JP2012077115A - Heat insulator and method for producing the same - Google Patents

Heat insulator and method for producing the same Download PDF

Info

Publication number
JP2012077115A
JP2012077115A JP2010221062A JP2010221062A JP2012077115A JP 2012077115 A JP2012077115 A JP 2012077115A JP 2010221062 A JP2010221062 A JP 2010221062A JP 2010221062 A JP2010221062 A JP 2010221062A JP 2012077115 A JP2012077115 A JP 2012077115A
Authority
JP
Japan
Prior art keywords
particles
polystyrene resin
heat insulating
insulating material
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010221062A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tarumoto
裕之 樽本
Kenji Hirai
賢治 平井
Shota Endo
翔太 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2010221062A priority Critical patent/JP2012077115A/en
Priority to PCT/JP2011/071811 priority patent/WO2012043439A1/en
Priority to CN201180047076.4A priority patent/CN103140545B/en
Priority to TW100134545A priority patent/TWI464203B/en
Publication of JP2012077115A publication Critical patent/JP2012077115A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulator made of a polystyrene resin foam-molded body which has excellent heat insulating performance, and further has excellent mechanical strength such as bending strength, compressive strength and impact resistance and excellent heat insulating properties as well, and to provide a method for producing the heat insulator.SOLUTION: The heat insulator is composed of a polystyrene resin foam-molded body obtained by: filling polystyrene resin pre-foaming particles obtained by heating foaming polystyrene resin particles including a foaming agent into polystyrene resin particles; heating the pre-foaming particles; and subjecting the pre-foaming particles to foaming molding in a die. In a state of the pre-foaming particles obtained by heating the foaming polystyrene resin particles and foaming it to 50 times of bulk foam ratio, the inner part has an average cell diameter of 35 to 140 μm, the value of the surface-layer-part average cell diameter to the inner-part average cell diameter is 0.80 to 1.20, and the open cell ratio is 10% or less.

Description

本発明は、断熱性能に優れていると共に、曲げ強度、圧縮強度、耐衝撃性などの機械強度にも優れたポリスチレン系樹脂発泡成形体製の断熱材とその製造方法に関する。   The present invention relates to a heat insulating material made of a polystyrene-based resin foam molded article that is excellent in heat insulating performance and mechanical strength such as bending strength, compressive strength, and impact resistance, and a method for producing the same.

発泡性ポリスチレン系樹脂粒子を発泡成形して得られるポリスチレン系樹脂発泡成形体は、断熱性、耐圧縮性、軽量性、経済性などに優れており、食品用保冷容器、住宅用断熱材、クーラーボックス等の断熱材などとして広く用いられている。   Polystyrene resin foam molded products obtained by foaming foamable polystyrene resin particles are excellent in heat insulation, compression resistance, light weight, economy, etc., food cold storage containers, residential insulation, coolers Widely used as a heat insulating material for boxes.

発泡性ポリスチレン系樹脂粒子の製造方法の一つとして、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、所謂、溶融押出法が知られている。
従来、溶融押出法により発泡性ポリスチレン系樹脂粒子を製造する方法に関して、例えば、特許文献1〜3に開示された技術が提案されている。
As one of the methods for producing expandable polystyrene resin particles, a foaming agent is press-fitted and kneaded into polystyrene resin melted in an extruder, and a small hole in a die provided with a foaming agent-containing molten resin at the tip of the extruder A so-called melt extrusion method in which extrudates are extruded directly into a cooling liquid from the same time, and at the same time the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with the liquid to obtain expandable polystyrene resin particles. Are known.
Conventionally, for example, techniques disclosed in Patent Documents 1 to 3 have been proposed regarding methods for producing expandable polystyrene resin particles by a melt extrusion method.

特許文献1には、(a)発泡剤配合重合体をダイヘッド部を通じ、該発泡性重合体のTg値以上の高温に保持する水浴又は流体浴中に押し出す工程 (b)該発泡性重合体のTg値以上の高温に保持する水浴又は流体浴中において、ダイヘッド部出口で重合体を即時切断し、顆粒とする工程 (c)該顆粒を該発泡性重合体のTg値以下の温度に冷却する工程の連続工程において、顆粒の冷却を、少なくとも(Tg+5)℃から(Tg−5)℃まで毎分3℃より少ない割合で徐冷し、また重合体の顆粒への切断および顆粒の冷却は2bar以上の圧力下で行うことを特徴とする無配向性及び無応力性の熱可塑性スチレン重合体の発泡性顆粒の押出式製造方法が開示されている。   In Patent Document 1, (a) a step of extruding a foaming agent-containing polymer through a die head part into a water bath or a fluid bath maintained at a high temperature equal to or higher than the Tg value of the foamable polymer (b) In a water bath or fluid bath maintained at a high temperature equal to or higher than the Tg value, the polymer is immediately cut at the outlet of the die head to form granules. (C) The granules are cooled to a temperature not higher than the Tg value of the foamable polymer. In a continuous process, the cooling of the granules is slow cooling at a rate of less than 3 ° C. per minute from at least (Tg + 5) ° C. to (Tg−5) ° C., and the cutting of the polymer into granules and the cooling of the granules is 2 bar An extrusion-type production method of foamable granules of a non-oriented and stress-free thermoplastic styrene polymer, which is performed under the above pressure, is disclosed.

特許文献2には、熱可塑性樹脂と発泡剤とを溶融混練し、次いでこれをダイヘッドの押出孔から発泡性熱可塑性樹脂粒子のガラス転移温度(以下、Tgと略す)+5℃以上の加熱加圧液中に押出し、即時切断して得た粒子を、加熱加圧液中で同温度以上に保持して該粒子内の残留応力を緩和し、次いで冷却することを特徴とする発泡性熱可塑性樹脂粒子の製法が開示されている。   In Patent Document 2, a thermoplastic resin and a foaming agent are melt-kneaded, and then this is heated and pressurized at a glass transition temperature (hereinafter abbreviated as Tg) of the foamable thermoplastic resin particles from the extrusion hole of the die head + 5 ° C or higher. A foamable thermoplastic resin, characterized in that particles obtained by extruding into a liquid and immediately cutting are maintained at the same temperature or higher in a heated and pressurized liquid to relieve residual stress in the particles, and then cooled. A method for making particles is disclosed.

特許文献3には、熱可塑性樹脂(A)と、発泡剤(B)とを溶融混練し(工程1)、これをダイヘッドの押出孔から、熱可塑性樹脂(A)と発泡剤(B)との溶融混練物が発泡しない温度・圧力に加熱・加圧された加熱加圧液中に押出した後、即時切断し(工程2)、得られた粒子を常圧で発泡しない温度まで冷却し(工程3)、発泡性熱可塑性樹脂を示差熱分析装置(DSC)で測定した場合に、40〜120℃の領域で出現する二つの吸熱ピークのうち、低温側のピーク温度をT1とした場合の30〜(T1+15)℃の温度範囲に加熱された、常圧の液中で熟成処理する(工程4)ことを特徴とする発泡性熱可塑性樹脂粒子の製造方法が開示されている。   In Patent Document 3, a thermoplastic resin (A) and a foaming agent (B) are melt-kneaded (step 1), and the thermoplastic resin (A) and the foaming agent (B) are added from the extrusion hole of the die head. After being extruded into a heated and pressurized liquid heated and pressurized to a temperature and pressure at which the melt-kneaded product is not foamed, it is immediately cut (step 2), and the resulting particles are cooled to a temperature at which normal pressure does not cause foaming ( Step 3) When the foamable thermoplastic resin is measured with a differential thermal analyzer (DSC), of the two endothermic peaks appearing in the region of 40 to 120 ° C., the peak temperature on the low temperature side is T1 There is disclosed a process for producing expandable thermoplastic resin particles characterized by aging treatment in a normal pressure liquid heated to a temperature range of 30 to (T1 + 15) ° C. (Step 4).

特公平5−59138号公報Japanese Patent Publication No. 5-59138 特開平6−32932号公報JP-A-6-32932 特開平7−314438号公報JP 7-314438 A

しかしながら、前記従来技術には、次のような問題があった。
特許文献1の製造方法は、ダイヘッド部から押し出した樹脂を切断して顆粒にする際に、発泡性重合体のTg値以上の高温に保持した加熱加圧液中で前記押し出し、切断を行っているので、切断して得られた粒子同士が融着し易くなり、多数個の粒子同士が結合して塊状になった不良品の発生率が高いという問題がある。
However, the prior art has the following problems.
In the production method of Patent Document 1, when the resin extruded from the die head part is cut into granules, the resin is extruded and cut in a heated and pressurized liquid maintained at a high temperature equal to or higher than the Tg value of the foamable polymer. Therefore, there is a problem that the particles obtained by cutting are easily fused together, and there is a high incidence of defective products in which a large number of particles are bonded together to form a lump.

特許文献2の製造方法は、即時切断して得た粒子を加熱加圧液中で同温度以上に保持して該粒子内の残留応力を緩和し、次いで冷却して発泡性熱可塑性樹脂粒子を製造しているが、特許文献2の実施例に記載された製造条件で発泡性熱可塑性樹脂粒子を製造したところ、切断して得られた粒子同士が融着し易くなり、多数個の粒子同士が結合して塊状になった不良品の発生率が高いという問題があった。また、この製造方法で得られた発泡性ポリスチレン系樹脂粒子を加熱して予備発泡させた所、得られた予備発泡樹脂粒子は、平均気泡径が大きくなり、該予備発泡粒子を型内発泡成形して得られた発泡成形体の機械強度が低下するなどの問題があった。   In the production method of Patent Document 2, particles obtained by immediate cutting are maintained at the same temperature or higher in a heated and pressurized liquid to relieve residual stress in the particles, and then cooled to obtain expandable thermoplastic resin particles. Although it is manufactured, when foamable thermoplastic resin particles are manufactured under the manufacturing conditions described in the example of Patent Document 2, the particles obtained by cutting are easily fused, and a large number of particles are bonded together. There is a problem that the incidence of defective products that are combined into a lump is high. In addition, when the expandable polystyrene resin particles obtained by this production method were heated and pre-expanded, the resulting pre-expanded resin particles had a large average cell diameter, and the pre-expanded particles were subjected to in-mold foam molding. There was a problem that the mechanical strength of the foamed molded product thus obtained was lowered.

特許文献3の製造方法は、セル径の大きな予備発泡粒子を得るための方法である。しかし、予備発泡粒子の気泡構造におけるセル径が大きくなると、該予備発泡粒子を型内発泡成形して得られた発泡成形体の機械強度が低下するなどの問題があった。   The production method of Patent Document 3 is a method for obtaining pre-expanded particles having a large cell diameter. However, when the cell diameter in the cell structure of the pre-expanded particles is increased, there is a problem that the mechanical strength of the foam-molded product obtained by foam-molding the pre-expanded particles is lowered.

本発明は、前記事情に鑑みてなされ、断熱性能に優れていると共に、曲げ強度、圧縮強度、耐衝撃性などの機械強度にも優れたポリスチレン系樹脂発泡成形体製の断熱材とその製造方法の提供を課題とする。   The present invention has been made in view of the above circumstances, and has excellent heat insulation performance as well as heat insulation material made of a polystyrene-based resin foam molded article excellent in mechanical strength such as bending strength, compressive strength, and impact resistance, and a method for producing the same. The issue is to provide

前記課題を達成するため、本発明は、ポリスチレン系樹脂粒子中に発泡剤を含む発泡性ポリスチレン系樹脂粒子を加熱して得られたポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し加熱し、型内発泡成形して得られたポリスチレン系樹脂発泡成形体からなる断熱材において、前記発泡性ポリスチレン系樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、内部平均気泡径が35〜140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有することを特徴とする断熱材を提供する。   In order to achieve the above object, the present invention fills polystyrene resin pre-expanded particles obtained by heating expandable polystyrene resin particles containing a foaming agent in polystyrene resin particles into a mold cavity and heats them. In the heat insulating material comprising a polystyrene-based resin foam molded article obtained by in-mold foam molding, in the state of pre-expanded particles in which the expandable polystyrene-based resin particles are heated and expanded to a bulk expansion ratio of 50 times, The internal average bubble diameter is in the range of 35 to 140 μm, the value of the surface layer part average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20, and the open cell ratio is 10% or less. Provided is a heat insulating material having a bubble structure.

本発明の断熱材において、嵩発泡倍数X倍に発泡させたときの予備発泡粒子の内部平均気泡径D’を、次式(1) In the heat insulating material of the present invention, the internal average cell diameter D 1 ′ of the pre-expanded particles when expanded to the bulk expansion ratio X times is expressed by the following formula (1).

Figure 2012077115
Figure 2012077115

(式中、Dは嵩発泡倍数50倍に換算した発泡粒子の内部平均気泡径(μm)を表し、D’は嵩発泡倍数X倍に発泡させたときの発泡粒子の内部平均気泡径(μm)を表す)を用いて嵩発泡倍数50倍に換算した予備発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たすことが好ましい。 (In the formula, D 1 represents the internal average cell diameter (μm) of the expanded particles converted to a bulk expansion ratio of 50 times, and D 1 ′ represents the internal average cell diameter of the expanded particles when expanded to a bulk expansion ratio X times) It is preferable that the internal average cell diameter D 1 of the pre-expanded particles converted to a bulk expansion ratio of 50 times using (representing (μm)) satisfies the relationship of 35 μm ≦ D 1 ≦ 140 μm.

本発明の断熱材において、前記内部平均気泡径が40〜120μmの範囲内であることが好ましい。   The heat insulating material of this invention WHEREIN: It is preferable that the said internal average bubble diameter exists in the range of 40-120 micrometers.

本発明の断熱材において、前記連続気泡率が8%以下であることが好ましい。   In the heat insulating material of the present invention, the open cell ratio is preferably 8% or less.

本発明の断熱材において、前記表層部平均気泡径/内部平均気泡径の値が0.90〜1.10の範囲内であることが好ましい   In the heat insulating material of the present invention, the surface layer part average bubble diameter / internal average bubble diameter value is preferably in the range of 0.90 to 1.10.

本発明の断熱材において、ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を含むことが好ましい。   The heat insulating material of the present invention preferably contains 5.0 parts by mass or less of an inorganic cell nucleating agent with respect to 100 parts by mass of the polystyrene resin.

本発明の断熱材において、前記無機気泡核剤がタルクであることが好ましい。   In the heat insulating material of the present invention, the inorganic cell nucleating agent is preferably talc.

また本発明は、スチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し、成形型を蒸気加熱し、型内発泡成形して得られたスチレン系樹脂発泡成形体からなる断熱材であって、
発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’を、次式(2)
The present invention also relates to a heat insulating material comprising a styrene resin foam molded article obtained by filling pre-expanded particles of styrene resin into a cavity of a mold, steam-heating the mold, and foam-molding in the mold. ,
In the state when foaming is performed at the expansion ratio X times, the internal average cell diameter D 2 ′ of the foam particles fused together in the foamed molded product is expressed by the following formula (2):

Figure 2012077115
Figure 2012077115

(式中、Dは発泡倍数50倍に換算した発泡成形体中の発泡粒子の内部平均気泡径(μm)を表し、D’は発泡倍数X倍に発泡させたときの発泡成形体中の発泡粒子の内部平均気泡径(μm)を表す)を用いて発泡倍数50倍に換算した発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たし、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ発泡成形体の連続気泡率が10%以下である気泡構造を有することを特徴とする断熱材を提供する。 (Wherein, D 2 represents the average internal cell diameter of the expanded beads of foamed molded body in terms of 50-fold expansion ratio ([mu] m), D 2 'is in the foamed molded product when foamed in expansion ratio X times the average internal cell diameter average internal cell diameter D 2 of the expanded beads of foamed molded body in terms of expansion ratio 50 times using a representative of the ([mu] m)) is, satisfies the relationship of 35 [mu] m ≦ D 2 ≦ 140 .mu.m of the foamed particles The foamed particles have a cell structure in which the value of the surface layer part average cell diameter / internal average cell diameter is in the range of 0.80 to 1.20, and the foamed molded product has an open cell ratio of 10% or less. A heat insulating material characterized by the above is provided.

また本発明は、樹脂供給装置内でポリスチレン系樹脂に発泡剤を添加、混練し、発泡剤含有溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度の冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る工程、
得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg−5)℃以上の温度で加熱処理を行って発泡性ポリスチレン系樹脂粒子を得る工程、
次いで、得られた発泡性ポリスチレン系樹脂粒子を加熱し、前記式(1)を用いて嵩発泡倍数50倍に換算した予備発泡粒子の内部平均気泡径Dが、35〜140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有するポリスチレン系樹脂予備発泡粒子を作製する工程、
次いで、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し加熱し、型内発泡成形して断熱材を得る工程、とを含むことを特徴とする断熱材の製造方法。
Further, the present invention adds a foaming agent to a polystyrene resin in a resin supply device, kneads, and glass transition of expandable polystyrene resin particles from a small hole of a die attached to the tip of the resin supply device with a foaming agent-containing molten resin. Extruding into a cooling liquid having a temperature lower than Tg, cutting the extrudate at the same time as extruding, and cooling and solidifying the extrudate by contact with the liquid to obtain expandable polystyrene resin particles;
A step of obtaining the expandable polystyrene resin particles by subjecting the obtained expandable polystyrene resin particles to a heat treatment at a temperature of (glass transition temperature Tg-5 of the expandable polystyrene resin particles) ° C. or higher;
Then heated resulting expandable polystyrene resin particles, wherein the formula (1) is the average internal cell diameter D 1 of the pre-expanded particles in terms of 50-fold volume expansion ratio by using, in the range of 35~140μm Yes, a polystyrene resin pre-expanded particle having a cell structure in which the value of the average cell diameter of the surface layer / the average cell diameter of the internal layer is in the range of 0.80 to 1.20 and the open cell ratio is 10% or less is prepared. The process of
Then, filling the polystyrene resin pre-expanded particles in a cavity of a mold, heating, and foam-molding in the mold to obtain a heat insulating material, a method for manufacturing a heat insulating material.

本発明の断熱材の製造方法において、前記押出物を切断する際の冷却用液体の温度が20〜60℃の範囲内であることが好ましい。   In the manufacturing method of the heat insulating material of this invention, it is preferable that the temperature of the cooling liquid at the time of cut | disconnecting the said extrudate is in the range of 20-60 degreeC.

本発明の断熱材の製造方法において、ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を添加することが好ましい。   In the manufacturing method of the heat insulating material of this invention, it is preferable to add an inorganic cell nucleating agent of 5.0 mass parts or less with respect to 100 mass parts of polystyrene resins.

本発明の断熱材の製造方法において、前記無機気泡核剤がタルクであることが好ましい。   In the method for producing a heat insulating material of the present invention, the inorganic cell nucleating agent is preferably talc.

本発明の断熱材は、発泡性ポリスチレン系樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、内部平均気泡径が35〜140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有する予備発泡粒子を型内発泡成形して得られたものなので、発泡粒子全体にわたって比較的小さく均一で独立した気泡が形成され、これを型内発泡成形して得られる発泡成形体は、曲げ強度、圧縮強度、耐衝撃性などの機械強度に優れたものとなる。   The heat insulating material of the present invention is a state of pre-expanded particles obtained by heating expandable polystyrene resin particles to be expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 μm, and the surface layer part average Obtained by in-mold foam molding of pre-expanded particles having a cell structure in which the value of cell diameter / internal average cell size is in the range of 0.80 to 1.20 and the open cell ratio is 10% or less. As a result, relatively small, uniform and independent bubbles are formed throughout the foam particles, and the foam molded product obtained by in-mold foam molding has excellent mechanical strength such as bending strength, compressive strength, and impact resistance. It will be a thing.

本発明の断熱材は、発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’を前記式(2)を用いて発泡倍数50倍に換算した発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たし、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ発泡成形体の連続気泡率が10%以下である気泡構造を有するものなので、断熱材全体にわたって比較的小さく均一で独立した気泡が形成され、曲げ強度、圧縮強度、耐衝撃性などの機械強度に優れたものとなる。 In the heat insulating material of the present invention, the internal average cell diameter D 2 ′ of the foamed particles fused together in the foamed molded product in the state where the foaming molding is multiplied by X times is used by the above formula (2). Te average internal cell diameter D 2 of the expanded beads of foamed molded body in terms of expansion ratio 50 times, satisfies the relationship of 35 [mu] m ≦ D 2 ≦ 140 .mu.m, the surface layer portion average cell diameter / internal average cell diameter of the expanded particles Since the value is within the range of 0.80 to 1.20 and the foamed molded body has a cell structure in which the open cell ratio is 10% or less, relatively small, uniform and independent cells are formed throughout the heat insulating material. Therefore, it is excellent in mechanical strength such as bending strength, compressive strength, and impact resistance.

本発明の断熱材の製造方法は、溶融押出法によって得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg−5)℃以上の温度で加熱処理を行って発泡性ポリスチレン系樹脂粒子を得ることによって、加熱発泡させた際に発泡粒子全体にわたって比較的小さく均一で独立した気泡が形成され、これを型内発泡成形することによって曲げ強度、圧縮強度、耐衝撃性などの機械強度に優れた断熱材を得ることができる。   In the method for producing a heat insulating material of the present invention, expandable polystyrene resin particles obtained by a melt extrusion method are subjected to heat treatment at a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher. By obtaining expandable polystyrene resin particles, relatively small, uniform and independent bubbles are formed throughout the expanded particles when heated and foamed, and bending strength, compressive strength, and impact resistance are achieved by in-mold foam molding. It is possible to obtain a heat insulating material excellent in mechanical strength such as property.

本発明の断熱材の製造方法に用いられる製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus used for the manufacturing method of the heat insulating material of this invention.

(断熱材)
本発明の断熱材は、ポリスチレン系樹脂粒子中に発泡剤を含む発泡性ポリスチレン系樹脂粒子を加熱して得られたポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し加熱し、型内発泡成形して得られたポリスチレン系樹脂発泡成形体からなる断熱材において、前記発泡性ポリスチレン系樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、内部平均気泡径が35〜140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有することを特徴とする。なお、前記予備発泡粒子の嵩発泡倍数とは、後述するポリスチレン系樹脂予備発泡粒子の嵩発泡倍数の測定方法によって測定された嵩発泡倍数のことを言う。
(Insulation material)
The heat insulating material of the present invention fills and heats the polystyrene resin pre-expanded particles obtained by heating the expandable polystyrene resin particles containing a foaming agent in the polystyrene resin particles in the mold cavity. In a heat insulating material comprising a polystyrene-based resin foam molded article obtained by foam molding, in the state of pre-expanded particles obtained by heating the expandable polystyrene-based resin particles and foaming to a bulk foam multiple of 50 times, the internal average cell diameter Is in the range of 35 to 140 μm, the surface layer part average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20, and the open cell ratio is 10% or less. It is characterized by that. In addition, the bulk foaming factor of the said pre-expanded particle means the bulk foaming factor measured by the measuring method of the bulk foaming factor of the polystyrene-type resin pre-expanded particle mentioned later.

前記発泡性ポリスチレン系樹脂粒子において、加熱して発泡させた予備発泡粒子の嵩発泡倍数が50倍以外である場合、その予備発泡粒子の内部平均気泡径D’は、前記式(1)を用いて嵩発泡倍数50倍に換算し、その内部平均気泡径Dが35μm≦D≦140μmの関係を満たすことが好ましい。これは該予備発泡粒子を型内発泡成型して得られたポリスチレン系樹脂発泡成形体からなる断熱材の気泡構造についても同じである。 In the expandable polystyrene resin particles, when the bulk expansion ratio of the pre-expanded particles heated and expanded is other than 50 times, the internal average cell diameter D 1 ′ of the pre-expanded particles is expressed by the formula (1). It is preferable that the average foam cell diameter D 1 satisfies the relationship of 35 μm ≦ D 1 ≦ 140 μm. The same applies to the cell structure of a heat insulating material made of a polystyrene resin foam molded body obtained by in-mold foam molding of the pre-expanded particles.

前記発泡性ポリスチレン系樹脂粒子は、加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、内部平均気泡径が35〜140μmの範囲内であり、40〜120μmの範囲内である。前記内部平均気泡径が35μm未満であると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体は連続気泡率が増加して独立気泡が減少し、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。前記内部平均気泡径が140μmを超えると、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。   The expandable polystyrene resin particles are in the form of expanded particles that are heated and expanded to a bulk expansion ratio of 50 times, and have an internal average cell diameter in the range of 35 to 140 μm and in the range of 40 to 120 μm. When the internal average cell diameter is less than 35 μm, the polystyrene-based resin foam molded article obtained by in-mold foam molding increases the open cell ratio and decreases closed cells, bending strength, compressive strength, impact resistance, etc. The mechanical strength of this will decrease. When the internal average bubble diameter exceeds 140 μm, mechanical strength such as bending strength, compressive strength, and impact resistance is lowered.

前記発泡性ポリスチレン系樹脂粒子は、加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、0.90〜1.10の範囲内であることが好ましい。この表層部平均気泡径/内部平均気泡径の値が前記範囲から外れると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。なお、本発明において「表層部平均気泡径」とは、発泡性ポリスチレン系樹脂粒子を嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、その中心を通るように該予備発泡粒子を切断した断面において、予備発泡粒子の表面からの深さが発泡粒子の直径の1/4までの領域を「表層部」と定義し、該表層部にある気泡の平均気泡径のことを指し、また「内部平均気泡径」とは、同じ予備発泡粒子の該表層部よりも深い領域を「内部」と定義し、該内部にある気泡の平均気泡径のことを指している。   The expandable polystyrene resin particles are in the form of expanded particles heated to be expanded to a bulk expansion ratio of 50 times, and the value of the surface layer part average cell diameter / internal average cell diameter is in the range of 0.80 to 1.20. It is preferable that it is in the range of 0.90 to 1.10. When the value of the surface layer part average cell diameter / internal average cell diameter is out of the above range, the mechanical strength such as bending strength, compressive strength, and impact resistance of the polystyrene resin foam molded product obtained by in-mold foam molding is lowered. Resulting in. In the present invention, the “surface layer average cell diameter” is a state of pre-expanded particles in which expandable polystyrene resin particles are expanded to a bulk expansion ratio of 50 times, and the pre-expanded particles are cut through the center. In the cross section, a region where the depth from the surface of the pre-expanded particles is up to 1/4 of the diameter of the expanded particles is defined as “surface layer portion”, which means the average cell diameter of the bubbles in the surface layer portion, and The “inner average bubble diameter” is defined as “inner” in a region deeper than the surface layer portion of the same pre-expanded particle, and refers to the average bubble diameter of the bubbles inside.

前記発泡性ポリスチレン系樹脂粒子は、加熱して嵩発泡倍数50倍に発泡させた発泡粒子の状態で、連続気泡率が10%以下であり、8%以下であることが好ましい。前記連続気泡率が10%を超えると、型内発泡成形して得られる断熱材の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。   The expandable polystyrene resin particles are in the state of expanded particles heated to be expanded to a bulk expansion ratio of 50 times, and the open cell ratio is 10% or less, preferably 8% or less. If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the heat insulating material obtained by in-mold foam molding will decrease.

前記発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、なかでもポリスチレンがより好ましい。   In the expandable polystyrene resin particles, the polystyrene resin is not particularly limited, and examples thereof include styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and the like. Examples include homopolymers of styrene monomers or copolymers thereof, and polystyrene resins containing 50% by mass or more of styrene are preferable, and polystyrene is more preferable.

また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。   Further, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. As, for example, alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl In addition to fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.

また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよく、添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などが挙げられる。   If a polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foam molded article. Examples thereof include rubber-modified polystyrene resins to which a diene rubbery polymer such as a polymer, ethylene-propylene-nonconjugated diene three-dimensional copolymer is added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.

原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電断熱材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料の中から、質量平均分子量Mwが12万〜40万の範囲となる原料を適宜選択し、又は質量平均分子量Mwが異なる複数のリサイクル原料を適宜組み合わせて用いることができる。   As a polystyrene resin used as a raw material, a polystyrene resin (virgin polystyrene) that is not a recycled material, such as a commercially available ordinary polystyrene resin, a polystyrene resin newly produced by a method such as suspension polymerization, can be used. In addition, a recycled raw material obtained by regenerating a used polystyrene-based resin foam molded article can be used. As this recycled material, used polystyrene-based resin foam moldings such as fish boxes, heat insulating materials for household appliances, trays for food packaging, etc. are collected and recycled from the recycled materials recovered by the limonene dissolution method or heating volume reduction method. A raw material having a mass average molecular weight Mw in the range of 120,000 to 400,000 can be appropriately selected, or a plurality of recycled raw materials having different mass average molecular weights Mw can be used in appropriate combination.

前記発泡性ポリスチレン系樹脂粒子に用いられる発泡剤は、特に限定されないが、例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン等の脂肪族炭化水素、ジメチルエーテル、ジエチルエーテル等のエーテル類、メタノール、エタノール等の各種アルコール類、炭酸ガス、窒素、水等が使用可能である。この内、脂肪族炭化水素が好適であり、更には、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン単独もしくはこれらの混合物がより好適である。また、炭素数5の炭化水素であるノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン単独もしくはこれらの混合物が特に好適である。その中でもイソペンタンとノルマルペンタンとの一方又は両方の混合物であることが好ましい。また、前記炭素数5の炭化水素を主体とし、沸点が20℃以上であり、炭素数5の炭化水素以外の発泡剤(例えばノルマルブタン、イソブタン、プロパン、炭酸ガス等)を含んでいてもよい。
この発泡剤の添加量は、ポリスチレン系樹脂100質量部に対し2〜15質量部の範囲が好ましく、3〜8質量部の範囲がより好ましく、4〜7質量部の範囲が特に好ましい。
The foaming agent used for the expandable polystyrene resin particles is not particularly limited. For example, aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, and cyclopentane, and ethers such as dimethyl ether and diethyl ether. , Various alcohols such as methanol and ethanol, carbon dioxide, nitrogen, water and the like can be used. Of these, aliphatic hydrocarbons are preferred, and normal butane, isobutane, normal pentane, isopentane alone or a mixture thereof is more preferred. Further, normal pentane, isopentane, neopentane, cyclopentane, cyclopentadiene alone or a mixture thereof, which is a hydrocarbon having 5 carbon atoms, is particularly suitable. Of these, a mixture of one or both of isopentane and normal pentane is preferable. Further, it mainly comprises the hydrocarbon having 5 carbon atoms and has a boiling point of 20 ° C. or higher, and may contain a blowing agent other than the hydrocarbon having 5 carbon atoms (for example, normal butane, isobutane, propane, carbon dioxide gas, etc.). .
The amount of the foaming agent added is preferably in the range of 2 to 15 parts by mass, more preferably in the range of 3 to 8 parts by mass, and particularly preferably in the range of 4 to 7 parts by mass with respect to 100 parts by mass of the polystyrene resin.

前記発泡性ポリスチレン系樹脂粒子には、ポリスチレン系樹脂100質量部に対し、気泡核剤として、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素などの無機微粉末または化学発泡剤を添加することが好ましい。この気泡核剤としては、タルクが特に好ましい。前記気泡核剤の添加量は、熱可塑性樹脂100質量部に対し5質量部以下が好ましく、0.05〜2.0質量部の範囲がより好ましい。前記化学発泡剤としては、例えば、アゾジカルボンアミド、N,N’−ジニトロソペンタメチレンテトラミン、4,4’−オキシビス(ベンゼンスルホニルヒドラジド)、炭酸水素ナトリウムなどが挙げられる。   To the expandable polystyrene resin particles, an inorganic fine powder or a chemical foaming agent such as talc, calcium silicate, synthetic or naturally produced silicon dioxide is added as a cell nucleating agent to 100 parts by mass of the polystyrene resin. It is preferable. As the bubble nucleating agent, talc is particularly preferable. The amount of the cell nucleating agent added is preferably 5 parts by mass or less, more preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin. Examples of the chemical foaming agent include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, 4,4′-oxybis (benzenesulfonylhydrazide), sodium hydrogen carbonate, and the like.

本発明の好ましい実施形態として、前記気泡核剤として、タルクなどの無機粉末又は化学発泡剤をベース樹脂、好ましくはポリスチレン系樹脂中に均一に分散させたマスターバッチ型気泡核剤を用いることが好ましい。このマスターバッチ型気泡核剤を用いることによって、樹脂供給装置内でポリスチレン系樹脂と気泡核剤とを混合する際に、無機粉末又は化学発泡剤をポリスチレン系樹脂中に非常に均一な状態で分散させることができる。   As a preferred embodiment of the present invention, it is preferable to use a master batch type cell nucleating agent in which an inorganic powder such as talc or a chemical foaming agent is uniformly dispersed in a base resin, preferably a polystyrene resin, as the cell nucleating agent. . By using this master batch type cell nucleating agent, when mixing polystyrene resin and cell nucleating agent in the resin feeder, inorganic powder or chemical foaming agent is dispersed in polystyrene resin in a very uniform state. Can be made.

前記発泡性ポリスチレン系樹脂粒子には、前記発泡剤及び気泡核剤の他に、得られる発泡性ポリスチレン系樹脂粒子及び発泡成形体の物性を損なわない範囲内において、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよい。   In the expandable polystyrene resin particles, in addition to the foaming agent and the cell nucleating agent, in the range that does not impair the properties of the resulting expandable polystyrene resin particles and the foamed molded article, a binding inhibitor, a cell regulator, You may add additives, such as a crosslinking agent, a filler, a flame retardant, a flame retardant adjuvant, a lubricant, and a coloring agent.

本発明の断熱材は、発泡性ポリスチレン系樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、内部平均気泡径が35〜140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有する予備発泡粒子を型内発泡成形して得られたものなので、発泡粒子全体にわたって比較的小さく均一で独立した気泡が形成され、これを型内発泡成形して得られる発泡成形体は、曲げ強度、圧縮強度、耐衝撃性などの機械強度に優れたものとなる。   The heat insulating material of the present invention is a state of pre-expanded particles obtained by heating expandable polystyrene resin particles to be expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 μm, and the surface layer part average Obtained by in-mold foam molding of pre-expanded particles having a cell structure in which the value of cell diameter / internal average cell size is in the range of 0.80 to 1.20 and the open cell ratio is 10% or less. As a result, relatively small, uniform and independent bubbles are formed throughout the foam particles, and the foam molded product obtained by in-mold foam molding has excellent mechanical strength such as bending strength, compressive strength, and impact resistance. It will be a thing.

(断熱材の製造方法)
次に、図面を参照して本発明に係る断熱材の製造方法の実施形態を説明する。
本発明に係る断熱材の製造方法は、樹脂供給装置内でポリスチレン系樹脂に発泡剤を添加、混練し、発泡剤含有溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度の冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る造粒工程、
得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg−5)℃以上の温度で加熱処理を行って発泡性ポリスチレン系樹脂粒子を得る再加熱工程、
次いで、得られた発泡性ポリスチレン系樹脂粒子を加熱し、前記式(1)を用いて嵩発泡倍数50倍に換算した予備発泡粒子の内部平均気泡径Dが、35〜140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有するポリスチレン系樹脂予備発泡粒子を作製する予備発泡工程、
次いで、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し加熱し、型内発泡成形して断熱材を得る成形工程、とを含むことを特徴としている。
(Insulation material manufacturing method)
Next, an embodiment of a method for manufacturing a heat insulating material according to the present invention will be described with reference to the drawings.
In the method for producing a heat insulating material according to the present invention, a foaming agent is added to and kneaded with a polystyrene-based resin in a resin supply device, and the foaming agent-containing molten resin is expanded from a small hole in a die attached to the tip of the resin supply device. Extruded into a cooling liquid having a temperature lower than the glass transition temperature Tg of the resin-based resin particles, and simultaneously extruding and cutting the extrudate, and cooling and solidifying the extrudate by contact with the liquid to obtain expandable polystyrene resin particles Grain process,
A reheating step of obtaining the expandable polystyrene resin particles by subjecting the obtained expandable polystyrene resin particles to a heat treatment at a temperature of (glass transition temperature Tg-5 of the expandable polystyrene resin particles) ° C. or higher.
Then heated resulting expandable polystyrene resin particles, wherein the formula (1) is the average internal cell diameter D 1 of the pre-expanded particles in terms of 50-fold volume expansion ratio by using, in the range of 35~140μm Yes, a polystyrene resin pre-expanded particle having a cell structure in which the value of the average cell diameter of the surface layer / the average cell diameter of the internal layer is in the range of 0.80 to 1.20 and the open cell ratio is 10% or less is prepared. Pre-foaming process,
Next, the method includes a molding step of filling the polystyrene-based resin pre-expanded particles in a cavity of a molding die, heating the resultant, and foam-molding in the die to obtain a heat insulating material.

(造粒工程)
図1は、前記造粒工程で発泡性ポリスチレン系樹脂粒子を製造するために用いられる製造装置の一例を示す構成図である。
本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性樹脂粒子を冷却水と分離すると共に脱水乾燥して発泡性樹脂粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性樹脂粒子を貯留する貯留容器11とを備えて構成されている。
(Granulation process)
FIG. 1 is a configuration diagram showing an example of a production apparatus used for producing expandable polystyrene resin particles in the granulation step.
The manufacturing apparatus of this example includes an extruder 1 as a resin supply apparatus, a die 2 having a large number of small holes attached to the tip of the extruder 1, and a raw material supply hopper that inputs resin raw materials into the extruder 1. 3, a high-pressure pump 4 for press-fitting the foaming agent into the molten resin in the extruder 1 through the foaming agent supply port 5, and a resin discharge surface provided with a small hole in the die 2 so as to contact the cooling water. Cooling from the cutting chamber 7 into which the cooling water is circulated and supplied to the room, the cutter 6 rotatably provided in the cutting chamber 7 so as to cut the resin extruded from the small hole of the die 2, and the cutting chamber 7 A dehydrating dryer 10 with a solid-liquid separation function and a dehydrating dryer 10 with a solid-liquid separation function are obtained by separating foamable resin particles carried along with the flow of water from cooling water and dehydrating and drying to obtain expandable resin particles. The cooling water separated in A water tank 8, a high-pressure pump 9 for sending cooling water in the water tank 8 to the cutting chamber 7, and a storage container 11 for storing foamable resin particles dehydrated and dried by a dehydration dryer 10 with a solid-liquid separation function; It is configured with.

なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。   As the extruder 1, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.

図1に示す製造装置を用い、発泡性ポリスチレン系樹脂粒子を製造するには、まず、原料のポリスチレン系樹脂、気泡核剤、必要に応じて添加される難燃剤などの所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。   In order to produce expandable polystyrene resin particles using the production apparatus shown in FIG. 1, first, a desired additive such as a raw material polystyrene resin, a cell nucleating agent, and a flame retardant added if necessary is weighed. The raw material supply hopper 3 is then charged into the extruder 1. The raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount for each lot may be reduced. A plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.

押出機1内にポリスチレン系樹脂、気泡核剤、その他の任意の添加剤を供給後、樹脂を加熱溶融し、その溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入して溶融樹脂に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。   After supplying polystyrene-based resin, bubble nucleating agent, and other optional additives into the extruder 1, the resin is heated and melted, and the molten resin is transferred to the die 2 side, and the high-pressure pump 4 is supplied from the blowing agent supply port 5. The foaming agent is pressed into the melted resin, and the foaming agent is mixed with the molten resin. Through the foreign matter removing screen provided in the extruder 1 as necessary, the melt is further kneaded and moved to the tip side, The added melt is extruded through a small hole in the die 2 attached to the tip of the extruder 1.

ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡性ポリスチレン系樹脂粒子が得られる。   The resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 in which cooling water is circulated and supplied into the chamber, and the resin extruded from the small holes of the die 2 is placed in the cutting chamber 7. A cutter 6 is provided so as to be rotatable. When the melt with the blowing agent added is extruded through a small hole in the die 2 attached to the tip of the extruder 1, the melt is cut into granules and simultaneously cooled in contact with cooling water. can get.

得られた発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥する。乾燥された発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。   The obtained expandable polystyrene resin particles are transferred from the cutting chamber 7 to the flow of cooling water and carried to the dehydrating dryer 10 with a solid-liquid separation function, where the expandable polystyrene resin particles are separated from the cooling water. And dehydrated and dried. The dried expandable polystyrene resin particles are stored in the storage container 11.

前記造粒工程において、前記冷却水の温度は、発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度であり、20〜60℃の範囲とすることが好ましい。冷却水の温度が発泡性ポリスチレン系樹脂粒子のガラス転移温度Tgを超えると、発泡性ポリスチレン系樹脂粒子同士が融着し易くなり、多数個の粒子同士が結合して塊状になった不良品の発生率が高くなる。冷却水の温度が20℃未満であると、得られる発泡性ポリスチレン系樹脂粒子が球状化せず、また割れが生じる場合がある。   In the granulation step, the temperature of the cooling water is a temperature lower than the glass transition temperature Tg of the expandable polystyrene resin particles, and is preferably in the range of 20 to 60 ° C. When the temperature of the cooling water exceeds the glass transition temperature Tg of the expandable polystyrene resin particles, the expandable polystyrene resin particles are easily fused together, and a defective product in which a large number of particles are bonded to form a lump. Incidence increases. If the temperature of the cooling water is less than 20 ° C., the resulting expandable polystyrene resin particles may not be spheroidized and cracks may occur.

また、前記冷却水は0.5MPa以上に加圧しておくことが好ましい。この冷却水を加圧するには、前記冷却水の循環流路のうち、高圧ポンプ9の吐出側からカッティング室7を通り、固液分離機能付き脱水乾燥機10の入口側に到る部分を加圧領域とし、高圧ポンプ9の吐出圧力を高めることにより実行し得る。前記冷却水の圧力は、0.6〜2.0MPaの範囲とすることが好ましく、0.8〜1.5MPaの範囲がより好ましい。   The cooling water is preferably pressurized to 0.5 MPa or more. In order to pressurize the cooling water, a portion of the circulation path of the cooling water passing through the cutting chamber 7 from the discharge side of the high-pressure pump 9 to the inlet side of the dehydrating dryer 10 with a solid-liquid separation function is added. It can be executed by increasing the discharge pressure of the high-pressure pump 9 in the pressure region. The pressure of the cooling water is preferably in the range of 0.6 to 2.0 MPa, and more preferably in the range of 0.8 to 1.5 MPa.

(再加熱工程)
前記造粒工程で得られた発泡性ポリスチレン系樹脂粒子は、次に、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg−5)℃以上の温度で加熱処理を行って、本発明に係る前記発泡性ポリスチレン系樹脂粒子とする。
この再加熱工程は、前記造粒工程で発泡性ポリスチレン系樹脂粒子を製造した直後に、連続して実施してもよいし、前記造粒工程で発泡性ポリスチレン系樹脂粒子を製造後、貯蔵しておき、任意の貯蔵期間経過後に取り出して再加熱工程を実施してもよい。
(Reheating process)
The expandable polystyrene resin particles obtained in the granulation step are then subjected to a heat treatment at a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or more, and the above-mentioned according to the present invention. Let it be an expandable polystyrene resin particle.
This reheating step may be carried out continuously immediately after producing the expandable polystyrene resin particles in the granulation step, or stored after producing the expandable polystyrene resin particles in the granulation step. In addition, it may be taken out after an arbitrary storage period and the reheating step may be performed.

この再加熱工程は、例えば、温度調節機能を持った耐圧容器内に、熱媒体、例えば水を入れ、前記温度範囲内の温度に加熱・保温しておき、これに前記造粒工程で得られた発泡性ポリスチレン系樹脂粒子を投入することによって効率よく行うことができる。   In this reheating step, for example, a heat medium such as water is placed in a pressure-resistant container having a temperature control function, and heated and kept at a temperature within the temperature range, and obtained in the granulation step. It can be carried out efficiently by introducing the expanded polystyrene resin particles.

前記再加熱工程の加熱温度は、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg−5)℃以上の温度であればよく、より具体的には、後述する実施例で用いているTgが61℃の発泡性ポリスチレン系樹脂粒子の場合には、56℃以上とする。加熱温度の上限は、150℃以上としても良いが、樹脂粒子同士の融着を少なくする観点から150℃程度を上限とすることが好ましい。この場合の加熱温度は、60〜90℃の範囲とすることがより好ましい。この加熱温度が(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg−5)℃未満であると、得られる発泡性ポリスチレン系樹脂粒子を加熱発泡させて得られた発泡粒子の気泡が細かくならず、これを型内発泡成形して得られた発泡成形体の機械強度が低下するおそれがある。   The heating temperature in the reheating step may be a temperature equal to or higher than (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C., and more specifically, the Tg used in Examples described later is 61. In the case of expandable polystyrene resin particles at 0 ° C., the temperature is set to 56 ° C. or higher. Although the upper limit of heating temperature is good also as 150 degreeC or more, it is preferable to make about 150 degreeC into an upper limit from a viewpoint of reducing fusion | melting of resin particles. In this case, the heating temperature is more preferably in the range of 60 to 90 ° C. If this heating temperature is less than (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C., the foamed foam bubbles obtained by heating and foaming the resulting expandable polystyrene resin particles do not become fine, There is a possibility that the mechanical strength of the foam molded product obtained by foam molding in the mold is lowered.

前記再加熱工程での圧力は、1.5MPa以下であり、0.1〜1.0MPaの範囲が好ましく、0.1〜0.5MPaの範囲がより好ましい。この圧力が1.5MPaを超えると、得られる発泡成形体の機械強度が低下するおそれがある。さらに再加熱工程で用いる耐圧容器の耐圧性能を上げる為に容器を肉厚にする必要があり、質量が重くなることから好ましくない。   The pressure in the reheating step is 1.5 MPa or less, preferably in the range of 0.1 to 1.0 MPa, and more preferably in the range of 0.1 to 0.5 MPa. When this pressure exceeds 1.5 MPa, the mechanical strength of the obtained foamed molded product may be lowered. Furthermore, it is necessary to make the container thicker in order to increase the pressure resistance of the pressure vessel used in the reheating process, which is not preferable because the mass becomes heavy.

前記再加熱工程の加熱処理時間は、特に限定されないが、1〜10分間程度とすることが好ましく、1〜5分間程度がより好ましい。この加熱処理時間が短いと、造粒工程で得られた発泡性ポリスチレン系樹脂粒子の気泡構造を改善して発泡成形体の機械強度を向上させる効果が十分に得られなくなる。一方、加熱処理時間を長くすると、発泡性ポリスチレン系樹脂粒子の製造効率が低下してコスト上昇に繋がることから好ましくない。   The heat treatment time in the reheating step is not particularly limited, but is preferably about 1 to 10 minutes, and more preferably about 1 to 5 minutes. If this heat treatment time is short, the effect of improving the cellular structure of the expandable polystyrene resin particles obtained in the granulation step and improving the mechanical strength of the foamed molded article cannot be sufficiently obtained. On the other hand, if the heat treatment time is lengthened, the production efficiency of expandable polystyrene resin particles is lowered, leading to an increase in cost, which is not preferable.

この再加熱工程を終えた発泡性ポリスチレン系樹脂粒子は、表面改質剤などの添加剤の添加、乾燥処理などの必要な後処理後、ポリスチレン系樹脂予備発泡粒子を経て、断熱材の製造用に利用される。   The expandable polystyrene resin particles that have undergone this reheating step are used for the production of heat insulating materials after the necessary post-treatments such as addition of additives such as surface modifiers and drying treatments, and then through polystyrene resin pre-expanded particles. Used for

(予備発泡工程)
再加熱処理して得られた発泡性ポリスチレン系樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、ポリスチレン系樹脂予備発泡粒子(以下、予備発泡粒子と記す)とする。この予備発泡粒子は、製造するべき断熱材の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度及び嵩発泡倍数は限定されないが、通常は0.010〜0.10g/cmの範囲内(嵩発泡倍数として10〜100倍の範囲内)とし、0.015〜0.050g/cmの範囲内とするのが好ましい。
(Pre-foaming process)
The expandable polystyrene resin particles obtained by the reheating treatment are pre-foamed by heating by steam heating or the like using a well-known apparatus and method in the field of producing foamed resin moldings, and polystyrene resin pre-foamed particles ( Hereinafter referred to as pre-expanded particles). The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the heat insulating material to be manufactured. In the present invention, the bulk density and the bulk foaming factor are not limited, but are usually in the range of 0.010 to 0.10 g / cm 3 (in the range of 10 to 100 times as the bulk foaming factor), 0.015 to It is preferable to be in the range of 0.050 g / cm 3 .

なお、本発明において予備発泡粒子の嵩密度及び嵩発泡倍数とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<予備発泡粒子の嵩密度>
メスシリンダに予備発泡粒子を500cmの目盛りまで充填する。但し、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cmの目盛りに達していれば、充填を終了する。次に、メスシリンダ内に充填した予備発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とする。次式により予備発泡粒子の嵩密度を算出する。
嵩密度(g/cm)=W/500
In the present invention, the bulk density and the bulk expansion ratio of the pre-expanded particles are those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
Fill the graduated cylinder with pre-expanded particles to a scale of 500 cm 3 . However, the graduated cylinder is visually observed from the horizontal direction, and if at least one pre-expanded particle reaches the scale of 500 cm 3 , the filling is finished. Next, the mass of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as W (g). The bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500

<予備発泡粒子の嵩発泡倍数>
また、予備発泡粒子の嵩発泡倍数は、次式により算出される数値である。
嵩発泡倍数=1/嵩密度(g/cm
<Bulk expansion ratio of pre-expanded particles>
Moreover, the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following equation.
Bulk foaming factor = 1 / bulk density (g / cm 3 )

前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、該予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、断熱材を製造する。   The pre-foamed particles are filled in the cavity of the mold using a well-known apparatus and method in the field of foamed resin moldings, heated by steam heating or the like, and foam-molded in the mold to insulate. Produce material.

本発明の断熱材は、発泡倍数X倍に発泡成形させたときの状態で、発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’は、前記式(2)を用いて発泡倍数50倍に換算し、その発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満す、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ発泡成形体の連続気泡率が10%以下である気泡構造を有することを特徴とする。 In the heat insulating material of the present invention, the foamed molded body is foam-molded at a foaming magnification X times, and the internal average cell diameter D 2 ′ of the fused particles in the foam-molded product is expressed by the above formula (2). Te terms of expansion ratio 50 times, average internal cell diameter D 2 of the expanded beads of the in foam molding body, fully to the relationship 35 [mu] m ≦ D 2 ≦ 140 .mu.m, the surface layer portion average cell diameter / average internal of the foamed particles It has a bubble structure in which the value of the bubble diameter is in the range of 0.80 to 1.20, and the open cell ratio of the foamed molded product is 10% or less.

本発明の断熱材は、発泡倍数X倍に発泡成形させたときの状態で、発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’は、前記式(2)を用いて発泡倍数50倍に換算し、その発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たす。前記内部平均気泡径Dが35μm未満であると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体は連続気泡率が増加して独立気泡が減少し、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。前記内部平均気泡径Dが140μmを超えると、曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。好ましいDの範囲は、40μm≦D≦120μmであり、より好ましい範囲は、45μm≦D≦115μmである。 In the heat insulating material of the present invention, the foamed molded body is foam-molded at a foaming magnification X times, and the internal average cell diameter D 2 ′ of the fused particles in the foam-molded product is expressed by the above formula (2). Then, the expansion ratio is converted to 50 times, and the internal average cell diameter D 2 of the expanded particles in the expanded molded product satisfies the relationship of 35 μm ≦ D 2 ≦ 140 μm. When the average internal cell diameter D 2 is less than 35 [mu] m, a polystyrene type resin foamed molded product obtained by mold foaming closed cell decreases with increasing open cell ratio, bending strength, compression strength, impact The mechanical strength such as property will decrease. Wherein the average internal cell diameter D 2 is greater than 140 .mu.m, flexural strength, compressive strength, mechanical strength such as impact resistance is lowered. A preferable range of D 2 is 40 μm ≦ D 2 ≦ 120 μm, and a more preferable range is 45 μm ≦ D 2 ≦ 115 μm.

本発明の断熱材は、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内である。この表層部平均気泡径/内部平均気泡径の値が前記範囲から外れると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。   As for the heat insulating material of this invention, the value of the surface layer part average cell diameter / internal average cell diameter of the said foaming particle exists in the range of 0.80-1.20. When the value of the surface layer part average cell diameter / internal average cell diameter is out of the above range, the mechanical strength such as bending strength, compressive strength, and impact resistance of the polystyrene resin foam molded product obtained by in-mold foam molding is lowered. Resulting in.

本発明の断熱材は、発泡成形体の連続気泡率が10%以下であり、8%以下であることが好ましい。前記連続気泡率が10%を超えると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。好ましい範囲は、0.90〜1.10であり、より好ましい範囲は、0.93〜1.06である。   In the heat insulating material of the present invention, the open cell ratio of the foamed molded product is 10% or less, and preferably 8% or less. If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the polystyrene-based resin foam molded product obtained by in-mold foam molding will decrease. A preferred range is 0.90 to 1.10, and a more preferred range is 0.93 to 1.06.

本発明のスチレン系樹脂発泡成形体は、発泡成形体の連続気泡率が10%以下であり、8%以下であることが好ましい。前記連続気泡率が10%を超えると、型内発泡成形して得られるポリスチレン系樹脂発泡成形体の曲げ強度、圧縮強度、耐衝撃性などの機械強度が低下してしまう。   In the styrene resin foam molded article of the present invention, the open cell ratio of the foam molded article is 10% or less, preferably 8% or less. If the open cell ratio exceeds 10%, the mechanical strength such as bending strength, compressive strength, impact resistance and the like of the polystyrene-based resin foam molded product obtained by in-mold foam molding will decrease.

本発明の断熱材の密度は特に限定されないが、通常は0.010〜0.10g/cm(嵩発泡倍数として10〜100倍)の範囲内とし、0.015〜0.050g/cmの範囲内とするのが好ましい。 Although the density of the heat insulating material of the present invention is not particularly limited, it is usually within a range of 0.010 to 0.10 g / cm 3 (10 to 100 times as a bulk foaming factor), and 0.015 to 0.050 g / cm 3. It is preferable to be within the range.

なお、本発明において断熱材の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した発泡成形体密度のことである。
<発泡成形体の密度>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
In addition, in this invention, the density of a heat insulating material is a foaming molding density measured by the method of JISK7122: 1999 "Measurement of foamed plastics and rubber-apparent density".
<Density of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test piece condition adjustment and measurement test pieces were cut out from samples that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C. ± 2 ° C. × 50% ± 5% or 27 ° C. ± 2 ° C. × 65% ± 5%. It has been left for more than an hour.

<発泡成形体の発泡倍数>
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数=1/密度(g/cm
<Folding multiple of foamed molded product>
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )

本発明の断熱材の製造方法は、溶融押出法によって得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg−5)℃以上の温度で且つ圧力0.5MPa以下の圧力で加熱処理を行って発泡性ポリスチレン系樹脂粒子を得ることによって、加熱発泡させた際に発泡粒子全体にわたって比較的小さく均一で独立した気泡が形成され、これを型内発泡成形することによって曲げ強度、圧縮強度、耐衝撃性などの機械強度に優れた断熱材を得ることができる。   In the method for producing a heat insulating material of the present invention, expandable polystyrene resin particles obtained by melt extrusion are used at a temperature of (glass transition temperature Tg-5 of expandable polystyrene resin particles) ° C. or higher and a pressure of 0.5 MPa. By carrying out heat treatment at the following pressure to obtain expandable polystyrene resin particles, relatively small, uniform and independent bubbles are formed throughout the expanded particles when heated and foamed, and this is subjected to in-mold foam molding. Thus, a heat insulating material having excellent mechanical strength such as bending strength, compressive strength and impact resistance can be obtained.

[実施例1]
(発泡性ポリスチレン系樹脂粒子の製造)
基材樹脂としてポリスチレン樹脂(東洋スチレン社製、商品名「HRM−10N」)に対して、タルクマスターバッチ(ポリスチレン樹脂 40質量%、タルク 60質量%)0.5質量部を予め混合したものを時間当たり160kg/hrの割合で口径90mmの単軸押出機内へ供給し、樹脂を加熱溶融させた後、発泡剤として樹脂100質量部に対して6質量部のイソペンタンを押出機途中より圧入した。そして、押出機内で樹脂と発泡剤を混練しつつ、押出機先端部での樹脂温度が170℃となるように冷却しながら、押出機に連接しヒーターにより290℃に保持した、直径0.6mm、ランド長さ3.0mmのノズルを200個有する造粒用ダイスを通して、温度50℃、水圧1.5MPaの冷却水が循環する水中カット室内に押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイスに密着させて、毎分3000回転で切断し、脱水乾燥して球形の発泡性ポリスチレン樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子は変形、ヒゲ等の発生もなく、平均粒径1.1mmであった。
次いで、再加熱処理を行うために内容積5.7リットルの攪拌機付オートクレーブに前記の発泡性ポリスチレン系樹脂粒子2000g、蒸留水2500g、ドデシルベンゼンスルホン酸ナトリウム0.5gを入れ、撹拌し分散させた。この分散液を窒素により0.2MPaに加圧し、80℃に昇温、3分間保持した後に冷却を行い、取り出し、洗浄、脱水、乾燥を行った。
得られた発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.05質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部を発泡性ポリスチレン系樹脂粒子の表面全面に均一に被覆した。
[Example 1]
(Manufacture of expandable polystyrene resin particles)
What mixed 0.5 mass part of talc masterbatches (polystyrene resin 40 mass%, talc 60 mass%) beforehand with respect to polystyrene resin (The product name "HRM-10N" by Toyo Styrene Co., Ltd.) as base resin. After feeding into a single screw extruder having a diameter of 90 mm at a rate of 160 kg / hr per hour and heating and melting the resin, 6 parts by mass of isopentane as a blowing agent was injected from the middle of the extruder as a part of 100 parts by mass of the resin. Then, while kneading the resin and the foaming agent in the extruder, while cooling so that the resin temperature at the tip of the extruder is 170 ° C., the diameter is 0.6 mm, connected to the extruder and held at 290 ° C. by the heater. Then, through a granulation die having 200 nozzles with a land length of 3.0 mm, it was extruded into an underwater cutting chamber in which cooling water with a temperature of 50 ° C. and a water pressure of 1.5 MPa circulated, and at the same time, 10 blades in the circumferential direction. A high-speed rotating cutter having the above structure was brought into close contact with a die, cut at 3000 rpm, dehydrated and dried to obtain spherical expandable polystyrene resin particles. The obtained expandable polystyrene resin particles had an average particle size of 1.1 mm without the occurrence of deformation or beard.
Next, in order to perform the reheating treatment, 2000 g of the above expandable polystyrene resin particles, 2500 g of distilled water, and 0.5 g of sodium dodecylbenzenesulfonate were placed in an autoclave with a stirrer having an internal volume of 5.7 liters, and stirred and dispersed. . This dispersion was pressurized to 0.2 MPa with nitrogen, heated to 80 ° C., held for 3 minutes, then cooled, taken out, washed, dehydrated, and dried.
Polyethylene glycol 0.03 parts by mass, zinc stearate 0.05 parts by mass, stearic acid monoglyceride 0.05 parts by mass, hydroxystearic acid triglyceride 0.05 parts by mass with respect to 100 parts by mass of the obtained expandable polystyrene resin particles. The part was uniformly coated on the entire surface of the expandable polystyrene resin particles.

(断熱材の製造)
前記の通り得られた発泡性ポリスチレン系樹脂粒子(以下、ビーズと記す場合がある)を円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.020g/cm(嵩発泡倍数50倍)であった。
続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ25mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、成形スチーム圧0.08MPa(ゲージ圧力)、金型加熱3秒、一方加熱10秒、逆一方加熱3秒、両面加熱10秒、水冷5秒、設定取出面圧0.02MPaの条件で成形を行った。
(Manufacture of insulation materials)
The expandable polystyrene resin particles obtained as described above (hereinafter may be referred to as beads) are supplied to a cylindrical batch type pre-foaming machine and heated with steam having a blowing pressure of 0.05 MPa. Obtained. The obtained pre-expanded particles had a bulk density of 0.020 g / cm 3 (bulk expansion ratio: 50 times).
Subsequently, the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 25 mm. , Molding steam pressure 0.08 MPa (gauge pressure), mold heating 3 seconds, one heating 10 seconds, reverse one heating 3 seconds, double side heating 10 seconds, water cooling 5 seconds, set extraction surface pressure 0.02 MPa went.

前記ビーズ、予備発泡粒子及び断熱材について、以下の測定法に従って、含有ガス量、発泡性ポリスチレン系樹脂粒子のTg、内部平均気泡径、表層部平均気泡径、連続気泡率、曲げ強度、圧縮強度及び落下試験の各試験項目について測定した。その結果を表1に記す。   For the beads, pre-expanded particles and heat insulating material, the amount of gas contained, Tg of expandable polystyrene resin particles, internal average cell diameter, surface layer average cell diameter, open cell ratio, bending strength, compressive strength according to the following measurement method And it measured about each test item of a drop test. The results are shown in Table 1.

<含有ガス量>
前記ビーズについて、加熱温度145℃、2時間で加熱減量を測定し、含有ガス量を算出した。
<Contained gas amount>
With respect to the beads, the heating loss was measured at a heating temperature of 145 ° C. for 2 hours, and the amount of gas contained was calculated.

<発泡性ポリスチレン系樹脂粒子のTgの測定>
Tgの測定は、JIS K7121の試験方法に準拠して測定した。具体的には、示差走査熱量計装置DSC6220型(エスアイアイ・ナノテクノロジー社製)を用い、測定容器に試料ビーズを6.5mg充填し、窒素ガス流量25ml/minのもと20℃/minの昇温速度で30℃から200℃まで昇温し、中間点ガラス転移温度をガラス転移温度とした。
<Measurement of Tg of Expandable Polystyrene Resin Particle>
Tg was measured according to the test method of JIS K7121. Specifically, using a differential scanning calorimeter DSC6220 type (manufactured by SII NanoTechnology Co., Ltd.), 6.5 mg of a sample bead is filled in a measurement container, and a nitrogen gas flow rate of 25 ml / min is 20 ° C./min. The temperature was raised from 30 ° C. to 200 ° C. at a rate of temperature rise, and the midpoint glass transition temperature was taken as the glass transition temperature.

<予備発泡粒子の内部平均気泡径の測定>
予備発泡粒子の内部平均気泡径は、ASTM D2842−69の試験方法に準拠して測定されたものをいう。具体的には、予備発泡粒子の中心近傍を通る平面で剃刀歯で切断し、切断面を走査型電子顕微鏡(JOEL社製 商品名「JSM−6360LV」)を用いて15倍に拡大して撮影する。
次に、撮影した画像をA4用紙上に印刷し、予備発泡粒子の表層に内接する第1の円(内接円)を描く。この第1の円の直径に対して、1/2の直径(1/4の半径)を有する第2の同心円を描きその第2の円の内側の任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を下記式により算出する。
平均弦長t=60/(気泡数×写真の倍率)
なお、直線を描くにあたっては、できるだけ直線が気泡に点接触することなく貫通した状態となるようにする。又、一部の気泡が直線に点接触してしまう場合には、この気泡も気泡数に含め、更に、直線の両端部が気泡を貫通することなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含める。
そして、算出された平均弦長tに基づいて次式により気泡径を算出することができる。
平均気泡径(mm)D=t/0.616
更に、撮影した画像の任意の5箇所において上述と同様の要領で平均気泡径を算出し、これらの平均気泡径の相加平均値を予備発泡粒子の内部平均気泡径とする。
<Measurement of internal average cell diameter of pre-expanded particles>
The internal average cell diameter of pre-expanded particles refers to that measured in accordance with the test method of ASTM D2842-69. Specifically, it is cut with a razor tooth on a plane passing through the vicinity of the center of the pre-foamed particle, and the cut surface is enlarged 15 times using a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL). To do.
Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the surface layer of the pre-expanded particles is drawn. A second concentric circle having a diameter of ½ (a radius of ¼) is drawn with respect to the diameter of the first circle, and a straight line having a length of 60 mm is placed at an arbitrary position inside the second circle. This drawing is performed, and the average chord length (t) of the bubbles is calculated from the number of bubbles existing on this straight line by the following formula.
Average string length t = 60 / (number of bubbles × photo magnification)
When drawing a straight line, the straight line should be penetrated as much as possible without making point contact with the bubbles. Also, if some of the bubbles come into point contact with a straight line, this bubble is included in the number of bubbles, and if both ends of the straight line are located in the bubble without penetrating the bubbles Includes the bubbles in which both ends of the straight line are located in the number of bubbles.
And based on the calculated average chord length t, the bubble diameter can be calculated by the following equation.
Average bubble diameter (mm) D = t / 0.616
Furthermore, the average bubble diameter is calculated in the same manner as described above at any five locations in the photographed image, and the arithmetic average value of these average bubble diameters is used as the internal average bubble diameter of the pre-expanded particles.

<予備発泡粒子の表層部平均気泡径>
予備発泡粒子の中心近傍を通る平面で剃刀歯で切断し、切断面を走査型電子顕微鏡(JOEL社製 商品名「JSM−6360LV」)を用いて15倍に拡大して撮影する。
次に、撮影した画像をA4用紙上に印刷し、予備発泡粒子の表層に内接する第1の円(内接円)を描く。この第1の円の直径に対して、1/2の直径(1/4の半径)を有する第2の同心円を描き、表層からその第2の円の間で任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を内部平均気泡径と同様にして算出し表層部平均気泡径とする。
<Surface layer average cell diameter of pre-expanded particles>
The surface is cut with a razor tooth on a plane passing through the vicinity of the center of the pre-foamed particles, and the cut surface is photographed with a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL) magnified 15 times.
Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the surface layer of the pre-expanded particles is drawn. A second concentric circle having a diameter of ½ (a radius of ¼) is drawn with respect to the diameter of the first circle, and a length of 60 mm is provided at an arbitrary position between the second circle from the surface layer. A straight line is drawn, and the average chord length (t) of the bubbles is calculated in the same manner as the internal average bubble diameter from the number of bubbles existing on the straight line, and is used as the surface layer average bubble diameter.

<断熱材の内部平均気泡径の測定>
断熱材を剃刀歯で切断し、その切断面を走査型電子顕微鏡(JOEL社製 商品名「JSM−6360LV」)を用いて15倍に拡大して撮影する。
次に、撮影した画像をA4用紙上に印刷し、切断面に存在する融着し合った発泡粒子の粒界部に内接する第1の円(内接円)を描く。この第1の円の直径に対して、1/2の直径(1/4の半径)を有する第2の同心円を描き、その第2の円の内側の任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を予備発泡粒子の内部平均気泡径と同様にして算出し、断熱材の内部平均気泡径を求めた。
<Measurement of internal average bubble diameter of heat insulating material>
The heat insulating material is cut with a razor tooth, and the cut surface is photographed with a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL) magnified 15 times.
Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the grain boundary portion of the fused foam particles existing on the cut surface is drawn. Draw a second concentric circle having a diameter of 1/2 (1/4 radius) with respect to the diameter of the first circle, and form a straight line with a length of 60 mm at any location inside the second circle. One was drawn and the average chord length (t) of the bubbles was calculated from the number of bubbles present on this straight line in the same manner as the internal average bubble size of the pre-expanded particles, and the internal average bubble size of the heat insulating material was obtained.

<断熱材の表層平均気泡径の測定>
断熱材を剃刀歯で切断し、その切断面を走査型電子顕微鏡(JOEL社製 商品名「JSM−6360LV」)を用いて15倍に拡大して撮影する。
次に、撮影した画像をA4用紙上に印刷し、切断面に存在する融着し合った発泡粒子の粒界部に内接する第1の円(内接円)を描く。この第1の円の直径に対して、1/2の直径(1/4の半径)を有する第2の同心円を描き、粒界部からその第2の円の間で任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を予備発泡粒子の内部平均気泡径と同様にして算出し、断熱材の表層部平均気泡径を求めた。
<Measurement of surface average bubble diameter of heat insulating material>
The heat insulating material is cut with a razor tooth, and the cut surface is photographed with a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL) magnified 15 times.
Next, the photographed image is printed on A4 paper, and a first circle (inscribed circle) inscribed in the grain boundary portion of the fused foam particles existing on the cut surface is drawn. A second concentric circle having a diameter of ½ (a radius of ¼) is drawn with respect to the diameter of the first circle, and the length is set at an arbitrary position between the second circle from the grain boundary portion. A straight line of 60 mm is drawn, and the average chord length (t) of the bubbles is calculated from the number of bubbles existing on the straight line in the same manner as the internal average bubble diameter of the pre-expanded particles, and the average bubble diameter of the surface layer portion of the heat insulating material is calculated. Asked.

<予備発泡粒子の連続気泡率の測定>
下記(1)〜(3)の各試験を行って、予備発泡粒子の連続気泡率(%)を求めた。
(1)予備発泡粒子の質量および体積測定
空気比較式比重計(東京サイエンス社製 1000型)の試料カップに約80%程度入る予備発泡粒子の質量をあらかじめ測定した〔予備発泡粒子質量A(g)〕。
つぎに予備発泡粒子をカップに入れ、そのカップを上記の比重計にセットし、1−1/2−1気圧法によって体積を測定した〔予備発泡粒子の体積B(cm)〕。
(2)予備発泡粒子の見かけ体積測定
電子天秤(大和製衡社製 HB3000)の計量皿を取り外して、その取り付け金具に金網製の容器を吊した状態で、上記容器を水中に浸漬して、水中での容器の質量を測定した〔水中での容器質量C(g)〕。
つぎに同容器に上記(1)で測定した予備発泡粒子の全量を入れ、同様にして水中に浸漬した状態で、容器と予備発泡粒子の合計の質量を測定した〔水中での合計質量D(g)〕。
そして次式により、予備発泡粒子の見かけ体積E(cm)を求めた。なお水1gは体積1cmとして換算した。
E=A+(C−D)
(3)連続気泡率
上記(1)(2)の結果から、次式により連続気泡率〔%〕を求めた。
連続気泡率(%)=(E−B)/E×100
<Measurement of open cell ratio of pre-expanded particles>
The following tests (1) to (3) were performed to determine the open cell ratio (%) of the pre-expanded particles.
(1) Mass and volume measurement of pre-expanded particles The mass of the pre-expanded particles that are about 80% into the sample cup of an air-comparing hydrometer (1000 type, manufactured by Tokyo Science) was measured in advance [pre-expanded particle mass A (g )]].
Next, the pre-expanded particles were put in a cup, the cup was set in the above-mentioned specific gravity meter, and the volume was measured by the 1-1 / 2-1 atmospheric pressure method [volume B (cm 3 ) of the pre-expanded particles].
(2) Apparent volume measurement of pre-expanded particles Remove the weighing pan from the electronic balance (HB3000, manufactured by Daiwa Seikan Co., Ltd.) and immerse the container in water with the wire mesh container suspended from the mounting bracket. The mass of the container in water was measured [the container mass C (g) in water].
Next, the total amount of the pre-expanded particles measured in the above (1) was put in the same container, and the total mass of the container and the pre-expanded particles was measured in the same manner as described above [total mass D in water D ( g)].
And the apparent volume E (cm < 3 >) of the pre-expanded particle was calculated | required by following Formula. In addition, 1 g of water was converted as a volume of 1 cm 3 .
E = A + (CD)
(3) Open cell ratio From the results of (1) and (2) above, the open cell ratio [%] was determined by the following equation.
Open cell ratio (%) = (E−B) / E × 100

<断熱材の連続気泡率の測定>
断熱材について、ASTM D2856−87記載の測定方法に準じて連続気泡率の測定を行った。すなわち6面共成形面等の表皮を有しない切断面で構成された試験体(25mmの立方体)を試料5個切り出し、ノギスを用いて見掛けの体積を測定し、次に空気比較式比重系1000型(東京サイエンス社製)を用いて1−1/2−1気圧法により体積を測定した。
連続気泡率(%)=(見かけの体積−空気比較式比重計での測定体積)/見かけ体積×100
<Measurement of open cell ratio of heat insulating material>
About the heat insulating material, the open cell rate was measured according to the measuring method of ASTM D2856-87. That is, five specimens (25 mm cubes) made of a cut surface having no skin such as a six-surface co-molded surface were cut out, the apparent volume was measured using a caliper, and then the air comparison specific gravity system 1000 The volume was measured by the 1-1 / 2-atm method using a mold (manufactured by Tokyo Science).
Open cell ratio (%) = (apparent volume−volume measured with an air-based hydrometer) / apparent volume × 100

<曲げ強度>
断熱材から、縦300mm×横75mm×厚さ25mmの試験片を切り出し、この試験片の曲げ試験をJIS−A9511に準拠して行い、曲げ強度を算出した。
<Bending strength>
A test piece having a length of 300 mm, a width of 75 mm, and a thickness of 25 mm was cut out from the heat insulating material, and a bending test of the test piece was performed according to JIS-A9511 to calculate a bending strength.

<圧縮強度>
断熱材から、縦50mm×横50mm×厚さ25mmの試験片を切り出し、この試験片の曲げ試験をJIS−A9511に準拠して行い、曲げ強度とした。
<Compressive strength>
A test piece having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm was cut out from the heat insulating material, and a bending test of the test piece was performed in accordance with JIS-A9511 to obtain a bending strength.

<断熱性(熱伝導率)>
断熱材から縦200mm×横200mm×厚さ25mmの直方体形状の試験片を切り出した。そして、この試験片の熱伝導率をJIS A1412に準拠して英弘精機社製の熱伝導率計(AUTO−Λ HC−072) を用いて測定温度23℃で測定した。
<Insulation (thermal conductivity)>
A rectangular parallelepiped test piece having a length of 200 mm, a width of 200 mm, and a thickness of 25 mm was cut out from the heat insulating material. Then, the thermal conductivity of this test piece was measured at a measurement temperature of 23 ° C. using a thermal conductivity meter (AUTO-Λ HC-072) manufactured by Eihiro Seiki Co., Ltd. according to JIS A1412.

[実施例2]
再加熱処理時の加熱温度を150℃、圧力を0.5MPaとしたこと以外は、実施例1と同様の方法で断熱材を製造し、同様の測定を行った。その結果を表1に記す。
[Example 2]
A heat insulating material was manufactured by the same method as in Example 1 except that the heating temperature during the reheating treatment was 150 ° C. and the pressure was 0.5 MPa, and the same measurement was performed. The results are shown in Table 1.

[実施例3]
再加熱処理時の加熱温度を60℃としたこと以外は、実施例1と同様の方法で断熱材を製造し、同様の測定を行った。その結果を表1に記す。
[Example 3]
A heat insulating material was manufactured by the same method as in Example 1 except that the heating temperature during the reheating treatment was 60 ° C., and the same measurement was performed. The results are shown in Table 1.

[実施例4]
再加熱処理時の加熱温度を57℃としたこと以外は、実施例1と同様の方法で断熱材を製造し、同様の測定を行った。その結果を表1に記す。
[Example 4]
A heat insulating material was manufactured in the same manner as in Example 1 except that the heating temperature at the reheating treatment was 57 ° C., and the same measurement was performed. The results are shown in Table 1.

[実施例5]
発泡剤としてブタンを同量使用し、再加熱処理時の圧力を0.5MPaとしたこと以外は、実施例1と同様の方法で断熱材を製造し、同様の測定を行った。その結果を表1に記す。
[Example 5]
A heat insulating material was produced in the same manner as in Example 1 except that the same amount of butane was used as the foaming agent and the pressure during the reheating treatment was 0.5 MPa, and the same measurement was performed. The results are shown in Table 1.

[比較例1]
再加熱処理時の加熱温度を100℃としたこと以外は、実施例1と同様の方法で断熱材を製造し、同様の測定を行った。その結果を表1に記す。
[Comparative Example 1]
A heat insulating material was manufactured in the same manner as in Example 1 except that the heating temperature during the reheating treatment was 100 ° C., and the same measurement was performed. The results are shown in Table 1.

[比較例2]
水中カット室の冷却水温度を70℃、再加熱処理時の圧力を1.5MPa、再加熱処理時間を昇温後5分間加熱としたこと以外は、実施例1と同様の方法で断熱材を製造し、同様の測定を行った。その結果を表1に記す。
[Comparative Example 2]
The heat insulating material was treated in the same manner as in Example 1 except that the cooling water temperature in the underwater cut chamber was 70 ° C., the pressure during the reheating treatment was 1.5 MPa, and the reheating treatment time was heated for 5 minutes after the temperature was raised. The same measurement was carried out. The results are shown in Table 1.

[比較例3]
再加熱処理を行わなかったこと以外は、実施例1と同様の方法で断熱材を製造し、同様の測定を行った。その結果を表1に記す。
[Comparative Example 3]
A heat insulating material was manufactured in the same manner as in Example 1 except that the reheating treatment was not performed, and the same measurement was performed. The results are shown in Table 1.

[比較例4]
再加熱処理時の加熱温度を40℃としたこと以外は、実施例1と同様の方法で断熱材を製造し、同様の測定を行った。その結果を表1に記す。
[Comparative Example 4]
A heat insulating material was manufactured in the same manner as in Example 1 except that the heating temperature at the time of the reheating treatment was 40 ° C., and the same measurement was performed. The results are shown in Table 1.

[比較例5]
再加熱処理時の昇温後の加熱時間を1分間としたこと以外は、実施例1と同様の方法で断熱材を製造し、同様の測定を行った。その結果を表1に記す。
[Comparative Example 5]
A heat insulating material was manufactured in the same manner as in Example 1 except that the heating time after the temperature increase during the reheating treatment was 1 minute, and the same measurement was performed. The results are shown in Table 1.

Figure 2012077115
Figure 2012077115

表1に記した結果から、本発明に係る実施例1〜5で得られた断熱材は、嵩発泡倍数50倍に発泡させた発泡粒子の状態で、内部平均気泡径が35〜140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有しており、嵩発泡倍数50倍に発泡させた予備発泡粒子を型内発泡成形して得られた断熱材は、連続気泡率が低くて独立気泡が多く、再加熱処理を行っていない比較例3の断熱材と比べ、発泡成形体の曲げ強度及び圧縮強度が高く、断熱性も良好であった。   From the results shown in Table 1, the heat insulating materials obtained in Examples 1 to 5 according to the present invention are in the form of expanded particles expanded to a bulk expansion ratio of 50 times, and the internal average cell diameter is in the range of 35 to 140 μm. It has a cell structure in which the value of the surface layer part average bubble diameter / internal average bubble diameter is in the range of 0.80 to 1.20, and the open cell ratio is 10% or less, and bulk foaming. The heat insulating material obtained by in-mold foam molding of the pre-expanded particles expanded to a multiple of 50 times has a low open cell ratio and a large number of closed cells, compared with the heat insulating material of Comparative Example 3 in which reheating treatment is not performed. The flexural strength and compressive strength of the foamed molded product were high, and the heat insulation was good.

一方、比較例1の断熱材は、連続気泡率が高く、独立気泡が少ないものなので、曲げ強度及び圧縮強度が低かった。
また比較例2の断熱材は、内部平均気泡径が本発明の範囲を超えているものなので、曲げ強度及び圧縮強度が低かった。
また比較例3の断熱材は、再加熱処理を行わなかった結果、内部平均気泡径が本発明の範囲を超えているものなので、曲げ強度及び圧縮強度が低かった。
また比較例4の断熱材は、再加熱処理を低温で行った結果、内部平均気泡径が本発明の範囲を超えているものなので、曲げ強度及び圧縮強度が低かった。
また比較例5の断熱材は、表層部平均気泡径/内部平均気泡径の値が本発明の範囲外となった結果、曲げ強度及び圧縮強度が低かった。
On the other hand, since the heat insulating material of Comparative Example 1 has a high open cell ratio and a small number of closed cells, the bending strength and the compressive strength were low.
Moreover, since the internal average bubble diameter of the heat insulating material of the comparative example 2 exceeded the range of this invention, bending strength and compressive strength were low.
Moreover, since the internal average bubble diameter exceeded the range of this invention as a result of not heat-treating the heat insulating material of the comparative example 3, bending strength and compressive strength were low.
Moreover, the heat insulating material of Comparative Example 4 was low in bending strength and compressive strength because the internal average bubble diameter exceeded the range of the present invention as a result of reheating treatment at a low temperature.
Moreover, the heat insulating material of Comparative Example 5 had a low bending strength and compressive strength as a result of the value of the surface layer portion average bubble diameter / internal average bubble diameter being outside the range of the present invention.

本発明は、断熱性能に優れていると共に、曲げ強度、圧縮強度、耐衝撃性などの機械強度にも優れたポリスチレン系樹脂発泡成形体製の断熱材とその製造方法に関する。   The present invention relates to a heat insulating material made of a polystyrene-based resin foam molded article that is excellent in heat insulating performance and mechanical strength such as bending strength, compressive strength, and impact resistance, and a method for producing the same.

1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器。   DESCRIPTION OF SYMBOLS 1 ... Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, 10: Dehydration dryer with solid-liquid separation function, 11: Storage container.

Claims (12)

ポリスチレン系樹脂粒子中に発泡剤を含む発泡性ポリスチレン系樹脂粒子を加熱して得られたポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し加熱し、型内発泡成形して得られたポリスチレン系樹脂発泡成形体からなる断熱材において、
前記発泡性ポリスチレン系樹脂粒子を加熱して嵩発泡倍数50倍に発泡させた予備発泡粒子の状態で、内部平均気泡径が35〜140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有することを特徴とする断熱材。
The polystyrene resin pre-expanded particles obtained by heating the expandable polystyrene resin particles containing a foaming agent in the polystyrene resin particles were filled in the mold cavity and heated, and obtained by in-mold foam molding. In the heat insulating material made of polystyrene resin foam molding,
In the state of pre-expanded particles obtained by heating the expandable polystyrene-based resin particles and expanded to a bulk expansion ratio of 50 times, the internal average cell diameter is in the range of 35 to 140 μm, and the surface layer part average cell diameter / internal average cell A heat insulating material having a cell structure in which a value of a diameter is in a range of 0.80 to 1.20 and an open cell ratio is 10% or less.
嵩発泡倍数X倍に発泡させたときの予備発泡粒子の内部平均気泡径D’を、次式(1)
Figure 2012077115
(式中、Dは嵩発泡倍数50倍に換算した発泡粒子の内部平均気泡径(μm)を表し、D’は嵩発泡倍数X倍に発泡させたときの発泡粒子の内部平均気泡径(μm)を表す)を用いて嵩発泡倍数50倍に換算した予備発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たすことを特徴とする請求項1に記載の断熱材。
The internal average cell diameter D 1 ′ of the pre-expanded particles when expanded to a bulk expansion ratio X times is expressed by the following formula (1)
Figure 2012077115
(In the formula, D 1 represents the internal average cell diameter (μm) of the expanded particles converted to a bulk expansion ratio of 50 times, and D 1 ′ represents the internal average cell diameter of the expanded particles when expanded to a bulk expansion ratio X times) 2. The internal average cell diameter D 1 of the pre-expanded particles converted to a bulk expansion ratio of 50 times using (expressing (μm)) satisfies a relationship of 35 μm ≦ D 1 ≦ 140 μm. Insulation.
前記内部平均気泡径が40〜120μmの範囲内であることを特徴とする請求項1又は2に記載の断熱材。   The heat insulating material according to claim 1 or 2, wherein the internal average bubble diameter is within a range of 40 to 120 µm. 前記連続気泡率が8%以下であることを特徴とする請求項1〜3のいずれか1項に記載の断熱材。   The heat insulating material according to any one of claims 1 to 3, wherein the open cell ratio is 8% or less. 前記表層部平均気泡径/内部平均気泡径の値が0.90〜1.10の範囲内であることを特徴とする請求項1〜4のいずれか1項に記載の断熱材。   5. The heat insulating material according to claim 1, wherein a value of the surface layer part average bubble diameter / internal average bubble diameter is in a range of 0.90 to 1.10. ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を含むことを特徴とする請求項1〜5のいずれか1項に記載の断熱材。   The heat insulating material according to any one of claims 1 to 5, comprising an inorganic cell nucleating agent of 5.0 parts by mass or less with respect to 100 parts by mass of a polystyrene-based resin. 前記無機気泡核剤がタルクであることを特徴とする請求項6に記載の断熱材。   The heat insulating material according to claim 6, wherein the inorganic cell nucleating agent is talc. スチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し、成形型を蒸気加熱し、型内発泡成形して得られたスチレン系樹脂発泡成形体からなる断熱材であって、
発泡倍数X倍に発泡成形させたときの状態で、この発泡成形体中の融着し合った発泡粒子の内部平均気泡径D’を、次式(2)
Figure 2012077115
(式中、Dは発泡倍数50倍に換算した発泡成形体中の発泡粒子の内部平均気泡径(μm)を表し、D’は発泡倍数X倍に発泡させたときの発泡成形体中の発泡粒子の内部平均気泡径(μm)を表す)を用いて発泡倍数50倍に換算した発泡成形体中の発泡粒子の内部平均気泡径Dが、35μm≦D≦140μmの関係を満たし、前記発泡粒子の表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ発泡成形体の連続気泡率が10%以下である気泡構造を有することを特徴とする断熱材。
A heat insulating material made of a styrene resin foam molded article obtained by filling styrene resin pre-expanded particles in a cavity of a mold, steam heating the mold, and foam-molding in the mold,
In the state when foaming is performed at the expansion ratio X times, the internal average cell diameter D 2 ′ of the foam particles fused together in the foamed molded product is expressed by the following formula (2):
Figure 2012077115
(Wherein, D 2 represents the average internal cell diameter of the expanded beads of foamed molded body in terms of 50-fold expansion ratio ([mu] m), D 2 'is in the foamed molded product when foamed in expansion ratio X times the average internal cell diameter average internal cell diameter D 2 of the expanded beads of foamed molded body in terms of expansion ratio 50 times using a representative of the ([mu] m)) is, satisfies the relationship of 35 [mu] m ≦ D 2 ≦ 140 .mu.m of the foamed particles The foamed particles have a cell structure in which the value of the surface layer part average cell diameter / internal average cell diameter is in the range of 0.80 to 1.20, and the foamed molded product has an open cell ratio of 10% or less. Insulation material characterized by
樹脂供給装置内でポリスチレン系樹脂に発泡剤を添加、混練し、発泡剤含有溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg未満の温度の冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る工程、
得られた発泡性ポリスチレン系樹脂粒子を、(発泡性ポリスチレン系樹脂粒子のガラス転移温度Tg−5)℃以上の温度で加熱処理を行って発泡性ポリスチレン系樹脂粒子を得る工程、
次いで、得られた発泡性ポリスチレン系樹脂粒子を加熱し、前記式(1)を用いて嵩発泡倍数50倍に換算した予備発泡粒子の内部平均気泡径Dが、35〜140μmの範囲内であり、表層部平均気泡径/内部平均気泡径の値が0.80〜1.20の範囲内であり、かつ連続気泡率が10%以下である気泡構造を有するポリスチレン系樹脂予備発泡粒子を作製する工程、
次いで、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填し加熱し、型内発泡成形して断熱材を得る工程、とを含むことを特徴とする断熱材の製造方法。
A foaming agent is added to and kneaded with the polystyrene resin in the resin supply device, and the temperature of the foaming agent-containing molten resin is less than the glass transition temperature Tg of the expandable polystyrene resin particles from the small hole of the die attached to the tip of the resin supply device. Extruding into the cooling liquid, cutting the extrudate at the same time as extrusion, and cooling and solidifying the extrudate by contact with the liquid to obtain expandable polystyrene resin particles,
A step of obtaining the expandable polystyrene resin particles by subjecting the obtained expandable polystyrene resin particles to a heat treatment at a temperature of (glass transition temperature Tg-5 of the expandable polystyrene resin particles) ° C. or higher;
Then heated resulting expandable polystyrene resin particles, wherein the formula (1) is the average internal cell diameter D 1 of the pre-expanded particles in terms of 50-fold volume expansion ratio by using, in the range of 35~140μm Yes, a polystyrene resin pre-expanded particle having a cell structure in which the value of the average cell diameter of the surface layer / the average cell diameter of the internal layer is in the range of 0.80 to 1.20 and the open cell ratio is 10% or less is prepared. The process of
Then, filling the polystyrene resin pre-expanded particles in a cavity of a mold, heating, and foam-molding in the mold to obtain a heat insulating material, a method for manufacturing a heat insulating material.
前記押出物を切断する際の冷却用液体の温度が20〜60℃の範囲内であることを特徴とする請求項9に記載の断熱材の製造方法。   The method for producing a heat insulating material according to claim 9, wherein the temperature of the cooling liquid when cutting the extrudate is in the range of 20 to 60 ° C. ポリスチレン系樹脂100質量部に対して5.0質量部以下の無機気泡核剤を添加することを特徴とする請求項9又は10に記載の断熱材の製造方法。   The method for producing a heat insulating material according to claim 9 or 10, wherein an inorganic cell nucleating agent of 5.0 parts by mass or less is added to 100 parts by mass of a polystyrene-based resin. 前記無機気泡核剤がタルクであることを特徴とする請求項11に記載の断熱材の製造方法。   The method for manufacturing a heat insulating material according to claim 11, wherein the inorganic cell nucleating agent is talc.
JP2010221062A 2010-09-30 2010-09-30 Heat insulator and method for producing the same Pending JP2012077115A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010221062A JP2012077115A (en) 2010-09-30 2010-09-30 Heat insulator and method for producing the same
PCT/JP2011/071811 WO2012043439A1 (en) 2010-09-30 2011-09-26 Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
CN201180047076.4A CN103140545B (en) 2010-09-30 2011-09-26 Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
TW100134545A TWI464203B (en) 2010-09-30 2011-09-26 Expandable polystyrene resin bead and producing method thereof, polystyrene resin preliminary expanded bead, polystyrene resin foam and producing method thereof, heat insulating material and cushioning material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221062A JP2012077115A (en) 2010-09-30 2010-09-30 Heat insulator and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012077115A true JP2012077115A (en) 2012-04-19

Family

ID=46237746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221062A Pending JP2012077115A (en) 2010-09-30 2010-09-30 Heat insulator and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012077115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454476B2 (en) 2019-12-25 2024-03-22 積水化成品工業株式会社 Styrenic resin foam particles, styrenic resin foam molded products, and expandable styrenic resin particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454476B2 (en) 2019-12-25 2024-03-22 積水化成品工業株式会社 Styrenic resin foam particles, styrenic resin foam molded products, and expandable styrenic resin particles

Similar Documents

Publication Publication Date Title
EP2241590B1 (en) Expandable polystyrene resin beads, process for production thereof and expanded moldings
TWI529205B (en) Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP4933913B2 (en) Expandable styrene resin particles and production method thereof, styrene resin foam particles and styrene resin foam molded article
JP2008274133A (en) Expandable resin particles and method for producing the same
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP5986410B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2012077115A (en) Heat insulator and method for producing the same
JP5734611B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2012076753A (en) Cushioning material and method for manufacturing the same
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP5756003B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP2012214750A (en) Foamable polystyrene-based resin particle and production method therefor, polystyrene-based resin pre-foamed particle, and polystyrene-based resin foamed molding
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding
JP2007262345A (en) Expandable styrene-based resin particle, styrene-based resin expandable particle and styrene-based resin expanded molding
JP2013071995A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP2013203821A (en) Foamable polystyrene-based resin particle, method for producing the same, preliminary foamable particle and foam-molded article
JP2011173273A (en) Foamed resin molded article using recycled resin in part