JP6555251B2 - Styrenic resin foam molding and method for producing the same - Google Patents

Styrenic resin foam molding and method for producing the same Download PDF

Info

Publication number
JP6555251B2
JP6555251B2 JP2016507769A JP2016507769A JP6555251B2 JP 6555251 B2 JP6555251 B2 JP 6555251B2 JP 2016507769 A JP2016507769 A JP 2016507769A JP 2016507769 A JP2016507769 A JP 2016507769A JP 6555251 B2 JP6555251 B2 JP 6555251B2
Authority
JP
Japan
Prior art keywords
styrene resin
molded article
foam molded
resin foam
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016507769A
Other languages
Japanese (ja)
Other versions
JPWO2015137363A1 (en
Inventor
丸橋 正太郎
正太郎 丸橋
矢野 義仁
義仁 矢野
晃宏 坂本
晃宏 坂本
大原 洋一
洋一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2015137363A1 publication Critical patent/JPWO2015137363A1/en
Application granted granted Critical
Publication of JP6555251B2 publication Critical patent/JP6555251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0019Use of organic additives halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/036Use of an organic, non-polymeric compound to impregnate, bind or coat a foam, e.g. fatty acid ester
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、発泡性スチレン系樹脂粒子、その製造方法、発泡性スチレン系樹脂粒子を予備発泡した予備発泡粒子、予備発泡粒子を成形したスチレン系樹脂発泡成形体及びその製造方法に関するものである。   The present invention relates to expandable styrene resin particles, a method for producing the same, pre-expanded particles obtained by pre-expanding expandable styrene-based resin particles, a styrene resin foam-molded article obtained by molding pre-expanded particles, and a method for producing the same.

発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡成形体は、軽量性、断熱性、緩衝性などのバランスに優れた発泡体として従来から食品容器箱、保冷箱、緩衝材、そして、住宅などの断熱材として広く利用されている。   Styrenic resin foam molded products obtained by using expandable styrene resin particles have been conventionally used as a food product box, a cold box, a cushioning material, and a foam having an excellent balance of light weight, heat insulation, buffering properties, and the like. It is widely used as a heat insulating material for houses.

近年、地球温暖化などの諸問題に関連し、住宅など建築物の断熱性向上による省エネルギー化が志向されつつあり、スチレン系樹脂発泡成形体の需要拡大が期待されるとともに、さらなる断熱性の向上について種々の検討がなされている。   In recent years, related to various problems such as global warming, energy saving is being promoted by improving the heat insulation of buildings such as houses, and the demand for styrene resin foam moldings is expected to increase, and further improvement of heat insulation is expected. Various studies have been made.

一方、スチレン系樹脂発泡成形体は断熱材としてはグラスウール等他素材との競合市場であり、徹底したコストダウンが求められている。発泡倍率40倍以上のスチレン系樹脂発泡成形体は発泡倍率が大きくなるほど熱伝導率が大きくなり、断熱性としては悪化するため、発泡倍率が40倍以上と高くかつ熱伝導率が低いスチレン系樹脂発泡成形体が望まれていた。より熱伝導率が低いスチレン系樹脂発泡成形体であれば発泡倍率をより高くしても発泡倍率の低い従来のスチレン系樹脂発泡成形体と同等の断熱性が得られ、原料である発泡性スチレン系樹脂粒子の使用量を減らし得ること等から、断熱材を安価に製造することができる。   On the other hand, styrene resin foam molded products are a competitive market with other materials such as glass wool as a heat insulating material, and thorough cost reduction is required. Styrenic resin foam moldings with an expansion ratio of 40 times or more have higher thermal conductivity as the expansion ratio increases and deteriorates the heat insulation properties. Therefore, the styrene resin has a high expansion ratio of 40 times or more and low thermal conductivity. A foamed molded body has been desired. If it is a styrene resin foam molded article with lower thermal conductivity, even if the expansion ratio is increased, the heat insulation equivalent to that of a conventional styrene resin foam molded article with a low expansion ratio can be obtained, and the expandable styrene is the raw material. The heat insulating material can be manufactured at low cost because the amount of the resin particles used can be reduced.

また、スチレン系樹脂発泡成形体に含有される熱伝導率低減効果のあるブタン、ペンタンなどの発泡剤が時間経過と共にスチレン系樹脂発泡成形体から逸散して大気(空気)と置換されるためにスチレン系樹脂発泡成形体の熱伝導率は時間経過と共に大きくなり、時間経過により断熱性は悪化することが知られている。   In addition, foaming agents such as butane and pentane, which have a thermal conductivity reducing effect, contained in the styrenic resin foam moldings dissipate from the styrene resin foam moldings over time and are replaced with the atmosphere (air). Furthermore, it is known that the thermal conductivity of the styrene resin foam molded article increases with the passage of time, and the heat insulation properties deteriorate with the passage of time.

そのため、スチレン系樹脂発泡成形体に含有されるブタン、ペンタンなどの発泡剤が空気に置換された後も熱伝導率を低く維持することが求められている。   Therefore, it is required to keep the thermal conductivity low even after the foaming agent such as butane and pentane contained in the styrene resin foam molded article is replaced with air.

スチレン系樹脂発泡成形体の断熱性向上に関しては、例えば、特許文献1には、重量平均分子量30〜60万、かつメルトフロー測定時の膨張割合を所定の範囲としたスチレン系樹脂粒子に発泡剤を含有させてなり、嵩密度0.02〜0.009g/cm及び平均気泡膜厚0.8〜2.5μmのスチレン系樹脂発泡成形体を与える発泡性スチレン系樹脂粒子が提案されている。Regarding the heat insulation improvement of the styrenic resin foam molded article, for example, Patent Document 1 discloses a foaming agent for styrene resin particles having a weight average molecular weight of 300 to 600,000 and an expansion ratio during melt flow measurement within a predetermined range. Expandable styrene resin particles that contain a styrene resin foam molded article having a bulk density of 0.02 to 0.009 g / cm 3 and an average cell thickness of 0.8 to 2.5 μm have been proposed. .

特許文献1の発明によれば従来のスチレン系樹脂発泡成形体と比較して低い熱伝導率を得ることができるが、市場の要求を満足させる断熱性には至っていない。   According to the invention of Patent Document 1, a low thermal conductivity can be obtained as compared with a conventional styrenic resin foam molded article, but the thermal insulation property that satisfies the market demand has not been achieved.

また、スチレン系樹脂発泡成形体にグラファイト等の輻射伝熱抑制剤を使用する方法が知られている。輻射伝熱抑制剤とは、発泡成形体中を伝わる伝熱機構のうち輻射伝熱を抑制することができる物質であって、樹脂、発泡剤、セル構造、及び密度が同一である発泡成形体において、輻射伝熱抑制剤を添加することによって、無添加系と比較して、熱伝導率を低くする効果を有する物質をいう。   In addition, a method of using a radiation heat transfer inhibitor such as graphite in a styrene resin foam molded article is known. A radiant heat transfer inhibitor is a substance that can suppress radiant heat transfer among heat transfer mechanisms that travel through the foam molded body, and has the same resin, foaming agent, cell structure, and density. In this case, it refers to a substance having an effect of lowering the thermal conductivity by adding a radiant heat transfer inhibitor as compared with an additive-free system.

特許文献2には、処理により35g/L又はこれより小さい密度を有する発泡体をもたらすことができ、かつ均斉に分布されたグラファイト粉末を含有することを特徴とする、発泡性スチレン系樹脂粒子が提案されている。グラファイト粉末を用いた際の問題点として難燃性の低下があり、これに対して、難燃化剤として、70重量%又はこれより多い臭素分を有する有機臭素化合物を該発泡性スチレン系樹脂粒子に含有させる技術が提案されている。   Patent Document 2 discloses an expandable styrenic resin particle characterized in that it can provide a foam having a density of 35 g / L or less by treatment and contains uniformly distributed graphite powder. Proposed. As a problem when using graphite powder, there is a decrease in flame retardancy. On the other hand, as a flame retardant, an organic bromine compound having a bromine content of 70% by weight or more is used as the foamable styrene resin. Techniques for inclusion in particles have been proposed.

特許文献3には、密度が10〜100kg/m、独立気泡率が60%以上、平均気泡径が20〜1000μmであり、グラファイト粉を0.05〜9重量%含有し、該グラファイト粉は、アスペクト比が5以上、体積平均粒子径(50%粒子径)0.1〜100μm、比表面積0.7m/cm以上、90%粒子径を10%粒子径で除した値1〜20である、スチレン系樹脂発泡成形体が示唆されている。しかしながら、特許文献3の最も好ましい実施形態である実施例で用いられるグラファイトは比表面積が最大でも1.50m/cmであり、特許文献3には比表面積1.50m/cmを超えるグラファイトの使用を一切記載されていない。Patent Document 3 discloses that the density is 10 to 100 kg / m 3 , the closed cell ratio is 60% or more, the average cell diameter is 20 to 1000 μm, and the graphite powder is 0.05 to 9% by weight. The aspect ratio is 5 or more, the volume average particle diameter (50% particle diameter) is 0.1 to 100 μm, the specific surface area is 0.7 m 2 / cm 3 or more, and the value obtained by dividing the 90% particle diameter by the 10% particle diameter is 1 to 20. A styrenic resin foam molded article is suggested. However, graphite used in the most preferred is an embodiment example of Patent Document 3 is 1.50 m 2 / cm 3 at maximum specific surface area, than the specific surface area of 1.50 m 2 / cm 3 in Patent Document 3 There is no mention of the use of graphite.

特許文献4には、グラファイト粒子を含有したスチレン系樹脂マイクロペレットに、炭素数6〜10の芳香族炭化水素の存在下で、スチレン系単量体をシード重合すると同時に発泡剤を投入する発泡性スチレン系樹脂粒子の製造方法が提案されている。   Patent Document 4 discloses a foaming property in which a styrene monomer is seed-polymerized into a styrene resin micropellet containing graphite particles in the presence of an aromatic hydrocarbon having 6 to 10 carbon atoms, and at the same time, a foaming agent is added. A method for producing styrene resin particles has been proposed.

特許文献5には、ポリスチレン系樹脂、難燃剤、グラファイト及び揮発性発泡剤を含む樹脂組成物を押出機内で溶融混練し、得られた溶融混練物をダイから加圧された水中に押出し、押し出された溶融混練物を切断することにより発泡性スチレン系樹脂粒子を製造する方法が提案されている。   In Patent Document 5, a resin composition containing a polystyrene-based resin, a flame retardant, graphite, and a volatile foaming agent is melt-kneaded in an extruder, and the resulting melt-kneaded product is extruded from a die into pressurized water and extruded. There has been proposed a method of producing expandable styrene resin particles by cutting the melt-kneaded product.

特許文献6は、平均粒径が50μmを超えるグラファイトを0.1〜25質量%含有する発泡性スチレン系樹脂粒子を提案している。特許文献7は、表層部の難燃剤含有量を全体としての難燃剤含有量よりも多くした発泡性スチレン系樹脂粒子を提案している。特許文献8は、グラファイト0.1〜25質量%及びペンタンと水との混合物である揮発性発泡剤を含有し、嵩密度が600g/Lを超える発泡性スチレン系樹脂粒子を提案している。特許文献9は、グラファイトを3〜15重量%含有し、全体としてのグラファイト含有量を表層部のグラファイト含有量よりも多くした発泡性スチレン系樹脂粒子を提案している。   Patent Document 6 proposes expandable styrene resin particles containing 0.1 to 25% by mass of graphite having an average particle size of more than 50 μm. Patent Document 7 proposes expandable styrene resin particles in which the flame retardant content in the surface layer is greater than the overall flame retardant content. Patent Document 8 proposes expandable styrene resin particles containing 0.1 to 25% by mass of graphite and a volatile foaming agent that is a mixture of pentane and water and having a bulk density exceeding 600 g / L. Patent Document 9 proposes expandable styrenic resin particles containing 3 to 15% by weight of graphite and having an overall graphite content larger than that of the surface layer portion.

特許文献10は、スチレン及び必要に応じてスチレンに共重合可能なモノマー化合物をグラファイト粒子の存在下に懸濁水性液中で重合させ、重合前、重合中又は重合後に発泡剤を添加する、発泡性スチレン系樹脂粒子の製造方法を提案している。特許文献11は、グラファイト及びノニオン性界面活性剤の存在下に懸濁水性液中で重合され、DIN52612に準じて10℃で測定した熱伝導率が32mW/m・K未満、及び密度が25g/L未満である、発泡性スチレン系樹脂粒子の製造方法を提案している。   Patent Document 10 discloses a method in which styrene and, if necessary, a monomer compound copolymerizable with styrene are polymerized in a suspension aqueous liquid in the presence of graphite particles, and a foaming agent is added before, during or after polymerization. Has proposed a method for producing conductive styrene resin particles. Patent Document 11 is polymerized in a suspension aqueous solution in the presence of graphite and a nonionic surfactant, and has a thermal conductivity of less than 32 mW / m · K and a density of 25 g / m as measured at 10 ° C. according to DIN52612. A method for producing expandable styrene-based resin particles that is less than L is proposed.

特許文献2〜11の発明では熱の伝搬を抑制するグラファイトを含有することで従来のスチレン系樹脂発泡成形体よりも熱伝導率を低下させており、断熱性を向上させている。しかし、市場ではスチレン系樹脂発泡成形体の徹底した低コスト化が求められており、さらに高発泡倍率で熱伝導率が低いスチレン系樹脂発泡成形体が要求されている。特に長時間経過後にブタン、ペンタン等が空気に置換されても熱伝導率が低いスチレン系樹脂発泡成形体が求められており、これらの発明ではこの期待には応えられていない。   In invention of patent documents 2-11, thermal conductivity is reduced rather than the conventional styrene resin foaming molding by containing graphite which controls propagation of heat, and heat insulation is improved. However, a thorough cost reduction of the styrene resin foam molded body is required in the market, and a styrene resin foam molded body having a high expansion ratio and low thermal conductivity is required. In particular, there is a need for a styrenic resin foam molded article having low thermal conductivity even when butane, pentane or the like is replaced with air after a long period of time, and these inventions do not meet this expectation.

一方、発泡性スチレン系樹脂粒子からスチレン系樹脂発泡成形体を製造する方法としては、該樹脂粒子を所定の発泡倍率に発泡させて予備発泡粒子とし、この予備発泡粒子を用いて成形を行なう予備発泡法が一般的である。   On the other hand, as a method for producing a styrene resin foam molded product from expandable styrene resin particles, the resin particles are expanded to a predetermined expansion ratio to obtain pre-expanded particles, and the preliminary expansion is performed using the pre-expanded particles. The foaming method is common.

この予備発泡法には大別して連続法とバッチ法とがある。連続法では、大気圧下、予備
発泡機の缶内に発泡性スチレン系樹脂粒子を撹拌下に連続的に投入しつつ、予備発泡機下部から缶内への水蒸気の供給により該樹脂粒子を所定の発泡倍率を有する予備発泡粒子とし、得られた予備発泡粒子を予備発泡機の上部から取り出す。バッチ法では、予備発泡機の缶内に発泡性スチレン系樹脂粒子を投入し、缶内を撹拌しながら予備発泡機下部から缶内への水蒸気供給により該樹脂粒子を所定の発泡倍率を有する予備発泡粒子とした後、水蒸気供給を停止し、空気を吹き込んで冷却及び乾燥し、得られた予備発泡粒子を予備発泡機から取り出す。バッチ法には、大気圧下で予備発泡を実施する常圧発泡法と、予備発泡機の缶内を加圧状態にして予備発泡を実施する加圧発泡法とがある。以下において特に断らない限り、圧力はゲージ圧を意味する。
This pre-foaming method is roughly classified into a continuous method and a batch method. In the continuous method, the foamable styrene resin particles are continuously put into the can of the pre-foaming machine under stirring at atmospheric pressure, and the resin particles are predetermined by supplying water vapor from the lower part of the pre-foaming machine into the can. The pre-expanded particles having the expansion ratio are taken out from the upper part of the pre-expander. In the batch method, expandable styrene resin particles are introduced into a can of a pre-foaming machine, and the resin particles are preliminarily provided with a predetermined expansion ratio by supplying water from the lower part of the pre-foaming machine to the can while stirring the can. After forming the expanded particles, the water vapor supply is stopped, the air is blown in, and the mixture is cooled and dried, and the obtained preliminary expanded particles are taken out from the preliminary expanded machine. The batch method includes an atmospheric pressure foaming method in which pre-foaming is performed under atmospheric pressure, and a pressure foaming method in which pre-foaming is performed with the inside of the can of the pre-foaming machine being pressurized. Unless otherwise specified below, pressure means gauge pressure.

しかしながら、従来の予備発泡法において、スチレン系樹脂発泡成形体の熱伝導率の一層の低下を図る目的で、輻射伝熱抑制効果を有するグラファイトを含有する発泡性スチレン系樹脂粒子を用いた場合、グラファイトを主因として予備発泡時に予備発泡粒子中のセル膜に穴が開き易くなり、発泡倍率65cm/g以上の予備発泡粒子を得ることは非常に困難である。また、発泡条件を調整して発泡倍率65cm/g以上の予備発泡粒子を得た場合でも、該予備発泡粒子を発泡成形したスチレン系樹脂発泡成形体は表面美麗性に劣るという問題がある。発泡倍率の低下は、スチレン系樹脂発泡成形体の軽量性をも損なう。However, in the case of using the expandable styrene resin particles containing graphite having a radiation heat transfer suppressing effect in order to further reduce the thermal conductivity of the styrene resin foam molded article in the conventional preliminary foaming method, It is very difficult to obtain pre-expanded particles having a foaming ratio of 65 cm 3 / g or more because the cell membrane in the pre-expanded particles is easily opened during the pre-expanding mainly due to graphite. Further, even when pre-expanded particles having an expansion ratio of 65 cm 3 / g or more are obtained by adjusting the foaming conditions, there is a problem that the styrenic resin foam-molded article obtained by foam-molding the pre-expanded particles is inferior in surface beauty. The reduction in the expansion ratio also impairs the lightness of the styrene resin foam molded article.

また、発泡倍率の高い予備発泡粒子を得る技術として、二段発泡法が知られている。二段発泡法とは、発泡性スチレン系樹脂粒子に一段目の予備発泡を施して発泡倍率をある程度高めた発泡粒子を得、これを養生してその内部に空気を導入した後、二段目の予備発泡により発泡倍率をさらに高めた予備発泡粒子を得る方法である。二段発泡法には、一段目の予備発泡終了後に、得られた発泡粒子を予備発泡機の缶内で養生する方法と、得られた発泡粒子を一旦予備発泡機から取り出して養生した後、再度予備発泡機に投入する方法とがある。   As a technique for obtaining pre-expanded particles having a high expansion ratio, a two-stage expansion method is known. In the two-stage foaming method, the first stage of pre-foaming is applied to the expandable styrenic resin particles to obtain expanded particles with a certain expansion ratio, and after curing and introducing air into the second stage, This is a method for obtaining pre-expanded particles having a further increased expansion ratio by the pre-expansion. In the two-stage foaming method, after completion of the first stage pre-foaming, the obtained foam particles are cured in a can of the pre-foaming machine, and after the obtained foam particles are once taken out from the pre-foaming machine and cured, There is a method of charging again into the preliminary foaming machine.

二段発泡法を利用すれば、グラファイトを含有するスチレン系樹脂組成物からなる発泡性スチレン系樹脂粒子を用いた場合でも、発泡倍率65cm/g以上の予備発泡粒子を容易に得ることができる。しかしながら、二段階の予備発泡(加熱発泡)により、予備発泡粒子中にてセル膜に穴が開いた気泡の数が顕著に増加することから、該予備発泡粒子を成形したスチレン系樹脂発泡成形体は、独立気泡率の低下等に基づいて比較的高い熱伝導率を示すと共に、表面美麗性の低下や、その内部での予備発泡粒子同士の融着不良による機械特性の低下といった問題をも有している。If the two-stage foaming method is used, pre-expanded particles having an expansion ratio of 65 cm 3 / g or more can be easily obtained even when expandable styrene resin particles made of a styrene resin composition containing graphite are used. . However, since the number of air bubbles having holes in the cell membrane in the pre-expanded particles is remarkably increased by the two-stage pre-expanding (heated foaming), the styrene resin foam-molded article obtained by molding the pre-expanded particles Exhibits a relatively high thermal conductivity based on a decrease in closed cell ratio, etc., and also has problems such as a decrease in surface aesthetics and a decrease in mechanical properties due to poor fusion between pre-expanded particles inside. doing.

したがって、グラファイトを3〜8重量%と比較的高含有するスチレン系樹脂からなる発泡性スチレン系樹脂粒子を用い、従来の予備発泡法によりスチレン系樹脂発泡成形体を製造した場合、低熱伝導率や高い独立気泡率等に基づく顕著に優れた断熱性と、高発泡倍率(特に発泡倍率65cm/g以上)等に基づく非常に高い軽量性とを併せ持ち、低熱伝導率が長期にわたって維持され、さらに良好な表面美麗性を持つスチレン系樹脂発泡成形体を得ることは非常に困難である。また、このようなスチレン系樹脂発泡成形体が市場に上梓されていないのが現状である。Therefore, when the expandable styrene resin particles made of a styrene resin having a relatively high content of 3 to 8% by weight of graphite are used to produce a styrene resin foam molded article by the conventional prefoaming method, low thermal conductivity or Remarkably excellent heat insulation based on high closed cell ratio, etc. and extremely high light weight based on high foaming ratio (particularly foaming ratio of 65 cm 3 / g or more), etc., and low thermal conductivity is maintained over a long period of time, It is very difficult to obtain a styrenic resin foam molded article having good surface aesthetics. Moreover, the present condition is that such a styrene-type resin foam molding is not on the market.

特開2002−284917号公報Japanese Patent Laid-Open No. 2002-284817 特表2001−525001号公報Special table 2001-525001 gazette 特開2005−2268号公報JP 2005-2268 A 特表2009−536687号公報JP-T 2009-536687 特開2013−75941号公報JP 2013-75941 A 特表2002−530450号公報Japanese translation of PCT publication No. 2002-530450 特開2004−346281号公報JP 2004-346281 A 特表2005−506390号公報JP 2005-506390 A 特開2013−209608号公報JP 2013-209608 A 特表2001−522383号公報JP-T-2001-522383 特表2008−502750号公報Special table 2008-502750 gazette

本発明の目的は、より高発泡倍率で熱伝導率が低い、断熱性の高いスチレン系樹脂発泡成形体を与えうる発泡性スチレン系樹脂粒子、予備発泡粒子、及び発泡性スチレン系樹脂粒子の製造方法、並びに、より高発泡倍率で熱伝導率が低い、断熱性の高いスチレン系樹脂発泡成形体及びその製造方法を提供することである。   An object of the present invention is to produce expandable styrene resin particles, pre-expanded particles, and expandable styrene resin particles that can give a styrene resin foam molded article with higher expansion ratio, lower thermal conductivity, and higher heat insulation. It is to provide a method, and a styrenic resin foam-molded article having a high heat insulating property with a higher expansion ratio and a lower thermal conductivity, and a method for producing the same.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、熱伝導率が製造当初から長期間にわたって非常に低く、断熱性が高いスチレン系樹脂発泡成形体及びその製造方法を見出し、本発明を完成するに至った。特に、本発明者らは、本発明のスチレン系樹脂発泡成形体の製造方法によれば、グラファイトを3〜8重量%と高含有する発泡性スチレン系樹脂粒子を用いるにもかかわらず、所定の条件で予備発泡を行なうことにより、スチレン系樹脂発泡体の表面美麗性を損なうことなく、高発泡倍率及び高独立気泡率、低熱伝導率で、熱伝導率の経時的な上昇が顕著に抑制され、断熱性が長期的に高い、スチレン系樹脂発泡成形体が得られることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found a styrenic resin foam molded article having a very low thermal conductivity over a long period of time from the beginning of manufacture and a high heat insulating property and a method for producing the same, The present invention has been completed. In particular, according to the method for producing a styrenic resin foam molded article of the present invention, the inventors of the present invention do not use the expandable styrenic resin particles having a high content of 3 to 8% by weight of graphite. By pre-foaming under conditions, the increase in thermal conductivity over time is significantly suppressed with high foaming ratio, high closed cell ratio, and low thermal conductivity without impairing the surface beauty of the styrene resin foam. It was found that a styrenic resin foam molded article having high heat insulation properties over the long term can be obtained.

すなわち、本発明は、(1)〜(4)の発泡性スチレン系樹脂粒子、(5)の予備発泡粒子、(6)のスチレン系樹脂発泡成形体、(7)〜(10)の発泡性スチレン系樹脂粒子の製造方法、(11)〜(17)のスチレン系樹脂発泡成形体、及び(18)〜(31)のスチレン系樹脂発泡成形体の製造方法を提供する。   That is, the present invention relates to (1) to (4) expandable styrene resin particles, (5) pre-expanded particles, (6) styrene resin foam molded articles, and (7) to (10) expandability. The manufacturing method of a styrene resin particle, the manufacturing method of the styrene resin foam molding of (11)-(17), and the styrene resin foam molding of (18)-(31) are provided.

(1)スチレン系樹脂粒子に発泡剤を含有させた発泡性スチレン系樹脂粒子であって、発泡性スチレン系樹脂粒子はグラファイトを3〜8重量%含有し、グラファイトが平均粒径3〜7μm、かつ比表面積1.55m/cm以上であることを特徴とする発泡性スチレン系樹脂粒子。
(2)グラファイトの、90%粒径を10%粒径で除した値が2.5以上である上記(1)の発泡性スチレン系樹脂粒子。
(3)臭素系難燃剤を含有し、スチレン系樹脂発泡成形体とした場合の臭素含有量が0.8〜2.5重量%である上記(1)又は(2)の発泡性スチレン系樹脂粒子。
(4)発泡剤が炭素数4〜5の炭化水素からなり、発泡剤の含有量がスチレン系樹脂100重量部に対して4〜10重量部である上記(1)〜(3)のいずれかの発泡性スチレン系樹脂粒子。
(5)上記(1)〜(4)のいずれかの発泡性スチレン系樹脂粒子を予備発泡させた予備発泡粒子。
(6)上記(5)の予備発泡粒子を成形したスチレン系樹脂発泡成形体。
(7)上記(1)〜(4)のいずれかの発泡性スチレン系樹脂粒子の製造方法。
(8)上記(7)の発泡性スチレン系樹脂粒子の製造方法であって、スチレン系樹脂とグラファイトを押出機で溶融混練し、コールドカット法またはホットカット法を用いてスチレン系樹脂ペレットを得た後、スチレン系樹脂ペレットを水中に懸濁させると共に、発泡剤を含有させることを特徴とする発泡性スチレン系樹脂粒子の製造方法。
(9)上記(7)の発泡性スチレン系樹脂粒子の製造方法であって、スチレン系樹脂とグラファイトと発泡剤とを押出機で溶融混練し、押出機先端に取り付けられた小孔を有するダイスを通じて加圧循環水で満たされたカッターチャンバー内に押出し、押出直後から回転カッターにより切断すると共に、加圧循環水により冷却固化することを特徴とする発泡性スチレン系樹脂粒子の製造方法。
(10)上記(7)の発泡性スチレン系樹脂粒子の製造方法であって、スチレンをグラファイト存在下に懸濁水溶液中で重合させ、重合前及び/又は重合中及び/又は重合後に、発泡剤を含浸させることを特徴とする発泡性スチレン系樹脂粒子の製造方法。
(1) Expandable styrene resin particles obtained by adding a foaming agent to styrene resin particles, wherein the expandable styrene resin particles contain 3 to 8% by weight of graphite, and the graphite has an average particle diameter of 3 to 7 μm. The expandable styrene resin particles have a specific surface area of 1.55 m 2 / cm 3 or more.
(2) The expandable styrenic resin particles of (1) above, wherein a value obtained by dividing 90% particle size by 10% particle size of graphite is 2.5 or more.
(3) The expandable styrene resin according to (1) or (2) above, which contains a brominated flame retardant and has a bromine content of 0.8 to 2.5% by weight in the case of a styrene resin foam molded article. particle.
(4) Any of the above (1) to (3), wherein the foaming agent comprises a hydrocarbon having 4 to 5 carbon atoms, and the content of the foaming agent is 4 to 10 parts by weight with respect to 100 parts by weight of the styrene resin. Expandable styrene resin particles.
(5) Pre-expanded particles obtained by pre-expanding the expandable styrenic resin particles according to any one of (1) to (4) above.
(6) A styrene resin foam molded article obtained by molding the pre-expanded particles of (5) above.
(7) The manufacturing method of the expandable styrene resin particle in any one of said (1)-(4).
(8) The method for producing expandable styrene resin particles according to (7) above, wherein styrene resin and graphite are melt-kneaded with an extruder to obtain styrene resin pellets using a cold cut method or a hot cut method. And then, suspending the styrene resin pellets in water and containing a foaming agent, a method for producing expandable styrene resin particles.
(9) The method for producing expandable styrene resin particles according to (7) above, wherein the styrene resin, graphite and foaming agent are melt-kneaded with an extruder and have a small hole attached to the tip of the extruder. A process for producing expandable styrenic resin particles, which is extruded into a cutter chamber filled with pressurized circulating water through, cut with a rotary cutter immediately after extrusion, and cooled and solidified with pressurized circulating water.
(10) The method for producing expandable styrene-based resin particles according to (7) above, wherein styrene is polymerized in an aqueous suspension in the presence of graphite, and before and / or during and / or after polymerization, the foaming agent A method for producing expandable styrene resin particles, characterized by impregnating with water.

(11)発泡性スチレン系樹脂粒子を予備発泡して予備発泡粒子とし、予備発泡粒子を型内成形して製造されたスチレン系樹脂発泡成形体であって、スチレン系樹脂発泡成形体はグラファイトを3〜8重量%含有し、スチレン系樹脂発泡成形体を平均温度23℃、温度差20℃で測定した熱伝導率A(W/m・K)と発泡倍率B(cm/g)の間に式1の関係を有することを特徴とするスチレン系樹脂発泡成形体。
式1:A≦0.0251+0.0000776×B
(12)発泡性スチレン系樹脂粒子を予備発泡して予備発泡粒子とし、予備発泡粒子を型内成形して製造されたスチレン系樹脂発泡成形体であって、スチレン系樹脂発泡成形体はグラファイトを3〜8重量%含有し、スチレン系樹脂発泡成形体を50℃で30日間乾燥した後に平均温度23℃、温度差20℃で測定した熱伝導率C(W/m・K)と発泡倍率D(cm/g)の間に式2の関係を有することを特徴とするスチレン系樹脂発泡成形体。
式2:C≦0.0276+0.0000776×D
(13)発泡倍率が40(cm/g)以上である上記(11)又は(12)のスチレン系樹脂発泡成形体。
(14)発泡性スチレン系樹脂粒子が平均粒径3〜7μmのグラファイトを含有する上記(11)〜(13)のいずれかのスチレン系樹脂発泡成形体。
(15)発泡性スチレン系樹脂粒子が比表面積1.55m/cm以上のグラファイトを含有する上記(11)〜(14)のいずれかのスチレン系樹脂発泡成形体。
(16)発泡性スチレン系樹脂粒子が、90%粒径を10%粒径で除した値が2.5以上のグラファイトを含有する上記(11)〜(15)のいずれかのスチレン系樹脂発泡成形体。
(17)臭素系難燃剤を含有し、臭素含有量が0.8〜2.5重量%である上記(11)〜(16)のいずれかのスチレン系樹脂発泡成形体。
(11) A styrene resin foam molded article produced by pre-expanding foamable styrene resin particles into pre-expanded particles, and molding the pre-expanded particles in-mold, wherein the styrene resin foam molded article comprises graphite. Between 3 to 8% by weight, measured between a thermal conductivity A (W / m · K) and an expansion ratio B (cm 3 / g) of a styrene resin foam molded article measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. A styrenic resin foam molded article having the relationship of Formula 1.
Formula 1: A ≦ 0.0251 + 0.0000776 × B
(12) A styrene resin foam molded article produced by pre-expanding expandable styrene resin particles into pre-expanded particles, and molding the pre-expanded particles in-mold, wherein the styrene resin foam molded article is made of graphite. The thermal conductivity C (W / m · K) and the expansion ratio D measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. after drying the styrene resin foam molded body at 50 ° C. for 30 days. A styrene-based resin foam molded article having a relationship of Formula 2 between (cm 3 / g).
Formula 2: C ≦ 0.0276 + 0.0000776 × D
(13) The styrene resin foam molded article according to (11) or (12), wherein the expansion ratio is 40 (cm 3 / g) or more.
(14) The styrene resin foam molded article according to any one of (11) to (13), wherein the expandable styrene resin particles contain graphite having an average particle diameter of 3 to 7 μm.
(15) The styrene resin foam molded article according to any one of (11) to (14), wherein the expandable styrene resin particles contain graphite having a specific surface area of 1.55 m 2 / cm 3 or more.
(16) The styrene resin foam according to any one of (11) to (15) above, wherein the expandable styrene resin particles contain graphite having a value obtained by dividing 90% particle size by 10% particle size to 2.5 or more. Molded body.
(17) The styrene resin foam molded article according to any one of (11) to (16) above, which contains a brominated flame retardant and has a bromine content of 0.8 to 2.5% by weight.

(18)予備発泡機の缶内に入れた発泡性スチレン系樹脂粒子に水蒸気を投入して予備発泡粒子を得る予備発泡工程と、予備発泡粒子を型内成形する成形工程とを含む、スチレン系樹脂発泡成形体の製造方法であって、スチレン系樹脂発泡成形体中のグラファイト含有量を3〜8重量%とし、かつ、予備発泡工程における水蒸気投入時間を50〜500秒とすることにより、平均温度23℃、温度差20℃で測定した熱伝導率A(W/m・K)と発泡倍率B(cm/g)の間に式1の関係を有するスチレン系樹脂発泡成形体を得ることを特徴とするスチレン系樹脂発泡成形体の製造方法。
式1:A≦0.0251+0.0000776×B
(19)予備発泡機の缶内に入れた発泡性スチレン系樹脂粒子に水蒸気を投入して予備発泡粒子を得る予備発泡工程と、予備発泡粒子を型内成形する成形工程とを含む、スチレン系樹脂発泡成形体の製造方法であって、スチレン系樹脂発泡成形体中のグラファイト含有量を3〜8重量%とし、かつ、予備発泡工程における水蒸気投入時間を50〜500秒とすることにより、50℃で30日間乾燥した後に平均温度23℃、温度差20℃で測定した熱伝導率C(W/m・K)と発泡倍率D(cm/g)の間に式2の関係を有するスチレン系樹脂発泡成形体を得ることを特徴とするスチレン系樹脂発泡成形体の製造方法。
式2:C≦0.0276+0.0000776×D
(20)予備発泡工程において、発泡性スチレン系樹脂粒子の予備発泡を一段階で行なう上記(18)又は(19)のスチレン系樹脂発泡成形体の製造方法。
(21)スチレン系樹脂発泡成形体の発泡倍率を65〜80cm/gとする上記(18)〜(20)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(22)水蒸気投入時間が80〜300秒である上記(18)〜(21)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(23)水蒸気投入時の予備発泡機の缶内圧力がゲージ圧力で0.001〜0.15MPaである上記(18)〜(22)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(24)水蒸気の温度が100℃を超え、130℃以下である上記(18)〜(23)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(25)予備発泡工程において、予備発泡機の缶内に入れた発泡性スチレン系樹脂粒子に水蒸気と共に空気を投入する上記(18)〜(24)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(26)スチレン系樹脂発泡成形体の平均セル径を70〜250μmとする上記(18)〜(25)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(27)スチレン系樹脂発泡成形体の独立気泡率を97〜100%とする上記(18)〜(26)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(28)予備発泡粒子の独立気泡率を97〜100%とする上記(18)〜(27)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(29)発泡性スチレン系樹脂粒子が平均粒径3〜7μmのグラファイトを含有する上記(18)〜(28)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(30)発泡性スチレン系樹脂粒子が比表面積1.55m/cm以上のグラファイトを含有する上記(18)〜(29)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(31)発泡性スチレン系樹脂粒子が、90%粒径を10%粒径で除した値が2.5以上のグラファイトを含有する上記(18)〜(30)のいずれかのスチレン系樹脂発泡成形体の製造方法。
(18) A styrenic system comprising a pre-foaming step for obtaining pre-foamed particles by introducing water vapor into expandable styrenic resin particles placed in a can of the pre-foaming machine, and a molding step for molding the pre-foamed particles in a mold. A method for producing a resin foam molded article, wherein the graphite content in the styrene resin foam molded article is 3 to 8% by weight, and the water vapor charging time in the pre-foaming step is 50 to 500 seconds. Obtaining a styrene-based resin foam molded article having a relationship of Formula 1 between a thermal conductivity A (W / m · K) measured at a temperature of 23 ° C. and a temperature difference of 20 ° C. and a foaming ratio B (cm 3 / g). A method for producing a styrene-based resin foam molded article.
Formula 1: A ≦ 0.0251 + 0.0000776 × B
(19) A styrenic system including a pre-foaming step for obtaining pre-foamed particles by introducing water vapor into the expandable styrenic resin particles placed in a can of the pre-foaming machine, and a molding step for molding the pre-foamed particles in a mold. A method for producing a resin foam molded article, wherein the graphite content in the styrene-based resin foam molded article is 3 to 8% by weight, and the water vapor charging time in the preliminary foaming step is 50 to 500 seconds, Styrene having a relationship of Formula 2 between thermal conductivity C (W / m · K) and foaming ratio D (cm 3 / g) measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. after drying at 30 ° C. for 30 days A method for producing a styrenic resin foam molded article, characterized in that a styrene resin foam molded article is obtained.
Formula 2: C ≦ 0.0276 + 0.0000776 × D
(20) The method for producing a styrene resin foam molded article according to (18) or (19), wherein the foaming styrene resin particles are prefoamed in one stage in the prefoaming step.
(21) The method for producing a styrene resin foam molded article according to any one of the above (18) to (20), wherein the expansion ratio of the styrene resin foam molded article is 65 to 80 cm 3 / g.
(22) The method for producing a styrene resin foam molded article according to any one of the above (18) to (21), wherein the water vapor charging time is 80 to 300 seconds.
(23) The method for producing a styrene resin foam molded article according to any one of the above (18) to (22), wherein the pressure in the can of the preliminary foaming machine at the time of introducing steam is 0.001 to 0.15 MPa in gauge pressure.
(24) The method for producing a styrene resin foam molded article according to any one of the above (18) to (23), wherein the temperature of water vapor exceeds 100 ° C and is 130 ° C or less.
(25) Production of the styrene resin foam molded article according to any one of (18) to (24) above, wherein in the prefoaming step, air is introduced into the expandable styrene resin particles placed in the can of the prefoaming machine together with water vapor. Method.
(26) The method for producing a styrene resin foam molded article according to any one of the above (18) to (25), wherein the average cell diameter of the styrene resin foam molded article is 70 to 250 μm.
(27) The method for producing a styrene resin foam molded article according to any one of the above (18) to (26), wherein the closed cell ratio of the styrene resin foam molded article is 97 to 100%.
(28) The method for producing a styrene resin foam molded article according to any one of the above (18) to (27), wherein the closed cell ratio of the pre-expanded particles is 97 to 100%.
(29) The method for producing a styrene resin foam molded article according to any one of (18) to (28), wherein the expandable styrene resin particles contain graphite having an average particle diameter of 3 to 7 μm.
(30) The method for producing a styrene resin foam molded article according to any one of (18) to (29), wherein the expandable styrene resin particles contain graphite having a specific surface area of 1.55 m 2 / cm 3 or more.
(31) The styrene resin foam according to any one of (18) to (30), wherein the expandable styrene resin particles contain graphite having a value obtained by dividing 90% particle diameter by 10% particle diameter of 2.5 or more. Manufacturing method of a molded object.

本発明によれば、より高発泡倍率で熱伝導率が低い、高い断熱性を有するスチレン系樹脂発泡成形体を提供できる。このように本発明によれば、発泡倍率の低い従来のスチレン系樹脂発泡成形体と同等の断熱性が得られ、しかも非常に高い発泡倍率であることから原料である発泡性スチレン系樹脂粒子の使用量を減らすことができ、安価に製造することができる。さらに、長時間経過後においても熱伝導率が低いスチレン系樹脂発泡成形体を提供できる。また、独立気泡率が高く、表面美麗性の高いスチレン系樹脂発泡成形体を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the styrene resin foaming molding which has high heat insulation with a high expansion ratio and low thermal conductivity can be provided. As described above, according to the present invention, heat insulation equivalent to that of a conventional styrene resin foam molded article having a low expansion ratio can be obtained, and the expansion ratio of the expandable styrene resin particles as a raw material is extremely high. The amount used can be reduced and can be manufactured at low cost. Furthermore, it is possible to provide a styrene resin foam molded article having a low thermal conductivity even after a long time has elapsed. Further, it is possible to provide a styrene resin foam molded article having a high closed cell ratio and a high surface beauty.

実施例1〜18及び比較例1〜3の発泡倍率B(cm/g)と熱伝導率A(W/m・K)との関係を示すグラフである。It is a graph which shows the relationship between the expansion ratio B (cm < 3 > / g) of Examples 1-18 and Comparative Examples 1-3 and thermal conductivity A (W / m * K). 実施例1〜18及び比較例1〜3の発泡倍率D(cm/g)と熱伝導率C(W/m・K)との関係を示すグラフである。It is a graph which shows the relationship between the expansion ratio D (cm < 3 > / g) of Examples 1-18 and Comparative Examples 1-3 and thermal conductivity C (W / m * K).

以下、発泡性スチレン系樹脂粒子及びその製造方法、スチレン系樹脂発泡成形体及びその製造方法の順で本発明の実施形態をさらに詳しく説明する。   Hereinafter, embodiments of the present invention will be described in more detail in the order of expandable styrene-based resin particles and a production method thereof, a styrene-based resin foam molded product, and a production method thereof.

[発泡性スチレン系樹脂粒子]
本発明の発泡性スチレン系樹脂粒子は、スチレン系樹脂粒子中に発泡剤及びグラファイトを含有させたものであり、グラファイトの含有量が発泡性スチレン系樹脂粒子全量の3〜8重量%であることを特徴とする。該グラファイトは平均粒径が3〜7μmであることが好ましく、平均粒径が3〜7μmかつ比表面積が1.55m/cm以上であることがより好ましく、平均粒径が3〜7μm、比表面積が1.55m/cm以上かつ90%粒径を10%粒径で除した(90%粒径/10%粒径)値が2.5以上であることがさらに好ましい。
[Expandable styrene resin particles]
The expandable styrene resin particles of the present invention are those in which a foaming agent and graphite are contained in styrene resin particles, and the content of graphite is 3 to 8% by weight of the total amount of expandable styrene resin particles. It is characterized by. The graphite preferably has an average particle size of 3 to 7 μm, more preferably an average particle size of 3 to 7 μm and a specific surface area of 1.55 m 2 / cm 3 or more, an average particle size of 3 to 7 μm, More preferably, the specific surface area is 1.55 m 2 / cm 3 or more, and the 90% particle size divided by 10% particle size (90% particle size / 10% particle size) is 2.5 or more.

本発明の発泡性スチレン系樹脂粒子は、スチレン系樹脂、グラファイト及び発泡剤を含有し、必要に応じて、難燃剤、熱安定剤、ラジカル発生剤、及びその他の添加剤よりなる群から選ばれる少なくとも1種の任意成分を含有できる。本発明の発泡性スチレン系樹脂粒子は、好ましくは、スチレン系樹脂、グラファイト、発泡剤及び難燃剤を含有し、難燃剤を除く前記任意成分の少なくとも1種を含有してもよく、より好ましくは、スチレン系樹脂、グラファイト、発泡剤、難燃剤及び熱安定剤を含有し、難燃剤及び熱安定剤を除く前記任意成分の少なくとも1種を含有してもよく、さらに好ましくは、スチレン系樹脂、グラファイト、発泡剤、難燃剤、熱安定剤及び造核剤を含有し、難燃剤、熱安定剤及び造核剤を除く前記任意成分の少なくとも1種を含有してもよい。   The expandable styrene resin particles of the present invention contain a styrene resin, graphite, and a foaming agent, and are selected from the group consisting of a flame retardant, a thermal stabilizer, a radical generator, and other additives as necessary. At least one optional component can be contained. The expandable styrene resin particles of the present invention preferably contain a styrene resin, graphite, a foaming agent and a flame retardant, and may contain at least one of the above-mentioned optional components excluding the flame retardant, more preferably. , A styrenic resin, graphite, a foaming agent, a flame retardant and a heat stabilizer, and may contain at least one of the optional components excluding the flame retardant and the heat stabilizer, more preferably a styrenic resin, It contains graphite, a foaming agent, a flame retardant, a heat stabilizer and a nucleating agent, and may contain at least one of the above-mentioned optional components excluding the flame retardant, the heat stabilizer and the nucleating agent.

以下、本発明の発泡性スチレン系樹脂粒子が含有する必須成分及び任意成分をさらに詳しく説明する。   Hereinafter, the essential components and optional components contained in the expandable styrene resin particles of the present invention will be described in more detail.

(スチレン系樹脂)
本発明で用いられるスチレン系樹脂は、スチレン単独重合体(ポリスチレンホモポリマー)のみならず、本発明の効果を損なわない範囲で、スチレンと共重合可能な他の単量体またはその誘導体が共重合されていても良い。ただし、後述する臭素化スチレン・ブタジエン共重合体は除く。
(Styrene resin)
The styrene resin used in the present invention is a copolymer of not only a styrene homopolymer (polystyrene homopolymer) but also other monomers or derivatives thereof copolymerizable with styrene within a range not impairing the effects of the present invention. May be. However, the brominated styrene / butadiene copolymer described later is excluded.

スチレンと共重合可能な他の単量体またはその誘導体としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレンなどのスチレン誘導体;ジビニルベンゼンなどの多官能性ビニル化合物;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチルなどの(メタ)アクリル酸エステル化合物;(メタ)アクリロニトリルなどのシアン化ビニル化合物;ブタジエンなどのジエン系化合物またはその誘導体;無水マレイン酸、無水イタコン酸などの不飽和カルボン酸無水物;N−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−(2)−クロロフェニルマレイミド、N−(4)−ブロモフェニルマレイミド、N−(1)−ナフチルマレイミドなどのN−アルキル置換マレイミド化合物などがあげられる。これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。   Examples of other monomers copolymerizable with styrene or derivatives thereof include, for example, methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, Styrene derivatives such as trichlorostyrene; polyfunctional vinyl compounds such as divinylbenzene; (meth) acrylic acid ester compounds such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate; Vinyl cyanide compounds such as (meth) acrylonitrile; diene compounds such as butadiene or derivatives thereof; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride; N-methylmaleimide, N- N-alkyl substituted maleimide compounds such as tilmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N- (2) -chlorophenylmaleimide, N- (4) -bromophenylmaleimide, N- (1) -naphthylmaleimide, etc. can give. These may be used alone or in combination of two or more.

本発明で用いられるスチレン系樹脂は、前記スチレン単独重合体、および/または、スチレンと共重合可能な他の単量体またはその誘導体との共重合体に限らず、本発明の効果を損なわない範囲で、前記他の単量体または誘導体の単独重合体、またはそれらの共重合体とのブレンド物であっても良い。   The styrene resin used in the present invention is not limited to the styrene homopolymer and / or a copolymer with other monomers copolymerizable with styrene or a derivative thereof, and does not impair the effects of the present invention. In the range, it may be a homopolymer of the other monomer or derivative, or a blend with the copolymer.

本発明で用いられるスチレン系樹脂には、例えば、ジエン系ゴム強化ポリスチレン、アクリル系ゴム強化ポリスチレン、ポリフェニレンエーテル系樹脂などをブレンドすることもできる。   For example, diene rubber reinforced polystyrene, acrylic rubber reinforced polystyrene, polyphenylene ether resin, or the like can be blended with the styrene resin used in the present invention.

本発明で用いられるスチレン系樹脂の中では、比較的安価で、特殊な方法を用いずに低圧の水蒸気等で発泡成形ができ、断熱性、難燃性、緩衝性のバランスに優れることから、ポリスチレンホモポリマー、スチレン−アクリロニトリル共重合体、スチレン−アクリル酸ブチル共重合体が好ましい。   Among the styrenic resins used in the present invention, it is relatively inexpensive and can be foam-molded with low-pressure steam or the like without using a special method, and is excellent in the balance of heat insulation, flame retardancy, and buffering properties. Polystyrene homopolymer, styrene-acrylonitrile copolymer, and styrene-butyl acrylate copolymer are preferred.

(グラファイト)
本発明においては、輻射伝熱抑制剤としてグラファイトを発泡性スチレン系樹脂粒子に添加することにより、高い断熱性を有するスチレン系樹脂発泡成形体が得られる。前記輻射伝熱抑制剤とは、近赤外または赤外領域(例えば、800〜3000nm程度の波長域)の光を反射、散乱又は吸収する特性を有する物質をいう。
(Graphite)
In the present invention, a styrene resin foam molded article having high heat insulating properties can be obtained by adding graphite to the expandable styrene resin particles as a radiation heat transfer inhibitor. The radiation heat transfer inhibitor refers to a substance having a characteristic of reflecting, scattering, or absorbing light in the near infrared or infrared region (for example, a wavelength region of about 800 to 3000 nm).

本発明で用いられるグラファイトは、例えば、鱗片状黒鉛、土状黒鉛、球状黒鉛、人造黒鉛などが挙げられる。なお、本明細書において、「鱗片状」という用語は、鱗状、薄片状又は板状のものをも包含する。これらの黒鉛は1種を単独で又は2種以上を組み合わせて使用できる。これらの中でも、輻射伝熱抑制効果が高い点から、鱗片状黒鉛を主成分とする黒鉛混合物が好ましく、鱗片状黒鉛がより好ましい。   Examples of the graphite used in the present invention include flaky graphite, earthy graphite, spherical graphite, and artificial graphite. In the present specification, the term “scale-like” also includes a scale-like, flaky or plate-like one. These graphites can be used alone or in combination of two or more. Among these, a graphite mixture containing scaly graphite as a main component is preferable, and scaly graphite is more preferable because it has a high effect of suppressing radiant heat transfer.

本発明で用いられるグラファイトは平均粒径が3〜7μmが好ましい。さらに4〜6μmがより好ましい。本発明のグラファイトの平均粒径はグラファイトを水中に分散させ、レーザー回折散乱法により粒度分布を測定し、全粒子の体積に対する累積体積が50%になる時の粒径(レーザー回折散乱法による体積平均粒径)を平均粒径とした。   The graphite used in the present invention preferably has an average particle size of 3 to 7 μm. Furthermore, 4-6 micrometers is more preferable. The average particle size of the graphite of the present invention is determined by dispersing the graphite in water and measuring the particle size distribution by the laser diffraction scattering method. The particle size when the cumulative volume with respect to the volume of all particles is 50% (volume by the laser diffraction scattering method) The average particle size was defined as the average particle size.

グラファイトは平均粒径が小さいほど製造コストが高くなる。特に平均粒径3μm未満のグラファイトは製造コストが高いため非常に高価であり、発泡性スチレン系樹脂粒子のコストが高くなる傾向がある。平均粒径が7μmを超えると、グラファイトの比表面積を1.55m/cm以上にすることが難しくなる傾向がある。また、平均粒径が7μmを超えると、発泡性スチレン系樹脂粒子から予備発泡粒子及びスチレン系樹脂発泡成形体を製造する際にセル膜が破れやすくなるため、高発泡化が難しくなったり、成形容易性が低下したり、スチレン系樹脂発泡成形体の圧縮強度が低下したりする傾向がある。The production cost of graphite increases as the average particle size decreases. In particular, graphite having an average particle size of less than 3 μm is very expensive due to high production cost, and the cost of expandable styrene resin particles tends to be high. When the average particle diameter exceeds 7 μm, it tends to be difficult to make the specific surface area of graphite 1.55 m 2 / cm 3 or more. In addition, when the average particle diameter exceeds 7 μm, the cell membrane is easily broken when producing pre-expanded particles and styrene-based resin foam molded products from expandable styrene-based resin particles. There is a tendency that the ease decreases and the compressive strength of the styrenic resin foam molding decreases.

また、スチレン系樹脂発泡成形体中のグラファイトの比表面積が大きい方が熱輻射を吸収又は反射する確率が大きくなるために輻射伝熱抑制剤としての効果が大きくなる。グラファイトの比表面積はグラファイトの平均粒径が小さい方が大きくなる傾向があるが、前述のように、平均粒径が小さいほどグラファイトの製造コストは高くなる。従来技術ではコストと性能のバランスの観点から比表面積1.55m/cm以上のグラファイトを用いることはなかった。In addition, the larger the specific surface area of the graphite in the styrene resin foam molded article, the greater the probability of absorbing or reflecting heat radiation, so the effect as a radiation heat transfer inhibitor is increased. The specific surface area of graphite tends to increase as the average particle size of graphite decreases, but as described above, the production cost of graphite increases as the average particle size decreases. In the prior art, graphite having a specific surface area of 1.55 m 2 / cm 3 or more was not used from the viewpoint of balance between cost and performance.

本発明で用いられるグラファイトは比表面積が1.55m/cm以上が好ましい。比表面積が1.55m/cm未満では、熱伝導率を小さくする効果が不十分になる傾向がある。グラファイトの比表面積は1.60m/cm以上がより好ましく、1.65m/cm以上がさらに好ましい。本発明のグラファイトの比表面積は平均粒径と同様にグラファイトを水中に分散させ、レーザー回折散乱法により測定される。比表面積が大きいと輻射を吸収又は反射する確率が大きくなるために輻射伝熱抑制剤としての効果が大きくなる。The graphite used in the present invention preferably has a specific surface area of 1.55 m 2 / cm 3 or more. When the specific surface area is less than 1.55 m 2 / cm 3 , the effect of reducing the thermal conductivity tends to be insufficient. The specific surface area of the graphite is more preferably 1.60 m 2 / cm 3 or more, more preferably 1.65 m 2 / cm 3 or more. The specific surface area of the graphite of the present invention is measured by a laser diffraction scattering method by dispersing graphite in water in the same manner as the average particle diameter. If the specific surface area is large, the probability of absorbing or reflecting radiation increases, and the effect as a radiation heat transfer inhibitor increases.

本発明者らは、平均粒径が3〜7μmのグラファイトにおいて比表面積が1.55m/cm以上であれば、スチレン系樹脂発泡成形体の熱伝導率を大きく低下させ、断熱性を向上させる効果が大きいことを見出した。特に平均粒径3〜7μm、比表面積1.65m/cm以上のグラファイトを使用すればスチレン系樹脂発泡成形体よりも断熱性が高いとされる他素材の断熱材と比較してコストパフォーマンスに優れた断熱材となる。If the specific surface area is 1.55 m 2 / cm 3 or more in graphite having an average particle diameter of 3 to 7 μm, the present inventors greatly reduce the thermal conductivity of the styrene-based resin foam molding and improve the heat insulation. It was found that the effect to make is great. In particular, if graphite with an average particle size of 3 to 7 μm and a specific surface area of 1.65 m 2 / cm 3 or more is used, the cost performance is higher than that of other heat insulating materials that are considered to have higher heat insulation than styrene resin foam moldings. It becomes an excellent heat insulating material.

また、本発明で用いられるグラファイトの比表面積は5m/cm以下が好ましく、3m/cm以下がより好ましく、2.5m/cm以下がさらに好ましい。本発明の平均粒径3〜7μmのグラファイトにおいて比表面積を5m/cm以上にする場合にはグラファイトの薄片化等の技術が必要であり、コストが高くなる。グラファイトの比表面積の範囲は、好ましくは1.55〜5m/cm、より好ましくは1.60〜3m/cm、さらに好ましくは1.65〜2.5m/cmである。The specific surface area of the graphite used in the present invention is preferably from 5 m 2 / cm 3 or less, more preferably 3m 2 / cm 3 or less, 2.5 m 2 / cm 3 or less is more preferred. In the graphite having an average particle diameter of 3 to 7 μm of the present invention, when the specific surface area is set to 5 m 2 / cm 3 or more, a technique such as thinning of the graphite is required and the cost is increased. The range of the specific surface area of graphite is preferably 1.55 to 5 m 2 / cm 3 , more preferably 1.60 to 3 m 2 / cm 3 , and still more preferably 1.65 to 2.5 m 2 / cm 3 .

一般的なグラファイトは、所望の粒径にそろっている方が品質は高いとされ、グラファイト製造中の精製により粒径分布が正規分布であり、かつ、90%粒径/10%粒径の値が小さくなるように製造されてきた。しかし、本発明では一般的には品質が悪いとされてきた小粒子を多く含む精製状態の悪いグラファイトを使用することにより、一般的な価格で入手可能な平均粒径範囲のグラファイトにおいても比表面積を1.55m/cm以上と、より大きくすることができ、断熱性が良好なスチレン系樹脂発泡成形体を得ることが可能となった。The quality of general graphite is considered to be higher when it has the desired particle size, the particle size distribution is a normal distribution due to purification during the production of graphite, and the value of 90% particle size / 10% particle size is obtained. Has been manufactured to be small. However, in the present invention, the specific surface area can be obtained even in graphite having an average particle size range that is available at a general price by using poorly purified graphite containing many small particles, which are generally regarded as poor in quality. Can be increased to 1.55 m 2 / cm 3 or more, and it becomes possible to obtain a styrenic resin foam molded article having good heat insulation.

本発明で用いられるグラファイトは90%粒径を10%粒径で除した値が2.5以上であることが好ましく、3以上であることがより好ましく、5以上であることがさらに好ましい。グラファイトを水中に分散させ、レーザー回折散乱法により粒度分布を測定し、全粒子の体積に対する粒径の小さい方からの累積体積が10%になる時の粒径を10%粒径、累積体積が90%になる時の粒径を90%粒径とした。   The graphite used in the present invention preferably has a value obtained by dividing 90% particle size by 10% particle size to 2.5 or more, more preferably 3 or more, and further preferably 5 or more. Graphite is dispersed in water, the particle size distribution is measured by laser diffraction scattering method, the particle size when the cumulative volume from the smaller particle size to the total particle volume becomes 10% is 10% particle size, the cumulative volume is The 90% particle size was 90%.

90%粒径/10%粒径の値が大きいほど粒度分布がよりブロードであることを表しており、90%粒径/10%粒径の値が大きい方が同一平均粒径のグラファイトであってもより熱伝導率を大きく低下させることができる。   The larger the 90% particle size / 10% particle size value, the broader the particle size distribution, and the larger the 90% particle size / 10% particle size value is the graphite with the same average particle size. However, the thermal conductivity can be greatly reduced.

本発明における発泡性スチレン系樹脂粒子のグラファイト含有量は目的とする発泡倍率に制御しやすいと共に、熱伝導率低減効果などのバランスの点から、発泡性スチレン系樹脂粒子に対して、該樹脂粒子全量の3重量%以上8重量%以下であることが好ましく、3重量%以上6.5重量%以下であることがより好ましく、3.5重量%以上5.5重量%以下であることがさらに好ましい。グラファイト含有量が3重量%未満では熱伝導率低減効果が不十分になる傾向があり、一方、8重量%を超えると、発泡倍率の制御が難しくなる傾向がある。   The graphite content of the expandable styrene resin particles in the present invention is easily controlled to the target expansion ratio, and the resin particles are compared with the expandable styrene resin particles from the viewpoint of balance such as a thermal conductivity reduction effect. It is preferably 3% by weight or more and 8% by weight or less, more preferably 3% by weight or more and 6.5% by weight or less, and further preferably 3.5% by weight or more and 5.5% by weight or less. preferable. If the graphite content is less than 3% by weight, the effect of reducing the thermal conductivity tends to be insufficient, whereas if it exceeds 8% by weight, it is difficult to control the expansion ratio.

また、従来のグラファイト含有発泡性スチレン系樹脂粒子では、グラファイトがセル膜中に存在するために、高発泡倍率にするとセル膜が破泡して成形性が悪化したり、圧縮強度が低下したりする傾向があった。しかし、本発明では、上記所定の平均粒径又は上記所定の平均粒径及び比表面積又は上記所定の平均粒径、比表面積及び90%粒径/10%粒径を有するグラファイトを3〜8重量%含有させることにより、高発泡倍率においても良好な成形性を有するグラファイト含有発泡性スチレン系樹脂粒子を得ることができ、従来のグラファイト含有発泡性スチレン系樹脂粒子では得ることができなかった低熱伝導率のスチレン系樹脂発泡成形体を与えることができる。   In addition, in the conventional graphite-containing expandable styrene resin particles, graphite is present in the cell membrane, so if the expansion ratio is high, the cell membrane breaks down and the moldability deteriorates or the compressive strength decreases. There was a tendency to. However, in the present invention, 3 to 8 weights of the graphite having the predetermined average particle size or the predetermined average particle size and specific surface area or the predetermined average particle size, specific surface area and 90% particle size / 10% particle size. %, It is possible to obtain graphite-containing expandable styrene resin particles having good moldability even at a high expansion ratio, and low thermal conductivity that cannot be obtained with conventional graphite-containing expandable styrene resin particles. Styrene-based resin foam moldings can be provided.

(発泡剤)
本発明で用いられる発泡剤は、特に限定されないが、炭素数4〜5の炭化水素が好ましい。炭素数4〜5の炭化水素としては、例えばノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン等の炭化水素が挙げられる。これらは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(Foaming agent)
Although the foaming agent used by this invention is not specifically limited, A C4-C5 hydrocarbon is preferable. Examples of the hydrocarbon having 4 to 5 carbon atoms include hydrocarbons such as normal butane, isobutane, normal pentane, isopentane, neopentane, and cyclopentane. These may be used individually by 1 type and may be used in combination of 2 or more type.

本発明における発泡剤の添加量は、目的とする発泡倍率に制御しやすいなどの点から、スチレン系樹脂100重量部に対して、4重量部以上10重量部以下であることが好ましく、4.5重量部以上9重量部以下であることがより好ましく、5重量部以上8重量以下であることがさらに好ましい。発泡剤の添加量が4重量部未満では、40倍以上の高発泡倍率のスチレン系樹脂発泡成形体を製造し難くなる傾向があり、一方10重量部を超えると、スチレン系樹脂発泡成形体を製造する際の製造時間(成形サイクル)が長くなるため、製造コストが高くなる傾向がある。   The addition amount of the foaming agent in the present invention is preferably 4 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the styrenic resin from the viewpoint that it is easy to control the target foaming ratio. It is more preferably 5 parts by weight or more and 9 parts by weight or less, and further preferably 5 parts by weight or more and 8 parts by weight or less. When the addition amount of the foaming agent is less than 4 parts by weight, it tends to be difficult to produce a styrene resin foam molded article having a high expansion ratio of 40 times or more. Since the manufacturing time (molding cycle) at the time of manufacturing becomes long, the manufacturing cost tends to increase.

(難燃剤)
本発明で用いられる難燃剤としては特に限定されず、従来からスチレン系樹脂発泡成形体に用いられる難燃剤をいずれも使用できるが、その中でも、難燃性付与効果が高く、グラファイトとの相乗作用が得られ、発泡倍率の制御が容易になるといった観点から、臭素系難燃剤が好ましい。本発明で用いられる臭素系難燃剤としては、例えば、2,2−ビス[4−(2,3−ジブロモ−2−メチルプロポキシ)−3,5−ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル))、2,2−ビス[4−(2,3−ジブロモプロポキシ)−3,5−ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル))などの臭素化ビスフェノール系化合物;臭素化スチレン・ブタジエンブロック共重合体、臭素化ランダムスチレン・ブタジエン共重合体、臭素化スチレン・ブタジエングラフト共重合体などの臭素化ブタジエン・ビニル芳香族炭化水素共重合体(例えば、特表2009−516019号公報に開示されている)などが挙げられる。これら臭素系難燃剤は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(Flame retardants)
The flame retardant used in the present invention is not particularly limited, and any flame retardant conventionally used in styrene resin foam molded products can be used, but among them, the flame retardant imparting effect is high and synergistic with graphite. From the viewpoint that the foaming ratio can be easily controlled, a brominated flame retardant is preferable. Examples of the brominated flame retardant used in the present invention include 2,2-bis [4- (2,3-dibromo-2-methylpropoxy) -3,5-dibromophenyl] propane (also known as tetrabromobisphenol A). -Bis (2,3-dibromo-2-methylpropyl ether)), 2,2-bis [4- (2,3-dibromopropoxy) -3,5-dibromophenyl] propane (also known as: tetrabromobisphenol A-) Brominated bisphenol compounds such as bis (2,3-dibromopropyl ether)); brominated styrene / butadiene block copolymers, brominated random styrene / butadiene copolymers, brominated styrene / butadiene graft copolymers, etc. Brominated butadiene / vinyl aromatic hydrocarbon copolymer (for example, disclosed in JP-T 2009-516019) It has been that), and the like. These brominated flame retardants may be used alone or in combination of two or more.

臭素系難燃剤は、目的とする発泡倍率に制御しやすいと共に、輻射伝熱抑制剤添加時の難燃性などのバランスの点から、スチレン系樹脂発泡成形体全量に対して、臭素含有量が好ましくは0.8〜2.5重量%、より好ましくは1.0〜2.0重量%になるように、発泡性スチレン系樹脂粒子に配合される。   The brominated flame retardant is easy to control to the desired expansion ratio and has a bromine content with respect to the total amount of the styrene resin foam molded product from the viewpoint of balance such as flame retardancy when adding a radiation heat transfer inhibitor. Preferably it is mix | blended with an expandable styrene-type resin particle so that it may become 0.8 to 2.5 weight%, More preferably, it is 1.0 to 2.0 weight%.

(熱安定剤)
本発明の発泡性スチレン系樹脂粒子においては、さらに、熱安定剤を併用することによって、臭素系難燃剤含有混合物の熱重量分析における1%重量減少温度を制御することができる。
(Heat stabilizer)
In the expandable styrene resin particles of the present invention, the 1% weight reduction temperature in the thermogravimetric analysis of the brominated flame retardant-containing mixture can be controlled by using a heat stabilizer in combination.

本発明における熱安定剤は、用いられるスチレン系樹脂の種類、発泡剤の種類および含有量、輻射伝熱抑止剤の種類および含有量、臭素系難燃剤の種類および含有量などに応じて、適宜組み合わせて用いることができる。   The heat stabilizer in the present invention is appropriately selected according to the type of styrene resin used, the type and content of the foaming agent, the type and content of the radiation heat transfer inhibitor, the type and content of the brominated flame retardant, and the like. They can be used in combination.

本発明で用いられる熱安定剤としては、臭素系難燃剤含有混合物の熱重量分析における1%重量減少温度を任意に制御できる点から、ヒンダードアミン化合物、リン系化合物、エポキシ化合物が好ましい。熱安定剤は1種を単独で又は2種以上を組み合わせて使用できる。なお、これらの熱安定剤は、後述するように耐光性安定剤としても使用できる。   As the heat stabilizer used in the present invention, a hindered amine compound, a phosphorus compound, and an epoxy compound are preferable because the 1% weight loss temperature in the thermogravimetric analysis of the brominated flame retardant-containing mixture can be arbitrarily controlled. A heat stabilizer can be used individually by 1 type or in combination of 2 or more types. These heat stabilizers can also be used as light-resistant stabilizers as described later.

(ラジカル発生剤)
本発明の発泡性スチレン系樹脂粒子においては、ラジカル発生剤をさらに含有することにより、臭素系難燃剤と併用することで、臭素系難燃剤の熱重量分析における1%重量減少温度を制御することができる。
(Radical generator)
In the expandable styrene resin particles of the present invention, by further containing a radical generator, the 1% weight reduction temperature in the thermogravimetric analysis of the brominated flame retardant is controlled by using it together with the brominated flame retardant. Can do.

本発明におけるラジカル発生剤は、用いるスチレン系樹脂の種類、発泡剤の種類および含有量、輻射伝熱抑止剤の種類および含有量、臭素系難燃剤の種類および含有量に応じて適宜組み合わせて用いることができる。   The radical generator in the present invention is used in appropriate combination depending on the type of styrene resin used, the type and content of the foaming agent, the type and content of the radiation heat transfer inhibitor, and the type and content of the brominated flame retardant. be able to.

本発明で用いられるラジカル発生剤としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、2,3−ジメチル−2,3−ジフェニルブタン、ポリ−1,4−イソプロピルベンゼン等が挙げられる。ラジカル発生剤は1種を単独で又は2種以上を組み合わせて使用できる。   Examples of the radical generator used in the present invention include cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and poly-1,4-isopropyl. Examples include benzene. A radical generator can be used individually by 1 type or in combination of 2 or more types.

(その他添加剤)
本発明の発泡性スチレン系樹脂粒子は、本発明の効果を損なわない範囲で、必要に応じて、加工助剤、耐光性安定剤、帯電防止剤、顔料などの着色剤、造核剤、発泡助剤よりなる群から選ばれる1種以上のその他添加剤を含有していてもよい。加工助剤としては、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、流動パラフィンなどが挙げられる。耐光性安定剤としては、前述したヒンダードアミン類、リン系安定剤、エポキシ化合物の他、フェノール系抗酸化剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類などが挙げられる。造核剤としては、シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、炭酸カルシウム、炭酸水素ナトリウム、タルクなどの無機化合物、メタクリル酸メチル系共重合体、エチレン−酢酸ビニル共重合体樹脂などの高分子化合物、ポリエチレンワックスなどのオレフィン系ワックス、メチレンビスステアリルアマイド、エチレンビスステアリルアマイド、ヘキサメチレンビスパルミチン酸アマイド、エチレンビスオレイン酸アマイドなどの脂肪酸ビスアマイドなどが挙げられる。発泡助剤としては、大気圧下での沸点が200℃以下である溶剤を好ましく使用でき、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素、酢酸エチル、酢酸ブチルなどの酢酸エステルなどが挙げられる。なお、帯電防止剤及び着色剤としては、各種樹脂組成物に用いられるものを特に限定なく使用できる。これらの他の添加剤は、1種を単独で又は2種以上を組み合わせて使用できる。
(Other additives)
The expandable styrenic resin particles of the present invention are, as necessary, a processing aid, a light-resistant stabilizer, an antistatic agent, a colorant such as a pigment, a nucleating agent, a foam as long as the effects of the present invention are not impaired. It may contain one or more other additives selected from the group consisting of auxiliaries. Examples of processing aids include sodium stearate, magnesium stearate, calcium stearate, zinc stearate, barium stearate, and liquid paraffin. Examples of the light resistance stabilizer include hindered amines, phosphorus stabilizers, and epoxy compounds described above, as well as phenol antioxidants, nitrogen stabilizers, sulfur stabilizers, and benzotriazoles. Examples of nucleating agents include silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, calcium carbonate, sodium bicarbonate, talc and other inorganic compounds, methyl methacrylate copolymers, ethylene-vinyl acetate. Examples thereof include polymer compounds such as copolymer resins, olefinic waxes such as polyethylene wax, and fatty acid bisamides such as methylene bisstearyl amide, ethylene bisstearyl amide, hexamethylene bispalmitic acid amide, and ethylene bisoleic acid amide. As the foaming aid, a solvent having a boiling point of 200 ° C. or less under atmospheric pressure can be preferably used. For example, aromatic hydrocarbons such as styrene, toluene, ethylbenzene and xylene, and alicyclic carbonization such as cyclohexane and methylcyclohexane. Examples thereof include acetates such as hydrogen, ethyl acetate, and butyl acetate. In addition, as an antistatic agent and a coloring agent, what is used for various resin compositions can be used without limitation. These other additives can be used alone or in combination of two or more.

[発泡性スチレン系樹脂粒子の製造方法]
本発明の発泡性スチレン系樹脂粒子を製造する方法としては、押出機を用いてスチレン系樹脂と各種成分とを溶融混練した後、粒子状に切断する溶融混練法、グラファイトの存在下でスチレン系単量体を懸濁重合する重合法などが挙げられ、これらの中でも溶融混練法が好ましい。溶融混練法には、以下の2つの方法が挙げられる。
[Method for producing expandable styrene resin particles]
Examples of the method for producing the expandable styrene resin particles of the present invention include a melt kneading method in which a styrene resin and various components are melt-kneaded using an extruder and then cut into particles, and a styrene resin in the presence of graphite. Examples thereof include a polymerization method in which a monomer is subjected to suspension polymerization, and among these, a melt kneading method is preferable. Examples of the melt kneading method include the following two methods.

第1の溶融混練法としては、スチレン系樹脂とグラファイトを押出機で溶融混練し、コールドカット法またはホットカット法を用いてスチレン系樹脂ペレットを得た後、該スチレン系樹脂ペレットを水中に懸濁させると共に、該ペレットに発泡剤を含有させる方法がある。   In the first melt-kneading method, a styrene resin and graphite are melt-kneaded with an extruder to obtain a styrene resin pellet using a cold cut method or a hot cut method, and then the styrene resin pellet is suspended in water. There is a method of making the pellets contain a foaming agent while making it turbid.

さらに詳しくは、スチレン系樹脂、グラファイト、必要に応じて、臭素系難燃剤、ラジカル発生剤、熱安定剤等の各成分、さらには必要に応じて、他の添加剤を押出機で溶融混練し、小孔を有するダイスを通じて押出した後カッターで切断することによりスチレン系樹脂粒子を得た後、該スチレン系樹脂粒子を水中に懸濁させると共に、炭化水素からなる発泡剤を供給して、発泡性スチレン系樹脂粒子を得る製造方法が挙げられる。   More specifically, styrene-based resin, graphite, and if necessary, each component such as brominated flame retardant, radical generator, heat stabilizer, and other additives are melt-kneaded with an extruder if necessary. After the styrenic resin particles are obtained by extruding through a die having a small hole and then cut with a cutter, the styrenic resin particles are suspended in water and a foaming agent made of hydrocarbon is supplied for foaming. The manufacturing method which obtains a functional styrene resin particle is mentioned.

第1の溶融混練法における押出機の溶融混練部での樹脂の温度は、160℃〜250℃が好ましい。また、押出機に材料を供給してから溶融混練終了までの押出機内滞留時間が7分以下であることが好ましい。   The temperature of the resin in the melt kneading part of the extruder in the first melt kneading method is preferably 160 ° C to 250 ° C. Moreover, it is preferable that the residence time in an extruder from supplying a material to an extruder until the end of melt-kneading is 7 minutes or less.

樹脂温度が250℃より高い場合、および/または、溶融混練終了までの押出機内滞留時間が7分より長い場合は、臭素系難燃剤の分解が起こる場合があり、所望の難燃性が得られなかったり、所望の難燃性を付与する為に難燃剤を過剰に添加しなければならなかったりすることになる。   When the resin temperature is higher than 250 ° C. and / or when the residence time in the extruder until the completion of melt kneading is longer than 7 minutes, the brominated flame retardant may be decomposed and desired flame retardancy can be obtained. Or the flame retardant must be added in excess to give the desired flame retardancy.

一方、樹脂温度が160℃より低い場合は、押出機の負荷が大きくなって押出が不安定になったり、添加する成分の分散性が悪化したりする場合がある。加えて、溶融混練後すぐにダイスを通して押出す場合は溶融樹脂のせん断歪、伸張歪が大きくなる為、得られる樹脂粒子の形状が不揃いになったり、発泡剤含浸工程で粒子の膠着や扁平度合いが大きくなって工程が不安定になったり、工程が長期化して生産性を著しく低下させる場合もある。   On the other hand, when the resin temperature is lower than 160 ° C., the load on the extruder becomes large and the extrusion may become unstable, or the dispersibility of the component to be added may deteriorate. In addition, when extruding through a die immediately after melt kneading, the shear strain and elongation strain of the molten resin increase, resulting in uneven shape of the resin particles, and the degree of particle sticking and flatness in the foaming agent impregnation process In some cases, the process becomes unstable and the process becomes unstable, or the process becomes longer and the productivity is significantly reduced.

ここで、押出機の溶融混練部とは、単軸又は二軸スクリューを有する押出機一つから構成される場合はフィード部以降から押出機先端までを意味し、タンデム押出機のような場合は、第一押出機のフィード部以降から第二押出機先端までを意味する。   Here, the melt-kneading part of the extruder means from the feed part to the tip of the extruder when it is composed of one extruder having a single screw or a twin screw, and in the case of a tandem extruder. It means from the feed section of the first extruder to the tip of the second extruder.

第1の溶融混練法の利点は、一般的な発泡性スチレン系樹脂粒子の製造に使用される装置を使用してスチレン系樹脂粒子に発泡剤を含浸できるため、大きな設備投資又は設備変更が必要ないこと、グラファイト量、グラファイト粒径などを変更してもスチレン系樹脂粒子の生産安定性が高いことにある。一方、スチレン系樹脂粒子の生産と発泡性スチレン系樹脂粒子の生産を別プラントで実施するためにランニングコストは後述する第2の溶融混練法よりも高くなる。   The advantage of the first melt-kneading method is that a styrene resin particle can be impregnated with a foaming agent using an apparatus used for production of general expandable styrene resin particles, so that a large capital investment or equipment change is required. This is because the production stability of styrenic resin particles is high even if the amount of graphite, graphite particle size, etc. are changed. On the other hand, since the production of the styrene resin particles and the production of the expandable styrene resin particles are carried out in separate plants, the running cost is higher than that in the second melt-kneading method described later.

第2の溶融混練法としては、スチレン系樹脂とグラファイトと発泡剤とを押出機で溶融混練し、押出機先端に取り付けられた小孔を有するダイスを通じて加圧循環水で満たされたカッターチャンバー内に押出し、押出直後から回転カッターにより切断すると共に、加圧循環水により冷却固化する方法がある。   In the second melt-kneading method, a styrene resin, graphite, and a foaming agent are melt-kneaded with an extruder, and the inside of a cutter chamber filled with pressurized circulating water through a die having a small hole attached to the tip of the extruder. There is a method of extruding, cutting with a rotary cutter immediately after extrusion, and cooling and solidifying with pressurized circulating water.

さらに詳しくは、スチレン系樹脂、炭化水素からなる発泡剤、グラファイト、必要に応じて臭素系難燃剤、ラジカル発生剤、熱安定剤、さらには必要に応じて他の添加剤を押出機で溶融混練し、得られた溶融混練物を所定の温度に冷却した後、小孔を有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に押出し、押出し直後から、回転カッターにより切断してペレット化すると共に、得られたペレット(樹脂粒子)を加圧循環水により冷却固化して発泡性スチレン系樹脂粒子を得る製造方法が挙げられる。   More specifically, styrene resin, hydrocarbon foaming agent, graphite, bromine flame retardant as necessary, radical generator, heat stabilizer, and other additives, if necessary, melt kneaded in an extruder After cooling the resulting melt-kneaded product to a predetermined temperature, it is extruded through a die having small holes into a cutter chamber filled with pressurized circulating water, and immediately after extrusion, cut by a rotary cutter and pelletized. In addition, there is a production method in which the obtained pellets (resin particles) are cooled and solidified with pressurized circulating water to obtain expandable styrene resin particles.

第2の溶融混練法における、押出機の溶融混練部での樹脂の温度は、160℃〜250℃が好ましい。また、押出機にスチレン系樹脂および各種成分を供給してから溶融混練終了までの押出機内滞留時間が7分以下であることが好ましい。   In the second melt-kneading method, the temperature of the resin in the melt-kneading part of the extruder is preferably 160 ° C to 250 ° C. Moreover, it is preferable that the residence time in an extruder from supplying a styrene resin and various components to an extruder until the end of melt kneading is 7 minutes or less.

樹脂温度が250℃より高い場合、および/または、溶融混練終了までの押出機内滞留時間が7分より長い場合には、第1の溶融混練法と同様の問題が発生し得る。一方、樹脂温度が160℃より低い場合は、押出機の負荷が大きくなって押出が不安定になったり、添加する成分の分散性が悪化したりする場合がある。加えて、溶融混練後、直ぐにダイスを通して押出す場合は溶融樹脂のせん断歪、伸張歪が大きくなる為、得られる樹脂粒子の形状が不揃いになる場合がある。得られる発泡性スチレン系樹脂粒子の形状が良好でない場合には、成形性を悪化させる原因にもなる。   When the resin temperature is higher than 250 ° C. and / or when the residence time in the extruder until the end of melt kneading is longer than 7 minutes, the same problem as in the first melt kneading method may occur. On the other hand, when the resin temperature is lower than 160 ° C., the load on the extruder becomes large and the extrusion may become unstable, or the dispersibility of the component to be added may deteriorate. In addition, when the resin is extruded through a die immediately after melt-kneading, the shear strain and elongation strain of the molten resin increase, and the resulting resin particles may have irregular shapes. In the case where the shape of the resulting expandable styrene resin particles is not good, the moldability may be deteriorated.

押出機中にてスチレン系樹脂中に発泡剤、輻射伝熱抑制剤、必要に応じて、臭素系難燃剤、熱安定剤、造核剤などのその他添加剤が溶解又は均一分散され、適切な温度まで冷却された溶融樹脂(溶融混練物)は、複数の小孔を有するダイから、加圧された冷却水中に押し出される。   In the extruder, the foaming agent, radiation heat transfer inhibitor, and other additives such as brominated flame retardants, heat stabilizers, and nucleating agents are dissolved or uniformly dispersed in the styrene resin as appropriate. The molten resin (melt kneaded material) cooled to the temperature is extruded into pressurized cooling water from a die having a plurality of small holes.

本発明で用いられるダイは特に限定されないが、例えば、直径0.3mm〜2.0mm、好ましくは0.4mm〜1.0mmの小孔を有するものが挙げられる。   The die used in the present invention is not particularly limited, and examples thereof include those having a small hole with a diameter of 0.3 mm to 2.0 mm, preferably 0.4 mm to 1.0 mm.

第2の溶融混練法において、ダイより押し出される直前の溶融樹脂の温度は、発泡剤を含まない状態でのスチレン系樹脂のガラス転移温度+40℃〜100℃、より好ましくは該ガラス転移温度+50℃〜70℃であることが好ましい。   In the second melt-kneading method, the temperature of the molten resin immediately before being extruded from the die is the glass transition temperature of the styrene-based resin in the state containing no foaming agent + 40 ° C. to 100 ° C., more preferably the glass transition temperature + 50 ° C. It is preferable that it is -70 degreeC.

ダイより押し出される直前の溶融樹脂の温度がガラス転移温度+40℃よりも低い場合は、押し出された溶融樹脂の粘度が高くなりすぎて、小孔が詰まってしまい、実質小孔開口率の低下のために得られる樹脂粒子が変形する場合がある。一方で、ダイより押し出される直前の溶融樹脂の温度がガラス転移温度+100℃よりも高い場合は、押し出された溶融樹脂が完全に固化されず、発泡してしまう場合や、押し出された溶融樹脂の粘度が低くなりすぎて、回転カッターにより安定的に切断できず、押し出された溶融樹脂が回転カッターに巻き付く場合がある。   When the temperature of the molten resin immediately before being extruded from the die is lower than the glass transition temperature + 40 ° C., the viscosity of the extruded molten resin becomes too high and the small holes are clogged. Therefore, the resin particles obtained may be deformed. On the other hand, when the temperature of the molten resin immediately before being extruded from the die is higher than the glass transition temperature + 100 ° C., the extruded molten resin is not completely solidified and foams, or the extruded molten resin In some cases, the viscosity becomes too low to be stably cut by the rotary cutter, and the extruded molten resin winds around the rotary cutter.

第2の溶融混練法における循環加圧冷却水に押し出された溶融樹脂を切断する切断装置としては、特に限定されないが、例えば、ダイリップに接触する回転カッターで切断されて小球化され、加圧循環冷却水中を発泡することなく、遠心脱水機まで移送されて脱水・集約される装置、等が挙げられる。   The cutting device for cutting the molten resin extruded into the circulating pressurized cooling water in the second melt-kneading method is not particularly limited. For example, the cutting device is cut by a rotary cutter in contact with a die lip to be spheronized and pressurized. Examples include a device that is transported to a centrifugal dehydrator and dewatered and collected without foaming the circulating cooling water.

第2の溶融混練法の利点は発泡性スチレン系樹脂粒子まで同じ設備で製造できるため、第1の溶融混練法と比較してランニングコストが低くなることである。一方、グラファイト量、グラファイト粒径がダイの小孔開口率に影響を与えるため、第2の溶融混練法の生産安定性は第1の溶融混練法と比較すると低くなる。   The advantage of the second melt-kneading method is that the running cost is lower than that of the first melt-kneading method because even the expandable styrene resin particles can be produced with the same equipment. On the other hand, since the amount of graphite and the graphite particle size affect the small hole opening ratio of the die, the production stability of the second melt-kneading method is lower than that of the first melt-kneading method.

一方、重合法としては、スチレン系単量体又はスチレン系単量体とそれに共重合可能な単量体をグラファイトの存在下に懸濁水溶液中で重合させ、重合前および/または重合中および/または重合後に、発泡剤を含浸させる方法がある。   On the other hand, as a polymerization method, a styrene monomer or a styrene monomer and a monomer copolymerizable therewith are polymerized in an aqueous suspension in the presence of graphite, and before and / or during polymerization and / or Alternatively, there is a method of impregnating a foaming agent after polymerization.

さらにもう一つの重合法としては、スチレン系樹脂、グラファイトを押出機で溶融混練し、小孔を有するダイスを通じて押出して、カッターで切断することによりグラファイト含有スチレン系樹脂種粒子を得た後、該グラファイト含有スチレン系樹脂種粒子を水中に懸濁させ、スチレン系単量体、開始剤、必要に応じて臭素系難燃剤、造核剤などその他添加剤を供給してシード重合を行い、重合前および/または重合中および/または重合後に発泡剤を含浸させる方法が挙げられる。   As yet another polymerization method, styrene resin, graphite is melt-kneaded with an extruder, extruded through a die having small holes, and cut with a cutter to obtain graphite-containing styrene resin seed particles. Suspend graphite-containing styrene resin seed particles in water and supply seeds by supplying styrene monomers, initiators, and other additives such as brominated flame retardants and nucleating agents as necessary. And / or a method of impregnating the foaming agent during and / or after the polymerization.

重合法の利点は一般的な発泡性スチレン系樹脂粒子の製造に使用される装置を使用して重合及び発泡剤を含浸できるため、大きな設備投資又は設備変更が必要ないことである。一方、重合法ではスチレン系樹脂種粒子を水中に懸濁させるため、大量の排水が発生すること、乾燥処理が必要なことから環境に与える影響が大きい。   The advantage of the polymerization method is that it can be impregnated with the polymerization and foaming agent using the equipment used for the production of general expandable styrenic resin particles, so that no large capital investment or equipment change is required. On the other hand, in the polymerization method, since the styrene resin seed particles are suspended in water, a large amount of waste water is generated and a drying process is required, so that the influence on the environment is great.

[予備発泡粒子]
以上のようにして得られた本発明の発泡性スチレン系樹脂粒子は、従来公知の予備発泡工程、例えば、加熱水蒸気によって10〜110倍に発泡させて予備発泡粒子とし、必要に応じて一定時間養生させた後、成形に使用される。なお、本発明の発泡性スチレン系樹脂粒子を用いてスチレン系樹脂発泡成形体を得るための方法は特に限定されないが、好ましくは、後述する、所定の予備発泡方法を含む本発明のスチレン系樹脂発泡成形体の製造方法に準じて実施される。
[Pre-expanded particles]
The expandable styrenic resin particles of the present invention obtained as described above are expanded into a conventional well-known pre-foaming step, for example, 10 to 110 times by heated steam to obtain pre-foamed particles, and for a certain period of time as necessary. After curing, it is used for molding. The method for obtaining the styrene resin foam molded article using the expandable styrene resin particles of the present invention is not particularly limited, but preferably, the styrene resin of the present invention including a predetermined pre-foaming method described later. It implements according to the manufacturing method of a foaming molding.

(成形)
得られた予備発泡粒子は、従来公知の成形機を用い、加熱水蒸気によって成形(例えば型内成形)され、本発明のスチレン系樹脂発泡成形体が得られる。使用される金型の形状により、複雑な形の型物成形体やブロック状の成形体を得ることができる。
(Molding)
The obtained pre-expanded particles are molded with heated steam using a conventionally known molding machine (for example, in-mold molding) to obtain the styrene resin foam molded article of the present invention. Depending on the shape of the mold used, it is possible to obtain a molded article having a complicated shape or a block-like molded article.

[スチレン系樹脂発泡成形体]
本発明のスチレン系樹脂発泡成形体は、例えば、下記第1〜第4実施形態を含む。
[Styrenic resin foam molding]
The styrene resin foam molded article of the present invention includes, for example, the following first to fourth embodiments.

第1実施形態のスチレン系樹脂発泡成形体は、スチレン系樹脂、発泡剤及びグラファイトを含有し、グラファイト含有量が3〜8重量%であり、グラファイトの平均粒径が3〜7μmかつ比表面積が1.55m/cm以上である発泡性スチレン系樹脂粒子を予備発泡させ、得られた予備発泡粒子を成形して製造されたものであることを特徴とする。ここで用いられる発泡性スチレン系樹脂粒子は、前述した本発明のグラファイト含有発泡性スチレン系樹脂粒子である。The styrene resin foam molded article of the first embodiment contains a styrene resin, a foaming agent and graphite, has a graphite content of 3 to 8% by weight, an average particle diameter of graphite of 3 to 7 μm and a specific surface area. It is produced by pre-expanding expandable styrene resin particles having a size of 1.55 m 2 / cm 3 or more and molding the resulting pre-expanded particles. The expandable styrene resin particles used here are the graphite-containing expandable styrene resin particles of the present invention described above.

なお、第1実施形態のスチレン系樹脂発泡成形体は、高発泡倍率でありながら、熱伝導性が非常に低いという特性を有するため、下記第2実施形態における式1、式3又は式4で示される熱伝導率A(W/m・K)と発泡倍率B(cm/g)との関係、及び/又は下記第3実施形態における式2、式5又は式6で示される熱伝導率C(W/m・K)と発泡倍率D(cm/g)との関係を満たす。In addition, since the styrenic resin foam molded article of the first embodiment has a characteristic that the thermal conductivity is very low while having a high expansion ratio, the following formula 1, 3 or 4 in the second embodiment is used. Relationship between thermal conductivity A (W / m · K) and expansion ratio B (cm 3 / g) shown, and / or thermal conductivity shown by Formula 2, Formula 5 or Formula 6 in the third embodiment below Satisfies the relationship between C (W / m · K) and expansion ratio D (cm 3 / g).

第2実施形態の発泡成形体は、発泡性スチレン系樹脂粒子を予備発泡し、得られた予備発泡粒子を型内成形して製造されたものであり、スチレン系樹脂、発泡剤及びグラファイトを含有し、グラファイト含有量が全量の3〜8重量%であり、平均温度23℃、温度差20℃で測定した熱伝導率A(W/m・K)と発泡倍率B(cm/g)との間に下記式1の関係を有することを特徴とする。
式1:A≦0.0251+0.0000776×B
The foamed molded product of the second embodiment is produced by pre-expanding expandable styrene resin particles and molding the obtained pre-expanded particles in a mold, and contains a styrene resin, a foaming agent and graphite. The graphite content is 3 to 8% by weight of the total amount, the thermal conductivity A (W / m · K) and the expansion ratio B (cm 3 / g) measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. It has the relationship of following formula 1 between these.
Formula 1: A ≦ 0.0251 + 0.0000776 × B

第2実施形態の発泡成形体において、熱伝導率A(W/m・K)と発泡倍率B(cm/g)とは、好ましくは下記式3の関係を有し、より好ましくは下記式4の関係を有する。第2実施形態の発泡成形体は、高発泡倍率でありながら、熱伝導率が非常に低いという特性を有し、式1、式3及び式4はその特性を表わす。
式3:A≦0.0248+0.0000776×B
式4:A≦0.0245+0.0000776×B
In the foamed molded product of the second embodiment, the thermal conductivity A (W / m · K) and the expansion ratio B (cm 3 / g) preferably have the relationship of the following formula 3, more preferably the following formula: There are four relationships. The foamed molded product of the second embodiment has a characteristic that the thermal conductivity is very low while having a high foaming ratio, and Expressions 1, 3 and 4 represent the characteristics.
Formula 3: A ≦ 0.0248 + 0.0000776 × B
Formula 4: A ≦ 0.0245 + 0.0000776 × B

第3実施形態の発泡成形体は、発泡性スチレン系樹脂粒子を予備発泡し、得られた予備発泡粒子を型内成形して製造されたものであり、スチレン系樹脂、発泡剤及びグラファイトを含有し、グラファイト含有量が全量の3〜8重量%であり、50℃で30日間乾燥した後に平均温度23℃、温度差20℃で測定した熱伝導率C(W/m・K)と発泡倍率D(cm/g)との間に下記式2の関係を有することを特徴とする。
式2:C≦0.0276+0.0000776×D
The foamed molded product of the third embodiment is produced by pre-expanding expandable styrene resin particles and molding the obtained pre-expanded particles in a mold, and contains a styrene resin, a foaming agent and graphite. The thermal conductivity C (W / m · K) and expansion ratio measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. after the graphite content is 3 to 8% by weight of the total amount and dried at 50 ° C. for 30 days. It has the relationship of following formula 2 between D (cm < 3 > / g), It is characterized by the above-mentioned.
Formula 2: C ≦ 0.0276 + 0.0000776 × D

第3実施形態の発泡成形体において、熱伝導率C(W/m・K)と発泡倍率D(cm/g)とは、好ましくは下記式5の関係を有し、より好ましくは下記式6の関係を有する。第3実施形態の発泡成形体は、高発泡倍率でありながら、熱伝導率が非常に低く、かつその低熱伝導率が長期間にわたって維持されるという特性を有し、式2、式5及び式6はその特性を表わす。
式5:C≦0.0270+0.0000776×D
式6:C≦0.0267+0.0000776×D
In the foamed molded article of the third embodiment, the thermal conductivity C (W / m · K) and the expansion ratio D (cm 3 / g) preferably have the relationship of the following formula 5, more preferably the following formula: 6 relationships. The foamed molded product of the third embodiment has the characteristics that the thermal conductivity is very low and the low thermal conductivity is maintained over a long period of time while having a high foaming ratio. 6 represents the characteristic.
Formula 5: C ≦ 0.0270 + 0.0000776 × D
Formula 6: C ≦ 0.0267 + 0.0000776 × D

第4実施形態の発泡成形体は、発泡性スチレン系樹脂粒子を予備発泡し、得られた予備発泡粒子を型内成形して製造されたものであり、スチレン系樹脂、発泡剤及びグラファイトを含有し、グラファイト含有量が全量の3〜8重量%であり、平均温度23℃、温度差20℃で測定した熱伝導率A(W/m・K)と発泡倍率B(cm/g)との間に上記式1の関係を有し、かつ50℃で30日間乾燥した後に平均温度23℃、温度差20℃で測定した熱伝導率C(W/m・K)と発泡倍率D(cm/g)との間に上記式2の関係を有することを特徴とする。第4実施形態の発泡成形体において、熱伝導率Aと発泡倍率Bとの関係は、上記式1に代えて上記式3又は式4の関係としてもよく、熱伝導率Cと発泡倍率Dとの関係は、上記式2に代えて上記式5又は式6の関係としてもよい。The foamed molded product of the fourth embodiment is produced by pre-expanding expandable styrene resin particles and molding the obtained pre-expanded particles in a mold, and contains a styrene resin, a foaming agent and graphite. The graphite content is 3 to 8% by weight of the total amount, the thermal conductivity A (W / m · K) and the expansion ratio B (cm 3 / g) measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. The thermal conductivity C (W / m · K) measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. after drying for 30 days at 50 ° C. and the expansion ratio D (cm 3 / g) and having the relationship of the above formula 2. In the foam molded article of the fourth embodiment, the relationship between the thermal conductivity A and the expansion ratio B may be the relationship of the above expression 3 or 4 instead of the above expression 1, and the thermal conductivity C and the expansion ratio D This relationship may be the relationship of the above formula 5 or 6 instead of the above formula 2.

本発明のスチレン系樹脂発泡成形体は、発泡倍率が40倍以上の高倍率であっても、非常に低い熱伝導性を有する。例えば、第1実施形態の発泡成形体は、発泡倍率40倍で0.025〜0.028W/m・Kの範囲の非常に低い熱伝導率を示し、さらに50℃という発泡剤が揮散し易い温度下で30日保存後も熱伝導率は0.0280〜0.0310と非常に低く、長期にわたって非常に低い熱伝導率ひいては高い断熱性を維持する。   The styrenic resin foam molded article of the present invention has very low thermal conductivity even when the expansion ratio is as high as 40 times or more. For example, the foamed molded product of the first embodiment exhibits a very low thermal conductivity in the range of 0.025 to 0.028 W / m · K at a foaming ratio of 40 times, and the foaming agent of 50 ° C. is easily volatilized. Even after storage for 30 days under temperature, the thermal conductivity is as low as 0.0280 to 0.0310, and the thermal conductivity is kept low for a long period of time, and thus high thermal insulation.

従来のグラファイト含有発泡性スチレン系樹脂粒子から得られるグラファイト含有スチレン系樹脂発泡成形体(以下「従来の発泡成形体」と称することがある。)では、主にグラファイトがセル膜に穴を開けて発泡倍率及び熱伝導率に関与する独立気泡率を低下させることにより、高発泡倍率(特に65cm/g以上)を達成することができず、また、各発泡倍率において本発明のスチレン系樹脂発泡成形体のような低い熱伝導率を達成することはできなかった。In a conventional graphite-containing styrene resin foam molded article (hereinafter sometimes referred to as “conventional foam molded article”) obtained from conventional graphite-containing expandable styrene resin particles, graphite mainly has holes in the cell membrane. By reducing the closed cell ratio involved in the expansion ratio and thermal conductivity, a high expansion ratio (especially 65 cm 3 / g or more) cannot be achieved, and the styrene resin foam of the present invention can be achieved at each expansion ratio. It was not possible to achieve such a low thermal conductivity as the molded body.

本発明のスチレン系樹脂発泡成形体は、グラファイトを高含有する発泡性スチレン系樹脂粒子を原料として用いるにもかかわらず、所定の予備発泡条件を採用して該樹脂粒子を予備発泡粒子とすることにより、グラファイトがセル膜に穴を開けるのを抑制して得られるものである。したがって、本発明によれば、従来の発泡成形体よりも高発泡倍率でありながら、表面美麗性が損なわれることがなく、従来の発泡成形体と同等又はそれ以上の断熱性を得ることができるため、従来市販されていなかったような、高断熱性(低熱伝導率)及び高軽量性(高発泡倍率)のスチレン系樹脂発泡成形体をより安価に提供することができる。   Although the styrene resin foam molded article of the present invention uses expandable styrene resin particles containing a high amount of graphite as a raw material, the resin particles are used as prefoamed particles by adopting predetermined prefoaming conditions. Thus, it is possible to suppress the graphite from opening a hole in the cell membrane. Therefore, according to the present invention, although the foaming ratio is higher than that of the conventional foamed molded article, the surface aesthetics are not impaired, and the heat insulation equivalent to or higher than that of the conventional foamed molded article can be obtained. Therefore, it is possible to provide a styrenic resin foam molded body having high heat insulation (low thermal conductivity) and high light weight (high expansion ratio) that has not been commercially available at lower cost.

また、従来の発泡性スチレン系樹脂粒子から得られる従来の発泡成形体は時間経過と共に発泡剤が逸散して熱伝導率が大きくなり、断熱性が悪化することが問題となっていたが、本発明では発泡剤が十分に逸散した後でもより低い熱伝導率を発揮することができるため、長時間経過後も高い断熱性を維持することができる。   In addition, the conventional foamed molding obtained from the conventional foamable styrenic resin particles has been problematic in that the foaming agent dissipates over time, the thermal conductivity increases, and the heat insulation deteriorates. In the present invention, since the lower thermal conductivity can be exhibited even after the foaming agent has sufficiently dissipated, high heat insulation can be maintained even after a long time has elapsed.

また、スチレン系樹脂発泡成形体は発泡倍率が高いほど原料である発泡性スチレン系樹脂粒子の使用量が少なくなることから、本発明の高発泡倍率のスチレン系樹脂発泡成形体をより安価に製造することができる。なお、従来のスチレン系樹脂発泡成形体においては発泡倍率が40倍以上では発泡倍率が高いほど熱伝導率が大きくなり、断熱性が悪化する欠点があった。しかし、本発明の発泡性スチレン系樹脂粒子及び/又は後述する本発明の製造方法から得られるスチレン系樹脂発泡成形体は発泡倍率40倍以上であっても低い熱伝導性を有しているため、高い断熱性を有し、軽量で取扱性が良く、かつより安価な断熱材を供給することができる。   In addition, the higher the expansion ratio of the styrene resin foam molded article, the less the amount of the expandable styrene resin particles used as a raw material, the lower the production rate of the styrene resin foam molded article of the present invention. can do. In addition, in the conventional styrene-based resin foam molded article, when the expansion ratio is 40 times or more, the higher the expansion ratio, the higher the thermal conductivity, and there is a drawback that the heat insulation property deteriorates. However, the expandable styrene resin particles of the present invention and / or the styrene resin foam molded article obtained from the production method of the present invention described later have low thermal conductivity even when the expansion ratio is 40 times or more. Therefore, it is possible to supply a heat insulating material having high heat insulating properties, light weight, good handleability, and lower cost.

本発明のスチレン系樹脂発泡成形体は、低い熱伝導率を有すると共に、自己消火性を有し、かつ酸素指数26以上に調整することが可能であり、その場合には建築用断熱材として特に好適に使用できる。   The styrenic resin foam molded article of the present invention has low thermal conductivity, has self-extinguishing properties, and can be adjusted to an oxygen index of 26 or more. It can be used suitably.

本発明のスチレン系樹脂発泡成形体の発泡倍率は、好ましくは40cm/g以上、より好ましくは50cm/g以上、さらに好ましくは60cm/g以上、特に好ましくは65cm/g以上、最も好ましくは65〜80cm/gである。本発明によれば40倍以上のスチレン系樹脂発泡成形体とした場合でも低い熱伝導率を達成できるため、製造コストが安いより高発泡のスチレン系樹脂発泡成形体としても高性能な断熱性を発現できる。特に、発泡倍率を65〜80cm/gとした場合には、断熱性、軽量性、表面美麗性、その内部での発泡粒子同士の融着性等が顕著に向上した本発明のスチレン系樹脂発泡成形体を得ることができる。なお、本明細書において、発泡倍率は、「倍」又は「cm/g」という単位で示し、これらは同じ意味である。The expansion ratio of the styrene resin foam molded article of the present invention is preferably 40 cm 3 / g or more, more preferably 50 cm 3 / g or more, still more preferably 60 cm 3 / g or more, particularly preferably 65 cm 3 / g or more, most Preferably it is 65-80 cm < 3 > / g. According to the present invention, a low thermal conductivity can be achieved even when a styrene resin foam molded article having a magnification of 40 times or more is obtained. It can be expressed. In particular, when the expansion ratio is set to 65 to 80 cm 3 / g, the styrenic resin of the present invention in which the heat insulating property, lightness, surface aesthetics, fusion property between the expanded particles therein, and the like are remarkably improved. A foamed molded product can be obtained. In the present specification, the expansion ratio is expressed in units of “times” or “cm 3 / g”, which have the same meaning.

第1実施形態のスチレン系樹脂発泡成形体は、上述の本発明の発泡性スチレン系樹脂粒子を用いて製造されるので、該樹脂粒子と同じ各成分(但し発泡剤等を除く)を同じ含有量範囲で含有する。各成分の好ましい形態、より好ましい形態及びさらに好ましい形態も該樹脂粒子と同じである。また、該発泡成形体中の各成分(但し発泡剤等を除く)の含有量は、該樹脂粒子を予備発泡及び成形する際に発泡剤の一部が散逸するため、該樹脂粒子中での各成分の含有量に比べて増加する傾向がある。特に、該発泡成形体重量に対するグラファイト量は、該樹脂粒子重量に対するグラファイト量よりも多くなる。   Since the styrene resin foam molded article of the first embodiment is produced using the above expandable styrene resin particles of the present invention, it contains the same components as those of the resin particles (excluding the foaming agent, etc.). Contains in a range of amounts. The preferred form, more preferred form, and further preferred form of each component are the same as the resin particles. In addition, the content of each component (excluding the foaming agent, etc.) in the foamed molded product is such that a part of the foaming agent is dissipated when the resin particles are prefoamed and molded. There is a tendency to increase compared to the content of each component. In particular, the amount of graphite relative to the weight of the foamed molded product is greater than the amount of graphite relative to the weight of the resin particles.

また、第2〜第4実施形態のスチレン系樹脂発泡成形体に含有されるスチレン系樹脂、グラファイト、及び発泡剤並びにこれら各成分の好ましい形態は、上述の本発明の発泡性スチレン系樹脂粒子の項で説明したものと同じである。また、グラファイトは、高発泡倍率と低熱伝導率とを高水準で両立させる観点から、好ましくは平均粒径3〜7μmであり、より好ましくは平均粒径3〜7μm及び比表面瀬1.55m/cm以上であり、さらに好ましくは平均粒径3〜7μm、比表面瀬1.55m/cm以上及び(10%粒径/90%粒径)値2.5以上である。グラファイトは、好ましくは鱗片状黒鉛を主成分として含む黒鉛混合物であり、より好ましくは鱗片状黒鉛である。また、グラファイトの平均粒径、比表面積、及び(10%粒径/90%粒径)値の好ましい範囲等も、上述の本発明の発泡性スチレン系樹脂粒子の項で説明した範囲と同じである。また、第2〜第4実施形態のスチレン系樹脂発泡成形体におけるグラファイトの含有量及びその好ましい範囲等も、上述の本発明の発泡性スチレン系樹脂粒子と同じ範囲である。Moreover, the preferable form of the styrene resin, graphite, and the foaming agent and these components contained in the styrene resin foam molded article of the second to fourth embodiments is the above-described expandable styrene resin particle of the present invention. This is the same as described in the section. In addition, graphite preferably has an average particle diameter of 3 to 7 μm, more preferably an average particle diameter of 3 to 7 μm and a specific surface area of 1.55 m 2 from the viewpoint of achieving both high expansion ratio and low thermal conductivity at a high level. The average particle diameter is 3 to 7 μm, the specific surface area is 1.55 m 2 / cm 3 or more, and the value of (10% particle diameter / 90% particle diameter) is 2.5 or more. The graphite is preferably a graphite mixture containing scaly graphite as a main component, and more preferably scaly graphite. In addition, the preferable range of the average particle size, specific surface area, and (10% particle size / 90% particle size) value of graphite is the same as the range described in the above-mentioned section of expandable styrene resin particles of the present invention. is there. Further, the graphite content and the preferred range thereof in the styrene resin foam molded articles of the second to fourth embodiments are also in the same range as the above-described expandable styrene resin particles of the present invention.

また、第2〜第4実施形態のスチレン系樹脂発泡成形体は、本発明の効果を損なわない範囲で、難燃剤、熱安定化剤、ラジカル発生剤、及びその他の添加剤よりなる群から選ばれる少なくとも1種を任意成分として含有することができる。その他の添加剤とは、例えば、加工助剤、耐光性安定剤、帯電防止剤、顔料などの着色剤、造核剤、及び発泡助剤よりなる群から選ばれる少なくとも1種である。これらの任意成分は、発泡性スチレン系樹脂粒子の項で例示したのと同じものを使用できる。中でも、難燃剤としては臭素系難燃剤が好ましく、臭素系難燃剤は、第2〜第4実施形態のスチレン系樹脂発泡成形体中の臭素含有量が好ましくは0.8〜2.5重量%、より好ましくは1.0〜2.0重量%になるように配合される。   Moreover, the styrene resin foam molded article of the second to fourth embodiments is selected from the group consisting of a flame retardant, a heat stabilizer, a radical generator, and other additives, as long as the effects of the present invention are not impaired. At least one selected from the above can be contained as an optional component. The other additive is, for example, at least one selected from the group consisting of a processing aid, a light resistance stabilizer, an antistatic agent, a colorant such as a pigment, a nucleating agent, and a foaming aid. These optional components can be the same as those exemplified in the section of expandable styrene resin particles. Among them, a brominated flame retardant is preferable as the flame retardant, and the brominated flame retardant preferably has a bromine content in the styrene resin foam molded article of the second to fourth embodiments, preferably 0.8 to 2.5% by weight. More preferably, it is blended so as to be 1.0 to 2.0% by weight.

(熱伝導率の測定)
一般的に熱伝導率の測定平均温度が大きい方が熱伝導率の値は大きくなることが知られており、断熱性を比較するためには測定平均温度を定める必要がある。本明細書では発泡プラスチック保温材の規格であるJIS A9511:2006Rで定められた23℃を基準に採用している。
(Measurement of thermal conductivity)
In general, it is known that the higher the measurement average temperature of the thermal conductivity, the larger the value of the thermal conductivity. In order to compare the heat insulation, it is necessary to determine the measurement average temperature. In this specification, 23 ° C. defined in JIS A9511: 2006R, which is a standard for foamed plastic heat insulating materials, is adopted as a standard.

本発明では、熱伝導率Aは、スチレン系樹脂発泡成形体から熱伝導率測定サンプルを切り出し、サンプルを50℃温度下で48時間静置し、さらに23℃の温度下にて24時間静置した後に測定する。   In the present invention, the thermal conductivity A is determined by cutting out a thermal conductivity measurement sample from a styrene resin foam molded article, and allowing the sample to stand at a temperature of 50 ° C. for 48 hours, and further to stand at a temperature of 23 ° C. for 24 hours. Measure after.

さらに長期間後において発泡剤が空気に置き換わった場合の熱伝導率Cを評価するためにスチレン系樹脂発泡成形体から熱伝導率測定サンプルを切り出し、サンプルを50℃温度下で30日間静置し、さらに23℃の温度下にて24時間静置した後、熱伝導率Cを測定する。   Further, in order to evaluate the thermal conductivity C when the foaming agent is replaced with air after a long period of time, a thermal conductivity measurement sample is cut out from the styrenic resin foam molded article, and the sample is allowed to stand at a temperature of 50 ° C. for 30 days. Furthermore, after leaving still for 24 hours under the temperature of 23 degreeC, the heat conductivity C is measured.

50℃で30日間乾燥(アニーリング)することにより、スチレン系樹脂発泡成形体中に含有されるブタン、ペンタン等の炭化水素系発泡剤の含有量は0.5%以下となっており、熱伝導率に与える影響は軽微となり、スチレン系樹脂発泡成形体を常温で長期間使用した場合の熱伝導率Cをほぼ正確に評価することができる。   By drying (annealing) at 50 ° C. for 30 days, the content of hydrocarbon-based foaming agents such as butane and pentane contained in the styrene-based resin foamed molded article is 0.5% or less, and heat conduction The influence on the rate is negligible, and the thermal conductivity C when the styrene resin foam molded article is used at room temperature for a long time can be evaluated almost accurately.

本発明のスチレン系樹脂発泡成形体は、例えば、下記に示すような各種用途に使用できる。   The styrenic resin foam molded article of the present invention can be used for various applications as shown below, for example.

(建築用断熱材)
住宅などの断熱材は10年以上使用されるため、長期間経過後の断熱性維持が重要な課題となっている。本発明で得られるスチレン系樹脂発泡成形体は従来のスチレン系樹脂発泡成形体と比較して長期間経過後の熱伝導率を低くすることができるため、床、壁、屋根などに用いられる建築用断熱材として好適に使用することができる。
(Insulation for construction)
Since heat insulating materials such as houses are used for more than 10 years, maintaining heat insulation after a long period of time has become an important issue. Since the styrenic resin foam molded article obtained in the present invention can lower the thermal conductivity after a long period of time compared to conventional styrene resin foam molded articles, it can be used for floors, walls, roofs, etc. It can be suitably used as a heat insulating material.

(農水産箱)
本発明で得られるスチレン系樹脂発泡成形体は従来のスチレン系樹脂発泡成形体と比較して長期間経過後の熱伝導率を低くすることができるため、魚等の水産物を輸送する箱や野菜等の農産物を輸送する箱に好適に使用することができる。高い断熱性を持つ農水産箱であれば鮮魚を輸送する時の氷量を低減でき、夏場においても野菜等の鮮度を良好に保つことができる。
(Agriculture and fishery box)
Since the styrenic resin foam molded article obtained in the present invention can lower the thermal conductivity after a long period of time compared to conventional styrene resin foam molded articles, boxes and vegetables for transporting fish and other marine products It can use suitably for the box which conveys agricultural products, such as. An agricultural and fishery box with high heat insulation can reduce the amount of ice when transporting fresh fish, and can maintain good freshness of vegetables and the like even in summer.

(浴室用断熱材)
近年、お風呂の湯温低下を防ぐために浴室の壁、天井、床さらに浴槽に断熱材が使用されることがある。本発明で得られるスチレン系樹脂発泡成形体は従来のスチレン系樹脂発泡成形体と比較して長期間経過後の熱伝導率を低くすることができるため、浴室用断熱材に好適に使用できる。
(Insulation for bathroom)
In recent years, heat insulating materials are sometimes used on bathroom walls, ceilings, floors, and bathtubs in order to prevent a decrease in bath temperature. Since the styrenic resin foam molded article obtained in the present invention can lower the thermal conductivity after a long period of time as compared with a conventional styrene resin foam molded article, it can be suitably used as a heat insulating material for bathrooms.

(貯湯タンク断熱材)
エコキュート(商標名)等の貯湯タンクには湯温低下を防ぐために断熱材が使用されている。本発明で得られるスチレン系樹脂発泡成形体は従来のスチレン系樹脂発泡成形体と比較して長期間経過後の熱伝導率を低くすることができるため、貯湯タンク用断熱材に好適に使用できる。
(Hot water storage tank insulation)
Insulating materials are used in hot water storage tanks such as Ecocute (trade name) in order to prevent a drop in hot water temperature. Since the styrenic resin foam molded article obtained in the present invention can lower the thermal conductivity after a long period of time compared to the conventional styrene resin foam molded article, it can be suitably used as a heat insulating material for hot water storage tanks. .

[スチレン系樹脂発泡成形体の製造方法]
本発明の第1及び第2のスチレン系樹脂発泡成形体の製造方法は、所定の予備発泡工程を含むことを特徴とする。
すなわち、第1のスチレン系樹脂発泡成形体の製造方法(以下単に「第1の製造方法」とする)は、予備発泡機の缶内に入れた発泡性スチレン系樹脂粒子に水蒸気を投入して予備発泡粒子を得る予備発泡工程と、予備発泡粒子を型内成形する成形工程とを含み、スチレン系樹脂発泡成形体中のグラファイト含有量を3〜8重量%に調整し、かつ、予備発泡工程における水蒸気投入時間を50〜500秒とすることにより、熱伝導率A(W/m・K)と発泡倍率B(cm/g)の間に上記式1の関係を有するスチレン系樹脂発泡成形体を得ることを特徴とする。
[Method for producing styrene resin foam molded article]
The manufacturing method of the 1st and 2nd styrene-type resin foam molding of this invention is characterized by including a predetermined | prescribed foaming process.
That is, the first method for producing a styrene resin foam molded article (hereinafter, simply referred to as “first production method”) is to introduce steam into the expandable styrene resin particles placed in the can of the preliminary foaming machine. A pre-foaming step for obtaining pre-foamed particles; and a molding step for molding the pre-foamed particles in-mold, adjusting the graphite content in the styrene resin foam molded article to 3 to 8% by weight, and the pre-foaming step By setting the water vapor charging time in 50 to 500 seconds, the styrene-based resin foam molding having the relationship of the above formula 1 between the thermal conductivity A (W / m · K) and the foaming ratio B (cm 3 / g) It is characterized by obtaining a body.

また、第2のスチレン系樹脂発泡成形体の製造方法(以下単に「第2の製造方法」とする)は、予備発泡機の缶内に入れた発泡性スチレン系樹脂粒子に水蒸気を投入して予備発泡粒子を得る予備発泡工程と、予備発泡粒子を型内成形する成形工程とを含み、スチレン系樹脂発泡成形体中のグラファイト含有量を3〜8重量%に調整し、かつ、予備発泡工程における水蒸気投入時間を50〜500秒とすることにより、熱伝導率C(W/m・K)と発泡倍率D(cm/g)の間に上記式2の関係を有するスチレン系樹脂発泡成形体を得ることを特徴とする。In addition, a method for producing a second styrenic resin foam molded article (hereinafter simply referred to as “second production method”) is a method in which water vapor is introduced into expandable styrenic resin particles placed in a can of a pre-foaming machine. A pre-foaming step for obtaining pre-foamed particles; and a molding step for molding the pre-foamed particles in-mold, adjusting the graphite content in the styrene resin foam molded article to 3 to 8% by weight, and the pre-foaming step By setting the water vapor input time in 50 to 500 seconds, the styrene resin foam molding having the relationship of the above formula 2 between the thermal conductivity C (W / m · K) and the foaming ratio D (cm 3 / g) It is characterized by obtaining a body.

以下、第1及び第2の製造方法について、予備発泡工程及び成形工程の順でより詳しく説明する。   Hereinafter, the first and second manufacturing methods will be described in more detail in the order of the preliminary foaming step and the molding step.

(予備発泡工程)
予備発泡工程は、予備発泡機を用い、最終的に得られるスチレン系樹脂発泡成形体中のグラファイト含有量が3〜8重量%になるように調整し、かつ、予備発泡工程における水蒸気投入時間を50〜500秒とする以外は、従来の発泡性スチレン系樹脂粒子の予備発泡と同様にして実施できる。
(Pre-foaming process)
The pre-foaming step uses a pre-foaming machine, adjusts the graphite content in the finally obtained styrenic resin foam molded article to be 3 to 8% by weight, and sets the steam charging time in the pre-foaming step. Except for 50 to 500 seconds, it can be carried out in the same manner as the pre-foaming of conventional expandable styrene resin particles.

予備発泡機としては公知のものを使用でき、例えば、撹拌装置を備え、発泡性スチレン系樹脂粒子が収容される缶と、該缶の下方に設置され、水蒸気を該缶に供給する蒸気チャンバーと、予備発泡粒子排出口と、を備える予備発泡機が用いられる。蒸気チャンバーには、ボイラーから水蒸気が供給される。水蒸気と圧縮空気とを混合して蒸気チャンバーに供給することもできる。本明細書において、水蒸気温度は蒸気チャンバーに導入される水蒸気の温度であり、より具体的には、蒸気チャンバーの水蒸気導入口から10cm上流側における水蒸気の温度である。また、水蒸気投入時間(秒)は、缶内に入れた発泡性スチレン系樹脂粒子に水蒸気の供給を開始してから、その発泡性スチレン系樹脂粒子が予備発泡粒子となり、それを予備発泡機の缶外に取り出すまでの間に水蒸気を投入していた時間である。予備発泡機の缶内に水蒸気を複数回に分けて投入する場合は、その投入されている時間の合計を水蒸気投入時間とする。   As the pre-foaming machine, a known one can be used, for example, a can equipped with a stirrer and containing expandable styrenic resin particles, a steam chamber installed under the can and supplying water vapor to the can A pre-foaming machine including a pre-foamed particle discharge port is used. Steam is supplied to the steam chamber from the boiler. Steam and compressed air can be mixed and supplied to the steam chamber. In this specification, the water vapor temperature is the temperature of water vapor introduced into the vapor chamber, and more specifically, the temperature of water vapor 10 cm upstream from the water vapor inlet of the vapor chamber. In addition, the water supply time (seconds) is such that after the supply of water vapor to the expandable styrene resin particles placed in the can is started, the expandable styrene resin particles become pre-expanded particles. This is the time during which steam was added before taking it out of the can. When water vapor is introduced into the can of the pre-foaming machine in a plurality of times, the sum of the time during which the water is introduced is regarded as the water vapor introduction time.

缶内圧力(ゲージ圧)は、例えば、排気弁の開度を調整することにより制御できる。本明細書において、缶内圧力は、水蒸気投入中の缶の内部圧力であり、水蒸気投入中に内部圧力に変動がある場合は、所定時間(例えば1秒)毎に内部圧力を測定し、得られた測定値の算術平均値として求められる。加圧発泡法では水蒸気投入を間欠的に実施する場合がある。蒸気チャンバーから缶内への水蒸気供給は停止していても缶内での水蒸気雰囲気は継続していることから、この場合は缶内圧力が大気圧を超える状態で保持されている時間は水蒸気投入時間に含める。   The can internal pressure (gauge pressure) can be controlled, for example, by adjusting the opening of the exhaust valve. In this specification, the internal pressure of the can is the internal pressure of the can during the introduction of water vapor, and when the internal pressure varies during the introduction of the water vapor, the internal pressure is measured every predetermined time (for example, 1 second). It is obtained as an arithmetic average value of the measured values. In the pressure foaming method, there are cases where water vapor is intermittently introduced. Even if the supply of water vapor from the steam chamber to the can is stopped, the water vapor atmosphere in the can continues, so in this case, the time during which the pressure inside the can is maintained above atmospheric pressure is the time when steam is supplied. Include in time.

予備発泡工程において、水蒸気投入時間は50秒〜500秒であり、好ましくは80秒〜300秒、より好ましくは100秒〜200秒である。水蒸気投入時間が前記範囲内であることによって、発泡倍率及び独立発泡率が高く、製造当初から長期間にわたって非常に低い熱伝導率を維持し、さらに表面美麗性にも優れた本発明のスチレン系樹脂発泡成形体を得ることができる。このような効果が得られる理由は現状では十分明らかではないが、グラファイトを高含有するにもかかわらず、グラファイトがセル膜に穴を開けることが抑制されるためであると推測される。なお、予備発泡工程で水蒸気投入時間を選択することは、通常に行なわれることであるが、グラファイトを高含有する系において、水蒸気投入時間がどのような影響を及ぼすかは現状では明らかではない。   In the pre-foaming step, the water vapor input time is 50 seconds to 500 seconds, preferably 80 seconds to 300 seconds, and more preferably 100 seconds to 200 seconds. Due to the steam introduction time being within the above range, the expansion ratio and the independent expansion ratio are high, the styrenic system of the present invention that maintains a very low thermal conductivity over a long period of time from the beginning of manufacture, and also has excellent surface beauty. A resin foam molding can be obtained. The reason why such an effect can be obtained is not sufficiently clear at present, but it is presumed that, despite the high content of graphite, it is suppressed that the graphite perforates the cell membrane. It should be noted that the selection of the water vapor charging time in the pre-foaming step is normally performed, but it is not clear at present how the water vapor charging time affects a system containing a high amount of graphite.

水蒸気投入時間が50秒未満では、発泡性樹脂粒子を所定の発泡倍率にするために、水蒸気温度を高くする必要があるが、そうすると、予備発泡中の発泡性樹脂粒子同士が接着するブロッキング現象が発生し易くなり、予備発泡収率を低下させる傾向がある。水蒸気投入時間が500秒を超えると、得られた予備発泡粒子の収縮が大きくなるため、高発泡倍率の予備発泡粒子を得ることが難しく、高発泡倍率(特に65cm/g以上)のスチレン系樹脂発泡成形体を得ることが難しくなったり、得られた発泡成形体の表面美麗性が損なわれたりする傾向がある。When the water vapor charging time is less than 50 seconds, it is necessary to increase the water vapor temperature in order to make the expandable resin particles have a predetermined expansion ratio. It tends to occur and tends to reduce the prefoaming yield. If the water vapor input time exceeds 500 seconds, the resulting pre-expanded particles shrink significantly, making it difficult to obtain pre-expanded particles having a high expansion ratio, and a styrene system having a high expansion ratio (particularly 65 cm 3 / g or more). There exists a tendency for it to become difficult to obtain a resin foaming molding, or the surface beauty of the obtained foaming molding is impaired.

また、最終的に得られるスチレン系樹脂発泡成形体におけるグラファイト含有量は、例えば、発泡性スチレン系樹脂粒子中のグラファイト含有量を適宜選択することにより調整できる。なお、スチレン系樹脂発泡成形体中のグラファイト含有量は、予備発泡工程及び成形工程での発泡剤の揮散等により、発泡性スチレン系樹脂粒子中のグラファイト含有量よりも増加する傾向があるので、その点を考慮して、発泡性スチレン系樹脂粒子のグラファイト含有量を選択すればよい。   Moreover, the graphite content in the finally obtained styrenic resin foam molded article can be adjusted, for example, by appropriately selecting the graphite content in the expandable styrene resin particles. In addition, the graphite content in the styrene-based resin foamed molded product tends to increase more than the graphite content in the expandable styrene-based resin particles due to volatilization of the foaming agent in the preliminary foaming step and the molding step. Considering this point, the graphite content of the expandable styrene resin particles may be selected.

水蒸気投入時の缶内圧力(ケージ圧)は特に限定されないが、好ましくは0.001〜0.15MPa、より好ましくは0.01〜0.10MPa、さらに好ましくは0.03〜0.08MPaである。缶内圧力が0.001MPa未満では、高発泡倍率(特に65cm/g以上)を得る場合に、予備発泡に長時間を要し、水蒸気投入時間を500秒以下にすることが難しくなる傾向がある。缶内圧力が0.15MPaを超えると、水蒸気の圧力を高くすることが必要になるが、そうすると、ブロッキング現象の発生数が増加し、予備発泡収率が低下する傾向がある。また、水蒸気を空気と混合することにより、水蒸気温度を調整したり、予備発泡粒子が所定の発泡倍率に達するまでの水蒸気投入時間の制御が容易になったり、予備発泡粒子の独立気泡率を高めたりすることができる。The internal pressure (cage pressure) at the time of introducing steam is not particularly limited, but is preferably 0.001 to 0.15 MPa, more preferably 0.01 to 0.10 MPa, and further preferably 0.03 to 0.08 MPa. . If the pressure inside the can is less than 0.001 MPa, when a high expansion ratio (especially 65 cm 3 / g or more) is obtained, it takes a long time for pre-foaming, and it tends to be difficult to make the steam input time 500 seconds or less. is there. When the pressure inside the can exceeds 0.15 MPa, it is necessary to increase the pressure of water vapor. However, if this is done, the number of occurrences of blocking phenomenon increases, and the prefoaming yield tends to decrease. In addition, by mixing water vapor with air, it is possible to adjust the water vapor temperature, to easily control the time for adding water vapor until the pre-expanded particles reach a predetermined expansion ratio, and to increase the closed cell ratio of the pre-expanded particles. Can be.

水蒸気温度は水蒸気と空気を混合することにより、調整することができる。水蒸気と空気を混合することにより、所定の発泡倍率に達するまでの水蒸気投入時間の制御が容易になったり、予備発泡粒子の独立気泡率を高めたりすることができる。   The water vapor temperature can be adjusted by mixing water vapor and air. By mixing water vapor and air, it is possible to easily control the time for adding water vapor until a predetermined expansion ratio is reached, and to increase the closed cell ratio of the pre-expanded particles.

缶内に導入される水蒸気の温度は特に限定されないが、好ましくは100℃を超え、130℃以下、より好ましくは105〜125℃、さらに好ましくは105〜120℃である。水蒸気温度が100℃以下であると、高発泡倍率(特に65cm/g以上)を得る場合に、予備発泡に長時間を要し、水蒸気投入時間を500秒以下にすることが難しくなる傾向がある。水蒸気温度が130℃を超えると、ブロッキング現象の発生数が増加し、予備発泡収率が低下する傾向がある。Although the temperature of the water vapor introduced into the can is not particularly limited, it is preferably more than 100 ° C., 130 ° C. or less, more preferably 105 to 125 ° C., further preferably 105 to 120 ° C. When the water vapor temperature is 100 ° C. or lower, when obtaining a high expansion ratio (particularly 65 cm 3 / g or more), it takes a long time for pre-foaming, and it tends to be difficult to make the water vapor input time 500 seconds or less. is there. When the water vapor temperature exceeds 130 ° C., the number of blocking phenomena increases and the prefoaming yield tends to decrease.

また、発泡性スチレン系樹脂粒子の予備発泡は、一段階で行なうことが好ましい。一段階での予備発泡を行なうことにより、単に断熱性及び軽量性に優れるだけでなく、表面美麗性や、内部における発泡粒子同士の融着性が一層向上したスチレン系樹脂発泡成形体を得ることができる。予備発泡を二段階で行なう場合には、容易に高発泡倍率(例えば65cm/g以上)とすることができるが、表面美麗性や、内部における発泡粒子同士の融着性が低下する傾向がある。Moreover, it is preferable to perform preliminary foaming of the expandable styrene resin particles in one stage. By performing pre-foaming in one stage, a styrenic resin foam molded article with not only excellent heat insulation and light weight but also improved surface beauty and fusion between foam particles inside is obtained. Can do. When pre-foaming is performed in two stages, a high foaming ratio (for example, 65 cm 3 / g or more) can be easily obtained, but there is a tendency that the surface aesthetics and the fusibility between the foamed particles inside are lowered. is there.

また、予備発泡工程は、連続法及びバッチ法のいずれでも行なうことができる。
連続法は、缶内への発泡性スチレン系樹脂粒子の供給、及び缶上部に設けられた排出口からの予備発泡粒子の排出を連続的に行なう方法である。予備発泡粒子の発泡倍率は、例えば、発泡性スチレン系樹脂粒子の缶内への時間当たりの投入量(重量)を適宜選択することにより調整できる。連続法の場合は缶内へ発泡性スチレン系樹脂粒子が供給されてから予備発泡粒子が排出されるまでの予備発泡機缶内での滞留時間を水蒸気投入時間とする。
Further, the preliminary foaming step can be performed by either a continuous method or a batch method.
The continuous method is a method of continuously supplying the expandable styrene resin particles into the can and discharging the pre-expanded particles from the discharge port provided in the upper portion of the can. The expansion ratio of the pre-expanded particles can be adjusted, for example, by appropriately selecting the amount (weight) of the expandable styrenic resin particles that are charged per time into the can. In the case of the continuous process, the residence time in the pre-foaming machine can from when the expandable styrenic resin particles are supplied into the can until the pre-expanded particles are discharged is referred to as the steam input time.

また、バッチ法は、缶内に所定量の発泡性スチレン系樹脂粒子を入れ、これを所定の発泡倍率に予備発泡させた後に水蒸気の供給を停止し、次いで必要に応じて空気を缶内に吹き込んで予備発泡粒子を冷却及び乾燥し、缶内から取り出す方法である。予備発泡粒子の発泡倍率は、発泡性スチレン系樹脂粒子のバッチあたりの缶内への投入量(重量)を適宜選択することにより調整できる。バッチ法は、投入された発泡性スチレン系樹脂粒子を所定容積まで予備発泡させる方法であることから、バッチ当りの投入量を減らすほど、得られる予備発泡粒子の発泡倍率は高くなる。   In the batch method, a predetermined amount of expandable styrenic resin particles is placed in a can, pre-expanded to a predetermined expansion ratio, and then the supply of water vapor is stopped. Then, if necessary, air is introduced into the can. This is a method in which the pre-foamed particles are blown, cooled and dried, and taken out from the can. The expansion ratio of the pre-expanded particles can be adjusted by appropriately selecting the input amount (weight) of the expandable styrene resin particles into the can per batch. The batch method is a method in which the expanded foamed styrene resin particles are pre-expanded to a predetermined volume. Therefore, as the input amount per batch is reduced, the expansion ratio of the obtained pre-expanded particles is increased.

次に、成形工程では、上記で得られた予備発泡粒子を用いる以外は、従来の発泡成形法と同様にして、スチレン系樹脂発泡成形体を得ることができる。   Next, in the molding step, a styrene resin foam molded article can be obtained in the same manner as in the conventional foam molding method except that the pre-expanded particles obtained above are used.

スチレン系樹脂発泡成形体の平均セル径を好ましくは70〜250μm、より好ましくは90〜200μm、さらに好ましくは100〜180μmに調整することが望ましい。平均セル径が前記範囲にあることによって、断熱性の高いスチレン系樹脂発泡成形体となる。平均セル径が70μm未満では、該発泡成形体の独立気泡率が低下し、また、250μmを超えると断熱性が低下する。平均セル径は、例えば、造核剤の量を適宜選択することにより調整できる。   The average cell diameter of the styrene resin foam molded article is preferably adjusted to 70 to 250 μm, more preferably 90 to 200 μm, and still more preferably 100 to 180 μm. When the average cell diameter is in the above range, a styrenic resin foam molded article having high heat insulation is obtained. When the average cell diameter is less than 70 μm, the closed cell ratio of the foamed molded product is lowered, and when it exceeds 250 μm, the heat insulating property is lowered. The average cell diameter can be adjusted, for example, by appropriately selecting the amount of the nucleating agent.

また、本発明では、予備発泡粒子、及びスチレン系樹脂発泡成形体の独立気泡率をそれぞれ97〜100%に調整することが好ましい。予備発泡粒子の独立気泡率が97%未満では、これを用いて得られるスチレン系樹脂発泡成形体の表面美麗性が低下する傾向がある。また、スチレン系樹脂発泡成形体の独立気泡率が97%未満では、その断熱性が低下する傾向がある。独立気泡率は、例えば、缶内又は成形金型内に水蒸気と空気との混合物を導入し、該混合物における水蒸気の割合を適宜選択することにより、調整できる。   Moreover, in this invention, it is preferable to adjust the closed cell rate of a pre-expanded particle and a styrene resin foaming molding to 97 to 100%, respectively. When the closed cell ratio of the pre-expanded particles is less than 97%, the surface aesthetics of the styrene resin foam molded article obtained using the pre-expanded particles tends to be lowered. Further, when the closed cell ratio of the styrene resin foam molded article is less than 97%, the heat insulating property tends to be lowered. The closed cell ratio can be adjusted, for example, by introducing a mixture of water vapor and air into a can or a molding die and appropriately selecting the ratio of water vapor in the mixture.

以下に、実施例および比較例を挙げて、本発明を具体的に説明するが、これらに限定されるものではない。以下において、特に断らない限り、「部」及び「%」はそれぞれ「重量部」及び「重量%」を示すものとする。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but is not limited thereto. In the following, unless otherwise specified, “part” and “%” represent “part by weight” and “% by weight”, respectively.

尚、実施例における測定方法および評価方法は、以下のとおりである。   In addition, the measuring method and evaluation method in an Example are as follows.

(1)スチレン系樹脂発泡成形体の熱伝導率A
スチレン系樹脂発泡成形体から、長さ300mm×幅300mmのサンプルを切り出した。厚み方向はスチレン系樹脂発泡成形体の厚さ25mmをそのまま使用した。従ってサンプルの長さ300mm×幅300mmの2面はスチレン系樹脂発泡成形体の成形された時の表面のままである。このような、成形された時の表面を一般的に表面スキンと呼ぶ。サンプルを50℃温度下にて48時間静置し、さらに、23℃温度下にて24時間静置した後、熱伝導率測定装置(英弘精機(株)製、HC−074)を用いて、JIS A1412−2:1999に準拠して熱流計法にて平均温度23℃、温度差20℃で熱伝導率Aを測定した。
(1) Thermal conductivity A of styrenic resin foam molding
A sample having a length of 300 mm and a width of 300 mm was cut out from the styrene-based resin foam molding. For the thickness direction, the thickness of 25 mm of the styrene resin foam molded article was used as it was. Accordingly, the two surfaces of the sample length 300 mm × width 300 mm remain as they were when the styrene resin foam molded article was molded. Such a molded surface is generally called a surface skin. The sample was allowed to stand at a temperature of 50 ° C. for 48 hours, and further allowed to stand at a temperature of 23 ° C. for 24 hours, and then a thermal conductivity measuring device (Hidehiro Seiki Co., Ltd., HC-074) was used. The thermal conductivity A was measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. by a heat flow meter method in accordance with JIS A1412-2: 1999.

(2)50℃で30日間乾燥した後のスチレン系樹脂発泡成形体の熱伝導率C
スチレン系樹脂発泡成形体から、(1)と同様に長さ300mm×幅300mm×厚さ25mmのサンプルを切り出した。サンプルを50℃温度下にて30日間静置し、さらに、23℃温度下にて24時間静置した後、熱伝導率測定装置(英弘精機(株)製、HC−074)を用いて、JIS A1412−2:1999に準拠して熱流計法にて平均温度23℃、温度差20℃で熱伝導率Cを測定した。
(2) Thermal conductivity C of styrenic resin foam molding after drying at 50 ° C. for 30 days
A sample having a length of 300 mm, a width of 300 mm, and a thickness of 25 mm was cut out from the styrenic resin foam molded article in the same manner as in (1). The sample was allowed to stand at a temperature of 50 ° C. for 30 days, and further allowed to stand at a temperature of 23 ° C. for 24 hours. Then, using a thermal conductivity measuring device (HC-074 manufactured by Eihiro Seiki Co., Ltd.), The thermal conductivity C was measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. by a heat flow meter method according to JIS A1412-2: 1999.

(3)グラファイト含有量
発泡性スチレン系樹脂粒子約10mgを採取し、又はスチレン系樹脂発泡成形体から約10mgの試験片を切り出し、サンプルとした。このサンプルを、熱分析システム:EXSTAR6000を備えた熱重量測定装置(エスアイアイ・ナノテクノロジー(株)製、TG/DTA 220U)を用いて、下記I〜IIIを連続で実施し、IIIにおける重量減少量をグラファイト重量とし、試験片重量に対するパーセントで表す。
(3) Graphite content About 10 mg of expandable styrene resin particles were collected, or about 10 mg of a test piece was cut out from the styrene resin foam molded article to prepare a sample. This sample was continuously subjected to the following I to III using a thermogravimetric apparatus (TG / DTA 220U, manufactured by SII NanoTechnology Co., Ltd.) equipped with a thermal analysis system: EXSTAR6000. The amount is the graphite weight and is expressed as a percentage of the specimen weight.

I.200mL/分の窒素気流下で40℃から600℃まで20℃/分で昇温した後600℃で10分保持
II.200mL/分の窒素気流下で600℃から400℃まで10℃/分で降温した後400℃で5分保持
III.200mL/分の空気気流下で400℃から800℃まで20℃/分で昇温した後800℃で15分保持
I. I. Temperature was raised from 40 ° C. to 600 ° C. at 20 ° C./min under a nitrogen stream of 200 mL / min and then kept at 600 ° C. for 10 minutes II. Lower the temperature from 600 ° C. to 400 ° C. at 10 ° C./min under a nitrogen flow of 200 mL / min, and hold at 400 ° C. for 5 minutes III. The temperature was raised from 400 ° C. to 800 ° C. at 20 ° C./min under an air stream of 200 mL / min and then held at 800 ° C. for 15 minutes

(4)グラファイトの平均粒径(μm)、比表面積(m/cm)、90%粒径及び10%粒径の測定
レーザー回折・散乱式粒度分析計(日機装(株)製、Microtrac MT3300 II)を用いて測定した。グラファイトを水中に分散させ、レーザー回折散乱法により粒度分布、比表面積を測定した。全粒子の体積に対する粒径が小さい方からの累積体積が50%になる時の粒径を平均粒径とした。また、全粒子の体積に対する粒径が小さい方からの累積体積が10%になる時の粒径を10%粒径、粒径が小さい方からの累積体積が90%になる時の粒径を90%粒径とし、90%粒径を10%粒径で除した値を算出して(90%粒径/10%粒径)値とした。
測定条件:溶媒=水、溶媒屈折率=1.333、粒子透過性=吸収
(4) Measurement of average particle diameter (μm), specific surface area (m 2 / cm 3 ) of graphite, 90% particle diameter and 10% particle diameter Laser diffraction / scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac MT3300) II). Graphite was dispersed in water, and the particle size distribution and specific surface area were measured by a laser diffraction scattering method. The average particle size was defined as the particle size when the cumulative volume from the smaller particle size with respect to the volume of all particles was 50%. In addition, the particle size when the cumulative volume from the smaller particle size with respect to the volume of all particles becomes 10% is 10%, the particle size when the cumulative volume from the smaller particle size is 90%. A value obtained by dividing the 90% particle diameter by the 10% particle diameter was calculated as 90% particle diameter, and the value was (90% particle diameter / 10% particle diameter).
Measurement conditions: solvent = water, solvent refractive index = 1.333, particle permeability = absorption

(5)臭素含有量測定方法
臭素の含有量は、下記酸素フラスコ燃焼法の後、下記イオンクロマト法(以下、「IC法」と略す。)により、臭素の定量分析を行い、求めた。
(5) Method for measuring bromine content The bromine content was determined by quantitative analysis of bromine by the following ion chromatography method (hereinafter abbreviated as "IC method") after the following oxygen flask combustion method.

[酸素フラスコ燃焼法]
導火部を有する濾紙の中央に、試料(スチレン系樹脂発泡成形体5mg)を置き、導火部を固定したまま濾紙を縦方向に三つ折りする。その後、濾紙を横方向に三つ折りにし、試料を包含した濾紙を、500mlの燃焼フラスコの共栓部(ガラス栓)に取り付けた白金バスケットに入れる。他方、燃焼フラスコの三角フラスコには、25mlの吸収液(飽水ヒドラジン1滴を滴下した超純水)を入れ、さらに酸素を満たしておく。
[Oxygen flask combustion method]
A sample (styrene resin foamed molded article 5 mg) is placed in the center of the filter paper having the igniter, and the filter paper is folded in three in the vertical direction while the igniter is fixed. Thereafter, the filter paper is folded in three in the horizontal direction, and the filter paper containing the sample is put in a platinum basket attached to a stopper (glass stopper) of a 500 ml combustion flask. On the other hand, 25 ml of absorption liquid (ultra pure water with 1 drop of saturated hydrazine added) is added to the Erlenmeyer flask of the combustion flask and further filled with oxygen.

濾紙の導火部に点火し、濾紙が固定された白金バスケットを三角フラスコに挿入し、三角フラスコ内部で試料を燃焼させる。燃焼終了後に、燃焼フラスコを傾斜させて2分間振盪し、その後1時間放置することにより、燃焼により発生した臭素を吸収液に吸収させる。   The ignition part of the filter paper is ignited, a platinum basket with the filter paper fixed is inserted into the Erlenmeyer flask, and the sample is burned inside the Erlenmeyer flask. After the completion of combustion, the combustion flask is tilted and shaken for 2 minutes, and then left for 1 hour, so that bromine generated by the combustion is absorbed by the absorbent.

[IC法]
酸素フラスコ燃焼法により得られた吸収液を、イオンクロマト法により、以下の条件にて、臭素イオン量を測定した。
[IC method]
The amount of bromine ions was measured for the absorbent obtained by the oxygen flask combustion method by the ion chromatography method under the following conditions.

機種:ダイオネクス社製、ICS−2000
カラム:IonPac AG18,AS18(4mmφ×250mm)
溶離液:KOHグラジエント(溶離液ジェネレータ使用)
容離液流量:1.0ml/分
試料注入量:50μl
検出器:電気伝導度検出器
試料中の臭素濃度は、下式を用いて算出した。
Model: manufactured by Dionex, ICS-2000
Column: IonPac AG18, AS18 (4mmφ × 250mm)
Eluent: KOH gradient (using eluent generator)
Volumetric flow rate: 1.0 ml / min Sample injection volume: 50 μl
Detector: Electrical conductivity detector The bromine concentration in the sample was calculated using the following equation.

試料中の臭素濃度(%)=[{スチレン系樹脂発泡成形体のIC測定結果(mg/l)−ブランク試験結果(mg/l)}×25(ml)×1000]/{試料採取量(mg)×10000}   Bromine concentration in sample (%) = [{IC measurement result of styrene-based resin foam molded article (mg / l) -blank test result (mg / l)} × 25 (ml) × 1000] / {sample collection amount ( mg) × 10000}

(6)発泡倍率
スチレン系樹脂発泡成形体から、(1)と同様に長さ300mm×幅300mm×厚さ25mmのサンプルを切り出した。サンプルの重量(g)を測定すると共に、ノギスを用いて、縦寸法、横寸法、厚さ寸法を測定した。測定された各寸法からサンプルの体積(cm)を計算し、下記計算式に従って発泡倍率を算出した。
(6) Foaming ratio A sample having a length of 300 mm, a width of 300 mm, and a thickness of 25 mm was cut out from the styrene-based resin foam molded article in the same manner as in (1). While measuring the weight (g) of the sample, the vertical dimension, the horizontal dimension, and the thickness dimension were measured using a caliper. The volume (cm 3 ) of the sample was calculated from each measured dimension, and the expansion ratio was calculated according to the following formula.

発泡倍率(倍)=サンプル体積(cm)/サンプル重量(g)
スチレン系樹脂発泡成形体の発泡倍率(倍)は慣習的にcm/gで求められている。
Foaming ratio (times) = sample volume (cm 3 ) / sample weight (g)
The expansion ratio (times) of styrenic resin foam molded products is conventionally determined in cm 3 / g.

(7)スチレン系樹脂発泡成形体の難燃性の評価方法
(自己消火性)
得られた発泡成形体に対して、60℃温度下にて48時間静置し、さらに23℃温度下にて24時間静置した後、JIS A9511:2006R(発泡プラスチック保温材)測定方法Aに準じた評価を行った。
○:消火時間が3秒以内。
×:消火時間が3秒を超える、又は、消火しなかった。
得られた発泡成形体に対して、60℃温度下にて48時間静置し、さらに23℃温度下にて24時間静置した後、JIS K7201に準じて、最低酸素指数を測定した。
(7) Evaluation method of flame retardancy of styrenic resin foam molding (self-extinguishing)
The obtained molded foam was allowed to stand for 48 hours at a temperature of 60 ° C., and further allowed to stand for 24 hours at a temperature of 23 ° C., followed by JIS A9511: 2006R (foamed plastic heat insulating material) measurement method A. A similar evaluation was performed.
○: Fire extinguishing time is within 3 seconds.
X: Fire extinguishing time exceeded 3 seconds or did not extinguish.
The obtained foamed molded article was allowed to stand for 48 hours at a temperature of 60 ° C. and further allowed to stand for 24 hours at a temperature of 23 ° C., and then the minimum oxygen index was measured according to JIS K7201.

(8)スチレン系樹脂発泡成形体の平均セル径の評価方法
スチレン系樹脂発泡成形体をカミソリで切削し、光学顕微鏡で断面を観察した。断面の1000μm×1000μm四方(100倍の画像では100mm×100mm四方)の範囲内に存在するセル数を計測し、下記式(面積平均径)で測定した値を平均セル径とした。各サンプル5個の平均セル径を測定し、その平均を水準の平均セル径とした。
平均セル径(μm)=2×(1000μm×1000μm/セル数)1/2
(8) Evaluation Method of Average Cell Diameter of Styrenic Resin Foam Molded Article A styrene resin foam molded article was cut with a razor, and a cross section was observed with an optical microscope. The number of cells existing in the range of 1000 μm × 1000 μm square (100 mm × 100 mm square in a 100 × image) of the cross section was measured, and the value measured by the following formula (area average diameter) was taken as the average cell diameter. The average cell diameter of five samples was measured, and the average was taken as the average cell diameter.
Average cell diameter (μm) = 2 × (1000 μm × 1000 μm / number of cells) 1/2

(9)予備発泡粒子及びスチレン系樹脂発泡成形体の独立気泡率の評価方法
空気比較式比重計(BECKMAN社製、930型)を用いて、得られた予備発泡粒子及びスチレン系樹脂発泡成形体の独立気泡体積を求め、かかる独立気泡体積を別途エタノール浸漬法で求めた見かけ体積で除することにより、独立気泡率を算出した。
(9) Evaluation method of closed cell ratio of pre-expanded particles and styrene resin foam molded article Using the air comparison type hydrometer (manufactured by BECKMAN, Model 930), the obtained pre-expanded particles and styrene resin foam molded article The closed cell volume was calculated by dividing the closed cell volume by the apparent volume separately obtained by the ethanol immersion method.

(10)スチレン系樹脂発泡成形体の表面美麗性の評価方法
スチレン系樹脂発泡成形体の表面美麗性は、成形後のスチレン系樹脂発泡成形体を約35℃の乾燥室で一昼夜保管したものを、パネラー10名により目視観察し、下記5段階に評価した。各パネラーの値を算術平均し、小数点第2位を四捨五入して評価値を求めた。
5;粒子間隙がほとんど無く綺麗である。
4;粒子間隙は若干見られる。
3;粒子間隙はあるが実用上問題ない最低レベルである。
2;粒子間隙が多数あり問題がある。
1;使用できないレベルである、
(10) Evaluation method of surface beauty of styrenic resin foam molded article The surface beauty of styrene resin foam molded article is obtained by storing the molded styrene resin foam molded article in a drying room at about 35 ° C all day and night. The panel was visually observed by 10 panelists and evaluated according to the following 5 levels. The value of each panel was arithmetically averaged, and the evaluation value was obtained by rounding off the second decimal place.
5: It is beautiful with almost no particle gaps.
4; Some particle gaps are seen.
3; lowest level at which there is a particle gap but no practical problem.
2: There are many particle gaps and there is a problem.
1: Level that cannot be used

(11)予備発泡時のブロッキング量の評価方法
予備発泡粒子を目開き1cmの篩に通し、篩上に残った数個の予備発泡粒子が結合したもの(ブロッキング)の重量を測定し、予備発泡に使用した発泡性スチレン系樹脂粒子の重量に対する割合を、以下の式により算出し、予備発泡時のブロッキング量(%)とした。
ブロッキング量(%)=(X/Y)×100。
〔式中、Xはブロッキングの重量を、Yは発泡性スチレン系樹脂粒子の重量を示す。〕
(11) Evaluation method of blocking amount at the time of pre-foaming Pre-foamed particles are passed through a 1 cm sieve and the weight of a block of several pre-foamed particles remaining on the sieve (blocking) is measured. The ratio with respect to the weight of the expandable styrenic resin particles used in the above was calculated by the following formula, and used as the blocking amount (%) at the time of preliminary foaming.
Blocking amount (%) = (X / Y) × 100.
[Wherein, X represents the weight of blocking, and Y represents the weight of expandable styrene resin particles. ]

以下に、実施例および比較例で用いた原材料を示す。   The raw materials used in the examples and comparative examples are shown below.

(スチレン系樹脂)
(A)ポリスチレンホモポリマー[PSジャパン(株)製、680]
(発泡剤)
(B1)ノルマルペンタン[和光純薬工業(株)製、試薬品]
(B2)イソペンタン[和光純薬工業(株)製、試薬品]
(Styrene resin)
(A) Polystyrene homopolymer [PS Japan Co., Ltd., 680]
(Foaming agent)
(B1) Normal pentane [Wako Pure Chemical Industries, Ltd., reagent product]
(B2) Isopentane [Wako Pure Chemical Industries, Ltd., reagent product]

(グラファイト)
(C1)グラファイト[(株)丸豊鋳材製作所製、鱗片状黒鉛SGP−40B]
(C2)グラファイト[伊藤黒鉛工業(株)製、鱗片状黒鉛W−5]
(C3)グラファイト[日本黒鉛工業(株)製、鱗片状黒鉛J−CPB]
(C4)グラファイト[伊藤黒鉛工業(株)製、鱗片状黒鉛X−10]
(C5)グラファイト[(株)中越黒鉛工業所製、鱗状黒鉛BF−3AK]
(C6)グラファイト[(株)中越黒鉛工業所製、鱗状黒鉛BF−10AK]
(C7)グラファイト[日本黒鉛工業(株)製、鱗片状黒鉛UCP]
(Graphite)
(C1) Graphite [manufactured by Maruho Castings Co., Ltd., scaly graphite SGP-40B]
(C2) Graphite [manufactured by Ito Graphite Industries Co., Ltd., scaly graphite W-5]
(C3) Graphite [manufactured by Nippon Graphite Industry Co., Ltd., scaly graphite J-CPB]
(C4) Graphite [manufactured by Ito Graphite Industry Co., Ltd., scaly graphite X-10]
(C5) Graphite [manufactured by Chuetsu Graphite Co., Ltd., scaly graphite BF-3AK]
(C6) Graphite [manufactured by Chuetsu Graphite Co., Ltd., scaly graphite BF-10AK]
(C7) Graphite [manufactured by Nippon Graphite Industry Co., Ltd., scaly graphite UCP]

(臭素系難燃剤)
(D)2,2−ビス[4−(2,3−ジブロモ−2−メチルプロポキシ)−3,5−ジブロモフェニル]プロパン[第一工業製薬(株)製、SR−130:1%重量減少温度=231℃、臭素含有量=66%]
(熱安定剤)
(E1)テトラキス(2,2,6,6−テトラメチルピペリジルオキシカルボニル)ブタン
(E2)ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト[Chemtura社製、Ultranox626]
(臭素系難燃剤と熱安定剤との混合物)
(F)臭素系難燃剤(D)95部に対して、熱安定剤として(E1)3部および(E2)2部を混合した。
(Brominated flame retardant)
(D) 2,2-bis [4- (2,3-dibromo-2-methylpropoxy) -3,5-dibromophenyl] propane [Daiichi Kogyo Seiyaku Co., Ltd., SR-130: 1% weight reduction Temperature = 231 ° C., bromine content = 66%]
(Heat stabilizer)
(E1) Tetrakis (2,2,6,6-tetramethylpiperidyloxycarbonyl) butane (E2) Bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite [manufactured by Chemtura, Ultranox 626]
(A mixture of brominated flame retardant and heat stabilizer)
(F) 3 parts of (E1) and 2 parts (E2) were mixed as thermal stabilizers with 95 parts of brominated flame retardant (D).

(造核剤)
(G)タルク[林化成(株)製、タルカンパウダーPK−S]
(Nucleating agent)
(G) Talc [manufactured by Hayashi Kasei Co., Ltd., Talcan powder PK-S]

(グラファイトマスターバッチ)
(H1)バンバリーミキサーに、ポリスチレンホモポリマー(A)100部、グラファイト(C1)67部を投入して設定温度220℃にて10分間溶融混練した後、ルーダーに供給して先端に取り付けられた小穴を有するダイスを通して吐出300kg/hrで押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、切断してマスターバッチを得た。マスターバッチ中のグラファイト含有量は40%であった。
(Graphite masterbatch)
(H1) 100 parts of polystyrene homopolymer (A) and 67 parts of graphite (C1) are put into a Banbury mixer, melted and kneaded at a preset temperature of 220 ° C. for 10 minutes, and then supplied to the ruder and attached to the tip. The strand-shaped resin extruded through a die having a discharge rate of 300 kg / hr was cooled and solidified in a water bath at 20 ° C., and then cut to obtain a master batch. The graphite content in the masterbatch was 40%.

(H2)グラファイト(C1)に代えてグラファイト(C2)を用いる以外は(H1)と同様にマスターバッチを得た。マスターバッチ中のグラファイト含有量は40%であった。   (H2) A master batch was obtained in the same manner as (H1) except that graphite (C2) was used instead of graphite (C1). The graphite content in the masterbatch was 40%.

(H3)グラファイト(C1)に代えてグラファイト(C3)を用いる以外は(H1)と同様にマスターバッチを得た。マスターバッチ中のグラファイト含有量は40%であった。   (H3) A master batch was obtained in the same manner as (H1) except that graphite (C3) was used instead of graphite (C1). The graphite content in the masterbatch was 40%.

(H4)グラファイト(C1)に代えてグラファイト(C4)を用いる以外は(H1)と同様にマスターバッチを得た。マスターバッチ中のグラファイト含有量は40%であった。   (H4) A master batch was obtained in the same manner as (H1) except that graphite (C4) was used instead of graphite (C1). The graphite content in the masterbatch was 40%.

(H5)グラファイト(C1)に代えてグラファイト(C5)を用いる以外は(H1)と同様にマスターバッチを得た。マスターバッチ中のグラファイト含有量は40%であった。   (H5) A master batch was obtained in the same manner as (H1) except that graphite (C5) was used instead of graphite (C1). The graphite content in the masterbatch was 40%.

(H6)グラファイト(C1)に代えてグラファイト(C6)を用いる以外は(H1)と同様にマスターバッチを得た。マスターバッチ中のグラファイト含有量は40%であった。   (H6) A master batch was obtained in the same manner as (H1) except that graphite (C6) was used instead of graphite (C1). The graphite content in the masterbatch was 40%.

(H7)グラファイト(C1)に代えてグラファイト(C7)を用いる以外は(H1)と同様にマスターバッチを得た。マスターバッチ中のグラファイト含有量は40%であった。   (H7) A master batch was obtained in the same manner as (H1) except that graphite (C7) was used instead of graphite (C1). The graphite content in the masterbatch was 40%.

(臭素系難燃剤と熱安定剤との混合物のマスターバッチ)
(I)二軸押出機に、ポリスチレンホモポリマー(A)100部を供給して溶融混練した後、押出機途中より臭素系難燃剤と熱安定剤との混合物(F)を73部供給して、さらに溶融混練した。押出機先端に取り付けられた小穴を有するダイスを通して、吐出300kg/hrで押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、切断して臭素系難燃剤と熱安定剤との混合物のマスターバッチを得た。このとき押出機の設定温度は170℃で実施した。マスターバッチ中の臭素系難燃剤含有量は40%であった。
(Masterbatch of mixture of brominated flame retardant and heat stabilizer)
(I) After supplying 100 parts of polystyrene homopolymer (A) to a twin screw extruder and melt-kneading, 73 parts of a mixture (F) of a brominated flame retardant and a heat stabilizer is supplied from the middle of the extruder. Further, melt kneading was performed. The strand-shaped resin extruded at a discharge rate of 300 kg / hr is cooled and solidified in a water bath at 20 ° C. through a die having a small hole attached to the tip of the extruder, and then cut to obtain a brominated flame retardant and a thermal stabilizer. A master batch of the mixture was obtained. At this time, the set temperature of the extruder was 170 ° C. The brominated flame retardant content in the masterbatch was 40%.

以下において、実施例1〜19及び比較例1〜5は、本発明のスチレン系樹脂発泡成形体に関し、実施例20〜36及び比較例6〜14は本発明の発泡性スチレン系樹脂粒子とその製造方法、該発泡性樹脂粒子を用いた予備発泡粒子及びスチレン系樹脂発泡体に関し、実施例37〜53及び比較例15〜25は本発明のスチレン系樹脂発泡成形体の製造方法に関する。   In the following, Examples 1 to 19 and Comparative Examples 1 to 5 relate to a styrene resin foam molded article of the present invention, and Examples 20 to 36 and Comparative Examples 6 to 14 show the expandable styrene resin particles of the present invention and the same. Examples 37 to 53 and Comparative Examples 15 to 25 relate to a method for producing a styrene resin foam molded article of the present invention, regarding the production method, pre-expanded particles using the expandable resin particles, and styrene resin foam.

(実施例1)
[スチレン系樹脂粒子の作製]
スチレン系樹脂(A)85.1部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I)5.95部、グラファイトマスターバッチ(H1)8.75部、タルク(G)0.2部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。
Example 1
[Production of styrene resin particles]
Master batch (I) 5.95 parts of a mixture of a brominated flame retardant and a heat stabilizer, 8.75 parts of graphite master batch (H1), talc (G ) 0.2 part was put into a blender and blended for 10 minutes to obtain a resin composition.

得られた樹脂組成物を、口径90mm単軸押出機に供給して、押出機内で溶融混練し、押出機先端に取り付けられた直径1.4mmの小穴が140個設けられたダイスを通して、吐出量335kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、ストランドカッターでスチレン系樹脂粒子を得た。このとき押出機先端部での樹脂の温度が245℃、押出機内滞留時間3分であった。   The obtained resin composition was supplied to a single screw extruder having a diameter of 90 mm, melted and kneaded in the extruder, and discharged through a die having 140 small holes with a diameter of 1.4 mm attached to the tip of the extruder. The strand-shaped resin extruded at 335 kg / hour was cooled and solidified in a 20 ° C. water tank, and then styrene resin particles were obtained with a strand cutter. At this time, the temperature of the resin at the tip of the extruder was 245 ° C., and the residence time in the extruder was 3 minutes.

[発泡性スチレン系樹脂粒子の作製]
容積6Lの撹拌装置付きオートクレーブ内に、得られたスチレン系樹脂粒子100部に対して、脱イオン水200部、リン酸三カルシウム1部、ドデシルベンゼンスルホン酸ナトリウム0.03部、塩化ナトリウム4部を投入し、オートクレーブを密閉した。その後、1時間で105℃まで加温した後、発泡剤として混合ペンタン[ノルマルペンタン(B1)80%とイソペンタン(B2)20%の混合物]8部を25分間かけてオートクレーブ内に添加した後、115℃まで10分かけて昇温し、そのまま4時間保持した。
[Production of expandable styrene resin particles]
In a 6 L autoclave with a stirrer, 200 parts of deionized water, 1 part of tricalcium phosphate, 0.03 part of sodium dodecylbenzenesulfonate, 4 parts of sodium chloride with respect to 100 parts of the resulting styrene resin particles The autoclave was sealed. Thereafter, after heating to 105 ° C. in 1 hour, 8 parts of mixed pentane [a mixture of 80% normal pentane (B1) and 20% isopentane (B2)] as a blowing agent was added to the autoclave over 25 minutes, The temperature was raised to 115 ° C. over 10 minutes and held there for 4 hours.

次いで、室温まで冷却し、オートクレーブから発泡剤が含浸された樹脂粒子を取り出し、塩酸で酸洗後、水洗し、遠心分離機で脱水後、気流乾燥機で樹脂粒子表面に付着している水分を乾燥させ、発泡性スチレン系樹脂粒子を得た。   Next, it is cooled to room temperature, and the resin particles impregnated with the blowing agent are taken out from the autoclave, pickled with hydrochloric acid, washed with water, dehydrated with a centrifuge, and the moisture adhering to the surface of the resin particles with an air dryer. Drying was performed to obtain expandable styrene resin particles.

得られた発泡性スチレン系樹脂粒子100部に対して、ステアリン酸亜鉛0.08部をドライブレンドした後、15℃で保管した。   After dry blending 0.08 part of zinc stearate with respect to 100 parts of the obtained expandable styrene resin particles, it was stored at 15 ° C.

[予備発泡粒子の作製]
発泡性スチレン系樹脂粒子を作製し、15℃で保管してから2週間後に発泡性スチレン系樹脂粒子を予備発泡機[大開工業株式会社製、BHP−300]に投入し、0.08MPaの水蒸気を予備発泡機に導入して発泡させ、嵩倍率において発泡倍率40倍の予備発泡粒子を得た。
[Preparation of pre-expanded particles]
Two weeks after producing expandable styrene resin particles and storing them at 15 ° C., the expandable styrene resin particles were put into a pre-foaming machine [manufactured by Daikai Kogyo Co., Ltd., BHP-300], and steam of 0.08 MPa was used. Was introduced into a pre-foaming machine and foamed to obtain pre-foamed particles having a bulk magnification of 40 times.

同様に嵩倍率において50倍、60倍、70倍、80倍の予備発泡粒子を得た。   Similarly, pre-expanded particles of 50 times, 60 times, 70 times and 80 times in bulk magnification were obtained.

[スチレン系樹脂発泡成形体の作製]
得られた嵩倍率40倍の予備発泡粒子を、発泡スチロール用成形機[ダイセン工業(株)製、KR−57]に取り付けた型内成形用金型(長さ450mm×幅310mm×厚み25mm)内に充填して、0.06MPaの水蒸気を導入して型内発泡させた後、金型に水を3秒間噴霧して冷却した。スチレン系樹脂発泡成形体が金型を押す圧力が0.015MPa(ゲージ圧力)なるまでスチレン系樹脂発泡成形体を金型内に保持した後に、スチレン系樹脂発泡成形体取り出して、外観美麗な直方体状のスチレン系樹脂発泡成形体を得た。発泡倍率は40倍であった。
[Production of Styrenic Resin Foamed Molding]
Inside the in-mold molding die (length 450 mm × width 310 mm × thickness 25 mm) in which the obtained pre-expanded particles having a bulk magnification of 40 times were attached to a foamed polystyrene molding machine [manufactured by Daisen Industry Co., Ltd., KR-57] Then, 0.06 MPa of water vapor was introduced and foamed in the mold, and then the mold was sprayed with water for 3 seconds to cool. The styrenic resin foam molded product is held in the mold until the pressure at which the styrenic resin foam molded product presses the mold is 0.015 MPa (gauge pressure), and then the styrenic resin foam molded product is taken out and a rectangular solid with a beautiful appearance. A styrene-based resin foam molding was obtained. The expansion ratio was 40 times.

嵩倍率50倍、60倍、70倍、80倍の予備発泡粒子から同様にスチレン系樹脂発泡成形体を作製した。発泡倍率はそれぞれ50倍、60倍、70倍、80倍であった。   Similarly, styrene-based resin foam molded articles were prepared from pre-expanded particles having a bulk magnification of 50 times, 60 times, 70 times, and 80 times. The expansion ratios were 50 times, 60 times, 70 times, and 80 times, respectively.

(実施例2)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)83.85部、グラファイトマスターバッチ(H1)10部に変更した以外は実施例1と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 2)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 1 except that 83.85 parts of styrene resin (A) and 10 parts of graphite masterbatch (H1) were used. It was.

(実施例3)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)81.35部、グラファイトマスターバッチ(H1)12.5部に変更した以外は実施例1と同様の操作によりスチレン系樹脂発泡成形体を得た。
Example 3
In [Production of Styrenic Resin Particles], the styrenic resin foam molded article was prepared in the same manner as in Example 1 except that 81.35 parts of styrene resin (A) and 12.5 parts of graphite masterbatch (H1) were used. Got.

(実施例4)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)76.35部、グラファイトマスターバッチ(H1)17.5部に変更した以外は実施例1と同様の操作によりスチレン系樹脂発泡成形体を得た。
Example 4
In [Production of Styrenic Resin Particles], a styrene resin foamed molded article was prepared by the same operation as in Example 1 except that 76.35 parts of styrene resin (A) and 17.5 parts of graphite masterbatch (H1) were changed. Got.

(実施例5)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)89.8部、グラファイトマスターバッチ(H1)10部に変更し、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I)を使用しない以外は実施例1と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 5)
In [Production of styrene resin particles], the mixture was changed to 89.8 parts of styrene resin (A) and 10 parts of graphite masterbatch (H1), and a masterbatch (I) of a mixture of brominated flame retardant and heat stabilizer A styrene resin foam molded article was obtained by the same operation as in Example 1 except that was not used.

(実施例6)
[発泡性スチレン系樹脂粒子の作製]において混合ペンタンを10部に変更した以外は実施例1と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 6)
A styrene resin foam molded article was obtained by the same operation as in Example 1 except that the mixed pentane was changed to 10 parts in [Production of expandable styrene resin particles].

(実施例7)
[発泡性スチレン系樹脂粒子の作製]において混合ペンタンを10部に変更した以外は実施例2と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 7)
A styrene resin foam molded article was obtained by the same operation as in Example 2 except that the mixed pentane was changed to 10 parts in [Production of expandable styrene resin particles].

(実施例8)
[発泡性スチレン系樹脂粒子の作製]において混合ペンタンを10部に変更した以外は実施例3と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 8)
A styrene resin foam molded article was obtained by the same operation as in Example 3 except that the mixed pentane was changed to 10 parts in [Production of expandable styrene resin particles].

(実施例9)
[発泡性スチレン系樹脂粒子の作製]において混合ペンタンを10部に変更した以外は実施例4と同様の操作によりスチレン系樹脂発泡成形体を得た。
Example 9
A styrene resin foam molded article was obtained by the same operation as in Example 4 except that the mixed pentane was changed to 10 parts in [Production of expandable styrene resin particles].

(実施例10)
[発泡性スチレン系樹脂粒子の作製]において混合ペンタンを10部に変更した以外は実施例5と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 10)
A styrene resin foam molded article was obtained by the same operation as in Example 5 except that the mixed pentane was changed to 10 parts in [Production of expandable styrene resin particles].

(実施例11)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H2)に変更した以外は実施例2と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 11)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 2 except that the graphite master batch (H1) was changed to the graphite master batch (H2).

(実施例12)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H2)に変更した以外は実施例4と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 12)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 4 except that the graphite master batch (H1) was changed to the graphite master batch (H2).

参考例13)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H3)に変更した以外は実施例2と同様の操作によりスチレン系樹脂発泡成形体を得た。
( Reference Example 13)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 2 except that the graphite master batch (H1) was changed to the graphite master batch (H3).

参考例14)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H3)に変更した以外は実施例4と同様の操作によりスチレン系樹脂発泡成形体を得た。
( Reference Example 14)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 4 except that the graphite master batch (H1) was changed to the graphite master batch (H3).

参考例15)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H4)に変更した以外は実施例2と同様の操作によりスチレン系樹脂発泡成形体を得た。
( Reference Example 15)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 2 except that the graphite master batch (H1) was changed to the graphite master batch (H4).

参考例16)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H4)に変更した以外は実施例4と同様の操作によりスチレン系樹脂発泡成形体を得た。
( Reference Example 16)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 4 except that the graphite master batch (H1) was changed to the graphite master batch (H4).

(実施例17)
[発泡性スチレン系樹脂粒子の作製]
スチレン系樹脂(A)93.3部に対して、臭素系難燃剤と熱安定剤の混合物(F)を2.5部、グラファイト(C1)4部、タルク(G)0.2部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。得られた樹脂組成物を口径65mmの単軸押出機(第一押出機)と口径90mmの単軸押出機(第二押出機)を直列に連結したタンデム型二段押出機へ供給し、口径65mm押出機の設定温度220℃にて溶融混練した。口径65mm押出機(第一押出機)の途中から、上記樹脂組成物100部に対して、混合ペンタン[ノルマルペンタン(B1)80%とイソペンタン(B2)20%の混合物]8部の割合で圧入した。その後、230℃に設定された継続管を通じて、口径90mm押出機(第二押出機)に供給した。
(Example 17)
[Production of expandable styrene resin particles]
Blender of bromine flame retardant and heat stabilizer mixture (F) 2.5 parts, graphite (C1) 4 parts, talc (G) 0.2 parts with respect to 93.3 parts of styrene resin (A) And blended for 10 minutes to obtain a resin composition. The obtained resin composition is supplied to a tandem type two-stage extruder in which a single screw extruder (first extruder) having a diameter of 65 mm and a single screw extruder (second extruder) having a diameter of 90 mm are connected in series. Melt kneading was performed at a set temperature of 220 ° C. in a 65 mm extruder. From the middle of the 65 mm caliber extruder (first extruder), press-fit at a rate of 8 parts of mixed pentane [mixture of 80% normal pentane (B1) and 20% isopentane (B2)] to 100 parts of the resin composition. did. Then, it supplied to the 90-mm-diameter extruder (2nd extruder) through the continuation pipe | tube set to 230 degreeC.

口径90mm押出機(第二押出機)にて樹脂温度を167℃まで溶融樹脂を冷却した後、275℃に設定した第2押出機の先端に取り付けられた直径0.7mm、ランド長3.0mmの小孔を40個有するダイリップから、吐出量50kg/時間で、温度60℃および0.9MPaの加圧循環水中に押出した。押し出された溶融樹脂は、ダイリップに接触する10枚の刃を有する回転カッターを用いて、2500rpmの条件にて切断・小粒化され、遠心脱水機に移送されて、発泡性スチレン系樹脂粒子を得た。このとき第一押出機内滞留時間4分であった。
得られた発泡性スチレン系樹脂粒子100部に対して、ステアリン酸亜鉛0.08部をドライブレンドした後、15℃で保管した。
After cooling the molten resin to 167 ° C. with a 90 mm diameter extruder (second extruder), the diameter is 0.7 mm and the land length is 3.0 mm attached to the tip of the second extruder set at 275 ° C. A die lip having 40 small holes was extruded into pressurized circulating water at a temperature of 60 ° C. and 0.9 MPa at a discharge rate of 50 kg / hour. The extruded molten resin is cut and pulverized under a condition of 2500 rpm using a rotary cutter having 10 blades in contact with the die lip, and is transferred to a centrifugal dehydrator to obtain expandable styrene resin particles. It was. At this time, the residence time in the first extruder was 4 minutes.
After dry blending 0.08 part of zinc stearate with respect to 100 parts of the obtained expandable styrene resin particles, it was stored at 15 ° C.

[予備発泡粒子の作製]
実施例1同様の操作で予備発泡粒子を得た。
[スチレン系樹脂発泡成形体の作製]
実施例1同様の操作でスチレン系樹脂発泡成形体を得た。
[Preparation of pre-expanded particles]
Pre-expanded particles were obtained in the same manner as in Example 1.
[Production of Styrenic Resin Foamed Molding]
A styrene resin foam molded article was obtained in the same manner as in Example 1.

(実施例18)
[発泡性スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)90.3部、グラファイト(C1)7部に変更した以外は実施例17と同様の操作によりスチレン系樹脂発泡成形体を得た。
実施例1〜12、17、18及び参考例13〜16で得られたスチレン系樹脂発泡成形体の評価結果を表1に示す。尚、表1中、実施例13〜16は参考例13〜16を意味する。
(Example 18)
In [Production of expandable styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 17 except that 90.3 parts of styrene resin (A) and 7 parts of graphite (C1) were changed. It was.
Table 1 shows the evaluation results of the styrenic resin foam molded articles obtained in Examples 1 to 12, 17, 18, and Reference Examples 13 to 16 . In Table 1, Examples 13 to 16 mean Reference Examples 13 to 16.

Figure 0006555251
Figure 0006555251

(比較例1)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)を93.85部に変更し、グラファイトマスターバッチ(H1)を使用しないこと以外は実施例1と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Comparative Example 1)
In [Production of Styrenic Resin Particles], the styrene resin foam molding is carried out in the same manner as in Example 1 except that the styrene resin (A) is changed to 93.85 parts and the graphite masterbatch (H1) is not used. Got the body.

(比較例2)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)を99.8部に変更し、グラファイトマスターバッチ(H1)及び臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I)を使用しないこと以外は実施例1と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Comparative Example 2)
In [Preparation of Styrenic Resin Particles], the styrene resin (A) is changed to 99.8 parts, and the master batch (I) of the graphite masterbatch (H1) and the mixture of brominated flame retardant and heat stabilizer is changed. A styrene resin foam molded article was obtained by the same operation as in Example 1 except that it was not used.

(比較例3)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)を87.6部、グラファイトマスターバッチ(H1)を6.25部に変更した以外は実施例1と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Comparative Example 3)
In [Production of styrene resin particles], styrene resin foaming was carried out in the same manner as in Example 1 except that 87.6 parts of styrene resin (A) and 6.25 parts of graphite masterbatch (H1) were changed. A molded body was obtained.

(比較例4)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)を68.85部、グラファイトマスターバッチ(H1)を25部に変更した以外は実施例1と同様の操作を実施したが、発泡成形体表面の発泡スチレン系樹脂粒子同士の間隙が埋まらないため表面が平滑にならず、さらに成形直後から発泡成形体が大きく収縮したため、評価を実施できるサンプルは得られなかった。
比較例1〜4で得られたスチレン系樹脂発泡成形体の評価結果を表2に示す。
(Comparative Example 4)
In [Production of styrene resin particles], the same operation as in Example 1 was carried out except that the styrene resin (A) was changed to 68.85 parts and the graphite master batch (H1) was changed to 25 parts. Since the gap between the foamed styrene resin particles on the surface of the body was not filled, the surface was not smooth, and the foamed molded product was greatly shrunk immediately after molding, so a sample that could be evaluated was not obtained.
Table 2 shows the evaluation results of the styrene resin foam molded articles obtained in Comparative Examples 1 to 4.

Figure 0006555251
Figure 0006555251

(実施例19)
下記No.1〜9のスチレン系樹脂粒子及びスチレン系樹脂発泡成形体を製造した。尚、No.8、9は参考例である。
<No.1>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)85.91部、グラファイトマスターバッチ(H1)7.94部に変更した以外は実施例1と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。スチレン系樹脂発泡成形体のグラファイト含有量は3.1%であった。
(Example 19)
The following No. 1-9 styrene resin particles and styrene resin foam molded articles were produced. No. Reference numerals 8 and 9 are reference examples.
<No. 1>
In [Production of Styrenic Resin Particles], expandable resin particles are obtained by the same operation as in Example 1 except that the styrene resin (A) is changed to 85.91 parts and the graphite masterbatch (H1) is 7.94 parts. Furthermore, a styrene resin foam molded article was obtained. The graphite content of the styrenic resin foam molded article was 3.1%.

<No.2>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)79.76部、グラファイトマスターバッチ(H1)14.09部に変更した以外は実施例1と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。スチレン系樹脂発泡成形体のグラファイト含有量は5.5%であった。
<No. 2>
In [Production of Styrenic Resin Particles], expandable resin particles are obtained by the same operation as in Example 1 except that the styrene resin (A) is 79.76 parts and the graphite masterbatch (H1) is 14.09 parts. Furthermore, a styrene resin foam molded article was obtained. The graphite content of the styrenic resin foam molded article was 5.5%.

<No.3>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)77.19部、グラファイトマスターバッチ(H1)16.66部に変更した以外は実施例1と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。スチレン系樹脂発泡成形体のグラファイト含有量は6.5%であった。
<No. 3>
In [Production of Styrenic Resin Particles], expandable resin particles were obtained by the same operation as in Example 1 except that 77.19 parts of styrene resin (A) and 16.66 parts of graphite masterbatch (H1) were changed. Furthermore, a styrene resin foam molded article was obtained. The graphite content of the styrenic resin foam molded article was 6.5%.

<No.4>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)74.63部、グラファイトマスターバッチ(H1)19.22部に変更した以外は実施例1と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。スチレン系樹脂発泡成形体のグラファイト含有量は7.5%であった。
<No. 4>
In [Production of Styrenic Resin Particles], expandable resin particles are obtained by the same operation as in Example 1 except that the styrene resin (A) is changed to 74.63 parts and the graphite masterbatch (H1) is changed to 19.22 parts. Furthermore, a styrene resin foam molded article was obtained. The graphite content of the styrene resin foam molded article was 7.5%.

<No.5>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)73.35部、グラファイトマスターバッチ(H1)20.50部に変更した以外は実施例1と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。スチレン系樹脂発泡成形体のグラファイト含有量は8.0%であった。
<No. 5>
In [Production of Styrenic Resin Particles], expandable resin particles were obtained by the same operation as in Example 1 except that 73.35 parts of styrene resin (A) and 20.50 parts of graphite masterbatch (H1) were changed. Furthermore, a styrene resin foam molded article was obtained. The graphite content of the styrenic resin foam molding was 8.0%.

<No.6>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛BF−3AKを用いたグラファイトマスターバッチ(H5)に変更した以外は実施例2と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 6>
In [Production of Styrenic Resin Particles], expandable resin particles were obtained in the same manner as in Example 2 except that the graphite master batch (H1) was changed to a graphite master batch (H5) using scaly graphite BF-3AK. In addition, a styrene resin foam molded article was obtained.

<No.7>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛BF−3AKを用いたグラファイトマスターバッチ(H5)に変更した以外は実施例4と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 7>
In [Production of styrene resin particles], expandable resin particles were obtained in the same manner as in Example 4 except that the graphite master batch (H1) was changed to a graphite master batch (H5) using scaly graphite BF-3AK. In addition, a styrene resin foam molded article was obtained.

<No.8>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛BF−10AKを用いたグラファイトマスターバッチ(H6)に変更した以外は実施例2と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 8>
In [Production of Styrenic Resin Particles], expandable resin particles were obtained in the same manner as in Example 2, except that the graphite master batch (H1) was changed to a graphite master batch (H6) using scaly graphite BF-10AK. In addition, a styrene resin foam molded article was obtained.

<No.9>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛BF−10AKを用いたグラファイトマスターバッチ(H6)に変更した以外は実施例4と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 9>
In [Production of Styrenic Resin Particles], expandable resin particles were obtained in the same manner as in Example 4 except that the graphite master batch (H1) was changed to a graphite master batch (H6) using scaly graphite BF-10AK. In addition, a styrene resin foam molded article was obtained.

(比較例5)
下記No.10〜14の発泡性樹脂粒子及びスチレン系樹脂発泡成形体を製造した。
<No.10>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)91.29部、グラファイトマスターバッチ(H1)2.56部に変更した以外は実施例1と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。スチレン系樹脂発泡成形体のグラファイト含有量は1.0%であった。
(Comparative Example 5)
The following No. 10 to 14 expandable resin particles and a styrene resin foam molded article were produced.
<No. 10>
In [Production of Styrenic Resin Particles], expandable resin particles are obtained by the same operation as in Example 1 except that the styrene resin (A) is changed to 91.29 parts and the graphite masterbatch (H1) is 2.56 parts. Furthermore, a styrene resin foam molded article was obtained. The graphite content of the styrene resin foam molded article was 1.0%.

<No.11>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)88.73部、グラファイトマスターバッチ(H1)5.13部に変更した以外は実施例1と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。スチレン系樹脂発泡成形体のグラファイト含有量は2.0%であった。
<No. 11>
In [Production of Styrenic Resin Particles], expandable resin particles are obtained by the same operation as in Example 1 except that the styrene resin (A) is 88.73 parts and the graphite masterbatch (H1) is 5.13 parts. Furthermore, a styrene resin foam molded article was obtained. The graphite content of the styrene resin foam molded article was 2.0%.

<No.12>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)72.07部、グラファイトマスターバッチ(H1)21.78部に変更した以外は実施例1と同様の操作により、発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。スチレン系樹脂発泡成形体のグラファイト含有量は8.5%であった。
<No. 12>
In [Preparation of Styrenic Resin Particles], the expandable resin particles were prepared in the same manner as in Example 1 except that they were changed to 72.07 parts of styrene resin (A) and 21.78 parts of graphite masterbatch (H1). Furthermore, a styrene resin foam molded article was obtained. The graphite content of the styrenic resin foam molded article was 8.5%.

<No.13>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛UCPを用いたグラファイトマスターバッチ(H7)に変更した以外は実施例2と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 13>
In [Production of Styrenic Resin Particles], expandable resin particles were obtained by the same operation as in Example 2 except that the graphite master batch (H1) was changed to a graphite master batch (H7) using scaly graphite UCP. Furthermore, a styrene resin foam molded article was obtained.

<No.14>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛UCPを用いたグラファイトマスターバッチ(H7)に変更した以外は実施例4と同様の操作により発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 14>
In [Production of Styrenic Resin Particles], expandable resin particles were obtained by the same operation as in Example 4 except that the graphite master batch (H1) was changed to a graphite master batch (H7) using scaly graphite UCP. Furthermore, a styrene resin foam molded article was obtained.

実施例19及び比較例5で得られたスチレン系樹脂発泡成形体の評価結果を表3に示す。なお、表1〜3に示すグラファイト含有量は、スチレン系樹脂発泡成形体におけるグラファイト含有量である。   Table 3 shows the evaluation results of the styrene-based resin foam moldings obtained in Example 19 and Comparative Example 5. In addition, the graphite content shown to Tables 1-3 is a graphite content in a styrene resin foaming molding.

Figure 0006555251
Figure 0006555251

実施例1〜18及び比較例1〜3の発泡倍率B(cm/g)と熱伝導率A(W/m・K)の関係を図1に示す。実施例1〜18及び比較例1〜3の発泡倍率D(cm/g)と熱伝導率C(W/m・K)の関係を図2に示す。図1において、×:実施例1〜18の発泡倍率Bと熱伝導率Aとのプロット、▲:比較例1〜3の発泡倍率Bと熱伝導率Aのプロットである。また、直線は式1、点線は式3、一点鎖線は式4をそれぞれ示す。図2において、×:実施例1〜18の発泡倍率Dと熱伝導率Cとのプロット、▲:比較例1〜3の発泡倍率Dと熱伝導率Cとのプロット、直線は式2、点線は式5、一点鎖線は式6をそれぞれ示す。The relationship between the expansion ratio B (cm 3 / g) and the thermal conductivity A (W / m · K) in Examples 1 to 18 and Comparative Examples 1 to 3 is shown in FIG. The relationship between the expansion ratio D (cm 3 / g) and the thermal conductivity C (W / m · K) in Examples 1 to 18 and Comparative Examples 1 to 3 is shown in FIG. In FIG. 1, X: plot of the expansion ratio B and thermal conductivity A of Examples 1 to 18, and ▲: plot of the expansion ratio B and thermal conductivity A of Comparative Examples 1-3. The straight line represents Formula 1, the dotted line represents Formula 3, and the alternate long and short dash line represents Formula 4. In FIG. 2, x: plot of the expansion ratio D and thermal conductivity C of Examples 1 to 18, and ▲: plot of the expansion ratio D and thermal conductivity C of Comparative Examples 1 to 3, the straight line is the formula 2, dotted line Represents Formula 5, and the alternate long and short dash line represents Formula 6.

図1に示されるように本発明のスチレン系樹脂発泡成形体は高発泡倍率かつ高断熱性を有するスチレン系樹脂発泡成形体である。図2に示すように本発明のスチレン系樹脂発泡成形体は高発泡倍率かつ長期にわたる高断熱性を有するスチレン系樹脂発泡成形体である。   As shown in FIG. 1, the styrene resin foam molded article of the present invention is a styrene resin foam molded article having a high expansion ratio and high heat insulation. As shown in FIG. 2, the styrene resin foam molded article of the present invention is a styrene resin foam molded article having a high expansion ratio and a long thermal insulation.

表1〜3、図1、図2に示されるように、本発明のスチレン系樹脂発泡成形体を用いることにより、グラファイトを3〜8重量%と高含有するにもかかわらず、高発泡倍率かつ高断熱性を有するスチレン系樹脂発泡成形体を提供できる。即ち、本発明によれば、図1に示すように、A(X値) ≦0.0251+0.0000776×B(式1)とすることにより、高発泡倍率かつ高断熱性のスチレン系樹脂発泡成形体を提供することができ、A ≦0.0248+0.0000776×B(式3)とすることによりさらに高発泡倍率かつ高断熱性のスチレン系樹脂発泡成形体を提供することができ、A ≦0.0245+0.0000776×B(式4)とすることにより特に高発泡倍率かつ高断熱性のスチレン系樹脂発泡成形体を提供することができる。   As shown in Tables 1 to 3 and FIGS. 1 and 2, by using the styrene resin foam molded article of the present invention, high foaming ratio and A styrenic resin foam molded article having high heat insulation can be provided. That is, according to the present invention, as shown in FIG. 1, by setting A (X value) ≦ 0.0251 + 0.0000776 × B (Formula 1), the foaming molding of styrene resin having a high expansion ratio and high heat insulation property. A styrene-based resin foam molded article having a higher expansion ratio and higher heat insulation can be provided by setting A ≦ 0.0248 + 0.0000776 × B (formula 3), and A ≦ 0 By using 0.0245 + 0.0000776 × B (formula 4), it is possible to provide a styrene-based resin foam molded article having a particularly high expansion ratio and high heat insulation.

また、図2に示すように、C(Y値) ≦0.0276+0.0000776×D(式2)とすることにより、高発泡倍率かつ長期にわたる高断熱性のスチレン系樹脂発泡成形体を提供することができ、C ≦0.0270+0.0000776×D(式5)とすることにより、さらに高発泡倍率かつ長期にわたる高断熱性のスチレン系樹脂発泡成形体を提供することができ、C ≦0.0267+0.0000776×D(式6)とすることにより、特に高発泡倍率かつ長期にわたる高断熱性のスチレン系樹脂発泡成形体を提供することができる。   In addition, as shown in FIG. 2, by setting C (Y value) ≦ 0.0276 + 0.0000776 × D (Formula 2), a styrene-based resin foam molded article having a high expansion ratio and a long thermal insulation property is provided. By setting C 1 ≦ 0.0270 + 0.0000776 × D (Formula 5), it is possible to provide a styrene-based resin foam molded body having a higher expansion ratio and higher heat insulation over a long period of time, and C 1 ≦ 0. By setting it as 0267 + 0.0000776 × D (formula 6), it is possible to provide a styrene-based resin foam molded article having a particularly high expansion ratio and a high thermal insulation property over a long period of time.

(実施例20)
[スチレン系樹脂粒子の作製]
スチレン系樹脂(A)85.1部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I)5.95部、グラファイトマスターバッチ(H1)8.75部、タルク(G)0.2部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。
(Example 20)
[Production of styrene resin particles]
Master batch (I) 5.95 parts of a mixture of a brominated flame retardant and a heat stabilizer, 8.75 parts of graphite master batch (H1), talc (G ) 0.2 part was put into a blender and blended for 10 minutes to obtain a resin composition.

得られた樹脂組成物を、口径90mm単軸押出機に供給して、押出機内で溶融混練し、押出機先端に取り付けられた直径1.4mmの小穴が140個設けられたダイスを通して、吐出量335kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、ストランドカッターでスチレン系樹脂粒子を得た。このとき押出機先端部での樹脂の温度が245℃、押出機内滞留時間3分であった。   The obtained resin composition was supplied to a single screw extruder having a diameter of 90 mm, melted and kneaded in the extruder, and discharged through a die having 140 small holes with a diameter of 1.4 mm attached to the tip of the extruder. The strand-shaped resin extruded at 335 kg / hour was cooled and solidified in a 20 ° C. water tank, and then styrene resin particles were obtained with a strand cutter. At this time, the temperature of the resin at the tip of the extruder was 245 ° C., and the residence time in the extruder was 3 minutes.

[発泡性スチレン系樹脂粒子の作製]
容積6Lの撹拌装置付きオートクレーブ内に、得られたスチレン系樹脂粒子100部に対して、脱イオン水200部、リン酸三カルシウム1部、ドデシルベンゼンスルホン酸ナトリウム0.03部、塩化ナトリウム4部を投入し、オートクレーブを密閉した。その後、1時間で105℃まで加温した後、発泡剤として混合ペンタン[ノルマルペンタン(B1)80%とイソペンタン(B2)20%の混合物]8部を25分間かけてオートクレーブ内に添加した後、115℃まで10分かけて昇温し、そのまま4時間保持した。
[Production of expandable styrene resin particles]
In a 6 L autoclave with a stirrer, 200 parts of deionized water, 1 part of tricalcium phosphate, 0.03 part of sodium dodecylbenzenesulfonate, 4 parts of sodium chloride with respect to 100 parts of the resulting styrene resin particles The autoclave was sealed. Thereafter, after heating to 105 ° C. in 1 hour, 8 parts of mixed pentane [a mixture of 80% normal pentane (B1) and 20% isopentane (B2)] as a blowing agent was added to the autoclave over 25 minutes, The temperature was raised to 115 ° C. over 10 minutes and held there for 4 hours.

次いで、室温まで冷却し、オートクレーブから発泡剤が含浸された樹脂粒子を取り出し、塩酸で酸洗後、水洗し、遠心分離機で脱水後、気流乾燥機で樹脂粒子表面に付着している水分を乾燥させ、発泡性スチレン系樹脂粒子を得た。   Next, it is cooled to room temperature, and the resin particles impregnated with the blowing agent are taken out from the autoclave, pickled with hydrochloric acid, washed with water, dehydrated with a centrifuge, and the moisture adhering to the surface of the resin particles with an air dryer. Drying was performed to obtain expandable styrene resin particles.

得られた発泡性スチレン系樹脂粒子100部に対して、ステアリン酸亜鉛0.08部をドライブレンドした後、15℃で保管した。   After dry blending 0.08 part of zinc stearate with respect to 100 parts of the obtained expandable styrene resin particles, it was stored at 15 ° C.

[予備発泡粒子の作製]
発泡性スチレン系樹脂粒子を作製し、15℃で保管してから2週間後に発泡性スチレン系樹脂粒子を予備発泡機[大開工業(株)製、BHP−300]に投入し、0.08MPaの水蒸気を予備発泡機に導入して発泡させ、嵩倍率において発泡倍率40倍の予備発泡粒子を得た。同様に嵩倍率において50倍、60倍、70倍、80倍の予備発泡粒子を得た。
[Preparation of pre-expanded particles]
2 days after producing expandable styrene resin particles and storing at 15 ° C., the expandable styrene resin particles were put into a pre-foaming machine [BHP-300, manufactured by Daikai Kogyo Co., Ltd.] Water vapor was introduced into a pre-foaming machine and foamed to obtain pre-foamed particles having a bulk magnification of 40 times. Similarly, pre-expanded particles of 50 times, 60 times, 70 times and 80 times in bulk magnification were obtained.

[スチレン系樹脂発泡成形体の作製]
得られた嵩倍率40倍の予備発泡粒子を、発泡スチロール用成形機[ダイセン工業(株)製、KR−57]に取り付けた型内成形用金型(長さ450mm×幅310mm×厚み25mm)内に充填して、0.06MPaの水蒸気を導入して型内発泡させた後、金型に水を3秒間噴霧して冷却した。スチレン系樹脂発泡成形体が金型を押す圧力が0.015MPa(ゲージ圧力)なるまでスチレン系樹脂発泡成形体を金型内に保持した後に、スチレン系樹脂発泡成形体取り出して、外観美麗な直方体状のスチレン系発泡成形体を得た。発泡倍率は40倍であった。
[Production of Styrenic Resin Foamed Molding]
Inside the in-mold molding die (length 450 mm × width 310 mm × thickness 25 mm) in which the obtained pre-expanded particles having a bulk magnification of 40 times were attached to a foamed polystyrene molding machine [manufactured by Daisen Industry Co., Ltd., KR-57] Then, 0.06 MPa of water vapor was introduced and foamed in the mold, and then the mold was sprayed with water for 3 seconds to cool. The styrenic resin foam molded product is held in the mold until the pressure at which the styrenic resin foam molded product presses the mold is 0.015 MPa (gauge pressure), and then the styrenic resin foam molded product is taken out and a rectangular solid with a beautiful appearance. A styrene-based foam molded article was obtained. The expansion ratio was 40 times.

嵩倍率50倍、60倍、70倍、80倍の予備発泡粒子から同様にスチレン系樹脂発泡成形体を作製した。発泡倍率はそれぞれ50倍、60倍、70倍、80倍であった。得られた各発泡成形体の評価結果を、表3に示した。   Similarly, styrene-based resin foam molded articles were prepared from pre-expanded particles having a bulk magnification of 50 times, 60 times, 70 times, and 80 times. The expansion ratios were 50 times, 60 times, 70 times, and 80 times, respectively. Table 3 shows the evaluation results of the obtained foamed molded articles.

(実施例21)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)83.85部、グラファイトマスターバッチ(H1)10部に変更した以外は実施例20と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 21)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 20 except that 83.85 parts of styrene resin (A) and 10 parts of graphite masterbatch (H1) were used. It was.

(実施例22)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)81.35部、グラファイトマスターバッチ(H1)12.5部に変更した以外は実施例20と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 22)
In [Production of Styrenic Resin Particles], the styrenic resin foam molded article was prepared in the same manner as in Example 20, except that the styrene resin (A) was changed to 81.35 parts and the graphite masterbatch (H1) was 12.5 parts. Got.

(実施例23)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)76.35部、グラファイトマスターバッチ(H1)17.5部に変更した以外は実施例20と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 23)
In [Production of Styrenic Resin Particles], a styrene resin foam molded article was prepared by the same operation as in Example 20 except that 76.35 parts of styrene resin (A) and 17.5 parts of graphite masterbatch (H1) were used. Got.

(実施例24)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)89.8部、グラファイトマスターバッチ(H1)10部に変更し、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I)を使用しない以外は実施例20と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 24)
In [Production of styrene resin particles], the mixture was changed to 89.8 parts of styrene resin (A) and 10 parts of graphite masterbatch (H1), and a masterbatch (I) of a mixture of brominated flame retardant and heat stabilizer A styrene resin foam molded article was obtained by the same operation as in Example 20 except that was not used.

(実施例25)
[発泡性スチレン系樹脂粒子の作製]において混合ペンタンを10部に変更した以外は実施例20と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 25)
A styrene resin foam molded article was obtained by the same operation as in Example 20 except that the mixed pentane was changed to 10 parts in [Production of expandable styrene resin particles].

(実施例26)
[発泡性スチレン系樹脂粒子の作製]において混合ペンタンを10部に変更した以外は実施例21と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 26)
A styrene resin foam molded article was obtained by the same operation as in Example 21 except that the mixed pentane was changed to 10 parts in [Production of expandable styrene resin particles].

(実施例27)
[発泡性スチレン系樹脂粒子の作製]において混合ペンタンを10部に変更した以外実施例22と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 27)
A styrene resin foam molded article was obtained by the same operation as in Example 22 except that the mixed pentane was changed to 10 parts in [Production of expandable styrene resin particles].

(実施例28)
[発泡性スチレン系樹脂粒子の作製]において混合ペンタンを10部に変更した以外は実施例23と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 28)
A styrene resin foam molded article was obtained by the same operation as in Example 23 except that the mixed pentane was changed to 10 parts in [Production of expandable styrene resin particles].

(実施例29)
[発泡性スチレン系樹脂粒子の作製]において混合ペンタンを10部に変更した以外は実施例24と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 29)
A styrene resin foam molded article was obtained by the same operation as in Example 24 except that the mixed pentane was changed to 10 parts in [Production of expandable styrene resin particles].

(実施例30)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H2)に変更した以外は実施例21と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 30)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 21 except that the graphite master batch (H1) was changed to the graphite master batch (H2).

(実施例31)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H2)に変更した以外は実施例23と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 31)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 23, except that the graphite master batch (H1) was changed to the graphite master batch (H2).

(実施例32)
[発泡性スチレン系樹脂粒子の作製]
スチレン系樹脂(A)93.3部に対して、臭素系難燃剤と熱安定剤の混合物(F)を2.5部、グラファイト(C1)4部、タルク(G)0.2部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。
(Example 32)
[Production of expandable styrene resin particles]
Blender of bromine flame retardant and heat stabilizer mixture (F) 2.5 parts, graphite (C1) 4 parts, talc (G) 0.2 parts with respect to 93.3 parts of styrene resin (A) And blended for 10 minutes to obtain a resin composition.

得られた樹脂組成物を口径65mmの単軸押出機(第一押出機)と口径90mmの単軸押出機(第二押出機)を直列に連結したタンデム型二段押出機へ供給し、口径65mm押出機の設定温度220℃にて溶融混練した。口径65mm押出機(第一押出機)の途中から、上記樹脂組成物100部に対して、混合ペンタン[ノルマルペンタン(B1)80%とイソペンタン(B2)20%の混合物]8部の割合で圧入した。その後、230℃に設定された継続管を通じて、口径90mm押出機(第二押出機)に供給した。   The obtained resin composition is supplied to a tandem type two-stage extruder in which a single screw extruder (first extruder) having a diameter of 65 mm and a single screw extruder (second extruder) having a diameter of 90 mm are connected in series. Melt kneading was performed at a set temperature of 220 ° C. in a 65 mm extruder. From the middle of the 65 mm caliber extruder (first extruder), press-fit at a rate of 8 parts of mixed pentane [mixture of 80% normal pentane (B1) and 20% isopentane (B2)] to 100 parts of the resin composition. did. Then, it supplied to the 90-mm-diameter extruder (2nd extruder) through the continuation pipe | tube set to 230 degreeC.

口径90mm押出機(第二押出機)にて樹脂温度を167℃まで溶融樹脂を冷却した後、275℃に設定した第2押出機の先端に取り付けられた直径0.7mm、ランド長3.0mmの小孔を40個有するダイリップから、吐出量50kg/時間で、温度60℃および0.9MPaの加圧循環水中に押出した。押出された溶融樹脂は、ダイリップに接触する10枚の刃を有する回転カッターを用いて、2500rpmの条件にて切断・小粒化され、遠心脱水機に移送されて、発泡性スチレン系樹脂粒子を得た。このとき第一押出機内滞留時間4分であった。   After cooling the molten resin to 167 ° C. with a 90 mm diameter extruder (second extruder), the diameter is 0.7 mm and the land length is 3.0 mm attached to the tip of the second extruder set at 275 ° C. A die lip having 40 small holes was extruded into pressurized circulating water at a temperature of 60 ° C. and 0.9 MPa at a discharge rate of 50 kg / hour. The extruded molten resin is cut and pulverized at 2500 rpm using a rotary cutter having 10 blades in contact with the die lip, and transferred to a centrifugal dehydrator to obtain expandable styrene resin particles. It was. At this time, the residence time in the first extruder was 4 minutes.

得られた発泡性スチレン系樹脂粒子100部に対して、ステアリン酸亜鉛0.08部をドライブレンドした後、15℃で保管した。   After dry blending 0.08 part of zinc stearate with respect to 100 parts of the obtained expandable styrene resin particles, it was stored at 15 ° C.

[予備発泡粒子の作製]
実施例20と同様の操作で予備発泡粒子を得た。
[スチレン系樹脂発泡成形体の作製]
実施例20と同様の操作でスチレン系樹脂発泡成形体を得た。
[Preparation of pre-expanded particles]
Pre-expanded particles were obtained in the same manner as in Example 20.
[Production of Styrenic Resin Foamed Molding]
A styrene resin foam molded article was obtained in the same manner as in Example 20.

(実施例33)
[発泡性スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)90.3部、グラファイト(C1)7部に変更した以外は実施例32と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Example 33)
In [Production of expandable styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 32 except that 90.3 parts of styrene resin (A) and 7 parts of graphite (C1) were changed. It was.

(実施例34)
[スチレン系樹脂粒子の作製]
スチレン系樹脂(A)86.85部に対して、臭素系難燃剤(D)4.75部、グラファイト(C1)8部、タルク(G)0.4部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。
(Example 34)
[Production of styrene resin particles]
To 86.85 parts of styrene resin (A), 4.75 parts of brominated flame retardant (D), 8 parts of graphite (C1), and 0.4 part of talc (G) are put into a blender for 10 minutes. The resin composition was obtained by blending.

得られた樹脂組成物を、口径90mm単軸押出機に供給して、押出機内で溶融混練し、押出機先端に取り付けられた直径1.4mmの小穴が140個設けられたダイスを通して、吐出量335kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、ストランドカッターでスチレン系樹脂粒子を得た。このとき押出機先端部での樹脂の温度が245℃、押出機内滞留時間3分であった。   The obtained resin composition was supplied to a single screw extruder having a diameter of 90 mm, melted and kneaded in the extruder, and discharged through a die having 140 small holes with a diameter of 1.4 mm attached to the tip of the extruder. The strand-shaped resin extruded at 335 kg / hour was cooled and solidified in a 20 ° C. water tank, and then styrene resin particles were obtained with a strand cutter. At this time, the temperature of the resin at the tip of the extruder was 245 ° C., and the residence time in the extruder was 3 minutes.

[発泡性スチレン系樹脂粒子の作製]
容積6Lの撹拌装置付きオートクレーブ内に、得られたスチレン系樹脂粒子50部に対して、脱イオン水200部、リン酸三カルシウム1部、ドデシルベンゼンスルホン酸ナトリウム0.03部、塩化ナトリウム4部を投入し、オートクレーブを密閉した。その後、オートクレーブを90℃に昇温し、攪拌下でベンゾイルパーオキサイド0.125部及び1、1−ジ(t−ブチルパーオキシ)シクロヘキサンを溶解させたスチレンモノマー50部を2時間かけてオートクレーブに滴下して重合をすすめた。次いでオートクレーブを105℃に30分かけて昇温し、発泡剤として混合ペンタン[ノルマルペンタン(B1)80%とイソペンタン(B2)20%の混合物]8部を25分間かけてオートクレーブ内に添加した後、115℃まで10分かけて昇温し、そのまま4時間保持した。
[Production of expandable styrene resin particles]
In a 6 L autoclave with a stirrer, 200 parts of deionized water, 1 part of tricalcium phosphate, 0.03 part of sodium dodecylbenzenesulfonate, 4 parts of sodium chloride with respect to 50 parts of the obtained styrene resin particles The autoclave was sealed. Thereafter, the temperature of the autoclave was raised to 90 ° C., and 0.125 part of benzoyl peroxide and 50 parts of styrene monomer in which 1,1-di (t-butylperoxy) cyclohexane was dissolved in the autoclave over 2 hours while stirring. The polymerization was promoted by dropwise addition. Next, the autoclave was heated to 105 ° C. over 30 minutes, and 8 parts of mixed pentane [a mixture of 80% normal pentane (B1) and 20% isopentane (B2)] as a blowing agent was added to the autoclave over 25 minutes. The temperature was raised to 115 ° C. over 10 minutes and held there for 4 hours.

次いで、室温まで冷却し、オートクレーブから発泡剤が含浸された樹脂粒子を取り出し、塩酸で酸洗後、水洗し、遠心分離機で脱水後、気流乾燥機で樹脂粒子表面に付着している水分を乾燥させ、発泡性スチレン系樹脂粒子を得た。   Next, it is cooled to room temperature, and the resin particles impregnated with the blowing agent are taken out from the autoclave, pickled with hydrochloric acid, washed with water, dehydrated with a centrifuge, and the moisture adhering to the surface of the resin particles with an air dryer. Drying was performed to obtain expandable styrene resin particles.

得られた発泡性スチレン系樹脂粒子100部に対して、ステアリン酸亜鉛0.08部をドライブレンドした後、15℃で保管した。
[予備発泡粒子の作製]
実施例20と同様の操作で予備発泡粒子を得た。
[スチレン系樹脂発泡成形体の作製]
実施例20と同様の操作でスチレン系樹脂発泡成形体を得た。
After dry blending 0.08 part of zinc stearate with respect to 100 parts of the obtained expandable styrene resin particles, it was stored at 15 ° C.
[Preparation of pre-expanded particles]
Pre-expanded particles were obtained in the same manner as in Example 20.
[Production of Styrenic Resin Foamed Molding]
A styrene resin foam molded article was obtained in the same manner as in Example 20.

(実施例35)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)80.85部、グラファイト(C1)14部に変更した以外は実施例34と同様の操作によりスチレン系樹脂発泡成形体を得た。
実施例20〜35で得られたスチレン系樹脂発泡成形体の評価結果を表4に示す。
(Example 35)
In [Production of styrene-based resin particles], a styrene-based resin foam molded article was obtained by the same operation as in Example 34 except that the styrene-based resin (A) was changed to 80.85 parts and the graphite (C1) was 14 parts.
Table 4 shows the evaluation results of the styrene resin foam molded articles obtained in Examples 20 to 35.

Figure 0006555251
Figure 0006555251

(比較例6)
[スチレン系樹脂粒子の作成]において、スチレン系樹脂(A)を93.85部に変更し、グラファイトマスターバッチ(H1)を使用しないこと以外は実施例1と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Comparative Example 6)
In [Production of styrene resin particles], the styrene resin foam molding is carried out in the same manner as in Example 1 except that the styrene resin (A) is changed to 93.85 parts and the graphite master batch (H1) is not used. Got the body.

(比較例7)
[スチレン系樹脂粒子の作成]において、スチレン系樹脂(A)を99.8部に変更し、グラファイトマスターバッチ(H1)及び臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I)を使用しないこと以外は実施例1と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Comparative Example 7)
In [Creation of Styrenic Resin Particles], the styrene resin (A) is changed to 99.8 parts, and the master batch (I) of the graphite masterbatch (H1) and the mixture of brominated flame retardant and heat stabilizer is changed. A styrene resin foam molded article was obtained by the same operation as in Example 1 except that it was not used.

(比較例8)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)を87.6部、グラファイトマスターバッチ(H1)を6.25部に変更した以外は実施例20と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Comparative Example 8)
In [Production of styrene resin particles], styrene resin foaming was carried out in the same manner as in Example 20, except that the styrene resin (A) was changed to 87.6 parts and the graphite master batch (H1) was changed to 6.25 parts. A molded body was obtained.

(比較例9)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)を68.85部、グラファイトマスターバッチ(H1)を25部に変更した以外は実施例20と同様の操作を実施したが、発泡成形体表面の発泡スチレン系樹脂粒子同士の間隙が埋まらないため表面が平滑にならず、さらに成形直後から発泡成形体が大きく収縮したため、評価を実施できるサンプルは得られなかった。
(Comparative Example 9)
In [Production of Styrenic Resin Particles], the same operation as in Example 20 was carried out except that the styrene resin (A) was changed to 68.85 parts and the graphite masterbatch (H1) was changed to 25 parts. Since the gap between the foamed styrene resin particles on the surface of the body was not filled, the surface was not smooth, and the foamed molded product was greatly shrunk immediately after molding, so a sample that could be evaluated was not obtained.

(比較例10)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H3)に変更した以外は実施例21と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Comparative Example 10)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 21 except that the graphite master batch (H1) was changed to the graphite master batch (H3).

(比較例11)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H3)に変更した以外は実施例23と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Comparative Example 11)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 23, except that the graphite master batch (H1) was changed to the graphite master batch (H3).

(比較例12)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H4)に変更した以外は実施例21と同様の操作によりスチレン系樹脂発泡成形体を得た。
(Comparative Example 12)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 21 except that the graphite master batch (H1) was changed to the graphite master batch (H4).

(比較例13)
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)をグラファイトマスターバッチ(H4)に変更した以外は実施例23と同様の操作によりスチレン系樹脂発泡成形体を得た。
比較例6〜13で得られたスチレン系樹脂発泡成形体の評価結果を表5に示す。
(Comparative Example 13)
In [Production of styrene resin particles], a styrene resin foam molded article was obtained by the same operation as in Example 23, except that the graphite master batch (H1) was changed to the graphite master batch (H4).
Table 5 shows the evaluation results of the styrene resin foam molded articles obtained in Comparative Examples 6 to 13.

Figure 0006555251
Figure 0006555251

(実施例36)
下記No.1〜7のスチレン系樹脂発泡成形体を製造した。
<No.1>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)85.91部、グラファイトマスターバッチ(H1)7.94部に変更した以外は実施例1と同様の操作により、グラファイト含有量3.0%の発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
(Example 36)
The following No. 1 to 7 styrene resin foam molded articles were produced.
<No. 1>
In [Production of Styrenic Resin Particles], the graphite content was changed in the same manner as in Example 1 except that 85.91 parts of styrene resin (A) and 7.94 parts of graphite masterbatch (H1) were used. 0% expandable resin particles were obtained, and a styrene resin foam molded article was obtained.

<No.2>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)79.76部、グラファイトマスターバッチ(H1)14.09部に変更した以外は実施例1と同様の操作により、グラファイト含有量5.3%の発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 2>
In [Production of Styrenic Resin Particles], the graphite content was changed in the same manner as in Example 1 except that 79.76 parts of styrene resin (A) and 14.09 parts of graphite masterbatch (H1) were changed. 3% of expandable resin particles were obtained, and a styrene-based resin foam molded article was obtained.

<No.3>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)77.19部、グラファイトマスターバッチ(H1)16.66部に変更した以外は実施例1と同様の操作により、グラファイト含有量6.3%の発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 3>
In [Preparation of Styrenic Resin Particles], the graphite content of 6.6 by the same operation as in Example 1 except that 77.19 parts of styrene resin (A) and 16.66 parts of graphite masterbatch (H1) were changed. 3% of expandable resin particles were obtained, and a styrene-based resin foam molded article was obtained.

<No.4>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)74.63部、グラファイトマスターバッチ(H1)19.22部に変更した以外は実施例1と同様の操作により、グラファイト含有量7.2%の発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 4>
In [Production of Styrenic Resin Particles], the graphite content was changed by the same operation as in Example 1 except that 74.63 parts of styrene resin (A) and 19.22 parts of graphite masterbatch (H1) were used. 2% of expandable resin particles were obtained, and further, a styrenic resin foam molded article was obtained.

<No.5>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)73.35部、グラファイトマスターバッチ(H1)20.50部に変更した以外は実施例1と同様の操作により、グラファイト含有量7.7%の発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 5>
In [Production of Styrenic Resin Particles], the graphite content was changed by the same operation as in Example 1 except that 73.35 parts of styrene resin (A) and 20.50 parts of graphite masterbatch (H1) were changed. 7% of expandable resin particles were obtained, and further, a styrenic resin foam molded article was obtained.

<No.6>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛BF−3AKを用いたグラファイトマスターバッチ(H5)に変更した以外は実施例2と同様の操作により、発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 6>
In [Preparation of Styrenic Resin Particles], the expandable resin was obtained in the same manner as in Example 2 except that the graphite master batch (H1) was changed to a graphite master batch (H5) using scaly graphite BF-3AK. Particles were obtained, and a styrene resin foam molded article was obtained.

<No.7>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛BF−3AKを用いたグラファイトマスターバッチ(H5)に変更した以外は実施例4と同様の操作により、発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 7>
In [Production of styrene resin particles], the expandable resin was obtained by the same operation as in Example 4 except that the graphite master batch (H1) was changed to a graphite master batch (H5) using scaly graphite BF-3AK. Particles were obtained, and a styrene resin foam molded article was obtained.

(比較例14)
下記No.8〜No.14のスチレン系樹脂発泡成形体を製造した。
<No.8>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)91.29部、グラファイトマスターバッチ(H1)2.56部に変更した以外は実施例1と同様の操作により、グラファイト含有量0.9%の発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
(Comparative Example 14)
The following No. 8-No. Fourteen styrene resin foamed molded articles were produced.
<No. 8>
In [Preparation of Styrenic Resin Particles], the graphite content was changed to 0.001 by the same operation as in Example 1 except that the styrene resin (A) was changed to 91.29 parts and the graphite masterbatch (H1) was 2.56 parts. 9% of expandable resin particles were obtained, and further, a styrenic resin foam molded article was obtained.

<No.9>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)88.73部、グラファイトマスターバッチ(H1)5.13部に変更した以外は実施例1と同様の操作により、グラファイト含有量1.9%の発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 9>
[Production of styrene resin particles] In the same manner as in Example 1 except that the styrene resin (A) was changed to 88.73 parts and the graphite master batch (H1) was 5.13 parts, a graphite content of 1. 9% of expandable resin particles were obtained, and further, a styrenic resin foam molded article was obtained.

<No.10>
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A)72.07部、グラファイトマスターバッチ(H1)21.78部に変更した以外は実施例1と同様の操作により、グラファイト含有量8.2%の発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 10>
In [Production of Styrenic Resin Particles], a graphite content of 8.07 parts by the same operation as in Example 1 except that 72.07 parts of styrene resin (A) and 21.78 parts of graphite masterbatch (H1) were used. 2% of expandable resin particles were obtained, and further, a styrenic resin foam molded article was obtained.

<No.11>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛UCPを用いたグラファイトマスターバッチ(H7)に変更した以外は実施例2と同様の操作により、発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 11>
In [Production of Styrenic Resin Particles], expandable resin particles were obtained in the same manner as in Example 2 except that the graphite master batch (H1) was changed to a graphite master batch (H7) using scaly graphite UCP. Furthermore, a styrene resin foam molded article was obtained.

<No.12>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛UCPを用いたグラファイトマスターバッチ(H7)に変更した以外は実施例4と同様の操作により、発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 12>
In [Production of Styrenic Resin Particles], expandable resin particles were obtained in the same manner as in Example 4 except that the graphite master batch (H1) was changed to a graphite master batch (H7) using scaly graphite UCP. Furthermore, a styrene resin foam molded article was obtained.

<No.13>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛BF−10AKを用いたグラファイトマスターバッチ(H6)に変更した以外は実施例2と同様の操作により、発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
<No. 13>
In [Preparation of Styrenic Resin Particles], the expandable resin was obtained in the same manner as in Example 2 except that the graphite master batch (H1) was changed to a graphite master batch (H6) using scaly graphite BF-10AK. Particles were obtained, and a styrene resin foam molded article was obtained.

<No.14>
[スチレン系樹脂粒子の作製]において、グラファイトマスターバッチ(H1)を、鱗片状黒鉛BF−10AKを用いたグラファイトマスターバッチ(H6)に変更した以外は実施例4と同様の操作により、発泡性樹脂粒子を得、さらにスチレン系樹脂発泡成形体を得た。
実施例36及び比較例14で得られたスチレン系樹脂発泡成形体の評価結果を表6に示す。
<No. 14>
In [Production of Styrenic Resin Particles], a foamable resin was obtained by the same operation as in Example 4 except that the graphite master batch (H1) was changed to a graphite master batch (H6) using scaly graphite BF-10AK. Particles were obtained, and a styrene resin foam molded article was obtained.
Table 6 shows the evaluation results of the styrene resin foam molded articles obtained in Example 36 and Comparative Example 14.

Figure 0006555251
Figure 0006555251

表4〜表6に示されるように本発明によれば高発泡倍率であっても高い断熱性を達成できるスチレン系樹脂発泡成形体を提供できる。
本発明は、発泡性スチレン系樹脂粒子、その製造方法、発泡性スチレン系樹脂粒子を予備発泡した予備発泡粒子、予備発泡粒子を成形したスチレン系樹脂発泡成形体及びその製造方法に関するものである。
As shown in Tables 4 to 6, according to the present invention, it is possible to provide a styrenic resin foam molded article that can achieve high heat insulation even at a high expansion ratio.
The present invention relates to expandable styrene resin particles, a method for producing the same, pre-expanded particles obtained by pre-expanding expandable styrene-based resin particles, a styrene resin foam-molded article obtained by molding pre-expanded particles, and a method for producing the same.

なお、発泡性スチレン系樹脂粒子を予備発泡して予備発泡粒子とし、さらに成形してスチレン系樹脂発泡成形体とする場合には各工程において含有される発泡剤量が減少する。従って同一の実験例であっても発泡性スチレン系樹脂粒子のグラファイト含有量とスチレン系樹脂発泡成形体のグラファイト含有量は異なる。   In addition, when expandable styrene resin particles are pre-expanded into pre-expanded particles and further molded into a styrene-based resin foam molded article, the amount of the foaming agent contained in each step decreases. Therefore, even in the same experimental example, the graphite content of the expandable styrene resin particles is different from the graphite content of the styrene resin foam molding.

(実施例37)
[スチレン系樹脂粒子の作製]
スチレン系樹脂(A)83.85部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I)5.95部、グラファイトマスターバッチ(H1)10部、タルク(G)0.2部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。
(Example 37)
[Production of styrene resin particles]
Master batch (I) 5.95 parts of a mixture of brominated flame retardant and heat stabilizer, graphite master batch (H1) 10 parts, talc (G) 0 with respect to 83.85 parts of styrene resin (A) 2 parts were put into a blender and blended for 10 minutes to obtain a resin composition.

得られた樹脂組成物を、口径90mm単軸押出機に供給して、押出機内で溶融混練し、押出機先端に取り付けられた直径1.4mmの小穴が140個設けられたダイスを通して、吐出量335kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、ストランドカッターでスチレン系樹脂粒子を得た。このとき押出機先端部での樹脂の温度が245℃、押出機内滞留時間3分であった。   The obtained resin composition was supplied to a single screw extruder having a diameter of 90 mm, melted and kneaded in the extruder, and discharged through a die having 140 small holes with a diameter of 1.4 mm attached to the tip of the extruder. The strand-shaped resin extruded at 335 kg / hour was cooled and solidified in a 20 ° C. water tank, and then styrene resin particles were obtained with a strand cutter. At this time, the temperature of the resin at the tip of the extruder was 245 ° C., and the residence time in the extruder was 3 minutes.

[発泡性スチレン系樹脂粒子の作製]
容積6Lの撹拌装置付きオートクレーブ内に、得られたスチレン系樹脂粒子100部に対して、脱イオン水200部、リン酸三カルシウム1部、ドデシルベンゼンスルホン酸ナトリウム0.03部、塩化ナトリウム4部を投入し、オートクレーブを密閉した。その後、1時間で105℃まで加温した後、発泡剤として混合ペンタン[ノルマルペンタン(B1)80%とイソペンタン(B2)20%の混合物]8部を25分間かけてオートクレーブ内に添加した後、115℃まで10分かけて昇温し、そのまま4時間保持した。
[Production of expandable styrene resin particles]
In a 6 L autoclave with a stirrer, 200 parts of deionized water, 1 part of tricalcium phosphate, 0.03 part of sodium dodecylbenzenesulfonate, 4 parts of sodium chloride with respect to 100 parts of the resulting styrene resin particles The autoclave was sealed. Thereafter, after heating to 105 ° C. in 1 hour, 8 parts of mixed pentane [a mixture of 80% normal pentane (B1) and 20% isopentane (B2)] as a blowing agent was added to the autoclave over 25 minutes, The temperature was raised to 115 ° C. over 10 minutes and held there for 4 hours.

次いで、室温まで冷却し、オートクレーブから発泡剤が含浸された樹脂粒子を取り出し、塩酸で酸洗後、水洗し、遠心分離機で脱水後、気流乾燥機で樹脂粒子表面に付着している水分を乾燥させ、発泡性スチレン系樹脂粒子を得た。得られた発泡性スチレン系樹脂粒子100部に対して、ステアリン酸亜鉛0.08部をドライブレンドした後、15℃で2週間保管した。   Next, it is cooled to room temperature, and the resin particles impregnated with the blowing agent are taken out from the autoclave, pickled with hydrochloric acid, washed with water, dehydrated with a centrifuge, and the moisture adhering to the surface of the resin particles with an air dryer. Drying was performed to obtain expandable styrene resin particles. To 100 parts of the resulting expandable styrene resin particles, 0.08 part of zinc stearate was dry blended, and then stored at 15 ° C. for 2 weeks.

[予備発泡粒子の作製]
発泡性スチレン系樹脂粒子を作製し、15℃で保管してから2週間後に発泡性スチレン系樹脂粒子を予備発泡機[大開工業株式会社製、BHP−300]で予備発泡した。発泡性スチレン系樹脂粒子1800gを予備発泡機に投入し、水蒸気温度120℃の水蒸気を缶内に導入した。排気弁を調節して缶内圧力を0.1MPaに調整した。予備発泡粒子が所定の嵩容量に達したところで水蒸気導入を停止した。水蒸気投入時間は50秒であった。その後圧縮空気を60秒間缶内に吹き込んで予備発泡粒子を乾燥させたのち、予備発泡機から予備発泡粒子を取り出した。発泡倍率は嵩倍率で60倍であった。
投入する発泡性スチレン系樹脂粒子の重量を調整して同様の方法により、70倍、80倍の予備発泡粒子を得た。水蒸気温度及び缶内圧力は表7に記載の条件で実施した。
[Preparation of pre-expanded particles]
Expandable styrene resin particles were prepared and stored at 15 ° C., and two weeks after the expansion, the expandable styrene resin particles were pre-foamed with a pre-foaming machine [Daikai Kogyo Co., Ltd., BHP-300]. 1800 g of expandable styrene resin particles were put into a pre-foaming machine, and steam having a steam temperature of 120 ° C. was introduced into the can. The pressure inside the can was adjusted to 0.1 MPa by adjusting the exhaust valve. When the pre-expanded particles reached a predetermined bulk capacity, the introduction of water vapor was stopped. The steam input time was 50 seconds. Thereafter, compressed air was blown into the can for 60 seconds to dry the prefoamed particles, and then the prefoamed particles were taken out from the prefoaming machine. The expansion ratio was 60 times in bulk ratio.
By adjusting the weight of the expandable styrenic resin particles to be added, 70-fold and 80-fold pre-expanded particles were obtained by the same method. Water vapor temperature and can internal pressure were carried out under the conditions described in Table 7.

[スチレン系樹脂発泡成形体の作製]
得られた嵩倍率60倍の予備発泡粒子を、発泡スチロール用成形機[ダイセン工業(株)製、KR−57]に取り付けた型内成形用金型(長さ450mm×幅310mm×厚み25mm)内に充填して、0.06MPaの水蒸気を導入して型内発泡させた後、金型に水を3秒間噴霧して冷却した。スチレン系樹脂発泡成形体が金型を押す圧力が0.015MPa(ゲージ圧力)なるまでスチレン系樹脂発泡成形体を金型内に保持した後に、スチレン系樹脂発泡成形体取り出して、外観美麗な直方体状のスチレン系発泡成形体を得た。発泡倍率は60倍であった。
[Production of Styrenic Resin Foamed Molding]
Inside the in-mold molding die (length 450 mm × width 310 mm × thickness 25 mm) in which the obtained pre-expanded particles having a bulk magnification of 60 times are attached to a foamed polystyrene molding machine [manufactured by Daisen Industry Co., Ltd., KR-57] Then, 0.06 MPa of water vapor was introduced and foamed in the mold, and then the mold was sprayed with water for 3 seconds to cool. The styrenic resin foam molded product is held in the mold until the pressure at which the styrenic resin foam molded product presses the mold is 0.015 MPa (gauge pressure), and then the styrenic resin foam molded product is taken out and a rectangular solid with a beautiful appearance. A styrene-based foam molded article was obtained. The expansion ratio was 60 times.

嵩倍率70倍、80倍の予備発泡粒子から同様にスチレン系樹脂発泡成形体を作製した。発泡倍率はそれぞれ70倍、80倍であった。
得られた予備発泡粒子及び発泡成形体の評価結果を、表7に示す。
Styrenic resin foam moldings were similarly produced from pre-expanded particles with a bulk magnification of 70 times and 80 times. The expansion ratio was 70 times and 80 times, respectively.
Table 7 shows the evaluation results of the obtained pre-expanded particles and the expanded molded body.

(実施例38〜53及び比較例15〜21)
水蒸気投入時間、缶内圧力、及び水蒸気温度を表7(実施例)及び表8に記載のように変更し、比較例17〜19はグラファイトを用いない以外は、実施例37と同様にして実施した。
(Examples 38 to 53 and Comparative Examples 15 to 21)
The steam introduction time, the can internal pressure, and the steam temperature were changed as shown in Table 7 (Example) and Table 8, and Comparative Examples 17 to 19 were carried out in the same manner as Example 37 except that graphite was not used. did.

Figure 0006555251
Figure 0006555251

Figure 0006555251
Figure 0006555251

表7及び表8に示すように本発明の製造方法であればブロッキング量が少なく、発泡倍率65cm/g以上に発泡可能で表面美麗性に優れた発泡成形体を製造することができる。As shown in Table 7 and Table 8, if it is the manufacturing method of this invention, there will be little blocking amount, and the foaming molding which can be foamed to the foaming magnification 65cm < 3 > / g or more and was excellent in the surface beauty can be manufactured.

(比較例22)
<二段発泡の一段目>
実施例37と同様に発泡性スチレン系樹脂粒子を作製し、15℃で2週間保管した後に、該発泡性スチレン系樹脂粒子1800gを予備発泡機(大開工業(株)製、BHP−300)に投入し、水蒸気温度114℃の水蒸気を缶内に導入した。排気弁を調節して缶内圧力を0.07MPaに調整した。水蒸気投入時間100秒で水蒸気投入を停止し、その後圧縮空気を60秒間缶内に吹き込んで予備発泡粒子を乾燥させたのち、予備発泡機から予備発泡粒子を取り出した。取り出した予備発泡粒子を20℃で保管した。
(Comparative Example 22)
<First stage of two-stage foaming>
In the same manner as in Example 37, expandable styrene resin particles were prepared and stored at 15 ° C. for 2 weeks, and then 1800 g of the expandable styrene resin particles were placed in a pre-foaming machine (BHP-300, manufactured by Daikai Industrial Co., Ltd.). Then, steam having a steam temperature of 114 ° C. was introduced into the can. The pressure inside the can was adjusted to 0.07 MPa by adjusting the exhaust valve. Steam injection was stopped at a steam injection time of 100 seconds, and after that, compressed air was blown into the can for 60 seconds to dry the pre-expanded particles, and then the pre-expanded particles were taken out from the pre-expander. The taken pre-expanded particles were stored at 20 ° C.

<二段発泡の二段目>
一段目の発泡から24時間後、嵩容積12Lの予備発泡粒子を予備発泡機に投入し、排気弁解放状態で水蒸気温度120℃の水蒸気を予備発泡機に導入して二段発泡を行った。二段発泡の水蒸気投入時間を調整して嵩倍率60倍の予備発泡粒子を得た。表8記載の缶内圧力、水蒸気投入温度、水蒸気投入時間で一段発泡を実施し、上記と同様に二段発泡を実施してそれぞれ70倍、80倍の予備発泡粒子を得た。
<Second stage of two-stage foaming>
Twenty-four hours after the first stage of foaming, pre-expanded particles having a bulk volume of 12 L were charged into the pre-foaming machine, and steam at a steam temperature of 120 ° C. was introduced into the pre-foaming machine with the exhaust valve released to perform two-stage foaming. The pre-expanded particles having a bulk magnification of 60 times were obtained by adjusting the time when the two-stage foamed steam was added. One-stage foaming was carried out at the can internal pressure, steam introduction temperature, and steam introduction time shown in Table 8, and two-stage foaming was carried out in the same manner as above to obtain 70-fold and 80-fold pre-expanded particles, respectively.

得られた予備発泡粒子を用い、実施例37と同様にして、発泡倍率60倍、70倍、80倍のスチレン系樹脂発泡成形体を作製した。   Using the obtained pre-expanded particles, styrene-based resin foam molded articles having expansion ratios of 60 times, 70 times, and 80 times were produced in the same manner as in Example 37.

(比較例23)
一段目の発泡の水蒸気投入時間を表9記載の条件とした以外は比較例22同様に予備発泡、成形を実施した。
比較例22、23の評価結果を表9に示す。比較のため、実施例44の評価結果を再掲載する。表9に示されるように、グラファイトを高含有する場合は、二段発泡を利用した場合には独立気泡率が低下して発泡成形体の表面美麗性が低下する。
(Comparative Example 23)
Prefoaming and molding were carried out in the same manner as in Comparative Example 22 except that the water vapor charging time for the first stage foaming was changed to the conditions shown in Table 9.
Table 9 shows the evaluation results of Comparative Examples 22 and 23. For comparison, the evaluation results of Example 44 are shown again. As shown in Table 9, when the graphite content is high, the closed cell ratio is lowered when the two-stage foaming is used, and the surface beauty of the foamed molded product is lowered.

Figure 0006555251
Figure 0006555251

(比較例24及び25)
実施例37と同様の方法で製造された60倍、70倍、80倍の予備発泡粒子を用い、
表10に示す水蒸気温度及び缶内圧力でスチレン系樹脂発泡成形体を製造した。表10に評価結果を示す。比較のため、実施例44の評価結果を再掲載する。なお、水蒸気の供給を続けても所定の発泡倍率に達しないものについては、平均セル径、独立気泡率、表面美麗性、及びブロッキング量を評価できなかった。
(Comparative Examples 24 and 25)
Using pre-expanded particles of 60 times, 70 times, 80 times produced by the same method as in Example 37,
Styrenic resin foam moldings were produced at the water vapor temperature and can pressure shown in Table 10. Table 10 shows the evaluation results. For comparison, the evaluation results of Example 44 are shown again. In addition, about the thing which does not reach a predetermined foaming ratio even if supply of water vapor | steam is continued, the average cell diameter, the closed cell rate, the surface beauty, and the amount of blocking were not able to be evaluated.

Figure 0006555251
Figure 0006555251

表10に示すように缶内圧力0.001MPa未満では70倍以上に発泡させることは難しい。また、0.15MPaを超えるとブロッキングが大量に発生して収率が悪くなり、さらに独立気泡率が低下して発泡成形体表面美麗性が悪化する。特に、比較例24のように、缶内圧力を0MPaとした場合には、水蒸気を投入し続けても発泡倍率70倍及び80倍には到達しなかった。

As shown in Table 10, it is difficult to foam 70 times or more when the internal pressure of the can is less than 0.001 MPa. On the other hand, if it exceeds 0.15 MPa, a large amount of blocking is generated and the yield is deteriorated, and the closed cell ratio is lowered to deteriorate the surface beauty of the foamed molded product. In particular, as in Comparative Example 24, when the internal pressure of the can was set to 0 MPa, the expansion ratios of 70 times and 80 times were not reached even when water vapor was continuously supplied.

Claims (24)

スチレン系樹脂粒子に発泡剤を含有させた発泡性スチレン系樹脂粒子であって、前記発泡性スチレン系樹脂粒子はグラファイトを3〜8重量%含有し、前記グラファイトが平均粒径3〜7μm、90%粒径を10%粒径で除した値が2.5以上であり、かつ比表面積1.55m/cm以上であることを特徴とする発泡性スチレン系樹脂粒子。 90. Expandable styrene resin particles obtained by adding a foaming agent to styrene resin particles, wherein the expandable styrene resin particles contain 3 to 8% by weight of graphite, and the graphite has an average particle diameter of 3 to 7 μm, Expandable styrenic resin particles having a value obtained by dividing% particle size by 10% particle size of 2.5 or more and a specific surface area of 1.55 m 2 / cm 3 or more. 臭素系難燃剤を含有し、スチレン系樹脂発泡成形体とした場合の臭素含有量が0.8〜2.5重量%である請求項1に記載の発泡性スチレン系樹脂粒子。 2. The expandable styrene resin particles according to claim 1, which contain a brominated flame retardant and have a bromine content of 0.8 to 2.5 wt% when a styrene resin foam molded article is formed. 前記発泡剤が炭素数4〜5の炭化水素からなり、前記発泡剤の含有量がスチレン系樹脂100重量部に対して4〜10重量部である請求項1又は2に記載の発泡性スチレン系樹脂粒子。 The foaming styrene type according to claim 1 or 2 , wherein the foaming agent comprises a hydrocarbon having 4 to 5 carbon atoms, and the content of the foaming agent is 4 to 10 parts by weight with respect to 100 parts by weight of the styrene resin. Resin particles. 請求項1〜のいずれか一項に記載の発泡性スチレン系樹脂粒子を予備発泡させた予備発泡粒子。 Pre-expanded particles obtained by pre-expanding the expandable styrenic resin particles according to any one of claims 1 to 3 . 請求項に記載の予備発泡粒子を成形したスチレン系樹脂発泡成形体。 A styrene resin foam molded article obtained by molding the pre-expanded particles according to claim 4 . 請求項1〜のいずれか一項に記載の発泡性スチレン系樹脂粒子の製造方法。 The manufacturing method of the expandable styrene-type resin particle as described in any one of Claims 1-3 . 請求項に記載の発泡性スチレン系樹脂粒子の製造方法であって、
スチレン系樹脂とグラファイトを押出機で溶融混練し、コールドカット法またはホットカット法を用いてスチレン系樹脂ペレットを得た後、前記スチレン系樹脂ペレットを水中に懸濁させると共に、発泡剤を含有させることを特徴とする発泡性スチレン系樹脂粒子の製造方法。
It is a manufacturing method of the expandable styrene resin particle according to claim 6 ,
Styrenic resin and graphite are melt kneaded with an extruder to obtain styrene resin pellets using a cold cut method or a hot cut method, and then the styrene resin pellets are suspended in water and contain a foaming agent. A process for producing expandable styrene-based resin particles.
請求項に記載の発泡性スチレン系樹脂粒子の製造方法であって、
スチレン系樹脂とグラファイトと発泡剤とを押出機で溶融混練し、押出機先端に取り付けられた小孔を有するダイスを通じて加圧循環水で満たされたカッターチャンバー内に押出し、押出直後から回転カッターにより切断すると共に、加圧循環水により冷却固化することを特徴とする発泡性スチレン系樹脂粒子の製造方法。
It is a manufacturing method of the expandable styrene resin particle according to claim 6 ,
Styrenic resin, graphite and foaming agent are melt-kneaded with an extruder, extruded into a cutter chamber filled with pressurized circulating water through a die with a small hole attached to the tip of the extruder, and immediately after extrusion by a rotary cutter. A method for producing expandable styrene resin particles, characterized by being cut and solidified by cooling with pressurized circulating water.
請求項に記載の発泡性スチレン系樹脂粒子の製造方法であって、
スチレンをグラファイト存在下に懸濁水溶液中で重合させ、重合前及び/又は重合中及び/又は重合後に、発泡剤を含浸させることを特徴とする発泡性スチレン系樹脂粒子の製造方法。
It is a manufacturing method of the expandable styrene resin particle according to claim 6 ,
A method for producing expandable styrene resin particles, comprising polymerizing styrene in an aqueous suspension in the presence of graphite, and impregnating a foaming agent before and / or during and / or after the polymerization.
請求項5に記載のスチレン系樹脂発泡成形体であって、
前記スチレン系樹脂発泡成形体は、前記スチレン系樹脂発泡成形体を平均温度23℃、温度差20℃で測定した熱伝導率A(W/m・K)と発泡倍率B(cm/g)の間に式1の関係を有することを特徴とするスチレン系樹脂発泡成形体。
式1:A≦0.0251+0.0000776×B
The styrenic resin foam molded article according to claim 5 ,
The styrenic resin foam molded article has a thermal conductivity A (W / m · K) and a foaming ratio B (cm 3 / g) of the styrene resin foam molded article measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. A styrenic resin foam molded article having the relationship of Formula 1 between:
Formula 1: A ≦ 0.0251 + 0.0000776 × B
請求項5に記載のスチレン系樹脂発泡成形体であって、
前記スチレン系樹脂発泡成形体は、前記スチレン系樹脂発泡成形体を50℃で30日間乾燥した後に平均温度23℃、温度差20℃で測定した熱伝導率C(W/m・K)と発泡倍率D(cm/g)の間に式2の関係を有することを特徴とするスチレン系樹脂発泡成形体。
式2:C≦0.0276+0.0000776×D
The styrenic resin foam molded article according to claim 5 ,
The styrenic resin foamed molded product is obtained by drying the styrenic resin foamed molded product at 50 ° C. for 30 days and then measuring the thermal conductivity C (W / m · K) and the foaming measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. A styrene-based resin foam molded article having a relationship of Formula 2 between magnifications D (cm 3 / g).
Formula 2: C ≦ 0.0276 + 0.0000776 × D
発泡倍率が40(cm/g)以上である請求項10又は11に記載のスチレン系樹脂発泡成形体。 The styrene resin foam molded article according to claim 10 or 11 , wherein the expansion ratio is 40 (cm 3 / g) or more. 予備発泡機の缶内に入れた発泡性スチレン系樹脂粒子に水蒸気を投入して予備発泡粒子を得る予備発泡工程と、前記予備発泡粒子を型内成形する成形工程とを含む、スチレン系樹脂発泡成形体の製造方法であって、  Styrenic resin foaming comprising: a pre-foaming step for obtaining pre-foamed particles by introducing water vapor into expandable styrenic resin particles placed in a can of a pre-foaming machine; and a molding step for molding the pre-foamed particles in-mold A method for producing a molded body, comprising:
スチレン系樹脂発泡成形体中のグラファイト含有量を3〜8重量%とし、前記グラファイトが平均粒径3〜7μm、比表面積1.55m  The graphite content in the styrene resin foam molded article is 3 to 8% by weight, and the graphite has an average particle size of 3 to 7 μm and a specific surface area of 1.55 m. 2 /cm/ Cm 3 以上、および、90%粒径を10%粒径で除した値が2.5以上であり、かつ、And the value obtained by dividing the 90% particle size by the 10% particle size is 2.5 or more, and
前記予備発泡工程における水蒸気投入時間を50〜500秒とすることによりスチレン系樹脂発泡成形体を得ることを特徴とする、  A styrenic resin foam molded article is obtained by setting the water vapor charging time in the preliminary foaming step to 50 to 500 seconds,
スチレン系樹脂発泡成形体の製造方法。  A method for producing a styrene resin foam molded article.
請求項13記載のスチレン系樹脂発泡成形体の製造方法であって
均温度23℃、温度差20℃で測定した熱伝導率A(W/m・K)と発泡倍率B(cm/g)の間に式1の関係を有するスチレン系樹脂発泡成形体を得ることを特徴とするスチレン系樹脂発泡成形体の製造方法。
式1:A≦0.0251+0.0000776×B
A method for producing a styrenic resin foam molded article according to claim 13 ,
Average temperature 23 ° C., a styrene resin foamed molded product having a relationship of equation 1 between the thermal conductivity A measured temperature difference 20 ℃ (W / m · K ) and the expansion ratio B (cm 3 / g) A method for producing a styrene-based resin foam molded article.
Formula 1: A ≦ 0.0251 + 0.0000776 × B
請求項13記載のスチレン系樹脂発泡成形体の製造方法であって
0℃で30日間乾燥した後に平均温度23℃、温度差20℃で測定した熱伝導率C(W/m・K)と発泡倍率D(cm/g)の間に式2の関係を有するスチレン系樹脂発泡成形体を得ることを特徴とするスチレン系樹脂発泡成形体の製造方法。
式2:C≦0.0276+0.0000776×D
A method for producing a styrenic resin foam molded article according to claim 13 ,
5 0 ° C. The average temperature of 23 ° C. After drying for 30 days, the thermal conductivity was measured at a temperature difference 20 ° C. and C (W / m · K) the relationship of Equation 2 between the expansion ratio D (cm 3 / g) A method for producing a styrene resin foam molded article, comprising: obtaining a styrene resin foam molded article having the same.
Formula 2: C ≦ 0.0276 + 0.0000776 × D
前記予備発泡工程において、前記発泡性スチレン系樹脂粒子の予備発泡を一段階で行なう請求項13〜15のいずれか一項に記載のスチレン系樹脂発泡成形体の製造方法。 The method for producing a styrene resin foam molded article according to any one of claims 13 to 15, wherein in the preliminary foaming step, the foamable styrene resin particles are prefoamed in one stage. 前記スチレン系樹脂発泡成形体の発泡倍率を65〜80cm/gとする請求項1316のいずれか一項に記載のスチレン系樹脂発泡成形体の製造方法。 Method for producing a styrene resin foamed molded product according to any one of claims 13 to 16, the expansion ratio of the styrene resin foam molded body and 65~80cm 3 / g. 前記水蒸気投入時間が80〜300秒である請求項1317のいずれか一項に記載のスチレン系樹脂発泡成形体の製造方法。 The method for producing a styrene-based resin foam molded article according to any one of claims 13 to 17 , wherein the steam introduction time is 80 to 300 seconds. 水蒸気投入時の前記予備発泡機の缶内圧力がゲージ圧力で0.001〜0.15MPaである請求項1318のいずれか一項に記載のスチレン系樹脂発泡成形体の製造方法。 The method for producing a styrene-based resin foam molded body according to any one of claims 13 to 18 , wherein the pressure in the can of the preliminary foaming machine at the time of introducing steam is 0.001 to 0.15 MPa in gauge pressure. 前記水蒸気の温度が100℃を超え、130℃以下である請求項13〜19のいずれか一項に記載のスチレン系樹脂発泡成形体の製造方法。 The method for producing a styrenic resin foam molded article according to any one of claims 13 to 19, wherein the temperature of the water vapor exceeds 100C and is 130C or less. 前記予備発泡工程において、前記予備発泡機の缶内に入れた前記発泡性スチレン系樹脂粒子に前記水蒸気と共に空気を投入する請求項1320のいずれか一項に記載のスチレン系樹脂発泡成形体の製造方法。 21. The styrene resin foam molded article according to any one of claims 13 to 20 , wherein, in the preliminary foaming step, air is introduced together with the water vapor into the expandable styrene resin particles placed in a can of the preliminary foaming machine. Manufacturing method. 前記スチレン系樹脂発泡成形体の平均セル径を70〜250μmとする請求項1321のいずれか一項に記載のスチレン系樹脂発泡成形体の製造方法。 The method for producing a styrene resin foam molded article according to any one of claims 13 to 21 , wherein an average cell diameter of the styrene resin foam molded article is set to 70 to 250 µm. 前記スチレン系樹脂発泡成形体の独立気泡率を97〜100%とする請求項1322のいずれか一項に記載のスチレン系樹脂発泡成形体の製造方法。 The method for producing a styrene resin foam molded article according to any one of claims 13 to 22 , wherein the closed cell ratio of the styrene resin foam molded article is 97 to 100%. 前記予備発泡粒子の独立気泡率を97〜100%とする請求項1323のいずれか一項に記載のスチレン系樹脂発泡成形体の製造方法。
The method for producing a styrene-based resin foam molded article according to any one of claims 13 to 23 , wherein the closed cell ratio of the pre-expanded particles is 97 to 100%.
JP2016507769A 2014-03-10 2015-03-10 Styrenic resin foam molding and method for producing the same Active JP6555251B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014046633 2014-03-10
JP2014046633 2014-03-10
JP2014046632 2014-03-10
JP2014046632 2014-03-10
PCT/JP2015/057066 WO2015137363A1 (en) 2014-03-10 2015-03-10 Styrene-based resin foam-molded article and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2015137363A1 JPWO2015137363A1 (en) 2017-04-06
JP6555251B2 true JP6555251B2 (en) 2019-08-07

Family

ID=54071806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016507769A Active JP6555251B2 (en) 2014-03-10 2015-03-10 Styrenic resin foam molding and method for producing the same

Country Status (2)

Country Link
JP (1) JP6555251B2 (en)
WO (1) WO2015137363A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348612A4 (en) 2015-09-09 2019-04-17 Kaneka Corporation Expandable styrene resin particles, pre-expanded particles of styrene resin, styrene resin foam molded body, and method for producing expandable resin particles
EP3437820A4 (en) 2016-03-29 2019-10-16 Kaneka Corporation Method for manufacturing foaming composite molding, in-mold foaming molding unit, foaming composite molding, and mold for foaming composite molding
CN109070401A (en) 2016-03-29 2018-12-21 株式会社钟化 The manufacturing method of foaming composite shaped body and the composite shaped body that foams
JP7117247B2 (en) 2016-12-21 2022-08-12 株式会社カネカ IN-MOLD FOAM UNIT AND METHOD FOR MANUFACTURING IN-MOLD FOAM MOLD UNIT
EP3594276A4 (en) 2017-03-07 2020-11-04 Kaneka Corporation Styrenic resin extruded foam and method for producing same
JP6854672B2 (en) * 2017-03-08 2021-04-07 株式会社カネカ A masterbatch, a method for producing the same, and a method for producing foamable thermoplastic resin particles.
JP6854671B2 (en) * 2017-03-08 2021-04-07 株式会社カネカ Foamable thermoplastic resin particles and their manufacturing method
CN110430788B (en) 2017-03-23 2021-09-28 株式会社钟化 Vehicle seat core, mold for molding vehicle seat core, and method for manufacturing vehicle seat core
EP3778741A4 (en) * 2018-04-11 2021-05-19 Kaneka Corporation Expandable thermoplastic resin particles
JP7194535B2 (en) * 2018-08-31 2022-12-22 株式会社カネカ Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
KR102230857B1 (en) * 2019-07-04 2021-03-24 금호석유화학 주식회사 A preparation method of polystyrene insulation foam with excellent insulation performance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4316305B2 (en) * 2003-06-13 2009-08-19 株式会社ジェイエスピー Method for producing styrene resin foam containing graphite powder
DE10358786A1 (en) * 2003-12-12 2005-07-14 Basf Ag Particle foam moldings of expandable, filler-containing polymer granules
JP2011068821A (en) * 2009-09-28 2011-04-07 Sekisui Plastics Co Ltd Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article
DE102009059781A1 (en) * 2009-12-18 2011-06-22 Basf Se, 67063 Flame retardant polymer foams
JP5545972B2 (en) * 2010-03-26 2014-07-09 積水化成品工業株式会社 Method for producing foam molded article

Also Published As

Publication number Publication date
JPWO2015137363A1 (en) 2017-04-06
WO2015137363A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6555251B2 (en) Styrenic resin foam molding and method for producing the same
JP6216506B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP6935329B2 (en) Method for Producing Foamable Styrene Resin Particles, Preliminary Foamed Particles of Styrene Resin, Styrene Resin Foamed Mold, and Foamable Resin Particles
EP3523361A1 (en) Improved expandable vinyl aromatic polymers
JP2023063388A (en) Styrenic resin composition, and method for producing foamable styrenic resin particle
JP6854672B2 (en) A masterbatch, a method for producing the same, and a method for producing foamable thermoplastic resin particles.
JP7144955B2 (en) Method for producing styrenic resin composition and expandable styrenic resin particles
JP7227228B2 (en) Expandable thermoplastic resin particles
JP6854671B2 (en) Foamable thermoplastic resin particles and their manufacturing method
JP6854669B2 (en) Effervescent polystyrene resin particles, pre-expanded particles, molded article
JP6837820B2 (en) Expandable polystyrene resin particles and their manufacturing method
JP7100995B2 (en) Expandable polystyrene-based resin particles, polystyrene-based expanded particles and polystyrene-based expanded molded products
JP6688658B2 (en) Method for producing expandable styrene resin particles, method for producing styrene resin pre-expanded particles, and method for producing styrene resin in-mold foam molded article
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP6961440B2 (en) Foamable polystyrene resin particles and manufacturing method
JP2017222772A (en) Method for producing expandable styrene-based resin particles
JP2024140138A (en) Expandable styrene resin particles
JP2024142436A (en) Method for producing styrene-based resin composition and method for producing expandable styrene-based resin particles
JP6770838B2 (en) Manufacturing method of foamable styrene resin particles
JP2023145171A (en) Foamable polystyrenic resin particle and production method
JP2022055450A (en) Foamable vinyl chloride resin particle, foamed particle thereof, and foamed molding including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6555251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250