JP5258147B2 - Expandable thermoplastic resin particles and method for producing the same, antistatic agent composition for expandable thermoplastic resin particles, and antistatic method for expandable thermoplastic resin particles - Google Patents

Expandable thermoplastic resin particles and method for producing the same, antistatic agent composition for expandable thermoplastic resin particles, and antistatic method for expandable thermoplastic resin particles Download PDF

Info

Publication number
JP5258147B2
JP5258147B2 JP2005021167A JP2005021167A JP5258147B2 JP 5258147 B2 JP5258147 B2 JP 5258147B2 JP 2005021167 A JP2005021167 A JP 2005021167A JP 2005021167 A JP2005021167 A JP 2005021167A JP 5258147 B2 JP5258147 B2 JP 5258147B2
Authority
JP
Japan
Prior art keywords
resin particles
thermoplastic resin
antistatic
antistatic agent
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005021167A
Other languages
Japanese (ja)
Other versions
JP2006206753A (en
Inventor
昌利 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2005021167A priority Critical patent/JP5258147B2/en
Publication of JP2006206753A publication Critical patent/JP2006206753A/en
Application granted granted Critical
Publication of JP5258147B2 publication Critical patent/JP5258147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、発泡性熱可塑性樹脂粒子とその製造方法、発泡性熱可塑性樹脂粒子用帯電防止剤組成物及び発泡性熱可塑性樹脂粒子の帯電防止方法に関する。発泡性熱可塑性樹脂粒子は、食品等の各種包装容器、緩衝材、建設資材などの各種分野において多用されている熱可塑性樹脂発泡成形品の原料として用いられる。   The present invention relates to an expandable thermoplastic resin particle and a method for producing the same, an antistatic composition for the expandable thermoplastic resin particle, and an antistatic method for the expandable thermoplastic resin particle. The foamable thermoplastic resin particles are used as a raw material for thermoplastic resin foam molded products that are widely used in various fields such as various packaging containers for foods, cushioning materials, construction materials and the like.

発泡性熱可塑性樹脂粒子の中でも代表的な発泡性スチレン系樹脂粒子は、一般に、懸濁重合法により得られたスチレン系樹脂粒子又は押出機を用いて作製した樹脂ペレットを、撹拌機を備えた耐圧容器内で水系分散剤に懸濁させ、これに加温加圧下で発泡剤を含浸させる、所謂含浸法によって製造されている。発泡剤含浸後、容器から取り出した粒子は、洗浄、脱水、篩による分級の各工程を経た後、ブレンダー、ミキサー等の混合機によりブロッキング防止剤や帯電防止剤等の表面処理剤を被覆して製品となる。この際、脱水終了後から混合機で表面処理剤が被覆されるまでの工程では、樹脂粒子から逸散する可燃性の発泡剤への静電気発火による災害を防止するために、送粒ラインや1次ストックタンクで窒素ガス置換等の発火防止対策が必要となる。   Among the foamable thermoplastic resin particles, typical foamable styrene resin particles are generally provided with a stirrer for resin pellets produced using a styrene resin particle obtained by a suspension polymerization method or an extruder. It is produced by a so-called impregnation method in which it is suspended in an aqueous dispersant in a pressure vessel and impregnated with a foaming agent under heating and pressure. After impregnating with the foaming agent, the particles taken out from the container are subjected to washing, dehydration, and classification using a sieve, and then coated with a surface treatment agent such as an antiblocking agent or an antistatic agent by a blender such as a blender or a mixer. Become a product. At this time, in the process from the end of the dehydration until the surface treatment agent is coated with the mixer, in order to prevent a disaster due to electrostatic ignition to the flammable foaming agent that escapes from the resin particles, It is necessary to take measures to prevent ignition such as nitrogen gas replacement in the next stock tank.

また発泡性スチレン系樹脂粒子は、押出機内で発泡剤と樹脂を溶融混練し、押出機先端に取り付けたダイから押し出して粒子状に切断する、所謂押出法と呼ばれる方法で製造することもできるが、この場合は粒子表面に分散剤等の不純物の付着がないため、含浸法で得られる発泡性スチレン系樹脂粒子よりも更に静電気による帯電が大きくなる恐れがあり、混合機における表面処理剤被覆までは、窒素ガス置換等の発火防止対策が必須となっている。   The expandable styrene resin particles can also be produced by a so-called extrusion method in which a foaming agent and a resin are melt-kneaded in an extruder and extruded from a die attached to the tip of the extruder and cut into particles. In this case, since there is no adhesion of impurities such as a dispersant to the particle surface, there is a possibility that charging due to static electricity will be larger than the expandable styrene resin particles obtained by the impregnation method. Therefore, fire prevention measures such as nitrogen gas replacement are essential.

発泡性熱可塑性樹脂粒子の製造及び帯電防止性付与に関する従来技術としては、例えば、特許文献1〜5に記載の技術が提案されている。
特許文献1には、ホコリ吸着が少なく、熱融着性及び表面仕上りが良好な発泡成形品を得ることを目的とし、表面がヒドロキシ高級脂肪酸アミド及びカチオン系界面活性剤で被覆されてなる発泡性スチレン系樹脂粒子が開示されている。しかし、これらのヒドロキシ高級脂肪酸アミド及びカチオン系界面活性剤は、製品に被覆される粉体状の表面処理剤であり、特許文献1には表面処理前の発泡性熱可塑性樹脂粒子に対して帯電防止性を付与することは記載されていない。
特許文献2には、ポリスチレンに代表される熱可塑性樹脂と発泡剤とを押出機内で溶融混練した後、ダイスより加熱加圧された液中に吐出し、即時切断して顆粒化し、次いで分散剤又は界面活性剤の存在下に加熱処理する発泡性熱可塑性樹脂粒子の製造方法が開示されている。しかし、この方法では、球状化処理した樹脂粒子を水冷後、乾燥しているだけなので、その樹脂粒子は帯電し易いものである。特許文献2には表面処理前の発泡性熱可塑性樹脂粒子に対して帯電防止性を付与することは記載されていない。
特許文献3には、スチレンやトルエン、キシレン等の揮発性溶剤類の含有量が少ない発泡成形体を製造するためのスチレン系発泡性樹脂粒子が開示されている。この特許文献3には、その表面にアミン類やグリセリン等の帯電防止剤、ブロッキング防止剤、ハイサイクル剤をコーティングすることができる旨が記載されているが、特許文献3には表面処理前の発泡性熱可塑性樹脂粒子に対して帯電防止性を付与することは記載されていない。
For example, techniques disclosed in Patent Documents 1 to 5 have been proposed as conventional techniques related to the production of foamable thermoplastic resin particles and the addition of antistatic properties.
Patent Document 1 discloses a foaming property in which the surface is coated with a hydroxy higher fatty acid amide and a cationic surfactant for the purpose of obtaining a foamed molded article with little dust adsorption and good heat-fusibility and surface finish. Styrenic resin particles are disclosed. However, these hydroxy higher fatty acid amides and cationic surfactants are powdery surface treatment agents that are coated on products, and Patent Document 1 discloses charging to foamable thermoplastic resin particles before surface treatment. There is no description of imparting preventive properties.
In Patent Document 2, a thermoplastic resin typified by polystyrene and a foaming agent are melt-kneaded in an extruder, then discharged into a heated and pressurized liquid from a die, immediately cut and granulated, and then a dispersing agent. Or the manufacturing method of the expandable thermoplastic resin particle which heat-processes in presence of surfactant is disclosed. However, in this method, the spheroidized resin particles are only dried after being cooled with water, so that the resin particles are easily charged. Patent Document 2 does not describe imparting antistatic properties to the expandable thermoplastic resin particles before the surface treatment.
Patent Document 3 discloses styrene-based expandable resin particles for producing a foamed molded article having a low content of volatile solvents such as styrene, toluene, and xylene. Patent Document 3 describes that the surface can be coated with an antistatic agent such as amines or glycerin, an anti-blocking agent, or a high cycle agent, but Patent Document 3 describes that before surface treatment. It does not describe imparting antistatic properties to the foamable thermoplastic resin particles.

特許文献4には、熱可塑性合成樹脂粒子に帯電防止剤を添加し高剪断力のもとに両者を撹拌混合し、該樹脂粒子の表面層が軟化した状態で該樹脂粒子の表面に帯電防止剤を付着せしめて帯電防止剤含有合成樹脂粒子とし、しかるのち、該帯電防止剤含有合成樹脂に水性媒体中で発泡剤を含浸させる帯電防止能を有する発泡剤樹脂粒子の製造方法が開示されている。
特許文献5には、ポリエチレングリコール(メタ)アクリル酸エステルの重合体あるいは共重合体1〜30質量%と界面活性剤0.01〜3質量%とを含有したオレフィン系樹脂粒子を発泡させてなる帯電防止性オレフィン系樹脂予備発泡粒子が開示されている。
特開平5−125213号公報 特開平9−221562号公報 特開2002−356575号公報 特公平6−860号公報 特開平10−147660号公報
In Patent Document 4, an antistatic agent is added to thermoplastic synthetic resin particles, both of them are stirred and mixed under high shear force, and the surface layer of the resin particles is softened and the antistatic property is applied to the surface of the resin particles. An antistatic agent-containing synthetic resin particle is prepared by adhering an agent, and then a method for producing foaming agent resin particles having an antistatic property in which the antistatic agent-containing synthetic resin is impregnated with a foaming agent in an aqueous medium is disclosed. Yes.
Patent Document 5 is obtained by foaming olefin resin particles containing 1 to 30% by mass of a polymer or copolymer of polyethylene glycol (meth) acrylate and 0.01 to 3% by mass of a surfactant. Antistatic olefinic resin pre-expanded particles are disclosed.
Japanese Patent Laid-Open No. 5-125213 JP-A-9-221562 JP 2002-356575 A Japanese Patent Publication No. 6-860 Japanese Patent Laid-Open No. 10-147660

しかしながら、前述した従来技術には、次のような問題があった。
特許文献1〜3には、表面処理工程前の発泡性熱可塑性樹脂粒子を送粒ラインや1次ストックタンクに移送・貯留する場合に帯電し易いこと、この移送・貯留の帯電防止の必要性及び具体的な帯電防止対策などについては全く記載されていない。従って、特許文献1〜3に記載された従来技術においては、表面処理工程前の発泡性熱可塑性樹脂粒子を移送・貯留する場合に送粒ラインや1次ストックタンクを窒素ガス置換等、静電気による火花が発生しても樹脂粒子から逸散した可燃性発泡剤などが発火しないような対策を講じる必要がある。しかし、送粒ラインや1次ストックタンクを窒素ガス置換するには、多量の窒素ガスが必要となり、またそのための装置の維持にも多大な工数及びコストがかかってしまう問題がある。
However, the above-described conventional technique has the following problems.
Patent Documents 1 to 3 describe that the foamable thermoplastic resin particles before the surface treatment process are easily charged when transferred and stored in a granulation line or a primary stock tank, and the need for prevention of charging during the transfer and storage. No specific antistatic measures are described. Therefore, in the prior art described in Patent Documents 1 to 3, when transferring and storing the expandable thermoplastic resin particles before the surface treatment process, the granulation line or the primary stock tank is replaced with nitrogen gas or the like due to static electricity. It is necessary to take measures to prevent the flammable foaming agent that escapes from the resin particles from igniting even if a spark occurs. However, a large amount of nitrogen gas is required to replace the granulation line and the primary stock tank with nitrogen gas, and there is a problem that it takes a lot of man-hours and costs to maintain the apparatus for that purpose.

また特許文献4及び5に記載された技術では、発泡性熱可塑性樹脂粒子に帯電防止剤を含有させているので、発泡性熱可塑性樹脂粒子を移送・貯留する場合に樹脂粒子が帯電し難くなり、発泡性熱可塑性樹脂粒子を移送・貯留する場合の安全対策をある程度軽減できる。しかし、発泡性熱可塑性樹脂粒子の移送等における帯電を防止し、窒素ガス置換せずに静電気による発火等を完全に防ぐためには、多量の帯電防止剤を樹脂粒子中に含有させなければならず、製品のコストが上昇してしまう。また多量の帯電防止剤を樹脂粒子中に含有させた場合、発泡成形時に発泡粒子同士の融着が悪くなり、得られる発泡成形体の機械強度が低下したり、あるいは断熱性能が低下する可能性がある。   In the techniques described in Patent Documents 4 and 5, since the antistatic agent is contained in the expandable thermoplastic resin particles, the resin particles are difficult to be charged when the expandable thermoplastic resin particles are transferred and stored. , Safety measures when transferring and storing foaming thermoplastic resin particles can be reduced to some extent. However, a large amount of antistatic agent must be included in the resin particles in order to prevent electrification during the transfer of the foaming thermoplastic resin particles and to completely prevent ignition due to static electricity without replacing nitrogen gas. The cost of the product will rise. In addition, when a large amount of antistatic agent is contained in the resin particles, the fusion between the foamed particles becomes worse at the time of foam molding, and the mechanical strength of the resulting foam molded article may be lowered, or the heat insulation performance may be lowered. There is.

本発明は前記事情に鑑みてなされ、表面処理工程前の発泡性熱可塑性樹脂粒子の帯電を効果的に防止して移送・貯留時の窒素ガス置換等の安全対策を軽減できる発泡性熱可塑性樹脂粒子とその製造方法、発泡性熱可塑性樹脂粒子用帯電防止剤組成物及び発泡性熱可塑性樹脂粒子の帯電防止方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and is capable of effectively preventing the foaming thermoplastic resin particles from being charged before the surface treatment process and reducing the safety measures such as nitrogen gas replacement during transfer and storage. It is an object of the present invention to provide particles and a production method thereof, an antistatic agent composition for expandable thermoplastic resin particles, and an antistatic method for expandable thermoplastic resin particles.

前記目的を達成するため、本発明は、保湿剤と界面活性剤を必須成分として含む帯電防止剤を表面に被覆してなり、前記保湿剤が、1種又は2種以上の多価アルコールを含み、前記界面活性剤が、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤からなる群から選択される1種又は2種以上であることを特徴とする発泡性熱可塑性樹脂粒子
を提供する。
In order to achieve the above object, the present invention comprises a surface coated with an antistatic agent containing a humectant and a surfactant as essential components, and the humectant contains one or more polyhydric alcohols. The foamable thermoplastic resin particles are characterized in that the surfactant is one or more selected from the group consisting of an anionic surfactant, a cationic surfactant, and an amphoteric surfactant. .

本発明の発泡性熱可塑性樹脂粒子において、粉体状の表面処理剤が前記帯電防止剤を被覆した後の表面に被覆されてなる構成とすることが好ましい。   In the foamable thermoplastic resin particles of the present invention, it is preferable that the powdery surface treatment agent is coated on the surface after the antistatic agent is coated.

また本発明は、発泡性熱可塑性樹脂粒子に表面処理剤を被覆する表面処理工程を施して製品化する発泡性熱可塑性樹脂粒子の製造方法において、保湿剤と界面活性剤を必須成分として含む帯電防止剤を表面処理工程前の発泡性熱可塑性樹脂粒子に被覆する工程を含み、前記保湿剤が、1種又は2種以上の多価アルコールを含み、前記界面活性剤が、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤からなる群から選択される1種又は2種以上であることを特徴とする発泡性熱可塑性樹脂粒子の製造方法を提供する。 The present invention also relates to a charging method comprising a moisturizing agent and a surfactant as essential components in a method for producing expandable thermoplastic resin particles, which is produced by applying a surface treatment step for coating the expandable thermoplastic resin particles with a surface treatment agent. look including the step of coating the agents on expandable thermoplastic resin particles before the surface treatment step, the humectant comprises one or more polyhydric alcohols, wherein the surfactant is an anionic surfactant The present invention provides a method for producing expandable thermoplastic resin particles, which is one or more selected from the group consisting of a cationic surfactant and an amphoteric surfactant .

また本発明は、保湿剤と界面活性剤を必須成分として含み、前記保湿剤が、1種又は2種以上の多価アルコールを含み、前記界面活性剤が、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤からなる群から選択される1種又は2種以上であることを特徴とする発泡性熱可塑性樹脂粒子用帯電防止剤組成物を提供する。 The present invention is seen containing a humectant and surfactant as essential components, wherein the humectant comprises one or more polyhydric alcohols, wherein the surfactant is an anionic surfactant, a cationic surfactant An antistatic agent composition for foamable thermoplastic resin particles, which is one or more selected from the group consisting of an agent and an amphoteric surfactant .

また本発明は、発泡性熱可塑性樹脂粒子の表面に、前述した本発明に係る発泡性熱可塑性樹脂粒子用帯電防止剤組成物を被覆することを特徴とする発泡性熱可塑性樹脂粒子の帯電防止方法を提供する。   Further, the present invention provides an antistatic agent for foamable thermoplastic resin particles, wherein the surface of the foamable thermoplastic resin particles is coated with the antistatic agent composition for foamable thermoplastic resin particles according to the present invention described above. Provide a method.

本発明の帯電防止方法において、発泡性熱可塑性樹脂粒子用帯電防止剤組成物を被覆した発泡性熱可塑性樹脂粒子について、温度23℃、相対湿度20%の雰囲気下で測定した体積固有抵抗ρが1.0×1013Ωcm未満であることが好ましい。 In the antistatic method of the present invention, the expandable thermoplastic resin particles coated with the antistatic agent composition for expandable thermoplastic resin particles have a volume resistivity ρ measured in an atmosphere at a temperature of 23 ° C. and a relative humidity of 20%. It is preferably less than 1.0 × 10 13 Ωcm.

本発明によれば、表面処理工程前の発泡性熱可塑性樹脂粒子の帯電を効果的に防止して移送・貯留時の窒素ガス置換等の安全対策を軽減でき、そのためのコストや工数を削減できる発泡性熱可塑性樹脂粒子とその製造方法、発泡性熱可塑性樹脂粒子用帯電防止剤組成物及び発泡性熱可塑性樹脂粒子の帯電防止方法を提供することができる。   According to the present invention, it is possible to effectively prevent the foaming thermoplastic resin particles from being charged before the surface treatment process, and to reduce safety measures such as nitrogen gas replacement at the time of transfer and storage, thereby reducing costs and man-hours. An expandable thermoplastic resin particle and a production method thereof, an antistatic composition for the expandable thermoplastic resin particle, and an antistatic method for the expandable thermoplastic resin particle can be provided.

本発明の発泡性熱可塑性樹脂粒子(以下、樹脂粒子と略記する場合がある。)は、発泡剤を含む熱可塑性樹脂粒子の表面に、保湿剤と界面活性剤を必須成分として含む帯電防止剤を被覆してなることを特徴とする。   The foamable thermoplastic resin particles of the present invention (hereinafter sometimes abbreviated as resin particles) are antistatic agents comprising a moisturizer and a surfactant as essential components on the surface of thermoplastic resin particles containing a foaming agent. It is characterized by being coated.

本発明の発泡性熱可塑性樹脂粒子に用いられる熱可塑性樹脂としては、例えば、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂等が挙げられる。さらに前記ポリスチレン系樹脂としては、例えば、ホモポリスチレン樹脂、スチレン−ブタジエン共重合体(ハイインパクトポリスチレン)、スチレン−(メタ)アクリル酸共重合体、スチレン−無水マレイン酸共重合体、スチレン改質ポリエチレン樹脂等が挙げられる。   Examples of the thermoplastic resin used for the expandable thermoplastic resin particles of the present invention include polystyrene resins, polyethylene resins, polypropylene resins, and polyethylene terephthalate resins. Further, examples of the polystyrene resin include homopolystyrene resin, styrene-butadiene copolymer (high impact polystyrene), styrene- (meth) acrylic acid copolymer, styrene-maleic anhydride copolymer, styrene-modified polyethylene. Examples thereof include resins.

本発明の発泡性熱可塑性樹脂粒子に用いられる発泡剤としては、例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン等の炭化水素、ジメチルエーテル、ジエチルエーテル等のエーテル類、メタノール、エタノール等の各種アルコール類等が使用可能であり、これらの中でも、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン単独もしくはこれらの混合物が特に好適である。発泡剤の添加量は、発泡性粒子の目標発泡倍率により増減できるが、一般的には樹脂100質量部に対して2〜15質量部の範囲が好ましい。   Examples of the foaming agent used in the foamable thermoplastic resin particles of the present invention include hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, and cyclopentane, ethers such as dimethyl ether and diethyl ether, methanol, Various alcohols such as ethanol can be used, and among these, normal butane, isobutane, normal pentane, isopentane alone or a mixture thereof is particularly suitable. Although the addition amount of a foaming agent can be increased / decreased with the target foaming ratio of an expandable particle, generally the range of 2-15 mass parts is preferable with respect to 100 mass parts of resin.

本発明の発泡性熱可塑性樹脂粒子には、前記熱可塑性樹脂及び発泡剤以外の添加成分として、発泡性粒子が発泡した際の気泡を調整するために気泡核剤、帯電防止剤、着色剤、紫外線吸収剤、難燃剤、可塑剤等の当該分野で周知の各種添加剤を必要に応じて1種又は2種以上添加することができる。
気泡核剤としては、含浸法においては、例えばエチレンビスステアリン酸アマイド、メチレンビスステアリン酸アマイド等の脂肪酸アマイドや、トリグリセリン脂肪酸エステル、ポリエチレンワックス等が挙げられ、樹脂粒子に対して、通常0.01〜0.8質量部程度添加するのが好ましい。
気泡核剤としては、押出法においては、タルク、炭酸カルシウム、炭酸マグネシウム、珪藻土、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸アルミニウム、シリカ、ポリ四フッ化エチレン樹脂粉末等の他、重曹クエン酸、アゾジカルボン酸アミド等が使用できるが、この内、微粉末タルクを樹脂に対して0.2〜2.0質量部添加するのが好ましい。含浸法で用いられる気泡核剤を添加してもよい。
In the foamable thermoplastic resin particles of the present invention, as an additive component other than the thermoplastic resin and the foaming agent, a cell nucleating agent, an antistatic agent, a colorant, Various additives well known in the art such as ultraviolet absorbers, flame retardants, plasticizers and the like can be added as needed, or one or more.
Examples of the cell nucleating agent include, in the impregnation method, fatty acid amides such as ethylene bis stearic acid amide and methylene bis stearic acid amide, triglycerin fatty acid ester, polyethylene wax and the like. It is preferable to add about 01 to 0.8 parts by mass.
As the cell nucleating agent, in the extrusion method, talc, calcium carbonate, magnesium carbonate, diatomaceous earth, calcium stearate, magnesium stearate, barium stearate, zinc stearate, aluminum stearate, silica, polytetrafluoroethylene resin powder, etc. In addition, sodium bicarbonate citric acid, azodicarboxylic acid amide and the like can be used, and among these, it is preferable to add 0.2 to 2.0 parts by mass of fine powder talc with respect to the resin. A cell nucleating agent used in the impregnation method may be added.

本発明の発泡性熱可塑性樹脂粒子の形状や寸法は特に限定されないが、後述する各製造方法の違いによって、真球状、円柱状、略球状などの形状が一般的であり、真球状又は略球状の場合の粒径は通常0.3〜2.0mm程度であり、円柱状の場合は粒子径0.5〜1.5mm、粒子長2.0〜8.0mm程度である。   The shape and dimensions of the expandable thermoplastic resin particles of the present invention are not particularly limited, but due to differences in each production method described later, shapes such as true spheres, cylinders, and substantially spheres are common, and true spheres or substantially spheres. In this case, the particle diameter is usually about 0.3 to 2.0 mm, and in the case of a cylindrical shape, the particle diameter is about 0.5 to 1.5 mm and the particle length is about 2.0 to 8.0 mm.

本発明において発泡性熱可塑性樹脂粒子の表面に被覆される帯電防止剤は、保湿剤と界面活性剤を必須成分として含み、液状をなしている帯電防止剤組成物(発泡性熱可塑性樹脂粒子用帯電防止剤組成物)を用いることが好ましい。   In the present invention, the antistatic agent coated on the surface of the expandable thermoplastic resin particles includes a humectant and a surfactant as essential components, and is a liquid antistatic agent composition (for expandable thermoplastic resin particles). It is preferable to use an antistatic agent composition).

この帯電防止剤組成物に用いられる保湿剤としては、発泡性熱可塑性樹脂粒子の表面に被覆された際に保湿作用を発揮する各種の物質、例えば、多価アルコール又はその溶液、リン酸や乳酸などの酸溶液、ショ糖やブドウ糖などの糖水溶液、ポリアクリル酸塩などの吸水性高分子化合物の水溶液、塩化カルシウムなどの無機塩水溶液、クエン酸ナトリウムなどの有機酸塩水溶液等が挙げられ、これらの中でも多価アルコール又はその溶液が好ましい。   Examples of the humectant used in the antistatic agent composition include various substances that exhibit a moisturizing action when coated on the surface of the foamable thermoplastic resin particles, such as polyhydric alcohols or solutions thereof, phosphoric acid and lactic acid. Acid solutions such as sucrose and glucose, aqueous solutions of water-absorbing polymer compounds such as polyacrylates, inorganic salt aqueous solutions such as calcium chloride, organic acid salt aqueous solutions such as sodium citrate, etc. Of these, polyhydric alcohols or solutions thereof are preferred.

前記多価アルコールとしては、グリセリン、ポリエチレングリコール、エチレングリコール、ジエチレングリコール、ポリプロピレングリコール、プロピレングリコール、ジプロピレングリコール、ソルビトール、マンニトール、ペンタエリスリトールなどが挙げられ、これらの中でも、グリセリン、ポリエチレングリコールなどが特に好ましい。本発明の帯電防止剤組成物には、前述した各種保湿剤の中から選択される1種を、又は2種以上を配合することができる。   Examples of the polyhydric alcohol include glycerin, polyethylene glycol, ethylene glycol, diethylene glycol, polypropylene glycol, propylene glycol, dipropylene glycol, sorbitol, mannitol, and pentaerythritol. Among these, glycerin and polyethylene glycol are particularly preferable. . In the antistatic agent composition of the present invention, one kind selected from the various moisturizers described above, or two or more kinds can be blended.

本発明の帯電防止剤組成物に用いられる保湿剤は、未被覆の発泡性熱可塑性樹脂粒子に対して、100〜1500質量ppmの範囲となるように配合することが好ましい。未被覆の発泡性熱可塑性樹脂粒子に対して保湿剤が100質量ppm未満では、帯電防止効果が不十分となる可能性がある。一方、未被覆の発泡性熱可塑性樹脂粒子に対して保湿剤が1500質量ppmを超えると、べたつきが大きくなり、送粒時に付着したり、タンク貯留時にブロッキングを生じ易くなる。さらに好ましくは、200〜500質量ppmの範囲である。   The humectant used in the antistatic agent composition of the present invention is preferably blended so as to be in the range of 100 to 1500 mass ppm with respect to the uncoated foamable thermoplastic resin particles. If the humectant is less than 100 ppm by mass relative to the uncoated foamable thermoplastic resin particles, the antistatic effect may be insufficient. On the other hand, when the moisturizer exceeds 1500 mass ppm with respect to the uncoated foamed thermoplastic resin particles, the stickiness increases, and the particles tend to adhere during sending or block during tank storage. More preferably, it is the range of 200-500 mass ppm.

本発明の帯電防止剤組成物に用いられる界面活性剤(以下、活性剤と記す。)としては、アニオン活性剤、カチオン活性剤、両性活性剤の中から選択される1種又は2種以上が使用できる。   As the surfactant (hereinafter referred to as an activator) used in the antistatic agent composition of the present invention, one or more selected from anionic surfactants, cationic surfactants, and amphoteric surfactants may be used. Can be used.

アニオン活性剤としては、例えば、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジアリルエーテルスルホン酸塩などが挙げられる。
カチオン活性剤としては、例えば、アルキルアミン塩、第4級アンモニウム塩等が挙げられる。
両性活性剤としては、例えば、アルキルベタイン、アミンオキサイド、イミダゾリニウムベタイン、アルキルグリシン等が挙げられる。
なお、これらの活性剤は、水、アルコールなどの適当な溶媒、好ましくは水に溶解した状態で使用に供することが好ましい。
Examples of the anionic activator include alkyl sulfate ester salts, alkyl benzene sulfonates, alkyl naphthalene sulfonates, alkyl sulfosuccinates, and alkyl diallyl ether sulfonates.
Examples of the cationic activator include alkylamine salts and quaternary ammonium salts.
Examples of amphoteric activators include alkyl betaines, amine oxides, imidazolinium betaines, and alkyl glycines.
In addition, it is preferable to use these activators in the state melt | dissolved in suitable solvents, such as water and alcohol, Preferably water.

本発明の帯電防止剤組成物に用いられる活性剤は、未被覆の発泡性熱可塑性樹脂粒子に対して、5〜500質量ppmの範囲となるように配合することが好ましい。未被覆の発泡性熱可塑性樹脂粒子に対して活性剤が5質量ppm未満では帯電防止効果が不十分となる。一方、未被覆の発泡性熱可塑性樹脂粒子に対して活性剤が500質量ppmを超えると、樹脂粒子の乾燥が困難になる。さらに好ましくは、50〜150質量ppmの範囲である。   The activator used in the antistatic agent composition of the present invention is preferably blended so as to be in the range of 5 to 500 ppm by mass with respect to the uncoated foamed thermoplastic resin particles. When the activator is less than 5 ppm by mass with respect to the uncoated foamable thermoplastic resin particles, the antistatic effect is insufficient. On the other hand, when the activator exceeds 500 mass ppm with respect to the uncoated foamable thermoplastic resin particles, it becomes difficult to dry the resin particles. More preferably, it is the range of 50-150 mass ppm.

本発明の帯電防止剤組成物は、前記保湿剤及び活性剤の必須成分以外に、水やアルコールなどの溶媒、難燃剤、安定化剤、pH調整剤、皮膜形成剤などの各種添加剤を必要に応じて添加することができる。   The antistatic agent composition of the present invention requires various additives such as a solvent such as water and alcohol, a flame retardant, a stabilizer, a pH adjuster, and a film forming agent in addition to the essential components of the humectant and the activator. It can be added depending on.

本発明の帯電防止剤組成物は、未被覆の発泡性熱可塑性樹脂粒子の表面に混合機による被覆、スプレー装置による被覆などの各種の被覆方法を用いて被覆することができる。スプレー装置による噴霧による被覆は、連続的に均一に被覆することができるので、好ましい被覆方法である。帯電防止剤組成物を樹脂粒子表面に被覆後、必要に応じて気流乾燥することにより、溶媒を除去することができる。   The antistatic agent composition of the present invention can be coated on the surface of uncoated foamed thermoplastic resin particles using various coating methods such as coating with a mixer and coating with a spray device. Coating by spraying with a spray device is a preferred coating method because it can be continuously and uniformly coated. After coating the surface of the resin particles with the antistatic agent composition, the solvent can be removed by air-drying if necessary.

本発明の帯電防止剤組成物は、発泡性熱可塑性樹脂粒子の表面に被覆することで、樹脂粒子表面の体積固有抵抗を低下させ、樹脂粒子が帯電し難くなる。特に、相対湿度20%程度またはそれ以下の乾燥した雰囲気中でも発泡性熱可塑性樹脂粒子の体積固有抵抗ρを1.0×1013Ωcm未満に保つことができる。その結果、発泡性熱可塑性樹脂粒子の表面に前記帯電防止剤組成物を被覆してなる本発明の発泡性熱可塑性樹脂粒子は、ライン内を送粒したりタンクに貯留する際に粒子同士が擦れ合っても帯電し難くなり、窒素ガス置換せずに空気雰囲気下で送粒・貯留の作業を行っても、静電気発火の可能性が低くなり、発泡性熱可塑性樹脂粒子製造工程における窒素ガス置換等の安全対策を軽減することができる。また、製品の保管、輸送、使用時においても従来より安全に取り扱うことができる。 The antistatic agent composition of the present invention coats the surface of expandable thermoplastic resin particles, thereby reducing the volume resistivity of the resin particle surface and making the resin particles difficult to charge. In particular, the volume specific resistance ρ of the expandable thermoplastic resin particles can be kept below 1.0 × 10 13 Ωcm even in a dry atmosphere with a relative humidity of about 20% or less. As a result, the foamable thermoplastic resin particles of the present invention obtained by coating the surface of the foamable thermoplastic resin particles with the antistatic agent composition are transferred to each other when the particles are fed in the line or stored in a tank. Nitrogen gas in the process of producing foamable thermoplastic resin particles is less likely to be charged even when rubbed, and even if granulation and storage work is performed in an air atmosphere without replacing nitrogen gas, the possibility of electrostatic ignition is reduced. Safety measures such as replacement can be reduced. In addition, it can be handled more safely than before when storing, transporting and using the product.

次に、図面を参照して本発明に係る発泡性熱可塑性樹脂粒子の製造方法を説明する。
図1は、本発明に係る発泡性熱可塑性樹脂粒子の製造方法の一実施形態として、発泡性ポリスチレン樹脂粒子の製造工程を示す構成図である。本実施形態では、[含浸法]、[押出法(ストランドカット法及び水中ホットカット法)]の各製法による発泡性ポリスチレン樹脂粒子の製造工程に本発明の製造方法を適用した場合を例示しており、また本実施形態では、帯電防止剤として保湿剤と界面活性剤を必須成分として含み、液状をなしている帯電防止剤組成物をスプレーにより被覆する場合を例示している。
Next, a method for producing expandable thermoplastic resin particles according to the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing a process for producing expandable polystyrene resin particles as an embodiment of a method for producing expandable thermoplastic resin particles according to the present invention. In this embodiment, the case where the production method of the present invention is applied to the production process of expandable polystyrene resin particles by each production method of [impregnation method] and [extrusion method (strand cut method and underwater hot cut method)] is exemplified. Moreover, in this embodiment, the case where a humectant and a surfactant are included as essential components as an antistatic agent and a liquid antistatic agent composition is coated by spraying is exemplified.

[含浸法]
含浸法による発泡性ポリスチレン樹脂粒子の製造方法は、出発材料として予め懸濁重合法により作製された真球状ないし略球状のポリスチレン粒子を使用する。撹拌装置を備えたオートクレーブ1内に水系分散剤を入れ、その中にポリスチレン粒子を投入し、さらにペンタン等の発泡剤を導入し、加温加圧下で撹拌し、ポリスチレン粒子に発泡剤を含浸させる。所定時間経過後、冷却し、得られた発泡性ポリスチレン樹脂粒子(図示せず)を洗浄槽2に移し、水洗する。次に、洗浄した発泡性ポリスチレン樹脂粒子を脱水機3に移し、脱水乾燥する。
[Impregnation method]
In the method of producing expandable polystyrene resin particles by the impregnation method, spherical or substantially spherical polystyrene particles prepared in advance by a suspension polymerization method are used as starting materials. An aqueous dispersant is put into an autoclave 1 equipped with a stirrer, and polystyrene particles are put therein, a foaming agent such as pentane is further introduced, and the mixture is stirred under heating and pressure to impregnate the polystyrene particles with the foaming agent. . After a predetermined time, the system is cooled, and the obtained expandable polystyrene resin particles (not shown) are transferred to the washing tank 2 and washed with water. Next, the washed expandable polystyrene resin particles are transferred to the dehydrator 3 and dehydrated and dried.

発泡性ポリスチレン樹脂粒子を乾燥後、又は半乾燥状態の時点で、脱水機3内に帯電防止剤スプレー装置4から帯電防止剤組成物を噴霧し、発泡性ポリスチレン樹脂粒子の表面に帯電防止剤組成物を被覆する。帯電防止剤組成物を被覆した発泡性ポリスチレン樹脂粒子は、必要に応じて更に乾燥した後、送粒ライン18内を空気送粒して篩機5に送り、粒度により選別し、適当な粒径の発泡性ポリスチレン樹脂粒子が1次タンク6に貯留される。この送粒及びタンク貯留の際、帯電防止剤組成物を被覆していない発泡性ポリスチレン樹脂粒子では、樹脂粒子同士が擦れ合って帯電し、空気雰囲気では逸散した発泡剤に静電気発火する危険性があるため、送粒及びタンク貯留を窒素ガス雰囲気下で行う必要があった。一方、本実施形態においては、発泡性ポリスチレン樹脂粒子の表面に帯電防止剤組成物を被覆することで、送粒及びタンク貯留の際に樹脂粒子同士が擦れ合っても帯電し難くなり、空気雰囲気下でも静電気発火の危険性を格段に少なくすることができる。従って、本実施形態においては、空気雰囲気下で表面処理工程前の発泡性ポリスチレン樹脂粒子を送粒及びタンク貯留することが可能となる。   After the expandable polystyrene resin particles are dried or in a semi-dry state, the antistatic agent composition is sprayed from the antistatic agent spray device 4 into the dehydrator 3, and the antistatic agent composition is applied to the surface of the expandable polystyrene resin particles. Cover the object. The expandable polystyrene resin particles coated with the antistatic agent composition are further dried as necessary, and then air-granulated in the granulation line 18 and sent to the sieve 5 and selected according to the particle size. The expandable polystyrene resin particles are stored in the primary tank 6. In the case of expandable polystyrene resin particles that are not coated with the antistatic agent composition at the time of this granulation and tank storage, the resin particles rub against each other and become charged, and there is a risk of electrostatic ignition of the dissipated foaming agent in an air atmosphere Therefore, it was necessary to carry out granulation and tank storage in a nitrogen gas atmosphere. On the other hand, in the present embodiment, by covering the surface of the expandable polystyrene resin particles with the antistatic agent composition, even when the resin particles rub against each other during granulation and tank storage, it becomes difficult to be charged, and the air atmosphere The risk of static electricity ignition can be greatly reduced even underneath. Therefore, in this embodiment, it becomes possible to feed and store the expandable polystyrene resin particles before the surface treatment step in an air atmosphere.

1次タンク6に貯留された発泡性ポリスチレン樹脂粒子は、混合機7に適量送粒し、表面処理剤を投入して混合し、樹脂粒子表面に表面処理剤を被覆する(表面処理工程)。
ここで使用する表面処理剤としては、ヒドロキシ脂肪酸アミドなどの粉体状の帯電防止剤、ステアリン酸亜鉛などの結合防止剤等が挙げられる。この表面処理剤の使用量は、発泡性ポリスチレン樹脂粒子100質量部に対して、粉体状の帯電防止剤が0.02〜2.0質量部の範囲、結合防止剤が0.05〜0.5質量部の範囲とすることが好ましい。
An appropriate amount of the expandable polystyrene resin particles stored in the primary tank 6 is sent to a mixer 7, and a surface treatment agent is added and mixed to coat the surface of the resin particles (surface treatment step).
Examples of the surface treating agent used here include powdery antistatic agents such as hydroxy fatty acid amide, and binding inhibitors such as zinc stearate. The amount of the surface treatment agent used is in the range of 0.02 to 2.0 parts by mass of the powdered antistatic agent and 0.05 to 0 of the binding inhibitor with respect to 100 parts by mass of the expandable polystyrene resin particles. It is preferable to be in the range of 5 parts by mass.

本実施形態では、表面処理剤を被覆する前の発泡性ポリスチレン樹脂粒子表面に、前述した保湿剤と活性剤とを必須成分として含む帯電防止剤組成物を被覆してあるので、粉体状の表面処理剤を発泡性ポリスチレン樹脂粒子に混ぜて混合することで、粉体状の表面処理剤が効率よく樹脂粒子表面に付着し、被覆されるので、剥離し難くなる。   In this embodiment, the surface of the expandable polystyrene resin particles before coating with the surface treatment agent is coated with the antistatic agent composition containing the above-described moisturizing agent and activator as essential components. By mixing and mixing the surface treatment agent with the expandable polystyrene resin particles, the powdery surface treatment agent is efficiently attached to and coated on the surface of the resin particles, which makes it difficult to peel off.

混合機7において発泡性ポリスチレン樹脂粒子の表面に表面処理剤を被覆した後、この発泡性ポリスチレン樹脂粒子を2次タンク8に送粒、貯留する。次いで、適当な容器に発泡性ポリスチレン樹脂粒子を充填、包装して製品とする。この製品は、さらに保冷倉庫9に保管し、熟成・保管する。   After the surface treatment agent is coated on the surface of the expandable polystyrene resin particles in the mixer 7, the expandable polystyrene resin particles are sent to the secondary tank 8 and stored. Next, a suitable container is filled with expandable polystyrene resin particles and packaged to obtain a product. This product is further stored in the cold storage warehouse 9 and aged and stored.

[押出法]
1.ストランドカット法
ストランドカット法では、円柱状(ペレット)の発泡性ポリスチレン樹脂粒子が作製される。出発材料とするポリスチレンは、押出機10に供給可能であればよく、その形状や大きさは限定されない。この方法では、先端に多数の小孔を有するダイ11が装着された押出機10にポリスチレンを投入し、押出機10内で加熱溶融し、これに発泡剤を添加して溶融混練して発泡剤含有樹脂とし、ダイ11から該樹脂を細紐(ストランド)状に押し出し、これを直ちに冷却水槽12の冷却水中に導入し、硬化させてストランド16とする。
[Extrusion method]
1. Strand cut method In the strand cut method, cylindrical (pellet) expandable polystyrene resin particles are produced. The starting polystyrene is not limited as long as it can be supplied to the extruder 10 and its shape and size are not limited. In this method, polystyrene is put into an extruder 10 equipped with a die 11 having a large number of small holes at the tip, heated and melted in the extruder 10, a foaming agent is added to this, and melted and kneaded to obtain a foaming agent. The resin is contained and extruded from the die 11 in the form of a fine string (strand), which is immediately introduced into the cooling water of the cooling water tank 12 and cured to form a strand 16.

冷却水槽12で十分冷却されたストランド16は、冷却水槽12から引き上げられ、ペレタイザー13に送られて所定長さのペレット状に切断される。得られたペレット15(発泡性ポリスチレン樹脂粒子)は、噴霧室14に導入され、該室内で表面に帯電防止剤組成物をスプレー被覆する。   The strand 16 sufficiently cooled in the cooling water tank 12 is pulled up from the cooling water tank 12, sent to the pelletizer 13, and cut into pellets having a predetermined length. The obtained pellets 15 (expandable polystyrene resin particles) are introduced into the spray chamber 14, and the surface is spray-coated with the antistatic agent composition in the chamber.

図2は、本発明の製造方法における帯電防止剤の被覆に好適な実施形態を示し、図2(a)は噴霧室14の配置状態を示す構成図、(b)は噴霧室に接続した帯電防止剤スプレー装置4を示す構成図である。本実施形態では、図2(a)に示すように、ペレタイザー13から送られたペレット15が噴霧室14の上方から供給され、噴霧室14を落下する間に、側方に取り付けられた2流体ノズル22から噴射された帯電防止剤ミスト19に接触し、ペレット15表面に帯電防止剤組成物が被覆されるようになっている。表面に帯電防止剤組成物が被覆されたペレット15は、噴霧室14の底から送粒ライン18に入り、送粒ブロアー17により該ライン内を空気送粒されるようになっている。   FIG. 2 shows an embodiment suitable for coating with an antistatic agent in the production method of the present invention, FIG. 2 (a) is a configuration diagram showing the arrangement state of the spray chamber 14, and FIG. 2 (b) is a charge connected to the spray chamber. It is a block diagram which shows the inhibitor spray apparatus. In the present embodiment, as shown in FIG. 2A, the two fluids attached to the side are supplied while the pellet 15 sent from the pelletizer 13 is supplied from above the spray chamber 14 and falls down the spray chamber 14. The antistatic agent mist 19 sprayed from the nozzle 22 is brought into contact, and the surface of the pellet 15 is coated with the antistatic agent composition. The pellet 15 whose surface is coated with the antistatic agent composition enters the granulation line 18 from the bottom of the spray chamber 14 and is air-granulated in the line by the granulation blower 17.

本実施形態において、帯電防止剤スプレー装置4は、図2(b)に示すように、帯電防止剤組成物20を収容する容器と、該容器から帯電防止剤組成物20を定量圧送する定量ポンプ21と、前記噴霧室14の側方からノズル先端を突出して設けられた2流体ノズル22とを備えて構成されている。この2流体ノズル22は、定量ポンプ21に接続された帯電防止剤導入管22bと、エアー導入管22aとを有している。   In this embodiment, as shown in FIG. 2B, the antistatic agent spray device 4 includes a container that contains the antistatic agent composition 20, and a metering pump that quantitatively pumps the antistatic agent composition 20 from the container. 21 and a two-fluid nozzle 22 provided with a nozzle tip protruding from the side of the spray chamber 14. The two-fluid nozzle 22 has an antistatic agent introduction tube 22b connected to the metering pump 21 and an air introduction tube 22a.

表面に帯電防止剤組成物が被覆されたペレット15は、送粒ライン18内を通って1次タンク6に空気送粒される。その後、前述した[含浸法]の場合と同じく、混合機7内で表面処理剤を被覆する表面処理工程を経て製品化される。   The pellets 15 whose surfaces are coated with the antistatic agent composition are air-granulated into the primary tank 6 through the granulation line 18. Thereafter, as in the case of the above-mentioned “impregnation method”, the product is manufactured through a surface treatment step of coating the surface treatment agent in the mixer 7.

2.水中ホットカット法
水中ホットカット法では、略球形の発泡性ポリスチレン樹脂粒子が作製される。出発材料とするポリスチレンは、前記ストランドカット法の場合と同じく、押出機1に供給可能であればよく、その形状や大きさは限定されない。この方法では、先端に多数の小孔を有するダイ24が装着された押出機23にポリスチレンを投入し、押出機23内で加熱溶融し、これに発泡剤を添加して溶融混練して発泡剤含有樹脂とし、ダイ24から該樹脂をカッティング室25内に押し出す。カッティング室25は、冷却水循環ライン26が接続され、冷却水が循環供給されており、また室内には高速回転刃が設けられている。
2. Underwater hot cut method In the underwater hot cut method, substantially spherical expandable polystyrene resin particles are produced. As in the case of the strand cutting method, the polystyrene used as a starting material is not limited as long as it can be supplied to the extruder 1 and its shape and size are not limited. In this method, polystyrene is put into an extruder 23 equipped with a die 24 having a large number of small holes at its tip, heated and melted in the extruder 23, a foaming agent is added to this, melt-kneaded, and then the foaming agent. The resin is contained, and the resin is extruded from the die 24 into the cutting chamber 25. The cutting chamber 25 is connected to a cooling water circulation line 26 and is circulated and supplied with cooling water, and a high-speed rotary blade is provided in the chamber.

ダイ24から押し出された樹脂は、カッティング室25内で冷却水に接触して冷却されるとともに、高速回転刃によりカットされ、略球状に分散した状態で循環水の流動とともにカッティング室25から流出し、冷却水循環ライン26内を搬送される。この冷却水循環ライン26には、水循環ポンプ27と脱水機28が接続されている。冷却水循環ライン26内を冷却されながら脱水機28に搬送された発泡性ポリスチレン樹脂粒子29は、冷却水と分離され、脱水されて取り出される。一方、冷却水は冷却水循環ライン26に戻る。   The resin pushed out from the die 24 is cooled by contacting with the cooling water in the cutting chamber 25 and cut out by the high-speed rotary blade and flows out of the cutting chamber 25 together with the circulating water in a state of being dispersed in a substantially spherical shape. The cooling water circulation line 26 is conveyed. A water circulation pump 27 and a dehydrator 28 are connected to the cooling water circulation line 26. The expandable polystyrene resin particles 29 conveyed to the dehydrator 28 while being cooled in the cooling water circulation line 26 are separated from the cooling water, dehydrated and taken out. On the other hand, the cooling water returns to the cooling water circulation line 26.

脱水機28から取り出された発泡性ポリスチレン樹脂粒子29は、噴霧室内に投入され、前述したストランドカット法の場合と同じく、図2に示す帯電防止剤スプレー装置4によって発泡性ポリスチレン樹脂粒子29表面に帯電防止剤組成物をスプレー被覆する。   The expandable polystyrene resin particles 29 taken out from the dehydrator 28 are put into the spray chamber, and the surface of the expandable polystyrene resin particles 29 is applied by the antistatic agent spray device 4 shown in FIG. The antistatic composition is spray coated.

表面に帯電防止剤組成物が被覆された発泡性ポリスチレン樹脂粒子29は、送粒ライン18内を通って1次タンク6に空気送粒される。その後、前述した[含浸法]の場合と同じく、混合機7内で表面処理剤を被覆する表面処理工程を経て製品化される。   The expandable polystyrene resin particles 29 whose surface is coated with the antistatic agent composition are air-granulated into the primary tank 6 through the granulation line 18. Thereafter, as in the case of the above-mentioned “impregnation method”, the product is manufactured through a surface treatment step of coating the surface treatment agent in the mixer 7.

本実施形態においては、発泡性ポリスチレン樹脂粒子の表面に帯電防止剤組成物を被覆することで、送粒及びタンク貯留の際に樹脂粒子同士が擦れ合っても帯電し難くなり、空気雰囲気下でも静電気発火の危険性を格段に少なくすることができる。従って、本実施形態においては、空気雰囲気下で表面処理工程前の発泡性ポリスチレン樹脂粒子を送粒及びタンク貯留することが可能となるので、送粒及びタンク貯留の際に窒素ガス置換を実施する従来技術と比べ、多量の窒素ガス及び窒素ガス置換のための種々の機器を不要にでき、また製造工程が簡略化できるので、発泡性ポリスチレン樹脂粒子の製造コストを低減することができる。
また、液状の帯電防止剤組成物を樹脂粒子にスプレー被覆する簡単な操作で帯電防止することができるので、発泡性ポリスチレン樹脂粒子内に帯電防止剤を混合する従来技術と比べ、安価な発泡性ポリスチレン樹脂粒子を提供することができる。
In the present embodiment, by coating the surface of the expandable polystyrene resin particles with the antistatic agent composition, it becomes difficult to be charged even if the resin particles rub against each other during granulation and tank storage, even in an air atmosphere. The risk of static electricity ignition can be greatly reduced. Therefore, in this embodiment, it becomes possible to send and store the expandable polystyrene resin particles before the surface treatment step in an air atmosphere, and therefore, nitrogen gas replacement is performed at the time of sending and storing the tank. Compared with the prior art, a large amount of nitrogen gas and various devices for nitrogen gas replacement can be eliminated, and the manufacturing process can be simplified, so that the manufacturing cost of expandable polystyrene resin particles can be reduced.
In addition, since the antistatic agent can be prevented by a simple operation of spray-coating a liquid antistatic agent composition on the resin particles, the foaming property is less expensive than the conventional technology in which an antistatic agent is mixed in the expandable polystyrene resin particles. Polystyrene resin particles can be provided.

なお、前述した本発明の各実施形態及び後述する実施例の記載は、例示に過ぎず、本発明はこれらの例示にのみ限定されるものではなく、種々の変更、修正が可能である。
例えば、前述した各実施形態では、予め保湿剤と活性剤を混合した帯電防止剤組成物を発泡性ポリスチレン樹脂粒子などの発泡性熱可塑性樹脂粒子の表面に被覆したが、保湿剤と活性剤を別々に樹脂粒子表面に被覆することも可能である。
また、帯電防止剤を被覆した発泡性ポリスチレン樹脂粒子を送粒、貯留する際に、空気雰囲気下ではなく、空気に窒素ガスや炭酸ガスを混ぜて、或いは空気中の酸素を吸着した後の酸素低減化ガスを用いることもできる。
In addition, description of each embodiment of this invention mentioned above and the Example mentioned later is only an illustration, This invention is not limited only to these illustrations, A various change and correction are possible.
For example, in each of the embodiments described above, the antistatic agent composition in which a moisturizing agent and an activator are mixed in advance is coated on the surface of expandable thermoplastic resin particles such as expandable polystyrene resin particles. It is also possible to coat the resin particle surface separately.
Also, when sending and storing expandable polystyrene resin particles coated with an antistatic agent, oxygen after mixing nitrogen gas or carbon dioxide gas in the air or adsorbing oxygen in the air, not in an air atmosphere A reduced gas can also be used.

[実施例1]
スチレン樹脂(東洋スチレン社製、商品名トーヨースチロールHRM−10N)100質量部に粉末タルク(キハラ化成社製、商品名SP−GB)0.3質量部を予めタンブラーにて混合した後、口径90mmの一軸押出機(バレル径(D)と有効スクリュー長さ(L)との比L/Dが35)を用いて加熱溶融混練し、同時に発泡剤としてペンタン(i−ペンタン/n−ペンタン=2/8混合物)6質量部を押出機内に圧入混合し、押出機スクリュー先端部での樹脂温度を170℃、ダイへの樹脂導入部の圧力を14MPaに保持して、直径0.6mm、ランド長さ3.5mmの小孔150個を有するダイより、該ダイに連結され40℃の冷却水が循環するカッティング室内に発泡剤含有溶融樹脂を押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターにて押出物を切断し、冷却水循環ラインの途中に設けた脱水機により脱水することで、直径約1.0mmの球状発泡性ポリスチレン樹脂粒子を連続的に生産した。この時の吐出量は1800g/分である。脱水した樹脂粒子を、図2に示す帯電防止剤噴霧用の2流体ノズルを設けた噴霧室に連続的に導入して、ポリエチレングリコール(日本油脂社製、商品名PEG#300)とアニオン活性剤(ソジウムヤシアルキルエーテルサルフェート(C8〜18):日本油脂社製、商品名パーソフトEK、有効固形分30質量%水溶液)とを予め質量比で50:50に混合した混合液を定量ポンプと2流体ノズルから、毎分1.1gを、噴霧室内で発泡性ポリスチレン樹脂粒子の表面に吹き付けて、内径75mm×20mのステンレス鋼製の送粒管内を空気送粒により1次タンクまで送粒して、表面が帯電防止剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Example 1]
After mixing 0.3 parts by mass of powder talc (trade name SP-GB, manufactured by Kihara Kasei Co., Ltd.) with 100 parts by mass of styrene resin (product of Toyo Styrol HRM-10N, manufactured by Toyo Styrene Co., Ltd.), a diameter of 90 mm Using a single screw extruder (barrel diameter (D) to effective screw length (L) ratio L / D is 35), heat melt kneading, and at the same time, pentane (i-pentane / n-pentane = 2) as a blowing agent. / 8 mixture) 6 parts by mass of the mixture was press-fitted into the extruder, the resin temperature at the extruder screw tip was maintained at 170 ° C., and the pressure at the resin introduction part to the die was maintained at 14 MPa. From a die having 150 small holes of 3.5 mm in length, extruding a foaming agent-containing molten resin into a cutting chamber connected to the die and circulating cooling water at 40 ° C., and at the same time, 10 blades in the circumferential direction The extrudate is cut at a high speed rotary cutter having, by dehydration by middle provided the dehydrator of the cooling water circulation line was continuously produce spherical expandable polystyrene resin particles having a diameter of about 1.0 mm. The discharge rate at this time is 1800 g / min. The dehydrated resin particles are continuously introduced into a spray chamber provided with a two-fluid nozzle for spraying an antistatic agent as shown in FIG. 2, and polyethylene glycol (trade name PEG # 300, manufactured by NOF Corporation) and an anionic activator. (Sodium coconut alkyl ether sulfate (C8-18): Nippon Oil & Fats Co., Ltd., trade name Persoft EK, 30% by mass aqueous solution with an effective solid content) mixed in advance at a mass ratio of 50:50 and a metering pump From the two-fluid nozzle, 1.1 g / min is sprayed onto the surface of the expandable polystyrene resin particles in the spray chamber, and the inside of the stainless steel granule having an inner diameter of 75 mm × 20 m is fed to the primary tank by air granulation. Thus, expandable polystyrene resin particles having a surface coated with an antistatic agent were obtained. About this, the antistatic property was evaluated by the method mentioned later.

[実施例2]
スチレン樹脂(東洋スチレン社製、商品名トーヨースチロール HRM−10N)90質量部、カーボンブラックマスターバッチ(住化カラー社製、商品名ブラックSPAB−851HC)10質量部、及びタルク(キハラ化成社製、商品名SP−GB)0.4質量部を予めタンブラーにて混合した後、口径90mmの一軸押出機(バレル径(D)と有効スクリュー長さ(L)との比L/Dが35)を用いて加熱溶融混練し、同時に発泡剤としてペンタン(i−ペンタン/n−ペンタン=2/8混合物)8質量部を押出機内に圧入混合し、押出機スクリュー先端部での樹脂温度を127℃、金型への樹脂導入部の圧力を15MPaに保持して、口径0.7mmランド長さ5mmの吐出口120個を備えた丸形ダイよりストランド状に押出すとともに、ストランドを水槽内に導いて直ちに急冷し、ロータリー式ペレタイザーにて切断ペレット化して円柱状の黒色に着色した発泡性ポリスチレン樹脂粒子(粒子長L=3〜4mm、粒子径D=0.5〜0.7mm)を1000g/分の吐出量で連続的に生産しながら、ペレタイザー出口から図2に示す帯電防止剤噴霧用の2流体ノズルを設けた噴霧室に連続的に導入して、ポリエチレングリコール(日本油脂社製、商品名PEG#300)とアニオン活性剤(ソジウムヤシアルキルエーテルサルフェート(C8〜18:日本油脂社製、商品名パーソフトEK(有効固形分30質量%水溶液))とを予め質量比で50:50に混合した混合液を、定量ポンプと2流体ノズルを用いて、毎分0.6gを、ペレタイザーから供給される発泡性ポリスチレン樹脂粒子の表面に霧状に吹き付けて、内径75mm×20mのステンレス鋼製の送粒管内を空気送粒により1次タンクまで送粒して、表面が帯電防止剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Example 2]
90 parts by mass of styrene resin (manufactured by Toyo Styrene Co., Ltd., trade name Toyostyrene HRM-10N), 10 parts by mass of carbon black masterbatch (manufactured by Sumika Color Co., Ltd., trade name black SPAB-851HC), and talc (manufactured by Kihara Kasei Co., Ltd., (Product name SP-GB) After mixing 0.4 parts by mass with a tumbler in advance, a uniaxial extruder with a bore of 90 mm (ratio L / D between barrel diameter (D) and effective screw length (L) is 35) The mixture is heated and melt-kneaded, and at the same time, 8 parts by mass of pentane (i-pentane / n-pentane = 2/8 mixture) as a foaming agent is press-fitted into the extruder, and the resin temperature at the tip of the extruder screw is 127 ° C. When the pressure of the resin introduction part to the mold is kept at 15 MPa, and extruded from a round die having 120 discharge ports with a diameter of 0.7 mm and a land length of 5 mm in a strand shape, In addition, the strand was introduced into a water tank, immediately quenched, cut into pellets with a rotary pelletizer, and colored in a black columnar polystyrene resin particle (particle length L = 3 to 4 mm, particle diameter D = 0.0). 5 to 0.7 mm) is continuously produced at a discharge rate of 1000 g / min, and continuously introduced from the outlet of the pelletizer into the spray chamber provided with the two-fluid nozzle for spraying the antistatic agent shown in FIG. Polyethylene glycol (Nippon Yushi Co., Ltd., trade name PEG # 300) and anion activator (Sodium coconut alkyl ether sulfate (C8-18: Nihon Yushi Co., Ltd., trade name Persoft EK (30% by weight effective solid content aqueous solution)) The foamed poly, which is supplied from the pelletizer at a rate of 0.6 g / min. Foam polystyrene whose surface is coated with an antistatic agent by spraying the surface of the styrene resin particles in the form of a mist, sending the inside of a stainless steel granulation tube with an inner diameter of 75 mm × 20 m to the primary tank by air feeding. Resin particles were obtained, and the antistatic property was evaluated by the method described later.

[実施例3]
アニオン活性剤をカチオン活性剤(第4級アンモニウム塩:第一工業製薬社製、商品名カチオーゲンES−L(有効固形分50質量%)に蒸留水を加えて有効固形分を30質量%に調整した水溶液)に変えた以外は、実施例2と同様にして、表面が帯電防止剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Example 3]
An anionic activator is a cationic activator (quaternary ammonium salt: manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name Catiogen ES-L (effective solid content 50 mass%) and distilled water is added to adjust the effective solid content to 30 mass%. The foamed polystyrene resin particles whose surface was coated with an antistatic agent were obtained in the same manner as in Example 2 except that the aqueous solution was changed to an aqueous solution. About this, the antistatic property was evaluated by the method mentioned later.

[実施例4]
アニオン活性剤を両性活性剤(ラウリルジメチルアミノ酢酸ベタイン:日本油脂社製、商品名アノンBL(有効固形分36質量%)に蒸留水を加えて有効固形分を30質量%に調整した水溶液)に変えた以外は、実施例2と同様にして、表面が帯電防止剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Example 4]
An anionic activator is an amphoteric activator (lauryl dimethylaminoacetate betaine: manufactured by NOF Corporation, an aqueous solution in which distilled water is added to the trade name Anon BL (effective solid content 36 mass%) to adjust the effective solid content to 30 mass%). Except for the change, in the same manner as in Example 2, expandable polystyrene resin particles whose surfaces were coated with an antistatic agent were obtained. About this, the antistatic property was evaluated by the method mentioned later.

[実施例5]
ポリエチレングリコールをグリセリン(純正化学社製、試薬特級)に変えた以外は、実施例2と同様にして、表面が帯電防止剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Example 5]
Expandable polystyrene resin particles whose surfaces were coated with an antistatic agent were obtained in the same manner as in Example 2 except that polyethylene glycol was changed to glycerin (made by Junsei Chemical Co., Ltd., reagent special grade). About this, the antistatic property was evaluated by the method mentioned later.

[実施例6]
ポリエチレングリコールをポリエチレングリコールとグリセリンの混合液(質量比1:1)に変えた以外は、実施例2と同様にして、表面が帯電防止剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Example 6]
Expandable polystyrene resin particles whose surfaces were coated with an antistatic agent were obtained in the same manner as in Example 2 except that the polyethylene glycol was changed to a mixed solution of polyethylene glycol and glycerin (mass ratio 1: 1). About this, the antistatic property was evaluated by the method mentioned later.

[実施例7]
ポリエチレングリコールとアニオン活性剤の混合比率を50:50から75:25に変更し、吹き付け量を毎分0.6gから毎分0.15gに変更した以外は、実施例2と同様にして、表面が帯電防止剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Example 7]
In the same manner as in Example 2, except that the mixing ratio of polyethylene glycol and an anionic surfactant was changed from 50:50 to 75:25, and the spraying amount was changed from 0.6 g / min to 0.15 g / min. Expanded polystyrene resin particles coated with an antistatic agent. About this, the antistatic property was evaluated by the method mentioned later.

[実施例8]
ポリエチレングリコールとアニオン活性剤の混合比率を50:50から97.5:2.5に変更し、吹き付け量を毎分0.6gから毎分1.5gに変更した以外は、実施例2と同様にして、表面が帯電防止剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Example 8]
Example 2 except that the mixing ratio of polyethylene glycol and anionic activator was changed from 50:50 to 97.5: 2.5, and the spraying amount was changed from 0.6 g / min to 1.5 g / min. Thus, expandable polystyrene resin particles having a surface coated with an antistatic agent were obtained. About this, the antistatic property was evaluated by the method mentioned later.

[実施例9]
ポリエチレングリコールとアニオン活性剤の混合比率を50:50から7:93に変更し、吹き付け量を毎分0.6gから毎分1.5gに変更した以外は、実施例2と同様にして、表面が帯電防止剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Example 9]
In the same manner as in Example 2, except that the mixing ratio of the polyethylene glycol and the anionic activator was changed from 50:50 to 7:93 and the spraying amount was changed from 0.6 g / min to 1.5 g / min. Expanded polystyrene resin particles coated with an antistatic agent. About this, the antistatic property was evaluated by the method mentioned later.

[実施例10]
内容積52Lの反応器に、蒸留水18kg、ピロリン酸マグネシウム58g、ドデシルベンゼンスルホン酸ナトリウム(日本油脂社製、商品名NR−R−25)を純分で1.30g入れ、粒子径が0.5〜0.7mmで重量平均分子量が300000のポリスチレン種粒子(スチレンをピロリン酸マグネシウム、ドデシルベンゼンスルホン酸ナトリウムを使用した水性媒体中で、通常の懸濁重合を行って得たもの)5.0kgを加えて撹拌し懸濁させた。次いで予め用意した蒸留水1500mLに、ピロリン酸マグネシウム5.0g、ドデシルベンゼンスルホン酸ナトリウムを純分で1.0g加えた分散液に、ベンゾイルパーオキサイド67.6g及びt−ブチルパーオキシベンゾエート16.9gをスチレン2160gに溶解して添加し、ホモミキサーで撹拌して懸濁液を作り、この懸濁液を75℃に保持した反応器に加えた。ポリスチレン種粒子に、スチレンと重合開始剤を吸収させる為に、1時間保持した後に、スチレンを連続的に5900g/hrの速度で2.5時間供給しながら、スチレンの供給終了時に105℃になるように反応器を昇温した。引き続き120℃まで昇温し30分保持した後、トルエン310g、スチレン110gを蒸留水2000mL、ピロリン酸マグネシウム6.5g、ドデシルベンゼンスルホン酸ナトリウムを純分で0.26g加えた分散液を、ホモミキサーで撹拌し懸濁液として反応器に添加し、100℃まで冷却してブタン2265gを圧入し、3時間保持した後、常温まで冷却して取り出し洗浄、脱水、乾燥した。この操作を2回繰り返して、粒子径0.8〜1.2mmの発泡性ポリスチレン樹脂粒子40kgを得た。この発泡性ポリスチレン樹脂粒子を毎分1000gの割合で噴霧室に導入した以外は、実施例2と同様にして、表面が帯電防止剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Example 10]
Into a reactor having an internal volume of 52 L, 18 kg of distilled water, 58 g of magnesium pyrophosphate, and sodium dodecylbenzenesulfonate (product name NR-R-25, manufactured by NOF Corporation) are put in a pure amount, and the particle size is 0.00. 5.0 kg of polystyrene seed particles having a weight average molecular weight of 300000 with a weight average molecular weight of 300000 (obtained by subjecting styrene to an ordinary suspension polymerization in an aqueous medium using magnesium pyrophosphate and sodium dodecylbenzenesulfonate) Was added and stirred for suspension. Subsequently, 67.6 g of benzoyl peroxide and 16.9 g of t-butylperoxybenzoate were added to a dispersion prepared by adding 5.0 g of magnesium pyrophosphate and 1.0 g of sodium dodecylbenzenesulfonate to 1500 mL of distilled water prepared in advance. Was dissolved in 2160 g of styrene and added by stirring with a homomixer to make a suspension. This suspension was added to a reactor maintained at 75 ° C. In order to allow the polystyrene seed particles to absorb styrene and the polymerization initiator, after holding for 1 hour, styrene is continuously supplied at a rate of 5900 g / hr for 2.5 hours, and reaches 105 ° C. at the end of the supply of styrene. The reactor was warmed up. Subsequently, the temperature was raised to 120 ° C. and held for 30 minutes, and then a dispersion obtained by adding 310 g of toluene and 110 g of styrene to 2000 mL of distilled water, 6.5 g of magnesium pyrophosphate, and 0.26 g of pure dodecylbenzenesulfonate was added to a homomixer. The suspension was added to the reactor as a suspension, cooled to 100 ° C., 2265 g of butane was injected, held for 3 hours, cooled to room temperature, taken out, washed, dehydrated and dried. This operation was repeated twice to obtain 40 kg of expandable polystyrene resin particles having a particle diameter of 0.8 to 1.2 mm. Expandable polystyrene resin particles whose surfaces were coated with an antistatic agent were obtained in the same manner as in Example 2 except that the expandable polystyrene resin particles were introduced into the spray chamber at a rate of 1000 g / min. About this, the antistatic property was evaluated by the method mentioned later.

[比較例1]
帯電防止剤を添加しない以外は、実施例1と同様にして、発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Comparative Example 1]
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that no antistatic agent was added. About this, the antistatic property was evaluated by the method mentioned later.

[比較例2]
帯電防止剤を添加しない以外は、実施例2と同様にして、発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Comparative Example 2]
Expandable polystyrene resin particles were obtained in the same manner as in Example 2 except that no antistatic agent was added. About this, the antistatic property was evaluated by the method mentioned later.

[比較例3]
実施例10で作製した発泡性ポリスチレン樹脂粒子について、無処理のまま、後述する方法で帯電防止性を評価した。
[Comparative Example 3]
About the expandable polystyrene resin particle produced in Example 10, antistatic property was evaluated by the method mentioned later with no processing.

[比較例4]
アニオン活性剤を蒸留水に変えた以外は、実施例2と同様にして、表面がポリエチレングリコールで被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Comparative Example 4]
Expandable polystyrene resin particles whose surfaces were coated with polyethylene glycol were obtained in the same manner as in Example 2 except that the anion activator was changed to distilled water. About this, the antistatic property was evaluated by the method mentioned later.

[比較例5]
アニオン活性剤を蒸留水に変えた以外は、実施例5と同様にして、表面がグリセリンで被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Comparative Example 5]
Expandable polystyrene resin particles whose surfaces were coated with glycerin were obtained in the same manner as in Example 5 except that the anion activator was changed to distilled water. About this, the antistatic property was evaluated by the method mentioned later.

[比較例6]
実施例2で用いたアニオン活性剤に蒸留水を加えて有効固形分を15質量%に調整した水溶液を毎分0.6gで霧状に吹き付けた以外は、実施例2と同様にして、表面がアニオン活性剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Comparative Example 6]
In the same manner as in Example 2, except that an aqueous solution prepared by adding distilled water to the anionic surfactant used in Example 2 to adjust the effective solid content to 15% by mass was sprayed at 0.6 g / min. Expanded polystyrene resin particles coated with an anionic activator. About this, the antistatic property was evaluated by the method mentioned later.

[比較例7]
実施例3で用いたカチオン活性剤に蒸留水を加えて有効固形分を15質量%に調整した水溶液を毎分0.6gで霧状に吹き付けた以外は、実施例1と同様にして、表面がカチオン活性剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Comparative Example 7]
In the same manner as in Example 1, except that an aqueous solution prepared by adding distilled water to the cation activator used in Example 3 and adjusting the effective solid content to 15% by mass was sprayed at 0.6 g / min. Expanded polystyrene resin particles coated with a cationic activator. About this, the antistatic property was evaluated by the method mentioned later.

[比較例8]
実施例4で用いた両性活性剤に蒸留水を加えて有効固形分を15質量%に調整した水溶液を毎分0.6g霧状に吹き付けた以外は、実施例1と同様にして、表面が両性活性剤で被覆された発泡性ポリスチレン樹脂粒子を得た。これについて、後述する方法で帯電防止性を評価した。
[Comparative Example 8]
The surface was the same as in Example 1 except that distilled water was added to the amphoteric activator used in Example 4 and an aqueous solution having an effective solid content adjusted to 15% by mass was sprayed in an amount of 0.6 g / min. Expandable polystyrene resin particles coated with an amphoteric activator were obtained. About this, the antistatic property was evaluated by the method mentioned later.

1次タンクから採取した、実施例1〜10、及び比較例1〜8の発泡性ポリスチレン樹脂粒子について、以下の方法で、その体積固有抵抗値を測定して発泡性ポリスチレン樹脂粒子の帯電防止性を評価した。結果を表1、2に示す。   About the expandable polystyrene resin particles of Examples 1 to 10 and Comparative Examples 1 to 8 collected from the primary tank, the volume resistivity value was measured by the following method, and the antistatic property of the expandable polystyrene resin particles. Evaluated. The results are shown in Tables 1 and 2.

[体積固有抵抗測定方法]
図3は体積固有抵抗測定に用いた装置構成を示す図であり、(a)は装置の構成図、(b)はステンレス鋼板30の側面図である。図3中、符号30はステンレス鋼板、30aは端子、31はフッ素樹脂板、32は発泡性ポリスチレン樹脂粒子、33は極超絶縁計である。図3(a)に示す測定装置は、2枚のステンレス鋼板30を、フッ素樹脂板31を挟んで対向配置し、これらのステンレス鋼板30間に発泡性ポリスチレン樹脂粒子32を充填し、これらのステンレス鋼板30間の抵抗値をそれぞれの端子30aと接続した極超絶縁計33で測定するようになっている。図3中の各部A〜Cの寸法は、A=120mm、B=75mm、C=11mmとしている。ステンレス鋼板30の厚みは2mmである。
[Volume resistivity measurement method]
FIG. 3 is a diagram showing the configuration of the apparatus used for measuring the volume resistivity, (a) is a configuration diagram of the apparatus, and (b) is a side view of the stainless steel plate 30. In FIG. 3, reference numeral 30 is a stainless steel plate, 30a is a terminal, 31 is a fluororesin plate, 32 is an expandable polystyrene resin particle, and 33 is a hyper insulation meter. In the measuring apparatus shown in FIG. 3A, two stainless steel plates 30 are arranged opposite to each other with a fluororesin plate 31 interposed therebetween, and expandable polystyrene resin particles 32 are filled between these stainless steel plates 30. The resistance value between the steel plates 30 is measured by a hyper insulation meter 33 connected to each terminal 30a. The dimensions of the parts A to C in FIG. 3 are A = 120 mm, B = 75 mm, and C = 11 mm. The thickness of the stainless steel plate 30 is 2 mm.

発泡性ポリスチレン樹脂粒子約2kgをポリ袋に入れ、ポリ袋の口を開封した状態で、温度23℃、相対湿度55%及び20%に調節した恒温恒湿室内に24時間放置した後、図3に示す2枚のステンレス鋼板をフッ素樹脂板で絶縁した容器に樹脂粒子を充填し、極超絶縁計(東亜電波工業社製SM−10E)を用いてステンレス鋼板間の抵抗値Rを測定し、次式により樹脂粒子の体積固有抵抗ρを算出した。
体積固有抵抗ρ=81.8× R (Ωcm)
About 2 kg of expandable polystyrene resin particles are put in a plastic bag, and the plastic bag is opened. After being left in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C., a relative humidity of 55% and 20% for 24 hours, FIG. A container in which two stainless steel plates are insulated with a fluororesin plate is filled with resin particles, and a resistance value R between the stainless steel plates is measured using a hyper insulation meter (SM-10E manufactured by Toa Denpa Kogyo Co., Ltd.) The volume resistivity ρ of the resin particles was calculated from the following formula.
Volume resistivity ρ = 81.8 × R (Ωcm)

各試料について3回繰り返して測定した平均値を体積固有抵抗値とした。温度23℃、相対湿度20%の雰囲気下で測定した体積固有抵抗値を基に、以下の基準で帯電防止性を評価した。   The average value measured repeatedly three times for each sample was taken as the volume resistivity value. The antistatic property was evaluated according to the following criteria based on the volume resistivity measured in an atmosphere at a temperature of 23 ° C. and a relative humidity of 20%.

<帯電防止性評価>
○:1.0×1013Ωcm未満。
×:1.0×1013Ωcm以上(静電気発火の恐れがある)。
<Evaluation of antistatic properties>
○: Less than 1.0 × 10 13 Ωcm.
×: 1.0 × 10 13 Ωcm or more (there is a risk of static electricity ignition).

Figure 0005258147
Figure 0005258147

Figure 0005258147
Figure 0005258147

表1,2に記した結果から、本発明に係る実施例1〜10の発泡性ポリスチレン樹脂粒子は、樹脂粒子表面に保湿剤として多価アルコールと活性剤とを含む帯電防止剤を被覆したことにより、相対湿度55%雰囲気下で10〜1010オーダーの低い体積固有抵抗値を示したのみならず、相対湿度20%のかなり乾燥した雰囲気下でも1.0×1013Ωcm未満の体積抵抗値を示した。発泡性ポリスチレン樹脂粒子の体積固有抵抗値が1.0×1013Ωcm以上であると、該樹脂粒子の送粒、タンク貯留時に樹脂粒子同士が擦れ合って帯電し易く、樹脂粒子から逸散した可燃性の発泡剤等が静電気発火する恐れがあるが、本発明に係る実施例1〜10の発泡性ポリスチレン樹脂粒子は、そのような静電気発火の恐れが少なくなり、乾燥した空気雰囲気下で取り扱うことができる。 From the results described in Tables 1 and 2, the expandable polystyrene resin particles of Examples 1 to 10 according to the present invention were coated with an antistatic agent containing a polyhydric alcohol and an activator as a humectant on the resin particle surface. Not only showed a low volume resistivity of the order of 10 8 to 10 10 in an atmosphere of 55% relative humidity but also a volume resistance of less than 1.0 × 10 13 Ωcm even in a fairly dry atmosphere of 20% relative humidity. The value is shown. When the volume specific resistance value of the expandable polystyrene resin particles is 1.0 × 10 13 Ωcm or more, the resin particles are easily rubbed and charged when the resin particles are fed and stored in the tank, and the resin particles dissipate. Although combustible foaming agents and the like may ignite electrostatically, the expandable polystyrene resin particles of Examples 1 to 10 according to the present invention are less likely to cause such electrostatic ignition and are handled in a dry air atmosphere. be able to.

一方、発泡性ポリスチレン樹脂粒子の表面に何も被覆していない比較例1〜3、及び樹脂粒子表面に保湿剤として多価アルコールのみを被覆した比較例4及び5のそれぞれの発泡性ポリスチレン樹脂粒子は、相対湿度55%雰囲気下でも1.0×1013Ωcm以上の体積抵抗値を示し、乾燥した空気雰囲気下では送粒時等に静電気発火する恐れがあることから、送粒時等には雰囲気を窒素ガス置換する必要がある。
また、発泡性ポリスチレン樹脂粒子の表面に活性剤のみを被覆した比較例6〜8の発泡性ポリスチレン樹脂粒子は、相対湿度55%雰囲気下では10オーダーの低い体積固有抵抗値を示したが、相対湿度20%雰囲気下では体積固有抵抗値が1013オーダーに急増し、乾燥した空気雰囲気下では送粒時等に静電気発火する恐れがあることから、送粒時等には雰囲気を窒素ガス置換する必要がある。
On the other hand, each of the expandable polystyrene resin particles of Comparative Examples 1 to 3 in which nothing is coated on the surface of the expandable polystyrene resin particles, and Comparative Examples 4 and 5 in which the resin particle surface is coated only with a polyhydric alcohol as a moisturizing agent. Shows a volume resistance value of 1.0 × 10 13 Ωcm or more even in an atmosphere with a relative humidity of 55%, and in a dry air atmosphere, there is a risk of static electricity ignition during grain feeding. It is necessary to replace the atmosphere with nitrogen gas.
Further, the expandable polystyrene resin particles of Comparative Examples 6 to 8 in which only the active agent was coated on the surface of the expandable polystyrene resin particles showed a volume specific resistance value as low as 10 9 order in an atmosphere of 55% relative humidity. The volume resistivity increases rapidly to the order of 10 13 in an atmosphere with a relative humidity of 20%, and in a dry air atmosphere, there is a risk of static electricity ignition at the time of granulation. There is a need to.

本発明に係る発泡性熱可塑性樹脂粒子の製造方法の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the manufacturing method of the expandable thermoplastic resin particle which concerns on this invention. 本発明の製造方法における帯電防止剤の被覆に好適な実施形態を示す構成図である。It is a block diagram which shows embodiment suitable for the coating of the antistatic agent in the manufacturing method of this invention. 実施例で行った発泡性熱可塑性樹脂粒子の体積固有抵抗の測定方法を説明する構成図である。It is a block diagram explaining the measuring method of the volume resistivity of the expandable thermoplastic resin particle performed in the Example.

符号の説明Explanation of symbols

1…オートクレーブ、2…洗浄槽、3…脱水機、4…帯電防止剤スプレー装置、5…篩機、6…1次タンク、7…混合機、8…2次タンク、9…保冷倉庫、10,23…押出機、11,24…ダイ、12…冷却水槽、13…ペレタイザー、14…噴霧室、15…ペレット(発泡性熱可塑性樹脂粒子)、16…ストランド、17…送粒ブロアー、18…送粒ライン、19…帯電防止剤ミスト、20…帯電防止剤組成物、21…定量ポンプ、22…2流体ノズル、25…カッティング室、26…冷却水循環ライン、27…水循環ポンプ、28…脱水機、29,32…発泡性ポリスチレン樹脂粒子(発泡性熱可塑性樹脂粒子)、30…ステンレス鋼板、31…フッ素樹脂板、33…極超絶縁計。
DESCRIPTION OF SYMBOLS 1 ... Autoclave, 2 ... Washing tank, 3 ... Dehydrator, 4 ... Antistatic agent spray device, 5 ... Sieve machine, 6 ... Primary tank, 7 ... Mixer, 8 ... Secondary tank, 9 ... Cold storage warehouse, 10 , 23 ... Extruder, 11, 24 ... Die, 12 ... Cooling water tank, 13 ... Pelletizer, 14 ... Spray chamber, 15 ... Pellet (expandable thermoplastic resin particles), 16 ... Strand, 17 ... Feeding blower, 18 ... 20 ... Antistatic agent mist, 20 ... Antistatic agent composition, 21 ... Metering pump, 22 ... Two-fluid nozzle, 25 ... Cutting chamber, 26 ... Cooling water circulation line, 27 ... Water circulation pump, 28 ... Dehydrator 29, 32 ... expandable polystyrene resin particles (expandable thermoplastic resin particles), 30 ... stainless steel plate, 31 ... fluororesin plate, 33 ... ultra-insulation meter.

Claims (6)

保湿剤と界面活性剤を必須成分として含む帯電防止剤を表面に被覆してなり、前記保湿剤が、1種又は2種以上の多価アルコールを含み、前記界面活性剤が、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤からなる群から選択される1種又は2種以上であることを特徴とする発泡性熱可塑性樹脂粒子。 A surface is coated with an antistatic agent containing a humectant and a surfactant as essential components, the humectant contains one or more polyhydric alcohols, and the surfactant is an anionic surfactant. 1 or 2 or more types selected from the group consisting of a cationic surfactant and an amphoteric surfactant . 粉体状の表面処理剤が前記帯電防止剤を被覆した後の表面に被覆されてなることを特徴とする請求項1に記載の発泡性熱可塑性樹脂粒子。 2. The foamable thermoplastic resin particles according to claim 1, wherein the surface of the powdery surface treatment agent is coated on the surface after the antistatic agent is coated. 発泡性熱可塑性樹脂粒子に表面処理剤を被覆する表面処理工程を施して製品化する発泡性熱可塑性樹脂粒子の製造方法において、保湿剤と界面活性剤を必須成分として含む帯電防止剤を表面処理工程前の発泡性熱可塑性樹脂粒子に被覆する工程を含み、前記保湿剤が、1種又は2種以上の多価アルコールを含み、前記界面活性剤が、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤からなる群から選択される1種又は2種以上であることを特徴とする発泡性熱可塑性樹脂粒子の製造方法。 Surface treatment with an antistatic agent containing a moisturizing agent and a surfactant as essential components in a method for producing foamable thermoplastic resin particles, which is produced by applying a surface treatment step to coat the foamable thermoplastic resin particles with a surface treatment agent look including the step of coating the step before the expandable thermoplastic resin particles, wherein the humectant comprises one or more polyhydric alcohols, wherein the surfactant is an anionic surfactant, a cationic surfactant 1 or 2 or more types selected from the group which consists of an amphoteric surfactant , The manufacturing method of the foamable thermoplastic resin particle characterized by the above-mentioned . 保湿剤と界面活性剤を必須成分として含み、前記保湿剤が、1種又は2種以上の多価アルコールを含み、前記界面活性剤が、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤からなる群から選択される1種又は2種以上であることを特徴とする発泡性熱可塑性樹脂粒子用帯電防止剤組成物。 Look including a humectant and surfactant as essential components, wherein the humectant comprises one or more polyhydric alcohols, wherein the surfactant is an anionic surfactant, cationic surfactant, amphoteric surfactant An antistatic agent composition for expandable thermoplastic resin particles, wherein the composition is one or more selected from the group consisting of agents. 発泡性熱可塑性樹脂粒子の表面に、請求項4に記載の発泡性熱可塑性樹脂粒子用帯電防止剤組成物を被覆することを特徴とする発泡性熱可塑性樹脂粒子の帯電防止方法。 An antistatic method for expandable thermoplastic resin particles, wherein the surface of the expandable thermoplastic resin particles is coated with the antistatic agent composition for expandable thermoplastic resin particles according to claim 4 . 発泡性熱可塑性樹脂粒子用帯電防止剤組成物を被覆した発泡性熱可塑性樹脂粒子について、温度23℃、相対湿度20%の雰囲気下で測定した体積固有抵抗ρが1.0×1013Ωcm未満であることを特徴とする請求項5に記載の発泡性熱可塑性樹脂粒子の帯電防止方法。 For the expandable thermoplastic resin particles coated with the antistatic agent composition for expandable thermoplastic resin particles, the volume resistivity ρ measured in an atmosphere at a temperature of 23 ° C. and a relative humidity of 20% is less than 1.0 × 10 13 Ωcm. The antistatic method for foamable thermoplastic resin particles according to claim 5, wherein:
JP2005021167A 2005-01-28 2005-01-28 Expandable thermoplastic resin particles and method for producing the same, antistatic agent composition for expandable thermoplastic resin particles, and antistatic method for expandable thermoplastic resin particles Expired - Fee Related JP5258147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021167A JP5258147B2 (en) 2005-01-28 2005-01-28 Expandable thermoplastic resin particles and method for producing the same, antistatic agent composition for expandable thermoplastic resin particles, and antistatic method for expandable thermoplastic resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021167A JP5258147B2 (en) 2005-01-28 2005-01-28 Expandable thermoplastic resin particles and method for producing the same, antistatic agent composition for expandable thermoplastic resin particles, and antistatic method for expandable thermoplastic resin particles

Publications (2)

Publication Number Publication Date
JP2006206753A JP2006206753A (en) 2006-08-10
JP5258147B2 true JP5258147B2 (en) 2013-08-07

Family

ID=36963946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021167A Expired - Fee Related JP5258147B2 (en) 2005-01-28 2005-01-28 Expandable thermoplastic resin particles and method for producing the same, antistatic agent composition for expandable thermoplastic resin particles, and antistatic method for expandable thermoplastic resin particles

Country Status (1)

Country Link
JP (1) JP5258147B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1914052T3 (en) * 2006-10-19 2017-12-29 Basf Se Lightweight wooden material
JP5401083B2 (en) * 2008-11-21 2014-01-29 積水化成品工業株式会社 Pre-expanded particles, method for producing the same, and foam molded article
JP5346571B2 (en) * 2008-12-17 2013-11-20 積水化成品工業株式会社 Method for producing pre-expanded particles
CN102264813B (en) * 2008-12-26 2013-09-11 积水化成品工业株式会社 Pre-expanded particles, process for producing same, and molded foam
JP5528148B2 (en) * 2010-02-15 2014-06-25 積水化成品工業株式会社 Pre-expanded particles, method for producing the same, and foam molded article
JP5986410B2 (en) * 2011-03-30 2016-09-06 積水化成品工業株式会社 Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP5969938B2 (en) * 2012-02-28 2016-08-17 積水化成品工業株式会社 Expandable thermoplastic resin particles and production method thereof, pre-expanded particles, foamed molded product, resin composition for producing antistatic resin molded product
JP6866199B2 (en) * 2017-03-22 2021-04-28 株式会社カネカ Method for manufacturing foamable thermoplastic resin particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950854B2 (en) * 1989-07-10 1999-09-20 帝人株式会社 Thermal adhesive composite fiber
JP3176194B2 (en) * 1993-09-27 2001-06-11 三菱化学ポリエステルフィルム株式会社 Laminated polyester film
IT1289606B1 (en) * 1997-01-30 1998-10-15 Enichem Spa PROCEDURE FOR THE PRODUCTION OF EXPANDABLE PARTICLES OF STYRENE POLYMERS
JP4184171B2 (en) * 2003-06-27 2008-11-19 積水化成品工業株式会社 Expandable thermoplastic resin particles, pre-expanded particles and foamed molded products

Also Published As

Publication number Publication date
JP2006206753A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP5258147B2 (en) Expandable thermoplastic resin particles and method for producing the same, antistatic agent composition for expandable thermoplastic resin particles, and antistatic method for expandable thermoplastic resin particles
US9815957B2 (en) Foamed articles exhibiting improved thermal properties
US5225451A (en) Ultra low density polyolefin foam, foamable polyolefin compositions and process for making same
US8222307B2 (en) Flameproof expandable styrene polymers, and method for the production thereof
US5290822A (en) Ultra low density polyolefin foam, foamable polyolefin compositions and process for making same
KR20120107114A (en) Flame-protected polymer foams
JP5969938B2 (en) Expandable thermoplastic resin particles and production method thereof, pre-expanded particles, foamed molded product, resin composition for producing antistatic resin molded product
US9695295B2 (en) Compositions of self-extinguishing expandable vinyl aromatic (co)polymers and process for their preparation
JP7250768B2 (en) Expandable thermoplastic resin particles, thermoplastic resin pre-expanded particles and thermoplastic resin foam
EP2025700A1 (en) process for the production of expandable polystyrene (eps) comprising flame retardant additives
JP4052193B2 (en) Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products
JP2004292489A (en) Styrenic resin expandable particle, method for producing the same, expanded particle and expansion molded product
JP5492581B2 (en) Thermoplastic resin foam molding
JP2006116818A (en) Method for producing foamed polyolefin resin molding using waste foamed polyolefin resin molding and its molding
JP4052234B2 (en) Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products
JP2023145171A (en) Foamable polystyrenic resin particle and production method
CA3233020A1 (en) Barrier coating composition for use in manufacturing polymer foam products
WO2024166677A1 (en) Manufacturing method of recycled expandable styrene resin particles, recycled expandable styrene resin particles, recycled pre-expanded styrene resin particles and recycled styrene resin-expanded article
WO2024071231A1 (en) Recycled foamable styrene-based resin particle manufacturing method, recycled foamable styrene-based resin particles, recycled pre-foamed styrene-based resin particles, and recycled styrene-based resin-foamed molded body
JP2023143856A (en) Regenerated expandable styrenic resin particle, regenerated pre-expanded styrenic resin particle, and regenerated styrenic resin foam molding
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding
CN108864468A (en) Expandable polystyrene material and its preparation method and application
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JPH06182891A (en) Manufacture of reclaimed foamed polystyrene series resin molded form
JPH07116315B2 (en) Method for producing pre-expanded particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5258147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees