JP2011068821A - Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article - Google Patents

Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article Download PDF

Info

Publication number
JP2011068821A
JP2011068821A JP2009222648A JP2009222648A JP2011068821A JP 2011068821 A JP2011068821 A JP 2011068821A JP 2009222648 A JP2009222648 A JP 2009222648A JP 2009222648 A JP2009222648 A JP 2009222648A JP 2011068821 A JP2011068821 A JP 2011068821A
Authority
JP
Japan
Prior art keywords
composite resin
weight
particles
parts
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009222648A
Other languages
Japanese (ja)
Inventor
Yuichi Gondo
裕一 権藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2009222648A priority Critical patent/JP2011068821A/en
Publication of JP2011068821A publication Critical patent/JP2011068821A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expandable composite resin particle that includes a polyolefine-based resin and a polystyrene-based resin, and gives a foamed molded article good in fusionability even after long elapse of days since preliminary foaming, and excellent in crack resistance, and to provide a preliminary foamed particle derived from an expandable composite resin including a polyolefine-based resin and a polystyrene-based resin. <P>SOLUTION: The expandable composite resin particle includes a composite resin particle, that includes 100 pts.wt. polyolefine-based resin and 120-560 pts.wt. polystyrene-based resin, 0.05-2.5 pts.wt. nonionic surfactant against 100 pts.wt. of the composite resin particle, and a foaming agent, and can form the preliminary foamed particle having the value A/B of 2-6 obtained by dividing the average cell diameter A of bubbles contacting with the epidermal layer of the preliminary foamed particle by the average cell diameter B of bubbles passing through the point at one half of radius of the preliminary foamed particle in the case observing a picture photographed by electron microscope scanning a cross section divided into two parts from the surface through center thereof of a prefoamed particle obtained by prefoaming the expandable composite resin particle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリオレフィン系樹脂とポリスチレン系樹脂とを含む発泡性複合樹脂粒子、予備発泡粒子、それらの製造方法及び発泡成形体に関する。
本発明の予備発泡粒子は、表皮層に接している気泡と内部の気泡の平均気泡径が大きく異なる、いわゆる2重気泡構造を有している。このような構造を有する予備発泡粒子を成形すれば、外観及び成形性に優れ、かつ耐割れ性に優れた発泡成形体を得ることができる。また、本発明の製造方法は、多量の水を使用しないため、多量生産可能なプラントで安価に発泡成形体を製造できるだけでなく、特定の界面活性剤を少量添加することで上記の特性をもった予備発泡粒子を効率よく製造することができる。
The present invention relates to an expandable composite resin particle containing a polyolefin resin and a polystyrene resin, pre-expanded particles, a production method thereof, and an expanded molded article.
The pre-expanded particles of the present invention have a so-called double cell structure in which the average cell diameters of the bubbles in contact with the skin layer and the bubbles inside are greatly different. If the pre-expanded particles having such a structure are molded, it is possible to obtain a foamed molded article having excellent appearance and moldability and excellent crack resistance. In addition, since the production method of the present invention does not use a large amount of water, it can not only produce a foamed molded product at a low cost in a plant capable of mass production, but also has the above characteristics by adding a small amount of a specific surfactant. The pre-expanded particles can be produced efficiently.

ポリスチレン樹脂粒子にプロパン、ブタン、ペンタン等の揮発性発泡剤を含浸することにより発泡性能が付与された発泡性ポリスチレン樹脂粒子が得られる。発泡性ポリスチレン樹脂粒子は、発泡剤の保持性が良好であり、室温もしくは冷蔵状態で保管できる。従って、適時に発泡性ポリスチレン樹脂粒子を加熱して予備発泡粒子とし、これを成形機の金型内に充填して加熱して発泡成形体とすることができる。この発泡成形体は、断熱性、緩衝性、軽量性に優れていることから、魚箱等の食品容器、家電製品等の緩衝材、建材用断熱材等として広く用いられている。しかし、この発泡成形体は、衝撃等によって割れやすいという問題点があり、用途の拡大には限界があった。   Expandable polystyrene resin particles imparted with foaming performance are obtained by impregnating polystyrene resin particles with a volatile foaming agent such as propane, butane, or pentane. Expandable polystyrene resin particles have good retention of the foaming agent and can be stored at room temperature or in a refrigerated state. Accordingly, it is possible to heat the expandable polystyrene resin particles at appropriate times to obtain pre-expanded particles, which are filled in a mold of a molding machine and heated to obtain a foam molded product. Since this foamed molded article is excellent in heat insulation, buffer and lightness, it is widely used as a food container such as a fish box, a shock absorber for home appliances, a heat insulator for building materials, and the like. However, this foamed molded product has a problem that it is easily broken by an impact or the like, and there has been a limit to expansion of applications.

一方、ポリエチレン系樹脂やポリプロピレン系樹脂等のポリオレフィン系樹脂からなる発泡成形体は、ポリスチレン樹脂からなる発泡成形体の特長に加えて、柔軟性があって、割れにくい(耐割れ性に優れる)ことが知られている。しかし、ポリオレフィン系樹脂粒子は発泡剤の保持性に劣ることから、発泡性樹脂粒子の状態で保管することはできないという問題点がある。加えて、発泡成形条件を精密に制御する必要があるため、製造コストが高くつくという問題点もある。   On the other hand, in addition to the features of foamed molded products made of polystyrene resin, foamed molded products made of polyolefin resins such as polyethylene resins and polypropylene resins are flexible and resistant to cracking (excellent crack resistance). It has been known. However, since polyolefin resin particles are inferior in retention of the foaming agent, there is a problem that they cannot be stored in the state of expandable resin particles. In addition, since it is necessary to precisely control the foam molding conditions, there is a problem that the manufacturing cost is high.

上記問題を解決するために、水溶性媒体中でポリエチレン系樹脂粒子にスチレン系モノマーを含浸重合させることで、ポリエチレン系樹脂でポリスチレン系樹脂を改質した発泡性複合粒子が色々と提案されている。   In order to solve the above problems, various foamable composite particles have been proposed in which a polyethylene resin particle is impregnated and polymerized with a styrene monomer in an aqueous medium to modify the polystyrene resin with a polyethylene resin. .

例えば、特開2006−70202号公報(特許文献1)では、無機核剤を含む融点95〜115℃のポリエチレン系樹脂成分100重量部に対して、ポリスチレン系樹脂成分300〜1000重量部と揮発性発泡剤とを含有し、かつ粒子表面から少なくとも5μmまでの表層部は0.8μm以下のポリスチレン系樹脂粒子が分散された状態である発泡性複合樹脂粒子が提案されている。
加えて、国際公報2005/021624号パンフレット(特許文献2)では、ポリオレフィン系樹脂で改質したポリスチレン系樹脂の予備発泡粒子とその製造方法が提案されている。
For example, in JP-A-2006-7022 (Patent Document 1), 300 to 1000 parts by weight of a polystyrene resin component and volatile to 100 parts by weight of a polyethylene resin component having a melting point of 95 to 115 ° C. containing an inorganic nucleating agent. Expandable composite resin particles containing a foaming agent and having a surface layer portion of at least 5 μm from the particle surface in which polystyrene resin particles of 0.8 μm or less are dispersed have been proposed.
In addition, International Publication No. 2005/021624 pamphlet (Patent Document 2) proposes a pre-expanded polystyrene resin particle modified with a polyolefin resin and a method for producing the same.

また、特公平7−91405号公報(特許文献3)、特許2760361号公報(特許文献4)、特公平7−91406号公報(特許文献5)には、含水率の低下した複合樹脂粒子に、発泡剤を含浸する際、水に特定の有機化合物を共存させることで、含水率の低下したものでも、外観および融着性に優れる発泡成形体を得ることができることが提案されている。   In addition, in Japanese Patent Publication No. 7-91405 (Patent Document 3), Japanese Patent No. 2760361 (Patent Document 4), and Japanese Patent Publication No. 7-91406 (Patent Document 5), the composite resin particles having a reduced moisture content are used. It has been proposed that when a specific organic compound is allowed to coexist in water when impregnated with a foaming agent, a foamed molded article having excellent appearance and fusion property can be obtained even when the water content is reduced.

特開2006−70202号公報JP 2006-70202 A 国際公報2005/021624号パンフレットInternational Publication No. 2005/021624 Pamphlet 特公平7−91405号公報Japanese Examined Patent Publication No. 7-91405 特許2760361号公報Japanese Patent No. 2760361 特公平7−91406号公報Japanese Patent Publication No. 7-91406

特開2006−70202号公報に記載された発泡性樹脂粒子は、ポリスチレン系樹脂成分がポリエチレン系樹脂成分より過剰に多いことにより、融着性や表面外観の良好な発泡成形体が得られる予備発泡粒子の成形可能期間(以降、発泡粒ライフと記す)は改善されているが、外気温の影響や耐割れ性は不十分であり、改善が求められていた。   The expandable resin particles described in JP-A-2006-70202 are pre-expanded so that a foamed molded article having good fusion property and surface appearance can be obtained when the polystyrene resin component is excessively larger than the polyethylene resin component. Although the particle molding period (hereinafter referred to as foamed particle life) has been improved, the influence of outside air temperature and crack resistance have been insufficient, and improvement has been demanded.

国際公報2005/021624号パンフレットに記載された予備発泡粒子では、上記課題が改善はされているものの、外気温の影響による発泡剤の保持性と、耐割れ性との高い次元での両立が望まれている。   In the pre-expanded particles described in the pamphlet of International Publication No. 2005/021624, although the above-mentioned problems have been improved, it is hoped that both the retention of the foaming agent due to the influence of the outside air temperature and the high resistance to cracking can be achieved at a high level. It is rare.

また、特公平7−91405号公報、特許2760361号公報及び特公平7−91406号公報では発泡剤含浸時に水を少量ではあるが添加する必要があり、発泡性樹脂粒子がべとつくことや、発泡粒ライフの更なる改善が求められていた。   Further, in Japanese Patent Publication No. 7-91405, Japanese Patent No. 2760361 and Japanese Patent Publication No. 7-91406, it is necessary to add a small amount of water at the time of impregnation with the foaming agent. There was a need for further improvements in life.

したがって、本発明は、予備発泡後の経日が長くても、融着性が良く、耐割れ性に優れる発泡成形体が得られるポリオレフィン系樹脂とポリスチレン系樹脂とを含む発泡性複合樹脂粒子及び予備発泡粒子を提供することを課題とする。   Accordingly, the present invention provides a foamable composite resin particle comprising a polyolefin resin and a polystyrene resin, which can provide a foamed molded article having good fusion properties and excellent crack resistance even after a long period of time after preliminary foaming, and An object is to provide pre-expanded particles.

本発明者は、ポリオレフィン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子の発泡剤の含浸を、非イオン系界面活性剤の存在下で行い発泡性複合樹脂粒子を得、更に予備発泡させて得られる予備発泡粒子において、その表皮層に接している気泡と内部の気泡の大きさ(平均気泡径)が異なる、2重気泡構造を有する予備発泡粒子が発泡粒ライフを延長できることを見出した。   The present inventor obtains expandable composite resin particles by impregnating a composite resin particle containing a polyolefin resin and a polystyrene resin with a foaming agent in the presence of a nonionic surfactant, and further pre-expands it. In the pre-expanded particles obtained, it was found that the pre-expanded particles having a double-cell structure in which the size of the bubbles in contact with the skin layer and the size of the internal bubbles (average cell diameter) are different can extend the life of the expanded particles.

かくして本発明によれば、ポリオレフィン系樹脂100重量部とポリスチレン系樹脂120〜560重量部を含む複合樹脂粒子と、前記複合樹脂粒子100重量部当たり非イオン系界面活性剤0.05〜2.5重量部と発泡剤とを含む発泡性複合樹脂粒子であり、前記発泡性複合樹脂粒子を予備発泡させて得られる予備発泡粒子をその表面から中心を通って二分割した切片の断面を走査型電子顕微鏡で撮影した場合、前記予備発泡粒子の表皮層に接している気泡の平均気泡径Aを予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値A/Bが2〜6となる予備発泡粒子を形成しうることを特徴とする発泡性複合樹脂粒子が提供される。   Thus, according to the present invention, composite resin particles containing 100 parts by weight of polyolefin resin and 120 to 560 parts by weight of polystyrene resin, and 0.05 to 2.5 nonionic surfactant per 100 parts by weight of composite resin particles. A section of a cross-section of a foamed composite resin particle containing a weight part and a foaming agent, the pre-foamed particle obtained by pre-foaming the foamable composite resin particle being divided into two from the surface through the center. When photographed with a microscope, the value A / B obtained by dividing the average bubble diameter A of the bubbles in contact with the skin layer of the pre-expanded particles by the average bubble diameter B of the bubbles passing through the half of the radius of the pre-expanded particles. It is possible to provide expandable composite resin particles characterized in that pre-expanded particles having a ratio of 2 to 6 can be formed.

また、本発明によれば、ポリオレフィン系樹脂100重量部とポリスチレン系樹脂120〜560重量部を含む複合樹脂粒子と、前記複合樹脂粒子100重量部当たり非イオン系界面活性剤0.05〜2.5重量部と発泡剤とを含む発泡性複合樹脂粒子に由来する予備発泡粒子であり、前記予備発泡粒子は、嵩倍数5〜60倍と、前記予備発泡粒子の表面から中心を通って二分割した切片の断面を走査型電子顕微鏡で撮影した場合、前記予備発泡粒子の表皮層に接している気泡の平均気泡径Aを予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値が2〜6となることを特徴とする予備発泡粒子が提供される。   Further, according to the present invention, composite resin particles containing 100 parts by weight of polyolefin resin and 120 to 560 parts by weight of polystyrene resin, and 0.05 to 2 parts of nonionic surfactant per 100 parts by weight of composite resin particles. The pre-expanded particles are derived from expandable composite resin particles containing 5 parts by weight and a foaming agent, and the pre-expanded particles are divided into two from the surface of the pre-expanded particles through the center by 5 to 60 times. When the cross section of the cut section was photographed with a scanning electron microscope, the average bubble diameter A of the bubbles in contact with the skin layer of the pre-expanded particles was determined as the average bubble diameter of the bubbles passing through the half of the radius of the pre-expanded particles. Pre-expanded particles are provided in which the value divided by B is 2-6.

更に、本発明によれば、前記発泡性複合樹脂粒子の製造方法であって、前記複合樹脂粒子100重量部を非イオン系界面活性剤0.05〜2.5重量部と50重量部以上の発泡剤の存在下で、前記発泡剤を前記複合樹脂粒子に含浸させることを特徴とする発泡性複合樹脂粒子の製造方法が提供される。   Further, according to the present invention, there is provided a method for producing the expandable composite resin particles, wherein 100 parts by weight of the composite resin particles are mixed with 0.05 to 2.5 parts by weight of a nonionic surfactant and 50 parts by weight or more. Provided is a method for producing expandable composite resin particles, wherein the composite resin particles are impregnated with the foaming agent in the presence of a foaming agent.

また、本発明によれば、前記発泡性複合樹脂粒子の製造方法であって、前記複合樹脂粒子100重量部を非イオン系界面活性剤0.05〜2.5重量部の存在下かつ水性媒体の非存在下で、前記発泡剤を前記複合樹脂粒子に含浸させることを特徴とする発泡性複合樹脂粒子の製造方法が提供される。   Further, according to the present invention, there is provided a method for producing the foamable composite resin particles, wherein 100 parts by weight of the composite resin particles are present in the presence of 0.05 to 2.5 parts by weight of a nonionic surfactant and an aqueous medium. There is provided a method for producing expandable composite resin particles, wherein the composite resin particles are impregnated with the foaming agent in the absence of.

また、本発明によれば、前記発泡性複合樹脂粒子を、嵩倍数5〜60倍に予備発泡させて予備発泡粒子を得る方法が提供される。
また、本発明によれば、前記予備発泡粒子を型内成形させて得られる発泡成形体が提供される。
In addition, according to the present invention, there is provided a method of pre-foaming the foamable composite resin particles by pre-foaming the bulk multiple of 5 to 60 times.
Moreover, according to this invention, the foaming molding obtained by carrying out in-mold shaping | molding of the said pre-expanded particle is provided.

本発明のポリオレフィン系樹脂とポリスチレン系樹脂とを含む発泡性複合樹脂粒子及び加熱して得られるポリオレフィン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子の予備発泡粒子は、従来のポリオレフィン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子の予備発泡粒子の課題であった、発泡粒ライフを改善できる。
すなわち、予備発泡後の日数が経過した従来のポリオレフィン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子の予備発泡樹脂粒子ではノビの良好な成形体が得られなかった型内発泡成形条件でも、当該予備発泡樹脂粒子を用いればノビの良好な発泡成形体を得ることができる。
The foamable composite resin particles containing the polyolefin resin and the polystyrene resin of the present invention and the pre-expanded particles of the composite resin particles containing the polyolefin resin and the polystyrene resin obtained by heating are the conventional polyolefin resin and polystyrene. Expanded particle life, which was a problem of pre-expanded particles of composite resin particles containing a resin, can be improved.
That is, even in the in-mold foam molding conditions in which a molded article with a good nobi could not be obtained with the pre-foamed resin particles of the composite resin particles containing the conventional polyolefin-based resin and polystyrene-based resin after the days after the pre-foaming If pre-expanded resin particles are used, it is possible to obtain a foam-molded article having good nobi.

上記の効果は、ポリオレフィン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子を非イオン系界面活性剤以外の界面活性剤で処理した場合には得られなかった。上記効果は、非イオン系界面活性剤がポリオレフィン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子との親和性が高いため、発泡剤の含浸時に、非イオン系界面活性剤が発泡剤を樹脂粒子表面付近に局在させるのではないかと考えられる。   Said effect was not acquired when the composite resin particle containing polyolefin resin and polystyrene resin was processed by surfactants other than a nonionic surfactant. The above effect is because the nonionic surfactant has a high affinity with the composite resin particles containing a polyolefin resin and a polystyrene resin, and therefore, when impregnated with the foaming agent, the nonionic surfactant converts the foaming agent into resin particles. It may be localized near the surface.

予備発泡粒子の平均気泡径の測定法を説明する図である。It is a figure explaining the measuring method of the average bubble diameter of a pre-expanded particle. 実施例1の予備発泡粒子の切断面の電子顕微鏡写真である。2 is an electron micrograph of a cut surface of pre-expanded particles of Example 1. FIG. 実施例6の予備発泡粒子の切断面の電子顕微鏡写真である。7 is an electron micrograph of a cut surface of pre-expanded particles of Example 6. FIG. 比較例1の予備発泡粒子の切断面の電子顕微鏡写真である。4 is an electron micrograph of a cut surface of pre-expanded particles of Comparative Example 1. 比較例3の予備発泡粒子の切断面の電子顕微鏡写真である。4 is an electron micrograph of a cut surface of pre-expanded particles of Comparative Example 3.

発泡性複合樹脂粒子
本発明のポリオレフィン系樹脂とポリスチレン系樹脂とを含む発泡性複合樹脂粒子(発泡性複合樹脂粒子ともいう)は、
(1)ポリオレフィン系樹脂100重量部とポリスチレン系樹脂120〜560重量部を含む複合樹脂粒子100重量部に対し、非イオン系界面活性剤0.05〜2.5重量部と発泡剤とを含浸させたものであり、
(2)発泡性複合樹脂粒子を予備発泡させて得られる予備発泡粒子をその表面から中心を通って二分割した切片の断面を走査型電子顕微鏡で撮影した場合、予備発泡粒子の表皮層に接している気泡の平均気泡径Aを予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値(以下、A/B値と称する)が2〜6となる予備発泡粒子を形成し得る粒子である。後者の測定法は、実施例の欄で詳説する。また、A/B値は、予備発泡粒子の嵩倍数にほとんど影響されることのない値である。
Expandable composite resin particles Expandable composite resin particles (also referred to as expandable composite resin particles) containing the polyolefin resin and polystyrene resin of the present invention are:
(1) Impregnation with 0.05 to 2.5 parts by weight of a nonionic surfactant and a foaming agent with respect to 100 parts by weight of composite resin particles including 100 parts by weight of polyolefin resin and 120 to 560 parts by weight of polystyrene resin And
(2) When the cross section of the pre-expanded particles obtained by pre-expanding the expandable composite resin particles through the center through the center is photographed with a scanning electron microscope, the pre-expanded particles are in contact with the skin layer of the pre-expanded particles. The value obtained by dividing the average bubble diameter A of the bubbles by the average bubble diameter B of the bubbles passing through the half of the radius of the pre-expanded particles (hereinafter referred to as A / B value) becomes 2-6. Particles that can form particles. The latter measurement method will be described in detail in the Examples section. The A / B value is a value that is hardly affected by the bulk multiple of the pre-expanded particles.

上記ポリオレフィン系樹脂とポリスチレン系樹脂とを含む発泡性複合樹脂粒子は、非イオン系界面活性剤の存在下で、ポリオレフィン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子に発泡剤を含浸させることにより得られる。
(複合樹脂粒子)
ポリオレフィン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子(複合樹脂粒子ともいう)はポリオレフィン系樹脂とポリスチレン系樹脂を含む樹脂粒子である。
ポリオレフィン系樹脂としては、特に限定されず、公知の樹脂が使用できる。また、ポリオレフィン系樹脂は、架橋していてもよい。例えば、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、これら重合体の架橋体等のポリエチレン系樹脂、プロピレン単独重合体、プロピレン−酢酸ビニル共重合体、エチレン−プロピレンランダム共重合体、プロピレン−1−ブテン共重合体、エチレン−プロピレン−ブテンランダム共重合体等のポリプロピレン系樹脂が挙げられる。上記例示中、低密度は、0.91〜0.94g/cm3であることが好ましく、0.91〜0.93g/cm3であることがより好ましい。高密度は、0.95〜0.97g/cm3であることが好ましく、0.95〜0.96g/cm3であることがより好ましい。中密度はこれら低密度と高密度の中間の密度である。
The foamable composite resin particles containing the polyolefin resin and the polystyrene resin are obtained by impregnating a foaming agent into the composite resin particles containing the polyolefin resin and the polystyrene resin in the presence of a nonionic surfactant. can get.
(Composite resin particles)
Composite resin particles (also referred to as composite resin particles) containing a polyolefin resin and a polystyrene resin are resin particles containing a polyolefin resin and a polystyrene resin.
It does not specifically limit as polyolefin-type resin, A well-known resin can be used. The polyolefin resin may be cross-linked. For example, polyethylene resins such as branched low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, and cross-linked products of these polymers And polypropylene resins such as propylene homopolymer, propylene-vinyl acetate copolymer, ethylene-propylene random copolymer, propylene-1-butene copolymer, and ethylene-propylene-butene random copolymer. In the above example, low density is preferably 0.91~0.94g / cm 3, more preferably 0.91~0.93g / cm 3. High density is preferably 0.95~0.97g / cm 3, more preferably 0.95~0.96g / cm 3. The medium density is an intermediate density between these low density and high density.

ポリスチレン系樹脂としては、ポリスチレン、もしくはスチレンを主成分とし、スチレンと共重合可能な他のモノマーとの共重合体である。主成分とはスチレンが全モノマーの70重量%以上を占めることを意味する。他のモノマーとしては、クロロスチレン、ブロモスチレン等のハロゲン化スチレン、ビニルトルエン、α−メチルスチレン、p−メチルスチレン等のアルキルスチレン、アクリロニトリル、メタクリロニトリル、アクリル酸、メタクリル酸、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、ジビニルベンゼン、ポリエチレングリコールジメタクリレート等が例示される。例示中、アルキルとは、炭素数1〜8のアルキルを意味する。   The polystyrene resin is polystyrene or a copolymer of styrene as a main component and another monomer copolymerizable with styrene. The main component means that styrene accounts for 70% by weight or more of the total monomers. Other monomers include halogenated styrene such as chlorostyrene and bromostyrene, alkyl styrene such as vinyl toluene, α-methyl styrene and p-methyl styrene, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid and alkyl acrylate ester. Methacrylic acid alkyl ester, divinylbenzene, polyethylene glycol dimethacrylate and the like. In the examples, alkyl means alkyl having 1 to 8 carbon atoms.

ポリスチレン系樹脂は、複合樹脂粒子中には、ポリオレフィン系樹脂100重量部に対して、ポリスチレン系樹脂120〜560重量部の範囲で含まれる。   The polystyrene resin is contained in the composite resin particles in the range of 120 to 560 parts by weight of the polystyrene resin with respect to 100 parts by weight of the polyolefin resin.

ポリスチレン系樹脂の含有量が560重量部より多いと、発泡成形体の耐割れ性が低下することがある。一方、120重量部より少ないと、耐割れ性は大幅に向上するが、発泡性複合樹脂粒子の表面からの発泡剤の逸散が速くなる傾向がある。そのため、発泡剤の保持性が低下することによって発泡性複合樹脂粒子のビーズライフが短くなることがある。より好ましいポリスチレン系樹脂の含有量は140〜450重量部、更に好ましい含有量は150〜400重量部である。   When there is more content of a polystyrene-type resin than 560 weight part, the crack resistance of a foaming molding may fall. On the other hand, if the amount is less than 120 parts by weight, the cracking resistance is greatly improved, but the dissipation of the foaming agent from the surface of the expandable composite resin particles tends to be accelerated. Therefore, the bead life of the foamable composite resin particles may be shortened due to a decrease in the retention of the foaming agent. A more preferable content of the polystyrene resin is 140 to 450 parts by weight, and a more preferable content is 150 to 400 parts by weight.

複合樹脂粒子は、ポリオレフィン系樹脂粒子中にスチレン系モノマーを含浸重合してポリスチレン系樹脂を生成させることで得ることができる。
ポリオレフィン系樹脂粒子は、公知の方法で得ることができる。例えば、まず、押出機を使用してポリオレフィン系樹脂を溶融押出した後、水中カット、ストランドカット等により造粒することで、ポリオレフィン系樹脂粒子を作製できる。通常、使用するポリオレフィン系樹脂の形状は、例えば、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット形状又はグラニュラー状である。以下では、ポリオレフィン系樹脂粒子をマイクロペレットとも記す。
The composite resin particles can be obtained by impregnating and polymerizing a styrene monomer in a polyolefin resin particle to produce a polystyrene resin.
The polyolefin resin particles can be obtained by a known method. For example, polyolefin resin particles can be prepared by first melt-extruding a polyolefin resin using an extruder and then granulating it by underwater cutting, strand cutting, or the like. Usually, the shape of the polyolefin resin to be used is, for example, a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, a prismatic shape, a pellet shape, or a granular shape. Hereinafter, the polyolefin resin particles are also referred to as micropellets.

ポリオレフィン系樹脂は、ラジカル捕捉剤が含まれていてもよい。ラジカル捕捉剤は、予めポリオレフィン系樹脂に添加しておくか、もしくは溶融押出と同時に添加してもよい。ラジカル捕捉剤としては、重合禁止剤(重合抑制剤を含む)、連鎖移動剤、酸化防止剤、ヒンダードアミン系光安定剤等のラジカルを捕捉する作用を有する化合物で、水に溶解し難いものが好ましい。   The polyolefin resin may contain a radical scavenger. The radical scavenger may be added to the polyolefin resin in advance, or may be added simultaneously with melt extrusion. As the radical scavenger, a compound having an action of scavenging radicals such as a polymerization inhibitor (including a polymerization inhibitor), a chain transfer agent, an antioxidant, a hindered amine light stabilizer, and the like, which is difficult to dissolve in water, is preferable. .

重合禁止剤としては、フェノール系重合禁止剤、ニトロソ系重合禁止剤、芳香族アミン系重合禁止剤、亜リン酸エステル系重合禁止剤、チオエーテル系重合禁止剤等が例示される。   Examples of the polymerization inhibitor include phenol polymerization inhibitors, nitroso polymerization inhibitors, aromatic amine polymerization inhibitors, phosphite ester polymerization inhibitors, thioether polymerization inhibitors, and the like.

酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤等が例示できる。   Examples of antioxidants include phenolic antioxidants, phosphorus antioxidants, amine antioxidants, and the like.

ラジカル捕捉剤の使用量としては、ポリオレフィン系樹脂100重量部に対して0.005〜0.5重量部であることが好ましい。
ポリオレフィン系樹脂は、他に、タルク、珪酸カルシウム、ステアリン酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の気泡調整剤、トリアリルイソシアヌレート6臭素化物等の難燃剤、カーボンブラック、酸化鉄、グラファイト等の着色剤等を含んでいてもよい。
The amount of the radical scavenger used is preferably 0.005 to 0.5 parts by weight with respect to 100 parts by weight of the polyolefin resin.
Polyolefin-based resins include talc, calcium silicate, calcium stearate, synthetic or naturally produced silicon dioxide, ethylene bis-stearic acid amide, methacrylic acid ester copolymer and the like, and triallyl isocyanurate 6 A flame retardant such as bromide and a colorant such as carbon black, iron oxide and graphite may be included.

次に、マイクロペレットを重合容器内の水性媒体中に分散させ、スチレン系モノマーをマイクロペレットに含浸させながら重合させる。
水性媒体としては、水、水と水溶性溶媒(例えば、アルコール)との混合媒体が挙げられる。
Next, the micropellets are dispersed in an aqueous medium in a polymerization vessel and polymerized while impregnating the styrenic monomer into the micropellets.
Examples of the aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, alcohol).

スチレン系モノマーは、スチレン及び置換スチレン(置換基には、低級アルキル、ハロゲン原子(特に塩素原子)等が含まれる)のいずれも使用できる。また、スチレン系モノマーは、スチレンと、置換スチレンとの混合物、スチレンと共重合可能な少量の他のモノマー(例えば、アクリロニトリル、メタクリル酸アルキルエステル(アルキル部分の炭素数1〜8程度)、マレイン酸モノないしジアルキル(アルキル部分の炭素数1〜4程度)、ジビニルベンゼン、エチレングリコールのモノないしジアクリル酸ないしメタクリル酸エステル、無水マレイン酸、N−フェニルマレイド等)との混合物が使用できる。これら混合物中、スチレンが優位量(例えば、50重量%以上)を占めることが好ましい。   As the styrenic monomer, any of styrene and substituted styrene (substituent includes lower alkyl, halogen atom (especially chlorine atom) and the like) can be used. The styrene monomer is a mixture of styrene and substituted styrene, a small amount of other monomers copolymerizable with styrene (for example, acrylonitrile, alkyl methacrylate (about 1 to 8 carbon atoms in the alkyl portion), maleic acid Mixtures with mono- or dialkyls (about 1 to 4 carbon atoms in the alkyl moiety), divinylbenzene, ethylene glycol mono- or diacrylic acid or methacrylic acid ester, maleic anhydride, N-phenylmaleide, etc. can be used. In these mixtures, styrene preferably occupies a dominant amount (for example, 50% by weight or more).

なお、スチレン系モノマーには、トルエン、シクロヘキサン、酢酸エチル、イソブチルアジペート等の溶剤(可塑剤)を添加してもよい。
スチレン系モノマーの使用量は、ポリオレフィン系樹脂粒子100重量部に対して120〜560重量部である。より好ましくは140〜450重量部、更に好ましくは150〜400重量部である。
A solvent (plasticizer) such as toluene, cyclohexane, ethyl acetate, or isobutyl adipate may be added to the styrene monomer.
The usage-amount of a styrene-type monomer is 120-560 weight part with respect to 100 weight part of polyolefin-type resin particles. More preferably, it is 140-450 weight part, More preferably, it is 150-400 weight part.

スチレン系モノマーの使用量が560重量部を超えると、ポリオレフィン系樹脂粒子に含浸されずに、ポリスチレン系樹脂単独の粒子が発生することがある。加えて、発泡成形体の耐割れ性が低下するだけでなく、耐薬品性も低下することがある。一方、120重量部未満であると、発泡性複合樹脂粒子の発泡剤を保持する能力が低下する場合がある。低下すると、高発泡化が困難となる。また、発泡成形体の剛性も低下することがある。   If the amount of the styrene monomer used exceeds 560 parts by weight, the polystyrene resin particles may be generated without being impregnated into the polyolefin resin particles. In addition, not only the crack resistance of the foamed molded product is lowered, but also the chemical resistance may be lowered. On the other hand, if it is less than 120 parts by weight, the ability to hold the foaming agent of the foamable composite resin particles may be lowered. If it falls, it will become difficult to make it highly foamed. In addition, the rigidity of the foamed molded product may be reduced.

ポリオレフィン系樹脂粒子へのスチレン系モノマーの含浸は、重合させつつ行ってもよく、重合を開始する前に行ってもよい。この内、重合させつつ行うことが好ましい。なお、含浸させた後に重合を行う場合、ポリオレフィン系樹脂粒子の表面近傍でのスチレン系モノマーの重合が起こり易く、また、ポリオレフィン系樹脂粒子中に含浸されなかったスチレン系モノマーが単独で重合して、多量の微粒子状のポリスチレン系樹脂粒子が生成する場合がある。   The impregnation of the polyolefin resin particles with the styrene monomer may be performed while polymerizing, or may be performed before the polymerization is started. Of these, it is preferable to carry out the polymerization. When the polymerization is performed after impregnation, polymerization of the styrene monomer near the surface of the polyolefin resin particles tends to occur, and the styrene monomer not impregnated in the polyolefin resin particles is polymerized alone. In some cases, a large amount of fine particle polystyrene resin particles are produced.

重合させつつ含浸を行う場合、上記含有量を算出する場合のポリオレフィン系樹脂粒子とは、ポリオレフィン系樹脂と含浸されたスチレン系モノマー、更に含浸されて既に重合したポリスチレン系樹脂とから構成された粒子を意味する。
含有量を0〜35重量%に維持するために、スチレン系モノマーを重合容器内の水性媒体に連続的にあるいは断続的に添加できる。特に、スチレン系モノマーを水性媒体中に徐々に添加していくのが好ましい。
When the impregnation is carried out while polymerizing, the polyolefin resin particles for calculating the content are particles composed of a polyolefin resin, an impregnated styrene monomer, and an impregnated polystyrene resin that has already been impregnated. Means.
In order to maintain the content at 0 to 35% by weight, the styrenic monomer can be continuously or intermittently added to the aqueous medium in the polymerization vessel. In particular, it is preferable to gradually add the styrenic monomer into the aqueous medium.

スチレン系モノマーの重合には、油溶性のラジカル重合開始剤を使用できる。この重合開始剤としては、スチレン系モノマーの重合に汎用されている重合開始剤を使用できる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t−ブチルパーオキシオクトエート、t−ヘキシルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、t−アミルパーオキシベンゾエート、t−ブチルパーオキシビバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ヘキシルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、2,2−ジ−t−ブチルパーオキシブタン、ジ−t−ヘキシルパーオキサイド、ジクミルパーオキサイド等の有機過酸化物が挙げられる。なお、これら油溶性のラジカル重合開始剤は、単独で用いられても併用されてもよい。   An oil-soluble radical polymerization initiator can be used for the polymerization of the styrene monomer. As this polymerization initiator, a polymerization initiator generally used for the polymerization of styrene monomers can be used. For example, benzoyl peroxide, lauroyl peroxide, t-butyl peroxy octoate, t-hexyl peroxy octoate, t-butyl peroxy benzoate, t-amyl peroxy benzoate, t-butyl peroxybivalate, t- Butyl peroxyisopropyl carbonate, t-hexyl peroxyisopropyl carbonate, t-butyl peroxy-3,3,5-trimethylcyclohexanoate, di-t-butylperoxyhexahydroterephthalate, 2,2-di-t- Examples thereof include organic peroxides such as butyl peroxybutane, di-t-hexyl peroxide, and dicumyl peroxide. These oil-soluble radical polymerization initiators may be used alone or in combination.

重合開始剤を重合容器内の水性媒体に添加する方法としては、種々の方法が挙げられる。例えば、
(1)重合容器とは別の容器内でスチレン系モノマーに重合開始剤を溶解して含有させ、このスチレン系モノマーを重合容器内に供給する方法、
(2)重合開始剤をスチレン系モノマーの一部、イソパラフィン等の溶剤又は可塑剤に溶解させて溶液を作製する。この溶液と、所定量のスチレン系モノマーとを重合容器内に同時に供給する方法、
(3)重合開始剤を水性媒体に分散させた分散液を作製する。この分散液とスチレン系モノマーとを重合容器内に供給する方法
等が挙げられる。
上記重合開始剤の使用量は、通常スチレン系モノマーの使用総量の0.02〜2.0重量%添加することが好ましい。
Various methods can be used as a method of adding the polymerization initiator to the aqueous medium in the polymerization vessel. For example,
(1) A method in which a polymerization initiator is dissolved and contained in a styrene monomer in a container different from the polymerization container, and the styrene monomer is supplied into the polymerization container.
(2) A solution is prepared by dissolving a polymerization initiator in a part of a styrene monomer, a solvent such as isoparaffin or a plasticizer. A method of simultaneously supplying this solution and a predetermined amount of styrenic monomer into the polymerization vessel,
(3) A dispersion in which a polymerization initiator is dispersed in an aqueous medium is prepared. Examples thereof include a method of supplying the dispersion and the styrene monomer into a polymerization vessel.
The amount of the polymerization initiator used is usually preferably 0.02 to 2.0% by weight based on the total amount of styrene monomer used.

水性媒体中には、水溶性のラジカル重合禁止剤を溶解させておくことが好ましい。水溶性のラジカル重合禁止剤はポリオレフィン系樹脂粒子表面におけるスチレン系モノマーの重合を抑制するだけでなく、水性媒体中に浮遊するスチレン系モノマーが単独で重合するのを防止して、ポリスチレン系樹脂の微粒子の生成を減らすことができるからである。   It is preferable to dissolve a water-soluble radical polymerization inhibitor in the aqueous medium. The water-soluble radical polymerization inhibitor not only suppresses the polymerization of the styrene monomer on the surface of the polyolefin resin particles, but also prevents the styrene monomer floating in the aqueous medium from being polymerized alone. This is because the generation of fine particles can be reduced.

水溶性のラジカル重合禁止剤としては、水100gに対して1g以上溶解する重合禁止剤が使用でき、例えば、チオシアン酸アンモニウム、チオシアン酸亜鉛、チオシアン酸ナトリウム、チオシアン酸カリウム、チオシアン酸アルミニウム等のチオシアン酸塩、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸アンモニウム、亜硝酸カルシウム、亜硝酸銀、亜硝酸ストロンチウム、亜硝酸セシウム、亜硝酸バリウム、亜硝酸マグネシウム、亜硝酸リチウム、亜硝酸ジシクロヘキシルアンモニウム等の亜硝酸塩、メルカプトエタノール、モノチオプロピレングリコール、チオグリセロール、チオグリコール酸、チオヒドロアクリル酸、チオ乳酸、チオリンゴ酸、チオエタノールアミン、1,2−ジチオグリセロール、1,3−ジチオグリセロール等の水溶性イオウ含有有機化合物、さらにアスコルビン酸、アスコルビン酸ナトリウム等を挙げることができる。これらの中でも特に亜硝酸塩が好ましい。
上記水溶性のラジカル重合禁止剤の使用量としては、水性媒体の水100重量部に対して0.001〜0.04重量部が好ましい。
As the water-soluble radical polymerization inhibitor, a polymerization inhibitor that dissolves 1 g or more in 100 g of water can be used. For example, thiocyanate such as ammonium thiocyanate, zinc thiocyanate, sodium thiocyanate, potassium thiocyanate, aluminum thiocyanate Nitrate, mercapto Ethanol, monothiopropylene glycol, thioglycerol, thioglycolic acid, thiohydroacrylic acid, thiolactic acid, thiomalic acid, thioethanolamine, 1,2-dithioglycerol, 1,3-dithioglycerol, etc. Water-soluble sulfur-containing organic compounds, mention may be made more ascorbic acid, sodium ascorbate and the like. Of these, nitrite is particularly preferable.
As the usage-amount of the said water-soluble radical polymerization inhibitor, 0.001-0.04 weight part is preferable with respect to 100 weight part of water of an aqueous medium.

なお、上記水性媒体中に分散剤を添加しておくことが好ましい。このような分散剤としては、例えば、部分ケン化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース等の有機系分散剤、ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム等の無機系分散剤が挙げられる。この内、無機系分散剤が好ましい。
無機系分散剤を用いる場合には、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ(ナトリウム)、α−オレフィンスルホン酸ナトリウム等が挙げられる。
In addition, it is preferable to add a dispersant to the aqueous medium. Examples of such a dispersant include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose, magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, and magnesium phosphate. And inorganic dispersants such as magnesium carbonate and magnesium oxide. Of these, inorganic dispersants are preferred.
When an inorganic dispersant is used, it is preferable to use a surfactant in combination. Examples of such surfactants include sodium dodecylbenzene sulfonate (sodium), sodium α-olefin sulfonate, and the like.

重合容器の形状及び構造としては、従来からスチレン系モノマーの懸濁重合に用いられているものであれば、特に限定されない。通常、攪拌翼を供えた重合容器が用いられる。
また、攪拌翼の形状についても特に限定はなく、具体的には、V型パドル翼、ファードラー翼、傾斜パドル翼、平パドル翼、プルマージン翼等のパドル翼、タービン翼、ファンタービン翼等のタービン翼、マリンプロペラ翼のようなプロペラ翼等が挙げられる。これら攪拌翼の内では、パドル翼が好ましい。攪拌翼は、単段翼であっても多段翼であってもよい。重合容器に邪魔板(バッフル)を設けてもよい。
The shape and structure of the polymerization vessel are not particularly limited as long as they are conventionally used for suspension polymerization of styrene monomers. Usually, a polymerization vessel provided with a stirring blade is used.
Further, the shape of the stirring blade is not particularly limited, and specifically, a paddle blade such as a V-shaped paddle blade, a fiddler blade, an inclined paddle blade, a flat paddle blade, a pull margin blade, a turbine blade, a fan turbine blade, etc. Examples include a turbine blade and a propeller blade such as a marine propeller blade. Of these stirring blades, paddle blades are preferred. The stirring blade may be a single-stage blade or a multi-stage blade. A baffle may be provided in the polymerization container.

また、スチレン系モノマーをマイクロペレット中にて重合させる際の水性媒体の温度は、特に限定されないが、使用するポリオレフィン系樹脂の融点の−30〜+20℃の範囲であることが好ましい。より具体的には、70〜140℃が好ましく、80〜130℃がより好ましい。更に、水性媒体の温度は、スチレン系モノマーの重合開始から終了までの間、一定温度であってもよいし、段階的に上昇させてもよい。水性媒体の温度を上昇させる場合には、0.1〜2℃/分の昇温速度で上昇させることが好ましい。   The temperature of the aqueous medium when polymerizing the styrene monomer in the micropellet is not particularly limited, but is preferably in the range of −30 to + 20 ° C. of the melting point of the polyolefin resin to be used. More specifically, 70-140 degreeC is preferable and 80-130 degreeC is more preferable. Furthermore, the temperature of the aqueous medium may be a constant temperature from the start to the end of the polymerization of the styrenic monomer, or may be increased stepwise. When raising the temperature of an aqueous medium, it is preferable to make it raise at the temperature increase rate of 0.1-2 degree-C / min.

ポリオレフィン系樹脂の架橋に用いられる架橋剤としては、例えば、2,2−ジ−t−ブチルパーオキシブタン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン等の有機過酸化物が挙げられる。なお、架橋剤は、単独でも二種以上併用してもよい。また、架橋剤の使用量は、通常、ポリオレフィン系樹脂粒子(マイクロペレット)100重量部に対して0.05〜1.0重量部が好ましい。   Examples of the crosslinking agent used for crosslinking the polyolefin resin include 2,2-di-t-butylperoxybutane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxy. An organic peroxide such as hexane may be mentioned. In addition, a crosslinking agent may be individual or may be used together 2 or more types. Moreover, the usage-amount of a crosslinking agent has preferable 0.05-1.0 weight part normally with respect to 100 weight part of polyolefin resin particles (micro pellet).

架橋剤を添加する方法としては、例えば、架橋剤をポリオレフィン系樹脂に直接添加する方法、溶剤、可塑剤又はスチレン系モノマーに架橋剤を溶解させた上で添加する方法、架橋剤を水に分散させた上で添加する方法等が挙げられる。この内、スチレン系モノマーに架橋剤を溶解させた上で添加する方法が好ましい。   As a method of adding a crosslinking agent, for example, a method of directly adding a crosslinking agent to a polyolefin resin, a method of adding a crosslinking agent after dissolving it in a solvent, a plasticizer or a styrene monomer, and dispersing the crosslinking agent in water For example, a method of adding after adding them. Among these, the method of adding after dissolving a crosslinking agent in a styrene-type monomer is preferable.

複合樹脂粒子の平均粒子径は、800〜2400μmであることが好ましい。800μmを下回る平均粒子径の複合樹脂粒子は、発泡剤の保持性が低下してビーズライフが短くなる傾向がある。2400μmを超えると、複雑な形状をした発泡成形体を成形する際、金型への充填性が悪くなる傾向がある。好ましい平均粒子径は、1200〜2000μmである。   The average particle size of the composite resin particles is preferably 800 to 2400 μm. Composite resin particles having an average particle diameter of less than 800 μm tend to have a reduced bead life due to a decrease in foam retention. When it exceeds 2400 μm, the filling property to the mold tends to be deteriorated when a foamed molded article having a complicated shape is molded. A preferable average particle diameter is 1200-2000 micrometers.

(非イオン系界面活性剤処理)
次に、複合樹脂粒子に発泡剤を含浸させる前に、複合樹脂粒子を予め非イオン系界面活性剤で処理する。複合樹脂粒子を非イオン系界面活性剤で処理する方法は、それ自体公知の方法により行うことができる。例えば、V型、C型あるいはDC型等の密閉耐圧の回転混合機中、複合樹脂粒子を流動させ、非イオン系界面活性剤を導入する方法等により行うことができる。
本発明に関しては、非イオン系界面活性剤を効率よく複合樹脂粒子に含浸させるために、密閉耐圧の回転混合機内で水性媒体を使用せずに行われる。
(Non-ionic surfactant treatment)
Next, before the composite resin particles are impregnated with the foaming agent, the composite resin particles are previously treated with a nonionic surfactant. The method of treating the composite resin particles with a nonionic surfactant can be performed by a method known per se. For example, it can be carried out by a method in which a composite resin particle is flowed and a nonionic surfactant is introduced in a rotary mixer having a hermetic pressure resistance such as V type, C type, or DC type.
With respect to the present invention, in order to efficiently impregnate the composite resin particles with the nonionic surfactant, it is carried out without using an aqueous medium in a hermetic pressure-resistant rotary mixer.

非イオン系界面活性剤での処理は、20〜80℃の雰囲気下及び0.01〜0.12MPaの圧力下で0.5〜6時間行うことが好ましい。これらの温度、圧力及び時間の範囲外では十分に樹脂に含有させることができないことがある。   The treatment with the nonionic surfactant is preferably performed in an atmosphere of 20 to 80 ° C. and a pressure of 0.01 to 0.12 MPa for 0.5 to 6 hours. If the temperature, pressure and time are out of the range, the resin may not be sufficiently contained.

非イオン系界面活性剤としては、特に限定されず、公知の種々の非イオン系界面活性剤が使用できる。例えば、ポリオキシエチレンアルキルエーテル、単一鎖長ポリオキシエチレンアルキルエーテル、ポリオキシエチレン2級アルコールエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル等のポリオキシアルキレンアルキルエーテル(例えば、ポリオキシエチレンプロピレンラウリルエーテル等)、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン誘導体、アルキルフェノールホルマリン縮合物の酸化エチレン誘導体、ポリオキシエチレンポリオキシプロピレンブロックポリマー等を含むエーテル型;ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル等を含むエステルエーテル型;ポリエチレングリコール脂肪酸エステル、エチレングリコール脂肪酸エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル等を含むエステル型;脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、アルキルジエタノールアミン(例えば、N,N−ジ(ヒドロキシエチル)ラウリルアミン等)、アルキルエタノールアミン(例えば、N−ヒドロキシエチルラウリルアミン等)、ポリオキシエチレンアルキルアミン(例えば、ポリオキシエチレンラウリルアミン等)等を含む含窒素型の非イオン系界面活性剤が挙げられる。この内、ポリオキシアルキレンアルキルエーテル、アルキルジエタノールアミン、アルキルエタノールアミンまたはポリオキシエチレンアルキルアミンが好ましい。   The nonionic surfactant is not particularly limited, and various known nonionic surfactants can be used. For example, polyoxyalkylene alkyl ethers such as polyoxyethylene alkyl ether, single chain length polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene polyoxypropylene alkyl ether (for example, polyoxyethylene propylene lauryl ether) Etc.), polyoxyethylene alkylphenyl ether, polyoxyethylene sterol ether, polyoxyethylene lanolin derivatives, ether oxide derivatives of alkylphenol formalin condensates, polyoxyethylene polyoxypropylene block polymers, etc .; Esters, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, polyoxyethylene sorbitan fat Esters including esters and polyoxyethylene sorbitol fatty acid esters; including polyethylene glycol fatty acid esters, ethylene glycol fatty acid esters, glycerin fatty acid esters, polyglycerin fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, sucrose fatty acid esters Ester type; fatty acid alkanolamide, polyoxyethylene fatty acid amide, alkyldiethanolamine (for example, N, N-di (hydroxyethyl) laurylamine), alkylethanolamine (for example, N-hydroxyethyllaurylamine), polyoxyethylene Examples thereof include nitrogen-containing nonionic surfactants containing alkylamine (for example, polyoxyethylene laurylamine). Of these, polyoxyalkylene alkyl ether, alkyldiethanolamine, alkylethanolamine or polyoxyethylene alkylamine is preferred.

非イオン系界面活性剤の使用量は、複合樹脂粒子100重量部に対して0.05〜2.5重量部であり、好ましくは0.1〜2.0重量部である。
非イオン系界面活性剤の使用量が0.05重量部より少ないと、所望の性能をもつ発泡性複合樹脂粒子および予備発泡粒子を得ることができず、2.5重量部を超えても、それ以上の効果を示すことはなく、また、発泡性複合樹脂粒子がべとついてしまうことがあり、コスト高となってしまう。
The usage-amount of a nonionic surfactant is 0.05-2.5 weight part with respect to 100 weight part of composite resin particles, Preferably it is 0.1-2.0 weight part.
When the amount of the nonionic surfactant used is less than 0.05 parts by weight, it is not possible to obtain expandable composite resin particles and pre-expanded particles having desired performance. No further effect is exhibited, and the foamable composite resin particles may become sticky, resulting in high costs.

(発泡性複合樹脂粒子)
本発明の発泡性複合樹脂粒子を得るために、複合樹脂粒子に発泡剤を含浸させる。発泡剤の含浸は、例えば、複合樹脂粒子100重量部に上記の非イオン系界面活性剤0.05〜2.5重量部と50重量部以上の発泡剤の存在下で行うことができるか、又は複合樹脂粒子100重量部を非イオン系界面活性剤0.05〜2.5重量部の存在下かつ水性媒体の非存在下で行うことができる。ここで、前者はどぶ漬け含浸法、後者は乾式含浸法といわれる。
発泡剤の含浸が水性媒体の非存在下で行われる場合、発泡剤の添加割合は複合樹脂粒子100重量部に対して10〜20重量部であることが好ましい。
(Expandable composite resin particles)
In order to obtain the expandable composite resin particles of the present invention, the composite resin particles are impregnated with a foaming agent. The impregnation of the foaming agent can be performed, for example, in the presence of 0.05 to 2.5 parts by weight of the nonionic surfactant and 50 parts by weight or more of the above-mentioned nonionic surfactant on 100 parts by weight of the composite resin particles. Alternatively, 100 parts by weight of the composite resin particles can be carried out in the presence of 0.05 to 2.5 parts by weight of a nonionic surfactant and in the absence of an aqueous medium. Here, the former is referred to as the soaking method, and the latter is referred to as the dry impregnation method.
When impregnation of the foaming agent is performed in the absence of an aqueous medium, the addition ratio of the foaming agent is preferably 10 to 20 parts by weight with respect to 100 parts by weight of the composite resin particles.

発泡剤の含浸は、加圧下又は常圧下、それ自体公知の方法により行うことができる。例えば、V型、C型あるいはDC型等の回転混合機であって、密閉耐圧の容器中で複合樹脂粒子を流動させ、発泡剤を導入して含浸させる方法、攪拌機付密閉耐圧容器中で複合樹脂粒子を発泡剤に浸漬して含浸させる方法、スチレン系モノマーの重合を行った密閉系の容器中に、発泡剤を圧入して含浸させる方法等が挙げられる。   The impregnation with the foaming agent can be performed by a method known per se under pressure or normal pressure. For example, a rotary mixer such as a V type, C type, or DC type, in which a composite resin particle is flowed in a sealed pressure resistant container and a foaming agent is introduced and impregnated. Examples include a method of impregnating resin particles by immersing them in a foaming agent, and a method of pressing and impregnating a foaming agent into a closed container in which a styrene monomer is polymerized.

発泡剤の含浸は30〜80℃の雰囲気下及び0.05〜0.12MPaの圧力下で0.5〜6時間行うことが好ましい。これらの温度、圧力及び時間の範囲外では十分に発泡剤及び非イオン系界面活性剤を樹脂に含有させることができないことがあり、目的の嵩倍数に発泡できないことや、所望の性能をもった発泡性複合樹脂粒子が得られないことがある。
更に、発泡剤の含浸は含浸効率を上げるために前記の非イオン系界面活性剤の処理と同時に行うことが好ましい。
The impregnation with the foaming agent is preferably performed under an atmosphere of 30 to 80 ° C. and a pressure of 0.05 to 0.12 MPa for 0.5 to 6 hours. Outside these temperature, pressure and time ranges, the foaming agent and the nonionic surfactant may not be sufficiently contained in the resin, and the foaming cannot be performed to the desired bulk multiple, and the desired performance was obtained. Expandable composite resin particles may not be obtained.
Further, the impregnation with the foaming agent is preferably performed simultaneously with the treatment of the nonionic surfactant in order to increase the impregnation efficiency.

発泡剤としては、公知の種々の揮発性発泡剤が使用できる。例えば、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、工業用ペンタン、石油エーテル、シクロヘキサン、シクロペンタン等の単独又は混合物が挙げられる。この内、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、シクロペンタンが好ましい。
更に、発泡助剤を用いてもよい。発泡助剤としては、例えば、キシレン、エチルベンゼン、シクロヘキサン、d−リモネン等の溶剤、ジイソブチルアジペート、ジアセチル化モノラウレート、やし油等の可塑剤(高沸点溶剤)が挙げられる。なお、発泡助剤の添加量としては、複合樹脂粒子100重量部に対して0.1〜2.5重量部が好ましい。
As the foaming agent, various known volatile foaming agents can be used. Examples thereof include propane, n-butane, isobutane, n-pentane, isopentane, industrial pentane, petroleum ether, cyclohexane, cyclopentane and the like alone or as a mixture. Among these, propane, n-butane, isobutane, n-pentane, isopentane, and cyclopentane are preferable.
Further, a foaming aid may be used. Examples of the foaming aid include solvents such as xylene, ethylbenzene, cyclohexane, and d-limonene, and plasticizers (high boiling point solvents) such as diisobutyl adipate, diacetylated monolaurate, and coconut oil. In addition, as addition amount of a foaming adjuvant, 0.1-2.5 weight part is preferable with respect to 100 weight part of composite resin particles.

発泡剤を所定温度で所定時間含浸後、発泡剤を除去し、再度、発泡性複合樹脂粒子を密閉容器に充填し、12時間以上、70℃以下の環境下で熟成させてもよい。熟成条件に関して、特に制限は無いが、12時間以下であると熟成が十分でない場合がある。また70℃より高いと発泡性複合樹脂粒子が密閉容器内で結合する場合がある。   After impregnating the foaming agent at a predetermined temperature for a predetermined time, the foaming agent may be removed, and the foamable composite resin particles may be filled again in a sealed container and aged for 12 hours or more in an environment of 70 ° C. or less. There are no particular restrictions on the aging conditions, but aging may not be sufficient if it is 12 hours or less. On the other hand, when the temperature is higher than 70 ° C., the foamable composite resin particles may be bonded in the closed container.

発泡剤の含有量としては、発泡性複合樹脂粒子に対して、6〜12重量%であることが好ましい。発泡剤の含有率が6重量%未満であると、発泡性複合樹脂粒子の発泡性が低下することがある。発泡性が低下すると、嵩倍数の高い低嵩密度の予備発泡粒子が得られ難くなると共に、この予備発泡粒子を型内成形して得られる発泡成形体は融着率が低下し、耐割れ性が低下することがある。一方、12重量%を超えると、予備発泡粒子中の気泡サイズが過大となり易く、成形性の低下や、得られる発泡成形体の圧縮、曲げ等の強度特性の低下が発生することがある。より好ましい発泡剤の含有率は、7.5〜11重量%の範囲である。   The content of the foaming agent is preferably 6 to 12% by weight with respect to the foamable composite resin particles. If the content of the foaming agent is less than 6% by weight, the foamability of the foamable composite resin particles may be lowered. When foamability is lowered, it becomes difficult to obtain low-bulk density pre-expanded particles having a high bulk ratio, and the foam-molded product obtained by molding the pre-expanded particles in a mold has a lower fusion rate and is resistant to cracking. May decrease. On the other hand, when the content exceeds 12% by weight, the bubble size in the pre-expanded particles tends to be excessive, and the moldability may be deteriorated and the strength characteristics such as compression and bending of the obtained foamed molded article may be deteriorated. A more preferable content of the blowing agent is in the range of 7.5 to 11% by weight.

発泡性複合樹脂粒子の平均粒子径は、800〜2400μmであることが好ましい。800μmを下回る平均粒子径の発泡性複合樹脂粒子は、その原料のポリオレフィン系樹脂粒子の平均粒子径を小さくする必要があり、その場合、ポリオレフィン系樹脂粒子の収率が悪化してコストアップすることがある。また、発泡剤の保持性が低下してビーズライフが短くなる傾向がある。2400μmを越えると、複雑な形状をした発泡成形体を成形する際、金型への充填性が悪くなる傾向がある。好ましい平均粒子径は、1200〜2000μmである。   The average particle diameter of the expandable composite resin particles is preferably 800 to 2400 μm. The foamable composite resin particles having an average particle size of less than 800 μm need to reduce the average particle size of the polyolefin resin particles as the raw material, and in that case, the yield of the polyolefin resin particles deteriorates and the cost increases. There is. In addition, the retention property of the foaming agent tends to be reduced and the bead life tends to be shortened. When it exceeds 2400 μm, the filling property to the mold tends to be deteriorated when the foamed molded product having a complicated shape is molded. A preferable average particle diameter is 1200-2000 micrometers.

予備発泡粒子及び発泡成形体
次に、発泡性複合樹脂粒子から予備発泡粒子、更に発泡成形体を得る方法について説明する。
発泡性複合樹脂粒子を、必要に応じて、水蒸気等の加熱媒体を用いて加熱して所定の嵩密度に予備発泡させることで、予備発泡粒子を得ることができる。
予備発泡粒子は、嵩倍数5〜60倍(嵩密度0.016〜0.2g/cm3)を有していることが好ましい。嵩倍数が60倍より大きいと、発泡粒子の独立気泡率が低下して、予備発泡粒子を発泡させて得られる発泡成形体の強度が低下することがある。一方、5倍より小さいと、予備発泡粒子を発泡させて得られる発泡成形体の重量が増加することがある。
Pre-foamed particles and foamed molded product Next, a method for obtaining pre-foamed particles and further foamed molded products from the foamable composite resin particles will be described.
Pre-expanded particles can be obtained by heating the expandable composite resin particles using a heating medium such as water vapor and pre-expanding them to a predetermined bulk density as necessary.
The pre-expanded particles preferably have a bulk multiple of 5 to 60 times (bulk density 0.016 to 0.2 g / cm 3 ). When the bulk multiple is larger than 60 times, the closed cell ratio of the expanded particles is lowered, and the strength of the foamed molded product obtained by foaming the pre-expanded particles may be decreased. On the other hand, if it is less than 5 times, the weight of the foamed molded product obtained by foaming the pre-foamed particles may increase.

更に、予備発泡粒子は通常24時間程度保管し熟成させる。その後、金型内に予備発泡粒子を充填し、再度加熱して予備発泡粒子を型内発泡させて粒子同士を熱融着させ、冷却を行うことで発泡成形体を得ることができる。加熱用の媒体は、ゲージ圧力0.05〜0.15MPaの水蒸気が好適に使用される。上記成形機としては、ポリスチレン系樹脂の予備発泡粒子から発泡成形体を製造する際に用いられるEPS成形機等を用いることができる。   Further, the pre-expanded particles are usually stored and aged for about 24 hours. Thereafter, pre-expanded particles are filled in the mold, heated again, the pre-expanded particles are expanded in-mold, the particles are thermally fused, and cooled to obtain a foam-molded article. As the heating medium, water vapor with a gauge pressure of 0.05 to 0.15 MPa is preferably used. As the molding machine, there can be used an EPS molding machine or the like used when producing a foam molded body from pre-expanded particles of polystyrene resin.

得られた発泡成形体は、家電製品等の緩衝材(クッション材)、電子部品、各種工業資材、食品等の搬送容器等の用途に用いることができる。また、車両用バンパーの芯材、ドア内装緩衝材等の衝撃エネルギー吸収材として好適に用いることもできる。   The obtained foamed molded product can be used for applications such as cushioning materials (cushion materials) for home appliances, electronic parts, various industrial materials, food containers and the like. Moreover, it can also be suitably used as an impact energy absorbing material such as a vehicle bumper core material and a door interior cushioning material.

以下実施例を挙げて更に説明するが、本発明はこれら実施例によって限定されるものではない。
<予備発泡条件>
スチームで予熱した常圧予備発泡機(積水工機製作所社製SKK−70)に発泡性複合樹脂粒子を10〜15kg投入し、攪拌しながら約0.02MPaの設定でスチームを導入しつつ、空気も供給して、約2〜3分間で所定の嵩密度(嵩倍数)まで発泡させる。
The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.
<Pre-foaming conditions>
10-15 kg of foamable composite resin particles are charged into a normal pressure pre-foaming machine (SKK-70 manufactured by Sekisui Koki Co., Ltd.) preheated with steam, and air is introduced while introducing steam at a setting of about 0.02 MPa while stirring. Is also supplied and foamed to a predetermined bulk density (bulk multiple) in about 2 to 3 minutes.

<予備発泡粒子の嵩密度及び嵩倍数>
約5gの予備発泡粒子の重量(a)を小数以下2位まで秤量する。次に、最小メモリ単位が5cm3である500cm3メスシリンダーに秤量した予備発泡粒子を入れ、これにメスシリンダーの口径よりやや小さい円形の樹脂板であって、その中心に巾約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて、予備発泡粒子の体積(b)を読み取り、式(a)/(b)により予備発泡粒子の嵩密度(g/cm3)を求める。なお、嵩倍数は嵩密度の逆数、すなわち式(b)/(a)とする。
<Bulk density and bulk multiple of pre-expanded particles>
The weight (a) of about 5 g of pre-expanded particles is weighed to the second decimal place. Next, weighed pre-expanded particles in a 500 cm 3 graduated cylinder with a minimum memory unit of 5 cm 3 , and a round resin plate slightly smaller than the caliber of the graduated cylinder, about 1.5 cm wide at the center, The volume (b) of the pre-expanded particles is read by applying a pressing tool in which a rod-shaped resin plate having a length of about 30 cm is fixed upright, and the bulk density (g) of the pre-expanded particles is calculated according to the formula (a) / (b). / Cm 3 ). The bulk multiple is the reciprocal of the bulk density, that is, the formula (b) / (a).

<予備発泡粒子の平均気泡径及び内外の気泡径比率の算出>
ASTM D2842−69の試験方法に準拠し以下のように測定する。
まず、嵩倍数5〜60倍に予備発泡させた予備発泡粒子を作成し、任意に予備発泡粒子を10個採取し、それぞれ剃刀による表面から中心を通って2分割する。2分割した切片の断面を走査型電子顕微鏡(日立製作所社製S−3000N)で15〜30倍に拡大して撮影する。次に撮影した画面をA4用紙上に1画像づつ印刷する。印刷された画像から、図1に示すように表皮の長さと表皮層に接している気泡数と、半径の1/2の点を通る曲線の長さと曲線上の気泡数を計測する(曲線に接している気泡も計測する)。
<Calculation of average cell diameter of pre-expanded particles and ratio of inner and outer cell diameter>
Measured as follows according to the test method of ASTM D2842-69.
First, pre-expanded particles that have been pre-expanded to a bulk ratio of 5 to 60 times are prepared, and 10 pre-expanded particles are arbitrarily collected and divided into two from the surface of the razor through the center. The cross section of the divided section is magnified 15 to 30 times with a scanning electron microscope (S-3000N manufactured by Hitachi, Ltd.) and photographed. Next, the photographed screen is printed one by one on A4 paper. From the printed image, as shown in FIG. 1, the length of the epidermis and the number of bubbles in contact with the epidermis layer, the length of the curve passing through the half point of the radius, and the number of bubbles on the curve are measured. Measure the bubbles in contact).

計測結果から、下記式により気泡の平均弦長(t)を算出する。但し、任意の直線はできる限り気泡が接点でのみ接しないようにする(接してしまう場合は気泡数に含める)。
平均弦長(t)=線長/(気泡数×写真の倍数)
そして、平均弦長(t)を用いて、次式により個々の粒子の気泡径を算出する。
気泡径D=t/0.616
更に、それらの算術平均を平均気泡径とする。
表皮層に接している平均気泡径(A)を半径の1/2の点を通る曲線上のものから算出した平均気泡径(B)を除算し内外の気泡径比率(A/B)を算出する。
From the measurement result, the average chord length (t) of the bubbles is calculated by the following formula. However, in any straight line, bubbles are prevented from touching only at the contact points as much as possible (in the case of contact, they are included in the number of bubbles).
Average chord length (t) = line length / (number of bubbles x multiple of photo)
And the bubble diameter of each particle | grain is calculated by following Formula using average chord length (t).
Bubble diameter D = t / 0.616
Furthermore, let the arithmetic mean of those be an average bubble diameter.
Divide the average bubble diameter (B) calculated from the average bubble diameter (A) in contact with the skin layer from the curve passing through the half point of the radius to calculate the internal and external bubble diameter ratio (A / B). To do.

<型内発泡成形条件>
予備発泡粒子を成形機金型内に充填し、次の条件でスチーム加熱及び冷却した後に発泡成形体を金型から取り出す。設定スチーム圧は、予備発泡後経日7日目にてノビ−融着共に良好な成形体が得られる値とし、その後の経日14日〜35日まで同じ設定圧とする。
成形機:積水工機製作所製ACE−3SP
金型寸法:300mm(幅)×400mm(長さ)×30mm(厚さ)
成形条件 金型加熱:5秒
一方加熱:5秒
逆一方加熱:5秒
両面加熱:15秒
水冷:15秒
真空放冷:成形体発泡圧が0.05kgf/cm2以下になるまで
設定スチーム圧:0.6kgf/cm2〜1.0kgf/cm2
<In-mold foam molding conditions>
The pre-expanded particles are filled into a molding machine mold, and after being heated and cooled with steam under the following conditions, the foam molded article is taken out from the mold. The set steam pressure is set to a value at which a good molded article can be obtained with nobi-fusion on the 7th day after the preliminary foaming, and the same set pressure is used from the 14th to 35th day after that.
Molding machine: ACE-3SP manufactured by Sekisui Koki Seisakusho
Mold dimension: 300mm (width) x 400mm (length) x 30mm (thickness)
Molding conditions Mold heating: 5 seconds
Meanwhile heating: 5 seconds
Reverse one-side heating: 5 seconds
Double-sided heating: 15 seconds
Water cooling: 15 seconds
Vacuum cooling: Until the foam pressure of the molded body is 0.05 kgf / cm 2 or less. Set steam pressure: 0.6 kgf / cm 2 to 1.0 kgf / cm 2

使用する予備発泡粒子は、予備発泡後、通気性の良い布製の袋に入れ、温度23℃、湿度50%の環境下で保管する。予備発泡後経日7日目、14日目、21日目、28日目、35日目のそれぞれの日に上記発泡成形条件で発泡成形体を得る。   Pre-foamed particles to be used are pre-foamed, put in a cloth bag with good air permeability, and stored in an environment at a temperature of 23 ° C. and a humidity of 50%. A foam-molded article is obtained under the above-described foam-molding conditions on the 7th, 14th, 21st, 28th, and 35th days after the preliminary foaming.

<表面平滑性(ノビ)の評価>
所定の嵩倍数の発泡成形体から任意に25mm×25mmの表皮付き試験片を切り出し,試験片表面(表皮面)の粒子間の個数を計測する。計測する粒子間とは予備発泡粒子が3個以上で接している接点のことをいう。次に粒子間のピンホール(くぼみ)の個数を計測する。
上記の結果から下記式により発泡成形体表面のノビ(平滑性)を評価する。
発泡成形体のノビ=(1−粒子間ピンホール個数/全粒子間個数)×5
判定基準は、発泡成形体のノビが4以上を○、4未満を×とする。
<Evaluation of surface smoothness (novi)>
A test piece with a skin of 25 mm × 25 mm is cut out from a foamed product having a predetermined bulk multiple, and the number of particles on the surface of the test piece (skin surface) is measured. Between particles to be measured refers to a contact point where three or more pre-expanded particles are in contact. Next, the number of pinholes (indentations) between particles is measured.
From the above results, the nobility (smoothness) of the surface of the foamed molded product is evaluated by the following formula.
Novi of foamed molded article = (1−number of pinholes between particles / number of all particles) × 5
The criterion is that the foam molded article has a Nobi of 4 or more and a circle of less than 4 is x.

<内部融着性の評価>
得られた発泡成形体の表面に、一対の長辺の中心同士を結ぶ直線に沿ってカッターナイフで深さ約1cmの切り込み線を入れた後、この切り込み線に沿って発泡成形体を手で二分割し、その破断面における発泡粒子について、粒子内で破断している粒子の数(a)と粒子どうしの界面で破断している粒子の数(b)とを数え、式[(a)/((a)+(b))]×100に代入して得られた値を融着率(%)とする。
本発明では80%以上の融着率を合格、80%未満を不合格とする。
<Evaluation of internal fusion>
A cut line having a depth of about 1 cm is made with a cutter knife along a straight line connecting the centers of a pair of long sides on the surface of the obtained foam molded body, and then the foam molded body is manually moved along the cut line. For foamed particles on the fracture surface, the number of broken particles (a) and the number of broken particles (b) at the interface between the particles are counted, and the formula [(a) / ((A) + (b))] × 100, and the value obtained by substituting it into the fusion rate (%).
In the present invention, a fusion rate of 80% or more is acceptable and less than 80% is unacceptable.

<発泡成形体の落球衝撃強度>
JIS K 7211に準拠し、所定の倍数の発泡成形体から切り出した215mm(長さ)×40mm(幅)×20mm(厚さ)の試験片を支点間の間隔150mmの上に載置して、321gの剛球を落とし、落球衝撃強度、すなわち50%破壊高さを次の計算式により算出する。なお、試験片は、6面とも表皮はないものとする。
H50=Hi+d[Σ(i・ni)/N±0.5]
H50:50%破壊高さ(cm)
Hi:高さ水準(i)が0のときの試験高さ(cm)であり、試験片が破壊することが予測される高さ
d:試験高さを上下させるときの高さ間隔(cm)
i:Hiのときを0とし、1つずつ増減する高さ水準
(i=…−3、−2、−1、0、1、2、3…)
ni:各水準において破壊した(又は破壊しなかった)試験片の数
N:破壊した(又は破壊しなかった)試験片の総数(N=Σni)(いずれか多いほうのデータを使用する。なお、同数の場合はどちらを使用してもよい)
±0.5:破壊したデータを使用するときは負を、破壊しなかったデータを使用するときは正をとる。
なお、試験片は発泡経日35日目に成形したものを用いる。
<Falling ball impact strength of foam molding>
In accordance with JIS K 7211, a test piece of 215 mm (length) × 40 mm (width) × 20 mm (thickness) cut out from a predetermined multiple of the foamed molded product was placed on a space of 150 mm between fulcrums, A 321 g hard ball is dropped, and the falling ball impact strength, that is, the 50% breaking height is calculated by the following formula. In addition, the test piece shall have no epidermis on all six sides.
H50 = Hi + d [Σ (i · ni) /N±0.5]
H50: 50% fracture height (cm)
Hi: Test height (cm) when the height level (i) is 0 and the height at which the test piece is expected to break d: Height interval (cm) when the test height is raised or lowered
i: Height level when Hi is 0, and a level that increases or decreases by 1 (i = ...- 3, -2, -1, 0, 1, 2, 3,...)
ni: number of test pieces destroyed (or not destroyed) at each level N: total number of test pieces destroyed (or not destroyed) (N = Σni) (whichever is greater is used) Either can be used for the same number)
± 0.5: Negative when using destroyed data, positive when using non-destructed data.
The test piece used was molded on the 35th day after foaming.

実施例1
(複合樹脂粒子の製造)
エチレン−酢酸ビニル共重合体樹脂粒子(日本ポリエチレン社製LV−211、メルトフローレート0.3g/10分、酢酸ビニル含量6.2重量%)100重量部に、気泡調整剤としての珪酸カルシウム0.3重量部とステアリン酸カルシウム0.1重量部とを加えて、押出機にて均一に混練し、水中カット方式により造粒ペレットを得た(エチレン−酢酸ビニル共重合体樹脂粒子は100粒あたり80mgに調整した)。
内容積100リットルの攪拌機付き耐圧容器に、上記ペレット40重量部、純水120重量部、ピロリン酸マグネシウム0.45重量部、ドデシルベンゼンスルホン酸ソーダ0.02重量部を加え、攪拌して純水中に懸濁させた。
次いで、この懸濁液に、ラジカル重合開始剤としてジクミルパーオキサイド0.03重量部を20重量部のスチレンモノマーに溶解させた混合液を30分かけて滴下した。滴下後30分間保持した後、反応系の温度を143℃まで上昇させ、2時間保持した後、常温まで冷却した。
Example 1
(Manufacture of composite resin particles)
To 100 parts by weight of ethylene-vinyl acetate copolymer resin particles (LV-211, manufactured by Nippon Polyethylene Co., Ltd., melt flow rate 0.3 g / 10 min, vinyl acetate content 6.2% by weight), calcium silicate 0 as a foam regulator .3 parts by weight and 0.1 part by weight of calcium stearate were added and kneaded uniformly with an extruder to obtain granulated pellets by an underwater cutting method (ethylene-vinyl acetate copolymer resin particles per 100 grains). Adjusted to 80 mg).
Add 40 parts by weight of the above pellets, 120 parts by weight of pure water, 0.45 parts by weight of magnesium pyrophosphate, and 0.02 parts by weight of sodium dodecylbenzenesulfonate to a pressure-resistant container with a stirrer having an internal volume of 100 liters, and stir pure water. Suspended in.
Next, a mixed solution obtained by dissolving 0.03 part by weight of dicumyl peroxide as a radical polymerization initiator in 20 parts by weight of styrene monomer was dropped into this suspension over 30 minutes. After maintaining for 30 minutes after dropping, the temperature of the reaction system was increased to 143 ° C., maintained for 2 hours, and then cooled to room temperature.

更に、この懸濁液に、ドデシルベンゼンスルホン酸ソーダ0.16重量部を加えた後、反応系の温度を90℃まで昇温し、ラジカル重合開始剤として、ベンゾイルパーオキサイド0.3重量部及びt−ブチルパーオキシベンゾエート0.02重量部、ジクミルパーオキサイド0.8重量部を40重量部のスチレンモノマーに溶解させた混合液を2時間かけて滴下し、スチレンモノマーを吸収させながら重合を行った。その後、90℃で3時間保持した後、135℃に昇温させ、その温度で3時間保持して重合を完結させた。上記一連の重合を完結させた後、常温まで冷却し、複合樹脂粒子を得た。   Further, 0.16 part by weight of sodium dodecylbenzenesulfonate was added to this suspension, and then the temperature of the reaction system was raised to 90 ° C., and 0.3 parts by weight of benzoyl peroxide and radical polymerization initiator were used. A mixture of 0.02 parts by weight of t-butyl peroxybenzoate and 0.8 parts by weight of dicumyl peroxide dissolved in 40 parts by weight of styrene monomer is dropped over 2 hours, and polymerization is performed while absorbing the styrene monomer. went. Then, after maintaining at 90 ° C. for 3 hours, the temperature was raised to 135 ° C. and maintained at that temperature for 3 hours to complete the polymerization. After completing the above series of polymerizations, it was cooled to room temperature to obtain composite resin particles.

(発泡剤及び非イオン系界面活性剤の含浸および予備発泡)
内容積50リットルの耐圧で密閉可能なV型ブレンダーに複合樹脂粒子を100重量部、非イオン系界面活性剤としてN−ヒドロキシエチルラウリルアミン(日油社製ナイミーン(登録商標)L−201)0.25重量部、ジイソブチルアジペート0.5重量部を加え、密閉し攪拌しながら、ブタン14重量部を圧入した。そして、器内を50℃で2時間保持した後、冷却して発泡性複合樹脂粒子を取り出した。
取り出した発泡性複合樹脂粒子は直ちに、バッチ式予備発泡機で嵩倍数30倍に予備発泡し、その後温度23の恒温室にて保管した。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bは表1に示した。
(Impregnation with foaming agent and nonionic surfactant and pre-foaming)
N-hydroxyethyl laurylamine (Nymeen (registered trademark) L-201 manufactured by NOF Corporation) 0 as a nonionic surfactant in a V-type blender having an internal volume of 50 liters and capable of being sealed with a pressure resistance and 100 parts by weight of composite resin particles .25 parts by weight and 0.5 parts by weight of diisobutyl adipate were added, and 14 parts by weight of butane were press-fitted while sealing and stirring. And after hold | maintaining the inside of a container at 50 degreeC for 2 hours, it cooled and took out the expandable composite resin particle.
The taken-out expandable composite resin particles were immediately pre-expanded to a bulk multiple of 30 times with a batch-type pre-expander, and then stored in a temperature-controlled room at a temperature of 23. The average cell diameters A and B and the ratio A / B of the obtained pre-expanded particles are shown in Table 1.

(発泡成形)
得られた予備発泡粒子を、予備発泡後の経日7日後、14日後、21日後、28日後、35日後に、型内発泡成形を行った。300mm(幅)×400mm(長さ)×30mm(厚さ)の金型内に予備発泡粒子を導入し、0.6kgf/cm2の水蒸気を30秒導入して加熱した。加熱後、発泡成形体の発泡圧が0.05kgf/cm2以下に低下するまで冷却を行い、嵩倍数30倍の発泡成形体を取り出した。
発泡成形後、35℃の雰囲気下で6時間以上放置し、ノビと内部融着の評価を行った。発泡経日35日目に成形したものについて落球衝撃強度を求めた。結果は、表1に示した。
(Foam molding)
The obtained pre-expanded particles were subjected to in-mold foam molding 7 days, 14 days, 21 days, 28 days, and 35 days after the preliminary foaming. Pre-expanded particles were introduced into a 300 mm (width) × 400 mm (length) × 30 mm (thickness) mold, and 0.6 kgf / cm 2 of water vapor was introduced for 30 seconds and heated. After the heating, cooling was performed until the foaming pressure of the foamed molded product decreased to 0.05 kgf / cm 2 or less, and a foamed molded product with a bulk multiple of 30 times was taken out.
After foam molding, it was allowed to stand for 6 hours or more in an atmosphere of 35 ° C., and evaluation of nobi and internal fusion was performed. The falling ball impact strength of the molded product on the 35th day after foaming was determined. The results are shown in Table 1.

実施例2
発泡剤および非イオン系界面活性剤の含浸時に添加するN−ヒドロキシエチルラウリルアミンの添加量を1.00重量部としたこと以外は、実施例1と同様に予備発泡粒子および発泡成形体を得た。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bと、発泡成形体のノビ、内部融着および落球衝撃強度の評価結果は表1に示した。
Example 2
Pre-expanded particles and a foamed molded product are obtained in the same manner as in Example 1 except that the amount of N-hydroxyethyllaurylamine added during impregnation with the foaming agent and the nonionic surfactant is 1.00 parts by weight. It was. Table 1 shows the average cell diameters A and B and the ratio A / B of the pre-expanded particles obtained, and the evaluation results of the foam molded article's Novi, internal fusion, and falling ball impact strength.

実施例3
発泡剤および非イオン系界面活性剤の含浸時に添加するN−ヒドロキシエチルラウリルアミンの添加量を2.00重量部としたこと以外は、実施例1と同様に予備発泡粒子および発泡成形体を得た。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bと、発泡成形体のノビ、内部融着および落球衝撃強度の評価結果は表1に示した。
Example 3
Pre-expanded particles and a foamed molded product are obtained in the same manner as in Example 1 except that the amount of N-hydroxyethyllaurylamine added during impregnation with the foaming agent and nonionic surfactant is 2.00 parts by weight. It was. Table 1 shows the average cell diameters A and B and the ratio A / B of the pre-expanded particles obtained, and the evaluation results of the foam molded article's Novi, internal fusion, and falling ball impact strength.

実施例4
発泡剤および非イオン系界面活性剤の含浸時に添加するN-ヒドロキシエチルラウリルアミンをポリオキシアルキレンアルキルエーテル(第一工業製薬社製 DKSNL−Dash400)とし、添加量を1.00重量部としたこと以外は、実施例1と同様に予備発泡粒子および発泡成形体を得た。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bと、発泡成形体のノビ、内部融着および落球衝撃強度の評価結果は表1に示した。
Example 4
N-hydroxyethyl laurylamine added at the time of impregnation with the foaming agent and the nonionic surfactant was polyoxyalkylene alkyl ether (DKSNL-Dash400 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and the addition amount was 1.00 parts by weight Except for the above, pre-foamed particles and a foam-molded article were obtained in the same manner as in Example 1. Table 1 shows the average cell diameters A and B and the ratio A / B of the pre-expanded particles obtained, and the evaluation results of the foam molded article's Novi, internal fusion, and falling ball impact strength.

実施例5
発泡剤および非イオン系界面活性剤の含浸時に添加するN−ヒドロキシエチルラウリルアミンをN,N−ジ(ヒドロキシエチル)ラウリルアミン(日油社製 ナイミーン(登録商標)L−202)とし、添加量を1.00重量部としたこと以外は、実施例1と同様に予備発泡粒子および発泡成形体を得た。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bと、発泡成形体のノビ、内部融着および落球衝撃強度の評価結果は表1に示した。
Example 5
N-hydroxyethyl laurylamine to be added at the time of impregnation with the foaming agent and the nonionic surfactant is N, N-di (hydroxyethyl) laurylamine (Nymeen (registered trademark) L-202, manufactured by NOF Corporation) Pre-expanded particles and a foam-molded article were obtained in the same manner as in Example 1 except that the amount was 1.00 parts by weight. Table 1 shows the average cell diameters A and B and the ratio A / B of the pre-expanded particles obtained, and the evaluation results of the foam molded article's Novi, internal fusion, and falling ball impact strength.

実施例6
発泡剤および非イオン系界面活性剤の含浸時に添加するN−ヒドロキシエチルラウリルアミンをポリオキシエチレンラウリルアミン(日油社製 エレガン(登録商標)S−100)とし、添加量を1.0重量部としたこと以外は、実施例1と同様に予備発泡粒子および発泡成形体を得た。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bと、発泡成形体のノビ、内部融着および落球衝撃強度の評価結果は表1に示した。
Example 6
N-hydroxyethyl laurylamine added at the time of impregnation with the foaming agent and the nonionic surfactant is polyoxyethylene laurylamine (Elegan (registered trademark) S-100 manufactured by NOF Corporation), and the addition amount is 1.0 part by weight. Except that, pre-expanded particles and a foam-molded article were obtained in the same manner as in Example 1. Table 1 shows the average cell diameters A and B and the ratio A / B of the pre-expanded particles obtained, and the evaluation results of the foam molded article's Novi, internal fusion, and falling ball impact strength.

実施例7
実施例1で得られたペレット30重量部、純水120重量部、ピロリン酸マグネシウム0.45重量部、ドデシルベンゼンスルホン酸ソーダ0.03重量部を加え、攪拌して懸濁させた。次いで、この懸濁液にジクミルパーオキサイド0.03重量部を15重量部のスチレンモノマーに溶解させた混合液を30分かけて滴下した。滴下後30分保持した後、反応系の温度を135℃まで上昇させ、2時間保持した後常温まで冷却した。
冷却した懸濁液に、ドデシルベンゼンスルホン酸ソーダ0.17重量部を加えた後、反応系の温度を90℃まで上昇させ、重合開始剤としてベンゾイルパーオキサイド0.3重量部及びt−ブチルパーオキシベンゾエート0.02重量部、ジクミルパーオキサイド0.8重量部を15.4重量部のスチレンモノマーに溶解させた混合物を2時間かけて滴下し、スチレンモノマー39.5重量部を2時間かけて滴下した。その後、90℃で1時間保持し、143℃まで上昇させ、2時間保持した後、常温まで冷却しポリオレフィン系樹脂30重量部、ポリスチレン系樹脂70重量部からなる、複合樹脂粒子を得た。
そのほかは実施例1と同様に、発泡剤の含浸、予備発泡、発泡成形を実施した。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bと、発泡成形体のノビ、内部融着および落球衝撃強度の評価結果は表1に示した。
Example 7
30 parts by weight of the pellets obtained in Example 1, 120 parts by weight of pure water, 0.45 parts by weight of magnesium pyrophosphate and 0.03 parts by weight of sodium dodecylbenzenesulfonate were added and suspended by stirring. Next, a mixed solution prepared by dissolving 0.03 part by weight of dicumyl peroxide in 15 parts by weight of styrene monomer was dropped into this suspension over 30 minutes. After holding for 30 minutes after dropping, the temperature of the reaction system was raised to 135 ° C., held for 2 hours, and then cooled to room temperature.
After adding 0.17 parts by weight of sodium dodecylbenzenesulfonate to the cooled suspension, the temperature of the reaction system was raised to 90 ° C., and 0.3 parts by weight of benzoyl peroxide and t-butyl pers. A mixture prepared by dissolving 0.02 parts by weight of oxybenzoate and 0.8 parts by weight of dicumyl peroxide in 15.4 parts by weight of styrene monomer was dropped over 2 hours, and 39.5 parts by weight of styrene monomer was added over 2 hours. And dripped. Then, it hold | maintained at 90 degreeC for 1 hour, raised to 143 degreeC, and after hold | maintaining for 2 hours, it cooled to normal temperature and obtained the composite resin particle which consists of 30 weight part of polyolefin resin and 70 weight part of polystyrene resin.
Otherwise, in the same manner as in Example 1, impregnation with a foaming agent, preliminary foaming, and foam molding were performed. Table 1 shows the average cell diameters A and B and the ratio A / B of the pre-expanded particles obtained, and the evaluation results of the foam molded article's Novi, internal fusion, and falling ball impact strength.

実施例8
直鎖状低密度ポリエチレン樹脂粒子(日本ポリエチレン社製NF−464A)を押出機にて加熱混合して、水中カット方式により造粒ペレット化した(100粒あたり80mgに調整した)。この直鎖状低密度ポリエチレン20重量部、純水100重量部、ピロリン酸マグネシウム0.9重量部、ドデシルベンゼンスルホン酸ソーダ0.01重量部を加えた。これらを攪拌し、懸濁液させた。次いで、この懸濁液に、重合開始剤としてジクミルパーオキサイド0.03重量部を溶解させたスチレンモノマー10重量部を30分かけて滴下した。滴下後、30分間60℃で保持した後、135℃に昇温し、2時間保持した。
その後、115℃まで冷却し、懸濁液にドデシルベンゼンスルホン酸ソーダ0.04重量部を加えた。その後、重合開始剤であるt−ブチルパーオキシベンゾエート0.28重量部を溶解したスチレンモノマー70重量部を6時間かけて滴下し、115℃で1時間保持した後、143℃に昇温し、3時間保持後に常温まで冷却した。
そのほかは実施例1と同様に、発泡剤の含浸、予備発泡、発泡成形を実施した。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bと、発泡成形体のノビ、内部融着および落球衝撃強度の評価結果は表1に示した。
Example 8
Linear low density polyethylene resin particles (NF-464A manufactured by Nippon Polyethylene Co., Ltd.) were heated and mixed with an extruder, and granulated into pellets by an underwater cutting method (adjusted to 80 mg per 100 grains). 20 parts by weight of this linear low density polyethylene, 100 parts by weight of pure water, 0.9 part by weight of magnesium pyrophosphate, and 0.01 part by weight of sodium dodecylbenzenesulfonate were added. These were stirred and suspended. Next, 10 parts by weight of a styrene monomer in which 0.03 parts by weight of dicumyl peroxide was dissolved as a polymerization initiator was dropped into this suspension over 30 minutes. After dripping, after maintaining at 60 ° C. for 30 minutes, the temperature was raised to 135 ° C. and maintained for 2 hours.
Then, it cooled to 115 degreeC and 0.04 weight part of sodium dodecylbenzenesulfonate was added to the suspension. Thereafter, 70 parts by weight of a styrene monomer in which 0.28 parts by weight of t-butyl peroxybenzoate as a polymerization initiator was dissolved was dropped over 6 hours, held at 115 ° C. for 1 hour, then heated to 143 ° C., After holding for 3 hours, it was cooled to room temperature.
Otherwise, in the same manner as in Example 1, impregnation with a foaming agent, preliminary foaming, and foam molding were performed. Table 1 shows the average cell diameters A and B and the ratio A / B of the pre-expanded particles obtained, and the evaluation results of the foam molded article's Novi, internal fusion, and falling ball impact strength.

比較例1
発泡剤および非イオン系界面活性剤の含浸時に非イオン系界面活性剤を添加しなかったこと以外は、実施例1と同様に予備発泡粒子および発泡成形体を得た。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bと、発泡成形体のノビ、内部融着および落球衝撃強度の評価結果は表1に示した。
Comparative Example 1
Pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1 except that the nonionic surfactant was not added at the time of impregnation with the foaming agent and the nonionic surfactant. Table 1 shows the average cell diameters A and B and the ratio A / B of the pre-expanded particles obtained, and the evaluation results of the foam molded article's Novi, internal fusion, and falling ball impact strength.

比較例2
発泡剤および非イオン系界面活性剤の含浸時に添加するN−ヒドロキシエチルラウリルアミンの添加量を0.01重量部としたこと以外は、実施例1と同様に予備発泡粒子および発泡成形体を得た。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bと、発泡成形体のノビ、内部融着および落球衝撃強度の評価結果は表1に示した。
Comparative Example 2
Pre-expanded particles and a foamed molded article are obtained in the same manner as in Example 1 except that the amount of N-hydroxyethyllaurylamine added during impregnation with the foaming agent and the nonionic surfactant is 0.01 parts by weight. It was. Table 1 shows the average cell diameters A and B and the ratio A / B of the obtained pre-expanded particles, and the evaluation results of the foam molded article's Novi, internal fusion, and falling ball impact strength.

比較例3
発泡剤の含浸工程において、複合樹脂粒子を2kgとイソペンタン2Lを耐圧攪拌機付き5Lオートクレーブに投入し、35℃で285分保持した後、25℃以下に冷却し発泡性複合樹脂粒子を取り出したこと以外は、実施例1と同様に予備発泡粒子および発泡成形体を得た。得られた予備発泡粒子の平均気泡径AとB、及び比率A/Bと、発泡成形体のノビ、内部融着および落球衝撃強度の評価結果は表1に示した。
Comparative Example 3
In the step of impregnating the foaming agent, 2 kg of composite resin particles and 2 L of isopentane were put into a 5 L autoclave equipped with a pressure stirrer, held at 35 ° C. for 285 minutes, then cooled to 25 ° C. or lower, and the expandable composite resin particles were taken out Obtained the pre-expanded particles and the expanded molded body in the same manner as in Example 1. Table 1 shows the average cell diameters A and B and the ratio A / B of the pre-expanded particles obtained, and the evaluation results of the foam molded article's Novi, internal fusion, and falling ball impact strength.

図2及び3から、実施例1及び6の予備発泡粒子は、表皮層に接している気泡の平均気泡径が半径の1/2の点を通る気泡の平均気泡径より大きくなっていることが分かる。
図4から、比較例1の予備発泡粒子は、表皮層に接している気泡の平均気泡径と半径の1/2の点を通る気泡の平均気泡径とに変化がないことが分かる。
図5から、比較例3の予備発泡粒子は、表皮層に接している気泡の平均気泡径が半径の1/2の点を通る気泡の平均気泡径に対して非常に大きくなっていることが分かる。
表1から、実施例によれば、予備発泡粒子の予備発泡後の経日が長くても、外観が美麗であり、高い落球衝撃強度を有する発泡成形体が得られることが分かる。
実施例と比較例とから、比率A/Bが2〜6の範囲内であれば、予備発泡粒子の予備発泡後の経日が長くても、外観が美麗であり、高い落球衝撃強度を有する発泡成形体が得られることが分かる。
実施例と比較例2とから、発泡剤を含浸させる前に、予め処理する非イオン系界面活性剤の量は、複合樹脂粒子100重量部に対して0.05〜2.5重量部とすることで、予備発泡粒子の予備発泡後の経日が長くても、外観が美麗であり、高い落球衝撃強度を有する発泡成形体が得られることが分かる。
2 and 3, in the pre-expanded particles of Examples 1 and 6, the average bubble diameter of the bubbles in contact with the skin layer is larger than the average bubble diameter of the bubbles passing through the half point of the radius. I understand.
From FIG. 4, it can be seen that the pre-expanded particles of Comparative Example 1 have no change in the average bubble diameter of the bubbles in contact with the skin layer and the average bubble diameter of the bubbles passing through half the radius.
From FIG. 5, it can be seen that the pre-expanded particles of Comparative Example 3 have a very large average bubble diameter of bubbles in contact with the skin layer with respect to the average bubble diameter of the bubbles passing through the half of the radius. I understand.
From Table 1, it can be seen that, according to the examples, even if the pre-expanded particles are long after the pre-expansion, the appearance is beautiful and a foam molded article having a high falling ball impact strength can be obtained.
From the examples and comparative examples, if the ratio A / B is in the range of 2 to 6, even if the pre-foamed particles are long after pre-foaming, the appearance is beautiful and has a high falling ball impact strength. It turns out that a foaming molding is obtained.
From Examples and Comparative Example 2, before impregnating the foaming agent, the amount of the nonionic surfactant to be pretreated is 0.05 to 2.5 parts by weight with respect to 100 parts by weight of the composite resin particles. Thus, it can be seen that even if the pre-foamed particles have a long time after pre-foaming, the appearance is beautiful and a foam-molded article having a high falling ball impact strength can be obtained.

Claims (8)

ポリオレフィン系樹脂100重量部とポリスチレン系樹脂120〜560重量部を含む複合樹脂粒子と、前記複合樹脂粒子100重量部当たり非イオン系界面活性剤0.05〜2.5重量部と発泡剤とを含む発泡性複合樹脂粒子であり、前記発泡性複合樹脂粒子を予備発泡させて得られる予備発泡粒子をその表面から中心を通って二分割した切片の断面を走査型電子顕微鏡で撮影した場合、前記予備発泡粒子の表皮層に接している気泡の平均気泡径Aを予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値A/Bが2〜6となる予備発泡粒子を形成しうることを特徴とする発泡性複合樹脂粒子。   Composite resin particles containing 100 parts by weight of a polyolefin resin and 120 to 560 parts by weight of a polystyrene resin, 0.05 to 2.5 parts by weight of a nonionic surfactant per 100 parts by weight of the composite resin particle, and a foaming agent When the cross-section of a section obtained by pre-foaming the foamable composite resin particles obtained by pre-foaming the foamable composite resin particles and dividing the section into two parts through the center from the surface is taken with a scanning electron microscope, Preliminary value A / B obtained by dividing the average bubble diameter A of the bubbles in contact with the skin layer of the pre-expanded particles by the average bubble diameter B of the bubbles passing through half the radius of the pre-expanded particles is 2-6. Expandable composite resin particles characterized by being capable of forming expanded particles. 前記非イオン系界面活性剤が、ポリオキシアルキレンアルキルエーテル、アルキルジエタノールアミン、アルキルモノエタノールアミン又はポリオキシエチレンアルキルアミンである請求項1に記載の発泡性複合樹脂粒子。   The expandable composite resin particle according to claim 1, wherein the nonionic surfactant is polyoxyalkylene alkyl ether, alkyldiethanolamine, alkylmonoethanolamine or polyoxyethylene alkylamine. ポリオレフィン系樹脂100重量部とポリスチレン系樹脂120〜560重量部を含む複合樹脂粒子と、前記複合樹脂粒子100重量部当たり非イオン系界面活性剤0.05〜2.5重量部と発泡剤とを含む発泡性複合樹脂粒子に由来する予備発泡粒子であり、前記予備発泡粒子は、嵩倍数5〜60倍と、前記予備発泡粒子の表面から中心を通って二分割した切片の断面を走査型電子顕微鏡で撮影した場合、前記予備発泡粒子の表皮層に接している気泡の平均気泡径Aを予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値が2〜6となることを特徴とする予備発泡粒子。   Composite resin particles containing 100 parts by weight of a polyolefin resin and 120 to 560 parts by weight of a polystyrene resin, 0.05 to 2.5 parts by weight of a nonionic surfactant per 100 parts by weight of the composite resin particle, and a foaming agent It is a pre-expanded particle derived from the expandable composite resin particle, and the pre-expanded particle has a bulk magnification of 5 to 60 times, and a cross section of the section divided into two from the surface of the pre-expanded particle through the center is a scanning electron. When photographed with a microscope, the value obtained by dividing the average bubble diameter A of the bubbles in contact with the skin layer of the pre-expanded particles by the average bubble diameter B of the bubbles passing through half the radius of the pre-expanded particles is 2 to 2. Pre-expanded particles, characterized in that 請求項1又は2に記載の発泡性複合樹脂粒子の製造方法であって、前記複合樹脂粒子100重量部を非イオン系界面活性剤0.05〜2.5重量部と50重量部以上の発泡剤の存在下で、前記発泡剤を前記複合樹脂粒子に含浸させることを特徴とする発泡性複合樹脂粒子の製造方法。   It is a manufacturing method of the foamable composite resin particle of Claim 1 or 2, Comprising: 100-weight part of the said composite resin particle is 0.05-2.5 weight part of nonionic surfactant, and foaming of 50 weight part or more. A method for producing expandable composite resin particles, comprising impregnating the composite resin particles with the foaming agent in the presence of an agent. 請求項1又は2に記載の発泡性複合樹脂粒子の製造方法であって、前記複合樹脂粒子100重量部を非イオン系界面活性剤0.05〜2.5重量部の存在下かつ水性媒体の非存在下で、前記発泡剤を前記複合樹脂粒子に含浸させることを特徴とする発泡性複合樹脂粒子の製造方法。   It is a manufacturing method of the expandable composite resin particle of Claim 1 or 2, Comprising: 100 weight part of the said composite resin particle is presence of 0.05-2.5 weight part of nonionic surfactant, and an aqueous medium. A method for producing expandable composite resin particles, wherein the composite resin particles are impregnated with the foaming agent in the absence. 前記発泡剤の含浸が、複合樹脂粒子100重量部に対して10〜20重量部の発泡剤の存在下で行われる請求項5に記載の製造方法。   The production method according to claim 5, wherein the impregnation of the foaming agent is performed in the presence of 10 to 20 parts by weight of the foaming agent with respect to 100 parts by weight of the composite resin particles. 請求項1又は2に記載の発泡性複合樹脂粒子を、嵩倍数5〜60倍に予備発泡させて予備発泡粒子を得る方法。   A method for pre-expanding particles by pre-expanding the expandable composite resin particles according to claim 1 or 2 to 5 to 60 times in bulk. 請求項3の予備発泡粒子を型内成形させて得られる発泡成形体。   A foam molded article obtained by molding the pre-expanded particles of claim 3 in-mold.
JP2009222648A 2009-09-28 2009-09-28 Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article Pending JP2011068821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222648A JP2011068821A (en) 2009-09-28 2009-09-28 Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222648A JP2011068821A (en) 2009-09-28 2009-09-28 Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article

Publications (1)

Publication Number Publication Date
JP2011068821A true JP2011068821A (en) 2011-04-07

Family

ID=44014397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222648A Pending JP2011068821A (en) 2009-09-28 2009-09-28 Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article

Country Status (1)

Country Link
JP (1) JP2011068821A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137363A1 (en) * 2014-03-10 2015-09-17 株式会社カネカ Styrene-based resin foam-molded article and method for manufacturing same
JP2019518839A (en) * 2017-02-10 2019-07-04 エルジー・ケム・リミテッド Super absorbent polymer and method for producing the same
WO2021054318A1 (en) * 2019-09-20 2021-03-25 積水化成品工業株式会社 Foam molded body and use thereof
JP2021054931A (en) * 2019-09-30 2021-04-08 積水化成品工業株式会社 Styrene composite polyethylene based resin foam particulate, production method thereof, and foam molded article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137363A1 (en) * 2014-03-10 2015-09-17 株式会社カネカ Styrene-based resin foam-molded article and method for manufacturing same
JPWO2015137363A1 (en) * 2014-03-10 2017-04-06 株式会社カネカ Styrenic resin foam molding and method for producing the same
JP2019518839A (en) * 2017-02-10 2019-07-04 エルジー・ケム・リミテッド Super absorbent polymer and method for producing the same
US10843170B2 (en) 2017-02-10 2020-11-24 Lg Chem, Ltd. Superabsorbent polymer and preparation method thereof
WO2021054318A1 (en) * 2019-09-20 2021-03-25 積水化成品工業株式会社 Foam molded body and use thereof
JP2021054931A (en) * 2019-09-30 2021-04-08 積水化成品工業株式会社 Styrene composite polyethylene based resin foam particulate, production method thereof, and foam molded article

Similar Documents

Publication Publication Date Title
JP4718645B2 (en) Styrene modified polypropylene resin particles, expandable styrene modified polypropylene resin particles, styrene modified polypropylene resin foam particles, and method for producing styrene modified polypropylene resin foam molded article
KR101133794B1 (en) Expandable polystyrenic resin particles and production process thereof, pre-expanded particles and molded foam product
JP4917511B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP5192420B2 (en) Expandable composite resin particles for long-term storage, pre-expanded particles and expanded molded articles
JP5667164B2 (en) Expandable composite resin particles for cryopreservation, production method thereof, storage method thereof, and cryopreservable foamable composite resin particles
WO2010074246A1 (en) Pre-expanded particles, process for producing same, and molded foam
JPWO2010110337A1 (en) Method for reducing volatile organic compounds in composite resin particles and composite resin particles
JP2006111862A (en) Black styrene-modified polyethylene-based resin particle, foamable resin particle thereof, method for producing the same, prefoamed particle, and foamed molded product
JP5553983B2 (en) Styrene-modified polyethylene resin particles and pre-expanded particles obtained from the resin particles
JP2011074152A (en) Prefoamed particle and process for producing the same
JP2007246606A (en) Expandable polystyrene resin particle, expanded polystyrene resin particle, molded article of expanded polystyrene resin, sliced article of expanded polystyrene resin, and method for preparation of the same
JP2011068821A (en) Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article
JP6118749B2 (en) Expandable composite resin particles, pre-expanded particles, and foamed molded body
JP2008260928A (en) Method for producing styrene modified polyethylene based resin pre-expansion particle
JP2013123851A (en) Method for reducing odor in composite resin particle, composite resin particle, foamable particle, prefoamed particle, foam molded product and automobile interior material
JP5493606B2 (en) Styrene-modified polyethylene resin foamed molded article and method for producing styrene-modified polyethylene resin pre-expanded particles
JP5664238B2 (en) Styrene-modified polyethylene resin pre-expanded particles and foam-molded article comprising the styrene-modified polyethylene resin pre-expanded particles
JP2014189769A (en) Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding
JP2009263639A (en) Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body
JP2011068776A (en) Foam-molded article
JP5401083B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
JP5536357B2 (en) Method for producing pre-expanded particles of styrene-modified polyethylene resin and styrene-modified polyethylene resin foam
JP5346571B2 (en) Method for producing pre-expanded particles
JP6081266B2 (en) Foam molding
JP2009102632A (en) Styrene modified polyethylene based resin prefoamed particle, and foam formed of the prefoamed particle