1質量%未満であると発泡性ポリスチレン系樹脂粒子を加熱して得られる発泡体の発泡倍数が高倍化できなくなり、また、外観が悪くなり、強度が低下するおそれがある。メタノール可溶分が5.0質量%を超えると、発泡性ポリスチレン系樹脂粒子を加熱して得られる発泡体の耐熱性や強度が低下するおそれがある。   The expandable polystyrene resin particles of the present invention preferably have a methanol-soluble content of the polystyrene resin in the particles in the range of 0.1 to 5.0% by mass, and 0.5 to 4.0% by mass. It is preferable that it is the range of these. If the methanol-soluble content is less than 0.1% by mass, the expansion ratio of the foam obtained by heating the expandable polystyrene resin particles cannot be increased, and the appearance may deteriorate and the strength may decrease. is there. If the methanol-soluble content exceeds 5.0% by mass, the heat resistance and strength of the foam obtained by heating the expandable polystyrene resin particles may be reduced.

本発明の発泡性ポリスチレン系樹脂粒子は、物理発泡剤を含有するポリスチレン系樹脂を粒子状としてなり、ポリスチレン系樹脂は、200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、200℃で測定した溶融張力(MT)が5cN以上である構成としたことによって、該樹脂粒子を加熱して予備発泡し、得られた予備発泡粒子を型内発泡成形して、外観良好で強度に優れた発泡成形体を得ることができる。   The expandable polystyrene resin particles of the present invention have a polystyrene resin containing a physical foaming agent in the form of particles, and the polystyrene resin has a melt flow rate (MFR) measured at 200 ° C. of 1.0 to 10.0 g. / 10 minutes, and the melt tension (MT) measured at 200 ° C. is 5 cN or more, whereby the resin particles are heated and pre-expanded, and the obtained pre-expanded particles are put into the mold. By performing foam molding, it is possible to obtain a foam molded article having a good appearance and excellent strength.

(発泡性ポリスチレン系樹脂粒子の製造方法)
本発明の発泡性ポリスチレン系樹脂粒子の製造方法では、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から冷却用液体中に直接押し出し、冷却用液体中に押し出した押出物を冷却用液体中にて回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る。この発泡性ポリスチレン系樹脂粒子の製造方法のことを、溶融押出法ということがある。
本発明の発泡性ポリスチレン系樹脂粒子の製造方法では、発泡性ポリスチレン系樹脂粒子中のポリスチレン系樹脂が、200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、200℃で測定した溶融張力(MT)が5cN以上であることを特徴としている。
(Method for producing expandable polystyrene resin particles)
In the method for producing expandable polystyrene resin particles of the present invention, a foaming agent is press-fitted and kneaded into a polystyrene resin melted in a resin supply device, and a foam resin-containing molten resin is attached to the tip of the resin supply device. The extrudate extruded into the cooling liquid directly from the small holes of the glass and cut into the cooling liquid is cut with a rotary blade in the cooling liquid, and the extrudate is cooled and solidified by contact with the liquid to expand polystyrene. System resin particles are obtained. The method for producing the expandable polystyrene resin particles is sometimes referred to as a melt extrusion method.
In the method for producing expandable polystyrene resin particles of the present invention, the polystyrene resin in the expandable polystyrene resin particles has a melt flow rate (MFR) measured at 200 ° C. of 1.0 to 10.0 g / 10 min. Within the range, the melt tension (MT) measured at 200 ° C. is 5 cN or more.

図1は、本発明の発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図であり、本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥して発泡性ポリスチレン系樹脂粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性ポリスチレン系樹脂粒子を貯留する貯留容器11とを備えて構成されている。   FIG. 1 is a configuration diagram showing an example of a production apparatus used in the method for producing expandable polystyrene resin particles of the present invention. The production apparatus of this example includes an extruder 1 as a resin supply apparatus, and an extruder 1. A die 2 having a large number of small holes attached to the tip of the resin, a raw material supply hopper 3 for introducing a resin raw material or the like into the extruder 1, and a foaming agent through the foaming agent supply port 5 to the molten resin in the extruder 1. A high pressure pump 4 to be press-fitted, a cutting chamber 7 provided so that cooling water is brought into contact with a resin discharge surface in which a small hole of the die 2 is formed, and cooling water is circulated and supplied into the chamber, and a small hole of the die 2 The cutter 6 is rotatably provided in the cutting chamber 7 so as to cut the resin extruded from the resin, and the expandable polystyrene resin particles carried along with the flow of cooling water from the cutting chamber 7 are separated from the cooling water. And dehydration Dehydration dryer 10 with a solid-liquid separation function to obtain expandable polystyrene resin particles by drying, a water tank 8 for storing cooling water separated by the dehydration dryer 10 with a solid-liquid separation function, and cooling in the water tank 8 A high-pressure pump 9 for sending water to the cutting chamber 7 and a storage container 11 for storing expandable polystyrene resin particles dehydrated and dried by a dehydration dryer 10 with a solid-liquid separation function are configured.

なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。   As the extruder 1, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.

図1に示す製造装置を用い、発泡性ポリスチレン系樹脂粒子を製造するには、まず、原料の前記ポリスチレン系樹脂、無機発泡核剤と化学発泡剤との一方又は両方、必要に応じて添加される所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。   In order to produce expandable polystyrene resin particles using the production apparatus shown in FIG. 1, first, one or both of the raw material polystyrene resin, inorganic foam nucleating agent and chemical foaming agent is added as necessary. The desired additive is weighed and charged into the extruder 1 from the raw material supply hopper 3. The raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount for each lot may be reduced. A plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.

押出機1内にポリスチレン系樹脂、無機発泡核剤と化学発泡剤との一方又は両方、必要に応じて添加される所望の添加剤を供給後、樹脂を加熱溶融し、その溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入して溶融樹脂に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。   After supplying one or both of a polystyrene-based resin, an inorganic foaming nucleating agent and a chemical foaming agent into the extruder 1 and a desired additive to be added as necessary, the resin is heated and melted, and the molten resin is die 2. While being transferred to the side, the foaming agent is injected from the foaming agent supply port 5 by the high-pressure pump 4 to mix the foaming agent with the molten resin, and melted through a screen for removing foreign matter provided in the extruder 1 as necessary. The product is moved to the tip side while further kneading, and the melted material added with the foaming agent is pushed out from the small hole of the die 2 attached to the tip of the extruder 1.

ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡が抑えられたまま固化して発泡性ポリスチレン系樹脂粒子となる。   The resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 in which cooling water is circulated and supplied into the chamber, and the resin extruded from the small holes of the die 2 is placed in the cutting chamber 7. A cutter 6 is provided so as to be rotatable. Extruding the melt with the blowing agent added through a small hole in the die 2 attached to the tip of the extruder 1 causes the melt to be cut into granules, and at the same time, brought into contact with cooling water and rapidly cooled to solidify while suppressing foaming. Thus, expandable polystyrene resin particles are obtained.

形成された発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥する。乾燥された発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。   The formed expandable polystyrene resin particles are transferred from the cutting chamber 7 to the dewatering dryer 10 with a solid-liquid separation function along with the flow of the cooling water, where the expandable polystyrene resin particles are separated from the cooling water. And dehydrated and dried. The dried expandable polystyrene resin particles are stored in the storage container 11.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、発泡性ポリスチレン系樹脂粒子中のポリスチレン系樹脂が、200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、200℃で測定した溶融張力(MT)が5cN以上である構成なので、外観良好で強度に優れた発泡成形体を得ることができる発泡性ポリスチレン系樹脂粒子を効率よく製造することができる。   The method for producing expandable polystyrene resin particles of the present invention is a melt flow rate in which the polystyrene resin in the expandable polystyrene resin particles is measured at 200 ° C. in the method for producing expandable polystyrene resin particles by melt extrusion. (MFR) is in the range of 1.0 to 10.0 g / 10 min, and the melt tension (MT) measured at 200 ° C. is 5 cN or more, so that a foam molded article having good appearance and excellent strength is obtained. It is possible to efficiently produce expandable polystyrene resin particles.

(予備発泡粒子及び発泡成形体)
本発明の発泡性ポリスチレン系樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、予備発泡粒子とする。この予備発泡粒子は、製造するべき発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度は限定されないが、通常は0.010〜0.10g/cmの範囲内とし、0.015〜0.050g/cmの範囲内とするのが好ましい。
(Pre-expanded particles and foamed molded product)
The expandable polystyrene resin particles of the present invention are pre-foamed by heating with steam heating or the like using a well-known apparatus and technique in the field of producing foamed resin molded articles to obtain pre-foamed particles. The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the foamed molded product to be manufactured. In the present invention, its bulk density is not limited, usually in the range of 0.010~0.10g / cm 3, preferably in the range of 0.015~0.050g / cm 3.

なお、本発明において予備発泡粒子の嵩密度とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<予備発泡粒子の嵩密度>
先ず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積VcmをJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて予備発泡粒子の嵩密度を測定する。
嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
In the present invention, the bulk density of the pre-expanded particles refers to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
First, Wg was sampled from pre-expanded particles as a measurement sample, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was measured using an apparent density measuring instrument based on JIS K6911. The bulk density of the pre-expanded particles is measured based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)

<予備発泡粒子の嵩発泡倍数>
また、予備発泡粒子の嵩発泡倍数は、次式により算出される数値である。
嵩発泡倍数=1/嵩密度(g/cm
<Bulk expansion ratio of pre-expanded particles>
Moreover, the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
Bulk foaming factor = 1 / bulk density (g / cm 3 )

前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、該予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、発泡成形体を製造する。
本発明の発泡成形体の密度は特に限定されないが、通常は0.010〜0.10g/cmの範囲内とし、0.015〜0.050g/cmの範囲内とするのが好ましい。
The pre-expanded particles are filled in the cavity of the mold using a well-known apparatus and method in the field of manufacturing a foamed resin molded body, heated by steam heating or the like, and subjected to in-mold foam molding, foaming A molded body is manufactured.
Although the density of the foamed molded article of the present invention is not particularly limited, usually in the range of 0.010~0.10g / cm 3, preferably in the range of 0.015~0.050g / cm 3.

なお、本発明において発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した発泡成形体密度のことである。
<発泡成形体の密度>
50cm以上の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
In the present invention, the density of the foamed molded product refers to the density of the foamed molded product measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Density of foam molding>
A test piece of 50 cm 3 or more was cut so as not to change the original cell structure of the material, its mass was measured, and calculated according to the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test specimen condition adjustment and measurement specimens were cut from a sample that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C ± 2 ° C x 50% ± 5% or 27 ° C ± 2 ° C x 65% ± 5%. It has been left for more than an hour.

<発泡成形体の発泡倍数>
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数=1/密度(g/cm
<Folding multiple of foamed molded product>
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )

本発明の発泡成形体は、前述した本発明に係る発泡性ポリスチレン系樹脂粒子を加熱発泡させ、得られた予備発泡粒子を型内発泡成形して得られたものなので、外観良好で強度に優れた発泡成形体を得ることができる。
また、リサイクルされたポリスチレン系樹脂を用いて製造した場合でも、曲げ強度などの強度に優れた発泡成形体を得ることができる。
The foamed molded product of the present invention is obtained by heating and foaming the expandable polystyrene resin particles according to the present invention described above, and the resulting prefoamed particles are molded in-mold, so that the appearance is good and the strength is excellent. A foamed molded product can be obtained.
Moreover, even when manufactured using a recycled polystyrene-based resin, a foamed molded article having excellent strength such as bending strength can be obtained.

[原料ポリスチレン系樹脂]
以下の実施例1〜13及び比較例1,2での発泡性ポリスチレン系樹脂粒子の製造に用いる原料ポリスチレン系樹脂として、表1に記した通りのメルトフローレイト(MFR)、溶融張力MT、及びメタノール可溶分を持った5種類(バージン原料、リサイクル原料(1)〜(4))を用意した。
[Raw material polystyrene resin]
As raw material polystyrene resins used for the production of expandable polystyrene resin particles in Examples 1 to 13 and Comparative Examples 1 and 2 below, melt flow rate (MFR), melt tension MT, and Five types (virgin raw materials, recycled raw materials (1) to (4)) having methanol-soluble components were prepared.

[実施例1]
(発泡性ポリスチレン系樹脂粒子の製造)
基材樹脂としてバージンポリスチレン(東洋スチレン社製「HRM13N」)とリサイクル原料(1)を質量比70/30%の割合で使用し、基材樹脂100質量部に対し、無機発泡核剤として微粉末タルク0.3質量部を加えて、時間当たり150kg/hrの割合で口径90mmの単軸押出機内へ供給し、樹脂を加熱溶融させた後、発泡剤として基材樹脂100質量部に対して6質量部のイソペンタンを押出機途中より圧入した。そして、押出機内で樹脂と発泡剤を混練しつつ、押出機先端部での樹脂温度が170℃となるように冷却しながら、押出機に連接しヒーターにより290℃に保持した、直径0.6mm、ランド長さ3.0mmのノズルを200個有する造粒用ダイを通して、温度40℃、水圧0.4MPaの冷却水が循環する水中カット室内に押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイに密着させて、毎分3000回転で切断し、脱水乾燥して球形の発泡性ポリスチレン系樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子は変形、ヒゲ等の発生もなく、平均粒径1.1mmであった。
得られた発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.15質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部を発泡性ポリスチレン系樹脂粒子の表面全面に均一に被覆した。
[Example 1]
(Manufacture of expandable polystyrene resin particles)
Virgin polystyrene ("HRM13N" manufactured by Toyo Styrene Co., Ltd.) and recycled raw material (1) are used as a base resin in a ratio of 70/30% by mass, and fine powder as an inorganic foam nucleating agent for 100 parts by mass of the base resin After adding 0.3 part by mass of talc and supplying it into a single screw extruder having a diameter of 90 mm at a rate of 150 kg / hr per hour, the resin is heated and melted, and then 6 parts by mass with respect to 100 parts by mass of the base resin as a foaming agent A mass part of isopentane was injected from the middle of the extruder. Then, while kneading the resin and the foaming agent in the extruder, while cooling so that the resin temperature at the tip of the extruder is 170 ° C., the diameter is 0.6 mm, connected to the extruder and held at 290 ° C. by the heater. Then, through a granulation die having 200 nozzles with a land length of 3.0 mm, it was extruded into an underwater cut chamber in which cooling water with a temperature of 40 ° C. and a water pressure of 0.4 MPa circulated, and at the same time, 10 blades in the circumferential direction A high-speed rotating cutter having the above-mentioned structure was brought into close contact with the die, cut at 3000 rpm, dehydrated and dried to obtain spherical expandable polystyrene resin particles. The obtained expandable polystyrene resin particles had an average particle size of 1.1 mm without the occurrence of deformation or beard.
Polyethylene glycol 0.03 parts by mass, zinc stearate 0.15 parts by mass, stearic acid monoglyceride 0.05 parts by mass, hydroxystearic acid triglyceride 0.05 parts by mass with respect to 100 parts by mass of the obtained expandable polystyrene resin particles. The part was uniformly coated on the entire surface of the expandable polystyrene resin particles.

(発泡成形体の製造)
前記の通り製造した発泡性ポリスチレン系樹脂粒子は、15℃の保冷庫中に入れ、72時間に亘って放置した後、円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.020g/cm(嵩発泡倍数50倍)であった。
続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ50mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、その後、成形型のキャビティ内を水蒸気でゲージ圧0.08MPaの圧力で20秒間に亘って加熱し、その後、成形型のキャビティ内の圧力が0.01MPaになるまで冷却し、その後成形型を開き、長さ400mm×幅300mm×高さ50mmの長方形状の発泡成形体を取り出した。得られた発泡成形体は、密度0.020g/cm(発泡倍数50倍)であった。
(Manufacture of foam moldings)
The expandable polystyrene resin particles produced as described above are placed in a 15 ° C. cool box and allowed to stand for 72 hours, and then supplied to a cylindrical batch type pre-foaming machine to generate steam with a blowing pressure of 0.05 MPa. To obtain pre-expanded particles. The obtained pre-expanded particles had a bulk density of 0.020 g / cm 3 (bulk expansion ratio: 50 times).
Subsequently, the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 50 mm. Thereafter, the inside of the cavity of the mold is heated with water vapor at a gauge pressure of 0.08 MPa for 20 seconds, and then cooled until the pressure in the cavity of the mold reaches 0.01 MPa. Opened, a rectangular foam molded body having a length of 400 mm, a width of 300 mm, and a height of 50 mm was taken out. The obtained foamed molded article had a density of 0.020 g / cm 3 (foaming factor: 50 times).

前述した通り製造した実施例1の発泡性ポリスチレン系樹脂粒子について、145℃の雰囲気中で2時間かけて発泡剤を揮発させた後、MFR,MT、及びメタノール可溶分を測定した。また、得られた発泡成形体について、以下の<強度の評価>を行った。その結果を表2に記す。   For the expandable polystyrene resin particles of Example 1 produced as described above, the foaming agent was volatilized in an atmosphere at 145 ° C. for 2 hours, and then MFR, MT, and methanol soluble components were measured. Moreover, the following <strength evaluation> was performed about the obtained foaming molding. The results are shown in Table 2.

<強度の評価>
実施例(及び比較例)で得られた発泡成形体について、JIS A9511:2006「発泡プラスチック保温材」記載の方法に準じて曲げ強度を測定した。
すなわち、テンシロン万能試験機UCT−10T(オリエンテック社製)を用い、試験体サイズは75mm×300mm×50mmとし、圧縮速度を10mm/min、先端治具は加圧くさび10R、支持台10Rで、支点間距離200mmの条件として測定し、次式にて曲げ強度を算出した。試験片の数は3個とし、その平均値を求めた。
曲げ強度(MPa)=3FL/2bh
[ここで、Fは曲げ最大荷重(N)を表し、Lは支点間距離(mm)を表し、bは試験片の幅(mm)を表し、hは試験片の厚み(mm)を表す。]
このようにして曲げ強度の平均値を求め、次の評価基準:
優良(◎):曲げ強度が0.28MPa以上
良(○):曲げ強度が0.25MPa以上0.28MPa未満
不良(×):曲げ強度が0.25MPa未満
に照らし、強度を評価した。
<Strength evaluation>
About the foaming molding obtained in the Example (and comparative example), bending strength was measured according to the method of JIS A9511: 2006 "foaming plastic heat insulating material".
That is, using a Tensilon universal testing machine UCT-10T (manufactured by Orientec Co., Ltd.), the specimen size is 75 mm × 300 mm × 50 mm, the compression speed is 10 mm / min, the tip jig is a pressure wedge 10R, and a support base 10R. Measurement was performed under the condition of a distance between supporting points of 200 mm, and the bending strength was calculated by the following formula. The number of test pieces was three, and the average value was obtained.
Bending strength (MPa) = 3FL / 2bh 2
[Where F represents the maximum bending load (N), L represents the distance between supporting points (mm), b represents the width (mm) of the test piece, and h represents the thickness (mm) of the test piece. ]
In this way, the average value of the bending strength is obtained, and the following evaluation criteria:
Excellent (◎): Bending strength is 0.28 MPa or more Good (◯): Bending strength is 0.25 MPa or more and less than 0.28 MPa Defect (x): The strength was evaluated in light of bending strength less than 0.25 MPa.

[実施例2]
基材樹脂としてリサイクル原料(2)を100%使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 2]
Except that 100% of the recycled raw material (2) was used as the base resin, expandable polystyrene resin particles and foamed molded articles were produced in the same manner as in Example 1, and the same measurements and evaluations were performed. The results are shown in Table 2.

[実施例3]
基材樹脂としてリサイクル原料(3)を100%使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 3]
Except that 100% of the recycled raw material (3) was used as the base resin, expandable polystyrene resin particles and foamed molded products were produced in the same manner as in Example 1, and the same measurements and evaluations were performed. The results are shown in Table 2.

[実施例4]
基材樹脂としてバージンポリスチレン(東洋スチレン社製「HRM13N」)とリサイクル原料(1)を質量比10/90%の割合とした基材樹脂を使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 4]
In the same manner as in Example 1, except that a base resin having a mass ratio of 10/90% of virgin polystyrene (“HRM13N” manufactured by Toyo Styrene Co., Ltd.) and recycled raw material (1) was used as the base resin. Expandable polystyrene resin particles and foamed molded articles were produced and subjected to the same measurement and evaluation. The results are shown in Table 2.

[実施例5]
基材樹脂としてバージンポリスチレン(東洋スチレン社製「HRM13N」)とリサイクル原料(1)を質量比25/75%の割合とした基材樹脂を使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 5]
In the same manner as in Example 1, except that a base resin in which the ratio of the virgin polystyrene (“HRM13N” manufactured by Toyo Styrene Co., Ltd.) and the recycled raw material (1) in a mass ratio of 25/75% was used as the base resin. Expandable polystyrene resin particles and foamed molded articles were produced and subjected to the same measurement and evaluation. The results are shown in Table 2.

[実施例6]
基材樹脂としてバージンポリスチレン(東洋スチレン社製「HRM13N」)とリサイクル原料(1)を質量比50/50%の割合とした基材樹脂を使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 6]
In the same manner as in Example 1, except that a base resin having a mass ratio of 50/50% of virgin polystyrene (“HRM13N” manufactured by Toyo Styrene Co., Ltd.) and a recycled raw material (1) was used as the base resin. Expandable polystyrene resin particles and foamed molded articles were produced and subjected to the same measurement and evaluation. The results are shown in Table 2.

[実施例7]
基材樹脂としてバージンポリスチレン(東洋スチレン社製「HRM13N」)とリサイクル原料(1)を質量比75/25%の割合とした基材樹脂を使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 7]
In the same manner as in Example 1, except that a base resin in which the ratio of the virgin polystyrene (“HRM13N” manufactured by Toyo Styrene Co., Ltd.) and the recycled raw material (1) in a mass ratio of 75/25% was used as the base resin. Expandable polystyrene resin particles and foamed molded articles were produced and subjected to the same measurement and evaluation. The results are shown in Table 2.

[実施例8]
基材樹脂としてバージンポリスチレン(東洋スチレン社製「HRM13N」)とリサイクル原料(1)を質量比90/10%の割合とした基材樹脂を使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 8]
In the same manner as in Example 1 except that a base resin in which the ratio of the virgin polystyrene (“HRM13N” manufactured by Toyo Styrene Co., Ltd.) and the recycled material (1) is 90/10% by mass is used as the base resin. Expandable polystyrene resin particles and foamed molded articles were produced and subjected to the same measurement and evaluation. The results are shown in Table 2.

[実施例9]
基材樹脂としてバージンポリスチレン(東洋スチレン社製「HRM13N」)とリサイクル原料(1)を質量比95/5%の割合とした基材樹脂を使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 9]
In the same manner as in Example 1, except that the base resin was virgin polystyrene (“HRM13N” manufactured by Toyo Styrene Co., Ltd.) and the recycled raw material (1) in a mass ratio of 95/5%. Expandable polystyrene resin particles and foamed molded articles were produced and subjected to the same measurement and evaluation. The results are shown in Table 2.

[実施例10]
基材樹脂としてリサイクル原料(1)とリサイクル原料(2)を質量比50/50%の割合とした基材樹脂を使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 10]
Expandable polystyrene resin particles in the same manner as in Example 1 except that a base resin in which the ratio of recycled raw material (1) and recycled raw material (2) was 50/50% was used as the base resin. Then, a foam molded article was produced, and the same measurement / evaluation was performed. The results are shown in Table 2.

[実施例11]
基材樹脂としてバージンポリスチレン(東洋スチレン社製「HRM13N」)を100%の割合で使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 11]
Except that virgin polystyrene (“HRM13N” manufactured by Toyo Styrene Co., Ltd.) was used as a base resin at a ratio of 100%, expandable polystyrene resin particles and foamed molded articles were produced in the same manner as in Example 1, and the same. Was measured and evaluated. The results are shown in Table 2.

[実施例12]
無機発泡核剤の替わりに、化学発泡剤(炭酸水素ナトリウムとクエン酸の混合物、永和化成工業社製、商品名「ポリスレンES405」)0.5質量部を使用したこと以外は、実施例4と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 12]
Example 4 except that 0.5 parts by mass of a chemical foaming agent (mixture of sodium hydrogen carbonate and citric acid, manufactured by Eiwa Kasei Kogyo Co., Ltd., trade name “Polyslen ES405”) was used instead of the inorganic foam nucleating agent. In the same manner, expandable polystyrene resin particles and foamed molded articles were produced, and the same measurement and evaluation were performed. The results are shown in Table 2.

[実施例13]
前記と同じ化学発泡剤0.5部を追加したこと以外は、実施例4と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Example 13]
Except that 0.5 parts of the same chemical foaming agent as described above was added, expandable polystyrene resin particles and foamed molded products were produced in the same manner as in Example 4, and the same measurements and evaluations were performed. The results are shown in Table 2.

[比較例1]
基材樹脂としてリサイクル原料(1)を100%の割合で使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Comparative Example 1]
Except that recycled material (1) was used as a base resin at a rate of 100%, expandable polystyrene resin particles and foamed molded articles were produced in the same manner as in Example 1, and the same measurement and evaluation were performed. It was. The results are shown in Table 2.

[比較例2]
基材樹脂としてリサイクル原料(4)を100%の割合で使用したこと以外は、実施例1と同様の方法で発泡性ポリスチレン系樹脂粒子、発泡成形体を製造し、同様の測定・評価を行った。その結果を表2に記す。
[Comparative Example 2]
Except that recycled material (4) was used as a base resin at a rate of 100%, expandable polystyrene resin particles and foamed molded articles were produced in the same manner as in Example 1, and the same measurements and evaluations were performed. It was. The results are shown in Table 2.

表2の結果から、ポリスチレン系樹脂のMFRが1.0〜10.0g/10分の範囲内であり、MTが5cN以上である実施例1〜13の発泡性ポリスチレン系樹脂粒子は、型内発泡成形によって、強度に優れた発泡成形体を得ることができた。
一方、比較例1の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂のMFRが11.2g/10分と高くなり、型内発泡成形によって得られた発泡成形体の強度が不良であった。
また比較例2の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂のMFRが18.1g/10分と高く、且つMTが5cN未満であり、型内発泡成形によって得られた発泡成形体の強度が不良であった。
From the results in Table 2, the expandable polystyrene resin particles of Examples 1 to 13 in which the MFR of the polystyrene resin is in the range of 1.0 to 10.0 g / 10 min and the MT is 5 cN or more are in the mold. A foamed molded article having excellent strength could be obtained by foam molding.
On the other hand, in the expandable polystyrene resin particles of Comparative Example 1, the MFR of the polystyrene resin was as high as 11.2 g / 10 minutes, and the strength of the foam molded product obtained by in-mold foam molding was poor.
Further, the expandable polystyrene resin particles of Comparative Example 2 have a polystyrene resin MFR as high as 18.1 g / 10 min and MT is less than 5 cN, and the strength of the foam molded body obtained by in-mold foam molding is high. It was bad.

本発明は、外観良好で強度に優れた発泡成形体を得ることが可能な発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体に関する。   The present invention relates to an expandable polystyrene resin particle capable of obtaining a foam molded article having a good appearance and excellent strength, a method for producing the same, a polystyrene resin pre-expanded particle, and a polystyrene resin foam molded article.

1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器。   DESCRIPTION OF SYMBOLS 1 ... Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, 10: Dehydration dryer with solid-liquid separation function, 11: Storage container.

Claims (9)

物理発泡剤とポリスチレン系樹脂とを含有する発泡性ポリスチレン系樹脂粒子であって、
前記ポリスチレン系樹脂は、200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、200℃で測定した溶融張力(MT)が5cN以上であることを特徴とする発泡性ポリスチレン系樹脂粒子。
Expandable polystyrene resin particles containing a physical foaming agent and a polystyrene resin,
The polystyrene resin has a melt flow rate (MFR) measured at 200 ° C. within a range of 1.0 to 10.0 g / 10 minutes, and a melt tension (MT) measured at 200 ° C. of 5 cN or more. Expandable polystyrene resin particles characterized by.
前記ポリスチレン系樹脂のメタノール可溶分が0.1〜5.0質量%の範囲であることを特徴とする請求項1に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 1, wherein the methanol-soluble content of the polystyrene resin is in the range of 0.1 to 5.0 mass%. 発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に無機発泡核剤と化学発泡剤との一方又は両方が均一に含有されていることを特徴とする請求項1又は2に記載の発泡性ポリスチレン系樹脂粒子。   The foaming according to claim 1 or 2, wherein one or both of an inorganic foaming nucleating agent and a chemical foaming agent are uniformly contained in the entire expandable polystyrene resin particles (excluding internal bubbles). Polystyrene resin particles. 樹脂供給装置内で溶融されたポリスチレン系樹脂に物理発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から冷却用液体中に直接押し出し、冷却用液体中に押し出した押出物を冷却用液体中にて回転刃で切断するとともに、押出物を液体との接触により冷却固化する溶融押出法によって製造されたことを特徴とする請求項1〜3のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子。   A physical foaming agent is press-fitted and kneaded into the polystyrene resin melted in the resin supply device, and the molten resin containing the foaming agent is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device. The extrudate extruded into the working liquid is cut by a rotary blade in the cooling liquid and manufactured by a melt extrusion method in which the extrudate is cooled and solidified by contact with the liquid. The expandable polystyrene resin particle according to any one of the above. 樹脂供給装置内で溶融されたポリスチレン系樹脂に物理発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から冷却用液体中に直接押し出し、冷却用液体中に押し出した押出物を冷却用液体中にて回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、
発泡性ポリスチレン系樹脂粒子中のポリスチレン系樹脂が、200℃で測定したメルトフローレイト(MFR)が1.0〜10.0g/10分の範囲内であり、200℃で測定した溶融張力(MT)が5cN以上であることを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法。
A physical foaming agent is press-fitted and kneaded into the polystyrene resin melted in the resin supply device, and the molten resin containing the foaming agent is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device. The extrudate extruded into the liquid for use is cut with a rotating blade in the cooling liquid, and the extrudate is cooled and solidified by contact with the liquid to obtain expandable polystyrene resin particles. In the method for producing a resin particle,
The polystyrene-based resin in the expandable polystyrene-based resin particles has a melt flow rate (MFR) measured at 200 ° C. within the range of 1.0 to 10.0 g / 10 minutes, and the melt tension (MT measured at 200 ° C.) ) Is 5 cN or more, a method for producing expandable polystyrene resin particles.
発泡性ポリスチレン系樹脂粒子中のポリスチレン系樹脂のメタノール可溶分が0.1〜5.0質量%の範囲であることを特徴とする請求項5に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   6. The method for producing expandable polystyrene resin particles according to claim 5, wherein the methanol-soluble content of the polystyrene resin in the expandable polystyrene resin particles is in the range of 0.1 to 5.0% by mass. . 前記ポリスチレン系樹脂に無機発泡核剤と化学発泡剤との一方又は両方を添加し、発泡性ポリスチレン系樹脂粒子全体(但し、内部気泡は除く)に無機発泡核剤と化学発泡剤との一方又は両方が均一に含有されている発泡性ポリスチレン系樹脂粒子を得ることを特徴とする請求項5又は6に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   One or both of an inorganic foam nucleating agent and a chemical foaming agent are added to the polystyrene resin, and one or both of the inorganic foam nucleating agent and the chemical foaming agent are added to the entire expandable polystyrene resin particles (excluding internal bubbles). The method for producing expandable polystyrene resin particles according to claim 5 or 6, wherein both expandable polystyrene resin particles are uniformly contained. 請求項1〜4のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子を加熱し発泡させて得られた予備発泡粒子。   Pre-expanded particles obtained by heating and foaming the expandable polystyrene resin particles according to any one of claims 1 to 4. 請求項8に記載の予備発泡粒子を成形型のキャビティに充填し、加熱して型内発泡成形して得られた発泡成形体。   A foam-molded product obtained by filling the pre-expanded particles according to claim 8 into a cavity of a molding die and heating to form in-mold foam molding.
JP2013064471A 2012-03-27 2013-03-26 Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding Pending JP2013227537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064471A JP2013227537A (en) 2012-03-27 2013-03-26 Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012071907 2012-03-27
JP2012071907 2012-03-27
JP2013064471A JP2013227537A (en) 2012-03-27 2013-03-26 Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding

Publications (1)

Publication Number Publication Date
JP2013227537A true JP2013227537A (en) 2013-11-07

Family

ID=49675493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064471A Pending JP2013227537A (en) 2012-03-27 2013-03-26 Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding

Country Status (1)

Country Link
JP (1) JP2013227537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207502A1 (en) * 2012-10-09 2014-12-31 積水化成品工業株式会社 Expandable polystyrene resin particles, manufacturing method therefor, pre-expanded particles, and expanded molded article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182329A (en) * 1988-01-13 1989-07-20 Idemitsu Kosan Co Ltd Thermoplastic resin foam and production thereof
JPH1192585A (en) * 1997-09-22 1999-04-06 Sekisui Plastics Co Ltd Expandable styrene resin particle and expandable styrene resin molded product
JPH11279230A (en) * 1998-01-29 1999-10-12 Idemitsu Petrochem Co Ltd Polystyrene-based copolymer and foam
JP2000309659A (en) * 1999-04-26 2000-11-07 Hitachi Chem Co Ltd Production of regenerated foaming styrenic resin particle, regenerated foaming styrenic resin particle obtained by the production method, and molding of the foaming styrenic resin
WO2009096341A1 (en) * 2008-01-30 2009-08-06 Sekisui Plastics Co., Ltd. Expandable polystyrene resin beads, process for production thereof and expanded moldings
WO2011118706A1 (en) * 2010-03-26 2011-09-29 積水化成品工業株式会社 Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JP2014095064A (en) * 2012-03-27 2014-05-22 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particle and method for producing the same, prefoamed particle and foamed molded product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182329A (en) * 1988-01-13 1989-07-20 Idemitsu Kosan Co Ltd Thermoplastic resin foam and production thereof
JPH1192585A (en) * 1997-09-22 1999-04-06 Sekisui Plastics Co Ltd Expandable styrene resin particle and expandable styrene resin molded product
JPH11279230A (en) * 1998-01-29 1999-10-12 Idemitsu Petrochem Co Ltd Polystyrene-based copolymer and foam
JP2000309659A (en) * 1999-04-26 2000-11-07 Hitachi Chem Co Ltd Production of regenerated foaming styrenic resin particle, regenerated foaming styrenic resin particle obtained by the production method, and molding of the foaming styrenic resin
WO2009096341A1 (en) * 2008-01-30 2009-08-06 Sekisui Plastics Co., Ltd. Expandable polystyrene resin beads, process for production thereof and expanded moldings
WO2011118706A1 (en) * 2010-03-26 2011-09-29 積水化成品工業株式会社 Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JP2014095064A (en) * 2012-03-27 2014-05-22 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particle and method for producing the same, prefoamed particle and foamed molded product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
原 泰毅、赤間 忠司、長田 英世: "ポリスチレンの熱劣化", 九州工業大学学術機関リポジトリ, JPN6015046560, 1 March 1968 (1968-03-01), JP, ISSN: 0003198439 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207502A1 (en) * 2012-10-09 2014-12-31 積水化成品工業株式会社 Expandable polystyrene resin particles, manufacturing method therefor, pre-expanded particles, and expanded molded article

Similar Documents

Publication Publication Date Title
JP5372783B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
TWI529205B (en) Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form
JP2013209637A (en) Foamable thermoplastic resin particle and manufacturing method thereof, preliminary foaming particle, foamed molding, and resin composition for manufacturing antistatic resin molding
WO2014207502A1 (en) Expandable polystyrene resin particles, manufacturing method therefor, pre-expanded particles, and expanded molded article
JP5882070B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP6063792B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP5756003B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP6130700B2 (en) Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP6223097B2 (en) Expandable polystyrene resin particles and production method thereof, and polystyrene resin pre-expanded particles and expanded molded body
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP5809508B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2012207186A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP2012214751A (en) Foamable polystyrene-based resin particle and production method therefor, polystyrene-based resin pre-foamed particle, and polystyrene-based resin foamed molding
JP2012207156A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP2013203821A (en) Foamable polystyrene-based resin particle, method for producing the same, preliminary foamable particle and foam-molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329