JP5882070B2 - Expandable polystyrene resin particles, method for producing the same, and foam molded article - Google Patents

Expandable polystyrene resin particles, method for producing the same, and foam molded article Download PDF

Info

Publication number
JP5882070B2
JP5882070B2 JP2012014055A JP2012014055A JP5882070B2 JP 5882070 B2 JP5882070 B2 JP 5882070B2 JP 2012014055 A JP2012014055 A JP 2012014055A JP 2012014055 A JP2012014055 A JP 2012014055A JP 5882070 B2 JP5882070 B2 JP 5882070B2
Authority
JP
Japan
Prior art keywords
polystyrene resin
foaming agent
resin particles
particles
expandable polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012014055A
Other languages
Japanese (ja)
Other versions
JP2012167267A (en
Inventor
良輔 地海
良輔 地海
樽本 裕之
裕之 樽本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2012014055A priority Critical patent/JP5882070B2/en
Priority to PCT/JP2012/068823 priority patent/WO2013111368A1/en
Priority to CN201280067988.2A priority patent/CN104080847B/en
Priority to TW101126748A priority patent/TWI596118B/en
Publication of JP2012167267A publication Critical patent/JP2012167267A/en
Application granted granted Critical
Publication of JP5882070B2 publication Critical patent/JP5882070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、溶融押出法により得られた発泡性ポリスチレン系樹脂粒子とその製造方法及び該発泡性ポリスチレン系樹脂粒子から製造される発泡成形体に関する。   The present invention relates to an expandable polystyrene resin particle obtained by a melt extrusion method, a method for producing the same, and an expanded molded body manufactured from the expandable polystyrene resin particle.

押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、所謂、溶融押出法により発泡性ポリスチレン系樹脂粒子を製造する方法に関して、例えば、特許文献1,2に開示された技術が提案されている。   A foaming agent is press-fitted and kneaded into the polystyrene resin melted in the extruder, and the foaming agent-containing molten resin is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the extruder. With respect to a method for producing expandable polystyrene resin particles by a so-called melt extrusion method, the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. Techniques disclosed in Patent Documents 1 and 2 have been proposed.

特許文献1には、発泡剤含有熱可塑性樹脂の溶融混練物を、ペレタイズ用ダイス内に導入してダイスの押出孔に向けて流路を流動させ、次いでこの流路よりも流路断面積の大きい流路に流入させた後、押出孔を通過させ、その出口から加圧液中に押出し、即時切断して粒子とし、次いで冷却することを特徴とする発泡性熱可塑性樹脂粒子の製造法が開示されている。   In Patent Document 1, a melt-kneaded product of a foaming agent-containing thermoplastic resin is introduced into a pelletizing die, and a flow path is made to flow toward the extrusion hole of the die. A process for producing expandable thermoplastic resin particles, characterized in that after flowing into a large flow path, it passes through an extrusion hole, extruded into a pressurized liquid from its outlet, immediately cut into particles, and then cooled. It is disclosed.

特許文献2には、熱可塑性樹脂(A)と、発泡剤(B)と、該熱可塑性樹脂(A)100重量部に対して1.5重量部以下の無機質粉末(C)とを溶融混練し、次いでこれをダイヘッドの押出孔から加圧液中に押出し、即時切断した後、冷却することを特徴とする発泡性熱可塑性樹脂粒子の製造法が開示されている。   In Patent Document 2, a thermoplastic resin (A), a foaming agent (B), and 1.5 parts by weight or less of inorganic powder (C) with respect to 100 parts by weight of the thermoplastic resin (A) are melt-kneaded. Then, this is extruded into a pressurized liquid from an extrusion hole of a die head, immediately cut, and then cooled, and then a method for producing expandable thermoplastic resin particles is disclosed.

特開平6−136176号公報JP-A-6-136176 特開平6−298983号公報JP-A-6-298893

特許文献1,2に記載された製造方法では、発泡性ポリスチレン系樹脂粒子を製造した場合、得られる発泡性ポリスチレン系樹脂粒子は、発泡能力が低く、高発泡倍数の発泡成形体を製造することが困難であるという問題がある。また、該樹脂粒子から製造された発泡成形体は、機械強度が劣るという問題もある。さらに、該樹脂粒子から製造された発泡成形体は、外観に劣り、外観美麗な発泡成形体を得ることが難しかった。
また、ポリスチレン系樹脂としてリサイクル原料を用いた場合には、前述した各問題が増加される場合があり、従ってリサイクル原料の利用には不向きであった。
In the production methods described in Patent Documents 1 and 2, when foamable polystyrene resin particles are produced, the foamable polystyrene resin particles obtained have a low foaming capacity and produce a foamed molded article having a high expansion ratio. There is a problem that is difficult. In addition, the foam molded body produced from the resin particles has a problem that the mechanical strength is inferior. Furthermore, the foam molded article produced from the resin particles has a poor appearance, and it has been difficult to obtain a foam molded article having a beautiful appearance.
Further, when a recycled material is used as the polystyrene-based resin, each of the above-mentioned problems may be increased, and therefore, it is not suitable for use of the recycled material.

本発明は、前記事情に鑑みてなされ、溶融押出法により発泡性ポリスチレン系樹脂粒子を製造する際に、リサイクル原料を利用でき、発泡性に優れ、成形サイクルが短く、外観良好でかつ十分な機械強度を有するバランスのとれた発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子の提供を目的とする。   The present invention has been made in view of the above circumstances, and can use recycled raw materials when producing expandable polystyrene resin particles by a melt extrusion method, has excellent foamability, has a short molding cycle, has a good appearance, and is a sufficient machine. An object of the present invention is to provide expandable polystyrene resin particles capable of producing a well-balanced foamed molded article having strength.

前記目的を達成するため、本発明は、発泡剤を含有するポリスチレン系樹脂を粒子状としてなる発泡性ポリスチレン系樹脂粒子であって、ポリスチレン系樹脂の重量平均分子量Mwが12万〜32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、ブタンを2〜8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90〜80:20の範囲である発泡性ポリスチレン系樹脂粒子を提供する。   In order to achieve the above object, the present invention is an expandable polystyrene resin particle in which a polystyrene resin containing a foaming agent is in the form of particles, and the weight average molecular weight Mw of the polystyrene resin is in the range of 120,000 to 320,000. The foaming agent contains 2 to 8 parts by mass of butane as an essential component with respect to 100 parts by mass of polystyrene resin, and the composition of butane is isobutane: normal butane = 10: 90 by mass ratio. Expandable polystyrene resin particles having a range of ˜80: 20 are provided.

本発明の発泡性ポリスチレン系樹脂粒子において、前記ポリスチレン系樹脂の重量平均分子量Mwが14万〜27万の範囲であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the polystyrene resin preferably has a weight average molecular weight Mw in the range of 140,000 to 270,000.

本発明の発泡性ポリスチレン系樹脂粒子において、前記ポリスチレン系樹脂の重量平均分子量Mwが14万〜21.5万の範囲であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the polystyrene resin preferably has a weight average molecular weight Mw in the range of 140,000 to 215,000.

本発明の発泡性ポリスチレン系樹脂粒子において、前記ポリスチレン系樹脂の重量平均分子量Mwが14万〜18.5万の範囲であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the polystyrene resin preferably has a weight average molecular weight Mw in the range of 140,000 to 185,000.

本発明の発泡性ポリスチレン系樹脂粒子は、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られたものであることが好ましい。   The expandable polystyrene resin particles of the present invention are prepared by press-fitting and kneading a foaming agent into a polystyrene resin melted in an extruder and cooling the foaming agent-containing molten resin directly from a small hole in a die attached to the tip of the extruder. It was obtained by a melt extrusion method in which extrudates were extruded with a high-speed rotary blade at the same time as extrusion and the extrudates were cooled and solidified by contact with the liquid to obtain expandable polystyrene resin particles. It is preferable.

また本発明は、前記発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、該予備発泡粒子を型内発泡成形して得られた発泡成形体を提供する。   The present invention also provides a foam molded product obtained by heating the expandable polystyrene resin particles to be pre-expanded particles and foam-molding the pre-expanded particles in a mold.

本発明の発泡成形体において、発泡成形体中の発泡粒の平均気泡径が50μm〜300μmの範囲であることが好ましい。   In the foam molded article of the present invention, it is preferable that the average cell diameter of the foamed particles in the foam molded article is in the range of 50 μm to 300 μm.

また本発明は、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る製造方法において、ポリスチレン系樹脂の重量平均分子量Mwが12万〜32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、ブタンを2〜8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90〜80:20の範囲である発泡性ポリスチレン系樹脂粒子の製造方法を提供する。   Further, the present invention is a method in which a foaming agent is press-fitted and kneaded into a polystyrene resin melted in an extruder, and the foaming agent-containing molten resin is extruded directly into a cooling liquid from a small hole of a die attached to the tip of the extruder, Simultaneously with extrusion, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. In the production method of polystyrene resin, the weight average molecular weight Mw of the polystyrene resin is 120,000 to The foaming agent contains 2 to 8 parts by mass of butane as an essential component with respect to 100 parts by mass of polystyrene resin, and the composition of the butane is isobutane: normal butane by mass ratio. A method for producing expandable polystyrene resin particles in the range of 10:90 to 80:20 is provided.

また本発明は、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得、この発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、該予備発泡粒子を型内発泡成形して発泡成形体とする発泡成形体の製造方法において、ポリスチレン系樹脂の重量平均分子量Mwが12万〜32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、ブタンを2〜8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90〜80:20の範囲である発泡成形体の製造方法を提供する。   Further, the present invention is a method in which a foaming agent is press-fitted and kneaded into a polystyrene resin melted in an extruder, and the foaming agent-containing molten resin is extruded directly into a cooling liquid from a small hole of a die attached to the tip of the extruder, At the same time as extruding, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. The expandable polystyrene resin particles are heated to form pre-expanded particles. In the method for producing a foamed molded product obtained by foam-molding the pre-expanded particles into a mold, the polystyrene-based resin has a weight average molecular weight Mw in the range of 120,000 to 320,000, and the foaming agent is an essential component. As a ratio of 2 to 8 parts by mass of butane with respect to 100 parts by mass of polystyrene resin, and the composition of the butane is isobutane: normal butane = 10: 90 to 8 in mass ratio. : Provides a method for producing a foamed molded in the range of 20.

また本発明は、発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、該予備発泡粒子を型内発泡成形して得られた発泡成形体において、ポリスチレン系樹脂の重量平均分子量Mwが12万〜32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、イソブタンとノルマルブタンをその合計量0.1〜3.0質量部の範囲で含有していることを特徴とする発泡成形体を提供する。   The present invention also relates to a foam molded product obtained by heating expandable polystyrene resin particles to pre-expanded particles and foam-molding the pre-expanded particles in a mold, and the polystyrene-based resin has a weight average molecular weight Mw of 120,000. The foaming agent contains isobutane and normal butane in the range of the total amount of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the polystyrene-based resin as essential components. A foamed molded product is provided.

前記発泡成形体において、前記イソブタンとノルマルブタンの組成が、質量比でイソブタン:ノルマルブタン=30:70〜99:1の範囲であることが好ましい。   In the foamed molded product, the composition of isobutane and normal butane is preferably in the range of isobutane: normal butane = 30: 70 to 99: 1 in terms of mass ratio.

前記発泡成形体において、前記発泡性ポリスチレン系樹脂粒子が前述した本発明に係る発泡性ポリスチレン系樹脂粒子であることが好ましい。   In the foamed molded article, the expandable polystyrene resin particles are preferably the expandable polystyrene resin particles according to the present invention described above.

本発明の発泡性ポリスチレン系樹脂粒子は、適正な比率のイソブタンとノルマルブタンを発泡剤として使用し、発泡性ポリスチレン系樹脂粒子中に含有させることにより、発泡性に優れ、かつ成形サイクルが短く、十分な機械的強度を有する発泡成形体を製造できる。また、ポリスチレン系樹脂の重量平均分子量Mwが12万〜32万の範囲であれば、発泡性に優れ、かつ成形サイクルが短く、十分な機械的強度を有する発泡成形体を製造でき、ポリスチレン系樹脂としてリサイクル原料を利用することができる。   The expandable polystyrene resin particles of the present invention use an appropriate ratio of isobutane and normal butane as a foaming agent, and by incorporating them in the expandable polystyrene resin particles, they have excellent foamability and a short molding cycle. A foam-molded article having sufficient mechanical strength can be produced. Further, if the weight average molecular weight Mw of the polystyrene resin is in the range of 120,000 to 320,000, it is possible to produce a foamed molded article having excellent foamability, a short molding cycle, and sufficient mechanical strength. As recycled material can be used.

本発明の発泡成形体は、前記発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、該予備発泡粒子を型内発泡成形して得られたものなので、高発泡倍数の発泡成形体を製造でき、強度に優れ、外観が良好な発泡成形体を提供できる。   The foamed molded product of the present invention is obtained by heating the expandable polystyrene resin particles into pre-expanded particles, and the pre-expanded particles are obtained by in-mold foam molding. It is possible to provide a foamed molded article having excellent strength and good appearance.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、高発泡倍数の発泡成形体を製造でき、強度に優れ、外観が良好な発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子を容易に製造することができる。
また、本発明の発泡性ポリスチレン系樹脂粒子の製造方法によれば、ポリスチレン系樹脂のリサイクル原料を利用して、バージン原料に近い強度が得られ、外観が良好な発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子を製造することができる。
The method for producing expandable polystyrene resin particles of the present invention is capable of producing a foamed molded product having a high expansion ratio, easily producing expandable polystyrene resin particles capable of producing a foamed molded product having excellent strength and good appearance. can do.
In addition, according to the method for producing expandable polystyrene resin particles of the present invention, a foamed molded article having a strength close to that of a virgin material and having a good appearance can be obtained by using a recycled material of polystyrene resin. -Based polystyrene resin particles can be produced.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus used for the manufacturing method of the expandable polystyrene-type resin particle of this invention.

本発明の発泡性ポリスチレン系樹脂粒子は、発泡剤を含有するポリスチレン系樹脂を粒子状としてなる発泡性ポリスチレン系樹脂粒子であって、ポリスチレン系樹脂の重量平均分子量Mwが12万〜32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、ブタンを2〜8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90〜80:20の範囲であることを特徴としている。   The expandable polystyrene resin particles of the present invention are expandable polystyrene resin particles in which a polystyrene resin containing a foaming agent is made into particles, and the weight average molecular weight Mw of the polystyrene resin is in the range of 120,000 to 320,000. The foaming agent contains 2 to 8 parts by mass of butane as an essential component with respect to 100 parts by mass of polystyrene resin, and the composition of butane is isobutane: normal butane = 10: 90 by mass ratio. It is characterized by being in the range of ˜80: 20.

本発明の発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。   In the expandable polystyrene resin particles of the present invention, the polystyrene resin is not particularly limited. For example, styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene. Homopolymers of styrene monomers such as these or copolymers thereof, and the like, polystyrene resins containing 50% by mass or more of styrene are preferable, and polystyrene is more preferable.

また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。
また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよく、添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などが挙げられる。
Further, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. As, for example, alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl In addition to fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.
If a polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foam molded article. Examples thereof include rubber-modified polystyrene resins to which a diene rubbery polymer such as a polymer, ethylene-propylene-nonconjugated diene three-dimensional copolymer is added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.

本発明の発泡性ポリスチレン系樹脂粒子において、原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(以下、バージンポリスチレンと記す。)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体、あるいは非発泡のポリスチレン系樹脂成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料、あるいは家電製品(例えば、テレビ、冷蔵庫、洗濯機、エアコンなど)や事務用機器(例えば、複写機、ファクシミリ、プリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混錬してリペレットしたリサイクル原料の中から、重量平均分子量Mwが12万〜32万の範囲となる原料を適宜選択し、又は重量平均分子量Mwが異なる複数のリサイクル原料を適宜組み合わせて用いることができる。   In the expandable polystyrene resin particles of the present invention, the polystyrene resin used as a raw material is a recycled raw material such as a commercially available ordinary polystyrene resin or a polystyrene resin newly produced by a method such as suspension polymerization. Non-polystyrene resin (hereinafter referred to as virgin polystyrene) can be used, and recycled material obtained by reprocessing used polystyrene resin foam moldings or non-foamed polystyrene resin moldings is used. be able to. As this recycled material, used polystyrene-based resin foam moldings such as fish boxes, household appliance cushioning materials, food packaging trays, etc. are collected and recycled using the limonene dissolution method or heating volume reduction method, or household appliances. Non-foamed polystyrene resin moldings separated and collected from products (eg, televisions, refrigerators, washing machines, air conditioners, etc.) and office equipment (eg, copiers, facsimiles, printers, etc.) are crushed and melt-kneaded. From the re-pelleted recycled materials, materials having a weight average molecular weight Mw in the range of 120,000 to 320,000 can be selected as appropriate, or a plurality of recycled materials having different weight average molecular weights Mw can be used in appropriate combination.

本発明の発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子を構成するポリスチレン系樹脂の重量平均分子量Mwは、12万〜32万の範囲であり、14万〜27万の範囲が好ましく、14万〜21.5万の範囲がより好ましい。ポリスチレン系樹脂の重量平均分子量Mwが前記範囲未満であると、発泡性ポリスチレン系樹脂粒子の高圧成形性が悪化し、また得られる発泡成形体の機械的強度が低下するおそれがある。ポリスチレン系樹脂の重量平均分子量Mwが前記範囲を超えると、低圧成形性が悪くなり、発泡成形の加熱時間を短縮することが困難になる。   In the expandable polystyrene resin particles of the present invention, the weight average molecular weight Mw of the polystyrene resin constituting the expandable polystyrene resin particles is in the range of 120,000 to 320,000, preferably in the range of 140,000 to 270,000. The range of 140,000 to 215,000 is more preferable. When the weight average molecular weight Mw of the polystyrene resin is less than the above range, the high-pressure moldability of the expandable polystyrene resin particles may be deteriorated, and the mechanical strength of the obtained foamed molded product may be decreased. When the weight average molecular weight Mw of the polystyrene resin exceeds the above range, the low-pressure moldability is deteriorated, and it is difficult to shorten the heating time of the foam molding.

本発明の発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂に含有させる発泡剤としては、必須成分として発泡性スチレン系樹脂粒子100質量部に対しブタンを2〜8質量部含有し、前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90〜80:20の範囲である。前記ブタン(ブタン組成物)は、単独でポリスチレン系樹脂に含有させてもよいし、補助成分として他の揮発性発泡剤や溶剤・可塑剤を添加しても良い。前記ブタンに添加可能な補助成分としての揮発性発泡剤は、プロパン、ノルマルペンタン、イソペンタンなどの脂肪族炭化水素、ハロゲン化炭化水素などが挙げられる。前記ブタンに添加可能な補助成分としての溶剤・可塑剤は、リモネン、ピネンなどのテルペン系炭化水素、スチレン、トルエン、エチルベンゼン、キシレンなどの芳香族炭化水素、シクロペンタン、シクロヘキサンなどの脂環族炭化水素、アジピン酸ジイソブチル、アジピン酸ジイソノニルなどのアジピン酸エステル、セバシン酸ジブチル、セバシン酸ジオクチルなどのセバシン酸エステルなどのエステル化合物などが挙げられる。   In the expandable polystyrene resin particles of the present invention, the foaming agent contained in the polystyrene resin contains 2 to 8 parts by mass of butane as an essential component with respect to 100 parts by mass of the expandable styrene resin particles. However, it is the range of isobutane: normal butane = 10: 90-80: 20 by mass ratio. The butane (butane composition) may be contained alone in the polystyrene resin, or other volatile foaming agents, solvents, and plasticizers may be added as auxiliary components. Examples of the volatile blowing agent as an auxiliary component that can be added to the butane include aliphatic hydrocarbons such as propane, normal pentane, and isopentane, and halogenated hydrocarbons. Solvents and plasticizers that can be added to the butane include terpene hydrocarbons such as limonene and pinene, aromatic hydrocarbons such as styrene, toluene, ethylbenzene and xylene, and alicyclic carbons such as cyclopentane and cyclohexane. Examples thereof include ester compounds such as hydrogen, adipic acid esters such as diisobutyl adipate and diisononyl adipate, and sebacic acid esters such as dibutyl sebacate and dioctyl sebacate.

この発泡剤のイソブタンとノルマルブタンとの比率は、質量比でイソブタン:ノルマルブタン=10:90〜80:20の範囲であり、イソブタン:ノルマルブタン=20:80〜70:30の範囲が好ましく、イソブタン:ノルマルブタン=30:70〜50:50の範囲がより好ましい。この発泡剤のイソブタンとノルマルブタンとの比率が、前記質量比の範囲よりもイソブタンが多い場合、又はイソブタンのみを使用した場合は、発泡性ポリスチレン系樹脂粒子から発泡成形体を製造する際、キャビティ内に予備発泡粒子を充填した成形型のキャビティ内に加熱用水蒸気を吹き込んで加熱した後、発泡成形体を取り出し可能な温度まで冷却するための冷却時間が著しく長くなり、生産性が悪くなってしまう。一方、前記質量比の範囲よりもノルマルブタンが多い場合、又はノルマルブタンのみを使用した場合は、得られる発泡成形体の機械強度が低下してしまう。   The ratio of isobutane and normal butane in this blowing agent is in the range of isobutane: normal butane = 10: 90 to 80:20, and preferably in the range of isobutane: normal butane = 20: 80 to 70:30, The range of isobutane: normal butane = 30: 70 to 50:50 is more preferable. When the ratio of isobutane and normal butane in this foaming agent is larger than the range of the mass ratio, or when only isobutane is used, when producing a foam molded article from expandable polystyrene resin particles, After heating and heating steam into the mold cavity filled with pre-expanded particles inside, the cooling time for cooling the foamed molded product to a temperature at which the foamed molded product can be taken out becomes extremely long, resulting in poor productivity. End up. On the other hand, when there is more normal butane than the range of the said mass ratio, or when only normal butane is used, the mechanical strength of the foaming molding obtained will fall.

本発明の発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂に含有させる前記発泡剤の量は、ポリスチレン系樹脂100質量部に対し、前記のブタン(ブタン組成物)を2〜8質量部の範囲であり、好ましくは3〜7質量部の範囲であり、より好ましくは4〜6質量部の範囲である。ブタンの量が前記範囲未満であると、その発泡性ポリスチレン系樹脂粒子を発泡成形する際に、十分な発泡倍数に到達することができないおそれがある。一方、ブタンの量が前記範囲を超えると、発泡性能の改善が頭打ちとなり、また発泡性スチレン系樹脂粒子を用いたスチレン系樹脂発泡成形体の製造工程における冷却工程に要する時間が長くなって生産性が低下するおそれがある)。   In the expandable polystyrene resin particles of the present invention, the amount of the foaming agent contained in the polystyrene resin is 2 to 8 parts by mass of the butane (butane composition) with respect to 100 parts by mass of the polystyrene resin. Yes, preferably in the range of 3-7 parts by mass, more preferably in the range of 4-6 parts by mass. When the amount of butane is less than the above range, a sufficient expansion ratio may not be reached when the expandable polystyrene resin particles are foam-molded. On the other hand, if the amount of butane exceeds the above range, the improvement of foaming performance will reach its peak, and the time required for the cooling process in the production process of styrene resin foam moldings using expandable styrene resin particles will be increased. May be reduced).

本発明の発泡性ポリスチレン系樹脂粒子は、必要に応じて前記発泡剤以外にも、発泡性ポリスチレン系樹脂粒子の製造において一般的に使用されている他の添加剤、例えば、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の発泡核剤、ヘキサブロモシクロドデカン、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、トリアリルイソシアヌレート6臭素化物等の難燃剤、カーボンブラック、酸化鉄、グラファイト等の着色剤などの添加剤を、ポリスチレン系樹脂中に添加することができる。   In addition to the foaming agent, the expandable polystyrene resin particles of the present invention may have other additives commonly used in the production of expandable polystyrene resin particles, such as talc, calcium silicate, Foaming nucleating agents such as silicon dioxide, ethylenebisstearic acid amide, methacrylic acid ester-based copolymer, hexabromocyclododecane, tetrabromobisphenol A-bis (2,3-dibromo-2-methyl) produced synthetically or naturally Additives such as flame retardants such as propyl ether) and triallyl isocyanurate hexabromide, and colorants such as carbon black, iron oxide, and graphite can be added to the polystyrene resin.

本発明の発泡性ポリスチレン系樹脂粒子の表面には、従来の発泡スチレン系樹脂粒子に対して通常行われているように、脂肪酸金属塩、脂肪酸エステル、帯電防止剤などの表面処理剤をコーティングすることができ、表面処理剤のコーティングを行うことで、樹脂粒子(ビーズ)の流動性、予備発泡特性などを改善することもできる。前記表面処理剤の総添加量は、発泡性ポリスチレン系樹脂粒子100質量部に対して0.01〜2.0質量部程度の量が好ましい。   The surface of the expandable polystyrene resin particles of the present invention is coated with a surface treatment agent such as a fatty acid metal salt, a fatty acid ester, or an antistatic agent, as is usually done for conventional expanded styrene resin particles. It is also possible to improve the fluidity and pre-foaming characteristics of the resin particles (beads) by coating the surface treatment agent. The total amount of the surface treatment agent is preferably about 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the expandable polystyrene resin particles.

本発明の発泡性ポリスチレン系樹脂粒子の粒径は、特に限定されないが、通常は平均粒径が0.3〜2.0mmの範囲であることが好ましく、0.5〜1.4mmの範囲であることがより好ましい。
また、本発明の発泡性ポリスチレン系樹脂粒子の形状は特に限定されないが、球状であるか、或いは球に近い形状とすることが好ましい。
The particle size of the expandable polystyrene resin particles of the present invention is not particularly limited, but usually the average particle size is preferably in the range of 0.3 to 2.0 mm, and in the range of 0.5 to 1.4 mm. More preferably.
Moreover, the shape of the expandable polystyrene resin particles of the present invention is not particularly limited, but it is preferably spherical or close to a sphere.

本発明の発泡性ポリスチレン系樹脂粒子は、発泡性能に優れており、加熱して高い発泡倍数に予備発泡させることができ、低密度の発泡成形体を製造することができる。
本発明の発泡性ポリスチレン系樹脂粒子から発泡成形体を製造するには、発泡性ポリスチレン系樹脂粒子を用いた通常の型内発泡成形方法によって実施できる。即ち、発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、該予備発泡粒子を成形する形状のキャビティを有する成形型の該キャビティ内に充填し、水蒸気を吹き込んで加熱し、型内発泡成形し、成形型を冷却後に発泡成形体を取り出すことによって製造可能である。
The expandable polystyrene resin particles of the present invention are excellent in foaming performance, can be pre-foamed by heating to a high foaming factor, and a low-density foamed molded product can be produced.
In order to produce a foam molded article from the expandable polystyrene resin particles of the present invention, it can be carried out by a normal in-mold foam molding method using expandable polystyrene resin particles. That is, expandable polystyrene resin particles are heated to form pre-expanded particles, and the pre-expanded particles are filled into a cavity of a mold having a shape to mold the pre-expanded particles, and steam is blown into the mold for heating to perform in-mold foam molding. However, it can be produced by taking out the foamed molded product after cooling the mold.

本発明の発泡成形体は、発泡粒の平均気泡径が50μm〜300μmの範囲であることが好ましく、80μm〜250μmの範囲であることがより好ましい。平均気泡径が前記範囲未満であると、型内発泡成形時に、得られる発泡成形体の粒子間隙が多くなり外観が損なわれるおそれがあり)、平均気泡径が前記範囲を超えると、得られる発泡成形体の強度が低下するおそれがある。   In the foamed molded product of the present invention, the average cell diameter of the foamed particles is preferably in the range of 50 μm to 300 μm, and more preferably in the range of 80 μm to 250 μm. When the average cell diameter is less than the above range, there is a risk that the foamed molded product obtained has a larger particle gap during foam molding and the appearance may be impaired.) When the average cell diameter exceeds the above range, foaming is obtained. There exists a possibility that the intensity | strength of a molded object may fall.

また、この発泡成形体は、通常、0.015〜0.2g/cmの密度を有する。好ましくは、密度が0.0166〜0.05g/cmの範囲であり、より好ましくは、密度が0.02〜0.033g/cmの範囲である。該発泡成形体の密度が0.015g/cmより小さいと、予備発泡粒子を発泡させて得られる発泡成形体の強度が低下するため好ましくない。一方、発泡成形体の密度が0.2g/cmより大きいと、予備発泡粒子を発泡させて得られる発泡成形体の質量が増加するので好ましくない。また、この密度を発泡倍数で示すと、発泡倍数(倍)=1/密度(g/cm)であることから、この発泡成形体は5〜67(倍)の発泡倍数を有し、好ましい発泡倍数は20〜60(倍)であり、より好ましい発泡倍数は30〜50(倍)である。
本発明の発泡成形体は、発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、該予備発泡粒子を型内発泡成形して得られた発泡成形体において、ポリスチレン系樹脂の重量平均分子量Mwが12万〜32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、イソブタンとノルマルブタンをその合計量0.1〜3.0質量部の範囲で含有していることを特徴としている。
本発明の発泡成形体において、発泡成形体を構成するポリスチレン系樹脂の重量平均分子量Mwは、12万〜32万の範囲であり、14万〜27万の範囲が好ましく、14万〜21.5万の範囲がより好ましい。ポリスチレン系樹脂の重量平均分子量Mwが前記範囲未満であると、高圧成形性が悪化し、発泡成形体の機械的強度が低下するおそれがある。ポリスチレン系樹脂の重量平均分子量Mwが前記範囲を超えると、低圧成形性が悪くなり、発泡成形の加熱時間を短縮することが困難になる。
本発明の発泡成形体において、発泡成形体を構成するポリスチレン系樹脂に含有させる発泡剤としては、必須成分としてポリスチレン系樹脂粒子100質量部に対し、イソブタンとノルマルブタンをその合計量0.1〜3.0質量部の範囲であり、好ましくは0.1〜2.0質量部の範囲であり、より好ましくは0.3〜1.0質量部の範囲である。イソブタンとノルマルブタンの合計量が前記範囲未満であると、型内発泡成形によって発泡成形体を製造する際に十分な発泡倍数に到達することができないおそれがある。一方、イソブタンとノルマルブタンの合計量が前記範囲を超えると、型内発泡成形によって発泡成形体を製造する際に製造工程における冷却工程に要する時間が長くなって生産性が低下するおそれがある。
本発明の発泡成形体において、発泡剤のイソブタンとノルマルブタンの組成が、質量比でイソブタン:ノルマルブタン=30:70〜99:1の範囲であることが好ましく、60:40〜99:1の範囲であることがより好ましく、90:10〜99:1の範囲であることが最も好ましい。この発泡剤のイソブタンとノルマルブタンとの比率が、前記質量比の範囲よりもイソブタンが多い場合、又はイソブタンのみを使用した場合は、型内発泡成形によって発泡成形体を製造する際に短時間での製造が難しくなるおそれがある。一方、前記質量比の範囲よりもノルマルブタンが多い場合、又はノルマルブタンのみを使用した場合は、発泡成形体の機械強度が低下してしまうおそれがある。
Moreover, this foaming molding normally has a density of 0.015-0.2 g / cm < 3 >. Preferably, the density is in the range of 0.0166~0.05g / cm 3, more preferably, the density is in the range of 0.02~0.033g / cm 3. If the density of the foamed molded product is less than 0.015 g / cm 3 , the strength of the foamed molded product obtained by foaming the pre-expanded particles is unfavorable. On the other hand, if the density of the foamed molded product is larger than 0.2 g / cm 3 , the mass of the foamed molded product obtained by foaming the pre-expanded particles is not preferable. In addition, when this density is expressed in terms of expansion ratio, since expansion ratio (times) = 1 / density (g / cm 3 ), this foamed molded article has a expansion ratio of 5 to 67 (times), which is preferable. The expansion ratio is 20 to 60 (times), and a more preferable expansion ratio is 30 to 50 (times).
The foamed molded product of the present invention is a foamed molded product obtained by heating foamable polystyrene resin particles into pre-expanded particles, and foam-molding the pre-expanded particles in a mold. Is in the range of 120,000 to 320,000, and the foaming agent contains isobutane and normal butane as essential components in an amount of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the polystyrene resin. It is characterized by being.
In the foamed molded product of the present invention, the weight-average molecular weight Mw of the polystyrene resin constituting the foamed molded product is in the range of 120,000 to 320,000, preferably in the range of 140,000 to 270,000, and 140,000 to 21.5. A range of 10,000 is more preferred. If the weight-average molecular weight Mw of the polystyrene-based resin is less than the above range, the high-pressure moldability may be deteriorated, and the mechanical strength of the foamed molded product may be reduced. When the weight average molecular weight Mw of the polystyrene resin exceeds the above range, the low-pressure moldability is deteriorated, and it is difficult to shorten the heating time of the foam molding.
In the foam molded article of the present invention, as a foaming agent to be contained in the polystyrene resin constituting the foam molded article, the total amount of isobutane and normal butane is 0.1 to 100 parts by mass of polystyrene resin particles as essential components. It is the range of 3.0 mass parts, Preferably it is the range of 0.1-2.0 mass parts, More preferably, it is the range of 0.3-1.0 mass part. When the total amount of isobutane and normal butane is less than the above range, it may not be possible to reach a sufficient expansion ratio when producing a foam molded article by in-mold foam molding. On the other hand, if the total amount of isobutane and normal butane exceeds the above range, the time required for the cooling step in the production process may be increased when producing a foamed molded article by in-mold foam molding, which may reduce productivity.
In the foamed molded article of the present invention, the composition of the blowing agent isobutane and normal butane is preferably in the range of isobutane: normal butane = 30: 70 to 99: 1 by mass ratio, The range is more preferable, and the range of 90:10 to 99: 1 is most preferable. When the ratio of isobutane and normal butane in this foaming agent is larger than the range of the mass ratio, or when only isobutane is used, it is possible to produce a foamed molded product in a short time by in-mold foam molding. May be difficult to manufacture. On the other hand, when there is more normal butane than the range of the said mass ratio, or when only normal butane is used, there exists a possibility that the mechanical strength of a foaming molding may fall.

本発明の発泡性ポリスチレン系樹脂粒子は、従来より周知の発泡性ポリスチレン系樹脂粒子の製造方法、例えば、懸濁重合法、溶融押出法などによって製造することができるが、リサイクル原料から容易に発泡性ポリスチレン系樹脂粒子を製造できることから、溶融押出法によって製造することが好ましい。溶融押出法は、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る。   The expandable polystyrene resin particles of the present invention can be manufactured by conventionally known methods for producing expandable polystyrene resin particles, for example, suspension polymerization, melt extrusion, etc. It is preferable to manufacture by a melt extrusion method because the conductive polystyrene resin particles can be manufactured. In the melt extrusion method, a foaming agent is press-fitted and kneaded into a polystyrene-based resin melted in an extruder, and the foaming agent-containing molten resin is extruded directly into a cooling liquid from a small hole in a die attached to the tip of the extruder. Simultaneously with extrusion, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles.

図1は、本発明の発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図である。本例の製造装置は、押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性粒子を冷却水と分離すると共に脱水乾燥して発泡性粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性粒子を貯留する貯留容器11とを備えて構成されている。
押出機としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。
FIG. 1 is a block diagram showing an example of a production apparatus used in the method for producing expandable polystyrene resin particles of the present invention. The manufacturing apparatus of this example includes an extruder 1, a die 2 having a large number of small holes attached to the tip of the extruder 1, a raw material supply hopper 3 for introducing a resin raw material into the extruder 1, an extruder 1 is provided so that cooling water is brought into contact with the high-pressure pump 4 for press-fitting the foaming agent into the molten resin 1 through the foaming agent supply port 5 and the resin discharge surface in which the small holes of the die 2 are formed. Is circulated and supplied, a cutter 6 rotatably provided in the cutting chamber 7 so as to cut the resin extruded from the small hole of the die 2, and a cooling water flow accompanying the cutting chamber 7. The foamable particles carried in this manner are separated from the cooling water and dehydrated and dried to obtain foamable particles. The dehydrating dryer 10 with a solid-liquid separation function, and the cooling water separated by the dehydrating dryer 10 with a solid-liquid separation function Water tank 8 for storing water, and in this water tank 8 A high pressure pump 9 that sends the cooling water in the cutting chamber 7, is configured by a storage container 11 for storing the dewatered dried effervescent grains at the solid-liquid separation function dehydrating dryer 10.
As the extruder, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity.

この製造装置を用い、本発明の発泡性ポリスチレン系樹脂粒子を製造するには、まず、原料のポリスチレン系樹脂、及び発泡核剤などの所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。   In order to produce the expandable polystyrene resin particles of the present invention using this production apparatus, first, a raw material polystyrene resin and desired additives such as a foam nucleating agent are weighed and the raw material supply hopper 3 is used as an extruder. 1 in. The raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount for each lot may be reduced. A plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.

押出機1内にポリスチレン系樹脂を供給後、この樹脂を加熱溶融し、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入し、溶融物に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。   After supplying polystyrene resin into the extruder 1, this resin is heated and melted, and the foaming agent is press-fitted by the high-pressure pump 4 from the foaming agent supply port 5, and the foaming agent is mixed into the melt. The melt is moved to the tip side while further kneading through a foreign matter removing screen provided according to the above, and the melt added with the foaming agent is pushed out from the small hole of the die 2 attached to the tip of the extruder 1.

ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡が抑えられたまま固化して発泡性ポリスチレン系樹脂粒子となる。   The resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 in which cooling water is circulated and supplied into the chamber, and the resin extruded from the small holes of the die 2 is placed in the cutting chamber 7. A cutter 6 is provided so as to be rotatable. Extruding the melt with the blowing agent added through a small hole in the die 2 attached to the tip of the extruder 1 causes the melt to be cut into granules, and at the same time, brought into contact with cooling water and rapidly cooled to solidify while suppressing foaming. Thus, expandable polystyrene resin particles are obtained.

形成された発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥する。乾燥された発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。   The formed expandable polystyrene resin particles are transferred from the cutting chamber 7 to the dewatering dryer 10 with a solid-liquid separation function along with the flow of the cooling water, where the expandable polystyrene resin particles are separated from the cooling water. And dehydrated and dried. The dried expandable polystyrene resin particles are stored in the storage container 11.

本発明の発泡性ポリスチレン系樹脂粒子は、適正な比率のイソブタンとノルマルブタンを発泡剤として使用し、発泡性ポリスチレン系樹脂粒子中に含有させることにより、発泡性に優れ、かつ成形サイクルが短く、十分な機械的強度を有する発泡成形体を製造できる。また、ポリスチレン系樹脂の重量平均分子量Mwが12万〜32万の範囲であれば、発泡性に優れ、かつ成形サイクルが短く、十分な機械的強度を有する発泡成形体を製造でき、ポリスチレン系樹脂としてリサイクル原料を利用することができる。   The expandable polystyrene resin particles of the present invention use an appropriate ratio of isobutane and normal butane as a foaming agent, and by incorporating them in the expandable polystyrene resin particles, they have excellent foamability and a short molding cycle. A foam-molded article having sufficient mechanical strength can be produced. Further, if the weight average molecular weight Mw of the polystyrene resin is in the range of 120,000 to 320,000, it is possible to produce a foamed molded article having excellent foamability, a short molding cycle, and sufficient mechanical strength. As recycled material can be used.

[実施例1]
(発泡性ポリスチレン系樹脂粒子の製造)
重量平均分子量18.3万のリサイクル原料100質量部に対し、微粉末タルク0.3質量部を加え、これらを口径90mmの単軸押出機に、時間当たり130kgで連続供給した。押出機内温度としては、最高温度210℃に設定し、樹脂を溶融させた後、発泡剤として樹脂100質量部に対して6質量部のブタン(イソブタン:ノルマルブタン=30:70(質量比))を押出機の途中から圧入した。押出機内で樹脂と発泡剤を混練するとともに冷却し、押出機先端部での樹脂温度を170℃、ダイの樹脂導入部の圧力を15MPaに保持して、直径0.6mmでランド長さが3.0mmの小孔が200個配置されたダイより、このダイの吐出側に連結され30℃の水が循環するカッティング室内に、発泡剤含有溶融樹脂を押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターにて押出物を切断した。切断した粒子を循環水で冷却しながら、粒子分離器に搬送し、粒子を循環水と分離した。さらに、捕集した粒子を脱水・乾燥して発泡性ポリスチレン系樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子は、変形、ヒゲ等の発生もなく、ほぼ完全な球体であり、平均粒径は約1.1mmであった。
得られた発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.15質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部を発泡性ポリスチレン系樹脂粒子の表面全面に均一に被覆した。
[Example 1]
(Manufacture of expandable polystyrene resin particles)
0.3 parts by mass of fine powder talc was added to 100 parts by mass of recycled raw material having a weight average molecular weight of 18,000, and these were continuously supplied to a single screw extruder having a diameter of 90 mm at 130 kg per hour. As the temperature inside the extruder, the maximum temperature was set to 210 ° C., and after melting the resin, 6 parts by weight of butane (isobutane: normal butane = 30: 70 (mass ratio)) with respect to 100 parts by weight of the resin as a foaming agent. Was press-fitted from the middle of the extruder. The resin and foaming agent are kneaded and cooled in the extruder, the resin temperature at the tip of the extruder is maintained at 170 ° C., the pressure at the resin introduction part of the die is maintained at 15 MPa, the diameter is 0.6 mm, and the land length is 3 From the die having 200 small holes of 0.0 mm, the foaming agent-containing molten resin is extruded into the cutting chamber connected to the discharge side of this die and circulating water at 30 ° C. The extrudate was cut with a high-speed rotary cutter having a blade. While the cut particles were cooled with circulating water, they were conveyed to a particle separator, and the particles were separated from the circulating water. Further, the collected particles were dehydrated and dried to obtain expandable polystyrene resin particles. The obtained expandable polystyrene resin particles were almost perfect spheres without the occurrence of deformation or beard, and the average particle size was about 1.1 mm.
Polyethylene glycol 0.03 parts by mass, zinc stearate 0.15 parts by mass, stearic acid monoglyceride 0.05 parts by mass, hydroxystearic acid triglyceride 0.05 parts by mass with respect to 100 parts by mass of the obtained expandable polystyrene resin particles. The part was uniformly coated on the entire surface of the expandable polystyrene resin particles.

(発泡成形体の製造)
前記の通り製造した発泡性ポリスチレン系樹脂粒子は、15℃の保冷庫中に入れ、72時間に亘って放置した後、円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.02g/cm(嵩発泡倍数50倍)であった。
続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ50mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、その後、成形型のキャビティ内を水蒸気でゲージ圧0.08MPaの圧力で20秒間に亘って加熱し、その後、成形型のキャビティ内の圧力が0.01MPaになるまで冷却し、その後成形型を開き、長さ400mm×幅300mm×高さ50mmの長方形状の発泡成形体を取り出した。得られた発泡成形体は、密度0.02g/cm(発泡倍数50倍)であった。
(Manufacture of foam moldings)
The expandable polystyrene resin particles produced as described above are placed in a 15 ° C. cool box and allowed to stand for 72 hours, and then supplied to a cylindrical batch type pre-foaming machine to generate steam with a blowing pressure of 0.05 MPa. To obtain pre-expanded particles. The obtained pre-expanded particles had a bulk density of 0.02 g / cm 3 (bulk expansion ratio: 50 times).
Subsequently, the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 50 mm. Thereafter, the inside of the cavity of the mold is heated with water vapor at a gauge pressure of 0.08 MPa for 20 seconds, and then cooled until the pressure in the cavity of the mold reaches 0.01 MPa. Opened, a rectangular foam molded body having a length of 400 mm, a width of 300 mm, and a height of 50 mm was taken out. The obtained foamed molded article had a density of 0.02 g / cm 3 (foaming factor: 50 times).

前述した通りの方法で製造した実施例1のポリスチレン系樹脂、発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体について、以下の評価試験を行った。   The following evaluation tests were performed on the polystyrene resin, the expandable polystyrene resin particles, the pre-expanded particles, and the foamed molded product of Example 1 manufactured by the method as described above.

<重量平均分子量の測定>
押出機に投入する原料となるポリスチレン系樹脂、及び溶融押出法によって作製した発泡性ポリスチレン系樹脂粒子を構成するポリスチレン系樹脂について、それぞれの樹脂約4mgをTHF(テトラヒドロフラン)4mLに溶解し、非水系0.45μmクロマトディスクで濾過後、東ソー社製 HLC−8320GPC(RI検出器内臓)を用いてポリスチレン換算分子量を測定した。その測定条件はカラムが東ソー社製TOSOH TSKgel SuperMultiporeHZ-H(φ4.6×150mm)2本、ガードカラムが東ソー社製TOSOH TSKguardSuperMP(HZ)-H(φ4.6×20mm)1本を用い、カラム温度(40℃)、移動相(THF)、移動相流量(0.2ml/min)、ポンプ温度・検出器(40℃)、検出(RI)、注入量(20μL)、検量線用標準PS(昭和電工社製(Shodex)分子量Mwが5,620,000と3,120,000と1,250,000と442,000と131,000と54,000と20,000と7,590と3,450と1,320)とした。)
<Measurement of weight average molecular weight>
About polystyrene resin used as a raw material to be fed into an extruder and polystyrene resin constituting expandable polystyrene resin particles produced by a melt extrusion method, about 4 mg of each resin is dissolved in 4 mL of THF (tetrahydrofuran), and non-aqueous After filtration with a 0.45 μm chromatodisc, the polystyrene equivalent molecular weight was measured using HLC-8320GPC (built-in RI detector) manufactured by Tosoh Corporation. The measurement conditions were TOSOH TSKgel SuperMultiporeHZ-H (φ4.6 × 150mm) made by Tosoh Corp., and TOSOH TSKguardSuperMP (HZ) -H (φ4.6 × 20mm) made by Tosoh Corp. Temperature (40 ° C), mobile phase (THF), mobile phase flow rate (0.2ml / min), pump temperature / detector (40 ° C), detection (RI), injection volume (20μL), standard curve calibration standard PS (Showa) (Shodex) molecular weight Mw was 5,620,000, 3,120,000, 1,250,000, 442,000, 131,000, 54,000, 20,000, 7,590, 3,450 and 1,320). )

<発泡剤含有量と発泡剤組成の測定>
実施例(及び比較例)で得られた発泡性ポリスチレン系樹脂粒子を15℃の保冷庫に72時間に亘って放置した後、発泡性ポリスチレン系樹脂粒子中の発泡剤量(イソブタンとノルマルブタンの合計の含有量、単位:質量%)と発泡剤組成(イソブタンとノルマルブタンの質量比)を、ガスクロマトグラフィーを用い、下記の条件で測定した。
ガスクロマトグラフィー(GC):島津製作所社製GC−14B
・検出器:FID・加熱炉:島津製作所社製PYR−1A
・カラム:信和化工社製(直径3mm×長さ3m)液相1スクワラン25%、担体lShimalite60〜80NAW
・加熱炉温度:180℃
・カラム温度:70℃
<Measurement of foaming agent content and foaming agent composition>
After the expandable polystyrene resin particles obtained in the examples (and comparative examples) were allowed to stand for 72 hours in a 15 ° C. cool box, the amount of foaming agent in the expandable polystyrene resin particles (of isobutane and normal butane) The total content, unit: mass%) and the blowing agent composition (mass ratio of isobutane and normal butane) were measured using gas chromatography under the following conditions.
Gas chromatography (GC): GC-14B manufactured by Shimadzu Corporation
-Detector: FID-Heating furnace: Shimadzu PYR-1A
Column: Shinwa Kako Co., Ltd. (diameter 3 mm × length 3 m) liquid phase 1 squalane 25%, carrier lShimalite 60-80 NAW
-Heating furnace temperature: 180 ° C
-Column temperature: 70 ° C

<予備発泡粒子の嵩発泡倍数>
約5gの予備発泡粒子の質量(a)を小数以下2位で秤量した。次に、最小目盛り単位が5cmである500cmメスシリンダーに秤量した予備発泡粒子を入れ、これに、メスシリンダーの口径よりやや小さい円形の樹脂板で、その中心に幅約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて、予備発泡粒子の体積(b)を読み取り、式(b)/(a)により予備発泡粒子の嵩発泡倍数を求めた。
<Bulk expansion ratio of pre-expanded particles>
The mass (a) of about 5 g of pre-expanded particles was weighed in the second decimal place. Next, weighed pre-expanded particles in a 500 cm 3 graduated cylinder with a minimum scale unit of 5 cm 3 , and a round resin plate slightly smaller than the caliber of the graduated cylinder. Apply a pressing tool in which a rod-shaped resin plate of about 30 cm is fixed upright, read the volume (b) of the pre-expanded particles, and calculate the bulk expansion ratio of the pre-expanded particles by the formula (b) / (a) It was.

<成形サイクルの評価>
長さ400mm×幅300mm×高さ50mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、その後、成形型のキャビティ内を水蒸気でゲージ圧0.08MPaの圧力で20秒間に亘って加熱し、その後、成形型のキャビティ内の圧力が0.01MPaになるまでの冷却時間を測定し、次の評価基準:
特に良好(◎):210秒未満
良好(○):210秒以上300秒未満
不良(×):300秒以上
に基づき、成形サイクルを評価した。
<Evaluation of molding cycle>
Pre-expanded particles are filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 50 mm, and then the inside of the mold cavity is steamed with water at a gauge pressure of 0.08 MPa for 20 seconds. Then, the cooling time until the pressure in the mold cavity reaches 0.01 MPa is measured, and the following evaluation criteria:
Particularly good (◎): less than 210 seconds. Good (○): 210 seconds or more and less than 300 seconds. Bad (x): molding cycles were evaluated based on 300 seconds or more.

<平均気泡径の測定>
実施例(及び比較例)で得られた発泡成形体を剃刀刃で切断し、その切断面を走査型電子顕微鏡(日立製作所社製S−3000N)で30倍に拡大して撮影する。撮影した画像をA4用紙上に印刷し、任意の一直線上(長さ60mm)にある気泡数から気泡の平均弦長(t)を下記式により算出した。但し任意の直線はできる限り気泡が接点でのみ接しないようにした(接してしまう場合は気泡数に含める)。計測は10ヶ所とし、その平均弦長を求めた後、気泡径を算出し、平均気泡径D(μm)とした。
平均弦長t=60/(気泡数×写真の倍率)
気泡径D=t/0.616×1000
<Measurement of average bubble diameter>
The foamed molded body obtained in the examples (and comparative examples) is cut with a razor blade, and the cut surface is photographed with a scanning electron microscope (S-3000N manufactured by Hitachi, Ltd.) at a magnification of 30 times. The photographed image was printed on A4 paper, and the average chord length (t) of the bubbles was calculated from the number of bubbles on an arbitrary straight line (length: 60 mm) by the following formula. However, the arbitrary straight lines were made so that the bubbles did not contact only at the contact points as much as possible (included in the number of bubbles if contacted). The measurement was performed at 10 locations, and after obtaining the average chord length, the bubble diameter was calculated to obtain the average bubble diameter D (μm).
Average string length t = 60 / (number of bubbles × photo magnification)
Bubble diameter D = t / 0.616 × 1000

<強度の評価>
実施例(及び比較例)で得られた発泡成形体について、JISA9511:2006「発泡プラスチック保温材」記載の方法に準じて曲げ強度を測定した。すなわち、テンシロン万能試験機UCT−10T(オリエンテック社製)を用い、試験体サイズは75mm×300mm×50mmとし、圧縮速度を10mm/min、先端治具は加圧くさび10R、支持台10Rで、支点間距離200mmの条件として測定し、次式にて曲げ強度を算出した。試験片の数は3個とし、その平均値を求めた。
曲げ強度(MPa)=3FL/2bh
(ここで、Fは曲げ最大荷重(N)を表し、Lは支点間距離(mm)を表し、bは試験片の幅(mm)を表し、hは試験片の厚み(mm)を表す。)
このようにして曲げ強度の平均値を求め、次の評価基準:
特に良好(◎):曲げ強度が0.28MPa以上
良好(○):曲げ強度が0.25MPa以上0.28MPa未満
不良(×):曲げ強度が0.25MPa未満
に基づき、強度を評価した。
<Strength evaluation>
About the foaming molding obtained in the Example (and comparative example), bending strength was measured according to the method of JISA9511: 2006 "foaming plastic heat insulating material". That is, using a Tensilon universal testing machine UCT-10T (manufactured by Orientec Co., Ltd.), the specimen size is 75 mm × 300 mm × 50 mm, the compression speed is 10 mm / min, the tip jig is a pressure wedge 10R, and a support base 10R. Measurement was performed under the condition of a distance between fulcrums of 200 mm, and the bending strength was calculated by the following formula. The number of test pieces was three, and the average value was obtained.
Bending strength (MPa) = 3FL / 2bh 2
(Here, F represents the maximum bending load (N), L represents the distance between supporting points (mm), b represents the width (mm) of the test piece, and h represents the thickness (mm) of the test piece. )
In this way, the average value of the bending strength is obtained, and the following evaluation criteria:
Particularly good (◎): bending strength is 0.28 MPa or more Good (◯): bending strength is 0.25 MPa or more and less than 0.28 MPa Bad (x): strength was evaluated based on bending strength less than 0.25 MPa.

<総合評価>
前記<成形サイクルの評価>及び<強度の評価>の評価結果について、次の評価基準:
特に良好(◎):両評価とも◎
良好(○):一方の評価が◎、他方の評価が○
不良(×):両評価のいずれか一方又は両方が×
に基づき、総合評価した。
<Comprehensive evaluation>
Regarding the evaluation results of the <evaluation of molding cycle> and <evaluation of strength>, the following evaluation criteria:
Especially good (◎): Both evaluations are ◎
Good (○): One evaluation is ◎, the other evaluation is ○
Defect (x): Either or both of the evaluations are x
Based on this, a comprehensive evaluation was made.

実施例1について、前述した重量平均分子量の測定、発泡剤含有量の測定、成形サイクルの評価、平均気泡径の測定及び強度の評価、並びに総合評価を行い、その結果を表1に記す。   About Example 1, the measurement of the weight average molecular weight mentioned above, the measurement of foaming agent content, the evaluation of a shaping | molding cycle, the measurement of an average bubble diameter, evaluation of intensity | strength, and comprehensive evaluation are performed, and the result is described in Table 1.

[実施例2]
実施例1で用いた重量平均分子量18.7万のリサイクル原料に代えて、重量平均分子量20.8万のリサイクル原料を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Example 2]
In place of the recycled material having a weight average molecular weight of 1870,000 used in Example 1, a recycled material having a weight average molecular weight of 208,000 was used in the same manner as in Example 1 except that An evaluation test was conducted. The results are shown in Table 1.

[実施例3]
実施例1で用いた重量平均分子量18.7万のリサイクル原料に代えて、重量平均分子量25.4万のリサイクル原料を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Example 3]
In place of the recycled raw material having a weight average molecular weight of 1870,000 used in Example 1, a recycled raw material having a weight average molecular weight of 250,000 was used in the same manner as in Example 1, and each of the items described above was used. An evaluation test was conducted. The results are shown in Table 1.

[実施例4]
実施例1で用いた重量平均分子量18.7万のリサイクル原料に代えて、重量平均分子量28.3万のリサイクル原料を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Example 4]
In place of the recycled material having a weight average molecular weight of 1870,000 used in Example 1, a recycled material having a weight average molecular weight of 283,000 was used in the same manner as in Example 1 except that An evaluation test was conducted. The results are shown in Table 1.

[実施例5]
発泡剤として、イソブタン:ノルマルブタン=50:50(質量比)の組成としたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Example 5]
The evaluation test of each item mentioned above was done like Example 1 except having set it as the composition of isobutane: normal butane = 50: 50 (mass ratio) as a foaming agent. The results are shown in Table 1.

[実施例6]
発泡剤として、イソブタン:ノルマルブタン=70:30(質量比)の組成としたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Example 6]
The evaluation test of each item mentioned above was done like Example 1 except having set it as the composition of isobutane: normal butane = 70: 30 (mass ratio) as a foaming agent. The results are shown in Table 1.

[実施例7]
発泡剤として4質量部のブタン(イソブタン:ノルマルブタン=30:70(質量比))と2質量部のペンタン(イソペンタン:ノルマルペンタン=30:70(質量比))の組成としたこと以外は実施例1同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Example 7]
Except that the composition was 4 parts by weight of butane (isobutane: normal butane = 30: 70 (mass ratio)) and 2 parts by weight of pentane (isopentane: normal pentane = 30: 70 (mass ratio)) as the blowing agent. In the same manner as in Example 1, the above-described evaluation tests for each item were performed. The results are shown in Table 1.

[実施例8]
発泡剤として6質量部のブタン(イソブタン:ノルマルブタン=30:70(質量比))と溶剤・可塑剤として1質量部のアジピン酸ジイソブチル(DIBA)の組成としたこと以外は実施例1同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Example 8]
Example 1 except that the composition was 6 parts by weight of butane (isobutane: normal butane = 30: 70 (mass ratio)) as a blowing agent and 1 part by weight of diisobutyl adipate (DIBA) as a solvent / plasticizer. Then, an evaluation test of each item described above was performed. The results are shown in Table 1.

[比較例1]
実施例1で用いた重量平均分子量18.7万のリサイクル原料に代えて、重量平均分子量34万のバージンポリスチレン(PSジャパン社製、銘柄名:G9305)を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Comparative Example 1]
Example 1 was used except that virgin polystyrene having a weight average molecular weight of 340,000 (brand name: G9305) was used instead of the recycled material having a weight average molecular weight of 1870,000 used in Example 1. Similarly, the evaluation test of each item mentioned above was conducted. The results are shown in Table 1.

[比較例2]
実施例1で用いた重量平均分子量18.7万のリサイクル原料に代えて、重量平均分子量10.6万のリサイクル原料を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Comparative Example 2]
In place of the recycled material having a weight average molecular weight of 1870,000 used in Example 1, a recycled material having a weight average molecular weight of 106,000 was used in the same manner as in Example 1 except that An evaluation test was conducted. The results are shown in Table 1.

[比較例3]
発泡剤としてイソブタンのみ(イソブタン:ノルマルブタン=100:0)を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Comparative Example 3]
The evaluation test of each item mentioned above was done like Example 1 except having used only isobutane (isobutane: normal butane = 100: 0) as a foaming agent. The results are shown in Table 1.

[比較例4]
発泡剤としてノルマルブタンのみ(イソブタン:ノルマルブタン=0:100)を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[Comparative Example 4]
The evaluation test of each item mentioned above was done like Example 1 except having used only normal butane (isobutane: normal butane = 0: 100) as a foaming agent. The results are shown in Table 1.

Figure 0005882070
Figure 0005882070

表1の結果より、重量平均分子量Mwが12万〜32万の範囲であるポリスチレン系樹脂を用い、発泡剤として、イソブタン:ノルマルブタン=10:90〜80:20の範囲であるブタンを主成分として用いた実施例1〜7で得られた発泡性ポリスチレン系樹脂粒子は、優れた発泡性能を有し、型内発泡成形によって発泡成形体を製造する際に短時間で製造が可能となり、成形サイクルの評価が特に良好又は良好であった。
また、実施例1〜7で得られた発泡成形体は、曲げ強度が0.28MPa以上であり、特に良好であった。
また、実施例1〜8で得られた発泡成形体は、粒子間隙が少なく、外観美麗で良好であった。
一方、重量平均分子量Mwが本発明の範囲を超えるポリスチレン系樹脂を用いた比較例1は、型内発泡成形によって発泡成形体を製造する際に短時間での製造が難しくなり、成形サイクルの評価が不良となった。
また、重量平均分子量Mwが本発明の範囲未満であるポリスチレン系樹脂を用いた比較例2は、得られた発泡成形体の強度が弱くなり、曲げ強度が不良となった。また、発泡剤としてイソブタンのみを使用した比較例3は、型内発泡成形によって発泡成形体を製造する際に短時間での製造が難しくなり、成形サイクルの評価が不良となった。
また、発泡剤としてノルマルブタンのみを使用した比較例4は、得られた発泡成形体の強度が弱くなり、曲げ強度が不良となった。
From the results of Table 1, a polystyrene resin having a weight average molecular weight Mw in the range of 120,000 to 320,000 is used, and as a foaming agent, butane in the range of isobutane: normal butane = 10: 90 to 80:20 is a main component. The expandable polystyrene resin particles obtained in Examples 1 to 7 used as the above have excellent foaming performance, and can be produced in a short time when producing a foamed molded article by in-mold foam molding. The evaluation of the cycle was particularly good or good.
Moreover, the foaming moldings obtained in Examples 1 to 7 were particularly good with a bending strength of 0.28 MPa or more.
Moreover, the foaming molding obtained in Examples 1-8 had few particle | grain gap | intervals, and the external appearance was beautiful and favorable.
On the other hand, Comparative Example 1 using a polystyrene-based resin having a weight average molecular weight Mw exceeding the range of the present invention is difficult to produce in a short time when producing a foamed molded article by in-mold foam molding, and evaluation of the molding cycle. Became defective.
Moreover, the comparative example 2 using the polystyrene-type resin whose weight average molecular weight Mw is less than the range of this invention became weak in the intensity | strength of the obtained foaming molding, and became poor in bending strength. Further, in Comparative Example 3 using only isobutane as a foaming agent, it was difficult to produce in a short time when producing a foamed molded article by in-mold foam molding, and the evaluation of the molding cycle was poor.
Further, in Comparative Example 4 in which only normal butane was used as the foaming agent, the strength of the obtained foamed molded article was weak and the bending strength was poor.

[実施例9]
実施例1で得られた発泡成形体を23℃±5℃の室内に30日、及び90日に亘って放置した後、以下の<発泡成形体中の発泡剤含有量と発泡剤組成の測定>に従って発泡剤含有量と組成を分析し、また前記<強度の評価>に従って発泡成形体の強度を、測定・評価した。
[Example 9]
After the foamed molded product obtained in Example 1 was left in a room at 23 ° C. ± 5 ° C. for 30 days and 90 days, the following <measurement of foaming agent content and foaming agent composition in the foamed molded product > And the foaming agent content and composition were analyzed, and the strength of the foamed molded product was measured and evaluated according to the above <Evaluation of Strength>.

<発泡成形体中の発泡剤含有量と発泡剤組成の測定>
実施例で得られた発泡成形体の略中心部から長さ方向に35mm、幅方向に5mm、厚み方向に5mmの大きさを有する直方体を切り出し、この試験片の重量を測定する。そして上記試験片を180℃の加熱炉に供給して、発泡成形体中の発泡剤含有量(イソブタンとノルマルブタンの合計の含有量、単位:質量%)と発泡剤組成(イソブタンとノルマルブタンの質量比)を、ガスクロマトグラフィーを用い、下記の条件で測定した。
ガスクロマトグラフィー(GC):島津製作所社製GC−14B
・検出器:FID・加熱炉:島津製作所社製PYR−1A
・カラム:信和化工社製(直径3mm×長さ3m)液相1スクワラン25%、担体lShimalite60〜80NAW
・カラム温度:70℃
・加熱炉温度:180℃
<Measurement of foaming agent content and foaming agent composition in foamed molded article>
A rectangular parallelepiped having a size of 35 mm in the length direction, 5 mm in the width direction, and 5 mm in the thickness direction is cut out from the substantially center part of the foamed molding obtained in the examples, and the weight of the test piece is measured. And the said test piece is supplied to a 180 degreeC heating furnace, foaming agent content (total content of isobutane and normal butane, unit: mass%) in a foaming molding, and a foaming agent composition (isobutane and normal butane). (Mass ratio) was measured using gas chromatography under the following conditions.
Gas chromatography (GC): GC-14B manufactured by Shimadzu Corporation
-Detector: FID-Heating furnace: Shimadzu PYR-1A
Column: Shinwa Kako Co., Ltd. (diameter 3 mm × length 3 m) liquid phase 1 squalane 25%, carrier lShimalite 60-80 NAW
-Column temperature: 70 ° C
-Heating furnace temperature: 180 ° C

30日後の発泡剤量(イソブタンとノルマルブタンの合計の含有量)は0.4質量%、イソブタンとノルマルブタンの比率はイソブタン:ノルマルブタン=98:2 、強度の評価は特に良好(◎)であった。
90日後の発泡剤量(イソブタンとノルマルブタンの合計の含有量)は0.4質量%、イソブタンとノルマルブタンの比率はイソブタン:ノルマルブタン=98:2、強度の評価は特に良好(◎)であった。
The amount of foaming agent after 30 days (total content of isobutane and normal butane) was 0.4% by mass, the ratio of isobutane and normal butane was isobutane: normal butane = 98: 2, and the strength evaluation was particularly good (◎) there were.
The foaming agent amount after 90 days (total content of isobutane and normal butane) was 0.4% by mass, the ratio of isobutane and normal butane was isobutane: normal butane = 98: 2, and the strength evaluation was particularly good (◎). there were.

[実施例10]
発泡成形体として実施例6で得られた発泡成形体を用いたこと以外は実施例9と同様にして発泡剤含有量の測定及び強度の評価を行なった。
30日後の発泡剤量(イソブタンとノルマルブタンの合計の含有量)は0.6質量%、イソブタンとノルマルブタンの比率はイソブタン:ノルマルブタン=98:2、強度の評価は特に良好(◎)であった。
90日後の発泡剤量(イソブタンとノルマルブタンの合計の含有量)は0.6質量%、イソブタンとノルマルブタンの比率はイソブタン:ノルマルブタン=98:2、強度の評価は特に良好(◎)であった。
[Example 10]
The foaming agent content was measured and the strength was evaluated in the same manner as in Example 9 except that the foamed molded product obtained in Example 6 was used as the foamed molded product.
The amount of blowing agent after 30 days (total content of isobutane and normal butane) was 0.6% by mass, the ratio of isobutane and normal butane was isobutane: normal butane = 98: 2, and the strength evaluation was particularly good (◎). there were.
The amount of foaming agent after 90 days (total content of isobutane and normal butane) was 0.6% by mass, the ratio of isobutane and normal butane was isobutane: normal butane = 98: 2, and the strength evaluation was particularly good (◎). there were.

前記実施例9,10の結果から、本発明に係る発泡性ポリスチレン系樹脂粒子を用いて製造された発泡成形体において、発泡剤として加えたブタン(イソブタン+ノルマルブタン)の組成は、発泡成形体製造後30日以上経過したものでは、イソブタンが大部分を占めていた。   From the results of Examples 9 and 10, in the foamed molded product produced using the expandable polystyrene resin particles according to the present invention, the composition of butane (isobutane + normal butane) added as a foaming agent was a foamed molded product. In the case where 30 days or more have passed after the production, isobutane accounted for the majority.

本発明は、発泡性ポリスチレン系樹脂粒子とその製造方法と発泡成形体に関し、特に、溶融押出法により発泡性ポリスチレン系樹脂粒子を製造する際に、リサイクル原料を利用でき、発泡性に優れ、成形サイクルが短く、外観良好でかつ十分な機械強度を有するバランスのとれた発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子とその製造方法に関する。この発泡性ポリスチレン系樹脂粒子を用いて得られた発泡成形体は、緩衝材、容器、断熱材などの用途に使用される。   TECHNICAL FIELD The present invention relates to expandable polystyrene resin particles, a method for producing the same, and a foamed molded product. In particular, when producing expandable polystyrene resin particles by a melt extrusion method, recycled raw materials can be used, and foamability is excellent. The present invention relates to an expandable polystyrene resin particle capable of producing a well-balanced foamed molded article having a short cycle, good appearance, and sufficient mechanical strength, and a method for producing the same. The foam molded product obtained using the expandable polystyrene resin particles is used for applications such as a buffer material, a container, and a heat insulating material.

1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器。   DESCRIPTION OF SYMBOLS 1 ... Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, 10: Dehydration dryer with solid-liquid separation function, 11: Storage container.

Claims (4)

発泡剤を含有するポリスチレン系樹脂を粒子状としてなる発泡性ポリスチレン系樹脂粒子であって、
押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られ、
ポリスチレン系樹脂の重量平均分子量Mwが12万〜32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、ブタンを2〜8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90〜80:20の範囲である発泡性ポリスチレン系樹脂粒子。
Expandable polystyrene resin particles having a polystyrene resin containing a foaming agent in the form of particles,
A foaming agent is press-fitted and kneaded into the polystyrene resin melted in the extruder, and the foaming agent-containing molten resin is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the extruder. Is obtained by a melt extrusion method in which an extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles.
The polystyrene-based resin has a weight average molecular weight Mw in the range of 120,000 to 320,000, and the foaming agent contains 2 to 8 parts by mass of butane as an essential component with respect to 100 parts by mass of the polystyrene-based resin. Expandable polystyrene resin particles in which the composition of butane is in the range of isobutane: normal butane = 10: 90 to 80:20 by mass ratio.
請求項に記載の発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、該予備発泡粒子を型内発泡成形して得られた発泡成形体。 A foam-molded product obtained by heating the expandable polystyrene resin particles according to claim 1 into pre-expanded particles and foam-molding the pre-expanded particles in a mold. 発泡成形体中の発泡粒の平均気泡径が50μm〜300μmの範囲である請求項に記載の発泡成形体。 The foamed molded product according to claim 2 , wherein an average cell diameter of the foamed particles in the foamed molded product is in the range of 50 µm to 300 µm. 押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る製造方法において、ポリスチレン系樹脂の重量平均分子量Mwが12万〜32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、ブタンを2〜8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90〜80:20の範囲である発泡性ポリスチレン系樹脂粒子の製造方法。   A foaming agent is press-fitted and kneaded into the polystyrene resin melted in the extruder, and the foaming agent-containing molten resin is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the extruder. In the production method in which the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles, the weight average molecular weight Mw of the polystyrene resin is in the range of 120,000 to 320,000. Yes, the foaming agent contains 2 to 8 parts by mass of butane as an essential component with respect to 100 parts by mass of polystyrene resin, and the composition of the butane is isobutane: normal butane = 10: 90 to mass ratio. A process for producing expandable polystyrene resin particles in the range of 80:20.
JP2012014055A 2011-01-26 2012-01-26 Expandable polystyrene resin particles, method for producing the same, and foam molded article Active JP5882070B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012014055A JP5882070B2 (en) 2011-01-26 2012-01-26 Expandable polystyrene resin particles, method for producing the same, and foam molded article
PCT/JP2012/068823 WO2013111368A1 (en) 2012-01-26 2012-07-25 Expandable polystyrene-type resin particles and method for producing same, and molded foam
CN201280067988.2A CN104080847B (en) 2012-01-26 2012-07-25 Foaming polystyrene series resin particle and its manufacture method and expanded moldings
TW101126748A TWI596118B (en) 2012-01-26 2012-07-25 Formable polstyrenic resin particles and production method thereof, and moled foam product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011014093 2011-01-26
JP2011014093 2011-01-26
JP2012014055A JP5882070B2 (en) 2011-01-26 2012-01-26 Expandable polystyrene resin particles, method for producing the same, and foam molded article

Publications (2)

Publication Number Publication Date
JP2012167267A JP2012167267A (en) 2012-09-06
JP5882070B2 true JP5882070B2 (en) 2016-03-09

Family

ID=48874600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014055A Active JP5882070B2 (en) 2011-01-26 2012-01-26 Expandable polystyrene resin particles, method for producing the same, and foam molded article

Country Status (4)

Country Link
JP (1) JP5882070B2 (en)
CN (1) CN104080847B (en)
TW (1) TWI596118B (en)
WO (1) WO2013111368A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6424037B2 (en) * 2014-07-25 2018-11-14 株式会社カネカ Expandable thermoplastic resin particles, pre-expanded particles thereof and foamed molded body
WO2016017813A1 (en) * 2014-07-31 2016-02-04 積水化成品工業株式会社 Styrene resin foamable particles and production method for same, foam particles, foam molded body, and use for foam molded body
JP6410616B2 (en) * 2015-01-13 2018-10-24 株式会社カネカ Expandable thermoplastic resin particles, pre-expanded particles and foam
US11298892B2 (en) 2019-07-01 2022-04-12 The Boeing Company Expandable tooling systems and methods
US11872776B2 (en) * 2019-12-19 2024-01-16 The Boeing Company Methods for recovering expanded polymer tooling

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277563B2 (en) * 1992-09-21 2002-04-22 三菱化学フォームプラスティック株式会社 Highly expandable expandable styrene resin particles
JPH06298983A (en) * 1993-04-16 1994-10-25 Dainippon Ink & Chem Inc Production of expandable thermoplastic resin particle
JP3532323B2 (en) * 1995-10-03 2004-05-31 株式会社ジェイエスピー Foam molding
JP4261676B2 (en) * 1999-04-26 2009-04-30 株式会社ジェイエスピー Production method of regenerated foaming styrene resin particles
JP2002348400A (en) * 2001-05-24 2002-12-04 Hitachi Chem Co Ltd Foamable recycled styrene resin particle, and its production method and molded article
JP2003306571A (en) * 2002-04-15 2003-10-31 Sekisui Plastics Co Ltd Expandable particle made of recycled styrene resin and its manufacturing process
JP3979883B2 (en) * 2002-06-19 2007-09-19 株式会社ジェイエスピー Expandable polystyrene resin particles
JP2004307729A (en) * 2003-04-09 2004-11-04 Kanegafuchi Chem Ind Co Ltd Expandable polystyrene-based resin particle and polystyrene-based resin foam
JP4271999B2 (en) * 2003-06-20 2009-06-03 株式会社ジェイエスピー Styrenic resin foam containing aluminum powder
JP4221408B2 (en) * 2003-09-17 2009-02-12 積水化成品工業株式会社 Method for producing thermoplastic resin foamable particles
WO2009096341A1 (en) * 2008-01-30 2009-08-06 Sekisui Plastics Co., Ltd. Expandable polystyrene resin beads, process for production thereof and expanded moldings
CN104910408B (en) * 2010-03-26 2018-08-03 积水化成品工业株式会社 Foaming polystyrene series resin particle and its manufacturing method, polystyrene resin pre-expanded particles

Also Published As

Publication number Publication date
CN104080847B (en) 2016-08-31
JP2012167267A (en) 2012-09-06
TW201331228A (en) 2013-08-01
TWI596118B (en) 2017-08-21
WO2013111368A1 (en) 2013-08-01
CN104080847A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5372783B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
WO2011118706A1 (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JP5882070B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
JP5969938B2 (en) Expandable thermoplastic resin particles and production method thereof, pre-expanded particles, foamed molded product, resin composition for producing antistatic resin molded product
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP6063792B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5756003B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP6223097B2 (en) Expandable polystyrene resin particles and production method thereof, and polystyrene resin pre-expanded particles and expanded molded body
JP2012207186A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP5986410B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2012207156A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP2012207157A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP2012072231A (en) Expandable polystyrene-based resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP2013203821A (en) Foamable polystyrene-based resin particle, method for producing the same, preliminary foamable particle and foam-molded article
JP2012201688A (en) Expandable polystyrene resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article
JP5734611B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R150 Certificate of patent or registration of utility model

Ref document number: 5882070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150