JP5756003B2 - Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article - Google Patents
Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article Download PDFInfo
- Publication number
- JP5756003B2 JP5756003B2 JP2011275733A JP2011275733A JP5756003B2 JP 5756003 B2 JP5756003 B2 JP 5756003B2 JP 2011275733 A JP2011275733 A JP 2011275733A JP 2011275733 A JP2011275733 A JP 2011275733A JP 5756003 B2 JP5756003 B2 JP 5756003B2
- Authority
- JP
- Japan
- Prior art keywords
- polystyrene resin
- mass
- parts
- range
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法に関し、高発泡倍数で機械強度に優れた発泡成形体を得ることが可能な発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体に関する。 The present invention relates to a method for producing expandable polystyrene resin particles by melt extrusion, and relates to a foamable polystyrene resin particle capable of obtaining a foamed molded article having a high expansion ratio and excellent mechanical strength, a method for producing the same, and a polystyrene type The present invention relates to resin pre-expanded particles and polystyrene-based resin foam moldings.
押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、所謂、溶融押出法により発泡性ポリスチレン系樹脂粒子を製造する方法に関して、例えば、特許文献1に開示された技術が提案されている。 A foaming agent is press-fitted and kneaded into the polystyrene resin melted in the extruder, and the foaming agent-containing molten resin is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the extruder. With respect to a method for producing expandable polystyrene resin particles by a so-called melt extrusion method, the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. The technique disclosed in Patent Document 1 has been proposed.
特許文献1には、押出機内で溶融された熱可塑性樹脂に発泡剤を圧入し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの多数の小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性粒子を得る熱可塑性樹脂発泡性粒子の製造方法であって、前記ダイの小孔ランド部を通過する際の発泡剤含有溶融樹脂の剪断速度が12000〜35000sec−1、且つ樹脂の見かけ溶融粘度が100〜700ポイズとなるように押し出すことを特徴とする発泡性熱可塑性樹脂発泡性粒子の製造方法が開示されている。 In Patent Document 1, a foaming agent is press-fitted into a thermoplastic resin melted in an extruder, and the foaming agent-containing molten resin is extruded directly into a cooling liquid from a large number of small holes in a die attached to the tip of the extruder. A method for producing thermoplastic resin expandable particles, wherein the extrudate is cut with a high-speed rotary blade at the same time as being extruded, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable particles, the small holes of the die Foaming thermoplastic resin foaming property, wherein the foaming agent-containing molten resin is extruded so that the shearing rate of the foaming agent-containing molten resin is 12000 to 35000 sec −1 and the apparent melt viscosity of the resin is 100 to 700 poise A method for producing particles is disclosed.
しかしながら、前述した従来技術によって製造された発泡性ポリスチレン系樹脂粒子は、加熱して予備発泡させて得られる予備発泡粒子の嵩発泡倍数を高めることが困難であり、高発泡倍数の発泡成形体を得ることが難しかった。
また、従来の発泡性ポリスチレン系樹脂粒子、特に、リサイクルされたポリスチレン系樹脂を用いて製造された発泡成形体は、曲げ強度などの機械強度が低くなる傾向があった。
However, it is difficult for the expandable polystyrene resin particles produced by the above-described conventional technology to increase the bulk expansion ratio of the pre-expanded particles obtained by heating and pre-expanding, and it is difficult to increase the expansion ratio. It was difficult to get.
Also, conventional foamed polystyrene resin particles, particularly foamed molded articles produced using recycled polystyrene resin, tend to have low mechanical strength such as bending strength.
本発明は、前記事情に鑑みてなされ、高発泡倍数で機械強度に優れた発泡成形体を得ることが可能な発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体の提供を課題とする。 The present invention has been made in view of the above circumstances, and expandable polystyrene resin particles capable of obtaining a foamed molded article having a high expansion ratio and excellent mechanical strength, a method for producing the same, a polystyrene resin pre-expanded particle, and a polystyrene resin It is an object to provide a foam molded article.
前記課題を達成するため、本発明は、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法によって製造された発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有されたことを特徴とする発泡性ポリスチレン系樹脂粒子を提供する。 In order to achieve the above object, the present invention provides a small hole in a die in which a foaming agent is press-fitted and kneaded into a polystyrene resin melted in a resin supply device, and a foamed agent-containing molten resin is attached to the tip of the resin supply device. It is manufactured by a melt extrusion method that extrudes directly into a liquid for cooling, cuts the extrudate at the same time with a high-speed rotary blade, and cools and solidifies the extrudate by contact with the liquid to obtain expandable polystyrene resin particles. In the expanded polystyrene resin particles, liquid paraffin was uniformly contained in the entire expanded polystyrene resin particles within a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin. Expandable polystyrene resin particles are provided.
本発明の発泡性ポリスチレン系樹脂粒子において、前記発泡性ポリスチレン系樹脂粒子全体に無機発泡核剤が均一に含有されたことが好ましい。 In the expandable polystyrene resin particles of the present invention, it is preferable that an inorganic foam nucleating agent is uniformly contained in the entire expandable polystyrene resin particles.
また本発明は、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法によって製造された発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有され、芳香族炭化水素がポリスチレン系樹脂100質量部に対し0.15〜3.0質量部の範囲内で均一に含有され、かつ無機発泡核剤がポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内で均一に含有されていることを特徴とする発泡性ポリスチレン系樹脂粒子を提供する。 In addition, the present invention is a method in which a foaming agent is press-fitted and kneaded into a polystyrene resin melted in a resin supply apparatus, and the foaming agent-containing molten resin is directly contained in a cooling liquid from a small hole in a die attached to the tip of the resin supply apparatus. Expandable polystyrene resin manufactured by melt extrusion method, extruding the extruded product with a high-speed rotary blade at the same time as extrusion, and cooling and solidifying the extruded product by contact with a liquid to obtain expandable polystyrene resin particles In the particles, liquid paraffin is uniformly contained within the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin, and the aromatic hydrocarbon is 100 parts by mass of the polystyrene resin. It is uniformly contained within the range of 0.15 to 3.0 parts by mass with respect to 100 parts by mass of the polystyrene-based resin and the inorganic foam nucleating agent is 0.05 to 5 parts by mass. Providing expandable polystyrene resin particles characterized in that it is uniformly contained in an amount ranging portion.
本発明の発泡性ポリスチレン系樹脂粒子において、前記無機発泡核剤がタルクであることが好ましい。 In the expandable polystyrene resin particles of the present invention, the inorganic foam nucleating agent is preferably talc.
本発明の発泡性ポリスチレン系樹脂粒子において、前記流動パラフィンが、オレフィン系飽和炭化水素の混合物であり、かつ平均炭素数が20〜35個の範囲内であり、常温で液体であることが好ましい。 In the expandable polystyrene resin particles of the present invention, it is preferable that the liquid paraffin is a mixture of olefin-based saturated hydrocarbons, has an average carbon number in the range of 20 to 35, and is liquid at normal temperature.
また本発明は、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で流動パラフィンを添加して発泡性ポリスチレン系樹脂粒子全体に流動パラフィンを均一に含有させたことを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法を提供する。 In addition, the present invention is a method in which a foaming agent is press-fitted and kneaded into a polystyrene resin melted in a resin supply apparatus, and the foaming agent-containing molten resin is directly contained in a cooling liquid from a small hole in a die attached to the tip of the resin supply apparatus. The extrudate is cut with a high-speed rotary blade at the same time as extrusion and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. Production of expandable polystyrene resin particles by melt extrusion In the method, foaming characterized in that liquid paraffin is uniformly contained in the entire expandable polystyrene resin particles by adding liquid paraffin within a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of polystyrene resin. Provided is a method for producing conductive polystyrene resin particles.
本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記ポリスチレン系樹脂に、さらに無機発泡核剤を添加することが好ましい。 In the method for producing expandable polystyrene resin particles of the present invention, it is preferable to further add an inorganic foam nucleating agent to the polystyrene resin.
また本発明は、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、ポリスチレン系樹脂100質量部に対して、流動パラフィンを0.01〜5質量部の範囲内、芳香族炭化水素を0.15〜3.0質量部の範囲内、及び無機発泡核剤を0.05〜5質量部の範囲内で添加し、発泡性ポリスチレン系樹脂粒子全体に流動パラフィン、芳香族炭化水素及び無機発泡核剤を均一に含有させたことを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法を提供する。 In addition, the present invention is a method in which a foaming agent is press-fitted and kneaded into a polystyrene resin melted in a resin supply apparatus, and the foaming agent-containing molten resin is directly contained in a cooling liquid from a small hole in a die attached to the tip of the resin supply apparatus. The extrudate is cut with a high-speed rotary blade at the same time as extrusion and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. Production of expandable polystyrene resin particles by melt extrusion In the method, the liquid paraffin is in the range of 0.01 to 5 parts by mass, the aromatic hydrocarbon is in the range of 0.15 to 3.0 parts by mass, and the inorganic foam nucleating agent with respect to 100 parts by mass of the polystyrene-based resin. Is added in the range of 0.05 to 5 parts by mass, and liquid paraffin, aromatic hydrocarbon and inorganic foam nucleating agent are uniformly contained in the entire expandable polystyrene resin particles. To provide a process for the preparation of foam polystyrene resin particles.
本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記無機発泡核剤がタルクであることが好ましい。 In the method for producing expandable polystyrene resin particles of the present invention, the inorganic foam nucleating agent is preferably talc.
本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記流動パラフィンが、オレフィン系飽和炭化水素の混合物であり、かつ平均炭素数が20〜35個の範囲内であり、常温で液体であることが好ましい。 In the method for producing expandable polystyrene resin particles of the present invention, the liquid paraffin is a mixture of olefin-based saturated hydrocarbons and has an average carbon number in the range of 20 to 35, and is liquid at room temperature. Is preferred.
また本発明は、前記発泡性ポリスチレン系樹脂粒子を加熱し発泡させて得られたポリスチレン系樹脂予備発泡粒子を提供する。 The present invention also provides polystyrene resin pre-expanded particles obtained by heating and foaming the expandable polystyrene resin particles.
また本発明は、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティに充填し、加熱して型内発泡成形して得られたポリスチレン系樹脂発泡成形体を提供する。 The present invention also provides a polystyrene resin foam molded article obtained by filling the polystyrene resin pre-expanded particles into a cavity of a molding die and heating and molding in-mold foam molding.
また本発明は、発泡成形体全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有されたことを特徴とするポリスチレン系樹脂発泡成形体を提供する。 Further, the present invention provides a polystyrene resin foam molded article characterized in that liquid paraffin is uniformly contained within a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of polystyrene resin in the entire foam molded article. provide.
また本発明は、発泡成形体全体に、流動パラフィンがポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有され、芳香族炭化水素がポリスチレン系樹脂100質量部に対し0.15〜3.0質量部の範囲内で均一に含有され、かつ無機発泡核剤がポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内で均一に含有されていることを特徴とするポリスチレン系樹脂発泡成形体を提供する。 In the present invention, liquid paraffin is uniformly contained within a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin, and aromatic hydrocarbon is contained in 100 parts by mass of the polystyrene resin. On the other hand, it is uniformly contained within the range of 0.15 to 3.0 parts by mass, and the inorganic foam nucleating agent is uniformly contained within the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the polystyrene-based resin. A polystyrene-based resin foam molded article is provided.
本発明の発泡性ポリスチレン系樹脂粒子は、発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有された構成としたことによって、加熱して予備発泡させて得られる予備発泡粒子の嵩発泡倍数を高めることができ、高発泡倍数の発泡成形体を得ることができる。
また、リサイクルされたポリスチレン系樹脂を用いて製造した場合でも、曲げ強度などの機械強度に優れた発泡成形体を得ることができる。
さらに、発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有され、芳香族炭化水素がポリスチレン系樹脂100質量部に対し0.15〜3.0質量部の範囲内で均一に含有され、かつ無機発泡核剤がポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内で均一に含有されている構成としたことによって、加熱して予備発泡させて得られる予備発泡粒子の嵩発泡倍数をより一層高めることができ、より高発泡倍数の発泡成形体を得ることができる。
The expandable polystyrene resin particles of the present invention have a configuration in which liquid paraffin is uniformly contained in a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin throughout the expandable polystyrene resin particles. Thus, it is possible to increase the bulk expansion ratio of the pre-expanded particles obtained by heating and pre-expanding, and it is possible to obtain a foamed molded article having a high expansion ratio.
Moreover, even when manufactured using recycled polystyrene resin, a foamed molded article having excellent mechanical strength such as bending strength can be obtained.
Furthermore, the liquid paraffin is uniformly contained in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin, and the aromatic hydrocarbon is contained in 100 parts by mass of the polystyrene resin. On the other hand, it is uniformly contained within the range of 0.15 to 3.0 parts by mass, and the inorganic foam nucleating agent is uniformly contained within the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the polystyrene-based resin. By setting it as the structure, the volume expansion ratio of the pre-expanded particle obtained by heating and pre-expanding can be raised further, and the foaming molding of higher expansion ratio can be obtained.
本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で流動パラフィンを添加して発泡性ポリスチレン系樹脂粒子全体に流動パラフィンを均一に含有させるようにしたので、高発泡倍数の発泡成形体を得ることができ、またリサイクルされたポリスチレン系樹脂を用いて製造した場合でも、曲げ強度などの機械強度に優れた発泡成形体を得ることができる発泡性ポリスチレン系樹脂粒子を効率よく製造することができる。
さらに、ポリスチレン系樹脂100質量部に対して、流動パラフィンを0.01〜5質量部の範囲内、芳香族炭化水素を0.15〜3.0質量部の範囲内、及び無機発泡核剤を0.05〜5質量部の範囲内で添加し、発泡性ポリスチレン系樹脂粒子全体に流動パラフィン、芳香族炭化水素及び無機発泡核剤を均一に含有させたことによって、より高発泡倍数の発泡成形体を得ることができる。
The method for producing expandable polystyrene resin particles of the present invention is a method for producing expandable polystyrene resin particles by a melt extrusion method, and liquid paraffin within a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of polystyrene resin. When liquid paraffin is uniformly contained throughout the expandable polystyrene resin particles, a foamed molded product with a high expansion ratio can be obtained, and when it is manufactured using recycled polystyrene resin However, it is possible to efficiently produce expandable polystyrene resin particles capable of obtaining a foamed molded article having excellent mechanical strength such as bending strength.
Furthermore, with respect to 100 parts by mass of the polystyrene resin, the liquid paraffin is in the range of 0.01 to 5 parts by mass, the aromatic hydrocarbon is in the range of 0.15 to 3.0 parts by mass, and the inorganic foam nucleating agent is added. Addition within the range of 0.05 to 5 parts by mass, and by uniformly containing liquid paraffin, aromatic hydrocarbon and inorganic foam nucleating agent in the whole expandable polystyrene resin particles, foam molding with higher expansion ratio You can get a body.
(発泡性ポリスチレン系樹脂粒子)
本発明の発泡性ポリスチレン系樹脂粒子は、発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有されたことを特徴としている。
(Expandable polystyrene resin particles)
The expandable polystyrene resin particles of the present invention are characterized in that liquid paraffin is uniformly contained in the entire expandable polystyrene resin particles within a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin. It is said.
本発明の発泡性ポリスチレン系樹脂粒子に用いられるポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。 The polystyrene resin used for the expandable polystyrene resin particles of the present invention is not particularly limited. For example, styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromo Examples thereof include homopolymers of styrene monomers such as styrene or copolymers thereof, and polystyrene resins containing 50% by mass or more of styrene are preferable, and polystyrene is more preferable.
また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。 Further, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. As, for example, alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl In addition to fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.
また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよく、添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などが挙げられる。 If a polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foam molded article. Examples thereof include rubber-modified polystyrene resins to which a diene rubbery polymer such as a polymer, ethylene-propylene-nonconjugated diene three-dimensional copolymer is added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.
原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、再生品ではないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られた再生ポリスチレン系樹脂を使用することができる。
この再生ポリスチレン系樹脂としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したポリスチレン系樹脂を用いることができる。また、使用することができる再生ポリスチレン系樹脂は、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたもの以外にも、家電製品(例えば、テレビ、冷蔵庫、洗濯機、エアコンなど)や事務用機器(例えば、複写機、ファクシミリ、プリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混練してリペレットした再生ポリスチレン系樹脂を用いることができる。
The polystyrene resin used as a raw material is a non-recycled polystyrene resin (virgin polystyrene) such as a commercially available ordinary polystyrene resin or a polystyrene resin newly produced by a method such as suspension polymerization. In addition, a regenerated polystyrene resin obtained by regenerating a used polystyrene resin foam molded article can be used.
As this recycled polystyrene-based resin, used polystyrene-based resin foam molded products, for example, fish boxes, household appliance cushioning materials, food packaging trays, etc. are recovered and recycled by the limonene dissolution method or heating volume reduction method. Can be used. In addition, recycled polystyrene resins that can be used are not only those obtained by reprocessing used polystyrene resin foam moldings, but also household electrical appliances (for example, televisions, refrigerators, washing machines, air conditioners, etc.) In addition, a recycled polystyrene resin obtained by pulverizing, melt-kneading, and re-pelletizing a non-foamed polystyrene resin molded product separated and collected from office equipment (for example, a copying machine, a facsimile machine, a printer, etc.) can be used.
本発明の発泡性ポリスチレン系樹脂粒子に含有させる発泡剤としては、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン等の脂肪族炭化水素、1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、1,1−ジクロロ−2,2,2−トリフルオロエタン(HCFC−123)、クロロジフルオロメタン(HCFC−22)、1−クロロ−1,2,2,2−テトラフルオロエタン(HCFC−124)等のクロロフルオロカーボン、1,1−ジフルオロエタン(HFC−152a)、1,1,1−トリフルオロエタン(HFC−143a)、1,1,1,2−テトラフルオロエタン(HFC−134a)、ジフルオロメタン(HFC−32)等のフルオロカーボン、各種アルコール、二酸化炭素、水、及び窒素などの物理発泡剤が挙げられ、これらの中の1種又は2種以上を併用して使用することができる。これらのうち、特に好ましい発泡剤としては、n−ブタン、イソブタン、n−ペンタン、イソペンタンが挙げられる。発泡剤の添加量は、ポリスチレン系樹脂100質量部に対して1〜15質量部の範囲とされ、より好ましくは3〜12質量部の範囲とされる。 Examples of the foaming agent contained in the expandable polystyrene resin particles of the present invention include aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, and neopentane, 1,1-dichloro-1-fluoroethane ( HCFC-141b), 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), chlorodifluoromethane (HCFC-22), 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) and other chlorofluorocarbons, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC- 134a), fluorocarbons such as difluoromethane (HFC-32), various alcohols, carbon dioxide, water And physical blowing agents can be mentioned such as nitrogen, can be used in combination one or more of these. Among these, particularly preferable blowing agents include n-butane, isobutane, n-pentane, and isopentane. The addition amount of a foaming agent shall be the range of 1-15 mass parts with respect to 100 mass parts of polystyrene-type resins, More preferably, it shall be the range of 3-12 mass parts.
本発明の発泡性ポリスチレン系樹脂粒子に含有させる流動パラフィンは、オレフィン系飽和炭化水素の混合物であり、かつ平均炭素数が20〜35個の範囲内であり、常温で液体であることが好ましい。
流動パラフィンの量は、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内であり、0.5〜2質量部の範囲内がより好ましい。流動パラフィンの量が0.01質量部未満であると、予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果が十分に得られなくなる。流動パラフィンの量が5質量部を超えると、やはり予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果が十分に得られなくなる。
流動パラフィンは、発泡性ポリスチレン系樹脂粒子全体(粒子中に気泡を含む場合は、その気泡を含まない領域)にわたり均一に含有していることが好ましい。樹脂粒子の局部、例えば、樹脂粒子の表層部分に流動パラフィンが偏在していると、予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果が十分に得られなくなる。
The liquid paraffin contained in the expandable polystyrene resin particles of the present invention is a mixture of olefin-based saturated hydrocarbons, and has an average carbon number in the range of 20 to 35, and is preferably liquid at normal temperature.
The amount of the liquid paraffin is in the range of 0.01 to 5 parts by mass, more preferably in the range of 0.5 to 2 parts by mass with respect to 100 parts by mass of the polystyrene resin. When the amount of the liquid paraffin is less than 0.01 parts by mass, the effect of increasing the bulk expansion ratio of the pre-expanded particles and the effect of improving the mechanical strength of the foamed molded article cannot be sufficiently obtained. When the amount of the liquid paraffin exceeds 5 parts by mass, the effect of increasing the bulk expansion ratio of the pre-expanded particles and the effect of improving the mechanical strength of the foamed molded article cannot be sufficiently obtained.
The liquid paraffin is preferably contained uniformly throughout the expandable polystyrene resin particles (in the case where bubbles are included in the particles, the region not including the bubbles). If the liquid paraffin is unevenly distributed in a local portion of the resin particle, for example, the surface layer portion of the resin particle, the effect of increasing the bulk expansion ratio of the pre-expanded particle and the effect of improving the mechanical strength of the foamed molded article cannot be obtained sufficiently.
本発明の発泡性ポリスチレン系樹脂粒子には、発泡剤及び流動パラフィンの他、無機発泡核剤が均一に含有されていることが好ましい。無機発泡核剤としては、タルク、シリカ、その他の無機粉体が挙げられ、これらの中でもタルクが好ましい。
無機発泡核剤の量は、ポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内であることが好ましく、0.1〜2質量部の範囲がより好ましい。
使用する無機発泡核剤の平均粒径は、0.1〜30μmの範囲内であることが好ましく、0.5〜10μmの範囲内であることがより好ましい。
発泡性ポリスチレン系樹脂粒子に流動パラフィンとともにタルクなどの無機発泡核剤を含有させることで、予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果を高めることができる。
無機発泡核剤は、発泡性ポリスチレン系樹脂粒子全体にわたり均一に含有している必要がある。樹脂粒子の局部、例えば、樹脂粒子の表層部分にタルクが偏在していると、得られる発泡成形体の機械強度が低下するおそれがある。
The expandable polystyrene resin particles of the present invention preferably contain an inorganic foam nucleating agent in addition to the foaming agent and liquid paraffin. Examples of the inorganic foam nucleating agent include talc, silica, and other inorganic powders. Among these, talc is preferable.
The amount of the inorganic foam nucleating agent is preferably in the range of 0.05 to 5 parts by mass, more preferably in the range of 0.1 to 2 parts by mass with respect to 100 parts by mass of the polystyrene resin.
The average particle diameter of the inorganic foam nucleating agent to be used is preferably in the range of 0.1 to 30 μm, and more preferably in the range of 0.5 to 10 μm.
By containing an expandable polystyrene resin particle and an inorganic foam nucleating agent such as talc together with liquid paraffin, the effect of increasing the bulk expansion ratio of the pre-expanded particles and the effect of improving the mechanical strength of the foamed molded product can be enhanced.
The inorganic foam nucleating agent needs to be uniformly contained throughout the expandable polystyrene resin particles. If talc is unevenly distributed in a local portion of the resin particle, for example, a surface layer portion of the resin particle, the mechanical strength of the obtained foamed molded product may be lowered.
本発明の発泡性ポリスチレン系樹脂粒子には、物性を損なわない範囲内において、架橋剤、可塑剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよく、又、ジンクステアレート等の粉末状金属石鹸類を前記発泡性スチレン樹脂粒子の表面に塗布しておけば、発泡性ポリスチレン系樹脂粒子の予備発泡工程においてポリスチレン系樹脂予備発泡粒子同士の結合を減少させることができて好ましい。 In the foamable polystyrene resin particles of the present invention, additives such as a crosslinking agent, a plasticizer, a filler, a flame retardant, a flame retardant aid, a lubricant, and a colorant may be added within a range that does not impair the physical properties. Well, if powder metal soaps such as zinc stearate are applied on the surface of the expandable styrene resin particles, the polystyrene resin pre-expanded particles are bonded together in the pre-expanding step of the expandable polystyrene resin particles. Is preferable.
本発明の発泡性ポリスチレン系樹脂粒子の粒径は、特に限定されないが、通常は0.5〜3.0mmの範囲が好ましく、0.7〜2.0mmの範囲がより好ましい。また、粒子の形状は、特に限定されないが、球状乃至略球状であることが好ましい。 The particle size of the expandable polystyrene resin particles of the present invention is not particularly limited, but is usually preferably in the range of 0.5 to 3.0 mm, more preferably in the range of 0.7 to 2.0 mm. The shape of the particles is not particularly limited, but is preferably spherical or substantially spherical.
本発明の発泡性ポリスチレン系樹脂粒子は、発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有された構成としたことによって、加熱して予備発泡させて得られる予備発泡粒子の嵩発泡倍数を高めることができ、高発泡倍数の発泡成形体を得ることができる。
また、リサイクルされたポリスチレン系樹脂を用いて製造した場合でも、曲げ強度などの機械強度に優れた発泡成形体を得ることができる。
The expandable polystyrene resin particles of the present invention have a configuration in which liquid paraffin is uniformly contained in a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin throughout the expandable polystyrene resin particles. Thus, it is possible to increase the bulk expansion ratio of the pre-expanded particles obtained by heating and pre-expanding, and it is possible to obtain a foamed molded article having a high expansion ratio.
Moreover, even when manufactured using recycled polystyrene resin, a foamed molded article having excellent mechanical strength such as bending strength can be obtained.
本発明の発泡性ポリスチレン系樹脂粒子の好ましい実施形態において、発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有され、芳香族炭化水素がポリスチレン系樹脂100質量部に対し0.15〜3.0質量部の範囲内で均一に含有され、かつ無機発泡核剤がポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内で均一に含有されている構成とすることが好ましい。
本実施形態によれば、発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有され、芳香族炭化水素がポリスチレン系樹脂100質量部に対し0.15〜3.0質量部の範囲内で均一に含有され、かつ無機発泡核剤がポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内で均一に含有されている構成としたことによって、加熱して予備発泡させて得られる予備発泡粒子の嵩発泡倍数をより一層高めることができ、より高発泡倍数の発泡成形体を得ることができる。
In a preferred embodiment of the expandable polystyrene resin particles of the present invention, liquid paraffin is uniformly contained in the entire expandable polystyrene resin particles within a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin. The aromatic hydrocarbon is uniformly contained in the range of 0.15 to 3.0 parts by mass with respect to 100 parts by mass of the polystyrene resin, and the inorganic foam nucleating agent is 0.05 to 100 parts by mass with respect to 100 parts by mass of the polystyrene resin. It is preferable to make it the structure contained uniformly within the range of 5 mass parts.
According to this embodiment, the liquid paraffin is uniformly contained in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin, and the aromatic hydrocarbon is polystyrene type. It is uniformly contained within the range of 0.15 to 3.0 parts by mass with respect to 100 parts by mass of the resin, and the inorganic foam nucleating agent is uniform within the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the polystyrene-based resin. By using the composition contained in the pre-expanded particles obtained by heating and pre-expanding, the bulk expansion ratio of the pre-expanded particles can be further increased, and a foamed molded article having a higher expansion ratio can be obtained.
本実施形態の発泡性ポリスチレン系樹脂粒子に含有させる流動パラフィンは、オレフィン系飽和炭化水素の混合物であり、かつ平均炭素数が20〜35個の範囲内であり、常温で液体であることが好ましい。
流動パラフィンの量は、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内であり、0.1〜2質量部の範囲内がより好ましい。流動パラフィンの量が0.01質量部未満であると、予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果が十分に得られなくなる。流動パラフィンの量が5質量部を超えると、やはり予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果が十分に得られなくなる。
流動パラフィンは、発泡性ポリスチレン系樹脂粒子全体(粒子中に気泡を含む場合は、その気泡を含まない領域)にわたり均一に含有していることが好ましい。樹脂粒子の局部、例えば、樹脂粒子の表層部分に流動パラフィンが偏在していると、予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果が十分に得られなくなる。
The liquid paraffin to be included in the expandable polystyrene resin particles of the present embodiment is a mixture of olefin-based saturated hydrocarbons, has an average carbon number in the range of 20 to 35, and is preferably liquid at normal temperature. .
The amount of liquid paraffin is in the range of 0.01 to 5 parts by mass, and more preferably in the range of 0.1 to 2 parts by mass with respect to 100 parts by mass of the polystyrene resin. When the amount of the liquid paraffin is less than 0.01 parts by mass, the effect of increasing the bulk expansion ratio of the pre-expanded particles and the effect of improving the mechanical strength of the foamed molded article cannot be sufficiently obtained. When the amount of the liquid paraffin exceeds 5 parts by mass, the effect of increasing the bulk expansion ratio of the pre-expanded particles and the effect of improving the mechanical strength of the foamed molded article cannot be sufficiently obtained.
The liquid paraffin is preferably contained uniformly throughout the expandable polystyrene resin particles (in the case where bubbles are included in the particles, the region not including the bubbles). If the liquid paraffin is unevenly distributed in a local portion of the resin particle, for example, the surface layer portion of the resin particle, the effect of increasing the bulk expansion ratio of the pre-expanded particle and the effect of improving the mechanical strength of the foamed molded article cannot be obtained sufficiently.
本実施形態の発泡性ポリスチレン系樹脂粒子に含有させる芳香族炭化水素としては、例えばスチレン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、n−プロピルベンゼン、i−プロピルベンゼン等が挙げられ、これらの中でもスチレン、トルエンが好ましい。
前記芳香族炭化水素の量は、ポリスチレン系樹脂100質量部に対し0.15〜3.0質量部の範囲内であり、0.2〜2質量部の範囲がより好ましい。芳香族炭化水素の量が前記範囲内であれば、加熱して予備発泡させて得られる予備発泡粒子の嵩発泡倍数をより一層高めることができ、より高発泡倍数の発泡成形体を得ることができる。
芳香族炭化水素は、発泡性ポリスチレン系樹脂粒子全体(粒子中に気泡を含む場合は、その気泡を含まない領域)にわたり均一に含有していることが好ましい。樹脂粒子の局部、例えば、樹脂粒子の表層部分に芳香族炭化水素が偏在していると、予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果が十分に得られなくなる。
Examples of the aromatic hydrocarbon contained in the expandable polystyrene resin particles of the present embodiment include styrene, benzene, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, n-propylbenzene, and i-propylbenzene. Among these, styrene and toluene are preferable.
The amount of the aromatic hydrocarbon is in the range of 0.15 to 3.0 parts by mass, more preferably in the range of 0.2 to 2 parts by mass with respect to 100 parts by mass of the polystyrene resin. If the amount of the aromatic hydrocarbon is within the above range, it is possible to further increase the bulk expansion ratio of the pre-expanded particles obtained by heating and pre-expanding to obtain a foamed molded article having a higher expansion ratio. it can.
The aromatic hydrocarbon is preferably contained uniformly throughout the expandable polystyrene resin particles (in the case where bubbles are included in the particles, the region not including the bubbles). If aromatic hydrocarbons are unevenly distributed in the local part of the resin particles, for example, the surface layer part of the resin particles, the effect of increasing the bulk expansion ratio of the pre-expanded particles and the effect of improving the mechanical strength of the foamed molded article cannot be obtained sufficiently.
本実施形態の発泡性ポリスチレン系樹脂粒子に含有させる無機発泡核剤としては、タルク、シリカ、カルシウム塩、マグネシウム塩、粘土鉱物などが挙げられ、その中でもタルクが好ましい。また、使用するタルクの平均粒径は、0.1〜30μmの範囲が好ましく、0.5〜10μmの範囲内がより好ましい。
無機発泡核剤の量は、ポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内であり、0.5〜10μmの範囲内が好ましい。無機発泡核剤の量が前記範囲内であれば、加熱して予備発泡させて得られる予備発泡粒子の嵩発泡倍数をより一層高めることができ、より高発泡倍数の発泡成形体を得ることができる。
無機発泡核剤は、発泡性ポリスチレン系樹脂粒子全体(粒子中に気泡を含む場合は、その気泡を含まない領域)にわたり均一に含有していることが好ましい。樹脂粒子の局部、例えば、樹脂粒子の表層部分に無機発泡核剤が偏在していると、予備発泡粒子の嵩発泡倍数を高める効果や発泡成形体の機械強度向上効果が十分に得られなくなる。
Examples of the inorganic foam nucleating agent to be contained in the expandable polystyrene resin particles of the present embodiment include talc, silica, calcium salt, magnesium salt, clay mineral, and the like. Among these, talc is preferable. Moreover, the range of 0.1-30 micrometers is preferable and, as for the average particle diameter of the talc to be used, the inside of the range of 0.5-10 micrometers is more preferable.
The amount of the inorganic foam nucleating agent is in the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin, and preferably in the range of 0.5 to 10 μm. If the amount of the inorganic foam nucleating agent is within the above range, the bulk foaming factor of the prefoamed particles obtained by heating and prefoaming can be further increased, and a foamed molded product having a higher foaming factor can be obtained. it can.
The inorganic foam nucleating agent is preferably contained uniformly over the entire expandable polystyrene resin particles (in the case where bubbles are included in the particles, the region not including the bubbles). If the inorganic foam nucleating agent is unevenly distributed in the local part of the resin particles, for example, the surface layer part of the resin particles, the effect of increasing the bulk expansion factor of the pre-expanded particles and the effect of improving the mechanical strength of the foamed molded article cannot be obtained sufficiently.
(発泡性ポリスチレン系樹脂粒子の製造方法)
本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で流動パラフィンを添加して発泡性ポリスチレン系樹脂粒子全体に流動パラフィンを均一に含有させたことを特徴としている。
(Method for producing expandable polystyrene resin particles)
The method for producing expandable polystyrene resin particles according to the present invention includes a die in which a foaming agent is press-fitted and kneaded into a polystyrene resin melted in a resin supply device, and a foamed agent-containing molten resin is attached to the tip of the resin supply device. Extrusion into the cooling liquid directly from the small holes of the glass, and simultaneously extruding, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with the liquid to obtain expandable polystyrene resin particles. In the method for producing expandable polystyrene resin particles by the method, liquid paraffin is added within a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of polystyrene resin, and the liquid paraffin is uniformly distributed throughout the expandable polystyrene resin particles. It is characterized by the inclusion.
本発明の製造方法の好ましい実施形態において、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、ポリスチレン系樹脂100質量部に対して、流動パラフィンを0.01〜5質量部の範囲内、芳香族炭化水素を0.15〜3.0質量部の範囲内、及び無機発泡核剤を0.05〜5質量部の範囲内で添加し、発泡性ポリスチレン系樹脂粒子全体に流動パラフィン、芳香族炭化水素及び無機発泡核剤を均一に含有させた発泡性ポリスチレン系樹脂粒子を得ることが好ましい。ここで、流動パラフィン、芳香族炭化水素及び無機発泡核剤は、前述したものと同じでよい。 In a preferred embodiment of the production method of the present invention, a foaming agent is press-fitted and kneaded into a polystyrene-based resin melted in a resin supply device, and a small hole in a die provided with a foaming agent-containing molten resin at the tip of the resin supply device The melt is extruded directly into the cooling liquid, and at the same time, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with the liquid to obtain expandable polystyrene resin particles. In the method for producing polystyrene resin particles, liquid paraffin is in the range of 0.01 to 5 parts by mass and aromatic hydrocarbon is in the range of 0.15 to 3.0 parts by mass with respect to 100 parts by mass of the polystyrene resin. In addition, 0.05 to 5 parts by mass of an inorganic foam nucleating agent is added, and liquid paraffin, aromatic hydrocarbons and inorganic foam nucleating agent are averaged over the entire expandable polystyrene resin particles. It is preferable to obtain expandable polystyrene resin particles are contained in. Here, the liquid paraffin, aromatic hydrocarbon and inorganic foam nucleating agent may be the same as those described above.
図1は、本発明の発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図であり、本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥して発泡性ポリスチレン系樹脂粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性ポリスチレン系樹脂粒子を貯留する貯留容器11とを備えて構成されている。
FIG. 1 is a configuration diagram showing an example of a production apparatus used in the method for producing expandable polystyrene resin particles of the present invention. The production apparatus of this example includes an extruder 1 as a resin supply apparatus, and an extruder 1. A
なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。 As the extruder 1, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.
図1に示す製造装置を用い、発泡性ポリスチレン系樹脂粒子を製造するには、まず、原料の前記ポリスチレン系樹脂、流動パラフィン、芳香族炭化水素、無機発泡核剤や必要に応じて添加される発泡核剤などの所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。 In order to produce expandable polystyrene resin particles using the production apparatus shown in FIG. 1, first, the raw material polystyrene resin, liquid paraffin, aromatic hydrocarbon, inorganic foam nucleating agent and, if necessary, are added. A desired additive such as a foam nucleating agent is weighed and charged into the extruder 1 from the raw material supply hopper 3. The raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount for each lot may be reduced. A plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.
押出機1内にポリスチレン系樹脂、流動パラフィン、芳香族炭化水素、無機発泡核剤やその他の添加剤を供給後、樹脂を加熱溶融し、その溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入して溶融樹脂に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。
After supplying polystyrene resin, liquid paraffin, aromatic hydrocarbon, inorganic foam nucleating agent and other additives into the extruder 1, the resin is heated and melted, and the molten resin is transferred to the
ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡が抑えられたまま固化して発泡性ポリスチレン系樹脂粒子となる。
The resin discharge surface in which the small holes of the
形成された発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥する。乾燥された発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。
The formed expandable polystyrene resin particles are transferred from the cutting chamber 7 to the
本発明のポリスチレン系樹脂発泡成形体の製造方法は、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法において、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で流動パラフィンを添加して発泡性ポリスチレン系樹脂粒子全体に流動パラフィンを均一に含有させるようにしたので、高発泡倍数の発泡成形体を得ることができ、またリサイクルされたポリスチレン系樹脂を用いて製造した場合でも、曲げ強度などの機械強度に優れた発泡成形体を得ることができる発泡性ポリスチレン系樹脂粒子を効率よく製造することができる。
さらに、ポリスチレン系樹脂100質量部に対して、流動パラフィンを0.01〜5質量部の範囲内、芳香族炭化水素を0.15〜3.0質量部の範囲内、及び無機発泡核剤を0.05〜5質量部の範囲内で添加し、発泡性ポリスチレン系樹脂粒子全体に流動パラフィン、芳香族炭化水素及び無機発泡核剤を均一に含有させたことによって、より高発泡倍数の発泡成形体を得ることができる。
The method for producing a polystyrene resin foam molded article of the present invention is a liquid paraffin within a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of polystyrene resin in the production method of expandable polystyrene resin particles by melt extrusion. When liquid paraffin is uniformly contained throughout the expandable polystyrene resin particles, a foamed molded product with a high expansion ratio can be obtained, and when it is manufactured using recycled polystyrene resin However, it is possible to efficiently produce expandable polystyrene resin particles capable of obtaining a foamed molded article having excellent mechanical strength such as bending strength.
Furthermore, with respect to 100 parts by mass of the polystyrene resin, the liquid paraffin is in the range of 0.01 to 5 parts by mass, the aromatic hydrocarbon is in the range of 0.15 to 3.0 parts by mass, and the inorganic foam nucleating agent is added. Addition within the range of 0.05 to 5 parts by mass, and by uniformly containing liquid paraffin, aromatic hydrocarbon and inorganic foam nucleating agent in the whole expandable polystyrene resin particles, foam molding with higher expansion ratio You can get a body.
(ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体)
本発明の発泡性ポリスチレン系樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、ポリスチレン系樹脂予備発泡粒子(以下、予備発泡粒子と記す)とする。この予備発泡粒子は、製造するべき発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度は限定されないが、通常は0.010〜0.10g/cm3の範囲内とし、0.015〜0.050g/cm3の範囲内とするのが好ましい。
(Polystyrene resin pre-expanded particles and polystyrene resin foam molding)
The expandable polystyrene resin particles of the present invention are pre-expanded by heating with water vapor heating or the like using a well-known apparatus and method in the field of manufacturing foamed resin molded articles, and then polystyrene-based resin pre-expanded particles (hereinafter referred to as pre-expanded particles). ). The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the foamed molded product to be manufactured. In the present invention, its bulk density is not limited, usually in the range of 0.010~0.10g / cm 3, preferably in the range of 0.015~0.050g / cm 3.
なお、本発明において予備発泡粒子の嵩密度とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<予備発泡粒子の嵩密度>
先ず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積Vcm3をJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて予備発泡粒子の嵩密度を測定する。
嵩密度(g/cm3)=測定試料の質量(W)/測定試料の体積(V)
In the present invention, the bulk density of the pre-expanded particles refers to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
First, Wg was sampled from pre-expanded particles as a measurement sample, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was measured using an apparent density measuring instrument based on JIS K6911. The bulk density of the pre-expanded particles is measured based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)
<予備発泡粒子の嵩発泡倍数>
また、予備発泡粒子の嵩発泡倍数は、次式により算出される数値である。
嵩発泡倍数=1/嵩密度(g/cm3)
<Bulk expansion ratio of pre-expanded particles>
Moreover, the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
Bulk foaming factor = 1 / bulk density (g / cm 3 )
前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、該予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、ポリスチレン系樹脂発泡成形体(以下、発泡成形体と記す)を製造する。
本発明の発泡成形体の密度は特に限定されないが、通常は0.010〜0.10g/cm3の範囲内とし、0.015〜0.050g/cm3の範囲内とするのが好ましい。
The pre-expanded particles are filled in a cavity of a mold using a well-known apparatus and method in the field of manufacturing a foamed resin molded article, heated by steam heating or the like, and subjected to in-mold foam molding. -Based resin foam molded body (hereinafter referred to as foam molded body) is produced.
Although the density of the foamed molded article of the present invention is not particularly limited, usually in the range of 0.010~0.10g / cm 3, preferably in the range of 0.015~0.050g / cm 3.
なお、本発明において発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した発泡成形体密度のことである。
<発泡成形体の密度>
50cm3以上(半硬質および軟質材料の場合は100cm3以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm3)=試験片質量(g)/試験片体積(cm3)
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
In the present invention, the density of the foamed molded product refers to the density of the foamed molded product measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Density of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test piece condition adjustment and measurement test pieces were cut out from samples that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C. ± 2 ° C. × 50% ± 5% or 27 ° C. ± 2 ° C. × 65% ± 5%. It has been left for more than an hour.
<発泡成形体の発泡倍数>
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数=1/密度(g/cm3)
<Folding multiple of foamed molded product>
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )
本発明の発泡成形体は、前述した本発明に係る発泡性ポリスチレン系樹脂粒子を加熱発泡させ、得られた予備発泡粒子を型内発泡成形して得られたものなので、高発泡倍数の発泡成形体を得ることができる。
また、リサイクルされたポリスチレン系樹脂を用いて製造した場合でも、曲げ強度などの機械強度に優れた発泡成形体を得ることができる。
The foamed molded product of the present invention is obtained by heating and foaming the expandable polystyrene resin particles according to the present invention, and the resulting pre-foamed particles are obtained by in-mold foam molding. You can get a body.
Moreover, even when manufactured using recycled polystyrene resin, a foamed molded article having excellent mechanical strength such as bending strength can be obtained.
[実施例1]
(発泡性ポリスチレン系樹脂粒子の作製)
ポリスチレン樹脂(東洋スチレン社製、商品名「HRM−10N」)100質量部に対し、平均炭素数22の流動パラフィン(松村石油社製、スモイルP70)0.5質量部を加え、これらを口径90mmの単軸押出機に、時間当たり130kgで連続供給した。押出機内温度としては、最高温度210℃に設定し、樹脂を溶解させた後、発泡剤として樹脂100質量部に対して6質量部のペンタン(イソペンタン:ノルマルペンタン=20:80(質量比))を押出機の途中から圧入した。押出機内で樹脂と発泡剤を混練するとともに冷却し、押出機先端部での樹脂温度を170℃、ダイの樹脂導入部の圧力を12MPaに保持して、直径0.6mmでランド長さが3.0mmの小孔が200個配置されたダイより、このダイの吐出側に連結され30℃の水が循環するカッティング室に、発泡剤含有溶融樹脂を押し出すと同時に、10枚の刃を有する高速回転カッターにて押出物を切断した。切断した粒子を循環水で冷却しながら、粒子分離器に搬送し、粒子を循環水と分離した。さらに、捕集した粒子を脱水・乾燥してペンタン含有発泡性ポリスチレン系樹脂粒子を得た。得られたペンタン含有発泡性ポリスチレン系樹脂粒子は、変形、ヒゲ等の発生もなく、ほぼ完全な球体であり、平均粒径は約1.1mmであった。
得られたペンタン含有発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.15質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部を該樹脂粒子の表面全面に均一に被覆した。
[Example 1]
(Production of expandable polystyrene resin particles)
To 100 parts by mass of polystyrene resin (trade name “HRM-10N” manufactured by Toyo Styrene Co., Ltd.), 0.5 parts by mass of liquid paraffin (Matsumura Oil Co., Ltd., Sumoyle P70) having an average carbon number of 22 is added, and these have a diameter of 90 mm. Were continuously fed at 130 kg per hour. As the temperature inside the extruder, the maximum temperature was set at 210 ° C., and after dissolving the resin, 6 parts by mass of pentane (isopentane: normal pentane = 20: 80 (mass ratio)) with respect to 100 parts by mass of the resin as a foaming agent. Was press-fitted from the middle of the extruder. The resin and the foaming agent are kneaded and cooled in the extruder, the resin temperature at the tip of the extruder is maintained at 170 ° C., the pressure at the resin introduction part of the die is maintained at 12 MPa, the diameter is 0.6 mm, and the land length is 3 High speed with 10 blades at the same time as extruding the foaming agent-containing molten resin into a cutting chamber connected to the discharge side of this die and 200 ° C. water circulated from 200 dies with small holes of 0.0 mm The extrudate was cut with a rotary cutter. While the cut particles were cooled with circulating water, they were conveyed to a particle separator, and the particles were separated from the circulating water. Furthermore, the collected particles were dehydrated and dried to obtain pentane-containing expandable polystyrene resin particles. The obtained pentane-containing expandable polystyrene resin particles were almost perfect spheres without deformation and beard, and the average particle size was about 1.1 mm.
With respect to 100 parts by mass of the obtained pentane-containing expandable polystyrene resin particles, 0.03 part by mass of polyethylene glycol, 0.15 part by mass of zinc stearate, 0.05 part by mass of monoglyceride stearate, triglyceride hydroxystearate 05 parts by mass were uniformly coated on the entire surface of the resin particles.
<発泡倍率の測定>
上記で得られた発泡性ポリスチレン系樹脂粒子を箱型発泡槽にて吹込み蒸気圧0.02MPaの水蒸気により3分間に亘って加熱し、得られた予備発泡粒子の嵩発泡倍数を前記の通り測定し、次の評価基準:
嵩発泡倍数65倍以上を最良(◎◎)、
嵩発泡倍数60倍以上65倍未満を特に良好(◎)、
嵩発泡倍数50倍以上60倍未満を良好(○)、
嵩発泡倍数50倍未満を不良(×)、に照らし、発泡倍率の評価を行った。その結果を表1に記す。
<Measurement of expansion ratio>
The expandable polystyrene resin particles obtained above are heated in a box-type foaming tank with water vapor blown at a vapor pressure of 0.02 MPa for 3 minutes, and the bulk expansion ratio of the resulting pre-expanded particles is as described above. Measure and evaluate the following criteria:
The best foam expansion ratio is 65 times or more (◎◎),
Especially good when the bulk foaming ratio is 60 times or more and less than 65 times (◎),
Good bulk foaming ratio 50 times or more and less than 60 times (○)
The foaming magnification was evaluated by illuminating a bulk foaming factor of less than 50 times with a defect (x). The results are shown in Table 1.
(発泡成形体の製造)
次いで、保冷庫に保管することなく、前記の通り製造した発泡性ポリスチレン系樹脂粒子を、円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.020g/cm3(嵩発泡倍数50倍)であった。
続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ50mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、その後、成形型のキャビティ内を水蒸気でゲージ圧0.08MPaの圧力で20秒間に亘って加熱し、その後、成形型のキャビティ内の圧力が0.01MPaになるまで冷却し、その後成形型を開き、長さ400mm×幅300mm×高さ50mmの長方形状の発泡成形体を取り出した。
得られた発泡成形体は、密度0.020g/cm3(発泡倍数50倍)であった。
(Manufacture of foam moldings)
Next, the expandable polystyrene resin particles produced as described above are supplied to a cylindrical batch-type pre-foaming machine without being stored in a cool box, and heated with steam having a blowing pressure of 0.05 MPa. Obtained. The obtained pre-expanded particles had a bulk density of 0.020 g / cm 3 (bulk expansion ratio: 50 times).
Subsequently, the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 50 mm. Thereafter, the inside of the cavity of the mold is heated with water vapor at a gauge pressure of 0.08 MPa for 20 seconds, and then cooled until the pressure in the cavity of the mold reaches 0.01 MPa. Opened, a rectangular foam molded body having a length of 400 mm, a width of 300 mm, and a height of 50 mm was taken out.
The obtained foamed molded article had a density of 0.020 g / cm 3 (foaming factor: 50 times).
<平均気泡径>
発泡成形体の平均気泡径は、ASTM D2842−69の試験方法に準拠して測定されたものをいう。具体的には実施例(及び比較例)で得られた発泡成形体を剃刀刃で切断し、その切断面を走査型電子顕微鏡(日立製作所社製 S−3000N)で拡大して撮影する。撮影した画像をA4用紙上に印刷し、任意の一直線上(長さ60mm)にある気泡数から気泡の平均弦長(t)を下記式により算出した。但し任意の直線はできる限り気泡が接点でのみ接しないようにした(接してしまう場合は気泡数に含める)。計測は10ヶ所とし、その平均弦長を求めた後、気泡径を算出し、平均気泡径D(μm)とした。その結果を表1に記す。
平均弦長t=60/(気泡数×写真の倍率)
気泡径D=t/0.616×1000
<Average bubble diameter>
The average cell diameter of the foamed molded product refers to that measured according to the test method of ASTM D2842-69. Specifically, the foam molded body obtained in the examples (and comparative examples) is cut with a razor blade, and the cut surface is enlarged and photographed with a scanning electron microscope (S-3000N, manufactured by Hitachi, Ltd.). The photographed image was printed on A4 paper, and the average chord length (t) of the bubbles was calculated from the number of bubbles on an arbitrary straight line (length: 60 mm) by the following formula. However, the arbitrary straight lines were made so that the bubbles did not contact only at the contact points as much as possible (included in the number of bubbles if contacted). The measurement was performed at 10 locations, and after obtaining the average chord length, the bubble diameter was calculated to obtain the average bubble diameter D (μm). The results are shown in Table 1.
Average string length t = 60 / (number of bubbles × photo magnification)
Bubble diameter D = t / 0.616 × 1000
<曲げ強度の評価>
実施例(及び比較例)で得られた発泡成形体について、JIS A9511:2006「発泡プラスチック保温材」記載の方法に準じて曲げ強度を測定した。
すなわち、テンシロン万能試験機UCT−10T(オリエンテック社製)を用い、試験体サイズは75mm×300mm×50mmとし、圧縮速度を10mm/min、先端治具は加圧くさび10R、支持台10Rで、支点間距離200mmの条件として測定し、次式にて曲げ強度を算出した。試験片の数は3個とし、その平均値を求めた。
曲げ強度(MPa)=3FL/2bh2
[ここで、Fは曲げ最大荷重(N)を表し、Lは支点間距離(mm)を表し、bは試験片の幅(mm)を表し、hは試験片の厚み(mm)を表す。]
このようにして曲げ強度の平均値を求め、次の評価基準:
曲げ強度が0.28MPa以上を特に良好(◎)、
曲げ強度が0.25MPa以上0.28MPa未満を凹(○)、
曲げ強度が0.25MPa未満を×、に照らし、強度を評価した。その結果を表1に記す。
<Evaluation of bending strength>
About the foaming molding obtained in the Example (and comparative example), bending strength was measured according to the method of JIS A9511: 2006 "foaming plastic heat insulating material".
That is, using a Tensilon universal testing machine UCT-10T (manufactured by Orientec Co., Ltd.), the specimen size is 75 mm × 300 mm × 50 mm, the compression speed is 10 mm / min, the tip jig is a pressure wedge 10R, and a support base 10R. Measurement was performed under the condition of a distance between fulcrums of 200 mm, and the bending strength was calculated by the following formula. The number of test pieces was three, and the average value was obtained.
Bending strength (MPa) = 3FL / 2bh 2
[Where F represents the maximum bending load (N), L represents the distance between supporting points (mm), b represents the width (mm) of the test piece, and h represents the thickness (mm) of the test piece. ]
In this way, the average value of the bending strength is obtained, and the following evaluation criteria:
Particularly good when the bending strength is 0.28 MPa or more (◎),
Bending strength is 0.25 MPa or more and less than 0.28 MPa concave (O),
The bending strength of less than 0.25 MPa was illuminated with x, and the strength was evaluated. The results are shown in Table 1.
<判定>
前記<発泡倍率の測定>での評価結果と前記<曲げ強度の評価>の結果について、以下の判定基準により評価した。その結果を表1に記す。
良好(○):<発泡倍率の測定>での評価結果と前記<曲げ強度の評価>の結果が両方とも○、◎又は◎◎である場合。
不良(×):<発泡倍率の測定>での評価結果と前記<曲げ強度の評価>の結果のいずれか一方又は両方とも×である場合。
<Judgment>
The evaluation results in <Measurement of foaming ratio> and the results of <Evaluation of bending strength> were evaluated according to the following criteria. The results are shown in Table 1.
Good (O): When the evaluation result in <Measurement of foaming ratio> and the result of <Evaluation of bending strength> are both O, A or A.
Defect (x): When either or both of the evaluation result in <Measurement of foaming ratio> and the result of <Evaluation of bending strength> or both are X.
<流動パラフィンの測定>
試料調整:
(1)加熱減量方法による残存ガス量の測定
試料(発泡性ポリスチレン系樹脂粒子、予備発泡粒子、発泡成形体)の質量をA(g)とし、アルミホイルに包んで再度秤量し、これをB(g)とした。145℃のオーブンで1時間熱処理し、完全に該試料内のガスを除去した。その後、デジケーターにて10分静置し、ガスの抜けた試料表面に付着したガス分を吸着させ、このガスの抜けた試料をアルミホイルに包んだ状態で再度秤量し、これをC(g)とし、下記の計算式にて試料内に残っている残存ガス量を計算した。
残存ガス量 (%)=(B(g)−C(g))/A(g)×100
(2)樹脂中の流動パラフィンの測定
下記計算式によって算出された樹脂2.0gを含む試料A(g)をメチルエチルケトン15mlに溶解後、エタノールを15ml加え、更に溶解した。上澄み液を10ml採取し、テトラヒドロフラン(THF)10mlを加え攪拌し、得られた溶液を以下の条件で高速液体クロマトグラフィー法によって、樹脂100質量部に対する流動パラフィン含有量を測定した。
試料添加量: A(g)
= 樹脂 2.0g /〔 1−[ (1)によって算出された残存ガス量(%)]/100〕
測定条件
機器:高速液体クロマトグラフ HLC−802A
カラム:日本分光 Finepak GEL 101 2本
溶媒:テトラヒドロフラン(THF)
温度:カラム恒温槽 38℃
RI検出器 38℃
脱揮槽 45℃
流速:0.6ml/分
注入量:500μl
<Measurement of liquid paraffin>
Sample preparation:
(1) Measurement of residual gas amount by heat loss method Let A (g) be the mass of a sample (expandable polystyrene resin particles, pre-expanded particles, foamed molded product), wrap in aluminum foil, and weigh it again. (G). Heat treatment was performed in an oven at 145 ° C. for 1 hour to completely remove the gas in the sample. After that, the sample is allowed to stand for 10 minutes with a desiccator to adsorb the gas component adhering to the sample surface from which gas has been released, and the sample from which gas has been released is weighed again in an aluminum foil, and this is measured as C (g). And the amount of residual gas remaining in the sample was calculated by the following formula.
Residual gas amount (%) = (B (g) −C (g)) / A (g) × 100
(2) Measurement of liquid paraffin in resin After dissolving sample A (g) containing 2.0 g of resin calculated by the following formula in 15 ml of methyl ethyl ketone, 15 ml of ethanol was added and further dissolved. 10 ml of the supernatant was collected, 10 ml of tetrahydrofuran (THF) was added and stirred, and the liquid paraffin content with respect to 100 parts by mass of the resin was measured by high performance liquid chromatography under the following conditions.
Sample addition amount: A (g)
= Resin 2.0 g / [1- [Residual gas amount calculated by (1) (%)] / 100]
Measurement conditions Equipment: High performance liquid chromatograph HLC-802A
Column: JASCO Finepak GEL 101 2 Solvent: Tetrahydrofuran (THF)
Temperature: Column thermostat 38 ° C
RI detector 38 ℃
Devolatilization tank 45 ℃
Flow rate: 0.6 ml / min Injection volume: 500 μl
実施例1について、樹脂100質量部に対する流動パラフィンの含有量(質量部)を測定した結果、
発泡性ポリスチレン系樹脂粒子:0.5質量部
予備発泡粒子 :0.5質量部
発泡成形体 :0.5質量部
であった。
About Example 1, as a result of measuring content (mass part) of the liquid paraffin with respect to 100 mass parts of resin,
Expandable polystyrene resin particles: 0.5 parts by mass Pre-expanded particles: 0.5 parts by mass Foamed molded product: 0.5 parts by mass.
<芳香族炭化水素の測定>
試料調整:
(1)加熱減量方法による残存ガス量の測定
試料(発泡性ポリスチレン系樹脂粒子)の質量をA(g)とし、アルミホイルに包んで再度秤量し、これをB(g)とした。145℃のオーブンで1時間熱処理し、完全に該試料内のガスを除去した。その後、デジケーターにて10分静置し、ガスの抜けた試料表面に付着したガス分を吸着させ、このガスの抜けた試料をアルミホイルに包んだ状態で再度秤量し、これをC(g)とし、下記の計算式にて試料内に残っている残存ガス量を計算した。
残存ガス量 (%)=(B(g)−C(g))/A(g)×100
(2)樹脂中の芳香族炭化水素の測定
下記計算式によって算出された樹脂0.2gを含む試料A(g)を20mLバイアルにジエチルベンゼン(DEB)入ジメチルホルムアミド(DMF)1mLで溶解し、90℃1時間加熱し、その後、気相を採取し、これをガスクロマトグラフ(島津製作所社製、GC−18A)によって、樹脂100質量部に対する芳香族炭化水素の含有量(質量部)を測定した。
試料添加量: A(g)
= 樹脂 0.2g /〔 1−[ (1)によって算出された残存ガス量(%)]/100〕
測定条件
機器:ガスクロマトグラフ(島津製作所社製、GC−18A)
カラム:J&W社製、DB−WAX(φ0.25mm×30m、膜厚0.25μm)
検出器:FID
カラム温度条件:50℃2分保持後、100℃まで10℃/分で昇温し、100℃5分間保持後、220℃まで40℃/分で昇温し、220℃2分間保持た。
注入口温度:150℃
検出器温度:250℃
測定試料注入量:2mL
スプリット比=70:1
カラム流量:1.6mL/min(He)
ガス圧力:122kPa
<Measurement of aromatic hydrocarbons>
Sample preparation:
(1) Measurement of residual gas amount by heat loss method The mass of the sample (expandable polystyrene resin particles) was set to A (g), wrapped in aluminum foil and weighed again, and this was set to B (g). Heat treatment was performed in an oven at 145 ° C. for 1 hour to completely remove the gas in the sample. After that, the sample is allowed to stand for 10 minutes with a desiccator to adsorb the gas component adhering to the sample surface from which gas has been released, and the sample from which gas has been released is weighed again in an aluminum foil, and this is measured as C (g). And the amount of residual gas remaining in the sample was calculated by the following formula.
Residual gas amount (%) = (B (g) −C (g)) / A (g) × 100
(2) Measurement of aromatic hydrocarbon in resin Sample A (g) containing 0.2 g of resin calculated by the following formula was dissolved in 20 mL vial with 1 mL of diethylbenzene (DEB) -containing dimethylformamide (DMF), and 90 The mixture was heated at 1 ° C. for 1 hour, and then the gas phase was sampled, and the content (mass part) of the aromatic hydrocarbon relative to 100 parts by mass of the resin was measured by gas chromatography (manufactured by Shimadzu Corporation, GC-18A).
Sample addition amount: A (g)
= Resin 0.2 g / [1- [Residual gas amount calculated by (1) (%)] / 100]
Measurement conditions Equipment: Gas chromatograph (Shimadzu Corporation, GC-18A)
Column: J & W, DB-WAX (φ0.25 mm × 30 m, film thickness 0.25 μm)
Detector: FID
Column temperature condition: After holding at 50 ° C. for 2 minutes, the temperature was raised to 100 ° C. at 10 ° C./minute, held at 100 ° C. for 5 minutes, then heated to 220 ° C. at 40 ° C./minute and held at 220 ° C. for 2 minutes.
Inlet temperature: 150 ° C
Detector temperature: 250 ° C
Measurement sample injection volume: 2 mL
Split ratio = 70: 1
Column flow rate: 1.6 mL / min (He)
Gas pressure: 122 kPa
[実施例2]
流動パラフィンを1.0質量部としたこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、平均気泡径、発泡倍率、曲げ強度、流動パラフィン量及び芳香族炭化水素量を測定した。その結果を表1に記す。
[Example 2]
Except that the liquid paraffin was changed to 1.0 part by mass, expandable polystyrene resin particles, pre-expanded particles and foamed molded articles were produced in the same manner as in Example 1, and the average cell diameter, expansion ratio, bending strength, flow The amount of paraffin and the amount of aromatic hydrocarbon were measured. The results are shown in Table 1.
[実施例3]
タルクを0.5質量部追加で添加したこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、平均気泡径、発泡倍率、曲げ強度、流動パラフィン量及び芳香族炭化水素量を測定した。その結果を表1に記す。
[Example 3]
Except for the addition of 0.5 parts by mass of talc, expandable polystyrene resin particles, pre-expanded particles and foamed molded articles were produced in the same manner as in Example 1, and the average cell diameter, expansion ratio, bending strength, The amount of liquid paraffin and the amount of aromatic hydrocarbons were measured. The results are shown in Table 1.
[実施例4]
実施例1において発泡剤を添加させずに、流動パラフィンのみを含有したポリスチレン系樹脂粒子を作製した。次いで、得られたポリスチレン系樹脂粒子を押出機に投入し、タルク及びペンタンを添加したこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、平均気泡径、発泡倍率、曲げ強度、流動パラフィン量及び芳香族炭化水素量を測定した。その結果を表1に記す。
[Example 4]
In Example 1, polystyrene resin particles containing only liquid paraffin were prepared without adding a foaming agent. Next, the obtained polystyrene resin particles were put into an extruder, and expandable polystyrene resin particles, pre-expanded particles and a foamed molded article were produced in the same manner as in Example 1 except that talc and pentane were added. The average cell diameter, expansion ratio, bending strength, liquid paraffin amount and aromatic hydrocarbon amount were measured. The results are shown in Table 1.
[実施例5]
(発泡性ポリスチレン系樹脂粒子の作製)
ポリスチレン樹脂(東洋スチレン社製、商品名「HRM−10N」)100質量部に対し、スチレン0.3質量部、タルク0.3質量部、流動パラフィン(松村石油社製、スモイルP70)0.5質量部を加え、これらを口径90mmの単軸押出機に、時間当たり130kgで連続供給した。押出機内温度としては、最高温度210℃に設定し、樹脂を溶解させた後、発泡剤として樹脂100質量部に対して6質量部のペンタン(イソペンタン:ノルマルペンタン=20:80(質量比))を押出機の途中から圧入した。押出機内で樹脂と発泡剤を混練するとともに冷却し、押出機先端部での樹脂温度を170℃、ダイの樹脂導入部の圧力を15MPaに保持して、直径0.6mmでランド長さが3.0mmの小孔が200個配置されたダイより、このダイの吐出側に連結され30℃の水が循環するカッティング室に、発泡剤含有溶融樹脂を押し出すと同時に、10枚の刃を有する高速回転カッターにて押出物を切断した。切断した粒子を循環水で冷却しながら、粒子分離器に搬送し、粒子を循環水と分離した。さらに、捕集した粒子を脱水・乾燥してペンタン含有発泡性ポリスチレン系樹脂粒子を得た。得られたペンタン含有発泡性ポリスチレン系樹脂粒子は、変形、ヒゲ等の発生もなく、ほぼ完全な球体であり、平均粒径は約1.1mmであった。
得られたペンタン含有発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.15質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部を該樹脂粒子の表面全面に均一に被覆した。
[Example 5]
(Production of expandable polystyrene resin particles)
For 100 parts by mass of polystyrene resin (trade name “HRM-10N” manufactured by Toyo Styrene Co., Ltd.), 0.3 parts by mass of styrene, 0.3 parts by mass of talc, and liquid paraffin (Smoyl P70, manufactured by Matsumura Oil Co., Ltd.) Mass parts were added, and these were continuously fed to a single screw extruder having a diameter of 90 mm at 130 kg per hour. As the temperature inside the extruder, the maximum temperature was set at 210 ° C., and after dissolving the resin, 6 parts by mass of pentane (isopentane: normal pentane = 20: 80 (mass ratio)) with respect to 100 parts by mass of the resin as a foaming agent. Was press-fitted from the middle of the extruder. The resin and foaming agent are kneaded and cooled in the extruder, the resin temperature at the tip of the extruder is maintained at 170 ° C., the pressure at the resin introduction part of the die is maintained at 15 MPa, the diameter is 0.6 mm, and the land length is 3 High speed with 10 blades at the same time as extruding the foaming agent-containing molten resin into a cutting chamber connected to the discharge side of this die and 200 ° C. water circulated from 200 dies with small holes of 0.0 mm The extrudate was cut with a rotary cutter. While the cut particles were cooled with circulating water, they were conveyed to a particle separator, and the particles were separated from the circulating water. Furthermore, the collected particles were dehydrated and dried to obtain pentane-containing expandable polystyrene resin particles. The obtained pentane-containing expandable polystyrene resin particles were almost perfect spheres without deformation and beard, and the average particle size was about 1.1 mm.
With respect to 100 parts by mass of the obtained pentane-containing expandable polystyrene resin particles, 0.03 part by mass of polyethylene glycol, 0.15 part by mass of zinc stearate, 0.05 part by mass of monoglyceride stearate, triglyceride hydroxystearate 05 parts by mass were uniformly coated on the entire surface of the resin particles.
(発泡成形体の製造)
次いで、保冷庫に保管することなく、前記の通り製造した発泡性ポリスチレン系樹脂粒子を、円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.0167g/cm3(嵩発泡倍数60倍)であった。
続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ50mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、その後、成形型のキャビティ内を水蒸気でゲージ圧0.08MPaの圧力で20秒間に亘って加熱し、その後、成形型のキャビティ内の圧力が0.01MPaになるまで冷却し、その後成形型を開き、長さ400mm×幅300mm×高さ50mmの長方形状の発泡成形体を取り出した。
得られた発泡成形体は、密度0.0167g/cm3(発泡倍数60倍)であった。
実施例1と同様に、平均気泡径、発泡倍率、曲げ強度、流動パラフィン量及び芳香族炭化水素量を測定した。その結果を表1に記す。
(Manufacture of foam moldings)
Next, the expandable polystyrene resin particles produced as described above are supplied to a cylindrical batch-type pre-foaming machine without being stored in a cool box, and heated with steam having a blowing pressure of 0.05 MPa. Obtained. The obtained pre-expanded particles had a bulk density of 0.0167 g / cm 3 (bulk expansion ratio: 60 times).
Subsequently, the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 50 mm. Thereafter, the inside of the cavity of the mold is heated with water vapor at a gauge pressure of 0.08 MPa for 20 seconds, and then cooled until the pressure in the cavity of the mold reaches 0.01 MPa. Opened, a rectangular foam molded body having a length of 400 mm, a width of 300 mm, and a height of 50 mm was taken out.
The obtained foamed molded product had a density of 0.0167 g / cm 3 (expansion factor: 60 times).
In the same manner as in Example 1, the average cell diameter, expansion ratio, bending strength, liquid paraffin amount and aromatic hydrocarbon amount were measured. The results are shown in Table 1.
[実施例6]
スチレンの替わりに、トルエン0.3質量部を加えたことこと以外は、実施例5と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、実施例1と同様にして平均気泡径、発泡倍率、曲げ強度、流動パラフィン量及び芳香族炭化水素量を測定した。その結果を表1に記す。
[Example 6]
Except that 0.3 parts by mass of toluene was added instead of styrene, expandable polystyrene resin particles, pre-expanded particles and foamed molded articles were produced in the same manner as in Example 5, and the same as in Example 1. The average cell diameter, expansion ratio, bending strength, liquid paraffin amount and aromatic hydrocarbon amount were measured. The results are shown in Table 1.
[実施例7]
スチレンを1.0質量部加えたことこと以外は、実施例5と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、実施例1と同様にして平均気泡径、発泡倍率、曲げ強度、流動パラフィン量及び芳香族炭化水素量を測定した。その結果を表1に記す。
[Example 7]
Except that 1.0 part by mass of styrene was added, expandable polystyrene-based resin particles, pre-expanded particles and a foamed molded article were produced in the same manner as in Example 5. The expansion ratio, bending strength, liquid paraffin amount and aromatic hydrocarbon amount were measured. The results are shown in Table 1.
[実施例8]
スチレンを0.1質量部加えたことこと以外は、実施例5と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、実施例1と同様にして平均気泡径、発泡倍率、曲げ強度、流動パラフィン量及び芳香族炭化水素量を測定した。その結果を表1に記す。
[Example 8]
Except that 0.1 part by mass of styrene was added, expandable polystyrene resin particles, pre-expanded particles and a foamed molded product were produced in the same manner as in Example 5. The expansion ratio, bending strength, liquid paraffin amount and aromatic hydrocarbon amount were measured. The results are shown in Table 1.
[実施例9]
スチレンを0.16質量部加えたことこと以外は、実施例5と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、実施例1と同様にして平均気泡径、発泡倍率、曲げ強度、流動パラフィン量及び芳香族炭化水素量を測定した。その結果を表1に記す。
[Example 9]
Except that 0.16 parts by mass of styrene was added, expandable polystyrene-based resin particles, pre-expanded particles and a foamed molded product were produced in the same manner as in Example 5. The expansion ratio, bending strength, liquid paraffin amount and aromatic hydrocarbon amount were measured. The results are shown in Table 1.
[実施例10]
スチレンを2.5質量部加えたことこと以外は、実施例5と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、実施例1と同様にして平均気泡径、発泡倍率、曲げ強度、流動パラフィン量及び芳香族炭化水素量を測定した。その結果を表1に記す。
[Example 10]
Except that 2.5 parts by mass of styrene was added, expandable polystyrene resin particles, pre-expanded particles and a foamed molded product were produced in the same manner as in Example 5. The expansion ratio, bending strength, liquid paraffin amount and aromatic hydrocarbon amount were measured. The results are shown in Table 1.
[実施例11]
スチレンを3.5質量部加えたことこと以外は、実施例5と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、実施例1と同様にして平均気泡径、発泡倍率、曲げ強度、流動パラフィン量及び芳香族炭化水素量を測定した。その結果を表1に記す。
[Example 11]
Except that 3.5 parts by mass of styrene was added, expandable polystyrene-based resin particles, pre-expanded particles and a foamed molded product were produced in the same manner as in Example 5. The expansion ratio, bending strength, liquid paraffin amount and aromatic hydrocarbon amount were measured. The results are shown in Table 1.
[比較例1]
流動パラフィンを添加しなかったこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、平均気泡径、発泡倍率及び曲げ強度を測定した。その結果を表1に記す。
[Comparative Example 1]
Except that liquid paraffin was not added, expandable polystyrene resin particles, pre-expanded particles and a foamed molded article were produced in the same manner as in Example 1, and the average cell diameter, expansion ratio and bending strength were measured. The results are shown in Table 1.
[比較例2]
流動パラフィン量を0.005質量部としたこと以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、平均気泡径、発泡倍率及び曲げ強度を測定した。その結果を表1に記す。
[Comparative Example 2]
Except that the amount of liquid paraffin was 0.005 parts by mass, expandable polystyrene resin particles, pre-expanded particles and foamed molded articles were produced in the same manner as in Example 1, and the average cell diameter, expansion ratio and bending strength were measured. did. The results are shown in Table 1.
[比較例3]
流動パラフィン量を7.0質量部とした以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体を製造し、平均気泡径、発泡倍率及び曲げ強度を測定した。その結果を表1に記す。
[Comparative Example 3]
Except that the amount of liquid paraffin was 7.0 parts by mass, expandable polystyrene resin particles, pre-expanded particles and foamed molded articles were produced in the same manner as in Example 1, and the average cell diameter, expansion ratio and bending strength were measured. . The results are shown in Table 1.
表1の結果から、本発明に係る実施例1〜11は、発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有された構成としたことによって、加熱して予備発泡させて得られる予備発泡粒子の嵩発泡倍数を高めることができ、高発泡倍数の発泡成形体を得ることができる。また、曲げ強度などの機械強度に優れた発泡成形体を得ることができる。
また、発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有され、芳香族炭化水素がポリスチレン系樹脂100質量部に対し0.15〜3.0質量部の範囲内で均一に含有され、かつ無機発泡核剤がポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内で均一に含有された実施例5〜11は、実施例1〜4に比べて、より高い発泡倍率が得られ、高発泡倍数で曲げ強度の良好な発泡成形体が得られた。
ただし、実施例1〜4、8、11は、参考例である。
From the results of Table 1, in Examples 1 to 11 according to the present invention, the liquid paraffin is uniformly distributed in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin in the entire expandable polystyrene resin particles. By using the contained structure, it is possible to increase the bulk expansion ratio of the pre-expanded particles obtained by heating and pre-expanding, and to obtain a foamed molded article having a high expansion ratio. Moreover, the foaming molding excellent in mechanical strength, such as bending strength, can be obtained.
Moreover, the liquid paraffin is uniformly contained in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin, and the aromatic hydrocarbon is contained in 100 parts by mass of the polystyrene resin. On the other hand, it was uniformly contained within the range of 0.15 to 3.0 parts by mass, and the inorganic foam nucleating agent was uniformly contained within the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin. In Examples 5 to 11, a higher expansion ratio was obtained than in Examples 1 to 4, and a foamed molded article having a high expansion ratio and good bending strength was obtained.
However, Examples 1-4, 8, and 11 are reference examples.
一方、流動パラフィンを添加していない比較例1は、実施例1〜4と比べ、発泡倍率、曲げ強度が劣っていた。
また、流動パラフィンの添加量が本発明の範囲未満である比較例2、及び本発明の範囲を超える比較例3は、いずれも実施例1〜4と比べ、発泡倍率、曲げ強度が劣っていた。
On the other hand, Comparative Example 1 to which liquid paraffin was not added was inferior in foaming ratio and bending strength as compared with Examples 1 to 4.
Further, Comparative Example 2 in which the amount of liquid paraffin added was less than the range of the present invention and Comparative Example 3 exceeding the range of the present invention were inferior in foaming ratio and bending strength as compared with Examples 1 to 4. .
本発明は、溶融押出法による発泡性ポリスチレン系樹脂粒子の製造方法に関し、高発泡倍数で機械強度に優れた発泡成形体を得ることが可能な発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体に関する。 The present invention relates to a method for producing expandable polystyrene resin particles by melt extrusion, and relates to a foamable polystyrene resin particle capable of obtaining a foamed molded article having a high expansion ratio and excellent mechanical strength, a method for producing the same, and a polystyrene type The present invention relates to resin pre-expanded particles and polystyrene-based resin foam moldings.
1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器。 DESCRIPTION OF SYMBOLS 1 ... Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, 10: Dehydration dryer with solid-liquid separation function, 11: Storage container.
Claims (9)
発泡性ポリスチレン系樹脂粒子全体に流動パラフィンが、ポリスチレン系樹脂100質量部に対し0.01〜5質量部の範囲内で均一に含有され、芳香族炭化水素がポリスチレン系樹脂100質量部に対し0.15〜3.0質量部の範囲内で均一に含有され、かつ無機発泡核剤がポリスチレン系樹脂100質量部に対し0.05〜5質量部の範囲内で均一に含有されていることを特徴とする発泡性ポリスチレン系樹脂粒子。 When a foaming agent is press-fitted and kneaded into the polystyrene resin melted in the resin supply device, the molten resin containing the foaming agent is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device. At the same time, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles.
Liquid paraffin is uniformly contained within the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of polystyrene resin, and aromatic hydrocarbons are 0 with respect to 100 parts by mass of polystyrene resin. It is uniformly contained within the range of 15 to 3.0 parts by mass, and the inorganic foam nucleating agent is uniformly contained within the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the polystyrene resin. Characteristic foamable polystyrene resin particles.
ポリスチレン系樹脂100質量部に対して、流動パラフィンを0.01〜5質量部の範囲内、芳香族炭化水素を0.15〜3.0質量部の範囲内、及び無機発泡核剤を0.05〜5質量部の範囲内で添加し、発泡性ポリスチレン系樹脂粒子全体に流動パラフィン、芳香族炭化水素及び無機発泡核剤を均一に含有させたことを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法。 When a foaming agent is press-fitted and kneaded into the polystyrene resin melted in the resin supply device, the molten resin containing the foaming agent is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device. At the same time, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. In the method for producing expandable polystyrene resin particles by melt extrusion,
With respect to 100 parts by mass of the polystyrene resin, the liquid paraffin is in the range of 0.01 to 5 parts by mass, the aromatic hydrocarbon is in the range of 0.15 to 3.0 parts by mass, and the inorganic foam nucleating agent is in the range of 0.005. An expandable polystyrene resin particle characterized by being added within a range of from 5 to 5 parts by mass and uniformly containing liquid paraffin, aromatic hydrocarbon and inorganic foam nucleating agent throughout the expandable polystyrene resin particle. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011275733A JP5756003B2 (en) | 2011-09-28 | 2011-12-16 | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011211754 | 2011-09-28 | ||
JP2011211754 | 2011-09-28 | ||
JP2011275733A JP5756003B2 (en) | 2011-09-28 | 2011-12-16 | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013082865A JP2013082865A (en) | 2013-05-09 |
JP5756003B2 true JP5756003B2 (en) | 2015-07-29 |
Family
ID=48528378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011275733A Active JP5756003B2 (en) | 2011-09-28 | 2011-12-16 | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5756003B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ305641B6 (en) * | 2013-05-20 | 2016-01-20 | Novopol A.S. | Process for producing insulating boards, insulating board per se and apparatus for producing insulating boards |
CN114872402A (en) * | 2022-04-24 | 2022-08-09 | 深圳市天诺通光电科技有限公司 | Multilayer co-extrusion foaming diffusion plate and preparation method and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2611355B2 (en) * | 1988-07-26 | 1997-05-21 | 大日本インキ化学工業株式会社 | Method for producing expandable thermoplastic resin particles |
JP5060001B2 (en) * | 2001-03-30 | 2012-10-31 | 株式会社ジェイエスピー | Styrenic expandable resin particles and molded foam |
JP4030347B2 (en) * | 2002-05-14 | 2008-01-09 | 株式会社ジェイエスピー | Expandable polystyrene resin particles |
JP4316305B2 (en) * | 2003-06-13 | 2009-08-19 | 株式会社ジェイエスピー | Method for producing styrene resin foam containing graphite powder |
-
2011
- 2011-12-16 JP JP2011275733A patent/JP5756003B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013082865A (en) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5372783B2 (en) | Expandable polystyrene resin particles, method for producing the same, and foam molded article | |
JP5969938B2 (en) | Expandable thermoplastic resin particles and production method thereof, pre-expanded particles, foamed molded product, resin composition for producing antistatic resin molded product | |
TWI529205B (en) | Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form | |
WO2013111368A1 (en) | Expandable polystyrene-type resin particles and method for producing same, and molded foam | |
WO2014207502A1 (en) | Expandable polystyrene resin particles, manufacturing method therefor, pre-expanded particles, and expanded molded article | |
JP6063792B2 (en) | Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body | |
JP5603629B2 (en) | Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding | |
JP5756003B2 (en) | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article | |
JP5603628B2 (en) | Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article | |
JP5425654B2 (en) | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article | |
JP2013072003A (en) | Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding | |
JP6043562B2 (en) | Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article | |
JP6223097B2 (en) | Expandable polystyrene resin particles and production method thereof, and polystyrene resin pre-expanded particles and expanded molded body | |
JP5641846B2 (en) | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article | |
JP5986410B2 (en) | Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding | |
JP2013227537A (en) | Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding | |
JPH07316335A (en) | Production of expandable thermoplastic resin particle | |
JP2013071998A (en) | Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact | |
JP2012207186A (en) | Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same | |
JP2013071996A (en) | Expandable thermoplastic resin particle, process for producing the same, thermoplastic resin prefoamed particle, and thermoplastic resin foam molded product | |
JP5704831B2 (en) | Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article | |
JP2012207156A (en) | Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same | |
JP2012201688A (en) | Expandable polystyrene resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article | |
JP2004115690A (en) | Method for manufacturing expandable particle of styrene type resin | |
JP2013203821A (en) | Foamable polystyrene-based resin particle, method for producing the same, preliminary foamable particle and foam-molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150410 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150519 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150528 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5756003 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |