JP4316305B2 - Method for producing styrene resin foam containing graphite powder - Google Patents

Method for producing styrene resin foam containing graphite powder Download PDF

Info

Publication number
JP4316305B2
JP4316305B2 JP2003169354A JP2003169354A JP4316305B2 JP 4316305 B2 JP4316305 B2 JP 4316305B2 JP 2003169354 A JP2003169354 A JP 2003169354A JP 2003169354 A JP2003169354 A JP 2003169354A JP 4316305 B2 JP4316305 B2 JP 4316305B2
Authority
JP
Japan
Prior art keywords
graphite powder
styrene resin
resin foam
weight
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003169354A
Other languages
Japanese (ja)
Other versions
JP2005002268A (en
Inventor
昌臣 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2003169354A priority Critical patent/JP4316305B2/en
Publication of JP2005002268A publication Critical patent/JP2005002268A/en
Application granted granted Critical
Publication of JP4316305B2 publication Critical patent/JP4316305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
本発明は,熱伝導率が低く断熱性能に優れたスチレン系樹脂発泡体の製造方法に関する。
【0002】
【従来技術】
スチレン系樹脂発泡体は,優れた断熱性能により住宅用断熱材や保冷箱等に使用されている。
断熱材に使用されるスチレン系樹脂発泡体の製造法としては,スチレン系樹脂を押出機で加熱溶融し,フロン類等の発泡剤を注入,冷却し,大気中に押出して製造する押出発泡法がある。
また,スチレン系樹脂の発泡粒子を成形機の金型に充填し,加熱して,発泡粒子同士を融着させて上記スチレン系樹脂発泡体を製造するビーズ発泡法などがある。
【0003】
押出発泡法では,熱伝導率の低いフロン類を発泡剤として使用しているため,製造直後は熱伝導率の低い発泡体が得られるが,フロン類は徐々にスチレン系樹脂発泡体から逸散するため,断熱材として使用する間に徐々に熱伝導率が高くなり断熱性能が低下する。また,フロン類の使用はオゾン層破壊や地球温暖化など,地球環境に対する影響が懸念される。
【0004】
一方,上記ビーズ発泡法では,発泡粒子をしばらく大気中に放置(熟成)してから成形が行われるため,熟成中に発泡粒子内に空気が侵入して発泡剤と置換され,空気を多く含むスチレン系樹脂発泡体となる。
したがって,ビーズ発泡法で得られるスチレン系樹脂発泡体は,経時による熱伝導率の変化が小さく断熱性能が長期に渡って安定している。しかし,空気の熱伝導率は押出発泡法で使用されるフロン類の熱伝導率に比較して高いため,得られるスチレン系樹脂発泡体の熱伝導率は,押出発泡法により得られるスチレン系樹脂発泡体の熱伝導率より高い傾向にある。
【0005】
そこで,ビーズ発泡法で得られるスチレン系樹脂発泡体の熱伝導率を小さくするため,成形後にガスバリア性の高いフィルムでスチレン系樹脂発泡体を被覆したり,発泡粒子の表面をガスバリア性樹脂で被覆し,発泡剤と空気の置換を抑制して,熱伝導率を低く維持する検討が行われている(特許文献1,2参照)。
しかしながら,低熱伝導率の気体が,完全にスチレン系樹脂発泡体から逸散することを防止できないため,経時による断熱性能の低下を防ぐのは難しい。
【0006】
スチレン系樹脂発泡体の熱伝導率は,伝導,放射,対流から構成されている。この内,対流は気泡径が4mm以上の場合に発生するので,通常のスチレン系樹脂発泡体では無視できる。また,非特許文献1には,比重とスチレン系樹脂発泡体の熱伝導率の関係を示すグラフが示されている。スチレン系樹脂発泡体の熱伝導率は,発泡倍率を20〜30倍付近で最も小さくなることが知られており,30倍以上の発泡倍率として軽量化を図ろうとすると,熱伝導率が大きくなり,断熱性能が低下する。
【0007】
この理由は次のように考えられている。スチレン系樹脂発泡体の発泡倍率が高くなるにつれスチレン系樹脂発泡体に占めるスチレン系樹脂の割合が小さくなり,スチレン系樹脂発泡体全体の熱伝導率は小さくなる。しかし,スチレン系樹脂発泡体の発泡倍率が30倍より高くなると,放射伝熱の影響が大きくなりスチレン系樹脂発泡体の熱伝導率は大きくなる。
【0008】
また,特許文献3には,赤外波長5〜30μmに吸収を示し,かつ300Kでの黒体放射に対する厚さ10μmにおける平均吸収率が0.3以上である添加物を合成樹脂に配合することにより,放射伝熱を抑制する方法が開示されている。そして,C=C,C−O,O−H,C=O,C−X(ハロゲン),N−H,C=N,C=S,S=Oなどの化学構造を有する化合物を具体例として挙げている。しかしながら,これらの構造を有する化合物は狭い範囲の特定波長の赤外線を吸収するだけで,放射伝熱に影響する全ての波長域の赤外線を吸収できないため,合成樹脂発泡体の断熱性能を向上させる効果が小さい。
【0009】
また,特許文献4には,平均粒径が1〜50μmの黒鉛粉をスチレン系樹脂粒子100重量部に対して0.05〜8重量部含有させることにより,放射伝熱を抑制してスチレン系樹脂発泡体の断熱性能を向上させる方法が開示されている。
【0010】
また,引用文献5には,密度が1.8g/cm3未満の黒鉛粉を用いることにより,ポリスチレンの再溶解という工程を行うことなく黒鉛粉をスチレン系樹脂発泡体に高分散させ,放射伝熱を抑制し,スチレン系樹脂発泡体の断熱性能を向上させる方法が開示されている。
しかしながら,いずれの方法においても,断熱性能の向上効果は不十分である。
【0011】
【特許文献1】
特開平7−239087号公報
【特許文献2】
特開平8−67762号公報
【特許文献3】
特開昭56―50935号公報
【特許文献4】
特表2001−525001号公報
【特許文献5】
特表2002−521543号公報
【非特許文献1】
「周知・慣用技術集(発泡成形)」,特許庁,昭和57年8月3日,p.83
【0012】
【解決しようとする課題】
本発明はかかる従来の問題点に鑑み,熱伝導率が低く,断熱性能に優れたスチレン系樹脂発泡体の製造方法を提供しようとするものである。
【0013】
【課題の解決手段】
説明の都合上,まず本発明により得られるスチレン系樹脂発泡体(以下,単にスチレン系樹脂発泡体と記すことがある)について説明する。
本発明により得られるスチレン系樹脂発泡体は,密度が10〜100kg/m3,独立気泡率が60%以上,平均気泡径が20〜1000μmで,黒鉛粉を含有するスチレン系樹脂発泡体であって,上記黒鉛粉は,アスペクト比が5以上であるスチレン系樹脂発泡体であることが好ましい。
【0014】
本発明によれば,熱伝導率が低く,断熱性能に優れたスチレン系樹脂発泡体を提供することができる。
本発明により得られるスチレン系樹脂発泡体の密度は,10〜100kg/m3であることが好ましい。10kg/m3未満ではスチレン系樹脂発泡体の強度が低下するおそれがある。100kg/m3を超える場合はスチレン系樹脂発泡体の断熱性能が低下するおそれがある。なお,さらに好ましくは10〜50kg/m3で,特に好ましくは10〜30kg/m3である。
【0015】
また,上記独立気泡率は60%以上である。60%未満では断熱性能が低下するおそれがある。好ましくは70%以上,更に好ましくは80%以上である。
また,上記平均気泡径は20〜1000μmである。20μm未満では気泡膜が薄くなるため,分散させた黒鉛粉により気泡膜が破れ,独立気泡率が低下し断熱性能が低下するおそれがある。1000μmを超えると気泡の数が少なくなり,断熱性能が低下するおそれがある。ここに,上記平均気泡径とは,セル(樹脂部の壁と壁との間で区切られた部分1個当りの直径で,任意の20ケ所を測定し,その数平均値で求める。なお,好ましくは30〜500μmである。平均気泡径は,タルク,ポリエチレンワックスなどの気泡核剤の添加量や発泡剤の種類や組成の変更などにより,調整することができる。
【0016】
次に,本願にかかる発明は,押出機でスチレン系樹脂と黒鉛粉と分散剤とを混合し,次いで,混合物を押し出し,冷却し,造粒し,得られた黒鉛粉含有スチレン系樹脂粒子を水中に懸濁させるとともに発泡剤を供給して,発泡剤を含浸させた発泡性スチレン系樹脂粒子を得,
次いで加熱発泡,成形するスチレン系樹脂発泡体の製造方法であって,
上記分散剤は,流動パラフィンを用いており,
また,上記黒鉛粉は,アスペクト比が5以上であると共にDBP吸油量が60〜500ml/100gである黒鉛粉を用いていることを特徴とするスチレン系樹脂発泡体の製造方法にある(請求項)。
【0017】
この場合には,上記分散剤として流動パラフィンを用いているので,熱伝導率が低く,断熱性能に優れたスチレン系樹脂発泡体を得ることができる。
なお,黒鉛粉の分散剤として,ミネラルスピリッツや芳香族系溶剤を使用する場合には,発泡や成形時にスチレン系樹脂発泡体が収縮するおそれや自己消火性に悪影響を与えるおそれがある。
流動パラフィンは,好ましくは,平均炭素数が20〜35個のものである。上記流動パラフィンは,CmHn(n<2m+1,n,mは自然数)で示される分岐構造や環構造を有する脂環式炭化水素化合物で,常温(通常10〜30℃)で液体のパラフィン類である。
【0018】
【発明の実施の形態】
本発明において,スチレン系樹脂としては,ポリスチレン,ゴム変性ポリスチレン,ABS樹脂,AS樹脂,AES樹脂などがある。上記スチレン系樹脂は単独で用いても,2種類以上混合して用いても良い。
使用するスチレン系樹脂を構成する樹脂の種類としては,特に制限はないが,例えば,スチレンモノマーが挙げられる。また,スチレンモノマーと共重合可能なモノマー成分,例えば,アクリル酸メチル,アクリル酸エチル,アクリル酸プロピル,アクリル酸ブチル,アクリル酸−2−エチルヘキシル等のアクリル酸の炭素数が1〜10のアルキルエステル等;メタクリル酸メチル,メタクリル酸エチル,メタクリル酸プロピル,メタクリル酸ブチル,メタクリル酸−2−エチルヘキシル等のメタクリル酸の炭素数が1〜10のアルキルエステル等;α−メチルスチレン,o−メチルスチレン,m−メチルスチレン,p−メチルスチレン,ビニルトルエン,p−エチルスチレン,2,4−ジメチルスチレン,p−メトキシスチレン,p−フェニルスチレン,o−クロロスチレン,m−クロロスチレン,p−クロロスチレン,2,4−ジクロロスチレン,p−n−ブチルスチレン,p−t−ブチルスチレン,p−n−ヘキシルスチレン,p−オクチルスチレン,スチレンスルホン酸,スチレンスルホン酸ナトリウム等;アクリロニトリル,メタクリロニトリル等のニトリル基含有不飽和化合物等の,スチレンモノマー誘導体のモノマーを単独で,または二種以上を組み合わせて,スチレンモノマーと共重合した樹脂を使用することができる。
【0019】
尚,スチレンモノマー及びスチレンモノマーと共重合可能なモノマー成分を,スチレン系モノマーと称する。
但し,スチレンモノマー以外に,これらのモノマーを併用する場合には,スチレン系樹脂を重合する際のスチレン系モノマーの全重量に対して,スチレンモノマーの重量を,50%以上にすることが好ましい。
【0020】
また,スチレン系樹脂のメルトフローレート(MFR)の値は,0.5〜30g/10分であることが好ましい。この場合には,得られる発泡粒子を用いて成形した成形体の力学物性が優れるという効果を得ることができる。
上記メルトフローレート(MFR)が,0.5g/10分未満では,発泡粒子の製造効率,なかでも溶融混練工程での生産性が低下するおそれがある。また,MFRが上記の30g/10分を超える場合には,製品として得られる発泡粒子を用いて成形した成形体の圧縮強度,引張強度などの力学物性が低くなるおそれがある。なお,より好ましくは,1〜10g/10分,さらに好ましくは1〜5g/10分である。
【0021】
尚,発泡性スチレン系樹脂のメルトフローレート(MFR)は,ISO 1133に準じて測定した。即ち,スチレン系樹脂粒子を105℃で1時間以上状態調整した後,自動MFR測定機(テクノセブン社製 全自動MFR試験機280,ダイ;長さ8mm×内径2.1mm)を用いて,試験温度200℃,試験荷重5kgの条件でMFRを測定した。
【0022】
上記黒鉛粉のアスペクト比は,5以上である。アスペクト比が5未満の場合には,低熱伝導率化の効果が得られない。
ここでアスペクト比とは,黒鉛粉の「長軸の長さ」と「短軸の長さ」の比(長軸の長さ/短軸の長さ)で表され,アスペクト比が大きくなるほど,放射伝熱の遮蔽効果が高く,低熱伝導率化の効果が大きくなる。
尚,本発明では,任意に分散させた黒鉛粉を走査型電子顕微鏡で撮影し,写真中から20個ランダムに選んだ黒鉛粉について,その「長軸の長さ」/「短軸の長さ」の数平均を求め,その値をアスペクト比とした。
また,黒鉛粉の形状としては,板状,鱗片状,薄片状,不定形状,針状などの各種形状のものを用いることができる。なお,好ましくは薄片状,鱗片状である。
【0023】
上記黒鉛粉の厚みは,スチレン系樹脂の発泡工程に悪影響を与えないように2μm以下であることが好ましい。より好ましくは,1μm以下であり,更に好ましくは0.5μm以下である。
【0024】
本発明にかかるスチレン系樹脂発泡体の製造方法の実施に当っては,押出機,ロール,ミキサーなどを用いて黒鉛粉をスチレン系樹脂と混練したり,スチレン系樹脂製造時において重合反応前のモノマーや重合反応中に黒鉛粉を添加混合するなどにより,スチレン系樹脂中に黒鉛粉を分散させる。
【0025】
上記黒鉛粉が分散されたスチレン系樹脂を発泡させる方法としては,窒素,二酸化炭素等の無機ガス,プロパン,n−ブタン,イソブタン,n−ペンタン,イソペンタン,シクロペンタン,n−ヘキサン,シクロヘキサン等の脂肪族炭化水素,ジメチルエーテル,ジエチルエーテル,フラン等のエーテル類,メチルアルコール,エチルアルコール,プロピルアルコール等のアルコール類,HCFC−141b,HCFC−142,HCFC−124,HFC−152a,HFC−134a等のハロゲン化炭化水素等の発泡剤を,黒鉛粉を分散させたスチレン系樹脂と溶融混練し,押出機先端のダイから大気中に押し出して発泡させる押出発泡法がある。
【0026】
また,黒鉛粉分散されたスチレン系樹脂を,押出機で溶融混練し,ストランドカット,ホットカット,水中カット等の方法により0.5mg/ケ〜5mg/ケの大きさのスチレン系樹脂粒子と,密閉容器内で上記と同様の発泡剤を圧入し,その後密閉容器の一端を開放し圧力を減少させて発泡させる方法(ドカン発泡法がある。
【0027】
本発明においては,黒鉛粉が分散されたスチレン系樹脂を押出機で溶融混練し,ストランドカット,ホットカット,水中カット等の方法により0.5mg/
ケ〜5mg/ケの大きさのスチレン系樹脂粒子とし,密閉容器内,水性媒体中に分散させ,密閉容器内に,プロパン,n−ブタン,イソブタン,n−ペンタン,イソペンタン,シクロペンタン,n−ヘキサン,シクロヘキサン等の脂肪族炭化水素,ジメチルエーテル,ジエチルエーテル,フラン等のエーテル類,メチルアルコール,エチルアルコール,プロピルアルコール等のアルコール類,HCFC−141b,HCFC−142,HCFC−124,HFC−152a,HFC−134a等のハロゲン化炭化水素等の発泡剤を圧入してスチレン系樹脂粒子に発泡剤を含浸させ,密閉容器から発泡剤を含有するスチレン系樹脂粒子を取り出した後,スチーム等により発泡剤を含有するスチレン系樹脂粒子を加熱し,所定の倍率に発泡させるビーズ発泡法を用いる。
【0028】
上記の方法の中でも,得られるスチレン系樹脂発泡体の熱伝導率の経時変化が少ない点から,上記ビーズ発泡法を用いる。また,スチレン系樹脂中に黒鉛粉を分散させる工程とスチレン系樹脂を発泡させる工程は別々でも同時に行っても良い。
【0029】
また,上記スチレン系樹脂発泡体に,ヘキサブロモシクロドデカン,テトラブロモビスフェノールA,トリメチルホスフェート,水酸化アルミニウム,三酸化アンチモンなどの難燃剤,2,3−ジメチル−2,3−ジフェニルブタンなどの難燃助剤,メタクリル酸メチル系共重合体,ポリエチレンワックス,タルク,シリカ,エチレンビスステアリルアミド,シリコーンなどの気泡核剤を添加することもできる。
【0030】
また,流動パラフィン,グリセリンジアセトモノラウレート,グリセリントリステアレート,フタル酸ジ−2−エチルヘキシル,アジピン酸ジ−2−エチルヘキシルなどの可塑剤,アルキルジエタノールアミン,グリセリン脂肪酸エステル,アルキルスルホン酸ナトリウムなどの帯電防止剤,フェノール系,リン系,イオウ系などの酸化防止剤,ベンゾトリアゾール系やベンゾフェノン系などの紫外線吸収材,ヒンダードアミン系などの光安定剤,導電性カーボンブラックなどの導電性フィラー,IPBC,TBZ,BCM,TPNなどの有機系抗菌剤,銀系,銅系,亜鉛系,酸化チタン系などの無機系抗菌剤などの添加剤を添加することもできる。また,ブタジエンゴム,スチレン−ブタジエンゴム,イソプレンゴム,エチレン−プロピレンゴムなどのゴム成分を添加しても良い。
【0031】
また,本発明により得られるスチレン系樹脂発泡体はスチレン系樹脂の予備発泡樹脂粒子を型内成形して得られた発泡体である。
次に,本発明において,黒鉛粉のアスペクト比は20以上であることが好ましい。アスペクト比が20以上の場合には,放射伝熱の遮蔽効果が高くなり,少量の添加で低熱伝導率化の効果が発揮できる。
【0032】
また,黒鉛粉のアスペクト比は50以上であることが好ましい。アスペクト比が50以上の場合には,更に放射伝熱の遮蔽効果が向上し,少量添加で一層低熱伝導率化を発揮できる。更に好ましくは70〜1000である。
【0033】
また,上記黒鉛粉のDBP吸油量は60〜500ml/100gである。黒鉛粉のDBP吸油量が60ml/100g未満あるいは500ml/100gを超えると,低熱伝導率化の効果が得られないおそれがある。特に好ましくは,80〜200ml/100gである。
【0034】
DBP吸油量とは,黒鉛粉100g当たりに包有されるDBP(ジブチルフタレート)の量で,DBP吸油量が多いほど放射伝熱の遮へい効果が高く,低熱伝導化の効果を得やすい。尚,黒鉛粉のDBP吸油量は,JIS K 6221に準じて,黒鉛粉18gにDBP(ジブチルフタレート)を滴下し,吸油量測定装置(レグナス社製)にて測定した。
【0035】
また,黒鉛粉の50%粒子径は,0.1〜100μmであることが好ましい黒鉛粉の50%粒子径が0.1μm未満あるいは100μmを超えると,低熱伝導率化の効果が得られないおそれがある特に好ましくは0.5〜20μmである。
上記黒鉛粉の50%粒子径の測定に当っては,黒鉛粉を水中に分散させ,レーザー回折散乱法により粒度分布を測定し,全粒子の体積に対する累積体積が50%になる時の粒子径を50%粒子径とした。粒子の形状ファクターは1(球形)とした。
【0036】
また,黒鉛粉の10%粒子径に対する90%粒子径の比は,1〜20であることが好ましい。
上記粒子径の比が1未満の場合には,小さい粒子径の割合が増加し,平均気泡径が小さくなるなど発泡状態に支障を及ぼすおそれがある。一方,上記粒子径の比が20を超えると,大きな粒子径の割合が増えるため,スチレン系樹脂の発泡工程に悪影響を及ぼすおそれがある。特に好ましくは1〜10である。
上記10%粒子径に対する90%粒子径の比は,50%粒子径と同様に,黒鉛粉を水中に分散させ,レーザー回折散乱法により粒度分布を測定し,全粒子の体積に対する累積体積が10%及び90%になる時の粒子径をそれぞれ10%粒子径,90%粒子径とし,10%粒子径に対する90%粒子径の比を求めた。粒子の形状ファクターは1(球形)とした。
【0037】
また,黒鉛粉の見掛密度は0.01〜0.1g/cm3であることが好ましい。
黒鉛粉の見掛密度が0.01g/cm3未満の場合には,低熱伝導率化の効果を得難い。一方,0.1g/cm3を超えると,低熱伝導率化向上の効果が得られないおそれがある。
尚,黒鉛粉の見掛密度はJIS Z 2504に準じて測定した。
【0038】
また,黒鉛粉の比表面積は0.7m2/cm3以上であることが好ましい。
黒鉛粉の比表面積が,0.7m2/cm3未満である場合は,低熱伝導率化の効果が得られないおそれがある。より好ましくは,1〜5m2/cm3である。尚,黒鉛粉の比表面積はレーザー回折散乱法により,50%粒子径と同様に黒鉛粉を水中に分散させて測定した。粒子の形状ファクターは1(球状)とした。
【0039】
また,スチレン系樹脂発泡体の切断面における黒鉛粉が占める面積の割合は,1.5%以上であることが好ましい。
1.5%未満の場合は,低熱伝導率化の効果が得られないおそれがある。より好ましくは,2〜10%である。
尚,切断面における黒鉛粉が占める面積の割合は,発泡成形体(300mm×75mm×25mm)の任意の部分を平面になるように切り出した後,スーパーデラックススライサー(ワタナベフーマック株式会社製;WSD−2P&3P)で薄片(厚さ0.5mm)を切り出し,この切断面を倍率500倍のマイクロスコープ(キーエンス社製
VH−7000)で観察した。
【0040】
切断面における黒鉛粉が占める面積の割合は,切断面において0.2mm×0.2mmの範囲を任意に20箇所選び,0.2mm×0.2mmの範囲内に含有される黒鉛粉の総面積を,切断面の面積(=0.04mm2)で除した値の数平均を求め,その値を切断面における黒鉛粉が占める面積の割合とした。
切断面における黒鉛粉が占める面積の割合(%)=「黒鉛粉の総面積(mm2)」/0.04mm2×100
【0041】
また,黒鉛粉はスチレン系樹脂発泡体中に200個/mm2以上で均一に分散していることが好ましい。
黒鉛粉がスチレン系樹脂発泡体中に200個/mm2未満である場合は,低熱伝導率化の効果が得られないおそれがある。特に好ましくは,500〜10000個/mm2である。
【0042】
尚,スチレン系樹脂発泡体中の黒鉛粉の密度は,発泡成形体(300mm×75mm×25mm)の任意の部分を平面になるように切り出した後,スーパーデラックススライサー(ワタナベフーマック株式会社製;WSD−2P&3P)で薄片(厚さ0.5mm)を切り出し,この切断面を倍率500倍のマイクロスコープ(キーエンス社製 VH−7000)で観察した。
【0043】
スチレン系樹脂発泡体中の,黒鉛粉の密度の計測には,切断面において0.2mm×0.2mmの範囲を任意に20箇所選び,0.2mm×0.2mmの範囲内に含有される黒鉛粉数の数平均を求め,その値を1mm2当りに換算した値を,スチレン系樹脂発泡体中の黒鉛粉の密度とした。
【0044】
また,上記黒鉛粉はスチレン系樹脂発泡体100重量部に対して0.1〜20重量部含有されていることが好ましい。
0.1重量部未満では低熱伝導率化の効果が得られないおそれがある。20重量部を超えると,スチレン系樹脂の発泡工程に悪影響を及ぼしたり,スチレン系樹脂中で黒鉛粉同士が接触することにより伝熱し,断熱性能が低下するおそれがある。好ましくは0.5〜10重量部で,特に好ましくは1〜8重量部である。
【0045】
また,本発明において,スチレン系樹脂は,GPC法により測定した重量平均分子量(Mw)の値が18万〜40万の間にあることが好ましい。
重量平均分子量が18万未満の場合には,得られる発泡成形体の強度が低下するおそれがある。
一方,重量平均分子量が40万を越える場合には,発泡性が低下し,目標の発泡倍率(例えば50〜60倍)まで発泡させることが困難になったり,発泡成形時に発泡性スチレン系樹脂粒子同士が融着し難くなり,成形品強度が低下するおそれがある。より好ましくは20万〜38万,さらに好ましくは22万〜35万である。尚,上記重量平均分子量はGPC法により測定した値である。
【0046】
また,スチレン系樹脂100重量部に対し0.1〜10重量部の難燃剤を含有していることが好ましい。
0.1重量部未満ではスチレン系樹脂発泡体に対する難燃効果が得られないおそれがある。10重量部を超えるとスチレン系樹脂の発泡工程に悪影響を及ぼすおそれがある。
【0047】
上記難燃剤としては,ヘキサブロモベンゼン,テトラブロモシクロオクタン,ヘキサブロモシクロドデカン,テトラブロモブタン,ヘキサブロモシクロヘキサン,トリブロモフェノール,トリブロモフェニルアリルエーテル,テトラブロモビスフェノールA,2,2−ビス(4−(2−アリルオキシ)−3,5−ジブロモフェニル)プロパン,エチレンビスブロマイド・2,2−ビス(4−(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン縮合物,2,2−ビス(4−(2,3−ジブロモプロポキシ)−3,5−ジブロモフェニル)プロパン,デカブロモジフェニルエーテル,オクタブロモジフェニルエーテル,パークロロシクロペンタデカン,塩素化ポリエチレンなどのハロゲン系難燃剤,トリメチルホスフェート,トリエチルホスフェート,トリブチルホスフェート,トリオクチルハスフェート,トリブトキシエチルホスフェート,トリフェニルホスフェート,トリクレジルホスフェートなどの非ハロゲンリン系難燃剤,トリス(クロロエチル)ホスフェート,トリス(ジクロロプロピル)ホスフェート,トリス(クロロプロピル)ホスフェート,トリス(2,3−ジブロモプロピル)ホスフェート,トリス(トリブロモネオペンチル)ホスフェートなどの含ハロゲンリン系難燃剤,水酸化アルミニウム,水酸化マグネシウム,炭酸カルシウム,アルミン酸カルシウム,三酸化アンチモン,膨張性黒鉛,赤リンなどの無機系難燃剤などがある。
【0048】
上記難燃剤は単独で用いても,2種類以上混合して用いても良い。好ましくは,分解温度が250℃以下の難燃剤である。また,好ましくは,アリル構造を有する難燃剤である。分解温度が250℃以下やアリル構造を有する難燃剤を用いる場合には,少量の難燃剤で安定した自己消火性が得られる。
【0049】
また,スチレン系樹脂発泡体の熱伝導率は,0.035W/m・K以下であることが好ましい。
熱伝導率が0.035W/m・K以下のスチレン系樹脂発泡体を断熱材として用いた場合には,断熱材の厚みを小さくすることができるため好ましい。より好ましくは0.032W/m・K以下,更に好ましくは0.03W/m・K以下である。
【0050】
また,スチレン系樹脂発泡体の表面固有抵抗値は,1012Ω以上であることが好ましい。
表面固有抵抗値が1012Ω未満のスチレン系樹脂発泡体は,スチレン系樹脂中で黒鉛粉同士が接触することにより伝熱し,断熱性能が低下するおそれがある。特に好ましくは1013Ω以上である。
表面固有抵抗値は,スチレン系樹脂発泡体を室温23℃,相対湿度50%で24時間以上状態調整した後,高抵抗率計(三菱化学社製
ハイレスタ−UP MCP HT450,プローブ UR100)を用いて,室温23℃,相対湿度50%,印可電圧500Vの条件で表面固有抵抗値を測定した値である。
【0051】
また,本発明においては,請求項の発明のように,発泡性スチレン系樹脂粒子内における発泡剤は,炭素数4の飽和炭化水素が20%以上含有している。
発泡剤中における炭素数4の飽和炭化水素が20%未満の場合は,発泡や成形時におけるスチレン系樹脂発泡体の収縮が激しく,良好な成形体が得られないおそれがある。
【0052】
【実施例】
以下に,本発明に関する実施例及び比較例について説明する。
(実施例1)
スチレン系樹脂としてポリスチレン(エー・アンド・エム スチレン社製 HH102;Mw=26万)を100重量部,黒鉛粉として鱗片状黒鉛粉(エスイーシー社製SNO−5;50%平均粒径=4.6μm,90%平均粒径/10%平均粒径=3.2,アスペクト比=56,DBP吸油量=105ml/100g,見掛密度=0.08g/cm3,比表面積=1.1m2/cm3)3重量部,分散助剤として流動パラフィン(松村石油研究所社製 モレスコホワイトP60)1重量部をミキサーで混合した。
【0053】
その後,直径30mmの単軸押出機で200〜220℃の温度で溶融混合し,溶融した樹脂を押出機先端のダイよりストランド状に押し出した。そして,直ちに約30℃の水槽に導入して冷却後,ストランドカッターにより,重量が約1mg/個の円柱状の黒鉛粉を含有するスチレン系樹脂粒子を作成した。
【0054】
次いで,容積が3Lの撹拌装置付き圧力容器に,脱イオン水1kg,ピロリン酸ナトリウム4g,硫酸マグネシウム8gを投入し懸濁剤であるピロリン酸マグネシウムを合成し,ついで界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.5g,上記樹脂粒子0.5kgを投入し,圧力容器を密閉した。
その後,1時間で100℃まで加温した。100℃に到達後,発泡剤としてブタン(ノルマルブタン約20%とイソブタン約80%の混合物)20g,ペンタン(n−ペンタン 約80%,イソペンタン 約20%の混合物)20gを30分かけて圧力容器内に添加し,そのまま100℃で5時間保持した後,室温まで冷却した。
【0055】
次いで,圧力容器から発泡剤の含浸された樹脂粒子を取り出し,硝酸で表面に付着した懸濁剤を溶解させた後,水洗し,遠心分離機で脱水後,気流乾燥機で樹脂粒子表面に付着している水分を乾燥させた。
次いで,得られた樹脂粒子100重量部に対して,帯電防止剤であるN,N−ビス(2−ヒドロキシエチル)アルキルアミン0.005重量部を添加し,さらにステアリン酸亜鉛0.1重量部,グリセリントリステアレート0.05重量部,グリセリンモノステアレート0.05重量部の混合物で粒子表面を被覆した。
【0056】
このようにして得られた発泡剤の含浸された樹脂粒子を,発泡性ポリスチレン用のスチーム発泡機で,23kg/m3の嵩密度を有する予備発泡樹脂粒子を得た。この予備発泡樹脂粒子を室温で24時間熟成させた後,発泡ポリスチレン用成形機(ダイセン工業社製 VS−500型物成形機)の成形型内に充填し,120℃にスチーム加熱し,300×200×25mmの板状のスチレン系樹脂発泡体を得た。この発泡成形体を60℃で7日間養生させた後,各種評価に用いた。
以下に,上記黒鉛粉,スチレン系樹脂,スチレン系樹脂発泡体等の各種物性等の測定法試験法等につき説明する。
【0057】
(1)黒鉛粉の50%粒子径(μm)
黒鉛粉を水中に分散させ,レーザー回折散乱法(測定装置:セイシン企業社製LMS−24)により粒度分布を測定し,全粒子の体積に対する累積体積が50%になる時の粒子径を50%粒子径とした。粒子の形状ファクターは1(球形)とした。
【0058】
(2)黒鉛粉の10%粒子径に対する90%粒子径の比
レーザー回折散乱法により,50%粒子径と同様に黒鉛粉の10%粒子径と90%粒子径を測定し,10%粒子径に対する90%粒子径の比,すなわち,90%粒子径/10%粒子径を求めた。
【0059】
(3)黒鉛粉のアスペクト比
任意に分散させた黒鉛粉を走査型電子顕微鏡で撮影し,写真中から20個ランダムに選んだ黒鉛粉の「長軸の長さ」/「短軸の長さ」の数平均を求め,その値をアスペクト比とした。
【0060】
(4)黒鉛粉のDBP吸油量(ml/100g)
JIS K 6221に準じて黒鉛粉のDBP吸油量を測定した。黒鉛粉18gにDBP(ジブチルフタレート)を滴下し,吸油量測定装置(レグナス社製)にて測定した。
【0061】
(5)黒鉛粉の見掛密度(g/cm3
黒鉛粉の見掛密度はJIS Z 2504に準じて測定した。
【0062】
(6)黒鉛粉の比表面積(m2/cm3
レーザー回折散乱法により,50%粒子径と同様に黒鉛粉を水中に分散させ,黒鉛粉の比表面積を測定した。粒子の形状ファクターは1(球状)とした。
(7)スチレン系樹脂の重量平均分子量
スチレン系樹脂発泡体をTHFに溶解し,メンブランフィルターにて不溶分を除去した後,ゲルパーミエイションクロマトグラフィー(GPC)により測定した。
【0063】
(8)平均気泡径(μm)
スチレン系樹脂発泡体をミクロトームでスライスして厚さ20〜30μmの薄片を作成し,薄片を光学顕微鏡で観察して,ランダムに20個の気泡径を測定した値を数平均して求めた。
【0064】
(9)独立気泡率(%)
スチレン系樹脂発泡体を30×30×20mm程度の試験体に切り出し,空気比較式比重計(東京サイエンス社製 空気比較式比重計1000型)により求めた試験体容積V1(cm3),水置換法により求めた試験体容積V2(cm3),試験体の重量W(g),およびスチレン系樹脂の密度d(g/cm3)を用いて,次の式により独立気泡率を計算して求めた。
独立気泡率(%)=(V1−W/d)/(V2−W/d)×100
【0065】
(10)切断面における黒鉛粉が占める面積の割合(%)
発泡成形体(300mm×75mm×25mm)の任意の部分を平面になるように切り出した後,スーパーデラックススライサー(ワタナベフーマック株式会社製;WSD−2P&3P)で薄片(厚さ0.5mm)を切り出し,この切断面を倍率500倍のマイクロスコープ(キーエンス社製 VH−7000)で観察した。
尚,切断面における黒鉛粉が占める面積の割合は,切断面において0.2mm×0.2mmの範囲を任意に20箇所選び,0.2mm×0.2mmの範囲内に含有される黒鉛粉の総面積を,切断面の面積(=0.04mm2)で除した値の数平均を求めた。
切断面における黒鉛粉が占める面積の割合(%)=「黒鉛粉の総面積(mm2)」/0.04mm2×100
【0066】
(11)スチレン系樹脂発泡体中の黒鉛粉の密度(個/mm2
発泡成形体(300mm×75mm×25mm)の任意の部分を平面になるように切り出した後,スーパーデラックススライサー(ワタナベフーマック株式会社製;WSD−2P&3P)で薄片(厚さ0.5mm)を切り出し,この切断面を倍率500倍のマイクロスコープ(キーエンス社製 VH−7000)で観察した。
スチレン系樹脂発泡体中の,黒鉛粉の密度の計測には,切断面において0.2mm×0.2mmの範囲を任意に20箇所選び,0.2mm×0.2mmの範囲内に含有される黒鉛粉数の数平均を求め,その値を1mm2当りに換算した値を,黒鉛粉の上記密度とした。
【0067】
(12)スチレン系樹脂発泡体の熱伝導率(W/m・K)
JIS A 1412−2 熱流計法(HFM法)に準じてスチレン系樹脂発泡体の熱伝導率を測定した。スチレン系樹脂発泡体を200×200×25mmの寸法の試験体に切り出し,測定装置の加熱板と冷却熱板の間に挟み,試験体温度差30℃,試験体平均温度20℃の条件で測定を行った。
【0068】
(13)寸法安定性評価
発泡性スチレン系樹脂粒子を,300mm×75mm×25mmに発泡成形してスチレン系樹脂発泡体を製造し,300mm方向を定尺して,60℃で24時間放置した後,寸法変化率を求めた。0.5%以内の変化を「◎」,0.5%〜1%以内の変化を「○」,1%を超える場合を,「×」と評価した。
【0069】
(14)表面固有抵抗値
得られたスチレン系樹脂発泡体を,室温23℃,相対湿度50%で24時間以上状態調整した後,高抵抗率計(三菱化学社製 ハイレスタ−UP MCP HT450,プローブ UR100)を用いて,室温23℃,相対湿度50%,印可電圧500Vの条件で測定した。
【0070】
(15)燃焼試験
難燃剤を含有するスチレン系樹脂発泡体について,JIS A 9511に準じて燃焼試験を行った。JIS A 9511の合否判定に準じ,3秒以内に消火し残塵がなく,限界線を越えて燃焼が継続しなかった場合を合格とした。
【0071】
(実施例2)
黒鉛粉として鱗片状黒鉛粉(エスイーシー社製SNE−6G;50%平均粒径=5.9μm,90%平均粒径/10%平均粒径=4.2,アスペクト比=75,DBP吸油量=140ml/100g,見掛密度=0.06g/cm3,比表面積=1.5m2/cm3)2重量部,分散助剤として流動パラフィン(松村石油研究所社製 モレスコホワイトP60)0.66重量部,発泡剤としてブタン(ノルマルブタン約20%とイソブタン約80%の混合物)10g,ペンタン(n−ペンタン 約80%,イソペンタン 約20%の混合物)30gを用いた。
それ以外は実施例1と同様に行った。
【0072】
(実施例3)
黒鉛粉として板状黒鉛粉(エスイーシー社製SGP−5;50%平均粒径=5.4μm,90%平均粒径/10%平均粒径=4,アスペクト比=9,DBP吸油量=92ml/100g,見掛密度=0.11g/cm3,比表面積=1.3m2/cm3)4重量部,分散助剤として流動パラフィン(松村石油研究所社製 モレスコホワイトP60)1.33重量部,発泡剤としてブタン(ノルマルブタン約20%とイソブタン約80%の混合物)37.5gを用いた。
それ以外は実施例1と同様に行った。
【0073】
(実施例4)
黒鉛粉として塊状黒鉛粉(エスイーシー社製SGL−5;50%平均粒径=4.5μm,90%平均粒径/10%平均粒径=4.5,アスペクト比=6,DBP吸油量=72ml/100g,見掛密度=0.12g/cm3,比表面積=0.4m2/cm3)0.3重量部,分散助剤として流動パラフィン(松村石油研究所社製 モレスコホワイトP60)0.1重量部,発泡剤としてブタン(ノルマルブタン約20%とイソブタン約80%の混合物)28g,ペンタン(n−ペンタン 約80%,イソペンタン 約20%の混合物)7gを用いた。
それ以外は実施例1と同様に行った。
【0074】
参考例1
容積が3Lの撹拌装置付き圧力容器に,脱イオン水760g,ピロリン酸ナトリウム2.7g,硫酸マグネシウム5gを投入し懸濁剤であるピロリン酸マグネシウムを合成した。次いで撹拌下に,重合開始剤としてベンゾイルパーオキサイド(日本油脂株式会社製)を0.8g,難燃剤としてヘキサブロモシクロドデカン(第一工業製薬社製 FR104)5g,難燃助剤としてジクミルパーオキサイド2.3g,黒鉛粉として鱗片状黒鉛粉(エスイーシー社製SNO−15;50%平均粒径=15.2μm,90%平均粒径/10%平均粒径=7,アスペクト比=27,DBP吸油量=90ml/100g,見掛密度=0.19g/cm3,比表面積=0.8m2/cm3)60.8g,発泡性スチレン系樹脂粒子60gをスチレンモノマー700gに溶解させた有機相を投入した。
【0075】
撹拌下で2時間かけて80℃まで昇温し,80℃到達後2時間目にK−30(アルキルスルホン酸ナトリウムの10%水溶液)1.4gを圧入した。更に30分後に発泡剤としてブタン(ノルマルブタン約20%とイソブタン約80%の混合物)9.1g,ペンタン(n−ペンタン 約80%,イソペンタン 約20%の混合物)51.7gを1時間かけてオートクレーブに圧入した。
その後さらに,130℃まで4時間かけて昇温し,130℃を4時間保持した後,5時間かけて30℃まで冷却した。冷却後,スチレン系樹脂粒子を遠心分離機にて脱水,流動乾燥装置で表面付着水分を除去した後,目開きが0.7mmと1.4mmの篩いで篩い分けた。
【0076】
得られた樹脂粒子100重量部に対して,帯電防止剤であるN,N―ビス(2−ヒドロキシエチル)アルキルアミン0.005重量部を添加し,さらにステアリン酸亜鉛0.1重量部,グリセリントリステアレート0.05重量部,グリセリンモノステアレート0.05重量部の混合物で被覆した。
得られた発泡剤の含浸された樹脂粒子を発泡性ポリスチレン用のスチーム発泡機で,18kg/m3の嵩密度を有する発泡樹脂粒子を得た。発泡樹脂粒子を室温で24時間熟成させた後,発泡ポリスチレン用成形機(ダイセン工業社製 VS−500型物成形機)を用いて成形を行い,300×200×25mmの板状の発泡成形品を得た。この発泡成形品を60℃で7日間養生させた後,各種評価に用いた。
【0077】
(実施例6)
黒鉛粉として鱗片状黒鉛粉(エスイーシー社製SNO−5;50%平均粒径=4.6μm,90%平均粒径/10%平均粒径=3.2,アスペクト比=56,DBP吸油量=105ml/100g,見掛密度=0.08g/cm3,比表面積=1.1m2/cm3)3重量部,分散助剤として流動パラフィン(松村石油研究所社製 モレスコホワイトP60)1重量部を用いた以外は実施例1と同様に黒鉛粉を含有する樹脂粒子を作成した。
【0078】
その後,容積が3Lの撹拌装置付き圧力容器に,脱イオン水1kg,ピロリン酸ナトリウム4g,硫酸マグネシウム8gを投入し懸濁剤であるピロリン酸マグネシウムを合成し,ついで界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.5g,難燃剤としてテトラブロモシクロオクタン(第一工業製薬社製 FR200)3.25g,難燃助剤としてジクミルパーオキサイド1.5g,上記樹脂粒子500gを投入し,圧力容器を密閉後,1時間で100℃まで加温した。
【0079】
100℃に到達後,発泡剤として発泡剤としてブタン(ノルマルブタン約20%とイソブタン約80%の混合物)20g,ペンタン(n−ペンタン 約80%,イソペンタン 約20%の混合物)20gを30分かけて圧力容器内に添加し,そのまま100℃で5時間保持した後,室温まで冷却した。
【0080】
圧力容器から発泡剤の含浸された樹脂粒子を取り出し,硝酸で表面に付着した懸濁剤を溶解させた後,水洗し,遠心分離機で脱水後,気流乾燥機で樹脂粒子表面に付着する水分を乾燥させた。得られた樹脂粒子100重量部に対して,帯電防止剤であるN,N―ビス(2−ヒドロキシエチル)アルキルアミン0.005重量部を添加し,さらにステアリン酸亜鉛0.1重量部,グリセリントリステアレート0.05重量部,グリセリンモノステアレート0.05重量部の混合物で被覆した。
【0081】
得られた発泡剤の含浸された樹脂粒子を発泡性ポリスチレン用のスチーム発泡機で,19kg/m3の嵩密度を有する発泡樹脂粒子を得た。発泡樹脂粒子を室温で24時間熟成させた後,発泡ポリスチレン用成形機(ダイセン工業社製 VS−500型物成形機)を用いて成形を行い,300×200×25mmの板状の発泡成形品を得た。この発泡成形品を60℃で7日間養生させた後,各種評価に用いた。
【0082】
(実施例7)
黒鉛粉として鱗片状黒鉛粉(エスイーシー社製SNO−5;50%平均粒径=4.6μm,90%平均粒径/10%平均粒径=3.2,アスペクト比=56,DBP吸油量=105ml/100g,見掛密度=0.08g/cm3,比表面積=1.1m2/cm3)6重量部,分散助剤として流動パラフィン(松村石油研究所社製 モレスコホワイトP60)2重量部を用いた以外は実施例1と同様に黒鉛粉を含有する樹脂粒子を作成した。
【0083】
その後,容積が3Lの撹拌装置付き圧力容器に,脱イオン水1kg,ピロリン酸ナトリウム4g,硫酸マグネシウム8gを投入し懸濁剤であるピロリン酸マグネシウムを合成し,ついで界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.5g,難燃剤として2,2−ビス(4−(2−アリルオキシ)−3,5−ジブロモフェニル)プロパン(帝人化成社製 FG3200)5g,上記樹脂粒子0.5kgを投入し,圧力容器を密閉後,1時間で100℃まで加温した。
【0084】
100℃に到達後,発泡剤として発泡剤としてブタン(ノルマルブタン約20%とイソブタン約80%の混合物)20g,ペンタン(n−ペンタン 約80%,イソペンタン 約20%の混合物)20gを30分かけて圧力容器内に添加し,そのまま100℃で5時間保持した後,室温まで冷却した。
圧力容器から発泡剤の含浸された樹脂粒子を取り出し,硝酸で表面に付着した懸濁剤を溶解させた後,水洗し,遠心分離機で脱水後,気流乾燥機で樹脂粒子表面に付着する水分を乾燥させた。得られた樹脂粒子100重量部に対して,帯電防止剤であるN,N―ビス(2−ヒドロキシエチル)アルキルアミン0.005重量部を添加し,さらにステアリン酸亜鉛0.1重量部,グリセリントリステアレート0.05重量部,グリセリンモノステアレート0.05重量部の混合物で被覆した。
【0085】
得られた発泡剤の含浸された樹脂粒子を発泡性ポリスチレン用のスチーム発泡機で,19kg/m3の嵩密度を有する発泡樹脂粒子を得た。発泡樹脂粒子を室温で24時間熟成させた後,発泡ポリスチレン用成形機(ダイセン工業社製 VS−500型物成形機)を用いて成形を行い,300×200×25mmの板状の発泡成形品を得た。この発泡成形品を60℃で7日間養生させた後,各種評価に用いた。
【0086】
参考例2
スチレン系樹脂としてポリスチレン(エー・アンド・エム
スチレン社製 680;;Mw=20万)を100重量部,黒鉛粉として鱗片状黒鉛粉(エスイーシー社製SNO−5;50%平均粒径=4.6μm,90%平均粒径/10%平均粒径=3.2,アスペクト比=56,DBP吸油量=105ml/100g,見掛密度=0.08g/cm3,比表面積=1.1m2/cm3)3重量部,分散助剤として流動パラフィン(松村石油研究所社製 モレスコホワイトP60)1重量部,気泡核剤としてタルク0.5重量部,分散助剤としてステアリン酸亜鉛3重量部をミキサーで混合した。
【0087】
その後,φ65mmの単軸押出機のホッパーに投入し,押出機の前段部で200〜220℃の温度で溶融混合させた。次いで押出機中段よりスチレン系樹脂100重量部に対して,ブタン(n−ブタン70%,イソブタン30%の混合物)4重量部,ペンタン(n−ペンタン 約80%,イソペンタン 約20%の混合物)4重量部を添加した。
押出機後段で120℃まで冷却し,押出機先端部のTダイより溶融樹脂を押し出し,密度が30kg/m3の板状のスチレン系樹脂発泡体を作成した。得られた発泡体を60℃で7日間養生させた後,各種評価に用いた。
【0088】
(比較例1〜3)
黒鉛粉を用いなかったこと以外は,実施例1と同様に行った。ただし,発泡性ポリスチレン用のスチーム発泡機で発泡する際に,発泡樹脂粒子の嵩密度を調整して,それぞれ17,20,25kg/m3の密度の合成樹脂発泡体を作成した。
【0089】
(比較例4)
黒鉛粉として球状黒鉛粉(エスイーシー社製SGB−5;50%平均粒径=6.8μm,90%平均粒径/10%平均粒径=6,アスペクト比=1,DBP吸油量=38ml/100g,見掛密度=0.11g/cm3,比表面積=1.0m2/cm3)6重量部,分散助剤として流動パラフィン(松村石油研究所社製 モレスコホワイトP60)1重量部,発泡剤としてペンタン(n−ペンタン 約80%,イソペンタン 約20%の混合物)37.5gを用いた。
それ以外は実施例1と同様に行った。
【0090】
参考例3
黒鉛粉として球状黒鉛粉(エスイーシー社製SGB−25;50%平均粒径=25.1μm,90%平均粒径/10%平均粒径=9.1,アスペクト比=1,DBP吸油量=25ml/100g,見掛密度=0.25g/cm3,比表面積=0.5m2/cm3)0.38g,発泡剤として発泡剤としてブタン(ノルマルブタン約20%とイソブタン約80%の混合物)3.5g,ペンタン(n−ペンタン 約80%,イソペンタン 約20%の混合物)31.5gを用いた。
それ以外は参考例1と同様に行った。
参考例4
黒鉛粉を用いなかったこと以外は,参考例2と同様に行った。
【0091】
以上の各実施例1〜4,6,7及び各比較例1〜4,各参考例1〜4におけるスチレン系樹脂の重量平均分子量(Mw),黒鉛粉の50%粒子径,10%粒子径に対する90%粒子径の比,アスペクト比,DBP吸油量,見掛密度,比表面積と発泡体の密度,平均気泡径,独立気泡率,黒鉛粉の分散性,切断面における黒鉛粉の占める黒鉛断面積,寸法安定性,熱伝導率,表面固有抵抗値,燃焼試験結果について,表1〜4に示した。
また,表1,2の実施例と比較例について,スチレン系樹脂発泡体の密度と熱伝導率の関係を図1に示した。
表1〜4,及び図1より,本発明により得られたスチレン系樹脂発泡体は,熱伝導率が小さく,断熱性能に優れていることが分かる。
【0092】
即ち,本発明にかかる実施例1〜4,6,7は,比較例1〜と比較して,熱伝導率が0.0293〜0.0333W/m・Kと低く,断熱性能に優れ寸法安定性にも優れていることが分る。
また,燃焼試験に関しては,難燃剤を入れた実施例6,7のものは,上記基準をクリアーして合格判定となっている。
【0093】
【表1】

Figure 0004316305
【0094】
【表2】
Figure 0004316305
【0095】
【表3】
Figure 0004316305
【0096】
【表4】
Figure 0004316305

【図面の簡単な説明】
【図1】実施例及び比較例における,スチレン系樹脂発泡体の密度(kg/cm3)と熱伝導率(W/m・K)との関係を示す線図。[0001]
【Technical field】
  The present invention is a styrenic resin foam with low thermal conductivity and excellent heat insulation performance.Body madeIt relates to the manufacturing method.
[0002]
[Prior art]
Styrenic resin foams are used in residential insulation and cold storage boxes due to their excellent heat insulation performance.
As a manufacturing method of styrene resin foam used for heat insulation, extrusion foaming method in which styrene resin is heated and melted with an extruder, and blowing agent such as chlorofluorocarbons is injected, cooled, and extruded into the atmosphere. There is.
In addition, there is a bead foaming method in which the styrene resin foam is manufactured by filling foam particles of a styrene resin into a mold of a molding machine and heating to fuse the foam particles.
[0003]
In the extrusion foaming method, chlorofluorocarbons with low thermal conductivity are used as the foaming agent, so a foam with low thermal conductivity is obtained immediately after production, but chlorofluorocarbons gradually dissipate from the styrene resin foam. Therefore, the thermal conductivity gradually increases during use as a heat insulating material, and the heat insulating performance decreases. In addition, the use of chlorofluorocarbons is concerned about the impact on the global environment, such as ozone depletion and global warming.
[0004]
On the other hand, in the above-mentioned bead foaming method, since molding is performed after the foamed particles are left in the atmosphere (ripening) for a while, air penetrates into the foamed particles during aging and is replaced with the foaming agent, and contains a lot of air. It becomes a styrene resin foam.
Therefore, the styrenic resin foam obtained by the bead foaming method has a small change in thermal conductivity over time, and the heat insulation performance is stable for a long time. However, since the thermal conductivity of air is higher than that of chlorofluorocarbons used in the extrusion foaming method, the thermal conductivity of the resulting styrene resin foam is the styrene resin obtained by the extrusion foaming method. It tends to be higher than the thermal conductivity of the foam.
[0005]
Therefore, in order to reduce the thermal conductivity of the styrene resin foam obtained by the bead foaming method, the styrene resin foam is coated with a film having a high gas barrier property after molding, or the surface of the foam particles is coated with a gas barrier resin. However, studies have been made to keep the thermal conductivity low by suppressing the replacement of the blowing agent and air (see Patent Documents 1 and 2).
However, it is difficult to prevent the heat insulation performance from deteriorating over time because the gas with low thermal conductivity cannot be completely prevented from escaping from the styrene resin foam.
[0006]
The thermal conductivity of styrene resin foam is composed of conduction, radiation, and convection. Of these, convection occurs when the bubble diameter is 4 mm or more, and can therefore be ignored for ordinary styrene resin foams. Non-Patent Document 1 shows a graph showing the relationship between specific gravity and thermal conductivity of a styrene resin foam. It is known that the thermal conductivity of styrene-based resin foam is the smallest when the expansion ratio is 20 to 30 times, and if you try to reduce the weight with an expansion ratio of 30 times or more, the thermal conductivity increases. , Insulation performance is reduced.
[0007]
The reason is considered as follows. As the expansion ratio of the styrene resin foam increases, the proportion of the styrene resin in the styrene resin foam decreases, and the thermal conductivity of the entire styrene resin foam decreases. However, when the expansion ratio of the styrene-based resin foam is higher than 30 times, the influence of radiant heat transfer increases, and the thermal conductivity of the styrene-based resin foam increases.
[0008]
Also, in Patent Document 3, an additive that shows absorption at an infrared wavelength of 5 to 30 μm and an average absorption rate at a thickness of 10 μm for black body radiation at 300 K is 0.3 or more is added to a synthetic resin. Discloses a method for suppressing radiant heat transfer. A specific example is a compound having a chemical structure such as C═C, C—O, OH, C═O, C—X (halogen), N—H, C═N, C═S, S═O. It is listed as. However, the compounds with these structures can only absorb infrared rays with a specific wavelength in a narrow range and cannot absorb infrared rays in all wavelength regions that affect radiant heat transfer. Is small.
[0009]
Patent Document 4 discloses that a graphite powder having an average particle diameter of 1 to 50 μm is contained in an amount of 0.05 to 8 parts by weight with respect to 100 parts by weight of styrene resin particles, thereby suppressing radiant heat transfer. A method for improving the heat insulation performance of a resin foam is disclosed.
[0010]
Also, in Cited Document 5, the density is 1.8 g / cm.ThreeBy using less graphite powder, the graphite powder is highly dispersed in the styrene resin foam without re-melting the polystyrene, suppressing radiant heat transfer and improving the heat insulation performance of the styrene resin foam. A method is disclosed.
However, in any of the methods, the effect of improving the heat insulation performance is insufficient.
[0011]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-239087
[Patent Document 2]
JP-A-8-67662
[Patent Document 3]
JP 56-50935 A
[Patent Document 4]
Special table 2001-525001 gazette
[Patent Document 5]
JP-T-2002-521543
[Non-Patent Document 1]
“Known and Conventional Techniques (Foam Molding)”, JPO, August 3, 1982, p. 83
[0012]
[Problems to be solved]
  In view of the conventional problems, the present invention is a styrene resin foam having low thermal conductivity and excellent heat insulation performance.the body'sA manufacturing method is to be provided.
[0013]
[Means for solving problems]
For convenience of explanation, first, a styrene resin foam obtained by the present invention (hereinafter, simply referred to as a styrene resin foam) will be described.
Styrenic resin foam obtained by the present inventionHas a density of 10-100 kg / mThreeA styrene resin foam having a closed cell ratio of 60% or more, an average cell diameter of 20 to 1000 μm, and containing graphite powder, wherein the graphite powder has an aspect ratio of 5 or more.RusuTylene-based resin foamIt is preferable that
[0014]
  According to the present invention, it is possible to provide a styrene resin foam having low thermal conductivity and excellent heat insulation performance.
  In the present inventionMore obtainableThe density of the styrene resin foam is 10 to 100 kg / m.ThreeIsIs preferable. 10kg / mThreeIf it is less than the range, the strength of the styrene resin foam may be lowered. 100 kg / mThreeIf it exceeds 1, the heat insulation performance of the styrene resin foam may be lowered. Note thatfurtherPreferably 10-50 kg / mThreeAnd particularly preferably 10-30 kg / mThreeIt is.
[0015]
The closed cell ratio is 60% or more. If it is less than 60%, the heat insulating performance may be lowered. Preferably it is 70% or more, More preferably, it is 80% or more.
Moreover, the said average bubble diameter is 20-1000 micrometers. If the thickness is less than 20 μm, the bubble film becomes thin, so that the bubble film may be broken by the dispersed graphite powder, the closed cell ratio may be lowered, and the heat insulation performance may be lowered. When it exceeds 1000 μm, the number of bubbles is reduced, and the heat insulation performance may be deteriorated. Here, the average bubble diameter is a cell (diameter per part divided between the walls of the resin part, measured at 20 arbitrary locations, and obtained by the number average value. The average cell diameter can be adjusted by changing the amount of the cell nucleating agent such as talc and polyethylene wax, the type and composition of the foaming agent, and the like.
[0016]
  next,Invention according to the present applicationIn an extruder, styrene resin, graphite powder and dispersant are mixed, then the mixture is extruded, cooled, granulated, and the resulting styrene resin particles containing graphite powder are suspended in water and foamed. To obtain expandable styrene resin particles impregnated with foaming agent,
  Next, a method for producing a styrenic resin foam to be heated and foamed,
  The dispersant is liquid paraffin,
  The graphite powder is a method for producing a styrenic resin foam, wherein the graphite powder has an aspect ratio of 5 or more and a DBP oil absorption of 60 to 500 ml / 100 g.1).
[0017]
In this case, since liquid paraffin is used as the dispersant, a styrene resin foam having low thermal conductivity and excellent heat insulation performance can be obtained.
When mineral spirits or aromatic solvents are used as a dispersant for graphite powder, the styrene resin foam may shrink during foaming or molding, and the self-extinguishing property may be adversely affected.
The liquid paraffin preferably has an average carbon number of 20 to 35. The liquid paraffin is an alicyclic hydrocarbon compound having a branched structure or a ring structure represented by CmHn (n <2m + 1, n and m are natural numbers), and is a liquid paraffin at room temperature (usually 10 to 30 ° C.). .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
  The present inventionThe styrene resin includes polystyrene, rubber-modified polystyrene, ABS resin, AS resin, AES resin, and the like. The styrenic resins may be used alone or in combination of two or more.
  Although there is no restriction | limiting in particular as a kind of resin which comprises the styrene-type resin to be used, For example, a styrene monomer is mentioned. In addition, monomer components copolymerizable with styrene monomers, for example, alkyl esters having 1 to 10 carbon atoms of acrylic acid such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate Etc .; alkyl esters having 1 to 10 carbon atoms of methacrylic acid such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate; α-methylstyrene, o-methylstyrene, etc. m-methylstyrene, p-methylstyrene, vinyltoluene, p-ethylstyrene, 2,4-dimethylstyrene, p-methoxystyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4-dichlorostyrene, pn- Styrene monomer derivatives such as styrene styrene, pt-butyl styrene, pn-hexyl styrene, p-octyl styrene, styrene sulfonic acid, sodium styrene sulfonate, etc .; nitrile group-containing unsaturated compounds such as acrylonitrile and methacrylonitrile These resins can be used alone or in combination of two or more, and a resin copolymerized with a styrene monomer can be used.
[0019]
The styrene monomer and the monomer component copolymerizable with the styrene monomer are referred to as a styrene monomer.
However, when these monomers are used in addition to the styrene monomer, the weight of the styrene monomer is preferably 50% or more based on the total weight of the styrene monomer when the styrene resin is polymerized.
[0020]
Moreover, it is preferable that the value of the melt flow rate (MFR) of a styrene resin is 0.5-30 g / 10min. In this case, it is possible to obtain an effect that the mechanical properties of the molded body molded using the obtained expanded particles are excellent.
If the melt flow rate (MFR) is less than 0.5 g / 10 minutes, the production efficiency of the expanded particles, particularly the productivity in the melt-kneading process may be reduced. Further, when the MFR exceeds 30 g / 10 min, the mechanical properties such as compression strength and tensile strength of the molded body molded using the foamed particles obtained as a product may be lowered. In addition, More preferably, it is 1-10 g / 10min, More preferably, it is 1-5 g / 10min.
[0021]
The melt flow rate (MFR) of the expandable styrene resin was measured according to ISO 1133. That is, after conditioning the styrenic resin particles at 105 ° C. for 1 hour or longer, the test was conducted using an automatic MFR measuring machine (Techno Seven, fully automatic MFR testing machine 280, die; length 8 mm × inner diameter 2.1 mm). MFR was measured under the conditions of a temperature of 200 ° C. and a test load of 5 kg.
[0022]
The aspect ratio of the graphite powder is 5 or more. When the aspect ratio is less than 5, the effect of reducing the thermal conductivity cannot be obtained.
Here, the aspect ratio is represented by the ratio of the “long axis length” to the “short axis length” of the graphite powder (long axis length / short axis length). The shielding effect of radiant heat transfer is high, and the effect of low thermal conductivity is increased.
In the present invention, arbitrarily dispersed graphite powder is photographed with a scanning electron microscope, and about 20 graphite powders randomly selected from the photograph, the “long axis length” / “short axis length” is selected. The number average was calculated and the value was taken as the aspect ratio.
Further, as the shape of the graphite powder, various shapes such as a plate shape, a scale shape, a flake shape, an indefinite shape, and a needle shape can be used. In addition, it is preferably flaky or scaly.
[0023]
The thickness of the graphite powder is preferably 2 μm or less so as not to adversely affect the foaming process of the styrene resin. More preferably, it is 1 micrometer or less, More preferably, it is 0.5 micrometer or less.
[0024]
  The present inventionTakeManufacture of styrene resin foamImplementation of the methodIn this process, the graphite powder is kneaded with the styrene resin using an extruder, roll, mixer, etc., or the monomer before the polymerization reaction or the graphite powder is added and mixed during the polymerization reaction at the time of styrene resin production. , Disperse graphite powder in styrene resinThe
[0025]
As a method of foaming the styrene resin in which the graphite powder is dispersed,, Inorganic gases such as nitrogen and carbon dioxide, aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, cyclopentane, n-hexane and cyclohexane, ethers such as dimethyl ether, diethyl ether and furan, Graphite powder was dispersed with a foaming agent such as alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol, halogenated hydrocarbons such as HCFC-141b, HCFC-142, HCFC-124, HFC-152a, and HFC-134a. There is an extrusion foaming method in which it is melt-kneaded with a styrene resin and extruded from the die at the tip of the extruder into the atmosphere for foaming.
[0026]
  Graphite powderButDecentralizedWasStyrenic resin,Styrenic resin particles having a size of 0.5 mg / kg to 5 mg / ke by a method such as strand cutting, hot cutting, underwater cutting, etc.Shi, Inject a foaming agent similar to the above into a sealed container, then open one end of the sealed container and reduce the pressure to foam.Method(Docan foaming method)There is.
[0027]
  In the present invention, Styrene-based resin in which graphite powder is dispersed is melt-kneaded with an extruder, and 0.5 mg /
Styrenic resin particles having a size of 5 to 5 mg / ke and dispersed in an airtight container and an aqueous medium, and propane, n-butane, isobutane, n-pentane, isopentane, cyclopentane, n- Aliphatic hydrocarbons such as hexane and cyclohexane, ethers such as dimethyl ether, diethyl ether and furan, alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol, HCFC-141b, HCFC-142, HCFC-124, HFC-152a, A foaming agent such as halogenated hydrocarbon such as HFC-134a is press-fitted to impregnate the styrene resin particles with the foaming agent, and the styrene resin particles containing the foaming agent are taken out from the sealed container, and then the foaming agent by steam or the like. Heat styrene resin particles containing selenium to foam at a specified magnification Over's foaming methodIs used.
[0028]
  Among the above methods, the styrenic resin foam obtained has little change over time.RecordingFoaming methodUse. Further, the step of dispersing the graphite powder in the styrene resin and the step of foaming the styrene resin may be performed separately or simultaneously.
[0029]
  Also,the aboveFlame retardants such as hexabromocyclododecane, tetrabromobisphenol A, trimethyl phosphate, aluminum hydroxide, antimony trioxide, and flame retardant aids such as 2,3-dimethyl-2,3-diphenylbutane on styrene resin foam It is also possible to add a cell nucleating agent such as methyl methacrylate copolymer, polyethylene wax, talc, silica, ethylene bisstearylamide, and silicone.
[0030]
In addition, liquid paraffin, glycerin diacetomonolaurate, glycerin tristearate, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, plasticizers, alkyldiethanolamine, glycerin fatty acid ester, sodium alkylsulfonate, etc. Antioxidants such as antioxidants, phenolic, phosphorus, and sulfur-based materials, UV absorbers such as benzotriazole and benzophenone, light stabilizers such as hindered amines, conductive fillers such as conductive carbon black, IPBC, TBZ Additives such as organic antibacterial agents such as BCM and TPN, inorganic antibacterial agents such as silver, copper, zinc and titanium oxide can also be added. Further, rubber components such as butadiene rubber, styrene-butadiene rubber, isoprene rubber, and ethylene-propylene rubber may be added.
[0031]
  Also,Obtained by the present inventionStyrene resin foam is a foam obtained by in-mold molding of pre-expanded resin particles of styrene resin.The
  nextIn the present invention, blackThe aspect ratio of the lead powder is preferably 20 or more. When the aspect ratio is 20 or more, the shielding effect of radiant heat transfer becomes high, and the effect of lowering the thermal conductivity can be exhibited by adding a small amount.
[0032]
  Also,blackThe aspect ratio of the lead powder is preferably 50 or more. When the aspect ratio is 50 or more, the shielding effect of radiant heat transfer is further improved, and even lower thermal conductivity can be achieved by adding a small amount. More preferably, it is 70-1000.
[0033]
  Also,UpThe DBP oil absorption of the graphite powder is 60 to 500 ml / 100 g. If the DBP oil absorption of the graphite powder is less than 60 ml / 100 g or more than 500 ml / 100 g, the effect of reducing the thermal conductivity may not be obtained. Especially preferably, it is 80-200 ml / 100g.
[0034]
The DBP oil absorption amount is the amount of DBP (dibutyl phthalate) contained per 100 g of graphite powder. The larger the DBP oil absorption amount, the higher the effect of shielding radiant heat transfer, and the easier it is to obtain a low thermal conductivity effect. The DBP oil absorption amount of the graphite powder was measured according to JIS K 6221 by dropping DBP (dibutyl phthalate) into 18 g of graphite powder and measuring the oil absorption amount (manufactured by Legnus).
[0035]
  Also,blackThe 50% particle diameter of the lead powder is preferably 0.1 to 100 μm. If the 50% particle diameter of the graphite powder is less than 0.1 μm or more than 100 μm, the effect of reducing the thermal conductivity may not be obtained..Especially preferably, it is 0.5-20 micrometers.
  In measuring the 50% particle size of the above graphite powder, the particle size is measured when the graphite powder is dispersed in water, the particle size distribution is measured by the laser diffraction scattering method, and the cumulative volume with respect to the volume of all particles is 50%. Was 50% particle size. The shape factor of the particles was 1 (spherical).
[0036]
  Also,blackThe ratio of the 90% particle diameter to the 10% particle diameter of the lead powder is preferably 1-20.
  When the ratio of the particle diameters is less than 1, the ratio of small particle diameters may increase, and the average bubble diameter may decrease, which may affect the foamed state. On the other hand, when the ratio of the particle diameters exceeds 20, the ratio of large particle diameters increases, which may adversely affect the foaming process of the styrene resin. Especially preferably, it is 1-10.
  The ratio of the 90% particle diameter to the 10% particle diameter is the same as the 50% particle diameter, in which graphite powder is dispersed in water, the particle size distribution is measured by the laser diffraction scattering method, and the cumulative volume with respect to the volume of all particles is 10%. The particle diameters at 10% and 90% were 10% particle diameter and 90% particle diameter, respectively, and the ratio of 90% particle diameter to 10% particle diameter was determined. The shape factor of the particles was 1 (spherical).
[0037]
  Also,blackThe apparent density of the lead powder is 0.01-0.1 g / cmThreeIt is preferable that
  The apparent density of the graphite powder is 0.01 g / cmThreeIf it is less than 1, it is difficult to obtain the effect of low thermal conductivity. On the other hand, 0.1 g / cmThreeIf it exceeds, the effect of improving the low thermal conductivity may not be obtained.
  The apparent density of the graphite powder was measured according to JIS Z 2504.
[0038]
  Also,blackSpecific surface area of lead powder is 0.7m2/ CmThreeThe above is preferable.
  Specific surface area of graphite powder is 0.7m2/ CmThreeIf it is less than 1, the effect of lowering the thermal conductivity may not be obtained. More preferably, 1-5m2/ CmThreeIt is. The specific surface area of the graphite powder was measured by dispersing the graphite powder in water in the same manner as the 50% particle diameter by the laser diffraction scattering method. The shape factor of the particles was 1 (spherical).
[0039]
  Also, SuThe ratio of the area occupied by the graphite powder on the cut surface of the tylene-based resin foam is preferably 1.5% or more.
  If it is less than 1.5%, the effect of reducing the thermal conductivity may not be obtained. More preferably, it is 2 to 10%.
  In addition, the ratio of the area occupied by the graphite powder on the cut surface is determined by cutting out an arbitrary portion of the foamed molded product (300 mm × 75 mm × 25 mm) to be a flat surface, and then super deluxe slicer (manufactured by Watanabe Fumak Co., Ltd .; WSD) -2P & 3P) to cut out a thin piece (thickness 0.5 mm), and this cut surface is a microscope with a magnification of 500 times (manufactured by Keyence Corporation)
VH-7000).
[0040]
The ratio of the area occupied by the graphite powder on the cut surface is the total area of the graphite powder contained in the range of 0.2 mm × 0.2 mm, arbitrarily selecting 20 locations in the cut surface of 0.2 mm × 0.2 mm. , The area of the cut surface (= 0.04 mm2The number average of the values divided by) was determined, and the value was defined as the ratio of the area occupied by the graphite powder on the cut surface.
Ratio of area occupied by graphite powder on cut surface (%) = “total area of graphite powder (mm2) "/ 0.04mm2× 100
[0041]
  Also,blackLead powder is 200 / mm in styrene resin foam.2It is preferable that it is uniformly dispersed as described above.
  Graphite powder is 200 / mm in styrene resin foam.2If it is less than 1, the effect of lowering the thermal conductivity may not be obtained. Particularly preferably, 500 to 10000 / mm2It is.
[0042]
In addition, the density of the graphite powder in the styrene-based resin foam was determined by cutting out an arbitrary part of the foamed molded product (300 mm × 75 mm × 25 mm) to be a flat surface, and then super deluxe slicer (manufactured by Watanabe Fumak Co., Ltd .; A thin piece (thickness 0.5 mm) was cut out with WSD-2P & 3P, and this cut surface was observed with a microscope (VH-7000, manufactured by Keyence Corporation) having a magnification of 500 times.
[0043]
For the measurement of the density of graphite powder in the styrene resin foam, 20 areas of 0.2 mm x 0.2 mm are arbitrarily selected on the cut surface, and contained within the range of 0.2 mm x 0.2 mm. Obtain the number average of the number of graphite powder and set the value to 1 mm.2The value converted to per unit was defined as the density of the graphite powder in the styrene resin foam.
[0044]
  Also,UpThe graphite powder is preferably contained in an amount of 0.1 to 20 parts by weight with respect to 100 parts by weight of the styrene resin foam.
  If it is less than 0.1 part by weight, the effect of lowering the thermal conductivity may not be obtained. If it exceeds 20 parts by weight, the foaming process of the styrenic resin may be adversely affected, or heat may be transferred due to contact between the graphite powders in the styrenic resin, resulting in a decrease in heat insulation performance. Preferably it is 0.5-10 weight part, Most preferably, it is 1-8 weight part.
[0045]
  AlsoIn the present invention,It is preferable that the value of the weight average molecular weight (Mw) measured by GPC method is between 180,000-400,000 for a tylene-type resin.
  If the weight average molecular weight is less than 180,000, the strength of the resulting foamed molded product may be reduced.
  On the other hand, when the weight average molecular weight exceeds 400,000, the foaming property is lowered and it becomes difficult to foam to the target foaming ratio (for example, 50 to 60 times), or the foaming styrene resin particles at the time of foam molding There is a risk that the two parts will not be fused together, and the strength of the molded product may be reduced. More preferably, it is 200,000 to 380,000, and more preferably 220,000 to 350,000. The weight average molecular weight is a value measured by the GPC method.
[0046]
  Also, SuIt is preferable that 0.1-10 weight part of flame retardants are contained with respect to 100 weight part of styrene resin.
  If the amount is less than 0.1 parts by weight, the flame-retardant effect on the styrene resin foam may not be obtained. If it exceeds 10 parts by weight, the styrenic resin foaming process may be adversely affected.
[0047]
Examples of the flame retardant include hexabromobenzene, tetrabromocyclooctane, hexabromocyclododecane, tetrabromobutane, hexabromocyclohexane, tribromophenol, tribromophenyl allyl ether, tetrabromobisphenol A, 2,2-bis (4 -(2-allyloxy) -3,5-dibromophenyl) propane, ethylenebisbromide · 2,2-bis (4- (3,5-dibromo-4-hydroxyphenyl) propane condensate, 2,2-bis ( Halogen flame retardants such as 4- (2,3-dibromopropoxy) -3,5-dibromophenyl) propane, decabromodiphenyl ether, octabromodiphenyl ether, perchlorocyclopentadecane, chlorinated polyethylene, trimethyl phosphate, triethyl phosphate Non-halogen phosphorus flame retardants such as phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (chloroethyl) phosphate, tris (dichloropropyl) phosphate, tris (chloropropyl) Halogen-containing phosphorus-containing flame retardants such as phosphate, tris (2,3-dibromopropyl) phosphate, tris (tribromoneopentyl) phosphate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, calcium aluminate, antimony trioxide, expansion Inorganic flame retardants such as reactive graphite and red phosphorus.
[0048]
The above flame retardants may be used alone or in combination of two or more. A flame retardant having a decomposition temperature of 250 ° C. or lower is preferable. Further, a flame retardant having an allyl structure is preferable. When a flame retardant having a decomposition temperature of 250 ° C. or lower or an allyl structure is used, stable self-extinguishing properties can be obtained with a small amount of flame retardant.
[0049]
  Also, SuThe thermal conductivity of the tylene-based resin foam is preferably 0.035 W / m · K or less.
  When a styrene resin foam having a thermal conductivity of 0.035 W / m · K or less is used as the heat insulating material, it is preferable because the thickness of the heat insulating material can be reduced. More preferably, it is 0.032 W / m * K or less, More preferably, it is 0.03 W / m * K or less.
[0050]
  Also, SuThe surface resistivity of the styrene resin foam is 1012It is preferable that it is Ω or more.
  The surface resistivity is 1012Styrenic resin foams of less than Ω may transfer heat when the graphite powders are in contact with each other in the styrenic resin, which may reduce the heat insulation performance. Particularly preferably 1013Ω or more.
  The surface resistivity was measured after conditioning the styrene resin foam for 24 hours or more at a room temperature of 23 ° C. and a relative humidity of 50%.
This is a value obtained by measuring the surface resistivity using a Hiresta UP MCP HT450, a probe UR100) under conditions of room temperature 23 ° C., relative humidity 50%, and applied voltage 500V.
[0051]
  Also,The present inventionIn claim2As described above, the foaming agent in the expandable styrene resin particles contains 20% or more of saturated hydrocarbons having 4 carbon atoms.
  If the saturated hydrocarbon having 4 carbon atoms in the foaming agent is less than 20%, the styrene resin foam shrinks greatly during foaming or molding, and a good molded product may not be obtained.
[0052]
【Example】
Examples and comparative examples relating to the present invention will be described below.
Example 1
100 parts by weight of polystyrene (HH102 manufactured by A & M Styrene Co., Ltd .; Mw = 260,000) as a styrene-based resin, and scaly graphite powder (SNO-5 manufactured by ESC; 50% average particle size = 4.6 μm) as graphite powder , 90% average particle size / 10% average particle size = 3.2, aspect ratio = 56, DBP oil absorption = 105 ml / 100 g, apparent density = 0.08 g / cmThree, Specific surface area = 1.1m2/ CmThree3 parts by weight and 1 part by weight of liquid paraffin (Morethco White P60 manufactured by Matsumura Oil Research Co., Ltd.) as a dispersion aid were mixed with a mixer.
[0053]
Then, it melt-mixed at the temperature of 200-220 degreeC with the single screw extruder of diameter 30mm, and melted resin was extruded in the shape of a strand from the die | dye at the front-end | tip of an extruder. Then, it was immediately introduced into a water bath at about 30 ° C. and cooled, and then a styrenic resin particle containing a columnar graphite powder having a weight of about 1 mg / piece was prepared by a strand cutter.
[0054]
Next, 1 kg of deionized water, 4 g of sodium pyrophosphate, and 8 g of magnesium sulfate are added to a pressure vessel equipped with a stirrer with a volume of 3 L to synthesize magnesium pyrophosphate as a suspending agent, and then dodecylbenzenesulfonic acid as a surfactant. Sodium (0.5 g) and the resin particles (0.5 kg) were added, and the pressure vessel was sealed.
Then, it heated to 100 degreeC in 1 hour. After reaching 100 ° C., 20 g of butane (a mixture of about 20% normal butane and about 80% isobutane) and 20 g of pentane (a mixture of about 80% n-pentane and about 20% isopentane) as a blowing agent over 30 minutes And then kept at 100 ° C. for 5 hours, and then cooled to room temperature.
[0055]
Next, the resin particles impregnated with the blowing agent are taken out from the pressure vessel, and the suspension adhering to the surface with nitric acid is dissolved, washed with water, dehydrated with a centrifuge, and attached to the resin particle surface with an air dryer. Moisturizing water was dried.
Next, 0.005 part by weight of N, N-bis (2-hydroxyethyl) alkylamine as an antistatic agent is added to 100 parts by weight of the obtained resin particles, and further 0.1 part by weight of zinc stearate. The particle surface was coated with a mixture of 0.05 part by weight of glycerol tristearate and 0.05 part by weight of glycerol monostearate.
[0056]
The resin particles impregnated with the foaming agent thus obtained were placed in a steam foaming machine for expandable polystyrene at 23 kg / m.ThreePre-foamed resin particles having a bulk density of After this pre-expanded resin particle was aged at room temperature for 24 hours, it was filled in a molding die of a molding machine for expanded polystyrene (VS-500 type molding machine manufactured by Daisen Kogyo Co., Ltd.), steam-heated to 120 ° C., and 300 × A plate-like styrene resin foam of 200 × 25 mm was obtained. The foamed molded body was cured at 60 ° C. for 7 days and then used for various evaluations.
Hereinafter, measurement method test methods for various physical properties such as the above graphite powder, styrene resin, and styrene resin foam will be described.
[0057]
(1) 50% particle diameter (μm) of graphite powder
Graphite powder is dispersed in water, the particle size distribution is measured by laser diffraction scattering method (measuring device: LMS-24 manufactured by Seishin Enterprise Co., Ltd.), and the particle diameter is 50% when the cumulative volume with respect to the volume of all particles is 50%. The particle diameter was taken. The shape factor of the particles was 1 (spherical).
[0058]
(2) Ratio of 90% particle diameter to 10% particle diameter of graphite powder
The 10% particle diameter and 90% particle diameter of the graphite powder are measured by the laser diffraction scattering method in the same manner as the 50% particle diameter, and the ratio of the 90% particle diameter to the 10% particle diameter, that is, 90% particle diameter / 10%. The particle size was determined.
[0059]
(3) Aspect ratio of graphite powder
Photographing arbitrarily dispersed graphite powder with a scanning electron microscope, and calculating the number average of “major axis length” / “minor axis length” of 20 randomly selected graphite powders from the photograph. The value was taken as the aspect ratio.
[0060]
(4) DBP oil absorption of graphite powder (ml / 100g)
The DBP oil absorption of the graphite powder was measured according to JIS K 6221. DBP (dibutyl phthalate) was dropped into 18 g of graphite powder, and the measurement was performed with an oil absorption measuring device (manufactured by Legnus).
[0061]
(5) Apparent density of graphite powder (g / cmThree)
The apparent density of the graphite powder was measured according to JIS Z 2504.
[0062]
(6) Specific surface area of graphite powder (m2/ CmThree)
Graphite powder was dispersed in water in the same manner as the 50% particle size by laser diffraction scattering, and the specific surface area of the graphite powder was measured. The shape factor of the particles was 1 (spherical).
(7) Weight average molecular weight of styrene resin
The styrenic resin foam was dissolved in THF, the insoluble matter was removed with a membrane filter, and then measured by gel permeation chromatography (GPC).
[0063]
(8) Average bubble diameter (μm)
Styrene-based resin foam was sliced with a microtome to produce a thin piece having a thickness of 20 to 30 μm, and the thin piece was observed with an optical microscope.
[0064]
(9) Closed cell ratio (%)
A styrenic resin foam was cut into a test body of about 30 × 30 × 20 mm, and a specimen volume V1 (cm) determined by an air comparison type hydrometer (air comparison type hydrometer 1000 model manufactured by Tokyo Science Co., Ltd.)Three), Specimen volume V2 (cmThree), The weight W (g) of the specimen, and the density d (g / cm) of the styrenic resin.Three) To calculate the closed cell ratio according to the following formula.
Closed cell ratio (%) = (V1−W / d) / (V2−W / d) × 100
[0065]
(10) Ratio of area occupied by graphite powder on the cut surface (%)
After cutting out any part of the foamed molded product (300 mm x 75 mm x 25 mm) so as to be flat, slices (thickness 0.5 mm) are cut out with a Super Deluxe Slicer (Watanabe Fumak Co., Ltd .; WSD-2P & 3P) The cut surface was observed with a microscope (VH-7000, Keyence Corporation) having a magnification of 500 times.
In addition, the ratio of the area occupied by the graphite powder on the cut surface is that the range of 0.2 mm × 0.2 mm is arbitrarily selected on the cut surface at 20 locations and the graphite powder contained in the range of 0.2 mm × 0.2 mm is selected. The total area is the area of the cut surface (= 0.04 mm2The number average of the values divided by) was determined.
Ratio of area occupied by graphite powder on cut surface (%) = “total area of graphite powder (mm2) "/ 0.04mm2× 100
[0066]
(11) Density of graphite powder in styrene resin foam (pieces / mm2)
After cutting out any part of the foamed molded product (300 mm x 75 mm x 25 mm) so as to be flat, slices (thickness 0.5 mm) are cut out with a Super Deluxe Slicer (Watanabe Fumak Co., Ltd .; WSD-2P & 3P) The cut surface was observed with a microscope (VH-7000, Keyence Corporation) having a magnification of 500 times.
For the measurement of the density of graphite powder in the styrene resin foam, 20 areas of 0.2 mm x 0.2 mm are arbitrarily selected on the cut surface, and contained within the range of 0.2 mm x 0.2 mm. Obtain the number average of the number of graphite powder and set the value to 1 mm.2The value converted to per unit was defined as the density of the graphite powder.
[0067]
(12) Thermal conductivity of styrene resin foam (W / m · K)
The thermal conductivity of the styrene resin foam was measured according to JIS A 1412-2 heat flow meter method (HFM method). Cut the styrene resin foam into a test piece with dimensions of 200 x 200 x 25 mm, sandwich it between the heating plate and cooling plate of the measuring device, and perform the measurement under the conditions of a test piece temperature difference of 30 ° C and a test piece average temperature of 20 ° C. It was.
[0068]
(13) Dimensional stability evaluation
Expandable styrene resin particles were foam-molded to 300 mm x 75 mm x 25 mm to produce a styrene resin foam, measured in the 300 mm direction and allowed to stand at 60 ° C for 24 hours, and the dimensional change rate was determined. . A change within 0.5% was evaluated as “◎”, a change within 0.5% to 1% was evaluated as “◯”, and a change exceeding 1% was evaluated as “x”.
[0069]
(14) Surface resistivity
The obtained styrenic resin foam was conditioned at room temperature at 23 ° C. and relative humidity of 50% for 24 hours or more, and then the room temperature was measured using a high resistivity meter (Hiresta UP MCP HT450, probe UR100, manufactured by Mitsubishi Chemical Corporation). The measurement was performed under the conditions of 23 ° C., a relative humidity of 50%, and an applied voltage of 500V.
[0070]
(15) Combustion test
A styrene resin foam containing a flame retardant was subjected to a combustion test in accordance with JIS A 9511. According to JIS A 9511 pass / fail judgment, the fire was extinguished within 3 seconds, there was no residual dust, and the combustion was not continued beyond the limit line.
[0071]
(Example 2)
Scalar graphite powder (SNE-6G manufactured by ESC; 50% average particle size = 5.9 μm, 90% average particle size / 10% average particle size = 4.2, aspect ratio = 75, DBP oil absorption = 140 ml / 100 g, apparent density = 0.06 g / cmThree, Specific surface area = 1.5m2/ CmThree) 2 parts by weight, liquid paraffin (Molesco White P60 manufactured by Matsumura Oil Research Co., Ltd.) 0.66 parts by weight as a dispersion aid, butane (a mixture of about 20% normal butane and about 80% isobutane) as a foaming agent, pentane 30 g (mixture of about 80% n-pentane and about 20% isopentane) was used.
Other than that was carried out in the same manner as in Example 1.
[0072]
(Example 3)
Graphite powder as plate graphite powder (SGP-5 manufactured by ESC; 50% average particle size = 5.4 μm, 90% average particle size / 10% average particle size = 4, aspect ratio = 9, DBP oil absorption = 92 ml / 100 g, apparent density = 0.11 g / cmThree, Specific surface area = 1.3m2/ CmThree) 4 parts by weight, 1.33 parts by weight of liquid paraffin (Morexco White P60, Matsumura Oil Research Co., Ltd.) as a dispersion aid, 37.5 g of butane (a mixture of about 20% normal butane and about 80% isobutane) as a blowing agent Was used.
Other than that was carried out in the same manner as in Example 1.
[0073]
(Example 4)
Lump graphite powder (SGL-5 manufactured by ESC; 50% average particle size = 4.5 μm, 90% average particle size / 10% average particle size = 4.5, aspect ratio = 6, DBP oil absorption = 72 ml as graphite powder / 100g, apparent density = 0.12g / cmThree, Specific surface area = 0.4m2/ CmThree) 0.3 parts by weight, liquid paraffin as dispersion aid (Molesco White P60 manufactured by Matsumura Oil Research Co., Ltd.) 0.1 part by weight, butane as foaming agent (mixture of about 20% normal butane and about 80% isobutane) , 7 g of pentane (a mixture of about 80% n-pentane and about 20% isopentane) was used.
Other than that was carried out in the same manner as in Example 1.
[0074]
(Reference example 1)
  In a pressure vessel equipped with a stirrer having a volume of 3 L, 760 g of deionized water, 2.7 g of sodium pyrophosphate and 5 g of magnesium sulfate were added to synthesize magnesium pyrophosphate as a suspending agent. Next, under stirring, 0.8 g of benzoyl peroxide (manufactured by NOF Corporation) as a polymerization initiator, 5 g of hexabromocyclododecane (FR104, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a flame retardant, and dicumylper as a flame retardant aid. 2.3 g of oxide, scaly graphite powder as graphite powder (SNO-15 manufactured by ESC; 50% average particle size = 15.2 μm, 90% average particle size / 10% average particle size = 7, aspect ratio = 27, DBP Oil absorption = 90 ml / 100 g, apparent density = 0.19 g / cmThree, Specific surface area = 0.8m2/ CmThree) 60.8 g, an organic phase in which 60 g of expandable styrene resin particles were dissolved in 700 g of styrene monomer was added.
[0075]
The temperature was raised to 80 ° C. over 2 hours under stirring, and 1.4 g of K-30 (10% aqueous solution of sodium alkyl sulfonate) was injected 2 hours after reaching 80 ° C. After 30 minutes, 9.1 g of butane (a mixture of about 20% normal butane and about 80% isobutane) and 51.7 g of pentane (a mixture of about 80% n-pentane and about 20% isopentane) are used as a blowing agent over 1 hour. Press-fitted into the autoclave.
Thereafter, the temperature was further raised to 130 ° C. over 4 hours, maintained at 130 ° C. for 4 hours, and then cooled to 30 ° C. over 5 hours. After cooling, the styrenic resin particles were dehydrated with a centrifuge and the surface adhering moisture was removed with a fluid dryer, followed by sieving with sieves having an opening of 0.7 mm and 1.4 mm.
[0076]
To 100 parts by weight of the obtained resin particles, 0.005 part by weight of N, N-bis (2-hydroxyethyl) alkylamine as an antistatic agent is added, and further 0.1 part by weight of zinc stearate, glycerin. The mixture was coated with a mixture of 0.05 part by weight of tristearate and 0.05 part by weight of glycerol monostearate.
The obtained resin particles impregnated with the foaming agent were put into a steam foaming machine for expandable polystyrene at 18 kg / m.ThreeFoamed resin particles having a bulk density of 5 were obtained. The foamed resin particles are aged at room temperature for 24 hours, and then molded using a molding machine for expanded polystyrene (VS-500 type molding machine manufactured by Daisen Kogyo Co., Ltd.) to form a 300 × 200 × 25 mm plate-like foam molded product. Got. The foamed molded product was cured at 60 ° C. for 7 days and then used for various evaluations.
[0077]
(Example 6)
As graphite powder, scaly graphite powder (SNO-5 manufactured by ESC; 50% average particle size = 4.6 μm, 90% average particle size / 10% average particle size = 3.2, aspect ratio = 56, DBP oil absorption amount = 105 ml / 100 g, apparent density = 0.08 g / cmThree, Specific surface area = 1.1m2/ CmThree) Resin particles containing graphite powder were prepared in the same manner as in Example 1 except that 3 parts by weight and 1 part by weight of liquid paraffin (Moresco White P60 manufactured by Matsumura Oil Research Co., Ltd.) were used as the dispersion aid.
[0078]
Then, 1 kg of deionized water, 4 g of sodium pyrophosphate, and 8 g of magnesium sulfate are put into a pressure vessel with a stirrer having a volume of 3 L to synthesize magnesium pyrophosphate, which is a suspending agent, and then dodecylbenzenesulfonic acid as a surfactant. 0.5 g of sodium, 3.25 g of tetrabromocyclooctane (FR200 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a flame retardant, 1.5 g of dicumyl peroxide as a flame retardant aid, and 500 g of the above resin particles are charged, and the pressure vessel is sealed. Then, it heated to 100 degreeC in 1 hour.
[0079]
After reaching 100 ° C, 20 g of butane (a mixture of about 20% normal butane and about 80% isobutane) and 20 g of pentane (a mixture of about 80% n-pentane and about 20% isopentane) as a blowing agent over 30 minutes Was added to the pressure vessel and kept at 100 ° C. for 5 hours, and then cooled to room temperature.
[0080]
Remove the resin particles impregnated with the blowing agent from the pressure vessel, dissolve the suspending agent adhering to the surface with nitric acid, wash with water, dehydrate with a centrifuge, and adhere to the resin particle surface with an air dryer. Was dried. To 100 parts by weight of the obtained resin particles, 0.005 part by weight of N, N-bis (2-hydroxyethyl) alkylamine as an antistatic agent is added, and further 0.1 part by weight of zinc stearate, glycerin. The mixture was coated with a mixture of 0.05 part by weight of tristearate and 0.05 part by weight of glycerol monostearate.
[0081]
The obtained resin particles impregnated with the foaming agent were placed in a steam foaming machine for expandable polystyrene at 19 kg / m.ThreeFoamed resin particles having a bulk density of 5 were obtained. The foamed resin particles are aged at room temperature for 24 hours, and then molded using a molding machine for expanded polystyrene (VS-500 type molding machine manufactured by Daisen Kogyo Co., Ltd.) to form a 300 × 200 × 25 mm plate-like foam molded product. Got. The foamed molded product was cured at 60 ° C. for 7 days and then used for various evaluations.
[0082]
(Example 7)
As graphite powder, scaly graphite powder (SNO-5 manufactured by ESC; 50% average particle size = 4.6 μm, 90% average particle size / 10% average particle size = 3.2, aspect ratio = 56, DBP oil absorption amount = 105 ml / 100 g, apparent density = 0.08 g / cmThree, Specific surface area = 1.1m2/ CmThree) Resin particles containing graphite powder were prepared in the same manner as in Example 1 except that 6 parts by weight and 2 parts by weight of liquid paraffin (Moresca White P60, manufactured by Matsumura Oil Research Co., Ltd.) were used as the dispersion aid.
[0083]
Then, 1 kg of deionized water, 4 g of sodium pyrophosphate, and 8 g of magnesium sulfate are put into a pressure vessel with a stirrer having a volume of 3 L to synthesize magnesium pyrophosphate, which is a suspending agent, and then dodecylbenzenesulfonic acid as a surfactant. Sodium 0.5g, 2,2-bis (4- (2-allyloxy) -3,5-dibromophenyl) propane (FG3200 manufactured by Teijin Kasei Co., Ltd.) 5g as a flame retardant, 0.5kg of the above resin particles were charged, pressure After sealing the container, it was heated to 100 ° C. in 1 hour.
[0084]
After reaching 100 ° C, 20 g of butane (a mixture of about 20% normal butane and about 80% isobutane) and 20 g of pentane (a mixture of about 80% n-pentane and about 20% isopentane) as a blowing agent over 30 minutes Was added to the pressure vessel and kept at 100 ° C. for 5 hours, and then cooled to room temperature.
Remove the resin particles impregnated with the blowing agent from the pressure vessel, dissolve the suspending agent adhering to the surface with nitric acid, wash with water, dehydrate with a centrifuge, and adhere to the resin particle surface with an air dryer. Was dried. To 100 parts by weight of the obtained resin particles, 0.005 part by weight of N, N-bis (2-hydroxyethyl) alkylamine as an antistatic agent is added, and further 0.1 part by weight of zinc stearate, glycerin. The mixture was coated with a mixture of 0.05 part by weight of tristearate and 0.05 part by weight of glycerol monostearate.
[0085]
The obtained resin particles impregnated with the foaming agent were placed in a steam foaming machine for expandable polystyrene at 19 kg / m.ThreeFoamed resin particles having a bulk density of 5 were obtained. The foamed resin particles are aged at room temperature for 24 hours and then molded using a molding machine for polystyrene foam (VS-500 type molding machine manufactured by Daisen Kogyo Co., Ltd.) to form a 300 × 200 × 25 mm plate-like foam molded product. Got. The foamed molded product was cured at 60 ° C. for 7 days and then used for various evaluations.
[0086]
(Reference example 2)
  Polystyrene (A & M) as styrene resin
Styrene 680 ;; Mw = 200,000 parts by weight, graphite powder as flaky graphite powder (SNO-5 manufactured by ESC; 50% average particle size = 4.6 μm, 90% average particle size / 10% average) Particle size = 3.2, aspect ratio = 56, DBP oil absorption = 105 ml / 100 g, apparent density = 0.08 g / cmThree, Specific surface area = 1.1m2/ CmThree) 3 parts by weight, 1 part by weight liquid paraffin (Moleco White P60 made by Matsumura Oil Research Co., Ltd.) as a dispersion aid, 0.5 part by weight of talc as a cell nucleating agent, 3 parts by weight of zinc stearate as a dispersion aid Mixed.
[0087]
Thereafter, the mixture was put into a hopper of a φ65 mm single-screw extruder, and melt-mixed at a temperature of 200 to 220 ° C. at the front stage of the extruder. Next, 4 parts by weight of butane (a mixture of 70% n-butane and 30% isobutane) and pentane (a mixture of about 80% n-pentane and about 20% isopentane) with respect to 100 parts by weight of the styrene resin from the middle stage of the extruder 4 Part by weight was added.
Cooling to 120 ° C at the latter stage of the extruder, extruding the molten resin from the T-die at the tip of the extruder, the density is 30kg / mThreeA plate-like styrene resin foam was prepared. The obtained foam was cured at 60 ° C. for 7 days and then used for various evaluations.
[0088]
(Comparative Examples 1-3)
The same procedure as in Example 1 was performed except that no graphite powder was used. However, when foaming with a steam foaming machine for expandable polystyrene, the bulk density of the foamed resin particles is adjusted to 17, 20, 25 kg / m, respectively.ThreeA synthetic resin foam having a density of 5 mm was prepared.
[0089]
(Comparative Example 4)
Spherical graphite powder (SGB-5 manufactured by ESC; 50% average particle size = 6.8 μm, 90% average particle size / 10% average particle size = 6, aspect ratio = 1, DBP oil absorption = 38 ml / 100 g as graphite powder , Apparent density = 0.11 g / cmThree, Specific surface area = 1.0m2/ CmThree) 6 parts by weight, 1 part by weight of liquid paraffin (Moleco White P60 manufactured by Matsumura Oil Research Co., Ltd.) as a dispersion aid, and 37.5 g of pentane (a mixture of about 80% n-pentane and about 20% isopentane) as a blowing agent Using.
Other than that was carried out in the same manner as in Example 1.
[0090]
(Reference example 3)
  Spherical graphite powder (SGB-25 manufactured by ESC; 50% average particle diameter = 25.1 μm, 90% average particle diameter / 10% average particle diameter = 9.1, aspect ratio = 1, DBP oil absorption = 25 ml as graphite powder / 100g, apparent density = 0.25g / cmThree, Specific surface area = 0.5m2/ CmThree) 0.38 g, 3.5 g of butane (a mixture of about 20% normal butane and about 80% isobutane) as a blowing agent, and 31.5 g of pentane (a mixture of about 80% n-pentane and about 20% isopentane) Using.
  Other than thatReference example 1As well as.
(Reference example 4)
Other than not using graphite powder,Reference example 2As well as.
[0091]
  Each of the above Examples 1 to4, 6, 7And each comparative example 14, each reference example 1-4Weight average molecular weight (Mw) of styrene resin, graphite powder 50% particle diameter, ratio of 90% particle diameter to 10% particle diameter, aspect ratio, DBP oil absorption, apparent density, specific surface area and foam density Tables 1 to 4 show the average cell diameter, closed cell ratio, dispersibility of graphite powder, graphite cross-sectional area occupied by graphite powder at the cut surface, dimensional stability, thermal conductivity, surface resistivity, and combustion test results It was.
  The relationship between the density of the styrene resin foam and the thermal conductivity is shown in FIG.
From Tables 1 to 4 and FIG.Obtained byIt can be seen that the styrene resin foam has low thermal conductivity and excellent heat insulation performance.
[0092]
  That is, Examples 1 to 1 according to the present invention.4, 6, 7Are Comparative Examples 1 to4It can be seen that the thermal conductivity is as low as 0.0293 to 0.0333 W / m · K, and the heat insulation performance is excellent and the dimensional stability is excellent.
  Regarding the combustion test,Flame retardantExample with agent6,For 7 items, the above criteria were cleared and passed.
[0093]
[Table 1]
Figure 0004316305
[0094]
[Table 2]
Figure 0004316305
[0095]
[Table 3]
Figure 0004316305
[0096]
[Table 4]
Figure 0004316305

[Brief description of the drawings]
FIG. 1 shows the density (kg / cm) of a styrene resin foam in Examples and Comparative Examples.Three) And the thermal conductivity (W / m · K).

Claims (2)

押出機でスチレン系樹脂と黒鉛粉と分散剤とを混合し,次いで,混合物を押し出し,冷却し,造粒し,得られた黒鉛粉含有スチレン系樹脂粒子を水中に懸濁させるとともに発泡剤を供給して,発泡剤を含浸させた発泡性スチレン系樹脂粒子を得,Mix the styrene resin, graphite powder and dispersant with an extruder, then extrude the mixture, cool, granulate, suspend the resulting styrene resin particles containing graphite powder in water and add a foaming agent. To obtain expandable styrene resin particles impregnated with a foaming agent,
次いで加熱発泡,成形するスチレン系樹脂発泡体の製造方法であって,  Next, a method for producing a styrenic resin foam to be heated and foamed,
上記分散剤は,流動パラフィンを用いており,  The dispersant is liquid paraffin,
また,上記黒鉛粉は,アスペクト比が5以上であると共にDBP吸油量が60〜500ml/100gである黒鉛粉を用いていることを特徴とするスチレン系樹脂発泡体の製造方法。  Moreover, the said graphite powder is using the graphite powder whose aspect ratio is 5 or more and whose DBP oil absorption is 60-500 ml / 100g, The manufacturing method of the styrene resin foam characterized by the above-mentioned.
請求項1において,上記発泡性スチレン系樹脂粒子内における発泡剤は炭素数4の飽和炭化水素を20%以上含有していることを特徴とするスチレン系樹脂発泡体の製造方法。2. The method for producing a styrene resin foam according to claim 1, wherein the foaming agent in the expandable styrene resin particles contains 20% or more of a saturated hydrocarbon having 4 carbon atoms.
JP2003169354A 2003-06-13 2003-06-13 Method for producing styrene resin foam containing graphite powder Expired - Fee Related JP4316305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169354A JP4316305B2 (en) 2003-06-13 2003-06-13 Method for producing styrene resin foam containing graphite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169354A JP4316305B2 (en) 2003-06-13 2003-06-13 Method for producing styrene resin foam containing graphite powder

Publications (2)

Publication Number Publication Date
JP2005002268A JP2005002268A (en) 2005-01-06
JP4316305B2 true JP4316305B2 (en) 2009-08-19

Family

ID=34094515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169354A Expired - Fee Related JP4316305B2 (en) 2003-06-13 2003-06-13 Method for producing styrene resin foam containing graphite powder

Country Status (1)

Country Link
JP (1) JP4316305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181291A (en) * 2012-02-29 2013-09-12 Sekisui Plastics Co Ltd Building material and manufacturing method thereof
CN104292680A (en) * 2014-09-15 2015-01-21 刘崴崴 Polystyrene foam insulating material and preparation method thereof

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605188B2 (en) * 2004-12-31 2009-10-20 Owens Corning Intellectual Capital, Llc Polymer foams containing multi-functional layered nano-graphite
US8568632B2 (en) 2003-11-26 2013-10-29 Owens Corning Intellectual Capital, Llc Method of forming thermoplastic foams using nano-particles to control cell morphology
US9359481B2 (en) 2003-11-26 2016-06-07 Owens Corning Intellectual Capital, Llc Thermoplastic foams and method of forming them using nano-graphite
DE102004028768A1 (en) * 2004-06-16 2005-12-29 Basf Ag Styrene polymer particle foams with reduced thermal conductivity
JP5225558B2 (en) * 2005-05-26 2013-07-03 テクノポリマー株式会社 Thermally conductive resin composition and molded product
WO2006126606A1 (en) * 2005-05-26 2006-11-30 Techno Polymer Co., Ltd. Heat-conductive resin composition and molded item containing the same
IT1366567B (en) 2005-10-18 2009-10-06 Polimeri Europa Spa GRANULATES EXPANDABLE TO BASEMDI VINYLAROMATIC POLYMERS EQUIPPED WITH IMPROVED EXPANDABILITY AND PROCEDURE FOR THEIR PREPARATION
KR100782311B1 (en) * 2005-11-22 2007-12-06 금호석유화학 주식회사 Method for manufacturing expandable polystyrene particles with excellent thermal insulation capability
KR100801275B1 (en) * 2006-03-31 2008-02-04 금호석유화학 주식회사 Method for producing expandable polystyrene beads which have excellent heat insulation properties
DE102006015993A1 (en) * 2006-04-05 2007-10-11 BSH Bosch und Siemens Hausgeräte GmbH Thermal insulation material
ITMI20071003A1 (en) * 2007-05-18 2008-11-19 Polimeri Europa Spa COMPOSITE BASED ON VINYLAROMATIC POLYMERS WITH IMPROVED PROPERTIES OF THERMAL INSULATION AND PROCEDURE FOR THEIR PREPARATION
CN102076746B (en) 2008-05-02 2014-05-14 巴斯夫欧洲公司 PS foams having low metal content
NL1036039C (en) * 2008-10-09 2010-04-12 Synbra Tech Bv PARTICULATE, EXPANDABLE POLYMER, METHOD FOR MANUFACTURING PARTICULAR EXPANDABLE POLYMER, AND A SPECIAL USE OF THE OBTAINED FOAM MATERIAL.
NL2004588C2 (en) * 2010-04-21 2011-10-24 Synbra Tech Bv PARTICULATE, EXPANDABLE POLYMER, METHOD OF MANUFACTURE, AND APPLICATION.
KR101332431B1 (en) * 2010-07-08 2013-11-22 제일모직주식회사 Flame retardant expandable polystyrene beads and method for preparing the same
KR101243271B1 (en) 2010-12-17 2013-03-13 금호석유화학 주식회사 Method for minimizing the deformed beads during producing expandable polystyrene beads containing graphite
JP5756003B2 (en) * 2011-09-28 2015-07-29 積水化成品工業株式会社 Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5885294B2 (en) * 2011-11-30 2016-03-15 株式会社ジェイエスピー Polystyrene resin extrusion foam board
JP2013209608A (en) * 2012-02-29 2013-10-10 Sekisui Plastics Co Ltd Styrene-based resin particle, method for producing the same, expandable particle, foamed particle, and foamed molded article
JP6216506B2 (en) * 2012-12-14 2017-10-18 株式会社カネカ Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP2014129449A (en) * 2012-12-28 2014-07-10 Jsp Corp Method for manufacturing polystyrene resin extruded foam board and polystyrene resin extruded foam board
DK2938662T3 (en) 2012-12-28 2019-09-30 Total Res & Technology Feluy EXPANDABLE AROMATIC VINYL POLYMERS CONTAINING GRAPHITE PARTICLES WITH A POLYMODAL PARTICLE SIZE DISTRIBUTION
WO2015137363A1 (en) * 2014-03-10 2015-09-17 株式会社カネカ Styrene-based resin foam-molded article and method for manufacturing same
AU2015309847A1 (en) * 2014-08-27 2017-03-16 Sekisui Chemical Co., Ltd. Thermally expandable fire resistant resin composition
JP6935329B2 (en) 2015-09-09 2021-09-15 株式会社カネカ Method for Producing Foamable Styrene Resin Particles, Preliminary Foamed Particles of Styrene Resin, Styrene Resin Foamed Mold, and Foamable Resin Particles
CN109863195B (en) 2016-10-10 2022-08-19 道达尔研究技术弗吕公司 Improved expandable vinyl aromatic polymers
CN109804004B (en) 2016-10-10 2022-12-09 道达尔研究技术弗吕公司 Improved expandable vinyl aromatic polymers
EP3523363B1 (en) 2016-10-10 2020-07-22 Total Research & Technology Feluy Improved expandable vinyl aromatic polymers
KR102119032B1 (en) * 2016-12-27 2020-06-04 롯데첨단소재(주) Expandable resin composition, foam using the same and method of the foam
JP6854669B2 (en) * 2017-03-01 2021-04-07 株式会社カネカ Effervescent polystyrene resin particles, pre-expanded particles, molded article
JP6961440B2 (en) * 2017-09-28 2021-11-05 株式会社カネカ Foamable polystyrene resin particles and manufacturing method
JP6609653B2 (en) * 2018-03-08 2019-11-20 株式会社カネカ Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
WO2019198790A1 (en) 2018-04-11 2019-10-17 株式会社カネカ Expandable thermoplastic resin particles
WO2021043552A1 (en) 2019-09-04 2021-03-11 Total Research & Technology Feluy Expandable vinyl aromatic polymers with improved flame retardancy
CN114917852B (en) * 2022-06-28 2024-01-16 桂林电子科技大学 Method for continuously producing graphite expandable polystyrene by bulk method
CN115025732A (en) * 2022-08-10 2022-09-09 天津仁泰新材料股份有限公司 Device and process for continuously producing graphite EPS and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183941A (en) * 1987-01-27 1988-07-29 Asahi Chem Ind Co Ltd Heat insulating thermoplastic resin foam
JP3711183B2 (en) * 1996-03-04 2005-10-26 三井化学株式会社 Expandable olefinic thermoplastic elastomer composition and foamed product thereof
ES2151268T3 (en) * 1997-05-14 2000-12-16 Basf Ag EXPANDABLE STYRENE POLYMERS CONTAINING GRAPHITE PARTICLES.
JP4111437B2 (en) * 2002-12-17 2008-07-02 株式会社ジェイエスピー Manufacturing method of polystyrene resin extruded foam plate and polystyrene resin extruded foam plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181291A (en) * 2012-02-29 2013-09-12 Sekisui Plastics Co Ltd Building material and manufacturing method thereof
CN104292680A (en) * 2014-09-15 2015-01-21 刘崴崴 Polystyrene foam insulating material and preparation method thereof
CN104292680B (en) * 2014-09-15 2017-02-15 刘崴崴 Polystyrene foam insulating material and preparation method thereof

Also Published As

Publication number Publication date
JP2005002268A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4316305B2 (en) Method for producing styrene resin foam containing graphite powder
JP5085855B2 (en) Method for producing expandable styrene resin particles
WO2011052631A1 (en) Foamable polystyrene resin particles and process for production thereof, polystyrene resin prefoamed particles, polystyrene resin foam-molded article, heat-insulating material for building material, banking member, and vehicle interior material
JP6156060B2 (en) Method for producing expandable composite resin particles
JP6263987B2 (en) Method for producing expandable polystyrene resin particles
JP6473675B2 (en) Styrenic resin foamable particles and method for producing the same, foamed particles, foamed molded article and use thereof
CN108026311B (en) Expandable styrene resin particles, pre-expanded particles and molded body produced from the same, and method for producing the same
JP6036646B2 (en) Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body
JP4271999B2 (en) Styrenic resin foam containing aluminum powder
JP6500619B2 (en) Expandable composite resin particles
JP6323242B2 (en) Method for producing expandable composite resin particles
JP2011093954A (en) Expandable styrenic resin particle and method for producing the same, and molded product of styrenic resin expanded particle
JP4245973B2 (en) Synthetic resin foam
JP6612634B2 (en) Styrenic resin foamable particles, foamed particles and foamed molded article
JP2013075941A (en) Foamable polystyrenic resin particle, production method thereof, foamed particle and foamed molding
JP6349697B2 (en) Method for producing expandable polystyrene resin particles
JP6407113B2 (en) Styrenic resin foam molding, method for producing the same, and use thereof
JP2016188325A (en) Styrene resin foamable particle, foaming particle, foamed molding and heat insulation material for living space
JP2014095048A (en) Method for manufacturing polystyrene resin extruded foamed plate and polystyrene resin extruded foamed plate
JP4887714B2 (en) Method for producing colored foamable styrene resin particles
JP4236994B2 (en) Expandable styrene resin particles and method for producing the same
JP2014148558A (en) Foamable styrene resin particle, its manufacturing method and styrene resin foamed particle molded article
JP2017132971A (en) Styrenic resin foamed particle and styrenic resin foamed molding
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP2016121324A (en) Styrenic resin expandable particle and manufacturing method therefor, expanded particle, expanded molded body and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Ref document number: 4316305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees