JP2023145171A - Foamable polystyrenic resin particle and production method - Google Patents

Foamable polystyrenic resin particle and production method Download PDF

Info

Publication number
JP2023145171A
JP2023145171A JP2022052501A JP2022052501A JP2023145171A JP 2023145171 A JP2023145171 A JP 2023145171A JP 2022052501 A JP2022052501 A JP 2022052501A JP 2022052501 A JP2022052501 A JP 2022052501A JP 2023145171 A JP2023145171 A JP 2023145171A
Authority
JP
Japan
Prior art keywords
polystyrene resin
resin particles
weight
expandable polystyrene
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022052501A
Other languages
Japanese (ja)
Inventor
祐貴 根岩
Yuki Neiwa
正太郎 丸橋
Shotaro Maruhashi
竜太 沓水
Ryuta Kutsumizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2022052501A priority Critical patent/JP2023145171A/en
Publication of JP2023145171A publication Critical patent/JP2023145171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

To provide a foamable polystyrenic resin particle that achieves a high foaming rate and yields a polystyrenic foamed resin molding with high thermal insulation performance.SOLUTION: A foamable polystyrenic resin particle contains a radiation heat transfer inhibitor. The foamable polystyrenic resin particle has a sphericity of 0.985 or less. The foamer contains isobutane. Assuming the total amount of the polystyrenic resin composition and the foamer to be 100 wt.%, the isobutane is more than 2.7 wt.% and 6.0 wt.% or less.SELECTED DRAWING: None

Description

本発明は発泡性ポリスチレン系樹脂粒子、およびその製造方法に関する。 The present invention relates to expandable polystyrene resin particles and a method for producing the same.

ポリスチレン系樹脂発泡体は、軽量性、断熱性、及び緩衝性能等を有するバランスに優れた発泡体であり、従来から食品容器箱、保冷箱、緩衝材、及び住宅等の断熱材として広く利用されている。 Polystyrene resin foam is a well-balanced foam that has lightness, heat insulation, and cushioning performance, and has been widely used as food container boxes, cold storage boxes, cushioning materials, and insulation materials for houses, etc. ing.

中でも、近年、地球温暖化等の諸問題に関連し、住宅等建築物の断熱性能向上による省エネルギー化が志向されつつあり、発泡性ポリスチレン系樹脂粒子を用いて得られるポリスチレン系樹脂発泡成形体の需要拡大が期待される。そのため、当該ポリスチレン系樹脂発泡体の発泡性能や断熱性能の向上について種々の検討がなされている。 In particular, in recent years, in connection with various problems such as global warming, there has been a trend towards energy saving by improving the insulation performance of buildings such as houses, and the use of polystyrene resin foam molded products obtained using expandable polystyrene resin particles has been increasing. Demand is expected to increase. Therefore, various studies have been made to improve the foaming performance and heat insulation performance of the polystyrene resin foam.

例えば、特許文献1および2では、輻射伝熱抑制剤を含み、ペンタン及びブタンの総量に対して特定量のイソブタンを含有することで、優れた発泡性能及び断熱性能を示すポリスチレン系樹脂発泡成形体が開示されている。 For example, in Patent Documents 1 and 2, a polystyrene resin foam molded product exhibits excellent foaming performance and heat insulation performance by containing a radiation heat transfer inhibitor and containing a specific amount of isobutane with respect to the total amount of pentane and butane. is disclosed.

特許文献3では、輻射伝熱抑制剤を含む発泡性ポリスチレン系樹脂粒子のアスペクト比を0.95以下、且つ、真球度を0.97以上とすることで、高発泡倍率及び高断熱性能を両立したポリスチレン系樹脂発泡成形体が得られることが開示されている。 In Patent Document 3, high expansion ratio and high heat insulation performance are achieved by setting the aspect ratio of expandable polystyrene resin particles containing a radiation heat transfer inhibitor to 0.95 or less and the sphericity to 0.97 or more. It is disclosed that a polystyrene-based resin foam molded article compatible with the above can be obtained.

特許文献4では、ポリスチレン系樹脂、輻射伝熱抑制剤を混練してなるポリスチレン系樹脂組成物を水性媒体中で難燃剤及び発泡剤を含浸させ、発泡性樹脂粒子の表層部における難燃剤含有量(重量%)を、粒子全体の難燃剤含有量(重量%)に対して1.05倍以上とし、安定した自己消化性を発現させるためにペンタンの含有量を15Vol%以上含浸させた発泡性ポリスチレン系樹脂粒子のポリスチレン系樹脂発泡成形体が開示されている。 In Patent Document 4, a polystyrene resin composition obtained by kneading a polystyrene resin and a radiant heat transfer inhibitor is impregnated with a flame retardant and a foaming agent in an aqueous medium, and the flame retardant content in the surface layer of the foamable resin particles is determined. (wt%) is 1.05 times or more the flame retardant content (wt%) of the whole particle, and the foaming property is impregnated with a pentane content of 15 vol% or more in order to exhibit stable self-extinguishing property. A polystyrene resin foam molded article of polystyrene resin particles is disclosed.

特開2018―145212号JP2018-145212 特開2019―65073号JP2019-65073 特開2020―33481号JP2020-33481 特開2004―346281号JP2004-346281

特許文献1~4に記載されている発泡性ポリスチレン系樹脂粒子には、特に高発泡倍率化に関して改善する余地がある。 The expandable polystyrene resin particles described in Patent Documents 1 to 4 have room for improvement, particularly in terms of increasing the expansion ratio.

本発明は、高発泡倍率および高断熱性能を両立したポリスチレン系樹脂発泡成形体が得られる発泡性ポリスチレン系樹脂粒子を提供することである。 An object of the present invention is to provide expandable polystyrene resin particles from which a polystyrene resin foam molded article having both a high expansion ratio and high heat insulation performance can be obtained.

一般的に、ポリスチレン系樹脂発泡成形体にグラファイト等の輻射伝熱抑制剤を使用することで断熱性能の向上が図られるものの、発泡性ポリスチレン系樹脂粒子の発泡性能は低下する傾向にあり、特に、高倍率に発泡させると予備発泡粒子が収縮するという問題がある。 In general, the use of radiation heat transfer inhibitors such as graphite in polystyrene resin foam moldings improves the heat insulation performance, but the foaming performance of expandable polystyrene resin particles tends to decrease, especially However, there is a problem in that the pre-expanded particles shrink when foamed at a high magnification.

上記特許文献1および2では、ペンタン及びブタンの総量100重量%に対してイソブタンを20重量%超、50重量%または55重量%以下と規定されているが、本願発明者らが検討したところ、かさ倍率90倍以上の高発泡倍率のポリスチレン系樹脂発泡成形体を得るためにはイソブタンの量が多いほうが好ましい。この点から、ペンタン及びブタンの総量100重量%に対してイソブタンを20重量%超50重量%以下、または、55重量%以下である特許文献1および2の発泡性ポリスチレン系樹脂粒子は、より高発泡倍率化できるために改善する余地がある。 In the above Patent Documents 1 and 2, isobutane is specified to be more than 20% by weight, 50% by weight, or less than 55% by weight with respect to 100% by weight of the total amount of pentane and butane. In order to obtain a polystyrene resin foam molded product with a high expansion ratio of 90 times or more, it is preferable to use a large amount of isobutane. From this point of view, the expandable polystyrene resin particles of Patent Documents 1 and 2, which contain isobutane in an amount of more than 20% by weight but not more than 50% by weight or not more than 55% by weight based on 100% by weight of the total amount of pentane and butane, have a higher Since the foaming ratio can be increased, there is room for improvement.

特許文献3では、発泡性ポリスチレン系樹脂粒子のアスペクト比を0.95以下、且つ、真球度を0.97以上と規定されているが、発泡剤に関する観点がない。本願発明者らが検討したところ、イソブタン量が少ないと、発泡性ポリスチレン系樹脂粒子の発泡倍率は低下し、特に、高倍率に発泡させると予備発泡粒子に収縮が生じる場合がある。この点から、より高発泡倍率化できるために改善する余地がある。 Patent Document 3 specifies that the aspect ratio of the expandable polystyrene resin particles is 0.95 or less and the sphericity is 0.97 or more, but there is no consideration regarding the blowing agent. The inventors of the present invention have investigated that when the amount of isobutane is small, the expansion ratio of the expandable polystyrene resin particles decreases, and in particular, when foamed to a high ratio, shrinkage may occur in the pre-expanded particles. From this point of view, there is room for improvement since it is possible to achieve a higher expansion ratio.

特許文献4はポリスチレン系樹脂粒子の表層に難燃剤を含浸させることで、優れた難燃性能を発揮させる発明であるが、可塑効果のある難燃剤が表層に多く存在することで、樹脂粘度が局所的に低下し、発泡剤の逸散を促進させ、発泡性能を低下させる懸念がある。この点から、高発泡倍率化に関して改善する余地がある。 Patent Document 4 is an invention that exhibits excellent flame retardant performance by impregnating the surface layer of polystyrene resin particles with a flame retardant. There is a concern that the foaming performance may decrease locally, promoting the dissipation of the foaming agent, and deteriorating the foaming performance. From this point of view, there is room for improvement in increasing the expansion ratio.

そこで、本発明者らが上述した課題を解決すべく検討をしたところ、発泡剤としてイソブタンを特定量含有させ、発泡性ポリスチレン系樹脂粒子の形状を制御することで、高発泡倍率、かつ、低熱伝導率であるポリスチレン系樹脂発泡成形体を作製することに成功し、本発明を完成するに至った。 Therefore, the present inventors conducted studies to solve the above-mentioned problems and found that by containing a specific amount of isobutane as a blowing agent and controlling the shape of the expandable polystyrene resin particles, a high expansion ratio and a low heat We succeeded in producing a polystyrene resin foam molded product with high conductivity, and completed the present invention.

すなわち、本発明は、輻射伝熱抑制剤を含むポリスチレン系樹脂組成物および発泡剤からなる発泡性ポリスチレン系樹脂粒子であって、前記発泡性ポリスチレン系樹脂粒子の真球度が0.985以下であり、前記発泡剤がイソブタンを含み、前記ポリスチレン系樹脂組成物及び発泡剤の総量100重量%に対してイソブタンが2.7重量%超6.0重量%以下である、発泡性ポリスチレン系樹脂粒子(以下、「本発明の発泡性ポリスチレン系樹脂粒子」と称することがある。)に関する。本発明の発泡性ポリスチレン系樹脂粒子において、前記ポリスチレン系樹脂組成物100重量%に対して、難燃剤が1.0重量%超6.0重量%以下であることが好ましい。
本発明の発泡性ポリスチレン系樹脂粒子において、ペンタンを含有することが好ましい。
本発明の発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子をかさ倍率90倍に予備発泡後の発泡粒子が(式1)を満たすことが好ましい。
(式1)(A)/(B)×100≦25.0
(A)かさ倍率90倍に予備発泡した発泡粒子の発泡直後のかさ倍率
(B)前記予備発泡粒子を30℃で24時間養生した後の養生後のかさ倍率
本発明の発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子の見かけ密度が950kg/m超1200kg/m以下であることが好ましい。
本発明の発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子をかさ倍率90倍に予備発泡させた後30℃で24時間養生した時の予備発泡粒子の発泡剤量が5.0%~6.0%であることが好ましい。
本発明の発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子をかさ倍率90倍に予備発泡させた後30℃で24時間養生した予備発泡粒子を発泡成形した時における発泡成形体の熱伝導率が0.034W/m・K以下であることが好ましい。
本発明の予備発泡粒子において、本発明の発泡性ポリスチレン系樹脂粒子の予備発泡粒子であり、かさ倍率が90倍以上である。
That is, the present invention provides expandable polystyrene resin particles comprising a polystyrene resin composition containing a radiation heat transfer inhibitor and a blowing agent, wherein the expandable polystyrene resin particles have a sphericity of 0.985 or less. Expandable polystyrene resin particles, wherein the blowing agent contains isobutane, and the amount of isobutane is more than 2.7% by weight and 6.0% by weight or less based on 100% by weight of the total amount of the polystyrene resin composition and the blowing agent. (hereinafter sometimes referred to as "expandable polystyrene resin particles of the present invention"). In the expandable polystyrene resin particles of the present invention, the flame retardant content is preferably more than 1.0% by weight and 6.0% by weight or less based on 100% by weight of the polystyrene resin composition.
The expandable polystyrene resin particles of the present invention preferably contain pentane.
In the expandable polystyrene resin particles of the present invention, it is preferable that the expanded particles satisfy (Formula 1) after being pre-foamed to a bulk ratio of 90 times.
(Formula 1) (A)/(B)×100≦25.0
(A) Bulk ratio immediately after foaming of expanded particles pre-expanded to a bulk ratio of 90 times (B) Bulk ratio after curing of the pre-expanded particles after curing at 30°C for 24 hours Expandable polystyrene resin particles of the present invention In this case, the apparent density of the expandable polystyrene resin particles is preferably more than 950 kg/m 3 and less than 1200 kg/m 3 .
In the expandable polystyrene resin particles of the present invention, when the expandable polystyrene resin particles are pre-expanded to a bulk ratio of 90 times and then cured at 30°C for 24 hours, the amount of blowing agent in the pre-expanded particles is 5.0% to 5.0%. Preferably it is 6.0%.
In the expandable polystyrene resin particles of the present invention, heat conduction of the foam molded product when the expandable polystyrene resin particles are pre-foamed to a bulk ratio of 90 times and then cured at 30°C for 24 hours. It is preferable that the rate is 0.034 W/m·K or less.
The pre-expanded particles of the present invention are pre-expanded particles of the expandable polystyrene resin particles of the present invention, and have a bulk ratio of 90 times or more.

また、本発明は、輻射伝熱抑制剤を含むポリスチレン系樹脂組成物および発泡剤からなるポリスチレン系樹脂溶融物を複数の小孔を有するダイスから加圧循環水中に押出し、回転カッターで切断して粒子化する発泡性ポリスチレン系樹脂粒子の製造方法であって、前記発泡剤がイソブタンを含み、前記ポリスチレン系樹脂組成物及び発泡剤の総量100重量%に対してイソブタンが2.7重量%超6.0重量%以下含む、発泡性ポリスチレン系樹脂粒子の製造方法(以下、「本発明の第一の製造方法」と称することがある。)に関する。 Furthermore, the present invention involves extruding a polystyrene resin melt consisting of a polystyrene resin composition containing a radiation heat transfer inhibitor and a blowing agent into pressurized circulating water through a die having a plurality of small holes, and cutting the polystyrene resin composition with a rotating cutter. 6. A method for producing expandable polystyrene resin particles, wherein the blowing agent contains isobutane, and the amount of isobutane is more than 2.7% by weight based on 100% by weight of the total amount of the polystyrene resin composition and the blowing agent. 0% by weight or less (hereinafter sometimes referred to as "the first manufacturing method of the present invention").

本発明の第一の製造方法において、上記輻射伝熱抑制剤は炭素系輻射伝熱抑制剤を含有することが好ましい。
本発明の第一の製造方法において、上記発泡剤はペンタンを含有することが好ましい。
In the first manufacturing method of the present invention, the radiation heat transfer inhibitor preferably contains a carbon-based radiation heat transfer inhibitor.
In the first manufacturing method of the present invention, the blowing agent preferably contains pentane.

本発明の発泡性ポリスチレン系樹脂粒子によれば、高発泡倍率および高断熱性能を両立したポリスチレン系樹脂発泡成形体を得ることが可能である。 According to the expandable polystyrene-based resin particles of the present invention, it is possible to obtain a polystyrene-based resin foam molded product that has both a high expansion ratio and high heat insulation performance.

[発泡性ポリスチレン系樹脂粒子]
本発明の発泡性ポリスチレン系樹脂粒子は、輻射伝熱抑制剤を含む発泡性ポリスチレン系樹脂粒子、すなわち、ポリスチレン系樹脂粒子中に輻射伝熱抑制剤および発泡剤を含有させたものである。本発明の発泡性ポリスチレン系樹脂粒子は、発泡性ポリスチレン系樹脂粒子の真球度が0.985以下でありながらも、ポリスチレン系樹脂組成物及び発泡剤の総量100重量%に対してイソブタンが2.7重量%超6.0重量%以下含まれることにより、高発泡倍率および高断熱性能を両立したポリスチレン系樹脂発泡成形体を得ることができる。
[Expansible polystyrene resin particles]
The expandable polystyrene resin particles of the present invention are expandable polystyrene resin particles containing a radiation heat transfer inhibitor, that is, the radiation heat transfer inhibitor and the foaming agent are contained in the polystyrene resin particles. Although the expandable polystyrene resin particles of the present invention have a sphericity of 0.985 or less, isobutane is 2% based on 100% by weight of the total amount of the polystyrene resin composition and blowing agent. By containing more than .7% by weight and not more than 6.0% by weight, it is possible to obtain a polystyrene resin foam molded product that has both a high expansion ratio and high heat insulation performance.

一般に、ポリスチレン系樹脂発泡成形体にグラファイト等の輻射伝熱抑制剤を使用することで断熱性の向上が図られる。しかし、グラファイト等の無機物質の添加量を増加していくと発泡性ポリスチレン系樹脂粒子の発泡性能は低下し、かつ、発泡させた予備発泡粒子が収縮する問題がある。定かではないが、この問題は、無機物質が主因となり、予備発泡時に予備発泡粒子中のセル膜に穴が開き、発泡時に発泡剤が樹脂中から抜けやすくなり内圧を保持できなくなると推定され、そのために発泡後に収縮が生じやすくなると考えられる。予備発泡粒子が収縮した場合には、収縮した予備発泡粒子を養生させることによって回復させられるものの、養生後の倍率管理が困難となることが予見される。また、生じた収縮が大きければ、発泡倍率を回復させるために高温で養生させる必要があり、高温で養生することが可能な養生サイロがさらに必要となり、養生の際に多量の熱エネルギーが必要となるためコストがかかる。特に、生じた収縮がさらに大きければ、予備発泡粒子が挫屈してしまい、高温で養生しても発泡倍率が回復しにくくなり、発泡倍率の基準を満たさなくなるため、歩留まりが低下する。 Generally, heat insulation properties can be improved by using a radiation heat transfer inhibitor such as graphite in a polystyrene resin foam molded product. However, as the amount of inorganic substances such as graphite added increases, the foaming performance of the expandable polystyrene resin particles decreases, and there is a problem that the expanded pre-expanded particles shrink. Although it is not certain, it is assumed that this problem is mainly caused by inorganic substances, and holes are formed in the cell membranes in the pre-expanded particles during pre-foaming, and the blowing agent easily escapes from the resin during foaming, making it impossible to maintain internal pressure. It is thought that this makes shrinkage more likely to occur after foaming. If the pre-expanded particles are shrunk, it can be recovered by curing the shrunken pre-expanded particles, but it is foreseen that it will be difficult to manage the magnification after curing. In addition, if the shrinkage that occurs is large, it will be necessary to cure at a high temperature in order to recover the expansion ratio, which will require additional curing silos that can be cured at high temperatures, and a large amount of thermal energy will be required during curing. This is costly. In particular, if the shrinkage that occurs is even greater, the pre-expanded particles will buckle and the expansion ratio will be difficult to recover even after curing at high temperatures, and the expansion ratio standard will no longer be met, resulting in a decrease in yield.

そして、輻射伝熱抑制剤を含有する発泡性ポリスチレン系樹脂粒子は、高倍率に発泡するほど、予備発泡直後における予備発泡粒子の収縮が顕著になるため、90倍以上の高倍率の達成は困難となる。 In addition, as the expandable polystyrene resin particles containing a radiation heat transfer inhibitor are expanded to a higher magnification, the shrinkage of the pre-expanded particles immediately after pre-expanding becomes more pronounced, making it difficult to achieve a high magnification of 90 times or more. becomes.

ブタンはポリスチレン系樹脂に対する溶解度が低いため過飽和になりやすく、高発泡倍率化に寄与しやすいと考えられる。更に、ブタンはペンタンに比べて分子量が小さいため、少ない添加量でも高発泡化に寄与しやすい。特にイソブタンはノルマルブタンに比べて分子構造がかさ高く、発泡性ポリスチレン系樹脂粒子中から発泡剤が逸散しにくくなるため、高発泡倍率化が可能となる。しかし、特許文献1や2に記載のようなペンタンとイソブタン配合割合の制御であっても、90倍以上の高倍率においては発泡直後に収縮が生じる場合がある。 Since butane has a low solubility in polystyrene resin, it tends to become supersaturated, and it is thought that it tends to contribute to increasing the expansion ratio. Furthermore, since butane has a smaller molecular weight than pentane, even a small amount added tends to contribute to high foaming. In particular, isobutane has a bulkier molecular structure than normal butane, making it difficult for the blowing agent to escape from the expandable polystyrene resin particles, making it possible to achieve a high expansion ratio. However, even if the mixing ratio of pentane and isobutane is controlled as described in Patent Documents 1 and 2, shrinkage may occur immediately after foaming at a high magnification of 90 times or more.

また、一般に発泡性ポリスチレン系樹脂粒子の真球度が高い方が、発泡性ポリスチレン系樹脂粒子は真球状に近づき、発泡性ポリスチレン系樹脂粒子の真球度が低い方が発泡性ポリスチレン系樹脂粒子は楕円状となる。楕円状は真球状に比べて比表面積が大きくなるため、発泡性ポリスチレン系樹脂粒子の表面に被覆させる外添剤(予備発泡時のブロッキング防止剤及び成形時の融着促進剤)が効果的に作用し、成形性を改善すると推測される。さらに、外添剤の使用量を削減することができ、コストダウンに繋がると考えられる。一方で、発泡性ポリスチレン系樹脂粒子を90倍以上の高倍率に発泡する場合、発泡性ポリスチレン系樹脂粒子の真球度が低すぎると発泡直後の収縮が顕著となりやすい。 Additionally, in general, the higher the sphericity of the expandable polystyrene resin particles, the more the expandable polystyrene resin particles approach a true spherical shape, and the lower the sphericity of the expandable polystyrene resin particles, the more the expandable polystyrene resin particles approach the true spherical shape. becomes elliptical. Since the elliptical shape has a larger specific surface area than the true spherical shape, external additives (anti-blocking agent during pre-foaming and fusion promoter during molding) coated on the surface of the expandable polystyrene resin particles are effective. It is presumed that this improves moldability. Furthermore, the amount of external additives used can be reduced, which is thought to lead to cost reductions. On the other hand, when foaming the expandable polystyrene resin particles to a high magnification of 90 times or more, if the sphericity of the expandable polystyrene resin particles is too low, shrinkage immediately after foaming tends to be significant.

そこで、輻射伝熱抑制剤を含有する発泡性ポリスチレン系樹脂粒子の真球度を0.985以下とし、ポリスチレン系樹脂組成物及び発泡剤の総量100重量%に対して、イソブタンを2.7重量%超とすることで、高発泡倍率および高断熱性能を両立したポリスチレン系樹脂発泡成形体を得ることができる。 Therefore, the sphericity of the expandable polystyrene resin particles containing the radiation heat transfer inhibitor was set to 0.985 or less, and 2.7 weight % of isobutane was added to 100% by weight of the total amount of the polystyrene resin composition and the blowing agent. %, it is possible to obtain a polystyrene resin foam molded article that has both a high expansion ratio and high heat insulation performance.

更には、無機物である輻射伝熱抑制剤は気泡の核剤としても作用するため、輻射伝熱抑制剤を含有した発泡性ポリスチレン系樹脂粒子は、セル径が小さくなりやすく、輻射熱を抑制しやすいため、より優れた断熱性能を発現させることが可能となる。 Furthermore, since the inorganic radiant heat transfer inhibitor also acts as a nucleating agent for bubbles, expandable polystyrene resin particles containing the radiant heat transfer inhibitor tend to have smaller cell diameters, making it easier to suppress radiant heat. Therefore, it is possible to achieve better heat insulation performance.

(ポリスチレン系樹脂)
本発明の発泡性ポリスチレン系樹脂粒子に用いられるポリスチレン系樹脂組成物は、基材樹脂としてポリスチレン系樹脂を含む。ポリスチレン系樹脂としては、スチレン単独重合体(ポリスチレンホモポリマー)のみならず、本発明の効果を損なわない範囲で、スチレンと共重合可能な他の単量体又はその誘導体とスチレンとの共重合体であっても良い。これらは一種のみであってもよいし、2種以上を組みあせて使用してもよい。
(Polystyrene resin)
The polystyrene resin composition used for the expandable polystyrene resin particles of the present invention contains a polystyrene resin as a base resin. The polystyrene resin includes not only styrene homopolymer (polystyrene homopolymer), but also copolymers of styrene and other monomers copolymerizable with styrene or derivatives thereof to the extent that the effects of the present invention are not impaired. It may be. These may be used alone or in combination of two or more.

スチレンと共重合可能な他の単量体又はその誘導体としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレン等のスチレン誘導体;ジビニルベンゼン等の多官能性ビニル化合物;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル等の(メタ)アクリル酸エステル化合物;(メタ)アクリロニトリル等のシアン化ビニル化合物;ブタジエン等のジエン系化合物又はその誘導体;無水マレイン酸、無水イタコン酸等の不飽和カルボン酸無水物;N-メチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-(2)-クロロフェニルマレイミド、N-(4)-ブロモフェニルマレイミド、N-(1)-ナフチルマレイミド等のN-アルキル置換マレイミド化合物等があげられる。これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Other monomers copolymerizable with styrene or derivatives thereof include, for example, methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, Styrene derivatives such as trichlorostyrene; polyfunctional vinyl compounds such as divinylbenzene; (meth)acrylic acid ester compounds such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, and butyl methacrylate; Vinyl cyanide compounds such as (meth)acrylonitrile; diene compounds such as butadiene or derivatives thereof; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride; N-methylmaleimide, N-butylmaleimide, N-cyclohexyl Examples include N-alkyl-substituted maleimide compounds such as maleimide, N-phenylmaleimide, N-(2)-chlorophenylmaleimide, N-(4)-bromophenylmaleimide, and N-(1)-naphthylmaleimide. These may be used alone or in combination of two or more.

本発明においては、耐衝撃吸収性や耐熱性の観点から、例えば、ジエン系ゴム強化ポリスチレン、アクリル系ゴム強化ポリスチレン、ポリフェニレンエーテル系樹脂等をブレンドすることもできる。 In the present invention, from the viewpoint of impact absorption resistance and heat resistance, for example, diene rubber reinforced polystyrene, acrylic rubber reinforced polystyrene, polyphenylene ether resin, etc. can be blended.

本発明で用いられるポリスチレン系樹脂としては、比較的安価で、特殊な方法を用いずに低圧の水蒸気等で発泡成形ができ、断熱性能、難燃性能、緩衝性能のバランスに優れることから、スチレンホモポリマーを含むことが好ましい。 The polystyrene resin used in the present invention is relatively inexpensive, can be foam-molded using low-pressure steam, etc. without using special methods, and has an excellent balance of heat insulation performance, flame retardancy performance, and cushioning performance. Preferably, it contains a homopolymer.

本発明においては、本発明の効果を損なわない範囲であれば、ポリスチレン系樹脂を主成分としながら、他の樹脂を併用してもよい。他の樹脂としては、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリル系樹脂など、上述のスチレンと共重合可能な他の単量体又はその誘導体の単独重合体や、それらの共重合体が挙げられる。 In the present invention, while the polystyrene resin is the main component, other resins may be used in combination as long as the effects of the present invention are not impaired. Examples of other resins include homopolymers of other monomers or derivatives thereof that can be copolymerized with the above-mentioned styrene, such as polyolefin resins, polyester resins, polycarbonate resins, and acrylic resins, and copolymers thereof. can be mentioned.

(輻射伝熱抑制剤)
本発明においては、輻射伝熱抑制剤を発泡性ポリスチレン系樹脂粒子に含有させることにより、高い断熱性能を有するポリスチレン系樹脂発泡成形体が得られる。ここで、輻射伝熱抑制剤とは、近赤外又は赤外領域(例えば、800~3000nm程度の波長域)の光を反射、散乱又は吸収する特性を有する材料をいう。輻射伝熱抑制剤であれば特に限定されないが、例えば、炭素材料、金属粒子、金属化合物、金属酸化物等が挙げられる。金属粒子、金属化合物、金属酸化物は樹脂に対する親和性が低く、発泡性能が低下し易い点から、炭素材料、すなわち炭素系輻射伝熱抑制剤が含まれることが好ましい。
(Radiation heat transfer inhibitor)
In the present invention, a polystyrene resin foam molded article having high heat insulation performance can be obtained by incorporating a radiation heat transfer inhibitor into expandable polystyrene resin particles. Here, the radiation heat transfer inhibitor refers to a material that has the property of reflecting, scattering, or absorbing light in the near-infrared or infrared region (eg, wavelength range of about 800 to 3000 nm). The radiation heat transfer inhibitor is not particularly limited, but examples include carbon materials, metal particles, metal compounds, metal oxides, and the like. Since metal particles, metal compounds, and metal oxides have low affinity for resins and tend to deteriorate foaming performance, it is preferable that carbon materials, that is, carbon-based radiation heat transfer inhibitors, be included.

炭素材料としては例えば、黒鉛(グラファイト)、グラフェン、カーボンブラック、膨張黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー等が挙げられるが、中でもポリスチレン系樹脂中への分散性とコストの点からグラファイトが好ましい。 Examples of the carbon material include graphite, graphene, carbon black, expanded graphite, activated carbon, carbon nanotubes, carbon nanofibers, etc. Among them, graphite is preferable from the viewpoint of dispersibility in polystyrene resin and cost. .

グラファイトとしては、例えば、鱗片状黒鉛、土状黒鉛、球状黒鉛、人造黒鉛等が挙げられる。なお、本明細書において、「鱗片状」という用語は、鱗状、薄片状又は板状のものをも包含する。これらの黒鉛は1種を単独で又は2種以上を組み合わせて使用できる。これらの中でも、輻射伝熱抑制効果が高い点から、鱗片状黒鉛を主成分とする黒鉛混合物が好ましく、鱗片状黒鉛がより好ましい。高発泡倍率化、断熱性、および、成形性の観点から、グラファイトの平均粒径が1~9μmであることが好ましく、2~6μmであることがより好ましい。グラファイトは平均粒径が小さいほど製造コストが高くなる。平均粒径1μm未満のグラファイトは粉砕のコストを含む製造コストが高いため、非常に高価であり、発泡性ポリスチレン系樹脂粒子のコストが高くなる傾向がある。一方、平均粒径が9μmを超えると、発泡性ポリスチレン系樹脂粒子から予備発泡粒子及びポリスチレン系樹脂発泡成形体を製造する際にセル膜が破れやすくなるため、高発泡倍率化が難しくなったり、成形容易性が低下したり、ポリスチレン系樹脂発泡成形体の圧縮強度が低下したりする傾向がある。ここでいう、グラファイトの平均粒径は、JIS Z8825-1に準拠したMie理論に基づきレーザー回折・散乱法により算出されるD50粒径を指す。 Examples of graphite include flaky graphite, earthy graphite, spherical graphite, and artificial graphite. In addition, in this specification, the term "scaly" also includes scale-like, flake-like, or plate-like. These graphites can be used alone or in combination of two or more. Among these, a graphite mixture containing flaky graphite as a main component is preferable, and flaky graphite is more preferable, since it has a high radiation heat transfer suppressing effect. From the viewpoints of high expansion ratio, heat insulation, and moldability, the average particle size of graphite is preferably 1 to 9 μm, more preferably 2 to 6 μm. The smaller the average particle size of graphite, the higher the production cost. Graphite with an average particle diameter of less than 1 μm is very expensive because of its high manufacturing cost including the cost of pulverization, and the cost of expandable polystyrene resin particles tends to be high. On the other hand, if the average particle size exceeds 9 μm, the cell membrane becomes easy to tear when producing pre-expanded particles and polystyrene resin foam molded articles from expandable polystyrene resin particles, making it difficult to achieve a high expansion ratio. There is a tendency that the ease of molding is reduced and the compressive strength of the polystyrene resin foam molded product is reduced. The average particle size of graphite here refers to the D50 particle size calculated by laser diffraction/scattering method based on Mie theory according to JIS Z8825-1.

金属粒子としては、例えば、金、銀、銅、プラチナ、パラジウム、亜鉛、アルミニウム、錫等が挙げられる。 Examples of the metal particles include gold, silver, copper, platinum, palladium, zinc, aluminum, and tin.

金属化合物としては、例えば、アルミニウム系化合物、亜鉛系化合物、マグネシウム系化合物、チタン系化合物、アンチモン系化合物、カルシウム系化合物、錫系化合物等が挙げられる。 Examples of the metal compound include aluminum compounds, zinc compounds, magnesium compounds, titanium compounds, antimony compounds, calcium compounds, and tin compounds.

金属酸化物としては、例えば、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化カルシウム、酸化銅、酸化亜鉛、酸化鉄等が挙げられる。 Examples of metal oxides include aluminum oxide, magnesium oxide, titanium oxide, calcium oxide, copper oxide, zinc oxide, iron oxide, and the like.

本発明の発泡性ポリスチレン系樹脂粒子における輻射伝熱抑制剤の含有量は、ポリスチレン系樹脂組成物100重量%において2~40重量%であることが好ましい。目的とする発泡倍率に制御しやすいと共に、熱伝導率低減効果等のバランスの点から、3~30重量%であることがより好ましく、3~20重量%がさらに好ましい。輻射伝熱抑制剤の含有量が2重量%以上であれば熱伝導率低減効果が十分であり、一方、40重量%以下であれば、発泡性ポリスチレン系樹脂粒子から予備発泡粒子及びポリスチレン系樹脂発泡成形体を製造する際にセル膜が破れにくくなるため、高発泡倍率化がし易くなり、発泡倍率の制御が容易になる。ここで、本明細書における「ポリスチレン系樹脂組成物」とは、発泡性ポリスチレン系樹脂粒子を構成する成分組成物であって、発泡剤を含まない。 The content of the radiation heat transfer inhibitor in the expandable polystyrene resin particles of the present invention is preferably 2 to 40% by weight based on 100% by weight of the polystyrene resin composition. From the viewpoint of easy control of the expansion ratio to a desired level and balance of thermal conductivity reduction effect, etc., the amount is preferably 3 to 30% by weight, and even more preferably 3 to 20% by weight. If the content of the radiant heat transfer inhibitor is 2% by weight or more, the effect of reducing thermal conductivity is sufficient, while if it is 40% by weight or less, the content is reduced from the expandable polystyrene resin particles to the pre-expanded particles and the polystyrene resin. Since the cell membrane is less likely to be torn during the production of a foamed molded article, it becomes easier to increase the expansion ratio and control the expansion ratio. Here, the "polystyrene resin composition" in this specification is a component composition that constitutes expandable polystyrene resin particles, and does not contain a blowing agent.

本発明においては、本発明の効果を損なわない範囲であれば、輻射伝熱抑制剤を2種以上組み合わせて添加してもよい。 In the present invention, a combination of two or more types of radiant heat transfer inhibitors may be added as long as the effects of the present invention are not impaired.

(発泡剤)
本発明の発泡性ポリスチレン系樹脂粒子には、発泡剤としてブタンが含まれる。 ブタンとしては、イソブタンが必須であり、予備発泡直後の収縮抑制による高発泡倍率化と生産安定性の観点から、ポリスチレン系樹脂組成物及び発泡剤の総量100重量%に対してイソブタンが2.7重量%超6.0重量%以下含まれる。ポリスチレン系樹脂組成物及び発泡剤の総量100重量%に対するイソブタンの含有量は、2.75重量%以上が好ましく、2.8重量%以上がより好ましく、2.9重量%以上が特に好ましい。一方、ポリスチレン系樹脂組成物及び発泡剤の総量100重量%に対するイソブタンの含有量は、5.0重量%以下が好ましく、4.5重量%以下がより好ましく、4.2重量%以下が特に好ましい。イソブタンが2.7重量%超であれば、高発泡倍率化が可能であり、一方、6.0重量%以下であれば、溶融押出法で製造する場合において、発泡性ポリスチレン系樹脂粒子作製時の発泡を抑制することができ、カッティングが可能となり、ダイスの閉塞が抑制され、発泡性ポリスチレン系樹脂粒子の採取が安定化する。
(foaming agent)
The expandable polystyrene resin particles of the present invention contain butane as a blowing agent. As butane, isobutane is essential, and from the viewpoint of high expansion ratio by suppressing shrinkage immediately after pre-foaming and production stability, isobutane is 2.7% based on 100% by weight of the total amount of polystyrene resin composition and blowing agent. Contains more than 6.0% by weight or less. The content of isobutane based on 100% by weight of the total amount of the polystyrene resin composition and blowing agent is preferably 2.75% by weight or more, more preferably 2.8% by weight or more, and particularly preferably 2.9% by weight or more. On the other hand, the content of isobutane based on 100% by weight of the total amount of the polystyrene resin composition and blowing agent is preferably 5.0% by weight or less, more preferably 4.5% by weight or less, particularly preferably 4.2% by weight or less. . If isobutane is more than 2.7% by weight, a high expansion ratio can be achieved, while if it is less than 6.0% by weight, when producing expandable polystyrene resin particles by melt extrusion method. The foaming of the polystyrene resin particles can be suppressed, cutting becomes possible, clogging of the die is suppressed, and collection of expandable polystyrene resin particles is stabilized.

本発明で用いられる発泡剤は、上記イソブタンの他に、その他の炭素数4~5の炭化水素系発泡剤を使用してもよい。例えば、ノルマルペンタン、イソペンタン、ノルマルブタン、ネオペンタン、又はシクロペンタン等の炭化水素が挙げられる。イソブタンとその他の炭素数4~5の炭化水素系発泡剤を併用する場合、その他の炭素数4~5の炭化水素系発泡剤の添加量は、ポリスチレン系樹脂組成物100重量部に対して、1~8重量部であることが好ましい。予備発泡時の加熱時間短縮による生産性向上と難燃性能の観点から、2~6重量部であることがより好ましい。また、イソブタンに比べて、ペンタンはポリスチレン系樹脂を可塑化させる効果が高いため、予備発泡時の加熱時間を短縮可能な点から、イソブタンとペンタンを併用することが好ましい。そこで、イソブタンとペンタンを併用する場合、ペンタンの添加量は、ポリスチレン系樹脂組成物100重量部に対して、1~8重量部であることが好ましい。予備発泡時の加熱時間短縮による生産性向上と難燃性能の観点から、2~6重量部であることがより好ましい。ペンタンとしては、ノルマルペンタンおよびイソペンタンは混合して用いることが好ましく、ノルマルペンタンおよびイソペンタンを重量比(ノルマルペンタン/イソペンタン)で100/0~60/40で使用することがより好ましい。30℃で24時間養生後の予備発泡粒子の倍率の回復と自己消火性の観点から、98/2~60/40がより好ましい。 As the blowing agent used in the present invention, in addition to the above-mentioned isobutane, other hydrocarbon blowing agents having 4 to 5 carbon atoms may be used. Examples include hydrocarbons such as normal pentane, isopentane, normal butane, neopentane, and cyclopentane. When isobutane and other hydrocarbon blowing agents having 4 to 5 carbon atoms are used together, the amount of the other hydrocarbon blowing agents having 4 to 5 carbon atoms is as follows: It is preferably 1 to 8 parts by weight. From the viewpoint of improving productivity by shortening the heating time during pre-foaming and flame retardant performance, the amount is more preferably 2 to 6 parts by weight. Moreover, since pentane has a higher effect of plasticizing polystyrene resin than isobutane, it is preferable to use isobutane and pentane in combination, since the heating time during pre-foaming can be shortened. Therefore, when isobutane and pentane are used together, the amount of pentane added is preferably 1 to 8 parts by weight based on 100 parts by weight of the polystyrene resin composition. From the viewpoint of improving productivity by shortening the heating time during pre-foaming and flame retardant performance, the amount is more preferably 2 to 6 parts by weight. As the pentane, normal pentane and isopentane are preferably used as a mixture, and it is more preferable to use normal pentane and isopentane in a weight ratio (normal pentane/isopentane) of 100/0 to 60/40. From the viewpoint of recovery of the magnification of the pre-expanded particles after curing at 30° C. for 24 hours and self-extinguishing properties, 98/2 to 60/40 is more preferable.

発泡剤の添加量は、ポリスチレン系樹脂組成物100重量部に対して、2.8~15重量部であることが好ましい。発泡剤の添加量が2.8重量部以上では、発泡力が十分あり高発泡倍率化し易くなり、高発泡倍率のポリスチレン系樹脂発泡成形体を製造し易くなる。また、発泡剤の量が15重量部以下であれば難燃性能が悪化し難くなると共に、ポリスチレン系樹脂発泡成形体を製造する際の製造時間(成形サイクル)が短くなるため、製造コストを抑えることができる。なお、発泡剤の添加量は、ポリスチレン系樹脂組成物100重量部に対して、3~12重量部であることがより好ましく、4~10重量部であることがさらに好ましい。 The amount of the blowing agent added is preferably 2.8 to 15 parts by weight based on 100 parts by weight of the polystyrene resin composition. When the amount of the blowing agent added is 2.8 parts by weight or more, the foaming power is sufficient and it becomes easy to achieve a high expansion ratio, making it easy to produce a polystyrene resin foam molded product with a high expansion ratio. In addition, if the amount of the blowing agent is 15 parts by weight or less, the flame retardant performance is less likely to deteriorate, and the manufacturing time (molding cycle) when manufacturing polystyrene resin foam moldings is shortened, which reduces manufacturing costs. be able to. The amount of the blowing agent added is preferably 3 to 12 parts by weight, and even more preferably 4 to 10 parts by weight, based on 100 parts by weight of the polystyrene resin composition.

本発明の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂、輻射伝熱抑制剤及び発泡剤を含有し、必要に応じて、難燃剤、熱安定剤、ラジカル発生剤、外添剤及びその他の添加剤よりなる群から選ばれる少なくとも1種の任意成分を含有してもよい。本発明の発泡性ポリスチレン系樹脂粒子は、好ましくは、ポリスチレン系樹脂、輻射伝熱抑制剤、発泡剤、外添剤及び難燃剤を含有し、難燃剤を除く上述の任意成分の少なくとも1種を含有してもよく、より好ましくは、ポリスチレン系樹脂、輻射伝熱抑制剤、発泡剤、外添剤、難燃剤及び熱安定剤を含有し、難燃剤及び熱安定剤を除く上述の任意成分の少なくとも1種を含有してもよく、さらに好ましくは、ポリスチレン系樹脂、輻射伝熱抑制剤、発泡剤、外添剤、難燃剤、熱安定剤及び造核剤を含有し、難燃剤、熱安定剤及び造核剤を除く上述の任意成分の少なくとも1種を含有してもよい。 The expandable polystyrene resin particles of the present invention contain a polystyrene resin, a radiant heat transfer inhibitor, and a foaming agent, and optionally include a flame retardant, a heat stabilizer, a radical generator, an external additive, and other additives. It may contain at least one optional component selected from the group consisting of agents. The expandable polystyrene resin particles of the present invention preferably contain a polystyrene resin, a radiant heat transfer inhibitor, a blowing agent, an external additive, and a flame retardant, and at least one of the above-mentioned optional components other than the flame retardant. It may contain, more preferably, a polystyrene resin, a radiant heat transfer inhibitor, a foaming agent, an external additive, a flame retardant, and a heat stabilizer, and any of the above-mentioned optional components excluding the flame retardant and heat stabilizer. It may contain at least one kind, and more preferably contains a polystyrene resin, a radiant heat transfer inhibitor, a foaming agent, an external additive, a flame retardant, a heat stabilizer, and a nucleating agent. It may contain at least one of the above-mentioned optional components except for the agent and the nucleating agent.

(難燃剤)
本発明で用いることができる難燃剤としては、特に限定されず、従来からポリスチレン系樹脂発泡成形体に用いられる公知の難燃剤をいずれも使用できるが、その中でも、難燃性付与効果が高い臭素系難燃剤が好ましい。本発明で用いることができる臭素系難燃剤としては、例えば、2,2-ビス[4-(2,3-ジブロモ-2-メチルプロポキシ)-3,5-ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル))、2,2-ビス[4-(2,3-ジブロモプロポキシ)-3,5-ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル))等の臭素化ビスフェノール系化合物、臭素化スチレン・ブタジエンブロック共重合体、臭素化ランダムスチレン・ブタジエン共重合体、臭素化スチレン・ブタジエングラフト共重合体等の臭素化ブタジエン・ビニル芳香族炭化水素共重合体(例えば、特表2009-516019号公報に開示されている)、テトラブロモシクロオクタン等が挙げられる。これら臭素系難燃剤は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(Flame retardants)
The flame retardant that can be used in the present invention is not particularly limited, and any known flame retardant conventionally used in polystyrene resin foam moldings can be used, but among them, bromine, which has a high flame retardant effect, Preferred are flame retardants. Examples of the brominated flame retardant that can be used in the present invention include 2,2-bis[4-(2,3-dibromo-2-methylpropoxy)-3,5-dibromophenyl]propane (also known as tetrabromo Bisphenol A-bis(2,3-dibromo-2-methylpropyl ether)), 2,2-bis[4-(2,3-dibromopropoxy)-3,5-dibromophenyl]propane (also known as tetrabromobisphenol) Brominated bisphenol compounds such as A-bis(2,3-dibromopropyl ether), brominated styrene/butadiene block copolymers, brominated random styrene/butadiene copolymers, brominated styrene/butadiene graft copolymers Examples include brominated butadiene/vinyl aromatic hydrocarbon copolymers such as (for example, disclosed in Japanese Patent Application Publication No. 2009-516019), tetrabromocyclooctane, and the like. These brominated flame retardants may be used alone or in combination of two or more.

難燃剤は、目的とする発泡倍率に制御しやすいと共に、輻射伝熱抑制剤添加時の難燃性等のバランスの点から、ポリスチレン系樹脂組成物100重量%において難燃剤は1.0重量%超6.0重量%以下であることが好ましく、1.0重量%超4.0重量%以下であることがより好ましい。含有量が1.0重量%超であると、難燃性付与効果が小さくならず、6.0重量%以下であると、得られるポリスチレン系樹脂発泡成形体の強度が低下し難い。 The flame retardant should be used in an amount of 1.0% by weight based on 100% by weight of the polystyrene resin composition, in order to easily control the expansion ratio to the desired expansion ratio and to balance flame retardancy when adding a radiation heat transfer inhibitor. It is preferably more than 6.0% by weight, and more preferably more than 1.0% by weight and not more than 4.0% by weight. If the content exceeds 1.0% by weight, the effect of imparting flame retardancy will not be reduced, and if the content is 6.0% by weight or less, the strength of the obtained polystyrene resin foam molded product will not easily decrease.

(熱安定剤)
本発明の発泡性ポリスチレン系樹脂粒子においては、さらに、熱安定剤を併用することによって、製造工程における難燃剤の分解による難燃性能の悪化及び発泡性ポリスチレン系樹脂粒子の劣化を抑制することができる。
(thermal stabilizer)
In the expandable polystyrene resin particles of the present invention, further, by using a heat stabilizer in combination, deterioration of flame retardant performance and deterioration of the expandable polystyrene resin particles due to decomposition of the flame retardant during the manufacturing process can be suppressed. can.

本発明における熱安定剤は、用いられるポリスチレン系樹脂の種類、発泡剤の種類及び含有量、輻射伝熱抑制剤の種類及び含有量、難燃剤の種類及び含有量等に応じて、適宜組み合わせて用いることができる。 The heat stabilizer in the present invention can be combined as appropriate depending on the type and content of the polystyrene resin used, the type and content of the blowing agent, the type and content of the radiant heat transfer inhibitor, the type and content of the flame retardant, etc. Can be used.

本発明で用いられる熱安定剤としては、ポリスチレン系樹脂組成物の熱重量分析における1%重量減少温度を任意に制御できる点から、ヒンダードアミン化合物、リン系化合物、エポキシ化合物が望ましい。熱安定剤は1種を単独で又は2種以上を組み合わせて使用できる。 The thermal stabilizer used in the present invention is preferably a hindered amine compound, a phosphorus compound, or an epoxy compound, since the 1% weight loss temperature in thermogravimetric analysis of the polystyrene resin composition can be controlled arbitrarily. The heat stabilizer can be used alone or in combination of two or more.

熱安定剤は、目的とする発泡倍率に制御しやすいと共に、輻射伝熱抑制剤添加時の難燃性等のバランスの点から、ポリスチレン系樹脂組成物100重量%において熱安定剤は0.5~3重量%であることが好ましい。0.5重量%以上であると難燃剤の分解が生じ難く、難燃性付与効果が小さくならず、3重量%以下であると得られるポリスチレン系樹脂発泡成形体の強度が低下し難い。 The heat stabilizer should be used in a proportion of 0.5% by weight in 100% by weight of the polystyrene resin composition, from the viewpoint of easy control of the desired expansion ratio and balance of flame retardancy when adding the radiation heat transfer inhibitor. It is preferably 3% by weight. When it is 0.5% by weight or more, the flame retardant is difficult to decompose and the effect of imparting flame retardation is not reduced, and when it is 3% by weight or less, the strength of the obtained polystyrene resin foam molded product is not easily reduced.

(外添剤)
本発明で用いることができる外添剤としては、特に限定されず、従来から発泡性ポリスチレン系樹脂粒子に用いられる公知の外添剤をいずれも使用できる。発泡性ポリスチレン系樹脂粒子に外添剤を被覆することで、予備発泡時のブロッキング(発泡粒子同士の互着)を抑制すると共に成形時の融着を促進させることが可能となる。
外添剤としては、例えば、ラウリル酸トリグリセライド、ステアリン酸トリグリセライド、リノール酸トリグリセライド等の脂肪酸トリグリセライド、ラウリル酸ジグリセライド、ステアリン酸ジグリセライド、リノール酸ジグリセライド等の脂肪酸ジグリセライド、ラウリル酸モノグリセライド、ステアリン酸モノグリセライド、リノール酸モノグリセライド等の脂肪酸モノグリセライド、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ラウリル酸亜鉛、ラウリル酸カルシウム等の脂肪酸金属塩、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンラウレート、ポリオキシエチレンパルミテート、ポリオキシエチレンステアレート、ポリオキシエチレンオレエート等の非イオン界面活性剤等が挙げられる。これら外添剤は単独で用いてもよく、二種以上を併用してもよい。また、これら外添剤の好ましい被覆方法は、乾燥後に添付し、混合することにより被覆する方法である。好ましい外添剤としては、ステアリン酸亜鉛とヒドロキシステアリン酸トリグリセライドを組み合わせる方法が、予備発泡時のブロッキング抑制と成形時の融着促進を両立させやすい点で好ましい。
(external additive)
The external additives that can be used in the present invention are not particularly limited, and any known external additives conventionally used for expandable polystyrene resin particles can be used. By coating the expandable polystyrene resin particles with an external additive, it is possible to suppress blocking (adhesion of expanded particles to each other) during pre-foaming and to promote fusion during molding.
Examples of external additives include fatty acid triglycerides such as lauric acid triglyceride, stearic acid triglyceride, and linoleic acid triglyceride, fatty acid diglycerides such as lauric acid diglyceride, stearic acid diglyceride, and linoleic acid diglyceride, lauric acid monoglyceride, stearic acid monoglyceride, and linoleic acid. Fatty acid monoglycerides such as monoglyceride, fatty acid metal salts such as zinc stearate, calcium stearate, magnesium stearate, aluminum stearate, zinc laurate, calcium laurate, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene stearyl Examples include nonionic surfactants such as ether, polyoxyethylene laurate, polyoxyethylene palmitate, polyoxyethylene stearate, and polyoxyethylene oleate. These external additives may be used alone or in combination of two or more. A preferred method for coating with these external additives is to apply them after drying and to coat by mixing. As a preferable external additive, a method of combining zinc stearate and hydroxystearic acid triglyceride is preferable in that it is easy to suppress blocking during pre-foaming and promote fusion during molding.

(その他の添加剤)
本発明の発泡性ポリスチレン系樹脂粒子のポリスチレン系樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、ラジカル発生剤、加工助剤、耐光性安定剤、造核剤、発泡助剤、帯電防止剤、顔料等の着色剤よりなる群から選ばれる1種以上のその他添加剤を含有していてもよい。ラジカル発生剤としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、2,3-ジメチル-2,3-ジフェニルブタン、又はポリ-1,4-イソプロピルベンゼン等が挙げられる。加工助剤としては、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、流動パラフィン等が挙げられる。耐光性安定剤としては、前述したヒンダードアミン類、リン系安定剤、エポキシ化合物の他、フェノール系抗酸化剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類等が挙げられる。造核剤としては、シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、炭酸カルシウム、炭酸水素ナトリウム、タルク等の無機化合物、メタクリル酸メチル系共重合体、エチレン-酢酸ビニル共重合体樹脂等の高分子化合物、ポリエチレンワックス等のオレフィン系ワックス、メチレンビスステアリルアマイド、エチレンビスステアリルアマイド、ヘキサメチレンビスパルミチン酸アマイド、エチレンビスオレイン酸アマイド等の脂肪酸ビスアマイド等が挙げられる。発泡助剤としては、大気圧下での沸点が200℃以下である溶剤を望ましく使用でき、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素、酢酸エチル、酢酸ブチル等の酢酸エステル等が挙げられる。なお、帯電防止剤及び着色剤としては、各種樹脂組成物に用いられるものを特に限定なく使用できる。これらの他の添加剤は、1種を単独で又は2種以上を組み合わせて使用できる。
(Other additives)
The polystyrene resin composition of the expandable polystyrene resin particles of the present invention may contain a radical generator, a processing aid, a light resistance stabilizer, a nucleating agent, a foaming agent, a foaming agent, etc., as necessary, to the extent that the effects of the present invention are not impaired. It may contain one or more other additives selected from the group consisting of auxiliary agents, antistatic agents, and colorants such as pigments. Examples of the radical generator include cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and poly-1,4-isopropylbenzene. It will be done. Examples of processing aids include sodium stearate, magnesium stearate, calcium stearate, zinc stearate, barium stearate, liquid paraffin, and the like. Examples of the light resistance stabilizer include the aforementioned hindered amines, phosphorus stabilizers, and epoxy compounds, as well as phenolic antioxidants, nitrogen stabilizers, sulfur stabilizers, benzotriazoles, and the like. Nucleating agents include inorganic compounds such as silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, calcium carbonate, sodium hydrogen carbonate, and talc, methyl methacrylate copolymers, and ethylene-vinyl acetate. Examples include polymeric compounds such as copolymer resins, olefin waxes such as polyethylene wax, fatty acid bisamides such as methylene bis stearyl amide, ethylene bis stearyl amide, hexamethylene bis palmitic acid amide, and ethylene bis oleic acid amide. As the foaming aid, a solvent whose boiling point under atmospheric pressure is 200°C or lower can be preferably used, such as aromatic hydrocarbons such as styrene, toluene, ethylbenzene, and xylene, alicyclic carbonized solvents such as cyclohexane, methylcyclohexane, etc. Examples include hydrogen, acetate esters such as ethyl acetate, and butyl acetate. Note that as the antistatic agent and coloring agent, those used in various resin compositions can be used without particular limitation. These other additives can be used alone or in combination of two or more.

本発明の発泡性ポリスチレン系樹脂粒子の真球度は0.985以下である。外添剤が効果的に作用する点から、真球度は0.983以下であることが好ましく、0.980以下であることがより好ましい。発泡性ポリスチレン系樹脂粒子の真球度が0.985以下であることによって、外添剤が効果的に作用し、成形性が改善されることで、高発泡倍率を有する発泡成形体が得られたと推測される。一方、発泡性ポリスチレン系樹脂粒子の真球度は0.900以上が好ましく、0.920以上がより好ましく、0.940以上が特に好ましい。発泡性ポリスチレン系樹脂粒子の真球度が0.900以上であれば、極端に歪な形状でなくなり、高倍率発泡時に生じる顕著な収縮を緩和できる。 The sphericity of the expandable polystyrene resin particles of the present invention is 0.985 or less. In order for the external additive to act effectively, the sphericity is preferably 0.983 or less, more preferably 0.980 or less. When the sphericity of the expandable polystyrene resin particles is 0.985 or less, the external additive acts effectively and moldability is improved, making it possible to obtain a foamed molded product with a high expansion ratio. It is assumed that On the other hand, the sphericity of the expandable polystyrene resin particles is preferably 0.900 or more, more preferably 0.920 or more, and particularly preferably 0.940 or more. If the sphericity of the expandable polystyrene resin particles is 0.900 or more, the particles will not have an extremely distorted shape, and significant shrinkage that occurs during high-magnification foaming can be alleviated.

本発明の発泡性ポリスチレン系樹脂粒子において、かさ倍率90倍に予備発泡した発泡粒子の収縮率が25.0以下であることが好ましく、22.0以下であることがより好ましく、20.0以下であることが特に好ましい。予備発泡粒子の収縮率は下記式により計算される。
(式)予備発泡粒子の収縮率(%)=(A)/(B)×100
(A)かさ倍率90倍に予備発泡した発泡粒子の発泡直後のかさ倍率
(B)前記予備発泡粒子を30℃で24時間養生した後の養生後のかさ倍率
前記(式)から計算される予備発泡粒子の収縮率が25.0以下であることで30℃で24時間養生後の発泡倍率が高くなり、発泡倍率が回復しやすくなる。予備発泡粒子の収縮率が25.0より大きければ予備発泡粒子のセルが挫屈してしまい、高温で養生しても倍率は回復しにくくなるところ、本発明の発泡性ポリスチレン系樹脂粒子は収縮が抑制されるため、予備発泡粒子を高温で養生する必要がなくなり、養生後の倍率管理が容易となる。
In the expandable polystyrene resin particles of the present invention, the shrinkage rate of the expanded particles pre-expanded to a bulk ratio of 90 times is preferably 25.0 or less, more preferably 22.0 or less, and 20.0 or less. It is particularly preferable that The shrinkage rate of the pre-expanded particles is calculated by the following formula.
(Formula) Shrinkage rate (%) of pre-expanded particles = (A)/(B) x 100
(A) Bulk magnification immediately after foaming of foamed particles pre-expanded to a bulk magnification of 90 times (B) Bulk magnification after curing after curing the pre-expanded particles at 30°C for 24 hours Reserve calculated from the above (formula) When the shrinkage ratio of the foamed particles is 25.0 or less, the foaming ratio after curing at 30° C. for 24 hours becomes high, and the foaming ratio recovers easily. If the shrinkage rate of the pre-expanded particles is greater than 25.0, the cells of the pre-expanded particles will buckle, making it difficult to recover the magnification even after curing at high temperatures. This eliminates the need to cure the pre-expanded particles at high temperatures, making it easier to manage the magnification after curing.

本発明の発泡性ポリスチレン系樹脂粒子の見かけ密度は950kg/m超1200kg/m以下であることが好ましい。発泡性の観点から、980kg/m超であることが好ましく、1000kg/m以上であることがより好ましい。一方、断熱性能の観点から、1150kg/m以下であることが好ましく、1100kg/m以下であることがより好ましく、1080kg/m以下が特に好ましい。
ここで、一般的なポリスチレン系樹脂の密度は1050kg/m~1060kg/mであるが、ポリスチレン系樹脂組成物が輻射伝熱抑制剤として密度が高い無機物を含有していることで、発泡性ポリスチレン系樹脂粒子を製造する際の押出時の発泡を抑制できていれば、上記密度の1050kg/m~1060kg/mよりも発泡性ポリスチレン系樹脂粒子の密度が高くなるはずである。発泡性ポリスチレン系樹脂粒子の見かけ密度が950kg/m超1200kg/m以下であることによって、ポリスチレン系樹脂組成物および発泡剤からなるポリスチレン系樹脂溶融物は押出時の発泡が抑制されていると考えられる。押出時の発泡を抑制した発泡性ポリスチレン系樹脂粒子を得ることで、予備発泡粒子中の独立気泡率が高くなり、セル構造の強度が高くなるために、予備発泡直後の収縮を抑制でき、高発泡倍率化が可能になる。
The apparent density of the expandable polystyrene resin particles of the present invention is preferably more than 950 kg/m 3 and less than 1200 kg/m 3 . From the viewpoint of foamability, it is preferably more than 980 kg/m 3 , more preferably 1000 kg/m 3 or more. On the other hand, from the viewpoint of heat insulation performance, it is preferably 1150 kg/m 3 or less, more preferably 1100 kg/m 3 or less, and particularly preferably 1080 kg/m 3 or less.
Here, the density of general polystyrene-based resin is 1050 kg/m 3 to 1060 kg/m 3 , but since the polystyrene-based resin composition contains a high-density inorganic substance as a radiation heat transfer inhibitor, foaming is possible. If foaming during extrusion during the production of polystyrene resin particles can be suppressed, the density of the expandable polystyrene resin particles should be higher than the above density of 1050 kg/m 3 to 1060 kg/m 3 . Since the apparent density of the expandable polystyrene resin particles is more than 950 kg/m 3 and less than 1200 kg/m 3 , foaming of the polystyrene resin melt consisting of the polystyrene resin composition and the blowing agent is suppressed during extrusion. it is conceivable that. By obtaining expandable polystyrene resin particles that suppress foaming during extrusion, the closed cell ratio in the pre-expanded particles increases and the strength of the cell structure increases, so shrinkage immediately after pre-expanding can be suppressed and high It becomes possible to increase the foaming ratio.

本発明の発泡性ポリスチレン系樹脂粒子において、上記発泡性ポリスチレン系樹脂粒子を予備発泡させた予備発泡粒子を30℃で24時間養生した後に、予備発泡粒子に残存する発泡剤量が5.0重量%~6.0重量%であることが好ましく、5.2重量%~5.8重量%であることがより好ましい。予備発泡粒子の発泡剤量が5.0重量%以上であることで成形が容易となり、6.0重量%以下であることで、成形時のサイクルが短くなり、発泡成形体の生産性に優れる。 In the expandable polystyrene resin particles of the present invention, after the pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles are cured at 30°C for 24 hours, the amount of blowing agent remaining in the pre-expanded particles is 5.0 weight. % to 6.0% by weight, more preferably 5.2% to 5.8% by weight. When the amount of blowing agent in the pre-expanded particles is 5.0% by weight or more, molding becomes easy, and when it is 6.0% by weight or less, the cycle during molding is shortened, and the productivity of the foamed molded product is excellent. .

本発明の発泡性ポリスチレン系樹脂粒子において、上記発泡性ポリスチレン系樹脂粒子を予備発泡させた予備発泡粒子を30℃で24時間養生した後のかさ倍率は90倍以上であることが好ましい。上記予備発泡粒子のかさ倍率が90倍以上であることで、上記予備発泡粒子を成形してなるポリスチレン系樹脂発泡成形体の密度が低下し、より軽量化されたポリスチレン系樹脂発泡成形体の作製が可能となる。また、かさ倍率を高くすることで使用する樹脂量を削減できるためコストダウンにも繋がる。 In the expandable polystyrene resin particles of the present invention, the bulk ratio of the pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles after curing at 30° C. for 24 hours is preferably 90 times or more. Since the bulk ratio of the pre-expanded particles is 90 times or more, the density of the polystyrene resin foam molded product formed by molding the pre-expanded particles is reduced, and a lighter polystyrene resin foam molded product can be produced. becomes possible. Furthermore, by increasing the bulk factor, the amount of resin used can be reduced, leading to cost reductions.

[発泡性ポリスチレン系樹脂粒子の製造方法]
本発明の発泡性ポリスチレン系樹脂粒子は、公知の溶融混練法で得ることができ、具体的には、ポリスチレン系樹脂、輻射伝熱抑制剤および発泡剤を押出機で溶融混練し(溶融混練工程)、溶融混練物を押出機先端に取り付けられた小孔を有するダイスを通じて加圧循環水で満たされたチャンバー内に押出し(押出工程)、押出直後の溶融混練物を回転カッターにより切断すると共に、加圧循環水により冷却固化する(冷却工程)ことにより製造することができる。この製法によると、真球度が0.985以下である発泡性ポリスチレン系樹脂粒子が得られやすい。好ましくは、次の本発明の発泡性ポリスチレン系樹脂粒子の製造方法で得られる。
[Method for manufacturing expandable polystyrene resin particles]
The expandable polystyrene-based resin particles of the present invention can be obtained by a known melt-kneading method. Specifically, the polystyrene-based resin, a radiant heat transfer inhibitor, and a foaming agent are melt-kneaded using an extruder (melt-kneading step). ), the melt-kneaded product is extruded through a die with small holes attached to the tip of the extruder into a chamber filled with pressurized circulating water (extrusion step), and the melt-kneaded product immediately after extrusion is cut by a rotating cutter, It can be produced by cooling and solidifying with pressurized circulating water (cooling step). According to this manufacturing method, expandable polystyrene resin particles having a sphericity of 0.985 or less are easily obtained. Preferably, they are obtained by the following method for producing expandable polystyrene resin particles of the present invention.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、輻射伝熱抑制剤を含むポリスチレン系樹脂組成物および発泡剤からなるポリスチレン系樹脂溶融物を複数の小孔を有するダイスから加圧循環水中に押出し、回転カッターで切断して粒子化する発泡性ポリスチレン系樹脂粒子の製造方法であって、前記発泡剤が、イソブタンを含み、前記ポリスチレン系樹脂組成物及び発泡剤の総量100重量%に対してイソブタンが2.7重量%超6.0重量%以下である(以下、「本発明の製法」と称することがある)。 The method for producing expandable polystyrene resin particles of the present invention involves introducing a polystyrene resin melt consisting of a polystyrene resin composition containing a radiation heat transfer inhibitor and a blowing agent into pressurized circulating water from a die having a plurality of small holes. A method for producing expandable polystyrene resin particles by extruding and cutting with a rotary cutter to form particles, the blowing agent containing isobutane, based on 100% by weight of the total amount of the polystyrene resin composition and the blowing agent. The content of isobutane is more than 2.7% by weight and not more than 6.0% by weight (hereinafter sometimes referred to as "the production method of the present invention").

本発明の製法における構成のうち、前記[発泡性ポリスチレン系樹脂粒子]で説明した各構成は本発明の製法においても同様に適用できる。 Among the configurations in the manufacturing method of the present invention, each of the configurations described in the above [expandable polystyrene resin particles] can be similarly applied to the manufacturing method of the present invention.

本発明の製法においては、ポリスチレン系樹脂と各種成分との分散性の観点から、予め、二軸の攪拌機を備えた(例えばバンバリーミキサー等)混練装置を用いてポリスチレン系樹脂と各種成分とを荷重をかけて混練して混練物を作製し、得られた混練物とポリスチレン系樹脂とを押出機に投入して溶融混練した後、粒子状に切断することが好ましい。 In the manufacturing method of the present invention, from the viewpoint of dispersibility of the polystyrene resin and various components, the polystyrene resin and various components are mixed in advance using a kneading device equipped with a twin-shaft stirrer (for example, a Banbury mixer). It is preferable to prepare a kneaded product by kneading the mixture by applying the following steps, and to put the obtained kneaded product and polystyrene-based resin into an extruder, melt-knead them, and then cut into particles.

本発明の製法の好ましい一形態としては、、ポリスチレン系樹脂及び輻射伝熱抑制剤を、例えばバンバリーミキサー等の二軸の攪拌機を備えた混練装置により混練して混練物としてのマスターバッチを作製し、作製したマスターバッチと新たなポリスチレン系樹脂と、発泡剤と、必要に応じて難燃剤等その他の成分とを押出機で溶融混練し、得られた樹脂溶融物を押出機先端に取り付けられた小孔を有するダイスを通して加圧循環水で満たされたカッターチャンバー内に押出し、押出直後から回転カッターにより切断すると共に、加圧循環水により冷却固化する。この際、押出機での溶融混練は単独の押出機を使用する場合、押出機を複数連結する場合、押出機とスタティックミキサーやスクリューを有さない攪拌機など第二の混練装置を併用する場合があり、適宜選択することができる。 In a preferred form of the production method of the present invention, a masterbatch as a kneaded product is prepared by kneading a polystyrene resin and a radiant heat transfer inhibitor using a kneading device equipped with a two-shaft stirrer, such as a Banbury mixer. The prepared masterbatch, new polystyrene resin, blowing agent, and other components such as flame retardants as needed are melt-kneaded in an extruder, and the resulting resin melt is attached to the tip of the extruder. It is extruded through a die with small holes into a cutter chamber filled with pressurized circulating water, and immediately after extrusion, it is cut by a rotating cutter and is cooled and solidified by the pressurized circulating water. At this time, the melt kneading in the extruder may be performed by using a single extruder, by connecting multiple extruders, or by using the extruder together with a second kneading device such as a static mixer or an agitator without a screw. Yes, you can select as appropriate.

ポリスチレン系樹脂及び輻射伝熱抑制剤を、二軸の攪拌機を備えた混練装置、例えば荷重をかけた状態で樹脂の混練が可能なインテンシブミキサー、インターナルミキサー、又はバンバリーミキサー等、により混練してマスターバッチを作製することが好ましい。この場合、マスターバッチの濃度は特に限定されないが、輻射伝熱抑制剤の濃度20重量%~80重量%で作製することが、混練性とコストとのバランスから好ましい。作製したマスターバッチ、ポリスチレン系樹脂、発泡剤、必要に応じて、難燃剤、熱安定剤、他の添加剤を第1の押出機及び必要に応じて押出機に付随する第2の混練装置で溶融混練し、得られた樹脂溶融物を所定の温度に冷却した後、小孔を有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に押出す。この押出直後から、回転カッターにより切断してペレット化すると共に、得られたペレット(樹脂粒子)を加圧循環水により冷却固化して発泡性ポリスチレン系樹脂粒子を得ることができる。なお、難燃剤、熱安定剤等の他の添加剤についても、同様に、予め、ポリスチレン系樹脂と他の添加剤とのマスターバッチを作製して、押出機等に投入するようにしても構わない。さらに、輻射伝熱抑制剤や難燃剤、熱安定剤およびその他の添加剤はマスターバッチ化を行わずに、原料を直接押出機に投入するようにしても構わない。 The polystyrene resin and the radiation heat transfer inhibitor are kneaded using a kneading device equipped with a twin-shaft stirrer, such as an intensive mixer, an internal mixer, or a Banbury mixer that can knead the resin under a load. Preferably, a masterbatch is made. In this case, the concentration of the masterbatch is not particularly limited, but it is preferable to prepare the masterbatch at a concentration of 20% to 80% by weight of the radiant heat transfer inhibitor in view of the balance between kneading performance and cost. The prepared masterbatch, polystyrene resin, blowing agent, flame retardant, heat stabilizer, and other additives are mixed in a first extruder and, if necessary, in a second kneading device attached to the extruder. After melt-kneading and cooling the resulting resin melt to a predetermined temperature, it is extruded through a die with small holes into a cutter chamber filled with pressurized circulating water. Immediately after this extrusion, it is cut into pellets by a rotary cutter, and the obtained pellets (resin particles) are cooled and solidified with pressurized circulating water to obtain expandable polystyrene resin particles. Note that for other additives such as flame retardants and heat stabilizers, it is also possible to prepare a master batch of polystyrene resin and other additives in advance and feed it into an extruder, etc. do not have. Furthermore, the radiation heat transfer inhibitor, flame retardant, heat stabilizer, and other additives may be added directly to the extruder without being masterbatched.

発泡剤としてペンタンおよびブタンを併用する場合、ペンタンおよびブタンが添加されればその添加方法は特に問われず、添加は同時に添加してもよいし、いずれか一方を先に添加後もう一方を添加するようにしてもよい。 When pentane and butane are used together as blowing agents, the method of addition is not particularly important as long as pentane and butane are added; they may be added at the same time, or one of them may be added first and then the other. You can do it like this.

本発明の製法で用いるイソブタンの添加量は、ポリスチレン系樹脂組成物及び発泡剤の総量100重量%に対してイソブタンが2.7重量%超6.0重量%以下である。溶融押出法で製造する場合に、イソブタンが6.0重量%超であると、発泡性ポリスチレン系樹脂粒子作製時の発泡を抑制することが困難となり、ダイスが閉塞してしまい、安定的な発泡性ポリスチレン系樹脂粒子の採取が困難となる。 The amount of isobutane used in the production method of the present invention is more than 2.7% by weight and not more than 6.0% by weight based on 100% by weight of the total amount of the polystyrene resin composition and blowing agent. When producing by melt extrusion, if isobutane exceeds 6.0% by weight, it will be difficult to suppress foaming during the production of expandable polystyrene resin particles, and the die will become clogged, resulting in stable foaming. It becomes difficult to collect polystyrene resin particles.

本発明の製法ではイソブタンとペンタンを併用してもよく、イソブタンとペンタンを併用する場合は、ペンタンの添加量は、ポリスチレン系樹脂組成物100重量部に対して、1~8重量部であることが好ましい。予備発泡時の加熱時間短縮による生産性向上と難燃性能の観点から、2~6重量部であることがより好ましい。 In the production method of the present invention, isobutane and pentane may be used in combination. When isobutane and pentane are used in combination, the amount of pentane added should be 1 to 8 parts by weight per 100 parts by weight of the polystyrene resin composition. is preferred. From the viewpoint of improving productivity by shortening the heating time during pre-foaming and flame retardant performance, the amount is more preferably 2 to 6 parts by weight.

押出機の溶融混練部の設定温度は、100℃~250℃が好ましい。また、押出機にポリスチレン系樹脂及び各種成分を供給してから溶融混練終了までの押出機内滞留時間が10分以下であることが好ましい。押出機の溶融混練部での設定温度が250℃以下、及び/又は、溶融混練終了までの押出機内滞留時間が10分以下であれば、難燃剤を添加した場合に難燃剤の分解を生じることなく、所望の難燃性が得ることができ、所望の難燃性を付与する為に難燃剤を過剰に添加する必要もない。一方、押出機の溶融混練部での設定温度が100℃以上であると、押出機の負荷が大きくならず押出が安定になり、添加する成分の分散性が良好になる。 The temperature set in the melt-kneading section of the extruder is preferably 100°C to 250°C. Further, it is preferable that the residence time in the extruder from the time when the polystyrene resin and various components are supplied to the extruder until the end of melt-kneading is 10 minutes or less. If the set temperature in the melt-kneading section of the extruder is 250°C or less and/or the residence time in the extruder until the end of melt-kneading is 10 minutes or less, the flame retardant may decompose when added. Therefore, the desired flame retardance can be obtained, and there is no need to add an excessive amount of flame retardant to impart the desired flame retardance. On the other hand, if the set temperature in the melt-kneading section of the extruder is 100° C. or higher, the load on the extruder will not increase, resulting in stable extrusion and good dispersibility of the added components.

ここで、押出機の溶融混練部とは、単軸又は二軸スクリューを有する押出機から構成される場合はフィード部以降から下流側最終押出機先端までを意味する。第1の押出機に付随してスタティックミキサーやスクリューを有さない攪拌機など第2の混練装置を併用する場合は第一押出機のフィード部から第2の混練装置の先端までを意味する。 Here, the melt-kneading section of the extruder means the area from the feed section to the downstream end of the final extruder when the extruder is configured with a single screw or twin screws. When a second kneading device, such as a static mixer or an agitator without a screw, is used in conjunction with the first extruder, this means from the feed section of the first extruder to the tip of the second kneading device.

加圧循環水の水圧は、1.0MPa以上2.0MPa以下であることが好ましく、1.1MPa以上1.8MPa以下であることがより好ましい。水圧が1.0MPa以上であれば、発泡を抑制でき、発泡性ポリスチレン系樹脂粒子の嵩密度が高くなり、発泡倍率の低下や輸送効率の低下が生じにくくなる。一方、水圧が2.0MPa以下であることにより、水圧によって回転カッターが押し戻されず、押出された溶融樹脂が回転カッターに巻きつくことがなく、安定生産できる。 The pressure of the pressurized circulating water is preferably 1.0 MPa or more and 2.0 MPa or less, more preferably 1.1 MPa or more and 1.8 MPa or less. If the water pressure is 1.0 MPa or more, foaming can be suppressed, the bulk density of the expandable polystyrene resin particles will increase, and a decrease in expansion ratio and transport efficiency will hardly occur. On the other hand, since the water pressure is 2.0 MPa or less, the rotary cutter is not pushed back by the water pressure, and the extruded molten resin does not wrap around the rotary cutter, allowing stable production.

加圧循環水の水温は45℃以上80℃以下であることが好ましく、50℃以上70℃以下であることがより好ましい。水温が45℃以上であれば、冷却によるダイスの閉塞を抑制することができる。一方、水温が80℃以下であることにより、加圧循環水中での発泡を抑制でき、発泡性ポリスチレン系樹脂粒子のかさ密度が高くなり、輸送効率の低下が生じにくくなる。 The temperature of the pressurized circulating water is preferably 45°C or more and 80°C or less, more preferably 50°C or more and 70°C or less. If the water temperature is 45° C. or higher, clogging of the dice due to cooling can be suppressed. On the other hand, when the water temperature is 80° C. or lower, foaming in the pressurized circulating water can be suppressed, the bulk density of the expandable polystyrene resin particles increases, and transport efficiency is less likely to decrease.

本発明で用いられるダイスは特に限定されないが、例えば、直径0.3mm~2.0mm、好ましくは0.4mm~1.5mmの小孔を有するものが挙げられる。 The die used in the present invention is not particularly limited, but includes, for example, those having small holes with a diameter of 0.3 mm to 2.0 mm, preferably 0.4 mm to 1.5 mm.

加圧循環水に押出された溶融樹脂を切断する切断装置としては、特に限定されないが、例えば、ダイリップに接触する回転カッターで切断されて小球化され、遠心脱水機まで移送されて脱水・集約される装置、等が挙げられる。 The cutting device for cutting the molten resin extruded into pressurized circulating water is not particularly limited, but for example, a rotary cutter in contact with a die lip is used to cut the molten resin into spherules, which are then transferred to a centrifugal dehydrator to be dehydrated and aggregated. For example, devices that can be used

本発明で用いられる外添剤の被覆方法は特に限定されないが、好ましい被覆方法としては、例えば、乾燥後に添付し、混合することにより被覆する方法が挙げられる。 The method of coating the external additive used in the present invention is not particularly limited, but a preferred coating method includes, for example, a method of applying the external additive after drying and then coating by mixing.

[ポリスチレン系樹脂発泡成形体]
本発明の発泡性ポリスチレン系樹脂粒子は、特に限定されないが、発泡性ポリスチレン系樹脂粒子を所定の発泡倍率に発泡させて予備発泡粒子とし、この予備発泡粒子を用いて成形を行なう予備発泡法により、ポリスチレン系樹脂発泡成形体を製造することができる。
[Polystyrene resin foam molded product]
The expandable polystyrene resin particles of the present invention are produced by a pre-expanding method in which expandable polystyrene resin particles are foamed to a predetermined expansion ratio to obtain pre-expanded particles, and then molded using the pre-expanded particles. , a polystyrene resin foam molded article can be produced.

ポリスチレン系樹脂発泡成形体は発泡倍率が高いほど原料である発泡性ポリスチレン系樹脂粒子の使用量が少なくなることから、本発明によれば、高発泡倍率のポリスチレン系樹脂発泡成形体をより安価に製造することができる。なお、グラファイトを含有させた従来の発泡性ポリスチレン系樹脂粒子においては高倍率発泡は困難であった。しかし、本発明の発泡性ポリスチレン系樹脂粒子及び本発明の製造方法で得られる発泡性ポリスチレン系樹脂粒子によれば、発泡性ポリスチレン系樹脂粒子に含まれるイソブタンの含有量を制御することで、高倍率発泡が可能となり、軽量で取扱性が良く、かつより安価な断熱材を供給することができる。 The higher the expansion ratio of a polystyrene resin foam molded product, the lower the amount of expandable polystyrene resin particles used as a raw material. can be manufactured. It should be noted that it is difficult to foam at a high magnification with conventional expandable polystyrene resin particles containing graphite. However, according to the expandable polystyrene resin particles of the present invention and the expandable polystyrene resin particles obtained by the production method of the present invention, by controlling the content of isobutane contained in the expandable polystyrene resin particles, high It is possible to perform multiplier foaming, and it is possible to supply a heat insulating material that is lightweight, easy to handle, and inexpensive.

本発明の発泡性ポリスチレン系樹脂粒子は、公知の予備発泡工程、例えば、水蒸気によって10~120倍に発泡させて予備発泡粒子とし(予備発泡工程)、必要に応じて一定時間養生させた後、公知の成形機を用い、予備発泡粒子を水蒸気によって成形されてポリスチレン系樹脂発泡成形体が作製される。使用される金型の形状により、複雑な形の型物成形体やブロック状の成形体を得ることができる。 The expandable polystyrene resin particles of the present invention are produced by a known pre-foaming process, for example, by foaming them 10 to 120 times with water vapor to form pre-foamed particles (pre-foaming process), and if necessary, curing for a certain period of time. A polystyrene resin foam molded article is produced by molding the pre-expanded particles with water vapor using a known molding machine. Depending on the shape of the mold used, it is possible to obtain complex-shaped molded products or block-shaped molded products.

(予備発泡工程)
予備発泡工程は、予備発泡機を用い、従来の発泡性ポリスチレン系樹脂粒子の予備発泡と同様にして実施できる。
(Pre-foaming process)
The pre-foaming step can be carried out using a pre-foaming machine in the same manner as the conventional pre-foaming of expandable polystyrene resin particles.

予備発泡機としては公知のものを使用でき、例えば、撹拌装置を備え、発泡性ポリスチレン系樹脂粒子が収容される缶と、該缶の下方に設置され、水蒸気を該缶に供給する蒸気チャンバーと、予備発泡粒子排出口とを備えた予備発泡機が用いられる。 A known pre-foaming machine can be used, such as a can equipped with a stirring device and containing expandable polystyrene resin particles, and a steam chamber installed below the can to supply water vapor to the can. A pre-foaming machine is used which is equipped with a pre-foamed particle outlet and a pre-foamed particle outlet.

水蒸気投入時の缶内圧力(ケージ圧)は特に限定されないが、好ましくは0.001~0.15MPa、より好ましくは0.01~0.10MPa、さらに好ましくは0.03~0.08MPaである。缶内圧力が0.01MPa以上であると、高発泡倍率を得る場合に、予備発泡における水蒸気投入時間を500秒以下にすることができる。缶内圧力が0.15MPa以下であると、水蒸気の圧力を高くすることが必要なくなり、ブロッキング現象の発生数が低下し、予備発泡収率が高くなる。 The pressure inside the can (cage pressure) when steam is introduced is not particularly limited, but is preferably 0.001 to 0.15 MPa, more preferably 0.01 to 0.10 MPa, and even more preferably 0.03 to 0.08 MPa. . When the pressure inside the can is 0.01 MPa or more, when obtaining a high expansion ratio, the water vapor injection time in preliminary foaming can be 500 seconds or less. When the pressure inside the can is 0.15 MPa or less, it is not necessary to increase the pressure of steam, the number of occurrences of blocking phenomenon decreases, and the pre-foaming yield increases.

また、予備発泡工程は、連続法及びバッチ法のいずれでも行なうことができる。 Further, the pre-foaming step can be carried out by either a continuous method or a batch method.

連続法は、缶内への発泡性ポリスチレン系樹脂粒子の供給、及び缶上部に設けられた排出口からの予備発泡粒子の排出を連続的に行なう方法である。予備発泡粒子の発泡倍率は、例えば、発泡性ポリスチレン系樹脂粒子の缶内への時間当たりの投入量(重量)を適宜選択することにより調整できる。連続法の場合は缶内へ発泡性ポリスチレン系樹脂粒子が供給されてから予備発泡粒子が排出されるまでの予備発泡機缶内での滞留時間を水蒸気投入時間とする。 The continuous method is a method in which expandable polystyrene resin particles are continuously supplied into the can and pre-expanded particles are discharged from an outlet provided at the top of the can. The expansion ratio of the pre-expanded particles can be adjusted, for example, by appropriately selecting the amount (weight) of the expandable polystyrene resin particles charged into the can per hour. In the case of a continuous method, the residence time in the prefoamer can from the time the expandable polystyrene resin particles are supplied into the can until the prefoamed particles are discharged is defined as the steam input time.

また、バッチ法は、缶内に所定量の発泡性ポリスチレン系樹脂粒子を入れ、これを所定の発泡倍率に予備発泡させた後に水蒸気の供給を停止し、次いで必要に応じて空気を缶内に吹き込んで予備発泡粒子を冷却及び乾燥し、缶内から取り出す方法である。予備発泡粒子の発泡倍率は、発泡性ポリスチレン系樹脂粒子のバッチあたりの缶内への投入量(重量)を適宜選択することにより調整できる。バッチ法は、投入された発泡性ポリスチレン系樹脂粒子を所定容積まで予備発泡させる方法であることから、バッチ当りの投入量を減らすほど、得られる予備発泡粒子の発泡倍率は高くなる。 In addition, in the batch method, a predetermined amount of expandable polystyrene resin particles are placed in a can, and after the particles are pre-foamed to a predetermined expansion ratio, the supply of steam is stopped, and then air is introduced into the can as needed. In this method, the pre-expanded particles are cooled and dried by blowing, and then taken out from the can. The expansion ratio of the pre-expanded particles can be adjusted by appropriately selecting the amount (weight) of expandable polystyrene resin particles to be charged into the can per batch. Since the batch method is a method in which the input expandable polystyrene resin particles are pre-foamed to a predetermined volume, the smaller the input amount per batch, the higher the expansion ratio of the resulting pre-expanded particles.

また、予備発泡直後の予備発泡粒子は養生を行う方が良い。予備発泡時は発泡粒子内に水蒸気が存在するが、発泡後の冷却工程において水蒸気が水に凝縮するため予備発泡直後の予備発泡粒子内部は減圧状態となる。減圧状態の際に予備発泡粒子のセル壁強度が低ければ、収縮が容易に生じる場合がある。さらに、予備発泡粒子の独立気泡率が低ければ、セル構造体の強度が低下し、収縮しやすくなる。そのため予備発泡粒子内部を空気と置換し、大気圧に戻す養生工程が有効となる。本発明のポリスチレン系樹脂発泡性粒子の予備発泡粒子は、予備発泡直後の収縮が抑えられるため、養生工程により所望どおりの発泡倍率まで回復されうる。 Further, it is better to cure the pre-foamed particles immediately after pre-foaming. During pre-foaming, water vapor exists within the foamed particles, but in the cooling step after foaming, the water vapor condenses into water, so the pressure inside the pre-foamed particles becomes reduced immediately after pre-foaming. If the cell wall strength of the pre-expanded particles is low during reduced pressure, shrinkage may easily occur. Furthermore, if the closed cell ratio of the pre-expanded particles is low, the strength of the cell structure will decrease and it will tend to shrink. Therefore, a curing process in which the inside of the pre-expanded particles is replaced with air and returned to atmospheric pressure is effective. Since the pre-expanded polystyrene resin expandable particles of the present invention are suppressed from shrinking immediately after pre-expanding, the expansion ratio can be restored to a desired expansion ratio through a curing step.

養生時の温度は特に限定されないが、好ましくは20~80℃、より好ましくは、25~70℃、さらに好ましくは30~60℃である。養生温度が20℃以上であると、減圧状態であった予備発泡粒子内部に空気が導入され易くなり、発泡粒子内部が大気圧に戻り易くなる。養生温度が80℃以下であると、予備発泡粒子に存在する発泡剤が逸散し難くなり、発泡力が低下せず、成形体の表面美麗性が低下しない。 The temperature during curing is not particularly limited, but is preferably 20 to 80°C, more preferably 25 to 70°C, and still more preferably 30 to 60°C. When the curing temperature is 20° C. or higher, air is likely to be introduced into the pre-expanded particles, which have been in a reduced pressure state, and the inside of the expanded particles is likely to return to atmospheric pressure. When the curing temperature is 80°C or less, the blowing agent present in the pre-expanded particles becomes difficult to escape, the foaming power does not decrease, and the surface beauty of the molded product does not decrease.

本発明のポリスチレン系樹脂発泡成形体は、例えば、床、壁、屋根等に用いられる建築用断熱材、魚等の水産物を輸送する箱や野菜等の農産物を輸送する箱等の農水産箱、浴室用断熱材及び貯湯タンク断熱材のような各種用途に使用できる。 The polystyrene resin foam molded product of the present invention can be used, for example, as a building insulation material used for floors, walls, roofs, etc., agricultural and fishery boxes such as boxes for transporting fish and other marine products, and boxes for transporting agricultural products such as vegetables, etc. It can be used for various purposes such as bathroom insulation and hot water tank insulation.

以下、参考例、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below based on Reference Examples, Examples, and Comparative Examples, but the present invention is not limited thereto.

なお、以下の参考例、実施例及び比較例における測定方法及び評価方法は、以下のとおりである。 Note that the measurement methods and evaluation methods in the following Reference Examples, Examples, and Comparative Examples are as follows.

(発泡性ポリスチレン系樹脂粒子の真球度測定方法)
(1)測定装置:Retsch Technology製 CAMSIZER P4
(2)設定条件:フィーダーとファネルパラメーターを下記の条件に設定した。
・前方へ高速で動かすときのコントロールレベル:55
・前方へ高速で動かすときの最大時間[秒]:60
・測定開始時のレベル:50
・最大コントロールレベル:75
・目標カバーエリア[%]:0.5
・フィーダの幅[mm]:60
・ガイダンスシートを使用
また以下の条件のとき、測定データとして採用した。
・ベーシックカメラのカバーエリア[%] < 3
・ズームカメラのカバーエリア[%] < 5
但し、撮影した投影図から次の条件を満たす粒子については、測定データから除外した。
・Convexity ≧ 0.99
粒子同士が重なって投影図測定箇所に落下した場合、各粒子の形状を正確に評価できないため、フィーダー及びファネルパラメータを上記条件に設定した。また、多量の粒子が同時に落下してしまうと、同様に各粒子形状の正確な評価ができない可能性がある。このことから、設定したカバーエリア以上の粒子が落ちたときは、その投影図・データを除外した。
(Method for measuring sphericity of expandable polystyrene resin particles)
(1) Measuring device: CAMSIZER P4 manufactured by Retsch Technology
(2) Setting conditions: The feeder and funnel parameters were set to the following conditions.
・Control level when moving forward at high speed: 55
・Maximum time when moving forward at high speed [seconds]: 60
・Level at start of measurement: 50
・Maximum control level: 75
・Target coverage area [%]: 0.5
・Feeder width [mm]: 60
- Guidance sheet was used. Also, the following conditions were used as measurement data.
・Basic camera coverage area [%] < 3
・Zoom camera coverage area [%] < 5
However, particles satisfying the following conditions from the photographed projection diagram were excluded from the measurement data.
・Convexity ≧ 0.99
If the particles overlap each other and fall onto the projection map measurement location, the shape of each particle cannot be accurately evaluated, so the feeder and funnel parameters were set to the above conditions. Furthermore, if a large number of particles fall at the same time, it may not be possible to accurately evaluate the shape of each particle. For this reason, when more particles fell than the set coverage area, that projection map and data were excluded.

更に、埃などの微小異物を影響を除外するため、Convexity(表面凹凸度)が0.99以上のデータは除外して解析を実施した。
(3)測定方法:約50gの発泡性ポリスチレン系樹脂粒子の投影図を上記のように設定したCAMSIZER P4によって撮影し、得られた各発泡性ポリスチレン系樹脂粒子の投影図の周囲長、面積を測定した。得られた各発泡性ポリスチレン系樹脂粒子の投影図の周囲長及び面積から以下の式に基づき、真球度の平均値を算出した。
Furthermore, in order to exclude the influence of minute foreign matter such as dust, data with Convexity (surface unevenness) of 0.99 or more was excluded from the analysis.
(3) Measuring method: A projected image of approximately 50 g of expandable polystyrene resin particles was photographed using CAMSIZER P4 set as above, and the perimeter and area of the obtained projected image of each expandable polystyrene resin particle were measured. It was measured. The average value of sphericity was calculated based on the following formula from the perimeter and area of the projected view of each of the obtained expandable polystyrene resin particles.

但し、上記式中、Sをi番目の粒子の面積(mm)、Rをi番目の粒子の周囲長(mm)とする。 However, in the above formula, S i is the area (mm 2 ) of the i-th particle, and R i is the circumferential length (mm) of the i-th particle.

(発泡性ポリスチレン系樹脂粒子の見かけ密度測定方法)
発泡性ポリスチレン系樹脂粒子を測定試料としてW(kg)採取し、この測定試料をエタノールが入ったメスシリンダー内に自然落下させ、その質量(kg)と体積(m)を測定し、以下の式に基づき、見かけ密度を測定した。
(Method for measuring apparent density of expandable polystyrene resin particles)
Collect W (kg) of expandable polystyrene resin particles as a measurement sample, drop this measurement sample naturally into a measuring cylinder containing ethanol, measure its mass (kg) and volume (m 3 ), and calculate the following. The apparent density was measured based on the formula.

見かけ密度(kg/m)=測定試料の重量(W)/測定試料の体積(V)。 Apparent density (kg/m 3 )=weight of measurement sample (W)/volume of measurement sample (V).

(予備発泡粒子のかさ倍率測定方法)
予備発泡粒子を各々測定試料としてW(g)採取し、この測定試料をメスシリンダー内に自然落下させた後にメスシリンダーを叩き、試料の見掛け体積V(cm)を一定とし、その質量(g)と体積(cm)を測定し、以下の式に基づき、かさ倍率を測定した。
(Method for measuring bulk ratio of pre-expanded particles)
Collect W (g) of each pre-expanded particle as a measurement sample, let the measurement sample fall naturally into a measuring cylinder, and then tap the measuring cylinder to keep the sample's apparent volume V (cm 3 ) constant and calculate its mass (g). ) and volume (cm 3 ) were measured, and the bulk magnification was determined based on the following formula.

かさ倍率(cm/g)=測定試料の体積(V)/測定試料の重量(W)
予備発泡粒子において、予備発泡機から予備発泡粒子が排出された後5~10分以内に測定したかさ倍率を予備発泡後に収縮が生じた、発泡直後のかさ倍率と定義する。
Bulk magnification (cm 3 /g) = Volume of measurement sample (V) / Weight of measurement sample (W)
The bulk ratio of the pre-expanded particles measured within 5 to 10 minutes after the pre-expanded particles are discharged from the pre-expander is defined as the bulk ratio immediately after foaming at which shrinkage has occurred after pre-expanding.

予備発泡粒子において、収縮後に30℃で24時間養生した後に測定したかさ倍率を養生後のかさ倍率と定義する。 In the pre-expanded particles, the bulk ratio measured after curing at 30° C. for 24 hours after shrinkage is defined as the bulk ratio after curing.

(予備発泡粒子の収縮率計算方法)
下記式により、計算される値を予備発泡粒子の収縮率と定義する。
(Method for calculating shrinkage rate of pre-expanded particles)
The value calculated by the following formula is defined as the shrinkage rate of the pre-expanded particles.

式:(A)/(B)×100
(A)かさ倍率90倍に予備発泡した発泡粒子の発泡直後のかさ倍率
(B)前記予備発泡粒子を30℃で24時間養生した後の養生後のかさ倍率
(予備発泡粒子の発泡剤量測定方法)
発泡性ポリスチレン系樹脂粒子を予備発泡させ、30℃で24時間養生した後の発泡粒子の重量W(g)を測定し、150℃のオーブンで30分加熱し、その後、デシケータ内にて室温で30分冷却し、再度重量W(g)を測定した。以下の式により、計算される値を予備発泡粒子の発泡剤量とした。
Formula: (A)/(B)×100
(A) Bulk ratio immediately after foaming of foamed particles pre-expanded to a bulk ratio of 90 times (B) Bulk ratio after curing of the pre-expanded particles after curing at 30°C for 24 hours (Measurement of the amount of blowing agent in pre-expanded particles) Method)
After pre-foaming the expandable polystyrene resin particles and curing them at 30°C for 24 hours, the weight W 1 (g) of the expanded particles was measured, heated in an oven at 150°C for 30 minutes, and then cooled to room temperature in a desiccator. After cooling for 30 minutes, the weight W 2 (g) was measured again. The value calculated using the following formula was taken as the amount of blowing agent in the pre-expanded particles.

予備発泡粒子の発泡剤量(重量%)=(W-W)/W×100
(ポリスチレン系樹脂発泡成形体の発泡倍率)
成型金型から取り出したポリスチレン系樹脂発泡成形体を30℃で24時間乾燥させた後、発泡成形体の重量(g)を測定すると共に、ノギスを用いて、縦寸法、横寸法、厚さ寸法を測定した。測定された各寸法からポリスチレン系樹脂発泡成形体の体積(cm)を計算し、下記計算式に従って発泡倍率を算出した。
発泡倍率(cm/g)=試験片体積(cm)/試験片重量(g)
なお、ポリスチレン系樹脂発泡成形体の発泡倍率「倍」は慣習的に「cm/g」でも表されている。
Amount of blowing agent in pre-expanded particles (wt%) = (W 1 - W 2 )/W 1 ×100
(Foaming ratio of polystyrene resin foam molded product)
After drying the polystyrene resin foam molded product taken out from the molding mold at 30°C for 24 hours, the weight (g) of the foam molded product was measured, and the vertical dimension, horizontal dimension, and thickness dimension were measured using calipers. was measured. The volume (cm 3 ) of the polystyrene resin foam molded article was calculated from each measured dimension, and the expansion ratio was calculated according to the following calculation formula.
Expansion ratio (cm 3 /g) = test piece volume (cm 3 ) / test piece weight (g)
Note that the expansion ratio "times" of a polystyrene resin foam molded product is also conventionally expressed as "cm 3 /g".

(ポリスチレン系樹脂発泡成形体の熱伝導率の測定方法)
一般的に熱伝導率の測定平均温度が大きい方が熱伝導率の値は大きくなることが知られており、断熱性を比較するためには測定平均温度を定める必要がある。本明細書では発泡プラスチック保温材の規格であるJIS A9511:2006Rで定められた23℃を基準に採用した。
(Method for measuring thermal conductivity of polystyrene resin foam molded product)
It is generally known that the larger the measured average temperature of thermal conductivity, the larger the value of thermal conductivity, and in order to compare the thermal insulation properties, it is necessary to determine the measured average temperature. In this specification, 23° C., which is defined by JIS A9511:2006R, which is a standard for foamed plastic heat insulating materials, is used as a standard.

熱伝導率は、ポリスチレン系樹脂発泡成形体を70℃温度下で96時間静置した後に、熱伝導率測定用サンプルを切り出し、さらに、23℃の温度下にて24時間静置した後に測定した。 Thermal conductivity was measured after the polystyrene resin foam molding was allowed to stand at a temperature of 70°C for 96 hours, a sample for thermal conductivity measurement was cut out, and the sample was further left at a temperature of 23°C for 24 hours. .

より詳しくは、ポリスチレン系樹脂発泡成形体を70℃温度下にて96時間静置した後、長さ300mm×幅300mm×50mmのサンプルを切り出した。さらに、サンプルを23℃温度下にて24時間静置した後、熱伝導率測定装置(英弘精機(株)製、HC-074)を用いて、JIS A1412-2:1999に準拠して熱流計法にて平均温度23℃、温度差20℃で熱伝導率を測定した。 More specifically, after the polystyrene resin foam molding was allowed to stand at 70° C. for 96 hours, a sample measuring 300 mm in length x 300 mm in width x 50 mm was cut out. Furthermore, after allowing the sample to stand at 23°C for 24 hours, a heat flow meter was measured using a thermal conductivity measuring device (manufactured by Hideko Seiki Co., Ltd., HC-074) in accordance with JIS A1412-2:1999. Thermal conductivity was measured using a method with an average temperature of 23°C and a temperature difference of 20°C.

(ポリスチレン系樹脂発泡成形体の難燃性能評価)
難燃性能は、ポリスチレン系樹脂発泡成形体を70℃温度下で96時間静置した後に、難燃性能評価用サンプルを切り出し、さらに、23℃の温度下にて24時間静置した後に測定した。難燃性能は、JISA9511:2006Rに準拠し(測定方法Aを採用)、評価した。消炎時間は試験片5個の測定結果の平均値とし、以下の判定基準に基づき、ポリスチレン系樹脂発泡成形体の難燃性能を評価した。
(Evaluation of flame retardant performance of polystyrene resin foam moldings)
Flame retardant performance was measured after the polystyrene resin foam molding was allowed to stand at a temperature of 70°C for 96 hours, a sample for flame retardant performance evaluation was cut out, and further left at a temperature of 23°C for 24 hours. . Flame retardant performance was evaluated in accordance with JISA9511:2006R (measurement method A was adopted). The flame-out time was the average value of the measurement results of five test pieces, and the flame retardant performance of the polystyrene resin foam molded product was evaluated based on the following criteria.

〇:3秒以内に消化
×:3秒以上燃焼継続
(ポリスチレン系樹脂発泡成形体の融着評価)
得られたポリスチレン系樹脂発泡成形体を破断し、破断面を目視で観察して、破断面全体において、粒子界面ではなく、粒子自体が破断している面積を求め、破断面全体の面積に対して、粒子自体が破断している面積の割合(%)を求めた。以下の判定基準に基づき、ポリスチレン系樹脂発泡成形体の融着を評価した。
〇: Extinguished within 3 seconds ×: Burning continues for 3 seconds or more (Evaluation of fusion of polystyrene resin foam moldings)
The obtained polystyrene resin foam molded product is ruptured, the fractured surface is visually observed, and the area of the entire fractured surface where the particles themselves are fractured, rather than the particle interface, is determined, and the area of the entire fractured surface is determined. Then, the ratio (%) of the area where the particles themselves were broken was determined. The fusion of the polystyrene resin foam molded product was evaluated based on the following criteria.

〇:融着80%超
△:融着60%超80%以下
×:融着60%以下
以下に、参考例、実施例及び比較例で用いた原材料を示す。
〇: Over 80% fusion bond △: Over 60% fusion bond no more than 80% ×: No more than 60% fusion bond Below, raw materials used in reference examples, examples, and comparative examples are shown.

(スチレン系樹脂)
(A)スチレンホモポリマー[PSジャパン(株)製、680]
(グラファイト)
(B)グラファイト[(株)丸豊鋳材製作所製、鱗片状黒鉛SGP-40B]
(臭素系難燃剤)
(C)2,2-ビス[4-(2,3-ジブロモ-2-メチルプロポキシ)-3,5-ジブロモフェニル]プロパン[第一工業製薬(株)製、SR-130、臭素含有量=66重量%]。
(Styrene resin)
(A) Styrene homopolymer [manufactured by PS Japan Co., Ltd., 680]
(graphite)
(B) Graphite [Scaly graphite SGP-40B, manufactured by Marutoyo Casting Materials Co., Ltd.]
(brominated flame retardant)
(C) 2,2-bis[4-(2,3-dibromo-2-methylpropoxy)-3,5-dibromophenyl]propane [manufactured by Daiichi Kogyo Seiyaku Co., Ltd., SR-130, bromine content = 66% by weight].

(熱安定剤)
(D1)テトラキス(2,2,6,6-テトラメチルピペリジルオキシカルボニル)ブタン[(株)ADEKA製 LA-57]
(D2)ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト[(株)ADEKA製 PEP-36]。
(thermal stabilizer)
(D1) Tetrakis(2,2,6,6-tetramethylpiperidyloxycarbonyl)butane [LA-57 manufactured by ADEKA Co., Ltd.]
(D2) Bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite [PEP-36 manufactured by ADEKA Corporation].

(発泡剤)
(E1)ノルマルペンタン[和光純薬工業(株)製、試薬品]
(E2)イソペンタン[和光純薬工業(株)製、試薬品]
(E3)イソブタン[三井化学(株)製]
(その他添加剤)
(F)エチレンビスステアリン酸アミド[日油(株)製、アルフローH-50S]。
(foaming agent)
(E1) Normal pentane [manufactured by Wako Pure Chemical Industries, Ltd., reagent]
(E2) Isopentane [manufactured by Wako Pure Chemical Industries, Ltd., reagent]
(E3) Isobutane [manufactured by Mitsui Chemicals, Inc.]
(Other additives)
(F) Ethylene bisstearic acid amide [Alflo H-50S, manufactured by NOF Corporation].

(製造例1)(グラファイトマスターバッチ(G))
バンバリーミキサーに、ポリスチレン系樹脂(A)49重量%、グラファイト(B)50重量%、エチレンビスステアリン酸アミド(F)1重量%の全重量(A+B+F)が100重量%となる様に原料投入して、5kgf/cmの荷重をかけた状態で加温冷却を行わずに20分間混練した。この際、樹脂温度を測定したところ180℃であった。ルーダーに供給して先端に取り付けられた小穴を有するダイスを通して吐出250kg/hrで押出されたストランド状の樹脂を30℃の水槽で冷却固化させた後、切断してマスターバッチ(G)を得た。マスターバッチ(G)中のグラファイト含有量は50重量%であった。
(Production example 1) (Graphite masterbatch (G))
Raw materials were added to a Banbury mixer so that the total weight (A + B + F) of 49% by weight of polystyrene resin (A), 50% by weight of graphite (B), and 1% by weight of ethylene bisstearamide (F) was 100% by weight. The mixture was kneaded for 20 minutes under a load of 5 kgf/cm 2 without heating or cooling. At this time, the resin temperature was measured and found to be 180°C. A strand-shaped resin was supplied to a ruler and extruded through a die with a small hole attached to the tip at a discharge rate of 250 kg/hr. After cooling and solidifying in a 30°C water bath, the resin was cut to obtain a masterbatch (G). . The graphite content in the masterbatch (G) was 50% by weight.

(製造例2)(臭素系難燃剤と熱安定剤との混合物のマスターバッチ(H))
二軸押出機に、ポリスチレン系樹脂(A)を供給して溶融混練した後、押出機途中より臭素系難燃剤(C)、熱安定剤(D1)及び(D2)の混合物を供給して、さらに溶融混練した。ただし、各材料の重量比率は、(A):(C):(D1):(D2)=70:28.5:0.6:0.9、(A)+(C)+(D1)+(D2)=100重量%とした。押出機先端に取り付けられた小穴を有するダイスを通して、吐出300kg/hrで押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、切断して臭素系難燃剤と熱安定剤との混合物のマスターバッチ(H)を得た。このとき押出機の設定温度は170℃で実施した。
(Production Example 2) (Masterbatch (H) of mixture of brominated flame retardant and heat stabilizer)
After supplying the polystyrene resin (A) to a twin-screw extruder and melt-kneading it, a mixture of a brominated flame retardant (C), heat stabilizers (D1) and (D2) is supplied from the middle of the extruder, The mixture was further melted and kneaded. However, the weight ratio of each material is (A): (C): (D1): (D2) = 70:28.5:0.6:0.9, (A) + (C) + (D1) +(D2)=100% by weight. The strand-shaped resin is extruded through a die with a small hole attached to the tip of the extruder at a discharge rate of 300 kg/hr, and is cooled and solidified in a 20°C water bath, then cut to separate the brominated flame retardant and heat stabilizer. A masterbatch (H) of the mixture was obtained. At this time, the temperature of the extruder was set at 170°C.

(製造例3)(臭素系難燃剤と熱安定剤の混合物(I)) 臭素系難燃剤(C)、熱安定剤(D1)及び(D2)を、ミキサーで混合し、臭素系難燃剤と熱安定剤の混合物(I)を得た。ただし、各材料の重量比率は、(C):(D1):(D2)=100:2.1:3.2、(C)+(D1)+(D2)=100重量%とした。 (Production Example 3) (Mixture of brominated flame retardant and heat stabilizer (I)) Brominated flame retardant (C), heat stabilizers (D1) and (D2) are mixed in a mixer, and the brominated flame retardant and A mixture of heat stabilizers (I) was obtained. However, the weight ratio of each material was (C):(D1):(D2)=100:2.1:3.2, (C)+(D1)+(D2)=100% by weight.

(参考例1)
[ポリスチレン系樹脂粒子の作製]
ポリスチレン系樹脂(A)、マスターバッチ(H)、及び、グラファイトマスターバッチ(G)を、それぞれブレンダーに投入して、10分間ブレンドし、樹脂混合物を得た。
(Reference example 1)
[Preparation of polystyrene resin particles]
Polystyrene resin (A), masterbatch (H), and graphite masterbatch (G) were each placed in a blender and blended for 10 minutes to obtain a resin mixture.

各材料の重量比は、(A):(H):(G)=83.65:8.35:8.00、(A)+(H)+(G)=100重量%であった。得られた樹脂混合物を口径40mmの同方向二軸押出機に供給し、設定温度190℃、スクリュ回転数230rpmで溶融混練し、押出機先端に取り付けられた直径1.4mmの小穴が30穴設けられたダイスを通じて、吐出量70kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、ストランドカッターで切断し、スチレン系樹脂粒子を得た。この時の押出機先端での樹脂温度は220℃であった。 The weight ratio of each material was (A):(H):(G)=83.65:8.35:8.00, (A)+(H)+(G)=100% by weight. The obtained resin mixture was supplied to a co-directional twin-screw extruder with a diameter of 40 mm, and melted and kneaded at a set temperature of 190°C and a screw rotation speed of 230 rpm, and 30 small holes with a diameter of 1.4 mm were installed at the tip of the extruder. The resin in the form of a strand was extruded through the molded die at a discharge rate of 70 kg/hour, was cooled and solidified in a 20° C. water tank, and then cut with a strand cutter to obtain styrene resin particles. At this time, the resin temperature at the tip of the extruder was 220°C.

[発泡性ポリスチレン系樹脂粒子の作製]
次いで,容積が6Lの撹拌装置付きオートクレーブに,得られたスチレン系樹脂粒子100重量部に対して脱イオン水200重量部、リン酸三カルシウム1重量部、ドデシルベンゼンスルホン酸ナトリウム0.03重量部、塩化ナトリウム1重量部を投入し圧力容器を密閉した。その後1時間で105℃まで加温し、発泡剤として混合ペンタン(ノルマルペンタン80%とイソペンタン20%の混合物)7重量部及びイソブタン1.5重量部を30分間かけて圧力容器内に添加した後、115℃まで10分かけて昇温し、そのまま4時間保持した。保持後室温まで冷却し、オートクレーブから発泡剤の含浸された樹脂粒子を取り出し、塩酸での酸洗、水洗し、遠心分離機で脱水後、気流乾燥機で樹脂粒子表面に付着している水分を乾燥させた。得られた発泡性ポリスチレン系樹脂粒子の真球度は0.988、見かけ密度は1030kg/mであった。
[Preparation of expandable polystyrene resin particles]
Next, 200 parts by weight of deionized water, 1 part by weight of tricalcium phosphate, and 0.03 parts by weight of sodium dodecylbenzenesulfonate were added to 100 parts by weight of the obtained styrene resin particles in an autoclave having a volume of 6 L and equipped with a stirring device. Then, 1 part by weight of sodium chloride was added and the pressure vessel was sealed. The temperature was then heated to 105°C over 1 hour, and 7 parts by weight of mixed pentane (a mixture of 80% normal pentane and 20% isopentane) and 1.5 parts by weight of isobutane were added as blowing agents into the pressure vessel over 30 minutes. , the temperature was raised to 115° C. over 10 minutes, and maintained at that temperature for 4 hours. After holding, cool to room temperature, take out the resin particles impregnated with the foaming agent from the autoclave, pickle with hydrochloric acid, wash with water, dehydrate with a centrifuge, and remove water adhering to the surface of the resin particles with a flash dryer. Dry. The resulting expandable polystyrene resin particles had a sphericity of 0.988 and an apparent density of 1030 kg/m 3 .

(実施例1)
[発泡性ポリスチレン系樹脂粒子の作製]
ポリスチレン系樹脂(A)、グラファイト(B)、臭素系難燃剤と熱安定剤の混合物(I)をそれぞれフィーダーにて、口径40mmの同方向2軸押出機(第1押出機)と口径90mmの単軸押出機(第2押出機)を直列に連結したタンデム型二段押出機へ供給し、口径40mm押出機の設定温度190℃、回転数167rpmにて溶融混練した。尚、(A):(B):(I)=93:4.5:2.5の重量比率で、供給量を合計55.7kg/hとした。口径40mm押出機(第1押出機)の途中から、上記樹脂混合物の溶融物(樹脂組成物)100重量部に対して、混合ペンタン[ノルマルペンタン(E1)80重量%とイソペンタン(E2)20重量%の混合物]を5.2重量部の割合で圧入し、上記樹脂組成物100重量部に対して、イソブタン(E3)を3.0重量部圧入し、合計8.2重量部の発泡剤を添加した。その後、200℃に設定された継続管を通じて、口径90mm押出機(第2押出機)に供給した。
(Example 1)
[Preparation of expandable polystyrene resin particles]
Polystyrene resin (A), graphite (B), and a mixture of brominated flame retardant and heat stabilizer (I) were fed into feeders using a co-directional twin-screw extruder (first extruder) with a diameter of 40 mm and a co-directional twin-screw extruder with a diameter of 90 mm (first extruder). The mixture was supplied to a tandem two-stage extruder connected in series with a single-screw extruder (second extruder), and melt-kneaded at a set temperature of 190° C. and a rotation speed of 167 rpm of the extruder having a diameter of 40 mm. Note that the weight ratio of (A):(B):(I)=93:4.5:2.5 was used, and the total supply amount was 55.7 kg/h. From the middle of an extruder with a diameter of 40 mm (first extruder), mixed pentane [80% by weight of normal pentane (E1) and 20% by weight of isopentane (E2) was added to 100 parts by weight of the melt of the resin mixture (resin composition). % mixture] was injected at a ratio of 5.2 parts by weight, and 3.0 parts by weight of isobutane (E3) was injected into 100 parts by weight of the resin composition, and a total of 8.2 parts by weight of the blowing agent was injected. Added. Thereafter, it was supplied to a 90 mm diameter extruder (second extruder) through a continuation tube set at 200°C.

口径90mm押出機(第2押出機)にて樹脂温度を160℃まで溶融樹脂を冷却した後、250℃に設定した第2押出機の先端に取り付けられた直径0.65mm、ランド長5.0mmの小孔を60個有するダイスから、温度62℃及び1.3MPaの加圧循環水中に押出した。押出された溶融樹脂は、ダイスに接触する6枚の刃を有する回転カッターを用いて、切断・小粒化され、遠心脱水機に移送されて、発泡性ポリスチレン系樹脂粒子を得た。このとき、第1押出機内滞留時間2分、第2押出機の滞留時間は5分であった。 After cooling the molten resin to a resin temperature of 160°C in an extruder with a diameter of 90mm (second extruder), a molten resin with a diameter of 0.65mm and a land length of 5.0mm was attached to the tip of the second extruder set at 250°C. The sample was extruded from a die having 60 small holes into pressurized circulating water at a temperature of 62° C. and 1.3 MPa. The extruded molten resin was cut into small particles using a rotary cutter having six blades in contact with a die, and transferred to a centrifugal dehydrator to obtain expandable polystyrene resin particles. At this time, the residence time in the first extruder was 2 minutes, and the residence time in the second extruder was 5 minutes.

[予備発泡粒子の作製]
得られた発泡性ポリスチレン系樹脂粒子を、15℃で1週間以上保管した後に発泡性ポリスチレン系樹脂粒子に外添剤であるステアリン酸亜鉛を0.04重量部、ヒドロキシステアリン酸トリグリセライドを0.1重量部ドライブレンドした。前記外添剤を含む発泡性ポリスチレン系樹脂粒子220gを予備発泡機[大開工業株式会社製バッチ式予備発泡機]に投入し、缶内圧力設定を0.05kg/cm~0.15kg/cmとし、0.10MPaの水蒸気を予備発泡機に導入して、かさ倍率90倍に発泡させ、予備発泡粒子を得た。
[Preparation of pre-expanded particles]
After storing the obtained expandable polystyrene resin particles at 15° C. for one week or more, 0.04 parts by weight of zinc stearate and 0.1 part of hydroxystearate triglyceride as external additives were added to the expandable polystyrene resin particles. Parts by weight were dry blended. 220 g of expandable polystyrene resin particles containing the external additive were put into a pre-foaming machine [batch-type pre-foaming machine manufactured by Daikai Kogyo Co., Ltd.], and the pressure inside the can was set at 0.05 kg/cm 2 to 0.15 kg/cm. 2 , and 0.10 MPa of water vapor was introduced into the pre-expanding machine to foam to a bulk ratio of 90 times to obtain pre-expanded particles.

[ポリスチレン系樹脂発泡成形体の作製]
得られた予備発泡粒子を30℃で24時間養生させた後に、発泡スチロール用成形機[ダイセン工業(株)製、KR-57]に取り付けた型内成形用金型(長さ400mm×幅400mm×厚み50mm)内に充填して、0.06MPaの水蒸気を導入して型内発泡させた後、金型に水を噴霧して冷却した。ポリスチレン系樹脂発泡成形体が金型を押す圧力が0.01MPa(ゲージ圧力)なるまでポリスチレン系樹脂発泡成形体を金型内に保持した後に、ポリスチレン系樹脂発泡成形体を取り出して、ポリスチレン系樹脂発泡成形体を得た。得られたポリスチレン系樹脂発泡性成形体の発泡倍率は90.5倍であり、前記ポリスチレン系樹脂発泡成形体の熱伝導率を上述の測定方法で測定した結果、0.03084W/m・Kであった。
[Production of polystyrene resin foam molded product]
After curing the obtained pre-expanded particles at 30°C for 24 hours, an in-mold mold (length 400 mm x width 400 mm x After filling the mold into a mold with a thickness of 50 mm and introducing water vapor at 0.06 MPa to cause foaming in the mold, the mold was cooled by spraying water. After holding the polystyrene resin foam molded product in the mold until the pressure of the polystyrene resin foam molding against the mold reaches 0.01 MPa (gauge pressure), the polystyrene resin foam molded product is taken out and the polystyrene resin foam molded product is pressed against the mold. A foam molded article was obtained. The expansion ratio of the obtained polystyrene resin foam molded product was 90.5 times, and the thermal conductivity of the polystyrene resin foam molded product was measured by the above-mentioned measuring method, and it was found to be 0.03084 W/m・K. there were.

作製された発泡性ポリスチレン系樹脂粒子および予備発泡粒子について、各種特性を上述の測定方法および評価方法により測定および評価した。発泡性ポリスチレン系樹脂粒子および予備発泡粒子についての測定結果及び評価結果を表1に示す。 Various properties of the produced expandable polystyrene resin particles and pre-expanded particles were measured and evaluated using the above-mentioned measuring method and evaluation method. Table 1 shows the measurement results and evaluation results for the expandable polystyrene resin particles and pre-expanded particles.

(実施例2)
[発泡性ポリスチレン系樹脂粒子の作製]において、樹脂組成物100重量部に対して、イソブタン(E3)を3.2重量部に変更した以外は、実施例1と同様の処理によりポリスチレン系樹脂発泡成形体を作製した。得られたポリスチレン系樹脂発泡性成形体の発泡倍率は92.6倍であり、熱伝導率を上述の測定方法で測定した結果、0.03078W/m・Kであった。
(Example 2)
In [Preparation of expandable polystyrene resin particles], polystyrene resin foaming was performed in the same manner as in Example 1, except that isobutane (E3) was changed to 3.2 parts by weight with respect to 100 parts by weight of the resin composition. A molded body was produced. The foaming ratio of the obtained polystyrene resin foam molded product was 92.6 times, and the thermal conductivity was measured by the above-mentioned method and was 0.03078 W/m·K.

得られた発泡性ポリスチレン系樹脂粒子および予備発泡粒子の各種特性を実施例1と同様にして測定および評価した。測定結果及び評価結果を表1に示す。 Various properties of the obtained expandable polystyrene resin particles and pre-expanded particles were measured and evaluated in the same manner as in Example 1. The measurement results and evaluation results are shown in Table 1.

(実施例3)
[発泡性ポリスチレン系樹脂粒子の作製]において、樹脂組成物100重量部に対して、イソブタン(E3)を3.7重量部に変更し、1.38MPaの加圧循環水中に押出した以外は、実施例1と同様の処理によりポリスチレン系樹脂発泡成形体を作製した。得られたポリスチレン系樹脂発泡性成形体の発泡倍率は92.6倍であり、熱伝導率を上述の測定方法で測定した結果、0.03088W/m・Kであった。
(Example 3)
In [Preparation of expandable polystyrene resin particles], isobutane (E3) was changed to 3.7 parts by weight with respect to 100 parts by weight of the resin composition, and except that it was extruded into pressurized circulating water at 1.38 MPa, A polystyrene resin foam molded body was produced by the same treatment as in Example 1. The foaming ratio of the obtained polystyrene resin foam molded product was 92.6 times, and the thermal conductivity was measured using the above-mentioned method and was 0.03088 W/m·K.

得られた発泡性ポリスチレン系樹脂粒子および予備発泡粒子の各種特性を実施例1と同様にして測定および評価した。測定結果及び評価結果を表1に示す。 Various properties of the obtained expandable polystyrene resin particles and pre-expanded particles were measured and evaluated in the same manner as in Example 1. The measurement results and evaluation results are shown in Table 1.

(比較例1)
[発泡性ポリスチレン系樹脂粒子の作製]において、樹脂組成物100重量部に対して、イソブタン(E3)を2.5重量部に変更し、1.25MPaの加圧循環水中に押出した以外は、実施例1と同様の処理によりポリスチレン系樹脂発泡成形体を作製した。得られたポリスチレン系樹脂発泡性成形体の発泡倍率は92.1倍であり、熱伝導率を上述の測定方法で測定した結果、0.03130W/m・Kであった。
(Comparative example 1)
In [Preparation of expandable polystyrene resin particles], isobutane (E3) was changed to 2.5 parts by weight with respect to 100 parts by weight of the resin composition, and except that it was extruded into pressurized circulating water at 1.25 MPa, A polystyrene resin foam molded body was produced by the same treatment as in Example 1. The foaming ratio of the obtained polystyrene-based resin foam molded article was 92.1 times, and the thermal conductivity was measured using the above-mentioned method and was found to be 0.03130 W/m·K.

得られた発泡性ポリスチレン系樹脂粒子および予備発泡粒子の各種特性を実施例1と同様にして測定および評価した。測定結果及び評価結果を表1に示す。 Various properties of the obtained expandable polystyrene resin particles and pre-expanded particles were measured and evaluated in the same manner as in Example 1. The measurement results and evaluation results are shown in Table 1.

(比較例2)
[発泡性ポリスチレン系樹脂粒子の作製]において、樹脂組成物100重量部に対して、イソブタン(E3)を2.8重量部に変更し、1.25MPaの加圧循環水中に押出した以外は、実施例1と同様の処理によりポリスチレン系樹脂発泡成形体を作製した。得られたポリスチレン系樹脂発泡性成形体の発泡倍率は92.2倍であり、熱伝導率を上述の測定方法で測定した結果、0.03101W/m・Kであった。
(Comparative example 2)
In [Preparation of expandable polystyrene resin particles], isobutane (E3) was changed to 2.8 parts by weight with respect to 100 parts by weight of the resin composition, and except that it was extruded into pressurized circulating water at 1.25 MPa, A polystyrene resin foam molded body was produced by the same treatment as in Example 1. The foaming ratio of the obtained polystyrene resin foam molded product was 92.2 times, and the thermal conductivity was measured using the above-mentioned method and was found to be 0.03101 W/m·K.

得られた発泡性ポリスチレン系樹脂粒子および予備発泡粒子の各種特性を実施例1と同様にして測定および評価した。測定結果及び評価結果を表1に示す。 Various properties of the obtained expandable polystyrene resin particles and pre-expanded particles were measured and evaluated in the same manner as in Example 1. The measurement results and evaluation results are shown in Table 1.

(比較例3)
[発泡性ポリスチレン系樹脂粒子の作製]において、ポリスチレン系樹脂(A):グラファイト(B):臭素系難燃剤と熱安定剤の混合物(I)=95:4.5:0.5の重量比率に変更し、樹脂組成物100重量部に対して、イソブタン(E3)を2.5重量部に変更し、1.25MPaの加圧循環水中に押出した以外は、実施例1と同様の処理によりポリスチレン系樹脂発泡成形体を作製した。得られたポリスチレン系樹脂発泡性成形体の発泡倍率は90.6倍であり、熱伝導率を上述の測定方法で測定した結果、0.03255W/m・Kであった。
(Comparative example 3)
In [Preparation of expandable polystyrene resin particles], the weight ratio of polystyrene resin (A): graphite (B): mixture of brominated flame retardant and heat stabilizer (I) = 95:4.5:0.5. The same process as in Example 1 was carried out, except that the amount of isobutane (E3) was changed to 2.5 parts by weight based on 100 parts by weight of the resin composition, and the mixture was extruded into pressurized circulating water at 1.25 MPa. A polystyrene resin foam molded article was produced. The foaming ratio of the obtained polystyrene-based resin foam molded article was 90.6 times, and the thermal conductivity was measured by the above-mentioned measuring method, and as a result, it was 0.03255 W/m·K.

得られた発泡性ポリスチレン系樹脂粒子および予備発泡粒子の各種特性を実施例1と同様にして測定および評価した。測定結果及び評価結果を表1に示す。 Various properties of the obtained expandable polystyrene resin particles and pre-expanded particles were measured and evaluated in the same manner as in Example 1. The measurement results and evaluation results are shown in Table 1.

Claims (11)

輻射伝熱抑制剤を含むポリスチレン系樹脂組成物および発泡剤からなる発泡性ポリスチレン系樹脂粒子であって、
前記発泡性ポリスチレン系樹脂粒子の真球度が0.985以下であり、
前記発泡剤がイソブタンを含み、
前記ポリスチレン系樹脂組成物及び前記発泡剤の総量100重量%に対してイソブタンが2.7重量%超6.0重量%以下である、発泡性ポリスチレン系樹脂粒子。
Expandable polystyrene resin particles comprising a polystyrene resin composition containing a radiation heat transfer inhibitor and a foaming agent,
The sphericity of the expandable polystyrene resin particles is 0.985 or less,
the blowing agent includes isobutane,
Expandable polystyrene resin particles containing isobutane in an amount of more than 2.7% by weight and not more than 6.0% by weight based on 100% by weight of the total amount of the polystyrene resin composition and the blowing agent.
前記ポリスチレン系樹脂組成物は、難燃剤を含み、
前記ポリスチレン系樹脂組成物100重量%に対して、前記難燃剤が1.0重量%超6.0重量%以下である、請求項1に記載の発泡性ポリスチレン系樹脂粒子。
The polystyrene resin composition contains a flame retardant,
The expandable polystyrene resin particles according to claim 1, wherein the flame retardant is present in an amount of more than 1.0% by weight and 6.0% by weight or less based on 100% by weight of the polystyrene resin composition.
前記発泡剤が、ペンタンを含む、請求項1または2に記載の発泡性ポリスチレン系樹脂粒子。 The expandable polystyrene resin particles according to claim 1 or 2, wherein the blowing agent contains pentane. 前記発泡性ポリスチレン系樹脂粒子をかさ倍率90倍に予備発泡後の発泡粒子が、次の(式1)を満たす、発泡性ポリスチレン系樹脂粒子。
(式1)(A)/(B)×100≦25.0
(A)かさ倍率90倍に予備発泡した発泡粒子の発泡直後のかさ倍率
(B)前記予備発泡粒子を30℃で24時間養生した後の養生後のかさ倍率
Expandable polystyrene-based resin particles, wherein the expanded polystyrene-based resin particles are pre-foamed to a bulk ratio of 90 times and satisfy the following (Formula 1).
(Formula 1) (A)/(B)×100≦25.0
(A) Bulk ratio immediately after foaming of foamed particles pre-expanded to a bulk ratio of 90 times (B) Bulk ratio after curing of the pre-expanded particles after curing at 30°C for 24 hours
前記発泡性ポリスチレン系樹脂粒子の見かけ密度が950kg/m超1200kg/m以下である、請求項1~4のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子 The expandable polystyrene resin particles according to any one of claims 1 to 4, wherein the expandable polystyrene resin particles have an apparent density of more than 950 kg/m 3 and 1200 kg/m 3 or less. 前記発泡性ポリスチレン系樹脂粒子をかさ倍率90倍に予備発泡させた後30℃で24時間養生した時の予備発泡粒子の発泡剤量が、5.0重量%~6.0重量%である、請求項1~5のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子。 When the expandable polystyrene resin particles are pre-foamed to a bulk ratio of 90 times and then cured at 30° C. for 24 hours, the amount of blowing agent in the pre-expanded particles is 5.0% by weight to 6.0% by weight. The expandable polystyrene resin particles according to any one of claims 1 to 5. 前記発泡性ポリスチレン系樹脂粒子をかさ倍率90倍に予備発泡させた後30℃で24時間養生した予備発泡粒子を発泡成形した時における発泡成形体の熱伝導率が0.034W/m・K以下である、請求項1~6のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子。 When the expandable polystyrene resin particles are pre-foamed to a bulk ratio of 90 times and then cured at 30°C for 24 hours, the thermal conductivity of the foam molded product is 0.034 W/m K or less. The expandable polystyrene resin particles according to any one of claims 1 to 6. 請求項1~6のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子の予備発泡粒子であり、かさ倍率が90倍以上である、予備発泡粒子。 Pre-expanded particles of the expandable polystyrene resin particles according to any one of claims 1 to 6, which have a bulk ratio of 90 times or more. 輻射伝熱抑制剤を含むポリスチレン系樹脂組成物および発泡剤からなるポリスチレン系樹脂溶融物を複数の小孔を有するダイスから加圧循環水中に押出し、回転カッターで切断して粒子化する発泡性ポリスチレン系樹脂粒子の製造方法であって、
前記発泡剤がイソブタンを含み、
前記ポリスチレン系樹脂組成物及び前記発泡剤の総量100重量%に対してイソブタンが2.7重量%超6.0重量%以下含まれる、発泡性ポリスチレン系樹脂粒子の製造方法。
Expandable polystyrene is made by extruding a polystyrene resin melt consisting of a polystyrene resin composition containing a radiation heat transfer inhibitor and a foaming agent into pressurized circulating water through a die with multiple small holes, and cutting it with a rotary cutter to form particles. A method for producing resin particles, the method comprising:
the blowing agent includes isobutane,
A method for producing expandable polystyrene resin particles, wherein isobutane is contained in an amount of more than 2.7% by weight and not more than 6.0% by weight based on 100% by weight of the total amount of the polystyrene resin composition and the blowing agent.
前記輻射伝熱抑制剤が炭素系輻射伝熱抑制剤を含む、請求項9に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 The method for producing expandable polystyrene resin particles according to claim 9, wherein the radiation heat transfer inhibitor includes a carbon-based radiation heat transfer inhibitor. 前記発泡剤がペンタンを含む、請求項9または10に記載の発泡性ポリスチレン系樹脂粒子の製造方法。


The method for producing expandable polystyrene resin particles according to claim 9 or 10, wherein the blowing agent contains pentane.


JP2022052501A 2022-03-28 2022-03-28 Foamable polystyrenic resin particle and production method Pending JP2023145171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022052501A JP2023145171A (en) 2022-03-28 2022-03-28 Foamable polystyrenic resin particle and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022052501A JP2023145171A (en) 2022-03-28 2022-03-28 Foamable polystyrenic resin particle and production method

Publications (1)

Publication Number Publication Date
JP2023145171A true JP2023145171A (en) 2023-10-11

Family

ID=88253371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022052501A Pending JP2023145171A (en) 2022-03-28 2022-03-28 Foamable polystyrenic resin particle and production method

Country Status (1)

Country Link
JP (1) JP2023145171A (en)

Similar Documents

Publication Publication Date Title
JP6555251B2 (en) Styrenic resin foam molding and method for producing the same
JP6216506B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
ITMI20082278A1 (en) COMPOSITIONS OF VINYLAROMATIC POLYMERS EXPANDABLE TO IMPROVED THERMAL INSULATION CAPACITY, PROCEDURE FOR THEIR PREPARATION AND ITEMS EXPANDED BY THEM OBTAINED
KR102567360B1 (en) Method for producing expandable styrenic resin particles, pre-expanded particles of styrenic resin, expanded molded article of styrenic resin, and expandable resin particles
JP2023063388A (en) Styrenic resin composition, and method for producing foamable styrenic resin particle
JP7227228B2 (en) Expandable thermoplastic resin particles
JP6837820B2 (en) Expandable polystyrene resin particles and their manufacturing method
JP2023145171A (en) Foamable polystyrenic resin particle and production method
JP7144955B2 (en) Method for producing styrenic resin composition and expandable styrenic resin particles
JP6854669B2 (en) Effervescent polystyrene resin particles, pre-expanded particles, molded article
JP7100995B2 (en) Expandable polystyrene-based resin particles, polystyrene-based expanded particles and polystyrene-based expanded molded products
JP6854672B2 (en) A masterbatch, a method for producing the same, and a method for producing foamable thermoplastic resin particles.
JP6854671B2 (en) Foamable thermoplastic resin particles and their manufacturing method
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP6961440B2 (en) Foamable polystyrene resin particles and manufacturing method
JP7005158B2 (en) Method for manufacturing foamable thermoplastic resin particles
JP7482740B2 (en) Expandable vinyl chloride resin particles, expanded particles thereof, and foamed molded article using the same
JP7231691B2 (en) Method for producing expandable thermoplastic resin particles
JP6961425B2 (en) Foamable thermoplastic resin particles for in-mold molding and their manufacturing method
JP6962694B2 (en) Method for manufacturing foamable thermoplastic resin particles
JP2024007832A (en) Method for producing foamable styrenic resin particle
JP2018001637A (en) Production method for foamable styrenic resin particle