WO2010090046A1 - Method for manufacturing foamable thermoplastic resin particles, method for manufacturing thermoplastic resin foam particles, and method for manufacturing thermoplastic resin foam molded article - Google Patents

Method for manufacturing foamable thermoplastic resin particles, method for manufacturing thermoplastic resin foam particles, and method for manufacturing thermoplastic resin foam molded article Download PDF

Info

Publication number
WO2010090046A1
WO2010090046A1 PCT/JP2010/000799 JP2010000799W WO2010090046A1 WO 2010090046 A1 WO2010090046 A1 WO 2010090046A1 JP 2010000799 W JP2010000799 W JP 2010000799W WO 2010090046 A1 WO2010090046 A1 WO 2010090046A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
thermoplastic resin
particles
die
foaming agent
Prior art date
Application number
PCT/JP2010/000799
Other languages
French (fr)
Japanese (ja)
Inventor
浅野泰正
山下昌利
木下隆之
地海良輔
樽本裕之
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to CN2010800160000A priority Critical patent/CN102387902A/en
Publication of WO2010090046A1 publication Critical patent/WO2010090046A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/582Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/06PS, i.e. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Definitions

  • the present invention relates to a method for producing foamable thermoplastic resin particles for producing foamable thermoplastic resin particles by an underwater hot cut method, a method for producing thermoplastic resin foam particles, and a method for producing a thermoplastic resin foam molded article.
  • This application claims priority based on Japanese Patent Application No. 2009-027299 for which it applied to Japan on February 09, 2009, and uses the content here.
  • Patent Document 1 discloses a method for producing a foamed styrene polymer having a molecular weight Mw exceeding 170000 g / mol. This method is a method in which a blowing agent-containing styrene polymer melt having a temperature of at least 120 ° C. is conveyed through a die plate having a hole having a hole diameter of 1.5 mm or less at a die outlet, and then the extrudate is granulated. is there.
  • Patent Document 2 a resin discharge surface provided in contact with a water flow and a circumference of a virtual circle on the resin discharge surface are arranged, communicated with a cylinder of an extruder and opened to the resin discharge surface.
  • a granulating die comprising a plurality of cartridge heaters, a granulating apparatus, and a method for producing expandable thermoplastic resin particles using the same are disclosed.
  • Patent Document 3 a foaming agent is press-fitted into a thermoplastic resin melted in an extruder, and the foaming agent-containing molten resin is directly extruded into a cooling liquid from a large number of small holes in a die attached to the tip of the extruder. At the same time as extruding, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid, thereby producing a thermoplastic resin expandable particle.
  • This method is a manufacturing method in which the foaming agent-containing molten resin has a shear rate of 12000 to 35000 sec ⁇ 1 when passing through the small hole land portion of the die and the apparent melt viscosity of the resin is 100 to 700 poise. is there.
  • Patent Document 1 describes in paragraph 0021 that “the temperature of the die plate is preferably in a range of 20 to 100 ° C. higher than the temperature of the foaming agent-containing polystyrene melt”.
  • the die plate temperature is 180 to 240 ° C. ( ⁇ 20 ° C. to + 40 ° C. relative to the melting temperature) with respect to the melting temperature 200 ° C. The manufacturing example set to) is described.
  • continuous production of expandable thermoplastic resin particles by the underwater hot-cut method is performed under the condition that the die plate temperature is set to be 20 to 100 ° C. higher than the molten resin temperature. Even if it is attempted, the small holes of the die are blocked, and it is impossible to continuously produce foamable thermoplastic resin particles having a small particle size.
  • Patent Document 2 in Table 1 of Paragraph 0053, when the extrusion resin temperature is 170 ° C., there is a production example in which the die holding temperature is set to 270 to 280 ° C. (+100 to + 110 ° C. with respect to the extrusion resin temperature). Are listed. As described in Patent Document 2, when the die holding temperature is set to +100 to + 110 ° C. with respect to the extrusion resin temperature, it is possible to continuously produce expandable thermoplastic resin particles by an underwater hot cut method. . However, the foamable thermoplastic resin particles obtained are mixed with larger particles, and it is difficult to obtain foamable thermoplastic resin particles having a small particle size. Further, the foamable thermoplastic resin particles obtained in the above production examples have many voids inside the particles. As a result, when a foamed molded article is produced by in-mold foam molding of the foamable thermoplastic resin particles after preliminary foaming, the strength of the produced foam molded article is lowered.
  • the foaming agent-containing molten resin has a shear rate of 12000 to 35000 sec ⁇ 1 when passing through the small hole land portion of the die, and the resin has an apparent melt viscosity of 100 to 700 poise.
  • Paragraph 0027 describes that the resin temperature of the foamable resin in the die introduction part is adjusted to be 50 to 100 ° C. higher than the melting point of the resin.
  • the small holes of the dies were closed, and the particle size was uniform with small particles. The foamable thermoplastic resin particles cannot be produced continuously.
  • the present invention has been made in view of the above circumstances, and in the production of expandable thermoplastic resin particles by an underwater hot cut method, it is possible to continuously produce expandable thermoplastic resin particles having a small particle size and a uniform particle size.
  • An object of the present invention is to provide a simple manufacturing method.
  • the method for producing expandable thermoplastic resin particles of the present invention includes a step of supplying a thermoplastic resin to a resin supply device having a granulation die having at least a die body having a resin discharge surface, and melt-kneading the thermoplastic resin.
  • the temperature of the die body is controlled so that the temperature of the die body is 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin. obtain.
  • the method for producing foamed thermoplastic resin particles includes a step of supplying a thermoplastic resin to a resin supply apparatus having a granulation die having at least a die body having a resin discharge surface, and melt-kneading the thermoplastic resin.
  • a step of injecting a foaming agent into the thermoplastic resin while moving the resin toward the granulation die to form a foaming agent-containing resin, and discharging from a nozzle opened in the resin discharge surface of the die body Cutting the foaming agent-containing resin in a cooling medium with a cutter to obtain foamable thermoplastic resin particles, and pre-foaming the foamable thermoplastic resin particles to obtain thermoplastic resin foam particles.
  • expandable thermoplastic resin particles are obtained while controlling the temperature so that the temperature of the die main body is 115 ° C. to 200 ° C. higher than the molten resin temperature of the foam-containing resin. .
  • the method for producing a thermoplastic resin foam-molded article of the present invention includes a step of supplying a thermoplastic resin to a resin supply apparatus having a granulation die having at least a die body having a resin discharge surface, and melt-kneading the thermoplastic resin.
  • thermoplastic resin foam molded body by foam-molding the thermoplastic resin foam particles in a mold.
  • the temperature of the die body is controlled so that the temperature of the die body is 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin.
  • the present invention in the production of expandable thermoplastic resin particles by the underwater hot cut method, while controlling the temperature so that the temperature of the die body is 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin, Expandable thermoplastic resin particles are obtained.
  • foamable thermoplastic resin particles having a small particle size and a uniform particle size can be continuously produced.
  • the foamable thermoplastic resin particles obtained by the present invention have few voids inside the particles. Therefore, when the foamable thermoplastic resin particles are produced by in-mold foam molding to produce a foam molded article, the mechanical strength of the foam molded article can be improved.
  • FIG. 1 It is a block diagram of the granulation apparatus which concerns on embodiment of this invention. It is a sectional side view showing the schematic structure of the granulation die concerning the embodiment of the present invention. It is a side view which shows the resin discharge surface of the die main body of FIG. It is a figure which shows an example of the arrangement
  • FIG. 1 It is an enlarged image of the cross section of the expandable polystyrene-type resin particle manufactured in Example 1 of this invention. 4 is an enlarged image of a cross section of an expandable polystyrene resin particle produced in Comparative Example 2.
  • FIG. 1 is a block diagram showing an example of a granulating apparatus used in the manufacturing method of the present invention
  • FIG. 2 is a side sectional view showing an example of the granulating die
  • FIG. 3 is a resin discharge surface of the die body of FIG.
  • FIG. 4 is a diagram showing an arrangement state of nozzles.
  • the granulating apparatus T is a granulating apparatus for granulating foamable thermoplastic resin particles by an underwater hot cut method.
  • the granulating apparatus T includes an extruder 2 (resin supplying apparatus) having a granulating die 1 attached to the tip thereof, and a resin discharged from the nozzle 15 of the granulating die 1 (in this embodiment, a foaming agent-containing resin). 20) and a chamber 4 for bringing a water flow into contact with the resin discharge surface 13 of the granulation die 1.
  • the chamber 4 is connected to a conduit 5 for flowing a cooling medium such as circulating water (hereinafter referred to as water).
  • One end (upstream side of the chamber 4) of the pipe line 5 is connected to a water tank 7 through a water pump 6.
  • the other end (downstream side of the chamber 4) of the pipe line 5 is connected to a dehydration processing unit 8 that separates foamed thermoplastic resin particles from the circulating water and dehydrates and dries them.
  • the expandable thermoplastic resin particles separated by the dehydration processing unit 8 and dehydrated and dried are sent to the container 9.
  • Reference numeral 21 is a hopper, 22 is a blowing agent supply port, and 23 is a high-pressure pump.
  • the side from which the resin is discharged is referred to as “front” and “front end”, and the opposite side is defined as “rear” and “rear end” in the following description. Use.
  • the granulation die 1 includes a die body 10 (also referred to as a die plate) and a die holder 11 (also referred to as a diverter) fixed to the tip side (right side in the drawing) of the extruder 2. Called).
  • the die body 10 is fixed to the tip end side of the die holder 11 with a plurality of bolts 12.
  • the die holder 11 is provided in communication with the cylinder of the extruder 2, and a rear end side flow path 11 a and a front end side flow path 11 b are formed in that order from the rear end side toward the front end side.
  • the die body 10 is formed with a conical convex portion 10a that protrudes rearward at the center of the rear end surface.
  • the conical convex portion 10a of the die body 10 is inserted into the distal end side flow passage 11b of the die holder 11 with a predetermined gap. That is, the foaming agent-containing resin 20 passes through the rear end side flow passage 11a of the die holder 11, flows along the peripheral surface of the conical convex portion 10a in the front end side flow passage 11b, and opens to the rear end face of the die body 10. It communicates with a plurality of resin flow paths 14 (described later).
  • the die body 10 has a resin discharge surface 13 that comes into contact with the water flow at the tip surface thereof, and a plurality of resin flow paths 14 for transferring the foaming agent-containing resin 20 extruded from the extruder 2 toward the resin discharge surface 13.
  • a plurality of nozzles 15 provided at the tips of the plurality of resin flow paths 14 and opening in the resin discharge surface 13, a heat insulating material 16 provided at the center position of the resin discharge surface 13, and an extruder more than the resin discharge surface 13.
  • a cartridge heater 17 for warming the resin discharge surface 13 and the resin flow path 14 and a short heater 18 for warming the die body 10 are provided at a position on the second side.
  • the cartridge heater 17 and the short heater 18 can be appropriately selected from conventionally known cartridge heaters according to the size and shape of the die body 10.
  • a heating wire (nichrome wire) wound around a rod-shaped ceramic is inserted into a pipe (heat-resistant stainless steel), and the gap between the heating wire and the pipe is highly thermally conductive and highly insulating.
  • a bar heater with a high power density which is encapsulated with an excellent material (MgO).
  • the cartridge heater 17 and the short heater 18 may be a cartridge heater with two lead wires on one side, or a cartridge heater (seeds heater) with one lead wire on each side.
  • a cartridge heater having two lead wires on one side is more preferable because it has a higher power density than a cartridge heater having one lead wire on each side.
  • the resin discharge surface 13 of the die body 10 is provided with a heat insulating material 16 having a circular cross section at the center thereof, and discharge ports of a plurality of nozzles 15 are provided along the concentric circles on the radially outer side of the heat insulating material 16.
  • the central portion of the resin discharge surface 13 where the heat insulating material 16 and the plurality of nozzles 15 are arranged is designed to come into contact with water inside the chamber 4.
  • the plurality of resin flow paths 14 have a circular cross section, extend in a direction perpendicular to the resin discharge surface 13, and have a circumference (centered on the resin discharge surface 13) centered on the central axis of the die body 10. Are arranged at regular intervals along the circumference. In the present embodiment, eight resin flow paths 14 are provided, and the central angle between the resin flow paths 14 adjacent in the circumferential direction of the circumference is 45 °. As described above, each resin flow path 14 communicates with the front end side flow path 11 b of the die holder 11.
  • the plurality of nozzles 15 are arranged at predetermined intervals along the circumference drawn on the resin discharge surface 13.
  • one nozzle 15 is a nozzle unit in which a plurality of single nozzles 15a, 15b, 15c,... This is called a “nozzle”).
  • a method for arranging the single nozzles 15a, 15b, 15c,... For example, a method in which a large number of small nozzles are arranged on a plurality of small circles can be adopted. However, the arrangement is not limited to such an arrangement.
  • the heat insulating material 16 is provided on the resin discharge surface 13 inside the circumference where the plurality of nozzles 15 are arranged. This heat insulating material 16 is for suppressing the temperature drop of the die body 10 so that the heat of the die body 10 does not escape to the water in the chamber 4. As the heat insulating material 16, it is preferable to use a heat insulating material having water resistance and a high surface hardness.
  • a heat insulating material excellent in heat resistance and heat insulating performance that does not cause deformation or the like even when in contact with the high-temperature die body 10 is disposed, and this is covered with a waterproof resin such as a fluororesin excellent in heat insulating performance,
  • a laminated heat insulating material 16 in which materials having high surface hardness such as stainless steel and ceramics are sequentially laminated can be used.
  • Each of the cartridge heater 17 and the short heater 18 is a rod heater.
  • the cartridge heater 17 is located closer to the resin discharge surface 13 than the short heater 18 in the front-rear direction of the granulation die 1.
  • the cartridge heater 17 is disposed on both sides of the circumferential direction of the resin flow path 14 in a state of crossing the circumference with the longitudinal direction thereof directed in the radial direction of the circumference.
  • the cartridge heater 17 heats the resin discharge surface 13, the nozzle 15, and the resin flow path 14 in the vicinity of the resin discharge surface 13.
  • Eight cartridge heaters 17 according to this embodiment are provided with a predetermined central angle (here, an angle of 45 °) in the circumferential direction. That is, the individual nozzles 15 are arranged so as to be sandwiched between the two cartridge heaters 17 from the circumferential direction of the circumference.
  • the cartridge heater 17 is provided in the vicinity of the resin discharge surface 13, that is, within a predetermined heater depth range from the resin discharge surface 13 toward the extruder 2 side.
  • the heater depth refers to the distance from the resin discharge surface 13 to the center of the cartridge heater 17 for surface heating.
  • a smaller heater depth is preferable as long as the processed surface of the die and the durability are not affected, and a smaller nozzle depth is preferable because the effect of suppressing clogging of the nozzle is increased. That is, the heater depth is preferably in the range of 10 to 50 mm. If the heater depth is less than 10 mm, there is a possibility that the processed surface of the die and the durability may be hindered. If the heater depth exceeds 50 mm, the nozzle clogging suppression effect may be reduced. A more preferable heater depth range is 15 to 30 mm.
  • the diameter of the cartridge heater 17 is preferably small as long as the heat generation capacity can be secured in order to secure a wide cross-sectional area of the resin flow path and increase the number of nozzles. That is, the diameter of the cartridge heater 17 is preferably 15 mm or less. However, if the diameter of the cartridge heater 17 is less than 10 mm, it is difficult to secure a necessary heat generation capacity, and the heater becomes expensive. Therefore, the diameter of the cartridge heater 17 is preferably 10 mm to 15 mm, and more preferably 10 mm to 12 mm.
  • the length dimension of the cartridge heater 17 is such that, in the radial direction of the die main body 10, the die main body 10 extends from a position extending to the center side from the arranged nozzle 15 (at least a position where the tip of the cartridge heater 17 is centered from the nozzle 15). It is the length to the position of the substantially outer periphery.
  • the same number (8) of short heaters 18 as the number of cartridge heaters 17 are arranged on the rear side with a predetermined interval from each cartridge heater 17.
  • the short heater 18 heats the rear end side of the resin flow path 14.
  • the length of the short heater 18 is shorter than that of the cartridge heater 17.
  • the granulation die is provided with temperature measuring elements 19A and 19B for measuring the temperature of the die body and the temperature of the molten resin.
  • the first temperature measuring body 19A measures the temperature at the center of the die body 10 (temperature of the die body: die holding temperature).
  • the second temperature measuring element 19 ⁇ / b> B measures the molten resin temperature (and resin pressure) of the foaming agent-containing resin flowing in the die holder 11.
  • the extruder 2 (resin supply device) used in the granulating apparatus T shown in FIG. 1 can be used by appropriately selecting from various types of conventionally known extruders according to the type of resin to be granulated. For example, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder.
  • extruder examples include a plunger type extruder and a gear pump type extruder. Any of these extruders can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the chamber 4 which accommodated the cutter 3 can also use the conventionally well-known thing used in the hot cut method.
  • the type of the thermoplastic resin is not limited.
  • a polystyrene resin, a polyethylene resin, a polypropylene resin, a polyester resin, a vinyl chloride resin, an ABS resin, an AS resin, or the like can be used alone or in combination of two or more.
  • a recovered resin of a thermoplastic resin obtained after being used once as a resin product is also possible.
  • polystyrene resins such as amorphous polystyrene (GPPS) and high impact polystyrene (HIPS) are preferably used.
  • GPPS amorphous polystyrene
  • HIPS high impact polystyrene
  • polystyrene resins include homopolymers of styrene monomers such as styrene, ⁇ -methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and copolymers thereof. Etc. In particular, a polystyrene resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable.
  • the polystyrene resin may be a copolymer of the styrene monomer having the styrene monomer as a main component and a vinyl monomer copolymerizable with the styrene monomer.
  • vinyl monomers examples include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, Examples include dimethyl fumarate, diethyl fumarate, ethyl fumarate, and bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate. If the polystyrene resin is the main component, other resins may be added.
  • the resin to be added examples include diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product.
  • diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product.
  • This recycled material can be used after collecting used polystyrene resin foam moldings such as fish boxes, household appliance cushions, food packaging trays, etc., and recycled by the limonene dissolution method or heating volume reduction method. it can.
  • used polystyrene resin foam moldings such as fish boxes, household appliance cushions, food packaging trays, etc.
  • recycled materials such as those mentioned above, non-foamed materials collected separately from household electrical appliances (eg, televisions, refrigerators, washing machines, air conditioners) and office equipment (eg, copiers, facsimiles, printers, etc.)
  • office equipment eg, copiers, facsimiles, printers, etc.
  • Step 1 A thermoplastic resin is supplied from an hopper 21 to an extruder 2 having a granulation die 1 attached to the tip, and is melted and kneaded.
  • Step 2 While moving the thermoplastic resin toward the granulation die 1, the foaming agent is pressed into the thermoplastic resin from the foaming agent supply port 22 by the high-pressure pump 23. That is, the foaming agent-containing resin 20 is formed by mixing the foaming agent and the thermoplastic resin.
  • Step 3 The foaming agent-containing resin 20 is sent from the tip of the extruder 2 through the die holder 11 to the resin flow path 14 of the die body 10.
  • Step 4 The foaming agent-containing resin 20 sent through the resin flow path 14 is discharged from each nozzle 15 opened in the resin discharge surface 13 of the die body 10.
  • Step 5 The foaming agent-containing resin 20 discharged from each nozzle 15 is immediately cut by the rotary blade of the cutter 3 in the water flow (in the cooling medium) of the chamber 4.
  • the heaters are turned on and off so that the temperature of the die body 10 is in a range 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin 20.
  • granulation is performed by an underwater hot cut method while controlling the temperature of the die body 10.
  • the temperature of circulating water as a cooling medium is adjusted to 10 to 60 ° C.
  • the molten resin temperature refers to the temperature of the foaming agent-containing resin 20 that has flowed into the die holder 11 from the tip of the extruder 2. In the present embodiment, the molten resin temperature is measured by the second temperature measuring element 19B.
  • temperature control is performed so that the temperature of the die body 10 is 115 ° C. to 200 ° C. higher than the molten resin temperature, preferably 120 ° C. to 180 ° C., more preferably 120 ° C. to 180 ° C. To do.
  • the expandable thermoplastic resin particle with a uniform particle diameter can be continuously produced.
  • voids inside the obtained expandable thermoplastic resin particles are reduced. Thereby, the mechanical strength of the foamed molded product produced by in-mold foam molding of the foamable thermoplastic resin particles can be improved.
  • the nozzle 15 When the temperature of the die body is less than the molten resin temperature + 115 ° C., the nozzle 15 is closed when the foamable thermoplastic resin particles are continuously produced, and the resin pressure in the die body fluctuates. As a result, it may be impossible to continuously produce foamable thermoplastic resin particles having a small particle size and a uniform particle size. Moreover, the void of the cross section of the foamable thermoplastic resin particle obtained increases. As a result, there is a possibility that the mechanical strength of the foamed molded product produced by foam-molding the foamable thermoplastic resin particles in the mold is lowered. When the temperature of the die body 10 exceeds the molten resin temperature + 200 ° C., the foamable thermoplastic resin particles obtained are finely foamed. As a result, there is a possibility that it is impossible to continuously produce small and uniform particles.
  • the temperature of the circulating water is preferably in the range of 20 ° C to 40 ° C, more preferably in the range of 25 ° C to 35 ° C.
  • the foaming agent-containing resin 20 cut into particles in the chamber 4 becomes substantially spherical foaming thermoplastic resin particles.
  • the foamable thermoplastic resin particles are conveyed in the pipe line 5 according to the water flow and reach the dehydration processing unit 8.
  • the foamable thermoplastic resin particles are separated from the circulating water, dehydrated and dried, and the separated water is sent to the water tank 7.
  • the foamable thermoplastic resin particles separated by the dehydration processing unit 8, dehydrated and dried are sent to the container 9 and accommodated in the container.
  • the foaming agent is not limited.
  • normal pentane, isopentane, cyclopentane, cyclopentadiene and the like can be used alone or in admixture of two or more.
  • normal butane, isobutane, propane and the like can be mixed and used with the pentane as a main component.
  • pentanes are preferably used because they tend to suppress foaming of particles when discharged from a nozzle into a water stream.
  • the foamable thermoplastic resin particles refer to resin particles that are formed into a granular shape, preferably a small spherical shape, by adding a foaming agent to a thermoplastic resin.
  • the foamable thermoplastic resin particles can be used to produce a foamed resin molded body having a desired shape.
  • the foamable thermoplastic resin particles are preliminarily foamed by heating in free space.
  • the pre-expanded particles are put into a cavity of a mold having a cavity having a desired shape, and the pre-expanded particles are fused by steam heating. Thereafter, a foamed resin molded body having a desired shape can be produced by releasing the mold.
  • the temperature of the die body is set to a range 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin. While controlling, the foamable thermoplastic resin particles are obtained. Thereby, the foamable thermoplastic resin particle with a uniform particle diameter can be continuously produced. Moreover, in the foamable thermoplastic resin particle obtained by this invention, the void inside a particle
  • the detailed production conditions in the production method of the present invention can be set as appropriate according to the type of resin to be used, but the following items are preferable as production conditions.
  • the hole diameter of the die body 10n nozzle 15 is preferably in the range of 0.2 mm to 2.0 mm, more preferably in the range of 0.3 mm to 1.0 mm, and still more preferably in the range of 0.4 mm to 0.7 mm.
  • the particle diameter of the foamable thermoplastic resin particles obtained is preferably in the range of 0.3 mm to 2.0 mm, more preferably in the range of 0.5 mm to 1.4 mm, and in the range of 0.7 mm to 1.2 mm. Is more preferable.
  • the weight average molecular weight Mw of the polystyrene resin particles is preferably in the range of 120,000 to 400,000, more preferably in the range of 120,000 to 270,000. .
  • the foaming agent content in the expandable thermoplastic resin particles is preferably in the range of 1 to 10% by mass, more preferably in the range of 3 to 8% by mass, and still more preferably in the range of 4 to 6% by mass.
  • the foaming agent is preferably normal pentane, isopentane, or mixed pentane mixed at any ratio.
  • the average cell diameter of the expanded thermoplastic resin particles obtained by pre-expanding expandable thermoplastic resin particles is preferably in the range of 30 ⁇ m to 500 ⁇ m, more preferably in the range of 50 ⁇ m to 300 ⁇ m, and in the range of 100 ⁇ m to 250 ⁇ m. Is more preferable.
  • the temperature of the die body 10 is set to 115 ° C. to 200 ° C. higher than the molten resin temperature, preferably 120 ° C. to 180 ° C. higher. Control.
  • the expandable thermoplastic resin particle with a uniform particle diameter can be continuously produced.
  • the continuous production refers to producing expandable thermoplastic resin particles continuously for at least 12 hours or more, preferably 24 hours or more from the start of granulation.
  • the decrease in the nozzle opening ratio is 50% or less, and the change rate of the particle size of the obtained expandable thermoplastic resin particles is 20% or less.
  • Resin particles can be produced continuously.
  • the following effects can be obtained by adopting the above-described preferable production conditions (1) to (6).
  • D) It has sufficient opportunity strength.
  • E A foam molding ratio of 5 to 67 times is obtained.
  • FIG. 5 is a diagram illustrating an arrangement state of nozzles according to a modification of the present embodiment, and corresponds to FIG.
  • the resin flow path 14A according to the modification shown in FIG. 5 has a trapezoidal cross section, and a nozzle 15 in which a plurality of single nozzles 15a, 15b, 15c,... Are arbitrarily arranged within the trapezoidal range is provided. It has been.
  • Slopes 14 a and 14 b (straight line portions) that form the outline of the resin flow path 14 ⁇ / b> A are disposed substantially parallel to the longitudinal direction of the cartridge heater 17.
  • the slopes 14 a and 14 b of the resin flow path 14 A having a trapezoidal cross section are equidistant from the cartridge heater 17. Therefore, the area of the resin flow path that is evenly heated by the cartridge heater 17 is increased, and the resin flow path is heated more uniformly than the resin flow path having a circular cross section, so that nozzle clogging can be further reduced.
  • Eight cartridge heaters (diameter: 12 mm in diameter) arranged radially across the circumference at a heater depth (distance from the resin discharge surface) of 15 mm so as to sandwich the resin flow paths leading to the nozzle unit from both sides And a heat insulating material attached to the center of the resin discharge surface.
  • a plurality of temperature measuring elements 19A and 19B are arranged, and the area is divided into two parts: four heaters on the circulating water inflow side and four heaters on the circulating water outflow side of the die body.
  • the temperature of the die body was kept at 300 ° C.
  • Example 1 the following steps were performed in order.
  • Step 1 Polystyrene resin (manufactured by Toyo Styrene Co., Ltd., trade name “HRM10N”, Vicat softening point temperature: 102 ° C.) 100 parts by mass of finely powdered talc 0.3 parts by mass previously mixed in a tumbler mixer, It was fed into the extruder at a rate of 130 kg per hour.
  • Step 2 After setting the maximum temperature in the extruder to 220 ° C.
  • Step 3 While the resin and the foaming agent were kneaded in the extruder, the foaming agent-containing molten resin was passed through a die holder (connecting portion between the extruder and the die body) and transported to the die body held at 300 ° C.
  • Step 4 At the same time as extruding the foaming agent-containing molten resin into the chamber through which the cooling water of 30 ° C.
  • Step 5 The foaming agent-containing molten resin extruded from the cooling water was separated and dehydrated and dried to obtain spherical expandable polystyrene resin particles.
  • the molten resin temperature in a die holder was 180 degreeC, and the discharge amount of the expandable polystyrene resin particle was 138 kg / h.
  • the pressure of the resin introduction part to the granulation die was 10.0 MPa, the mass of 100 resin particles after drying was 0.0417 g, and the opening rate of the die was as good as 92.0%. It was a natural granulation environment. Even at 48 hours after the start of extrusion, the pressure of the resin introduction part to the granulation die was 10.5 MPa, the mass of 100 resin particles after drying was 0.0426 g, and the die opening rate was 90.0%. Good granulation status was maintained. That is, in Example 1, it was confirmed that stable granulation was possible for 48 hours or more.
  • the hole area ratio is defined by the following formula (1).
  • Opening ratio opening ratio during extrusion of the discharge nozzle on the die surface
  • number of openings / total number of nozzles of the die 100 (%)
  • the discharge amount is defined by the following equation (2).
  • the hole area ratio (E) was evaluated according to the following criteria. A: 50% ⁇ E ⁇ : 40% ⁇ E ⁇ 50% ⁇ : 30% ⁇ E ⁇ 40% ⁇ : E ⁇ 30%
  • FIG. 6 is an enlarged image of a cross section of the expandable polystyrene resin particles produced in Example 1 according to the present invention.
  • FIG. 7 is an enlarged image of a cross section of the expandable polystyrene resin particles produced in Comparative Example 2.
  • the mixture was put into a small batch type pre-foaming machine (internal volume 40 L) and heated with water vapor with a blowing pressure of 0.05 MPa (gauge pressure) while stirring, and the bulk foaming factor was 50 times (bulk density 0.02 g / cm 3 ) pre-expanded particles were prepared. Subsequently, the obtained pre-expanded particles were aged at 23 ° C. for 1 day. After that, an automatic molding machine (ACE-3SP type, manufactured by Sekisui Koki Co., Ltd.) with an outer dimension of 300 ⁇ 400 ⁇ 100 mm (thickness 30 mm) and a mold having a partition part of thickness 5 mm, 10 mm, and 25 mm inside.
  • ACE-3SP type manufactured by Sekisui Koki Co., Ltd.
  • Molding conditions (ACE-3SP QS molding mode) Molding vapor pressure 0.08MPa (gauge pressure) Mold heating 3 seconds One-side heating (pressure setting) 0.03 MPa (gauge pressure) Reverse one heating 2 seconds Double-sided heating 12 seconds Water cooling 10 seconds Set extraction surface pressure 0.02 MPa
  • the total mass of 100 arbitrarily selected particles is preferably in the range of 0.02 to 0.09 g.
  • the total mass of 100 particles exceeds 0.09 g, it becomes difficult to fill the details of the molding die. As a result, there is a possibility that moldable molds are limited to simple shapes.
  • the productivity of the particles may be inferior. That is, a more preferable range is 0.04 to 0.06 g in the total mass of 100 particles.
  • a value obtained by multiplying the above range by the specific gravity of the resin is the range of the total mass of 100 preferable particles.
  • ⁇ Method for measuring bulk expansion ratio of pre-expanded particles The sufficiently dried pre-expanded particles were naturally dropped into a graduated cylinder (for example, 500 mL capacity) using a funnel. Thereafter, the pre-expanded particles were filled by hitting the bottom of the graduated cylinder until the volume of the pre-expanded particles became constant. The volume and mass of the pre-expanded particles at this time were measured, and the bulk expansion ratio of the pre-expanded particles was calculated by the following formula (5). The volume was read in units of 1 mL, and the mass was measured with an electronic balance having a minimum scale of 0.01 g.
  • a test piece having a size of 12.7 mm ⁇ 64 mm ⁇ 6.4 mm was molded at a cylinder temperature of 220 ° C. using an injection molding machine (IS-80CNV) manufactured by Toshiba Machine. Using this test piece, measurement was performed under the condition of a load of 50 N in accordance with JISK7206 (unit: ° C.).
  • the bending strength was measured by the method described in JIS A9511: 2006 “Foamed plastic heat insulating material”.
  • JIS A9511 2006 “Foamed plastic heat insulating material”.
  • the test strip size is 75 mm ⁇ 300 mm ⁇ 30 mm
  • the compression speed is 10 mm / min
  • the tip jig is the pressure wedge 10R and the support base 10R
  • the fulcrum The distance was measured as 200 mm
  • the bending strength was calculated by the following formula (7).
  • the number of test pieces was three, and the average value was obtained.
  • Bending strength (MPa) 3FL / 2bh 2
  • F represents the maximum bending load (N)
  • L represents the distance between supporting points (mm)
  • b represents the width (mm) of the test piece
  • h represents the thickness (mm) of the test piece.
  • the value of bending strength was 0.28 MPa or more, and ⁇ was less than 0.28 MPa.
  • Example 1 the die pressure (die holding temperature) was maintained at 300 ° C., which is 120 ° C. higher than the molten resin temperature. And the nozzle opening rate remained high (see Table 1). That is, continuous operation for 48 hours or more was sufficiently possible.
  • the mass of 100 products after 1 hour of granulation was 0.0417 g, whereas the mass of 100 products after 48 hours was 0.0426 g (see Table 1). ). That is, the mass increase rate of the product in the continuous operation was as small as about 2%.
  • the expandable polystyrene resin particles obtained in Example 1 are more voids in the particles (see FIGS. 6 and 7) than the resin particles obtained in Comparative Example 2 (see FIG. 7).
  • the number of voids visible in the particles was small.
  • the foamed molded product obtained by pre-foaming the expandable polystyrene resin particles obtained in Example 1 and then in-mold foam-molding showed higher strength than that obtained in Comparative Example 2 (Table 1). See).
  • Comparative Example 1 the temperature of the die body (die holding temperature) was maintained at 200 ° C., which is 20 ° C. higher than the molten resin temperature.
  • the nozzle quickly closed and the pressure increased to the upper limit of the die pressure resistance within one hour from the start of granulation, and the subsequent operation was not possible (see Table 1).
  • Comparative Example 2 the temperature of the die body (die holding temperature) was maintained at 290 ° C., 110 ° C. higher than the molten resin temperature.
  • the increase in the die pressure was gentle even after 48 hours from the start of granulation, the nozzle opening rate was high, and continuous operation was possible.
  • the foamable polystyrene resin particles obtained in Comparative Example 2 after 48 hours from the start of granulation have a mass of 100 particles that is as heavy as 0.0451 g when compared with the resin particles obtained in Example 1, The bulk density decreased and the particles became slightly large.
  • Comparative Example 2 the ratio of large particles having a particle size of 1.4 mm or more was as high as 0.5% (0.1% in Example 1), and the variation in particle size was large.
  • the expandable polystyrene resin particles (see FIG. 7) obtained in Comparative Example 2 had more voids in the particles than the resin particles obtained in Example 1 (see FIG. 6).
  • the foamed molded product obtained by pre-expanding the expandable polystyrene resin particles obtained in Comparative Example 2 and then in-mold foam molding showed lower strength than that obtained in Example 1.
  • the present invention in the production of expandable thermoplastic resin particles by the underwater hot-cut method, it is possible to suppress the clogging of the die small holes with the passage of the extrusion time, and stably and uniformly expandable thermoplastic resin particles. Can be manufactured.
  • the foamable thermoplastic resin particles obtained in the present invention are foam-molded into various shapes by an in-mold foam-molding method, and are used for the production of a foam-molded product used as a cushioning material, a heat insulating material or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

Disclosed is a method for manufacturing foamable thermoplastic resin particles. This manufacturing method comprises: a step wherein thermoplastic resin is supplied to a resin supply device to which is attached a granulation die having at least a die main body that has a resin discharge face, and said resin is melted and kneaded; a step wherein a foaming agent is injected into the aforementioned thermoplastic resin while the aforementioned thermoplastic resin is moved toward the aforementioned granulation die, thus forming a foaming agent-containing resin; and a step wherein the aforementioned foaming agent-containing resin, which is discharged from a nozzle opened to the resin discharge face of the aforementioned die main body, is cut by a cutter in a cooling medium to obtain foamable thermoplastic resin particles. The foamable thermoplastic resin particles are obtained while controlling the temperature of the aforementioned die main body to a temperature range that is 115-200°C higher than the molten resin temperature of the foaming agent-containing resin.

Description

発泡性熱可塑性樹脂粒子の製造方法、熱可塑性樹脂発泡粒子の製造方法及び熱可塑性樹脂発泡成形体の製造方法Method for producing foamable thermoplastic resin particles, method for producing thermoplastic resin foamed particles, and method for producing thermoplastic resin foam molded article
 本発明は、水中ホットカット法により発泡性熱可塑性樹脂粒子を製造する発泡性熱可塑性樹脂粒子の製造方法、熱可塑性樹脂発泡粒子の製造方法及び熱可塑性樹脂発泡成形体の製造方法に関する。
本願は、2009年2月09日に日本に出願された特願2009-027299号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing foamable thermoplastic resin particles for producing foamable thermoplastic resin particles by an underwater hot cut method, a method for producing thermoplastic resin foam particles, and a method for producing a thermoplastic resin foam molded article.
This application claims priority based on Japanese Patent Application No. 2009-027299 for which it applied to Japan on February 09, 2009, and uses the content here.
 従来、水中ホットカット法により発泡性熱可塑性樹脂粒子を製造する発泡性熱可塑性樹脂粒子の製造方法として、例えば特許文献1~3に開示された技術がある。
 特許文献1には、分子量Mwが170000g/モルを超える発泡スチレンポリマーを製造する方法が開示されている。この方法は、少なくとも120℃の温度を有する発泡剤含有スチレンポリマー溶融物を、ダイ出口の孔径が1.5mm以下の孔を有するダイプレートを介して搬送し、次いで押出物を顆粒化する方法である。
Conventionally, as a method for producing expandable thermoplastic resin particles for producing expandable thermoplastic resin particles by an underwater hot cut method, for example, there are techniques disclosed in Patent Documents 1 to 3.
Patent Document 1 discloses a method for producing a foamed styrene polymer having a molecular weight Mw exceeding 170000 g / mol. This method is a method in which a blowing agent-containing styrene polymer melt having a temperature of at least 120 ° C. is conveyed through a die plate having a hole having a hole diameter of 1.5 mm or less at a die outlet, and then the extrudate is granulated. is there.
 特許文献2には、水流に接触して設けられた樹脂吐出面と、前記樹脂吐出面上における仮想円の円周に沿って配置され、押出機のシリンダに連通して前記樹脂吐出面に開口する複数のノズルと、前記ノズルを配置した円周の内側の樹脂吐出面に設けられた断熱材と、前記円周の中心部を通って外側に延びるようにして樹脂吐出面近傍に設けられている複数のカートリッジヒーターと、を備える造粒用ダイス、造粒装置及びそれを用いた発泡性熱可塑性樹脂粒子の製造方法が開示されている。 In Patent Document 2, a resin discharge surface provided in contact with a water flow and a circumference of a virtual circle on the resin discharge surface are arranged, communicated with a cylinder of an extruder and opened to the resin discharge surface. A plurality of nozzles, a heat insulating material provided on a resin discharge surface inside the circumference where the nozzles are disposed, and provided in the vicinity of the resin discharge surface so as to extend outward through the center of the circumference. A granulating die comprising a plurality of cartridge heaters, a granulating apparatus, and a method for producing expandable thermoplastic resin particles using the same are disclosed.
 特許文献3には、押出機内で溶融された熱可塑性樹脂に発泡剤を圧入し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの多数の小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性粒子を得る熱可塑性樹脂発泡性粒子の製造方法が開示されている。この方法は、前記ダイの小孔ランド部を通過する際の発泡剤含有溶融樹脂の剪断速度が12000~35000sec-1、且つ樹脂の見掛け溶融粘度が100~700ポイズとなるように押し出す製造方法である。 In Patent Document 3, a foaming agent is press-fitted into a thermoplastic resin melted in an extruder, and the foaming agent-containing molten resin is directly extruded into a cooling liquid from a large number of small holes in a die attached to the tip of the extruder. At the same time as extruding, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid, thereby producing a thermoplastic resin expandable particle. This method is a manufacturing method in which the foaming agent-containing molten resin has a shear rate of 12000 to 35000 sec −1 when passing through the small hole land portion of the die and the apparent melt viscosity of the resin is 100 to 700 poise. is there.
特表2005-534733号公報JP 2005-534733 A WO2008/102874WO2008 / 102874 WO2005/028173WO2005 / 028173
 水中ホットカット法により発泡性熱可塑性樹脂粒子を製造する場合、発泡剤を添加した溶融樹脂を多数のノズルから水中に押し出し、その直後に前記溶融樹脂をカットして樹脂粒子としている。しかしながら、ダイス先端面は循環水と接触しているため、熱が奪われる。その結果、ノズルから吐出する樹脂が固化し、ノズルが塞がって樹脂粒子の生産効率が低下し易い。そのため、従来技術では、ダイス内部の温度を適正に制御することにより、ノズルの目詰まりを防ぎつつ、発泡性熱可塑性樹脂粒子を製造している。 When producing expandable thermoplastic resin particles by an underwater hot cut method, a molten resin added with a blowing agent is extruded into water from a number of nozzles, and immediately after that, the molten resin is cut into resin particles. However, since the tip end face of the die is in contact with the circulating water, heat is taken away. As a result, the resin discharged from the nozzle is solidified, the nozzle is blocked, and the production efficiency of the resin particles tends to decrease. Therefore, in the prior art, by controlling the temperature inside the die appropriately, foaming thermoplastic resin particles are produced while preventing clogging of the nozzle.
 特許文献1では、段落0021に「ダイプレートの温度は、発泡剤含有ポリスチレン溶融物の温度より20~100℃高い範囲にあることが好ましい。」と記載されている。また、段落0036の表2には、発泡性ポリスチレン顆粒を製造する実施例2において、溶融温度200℃に対して、ダイプレート温度を180~240℃(溶融温度に対して-20℃~+40℃)に設定した製造例が記載されている。
 しかしながら、特許文献1に記載されているように、ダイプレート温度を溶融樹脂温度より20~100℃高くなるように設定した条件下で、水中ホットカット法による発泡性熱可塑性樹脂粒子の連続生産を試みても、ダイスの小孔が閉塞してしまい、小粒で粒径の揃った発泡性熱可塑性樹脂粒子を連続生産することはできない。
Patent Document 1 describes in paragraph 0021 that “the temperature of the die plate is preferably in a range of 20 to 100 ° C. higher than the temperature of the foaming agent-containing polystyrene melt”. In Table 2 of paragraph 0036, in Example 2 for producing expandable polystyrene granules, the die plate temperature is 180 to 240 ° C. (−20 ° C. to + 40 ° C. relative to the melting temperature) with respect to the melting temperature 200 ° C. The manufacturing example set to) is described.
However, as described in Patent Document 1, continuous production of expandable thermoplastic resin particles by the underwater hot-cut method is performed under the condition that the die plate temperature is set to be 20 to 100 ° C. higher than the molten resin temperature. Even if it is attempted, the small holes of the die are blocked, and it is impossible to continuously produce foamable thermoplastic resin particles having a small particle size.
 特許文献2では、段落0053の表1中に、押出樹脂温度が170℃である場合に、ダイス保持温度を270~280℃(押出樹脂温度に対して+100~+110℃)に設定した製造例が記載されている。
 特許文献2に記載されているように、ダイス保持温度を押出樹脂温度に対して+100~+110℃に設定した場合、水中ホットカット法により発泡性熱可塑性樹脂粒子を連続生産することは可能である。しかしながら、得られる発泡性熱可塑性樹脂粒子に大きめの粒子が混ざっており、小粒で粒径の揃った発泡性熱可塑性樹脂粒子が得られにくい。
 また、前記製造例で得られた発泡性熱可塑性樹脂粒子は、粒子内部にボイドが多く存在する。これによって、この発泡性熱可塑性樹脂粒子を予備発泡後に型内発泡成形して発砲成形体を製造した場合、この製造された発泡成形体の強度が低下してしまう。
In Patent Document 2, in Table 1 of Paragraph 0053, when the extrusion resin temperature is 170 ° C., there is a production example in which the die holding temperature is set to 270 to 280 ° C. (+100 to + 110 ° C. with respect to the extrusion resin temperature). Are listed.
As described in Patent Document 2, when the die holding temperature is set to +100 to + 110 ° C. with respect to the extrusion resin temperature, it is possible to continuously produce expandable thermoplastic resin particles by an underwater hot cut method. . However, the foamable thermoplastic resin particles obtained are mixed with larger particles, and it is difficult to obtain foamable thermoplastic resin particles having a small particle size.
Further, the foamable thermoplastic resin particles obtained in the above production examples have many voids inside the particles. As a result, when a foamed molded article is produced by in-mold foam molding of the foamable thermoplastic resin particles after preliminary foaming, the strength of the produced foam molded article is lowered.
 特許文献3では、ダイの小孔ランド部を通過する際の発泡剤含有溶融樹脂の剪断速度が12000~35000sec-1、且つ樹脂の見掛け溶融粘度が100~700ポイズで押し出すように設定している。また、段落0027には、ダイ導入部における発泡性樹脂の樹脂温度が、樹脂の融点より50~100℃高く調整することが記載されている。
 しかしながら、特許文献3に記載された前記条件下で、水中ホットカット法による発泡性熱可塑性樹脂粒子の連続生産を試みても、ダイスの小孔が閉塞してしまい、小粒で粒径の揃った発泡性熱可塑性樹脂粒子を連続生産することはできない。
In Patent Document 3, the foaming agent-containing molten resin has a shear rate of 12000 to 35000 sec −1 when passing through the small hole land portion of the die, and the resin has an apparent melt viscosity of 100 to 700 poise. . Paragraph 0027 describes that the resin temperature of the foamable resin in the die introduction part is adjusted to be 50 to 100 ° C. higher than the melting point of the resin.
However, even if an attempt was made to continuously produce expandable thermoplastic resin particles by the underwater hot-cut method under the conditions described in Patent Document 3, the small holes of the dies were closed, and the particle size was uniform with small particles. The foamable thermoplastic resin particles cannot be produced continuously.
 本発明は、前記事情に鑑みてなされたものであり、水中ホットカット法による発泡性熱可塑性樹脂粒子の製造において、小粒で粒径の揃った発泡性熱可塑性樹脂粒子を連続生産することが可能な製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in the production of expandable thermoplastic resin particles by an underwater hot cut method, it is possible to continuously produce expandable thermoplastic resin particles having a small particle size and a uniform particle size. An object of the present invention is to provide a simple manufacturing method.
 上記課題を解決するため、本発明は以下の手段を採用する。
本発明の発泡性熱可塑性樹脂粒子の製造方法は、樹脂吐出面を有するダイス本体を少なくとも有する造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、前記熱可塑性樹脂を前記造粒用ダイスに向けて移動させながら前記熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、前記ダイス本体の樹脂吐出面に開孔したノズルから吐出される前記発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、を有する。
 この発泡性熱可塑性樹脂粒子の製造方法では、前記ダイス本体の温度が発泡剤含有樹脂の溶融樹脂温度より115℃~200℃高い範囲となるように温度制御しつつ、発泡性熱可塑性樹脂粒子を得る。
In order to solve the above problems, the present invention employs the following means.
The method for producing expandable thermoplastic resin particles of the present invention includes a step of supplying a thermoplastic resin to a resin supply device having a granulation die having at least a die body having a resin discharge surface, and melt-kneading the thermoplastic resin. A step of forming a foaming agent-containing resin by injecting a foaming agent into the thermoplastic resin while moving the plastic resin toward the granulation die; and a nozzle that is opened on the resin discharge surface of the die body. Cutting the foaming agent-containing resin in a cooling medium with a cutter to obtain expandable thermoplastic resin particles.
In this method for producing expandable thermoplastic resin particles, the temperature of the die body is controlled so that the temperature of the die body is 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin. obtain.
 本発明の熱可塑性樹脂発泡粒子の製造方法は、樹脂吐出面を有するダイス本体を少なくとも有する造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、前記熱可塑性樹脂を前記造粒用ダイスに向けて移動させながら前記熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、前記ダイス本体の樹脂吐出面に開孔したノズルから吐出される前記発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、前記発泡性熱可塑性樹脂粒子を予備発泡して熱可塑性樹脂発泡粒子を得る工程と、を有する。
 この熱可塑性樹脂発泡粒子の製造方法では、前記ダイス本体の温度が発泡剤含有樹脂の溶融樹脂温度より115℃~200℃高い範囲となるように温度制御しつつ、発泡性熱可塑性樹脂粒子を得る。
The method for producing foamed thermoplastic resin particles according to the present invention includes a step of supplying a thermoplastic resin to a resin supply apparatus having a granulation die having at least a die body having a resin discharge surface, and melt-kneading the thermoplastic resin. A step of injecting a foaming agent into the thermoplastic resin while moving the resin toward the granulation die to form a foaming agent-containing resin, and discharging from a nozzle opened in the resin discharge surface of the die body Cutting the foaming agent-containing resin in a cooling medium with a cutter to obtain foamable thermoplastic resin particles, and pre-foaming the foamable thermoplastic resin particles to obtain thermoplastic resin foam particles. .
In this method for producing thermoplastic resin expanded particles, expandable thermoplastic resin particles are obtained while controlling the temperature so that the temperature of the die main body is 115 ° C. to 200 ° C. higher than the molten resin temperature of the foam-containing resin. .
 本発明の熱可塑性樹脂発泡成形体の製造方法は、樹脂吐出面を有するダイス本体を少なくとも有する造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、前記熱可塑性樹脂を前記造粒用ダイスに向けて移動させながら前記熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、前記ダイス本体の樹脂吐出面に開孔したノズルから吐出される前記発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、前記発泡性熱可塑性樹脂粒子を予備発泡して熱可塑性樹脂発泡粒子を得る工程と、前記熱可塑性樹脂発泡粒子を型内発泡成形して熱可塑性樹脂発泡成形体を得る工程と、を有する。
 この熱可塑性樹脂発泡成形体の製造方法では、前記ダイス本体の温度が発泡剤含有樹脂の溶融樹脂温度より115℃~200℃高い範囲となるように温度制御しつつ、発泡性熱可塑性樹脂粒子を得ることを特徴とする熱可塑性樹脂発泡成形体の製造方法を提供する。
The method for producing a thermoplastic resin foam-molded article of the present invention includes a step of supplying a thermoplastic resin to a resin supply apparatus having a granulation die having at least a die body having a resin discharge surface, and melt-kneading the thermoplastic resin. A step of forming a foaming agent-containing resin by injecting a foaming agent into the thermoplastic resin while moving the plastic resin toward the granulation die; and a nozzle that is opened on the resin discharge surface of the die body. Cutting the foaming agent-containing resin in a cooling medium with a cutter to obtain foamable thermoplastic resin particles, pre-foaming the foamable thermoplastic resin particles to obtain thermoplastic resin foam particles, And obtaining a thermoplastic resin foam molded body by foam-molding the thermoplastic resin foam particles in a mold.
In this method for producing a thermoplastic resin foam molded article, the temperature of the die body is controlled so that the temperature of the die body is 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin. A method for producing a thermoplastic resin foam-molded article is provided.
 本発明では、水中ホットカット法による発泡性熱可塑性樹脂粒子の製造において、前記ダイス本体の温度が発泡剤含有樹脂の溶融樹脂温度より115℃~200℃高い範囲となるように温度制御しつつ、発泡性熱可塑性樹脂粒子を得ている。その結果、小粒で粒径の揃った発泡性熱可塑性樹脂粒子を連続生産することができる。
 さらに、本発明により得られる発泡性熱可塑性樹脂粒子は、粒子内部のボイドが少ない。そのため、得られた発泡性熱可塑性樹脂粒子を型内発泡成形して発泡成形体を製造する場合、この発泡成形体の機械強度を向上させることができる。
In the present invention, in the production of expandable thermoplastic resin particles by the underwater hot cut method, while controlling the temperature so that the temperature of the die body is 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin, Expandable thermoplastic resin particles are obtained. As a result, foamable thermoplastic resin particles having a small particle size and a uniform particle size can be continuously produced.
Furthermore, the foamable thermoplastic resin particles obtained by the present invention have few voids inside the particles. Therefore, when the foamable thermoplastic resin particles are produced by in-mold foam molding to produce a foam molded article, the mechanical strength of the foam molded article can be improved.
本発明の実施形態に係る造粒装置の構成図である。It is a block diagram of the granulation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る造粒用ダイスの概略構成を示す側断面図である。It is a sectional side view showing the schematic structure of the granulation die concerning the embodiment of the present invention. 図2のダイス本体の樹脂吐出面を示す側面図である。It is a side view which shows the resin discharge surface of the die main body of FIG. ノズルの配置状態の一例を示す図である。It is a figure which shows an example of the arrangement | positioning state of a nozzle. 本発明の実施形態の変形例に係るノズルの配置状態の一例を示す図である。本図は、図4に対応する図である。It is a figure which shows an example of the arrangement | positioning state of the nozzle which concerns on the modification of embodiment of this invention. This figure corresponds to FIG. 本発明の実施例1で製造した発泡性ポリスチレン系樹脂粒子の断面の拡大画像である。It is an enlarged image of the cross section of the expandable polystyrene-type resin particle manufactured in Example 1 of this invention. 比較例2で製造した発泡性ポリスチレン系樹脂粒子の断面の拡大画像である。4 is an enlarged image of a cross section of an expandable polystyrene resin particle produced in Comparative Example 2. FIG.
 以下、図面を参照して本発明の実施形態を説明する。
 図1は本発明の製造方法において使用される造粒装置の一例を示す構成図、図2はその造粒用ダイスの一例を示す側断面図、図3は図2のダイス本体の樹脂吐出面を示す側面図、図4はノズルの配置状態を示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an example of a granulating apparatus used in the manufacturing method of the present invention, FIG. 2 is a side sectional view showing an example of the granulating die, and FIG. 3 is a resin discharge surface of the die body of FIG. FIG. 4 is a diagram showing an arrangement state of nozzles.
 図1および図2に示すように、本実施形態に係る造粒装置Tは、水中ホットカット方式によって発泡性熱可塑性樹脂粒子を造粒するための造粒装置である。
 本造粒装置Tは、造粒用ダイス1が先端に取り付けられた押出機2(樹脂供給装置)と、造粒用ダイス1のノズル15から吐出される樹脂(本実施形態では発泡剤含有樹脂20)を切断するカッター3が収容されるとともに、造粒用ダイス1の樹脂吐出面13に水流を接触させるためのチャンバー4とを備えている。チャンバー4には、循環する水などの冷却媒体(以下、水と記す)を流すための管路5が接続されている。この管路5の一端(チャンバー4より上流側)は、送水ポンプ6を介して水槽7に接続されている。一方、管路5の他端(チャンバー4より下流側)は、循環水から発泡性熱可塑性樹脂粒子を分離し、脱水・乾燥する脱水処理部8に接続されている。この脱水処理部8で分離され、脱水・乾燥された発泡性熱可塑性樹脂粒子は、容器9に送られる。そして、符号21はホッパー、22は発泡剤供給口、23は高圧ポンプである。
 なお、造粒装置Tおよび造粒用ダイス1において、樹脂が吐出される側を「先方」、「先端」とし、その反対側を「後方」、「後端」として以下の説明では統一して用いる。
As shown in FIGS. 1 and 2, the granulating apparatus T according to the present embodiment is a granulating apparatus for granulating foamable thermoplastic resin particles by an underwater hot cut method.
The granulating apparatus T includes an extruder 2 (resin supplying apparatus) having a granulating die 1 attached to the tip thereof, and a resin discharged from the nozzle 15 of the granulating die 1 (in this embodiment, a foaming agent-containing resin). 20) and a chamber 4 for bringing a water flow into contact with the resin discharge surface 13 of the granulation die 1. The chamber 4 is connected to a conduit 5 for flowing a cooling medium such as circulating water (hereinafter referred to as water). One end (upstream side of the chamber 4) of the pipe line 5 is connected to a water tank 7 through a water pump 6. On the other hand, the other end (downstream side of the chamber 4) of the pipe line 5 is connected to a dehydration processing unit 8 that separates foamed thermoplastic resin particles from the circulating water and dehydrates and dries them. The expandable thermoplastic resin particles separated by the dehydration processing unit 8 and dehydrated and dried are sent to the container 9. Reference numeral 21 is a hopper, 22 is a blowing agent supply port, and 23 is a high-pressure pump.
In the granulation apparatus T and the granulation die 1, the side from which the resin is discharged is referred to as “front” and “front end”, and the opposite side is defined as “rear” and “rear end” in the following description. Use.
 図2および図3に示すように、造粒用ダイス1は、ダイス本体10(ダイプレートとも呼称される)と、押出機2の先端側(図中右側)に固定されたダイホルダ11(ダイバータとも呼称される)と、からなる。このダイス本体10は、ダイホルダ11の先端側に複数のボルト12によって固定されている。
 ダイホルダ11は、押出機2のシリンダに連通して設けられ、後端側から先端側に向けて、後端側流路11a、先端側流路11bがその順で形成されている。ダイス本体10には、後端面中央部において、後方側に突出してなる円錐状凸部10aが形成されている。ダイス本体10とダイホルダ11とが接続した状態において、ダイホルダ11の先端側流路11b内に、所定隙間をもってダイス本体10の円錐状凸部10aが挿入されている。
すなわち、発泡剤含有樹脂20は、ダイホルダ11の後端側流路11aを通過し、先端側流路11bにおいて円錐状凸部10aの周面に沿って流れ、ダイス本体10の後端面に開口する複数の樹脂流路14(後述する)に連通する。
As shown in FIGS. 2 and 3, the granulation die 1 includes a die body 10 (also referred to as a die plate) and a die holder 11 (also referred to as a diverter) fixed to the tip side (right side in the drawing) of the extruder 2. Called). The die body 10 is fixed to the tip end side of the die holder 11 with a plurality of bolts 12.
The die holder 11 is provided in communication with the cylinder of the extruder 2, and a rear end side flow path 11 a and a front end side flow path 11 b are formed in that order from the rear end side toward the front end side. The die body 10 is formed with a conical convex portion 10a that protrudes rearward at the center of the rear end surface. In a state where the die body 10 and the die holder 11 are connected, the conical convex portion 10a of the die body 10 is inserted into the distal end side flow passage 11b of the die holder 11 with a predetermined gap.
That is, the foaming agent-containing resin 20 passes through the rear end side flow passage 11a of the die holder 11, flows along the peripheral surface of the conical convex portion 10a in the front end side flow passage 11b, and opens to the rear end face of the die body 10. It communicates with a plurality of resin flow paths 14 (described later).
 ダイス本体10は、その先端面で水流に接触する樹脂吐出面13と、押出機2から押出された発泡剤含有樹脂20を樹脂吐出面13に向けて移送するための複数の樹脂流路14と、複数の樹脂流路14の先端に設けられると共に樹脂吐出面13に開口する複数のノズル15と、樹脂吐出面13の中心位置に設けられた断熱材16と、樹脂吐出面13よりも押出機2側の位置で、樹脂吐出面13や樹脂流路14を温めるためのカートリッジヒーター17と、ダイス本体10を温めるための短ヒーター18と、を備えている。
 カートリッジヒーター17および短ヒーター18は、従来周知のカートリッジヒーターの中から、ダイス本体10の大きさや形状に応じて適宜選択して使用できる。例えば、カートリッジヒーター17および短ヒーター18として、棒状のセラミックに巻き付けた発熱線(ニクロム線)をパイプ(耐熱ステンレス鋼)の中に挿入し、発熱線とパイプの隙間を高熱伝導性と高絶縁性に優れた材料(MgO)で封じ込めた、電力密度の高い棒状ヒーターを用いることができる。カートリッジヒーター17及び短ヒーター18は、片側にリード線が2本付いたカートリッジヒーター、あるいは両側にリード線が1本ずつ付いたカートリッジヒーター(シーズヒーター)でもよい。片側にリード線が2本付いたカートリッジヒーターの方が、両側にリード線が1本ずつ付いたカートリッジヒーターよりも電力密度が高いので、より好ましい。
The die body 10 has a resin discharge surface 13 that comes into contact with the water flow at the tip surface thereof, and a plurality of resin flow paths 14 for transferring the foaming agent-containing resin 20 extruded from the extruder 2 toward the resin discharge surface 13. A plurality of nozzles 15 provided at the tips of the plurality of resin flow paths 14 and opening in the resin discharge surface 13, a heat insulating material 16 provided at the center position of the resin discharge surface 13, and an extruder more than the resin discharge surface 13. A cartridge heater 17 for warming the resin discharge surface 13 and the resin flow path 14 and a short heater 18 for warming the die body 10 are provided at a position on the second side.
The cartridge heater 17 and the short heater 18 can be appropriately selected from conventionally known cartridge heaters according to the size and shape of the die body 10. For example, as the cartridge heater 17 and the short heater 18, a heating wire (nichrome wire) wound around a rod-shaped ceramic is inserted into a pipe (heat-resistant stainless steel), and the gap between the heating wire and the pipe is highly thermally conductive and highly insulating. It is possible to use a bar heater with a high power density, which is encapsulated with an excellent material (MgO). The cartridge heater 17 and the short heater 18 may be a cartridge heater with two lead wires on one side, or a cartridge heater (seeds heater) with one lead wire on each side. A cartridge heater having two lead wires on one side is more preferable because it has a higher power density than a cartridge heater having one lead wire on each side.
 ダイス本体10の樹脂吐出面13は、その中心部に円形断面の断熱材16を配置し、前記断熱材16の径方向外側に複数のノズル15の吐出口を同心円に沿って設けている。断熱材16及び複数のノズル15が配置された樹脂吐出面13の中央部分は、チャンバー4の内部で水と接触するように設計されている。 The resin discharge surface 13 of the die body 10 is provided with a heat insulating material 16 having a circular cross section at the center thereof, and discharge ports of a plurality of nozzles 15 are provided along the concentric circles on the radially outer side of the heat insulating material 16. The central portion of the resin discharge surface 13 where the heat insulating material 16 and the plurality of nozzles 15 are arranged is designed to come into contact with water inside the chamber 4.
 複数の樹脂流路14は、円形断面を有し、樹脂吐出面13に対して直交する方向に延在し、ダイス本体10の中心軸線を中心とした円周(樹脂吐出面13上に描かれた円周)に沿って一定の間隔をもって配置されている。本実施形態では、樹脂流路14は、8箇所設けられており、前記円周の周方向に隣り合う樹脂流路14同士の中心角は45°になっている。前述したように、この各樹脂流路14は、ダイホルダ11の先端側流路11bに連通している。 The plurality of resin flow paths 14 have a circular cross section, extend in a direction perpendicular to the resin discharge surface 13, and have a circumference (centered on the resin discharge surface 13) centered on the central axis of the die body 10. Are arranged at regular intervals along the circumference. In the present embodiment, eight resin flow paths 14 are provided, and the central angle between the resin flow paths 14 adjacent in the circumferential direction of the circumference is 45 °. As described above, each resin flow path 14 communicates with the front end side flow path 11 b of the die holder 11.
 複数のノズル15は、樹脂吐出面13上に描かれた円周に沿って所定間隔をもって配置されている。図4に示すように、具体的に1つのノズル15は、樹脂流路14の断面形状の範囲内に複数の単体ノズル15a、15b、15c、…が任意に配置されたノズルユニット(本発明では、これを「ノズル」と呼ぶ)からなる。各単体ノズル15a、15b、15c、…の配置方法には、例えば複数の小円周上に多数を並べたものなどを採用することができるが、このような配置形態に限定されない。 The plurality of nozzles 15 are arranged at predetermined intervals along the circumference drawn on the resin discharge surface 13. As shown in FIG. 4, specifically, one nozzle 15 is a nozzle unit in which a plurality of single nozzles 15a, 15b, 15c,... This is called a “nozzle”). As a method for arranging the single nozzles 15a, 15b, 15c,..., For example, a method in which a large number of small nozzles are arranged on a plurality of small circles can be adopted. However, the arrangement is not limited to such an arrangement.
 断熱材16は、複数のノズル15を配置した円周の内側の樹脂吐出面13に設けられている。この断熱材16は、チャンバー4内の水にダイス本体10の熱が逃げないようにしてダイス本体10の温度低下を抑制するためのものである。この断熱材16には、耐水性があり、表面硬度の高い構造の断熱材を用いることが好ましい。例えば、高温のダイス本体10と接触しても変形等を起こさない耐熱性能と断熱性能に優れた断熱材を配し、これを断熱性能に優れたフッ素樹脂等の防水性樹脂で被覆し、さらに樹脂吐出面13側には、ステンレス鋼、セラミックスなどの表面硬度の高い材料を順に積層した積層タイプの断熱材16を用いることができる。 The heat insulating material 16 is provided on the resin discharge surface 13 inside the circumference where the plurality of nozzles 15 are arranged. This heat insulating material 16 is for suppressing the temperature drop of the die body 10 so that the heat of the die body 10 does not escape to the water in the chamber 4. As the heat insulating material 16, it is preferable to use a heat insulating material having water resistance and a high surface hardness. For example, a heat insulating material excellent in heat resistance and heat insulating performance that does not cause deformation or the like even when in contact with the high-temperature die body 10 is disposed, and this is covered with a waterproof resin such as a fluororesin excellent in heat insulating performance, On the resin discharge surface 13 side, a laminated heat insulating material 16 in which materials having high surface hardness such as stainless steel and ceramics are sequentially laminated can be used.
 カートリッジヒーター17および短ヒーター18は、それぞれ棒状ヒーターである。カートリッジヒーター17は、造粒用ダイス1の先端後端方向で、短ヒーター18よりも樹脂吐出面13側に位置している。
 カートリッジヒーター17は、樹脂流路14の前記円周の周方向両側において、その長手方向を円周の径方向に向けて前記円周を横切った状態で配置されている。このカートリッジヒーター17は、樹脂吐出面13の近傍において、樹脂吐出面13、ノズル15、及び樹脂流路14を加熱する。本実施形態のカートリッジヒーター17は、それぞれが円周方向に所定の中心角(ここでは、45°の角度)をもって8本設けられている。つまり、個々のノズル15は、2本のカートリッジヒーター17同士によって前記円周の周方向から挟み込まれるようにして配置されている。
Each of the cartridge heater 17 and the short heater 18 is a rod heater. The cartridge heater 17 is located closer to the resin discharge surface 13 than the short heater 18 in the front-rear direction of the granulation die 1.
The cartridge heater 17 is disposed on both sides of the circumferential direction of the resin flow path 14 in a state of crossing the circumference with the longitudinal direction thereof directed in the radial direction of the circumference. The cartridge heater 17 heats the resin discharge surface 13, the nozzle 15, and the resin flow path 14 in the vicinity of the resin discharge surface 13. Eight cartridge heaters 17 according to this embodiment are provided with a predetermined central angle (here, an angle of 45 °) in the circumferential direction. That is, the individual nozzles 15 are arranged so as to be sandwiched between the two cartridge heaters 17 from the circumferential direction of the circumference.
 カートリッジヒーター17は、樹脂吐出面13の近傍、すなわち樹脂吐出面13から押出機2側に向かって所定のヒーター深さの範囲内に設けられている。このヒーター深さとは、樹脂吐出面13から表面加熱用のカートリッジヒーター17の中心部までの距離を指す。このヒーター深さは、ダイスの加工面や耐久性に支障が出ない範囲で、小さい方がノズルの閉塞抑制効果が大きくなり、好ましい。つまり、ヒーター深さは、10~50mmの範囲が好ましい。ヒーター深さが10mm未満ではダイスの加工面や耐久性に支障が出る可能性があり、ヒーター深さが50mmを超えるとノズルの閉塞抑制効果が低下する可能性がある。より好ましいヒーター深さの範囲は、15~30mmである。 The cartridge heater 17 is provided in the vicinity of the resin discharge surface 13, that is, within a predetermined heater depth range from the resin discharge surface 13 toward the extruder 2 side. The heater depth refers to the distance from the resin discharge surface 13 to the center of the cartridge heater 17 for surface heating. A smaller heater depth is preferable as long as the processed surface of the die and the durability are not affected, and a smaller nozzle depth is preferable because the effect of suppressing clogging of the nozzle is increased. That is, the heater depth is preferably in the range of 10 to 50 mm. If the heater depth is less than 10 mm, there is a possibility that the processed surface of the die and the durability may be hindered. If the heater depth exceeds 50 mm, the nozzle clogging suppression effect may be reduced. A more preferable heater depth range is 15 to 30 mm.
 カートリッジヒーター17の直径は、樹脂流路の断面積を広く確保するとともにノズル数を多くするため、発熱容量が確保できる範囲で小さい方が好ましい。すなわち、カートリッジヒーター17の直径には、15mm以下が好ましい。しかしながら、このカートリッジヒーター17の直径が10mm未満では、必要な発熱容量が確保しにくくヒーターも高価となる。そのため、カートリッジヒーター17の直径には、10mm~15mmが好ましく、10mm~12mmがより好ましい。
 カートリッジヒーター17の長さ寸法は、ダイス本体10の半径方向において、配置されるノズル15より中心側に延びる位置(少なくともカートリッジヒーター17の先端部がノズル15より中心側となる位置)からダイス本体10の略外周の位置までの長さである。
The diameter of the cartridge heater 17 is preferably small as long as the heat generation capacity can be secured in order to secure a wide cross-sectional area of the resin flow path and increase the number of nozzles. That is, the diameter of the cartridge heater 17 is preferably 15 mm or less. However, if the diameter of the cartridge heater 17 is less than 10 mm, it is difficult to secure a necessary heat generation capacity, and the heater becomes expensive. Therefore, the diameter of the cartridge heater 17 is preferably 10 mm to 15 mm, and more preferably 10 mm to 12 mm.
The length dimension of the cartridge heater 17 is such that, in the radial direction of the die main body 10, the die main body 10 extends from a position extending to the center side from the arranged nozzle 15 (at least a position where the tip of the cartridge heater 17 is centered from the nozzle 15). It is the length to the position of the substantially outer periphery.
 短ヒーター18は、各カートリッジヒーター17に対して所定間隔をもって後方側に、カートリッジヒーター17の本数と同数(8本)が配置されている。この短ヒーター18は、樹脂流路14の後端側を加熱する。短ヒーター18の長さ寸法は、カートリッジヒーター17より短い。 The same number (8) of short heaters 18 as the number of cartridge heaters 17 are arranged on the rear side with a predetermined interval from each cartridge heater 17. The short heater 18 heats the rear end side of the resin flow path 14. The length of the short heater 18 is shorter than that of the cartridge heater 17.
 造粒用ダイスには、ダイス本体の温度や溶融樹脂温度を測定するための測温体19A,19Bが設けられている。第1の測温体19Aは、ダイス本体10の中央部の温度(ダイス本体の温度:ダイス保持温度)を測定する。第2の測温体19Bは、ダイホルダ11内を流れる発泡剤含有樹脂の溶融樹脂温度(及び樹脂圧力)を測定する。 The granulation die is provided with temperature measuring elements 19A and 19B for measuring the temperature of the die body and the temperature of the molten resin. The first temperature measuring body 19A measures the temperature at the center of the die body 10 (temperature of the die body: die holding temperature). The second temperature measuring element 19 </ b> B measures the molten resin temperature (and resin pressure) of the foaming agent-containing resin flowing in the die holder 11.
 前述した造粒装置Tを用いた発泡性熱可塑性樹脂粒子、熱可塑性樹脂発泡粒子、および熱可塑性樹脂発泡成形体の製造方法について説明する。
 図1に示す造粒装置Tに用いる押出機2(樹脂供給装置)は、従来周知の各種押出機の中から造粒する樹脂の種類等に応じて適宜選択して使用できる。例えば、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。これらのいずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター3を収容したチャンバー4も、ホットカット法において用いられている従来周知のものを用いることができる。
A method for producing expandable thermoplastic resin particles, thermoplastic resin expanded particles, and a thermoplastic resin foam molded article using the granulating apparatus T described above will be described.
The extruder 2 (resin supply device) used in the granulating apparatus T shown in FIG. 1 can be used by appropriately selecting from various types of conventionally known extruders according to the type of resin to be granulated. For example, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Any of these extruders can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the chamber 4 which accommodated the cutter 3 can also use the conventionally well-known thing used in the hot cut method.
 本発明において、熱可塑性樹脂の種類は限定されない。例えば、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、ABS樹脂、AS樹脂等、を単独もしくは2種類以上混合して使用することができる。さらに、樹脂製品として一旦使用されてから回収して得られた熱可塑性樹脂の回収樹脂を使用することもできる。特に、非晶性であるポリスチレン(GPPS)、ハイインパクトポリスチレン(HIPS)などのポリスチレン系樹脂が好適に用いられる。ポリスチレン系樹脂としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i-プロピルスチレン、ジメチルスチレン、ブロモスチレン等、のスチレン系モノマーの単独重合体又はこれらの共重合体等がある。特に、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。
 前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーと、このスチレン系モノマーと共重合可能なビニルモノマーと、の共重合体であってもよい。このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレート、およびジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどがある。
 ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよい。添加する樹脂としては、発泡成形体の耐衝撃性を向上させるために、例えば、ポリブタジエン、スチレン-ブタジエン共重合体、エチレン-プロピレン-非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂(ハイインパクトポリスチレン)がある。さらに、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などがある。本発明の発泡性熱可塑性樹脂粒子の製造方法を用いて発泡性ポリスチレン系樹脂粒子を製造する場合には、原料となるポリスチレン系樹脂として、市販の通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などのリサイクル原料でないポリスチレン系樹脂(以下、バージンポリスチレンと記す。)を使用することができる。さらに、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料には、使用済みのポリスチレン系樹脂発泡成形体である魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生処理したものを使用ことができる。さらに、前述のようなリサイクル原料以外にも、家電製品(例えば、テレビ、冷蔵庫、洗濯機、エアコンなど)や事務用機器(例えば、複写機、ファクシミリ、プリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混練してリペレットしたものも使用することができる。
In the present invention, the type of the thermoplastic resin is not limited. For example, a polystyrene resin, a polyethylene resin, a polypropylene resin, a polyester resin, a vinyl chloride resin, an ABS resin, an AS resin, or the like can be used alone or in combination of two or more. Furthermore, it is also possible to use a recovered resin of a thermoplastic resin obtained after being used once as a resin product. In particular, polystyrene resins such as amorphous polystyrene (GPPS) and high impact polystyrene (HIPS) are preferably used. Examples of polystyrene resins include homopolymers of styrene monomers such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and copolymers thereof. Etc. In particular, a polystyrene resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable.
The polystyrene resin may be a copolymer of the styrene monomer having the styrene monomer as a main component and a vinyl monomer copolymerizable with the styrene monomer. Examples of such vinyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, Examples include dimethyl fumarate, diethyl fumarate, ethyl fumarate, and bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate.
If the polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product. There is a rubber-modified polystyrene resin (high impact polystyrene) to which coalescence is added. Further, there are polyethylene resins, polypropylene resins, acrylic resins, acrylonitrile-styrene copolymers, acrylonitrile-butadiene-styrene copolymers, and the like. When producing expandable polystyrene resin particles using the method for producing expandable thermoplastic resin particles of the present invention, as a polystyrene resin used as a raw material, commercially available ordinary polystyrene resin, suspension polymerization method, etc. Polystyrene resins (hereinafter referred to as virgin polystyrene) that are not recycled raw materials such as polystyrene resins newly produced by the method can be used. Furthermore, a recycled raw material obtained by regenerating a used polystyrene-based resin foam molded article can be used. This recycled material can be used after collecting used polystyrene resin foam moldings such as fish boxes, household appliance cushions, food packaging trays, etc., and recycled by the limonene dissolution method or heating volume reduction method. it can. In addition to recycled materials such as those mentioned above, non-foamed materials collected separately from household electrical appliances (eg, televisions, refrigerators, washing machines, air conditioners) and office equipment (eg, copiers, facsimiles, printers, etc.) It is also possible to use a polystyrene-based resin molded body that has been pulverized, melt-kneaded and re-pelletized.
 図1および図2に示すように、前述した造粒装置Tを用いて発泡性熱可塑性樹脂粒子を製造する場合、以下のような工程1~5が順に実行される。
(工程1)造粒用ダイス1を先端に取り付けた押出機2に熱可塑性樹脂をホッパー21から供給し、それを溶融して混練する。
(工程2)造粒用ダイス1に向けて熱可塑性樹脂を移動させながら、この熱可塑性樹脂に発泡剤供給口22から高圧ポンプ23によって発泡剤を圧入する。すなわち、発泡剤と熱可塑性樹脂とを混合して発泡剤含有樹脂20を形成する。
(工程3)発泡剤含有樹脂20は、押出機2の先端からダイホルダ11を経て、ダイス本体10の樹脂流路14に送られる。
(工程4)樹脂流路14を通って送られた発泡剤含有樹脂20は、ダイス本体10の樹脂吐出面13に開孔した各ノズル15から吐出される。
(工程5)各ノズル15から吐出された発泡剤含有樹脂20は、カッター3の回転刃によりチャンバー4の水流中(冷却媒体中)で直ちに切断される。
As shown in FIGS. 1 and 2, when producing expandable thermoplastic resin particles using the granulating apparatus T described above, the following steps 1 to 5 are performed in order.
(Step 1) A thermoplastic resin is supplied from an hopper 21 to an extruder 2 having a granulation die 1 attached to the tip, and is melted and kneaded.
(Step 2) While moving the thermoplastic resin toward the granulation die 1, the foaming agent is pressed into the thermoplastic resin from the foaming agent supply port 22 by the high-pressure pump 23. That is, the foaming agent-containing resin 20 is formed by mixing the foaming agent and the thermoplastic resin.
(Step 3) The foaming agent-containing resin 20 is sent from the tip of the extruder 2 through the die holder 11 to the resin flow path 14 of the die body 10.
(Step 4) The foaming agent-containing resin 20 sent through the resin flow path 14 is discharged from each nozzle 15 opened in the resin discharge surface 13 of the die body 10.
(Step 5) The foaming agent-containing resin 20 discharged from each nozzle 15 is immediately cut by the rotary blade of the cutter 3 in the water flow (in the cooling medium) of the chamber 4.
 この発泡剤含有樹脂20の造粒時、ダイス本体10の温度が発泡剤含有樹脂20の溶融樹脂温度より115℃~200℃高い範囲となるように、各ヒータをオンオフ制御する。これによって、ダイス本体10の温度制御を行いつつ、水中ホットカット法によって造粒を行う。冷却媒体である循環水の温度は、10~60℃に調節しておく。
 なお、この溶融樹脂温度とは、押出機2の先端からダイホルダ11に流入してきた発泡剤含有樹脂20の温度を指す。本実施形態では、第2の測温体19Bによりこの溶融樹脂温度が測定されている。
During granulation of the foaming agent-containing resin 20, the heaters are turned on and off so that the temperature of the die body 10 is in a range 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin 20. Thus, granulation is performed by an underwater hot cut method while controlling the temperature of the die body 10. The temperature of circulating water as a cooling medium is adjusted to 10 to 60 ° C.
The molten resin temperature refers to the temperature of the foaming agent-containing resin 20 that has flowed into the die holder 11 from the tip of the extruder 2. In the present embodiment, the molten resin temperature is measured by the second temperature measuring element 19B.
 このように、ダイス本体10の温度が溶融樹脂温度より115℃~200℃高くなるように、好ましくは120℃~180℃高くなるように、より好ましくは120℃~180℃高くなるように温度制御する。これにより、水中ホットカット法による発泡性熱可塑性樹脂粒子の製造において、小粒で粒径の揃った発泡性熱可塑性樹脂粒子を連続生産することができる。また、前記条件で造粒を行うと、得られる発泡性熱可塑性樹脂粒子内部のボイドが少なくなる。これにより、その発泡性熱可塑性樹脂粒子を型内発泡成形して製造した発泡成形体の機械強度を向上させることができる。
 ダイス本体の温度が溶融樹脂温度+115℃未満であると、発泡性熱可塑性樹脂粒子を連続生産する際に、ノズル15が閉塞してダイス本体内の樹脂圧力が変動する。その結果、小粒で粒径の揃った発泡性熱可塑性樹脂粒子を連続生産することができなくなる可能性がある。また、得られる発泡性熱可塑性樹脂粒子断面のボイドが多くなる。その結果、その発泡性熱可塑性樹脂粒子を型内発泡成形して製造した発泡成形体の機械強度が低下する可能性がある。
 ダイス本体10の温度が溶融樹脂温度+200℃を超えると、得られる発泡性熱可塑性樹脂粒子が微発泡する。その結果、小粒で粒径の揃った粒子を連続生産することができなくなる可能性がある。
Thus, temperature control is performed so that the temperature of the die body 10 is 115 ° C. to 200 ° C. higher than the molten resin temperature, preferably 120 ° C. to 180 ° C., more preferably 120 ° C. to 180 ° C. To do. Thereby, in manufacture of the expandable thermoplastic resin particle by the underwater hot cut method, the expandable thermoplastic resin particle with a uniform particle diameter can be continuously produced. Moreover, when granulation is performed under the above-described conditions, voids inside the obtained expandable thermoplastic resin particles are reduced. Thereby, the mechanical strength of the foamed molded product produced by in-mold foam molding of the foamable thermoplastic resin particles can be improved.
When the temperature of the die body is less than the molten resin temperature + 115 ° C., the nozzle 15 is closed when the foamable thermoplastic resin particles are continuously produced, and the resin pressure in the die body fluctuates. As a result, it may be impossible to continuously produce foamable thermoplastic resin particles having a small particle size and a uniform particle size. Moreover, the void of the cross section of the foamable thermoplastic resin particle obtained increases. As a result, there is a possibility that the mechanical strength of the foamed molded product produced by foam-molding the foamable thermoplastic resin particles in the mold is lowered.
When the temperature of the die body 10 exceeds the molten resin temperature + 200 ° C., the foamable thermoplastic resin particles obtained are finely foamed. As a result, there is a possibility that it is impossible to continuously produce small and uniform particles.
 冷却媒体である循環水の温度が10℃未満であると、循環水による樹脂吐出面13からの奪熱が大きくなる。その結果、造粒用ダイス1の温度保持が難しくなる。一方、循環水の温度が60℃を超えると、カットされた樹脂の冷却が不十分となる。その結果、樹脂粒子の微発泡の抑制が難しくなる。循環水の温度は、好ましくは20℃~40℃の範囲であり、より好ましくは25℃~35℃の範囲である。 If the temperature of the circulating water that is the cooling medium is less than 10 ° C., the heat removed from the resin discharge surface 13 by the circulating water increases. As a result, it becomes difficult to maintain the temperature of the granulation die 1. On the other hand, when the temperature of circulating water exceeds 60 degreeC, cooling of the cut resin will become inadequate. As a result, it becomes difficult to suppress the fine foaming of the resin particles. The temperature of the circulating water is preferably in the range of 20 ° C to 40 ° C, more preferably in the range of 25 ° C to 35 ° C.
 チャンバー4内で粒状に切断された発泡剤含有樹脂20は、ほぼ球形の発泡性熱可塑性樹脂粒子となる。この発泡性熱可塑性樹脂粒子は、水流に従って管路5内を搬送され、脱水処理部8に達する。ここで、循環水から発泡性熱可塑性樹脂粒子を分離し、脱水・乾燥すると共に、分離した水は水槽7に送られる。この脱水処理部8で分離され、脱水・乾燥した発泡性熱可塑性樹脂粒子は、容器9に送られ、この容器内に収容される。 The foaming agent-containing resin 20 cut into particles in the chamber 4 becomes substantially spherical foaming thermoplastic resin particles. The foamable thermoplastic resin particles are conveyed in the pipe line 5 according to the water flow and reach the dehydration processing unit 8. Here, the foamable thermoplastic resin particles are separated from the circulating water, dehydrated and dried, and the separated water is sent to the water tank 7. The foamable thermoplastic resin particles separated by the dehydration processing unit 8, dehydrated and dried are sent to the container 9 and accommodated in the container.
 前記発泡剤は限定されない。例えばノルマルペンタン、イソペンタン、シクロペンタン、シクロペンタジエン等、を単独もしくは2種類以上混合して使用することができる。また、前記ペンタン類を主成分として、ノルマルブタン、イソブタン、プロパン等を混合して使用することもできる。特に、ペンタン類は、ノズルから水流中に吐出される際の粒子の発泡を抑制しやすいので、好適に用いられる。 The foaming agent is not limited. For example, normal pentane, isopentane, cyclopentane, cyclopentadiene and the like can be used alone or in admixture of two or more. Further, normal butane, isobutane, propane and the like can be mixed and used with the pentane as a main component. In particular, pentanes are preferably used because they tend to suppress foaming of particles when discharged from a nozzle into a water stream.
 発泡性熱可塑性樹脂粒子とは、熱可塑性樹脂に発泡剤を含有させて粒状、好ましくは小球状に成形された樹脂粒子を指す。この発泡性熱可塑性樹脂粒子は、所望形状の発泡樹脂成形体を製造するのに使用することができる。まず、この発泡性熱可塑性樹脂粒子を自由空間内で加熱して予備発泡させる。この予備発泡粒子を所望の形状のキャビティを有する成形型のキャビティ内に入れ、蒸気加熱して予備発泡粒子同士を融着させる。その後、離型することによって所望形状の発泡樹脂成形体を製造することができる。 The foamable thermoplastic resin particles refer to resin particles that are formed into a granular shape, preferably a small spherical shape, by adding a foaming agent to a thermoplastic resin. The foamable thermoplastic resin particles can be used to produce a foamed resin molded body having a desired shape. First, the foamable thermoplastic resin particles are preliminarily foamed by heating in free space. The pre-expanded particles are put into a cavity of a mold having a cavity having a desired shape, and the pre-expanded particles are fused by steam heating. Thereafter, a foamed resin molded body having a desired shape can be produced by releasing the mold.
 前述した通り、本発明では、水中ホットカット法による発泡性熱可塑性樹脂粒子の製造において、前記ダイス本体の温度が発泡剤含有樹脂の溶融樹脂温度より115℃~200℃高い範囲となるように温度制御しつつ、発泡性熱可塑性樹脂粒子を得ている。これにより、小粒で粒径の揃った発泡性熱可塑性樹脂粒子を連続生産することができる。
 また、本発明により得られる発泡性熱可塑性樹脂粒子では、粒子内部のボイドが少なくなる。これにより、得られた発泡性熱可塑性樹脂粒子を型内発泡成形して製造した発泡成形体の機械強度を向上させることができる。
As described above, in the present invention, in the production of expandable thermoplastic resin particles by the underwater hot cut method, the temperature of the die body is set to a range 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin. While controlling, the foamable thermoplastic resin particles are obtained. Thereby, the foamable thermoplastic resin particle with a uniform particle diameter can be continuously produced.
Moreover, in the foamable thermoplastic resin particle obtained by this invention, the void inside a particle | grain decreases. Thereby, the mechanical strength of the foamed molded article produced by in-mold foam molding of the obtained foamable thermoplastic resin particles can be improved.
 本発明の製造方法における詳細な製造条件は、使用する樹脂の種類などに応じて適宜設定できるが、好ましい製造条件として次の項目が挙げられる。(1)ダイス本体10nノズル15の孔径は、0.2mm~2.0mmの範囲が好ましく、0.3mm~1.0mmの範囲がより好ましく、0.4mm~0.7mmの範囲がさらに好ましい。(2)得られる発泡性熱可塑性樹脂粒子の粒径は、0.3mm~2.0mmの範囲が好ましく、0.5mm~1.4mmの範囲がより好ましく、0.7mm~1.2mmの範囲がさらに好ましい。(3)発泡性熱可塑性樹脂粒子が発泡性ポリスチレン系樹脂粒子である場合、ポリスチレン系樹脂粒子の重量平均分子量Mwは12万~40万の範囲が好ましく、12万~27万の範囲がより好ましい。(4)発泡性熱可塑性樹脂粒子中の発泡剤含有量は、1~10質量%の範囲が好ましく、3~8質量%の範囲がより好ましく、4~6質量%の範囲がさらに好ましい。(5)発泡剤は、ノルマルペンタン、イソペンタン、或いはこれらの任意の割合の混合した混合ペンタンが好ましい。混合ペンタンの場合、その組成は質量比でイソペンタン:ノルマルペンタン=10:90~80:20の範囲が好ましく、イソペンタン:ノルマルペンタン=80:80~60:40の範囲がより好ましい。(6)発泡性熱可塑性樹脂粒子を予備発泡して得られた熱可塑性樹脂発泡粒子の平均気泡径は、30μm~500μmの範囲が好ましく、50μm~300μmの範囲がより好ましく、100μm~250μmの範囲がさらに好ましい。 The detailed production conditions in the production method of the present invention can be set as appropriate according to the type of resin to be used, but the following items are preferable as production conditions. (1) The hole diameter of the die body 10n nozzle 15 is preferably in the range of 0.2 mm to 2.0 mm, more preferably in the range of 0.3 mm to 1.0 mm, and still more preferably in the range of 0.4 mm to 0.7 mm. (2) The particle diameter of the foamable thermoplastic resin particles obtained is preferably in the range of 0.3 mm to 2.0 mm, more preferably in the range of 0.5 mm to 1.4 mm, and in the range of 0.7 mm to 1.2 mm. Is more preferable. (3) When the expandable thermoplastic resin particles are expandable polystyrene resin particles, the weight average molecular weight Mw of the polystyrene resin particles is preferably in the range of 120,000 to 400,000, more preferably in the range of 120,000 to 270,000. . (4) The foaming agent content in the expandable thermoplastic resin particles is preferably in the range of 1 to 10% by mass, more preferably in the range of 3 to 8% by mass, and still more preferably in the range of 4 to 6% by mass. (5) The foaming agent is preferably normal pentane, isopentane, or mixed pentane mixed at any ratio. In the case of mixed pentane, the composition is preferably in the range of isopentane: normal pentane = 10: 90 to 80:20, and more preferably in the range of isopentane: normal pentane = 80: 80 to 60:40. (6) The average cell diameter of the expanded thermoplastic resin particles obtained by pre-expanding expandable thermoplastic resin particles is preferably in the range of 30 μm to 500 μm, more preferably in the range of 50 μm to 300 μm, and in the range of 100 μm to 250 μm. Is more preferable.
 前述した通り、本発明の発泡性熱可塑性樹脂粒子の製造方法では、ダイス本体10の温度が溶融樹脂温度より115℃~200℃高くなるように、好ましくは120℃~180℃高くなるように温度制御する。これにより、水中ホットカット法による発泡性熱可塑性樹脂粒子の製造において、小粒で粒径の揃った発泡性熱可塑性樹脂粒子を連続生産することができる。なお、この連続生産とは、造粒開始から少なくとも12時間以上、好ましくは24時間以上連続して発泡性熱可塑性樹脂粒子を生産することを指す。本発明の製造方法によれば、48時間以上の連続生産において、ノズル開孔率の減少が50%以下、得られる発泡性熱可塑性樹脂粒子の粒径変化率が20%以下で発泡性熱可塑性樹脂粒子を連続生産することができる。
 また、前述した好ましい製造条件(1)~(6)を採用することで、次のような効果を得ることができる。(a)同じ発泡倍数を得るのに、発泡剤量を削減できる。(b)経日による発泡性の低下が小さく、ビーズライフが長い。(c)低圧成形性に優れる(発泡成形体を得るための加熱エネルギーが小さく、省エネルギーになる)。(d)十分な機会的強度を有する。(e)発泡成形倍数5~67倍が得られる。
As described above, in the method for producing expandable thermoplastic resin particles of the present invention, the temperature of the die body 10 is set to 115 ° C. to 200 ° C. higher than the molten resin temperature, preferably 120 ° C. to 180 ° C. higher. Control. Thereby, in manufacture of the expandable thermoplastic resin particle by the underwater hot cut method, the expandable thermoplastic resin particle with a uniform particle diameter can be continuously produced. The continuous production refers to producing expandable thermoplastic resin particles continuously for at least 12 hours or more, preferably 24 hours or more from the start of granulation. According to the production method of the present invention, in continuous production for 48 hours or more, the decrease in the nozzle opening ratio is 50% or less, and the change rate of the particle size of the obtained expandable thermoplastic resin particles is 20% or less. Resin particles can be produced continuously.
In addition, the following effects can be obtained by adopting the above-described preferable production conditions (1) to (6). (A) The amount of foaming agent can be reduced to obtain the same expansion ratio. (B) Decrease in foamability due to aging is small and bead life is long. (C) It is excellent in low-pressure moldability (heating energy for obtaining a foam-molded product is small and energy is saved). (D) It has sufficient opportunity strength. (E) A foam molding ratio of 5 to 67 times is obtained.
 次に、本発明の実施形態の変形例について、図面に基づいて説明する。ただし、前述の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、前述の実施形態と異なる構成について説明する。
 図5は本実施形態の変形例に係るノズルの配置状態を示す図であって、図4に対応する図である。
 図5に示す変形例による樹脂流路14Aは、その断面形状が台形状をなし、その台形状の範囲内に複数の単体ノズル15a、15b、15c、…が任意に配置されたノズル15が設けられている。樹脂流路14Aの外郭をなす斜面14a、14b(直線部)がカートリッジヒーター17の長手方向と略平行に配置されている。本変形例では、台形状をなす断面の樹脂流路14Aの斜面14a、14bがカートリッジヒーター17に対して等距離となっている。その為、カートリッジヒーター17によって均等に加熱される樹脂流路の面積が増え、円形断面の樹脂流路と比べて均等に加熱され、ノズルの詰まりをより低減させることができる。
Next, a modification of the embodiment of the present invention will be described based on the drawings. However, the same reference numerals are used for the same or similar members and portions as those of the above-described embodiment, and the description thereof is omitted, and a configuration different from that of the above-described embodiment is described.
FIG. 5 is a diagram illustrating an arrangement state of nozzles according to a modification of the present embodiment, and corresponds to FIG.
The resin flow path 14A according to the modification shown in FIG. 5 has a trapezoidal cross section, and a nozzle 15 in which a plurality of single nozzles 15a, 15b, 15c,... Are arbitrarily arranged within the trapezoidal range is provided. It has been. Slopes 14 a and 14 b (straight line portions) that form the outline of the resin flow path 14 </ b> A are disposed substantially parallel to the longitudinal direction of the cartridge heater 17. In this modification, the slopes 14 a and 14 b of the resin flow path 14 A having a trapezoidal cross section are equidistant from the cartridge heater 17. Therefore, the area of the resin flow path that is evenly heated by the cartridge heater 17 is increased, and the resin flow path is heated more uniformly than the resin flow path having a circular cross section, so that nozzle clogging can be further reduced.
[実施例1]
 実施例1では、図1に示した造粒装置Tに、図2および図3に示した造粒用ダイス1を取り付けて、発泡性ポリスチレン系樹脂粒子を製造した。
 口径90mm(L/D=35)の単軸押出機に造粒用ダイスを取り付けた。
使用した造粒用ダイスは、樹脂吐出面の円周上に8個配置されたノズルユニット(直径0.6mm、ランド長さ3.0mmのノズルを25個もつ目皿)と、樹脂吐出面側のノズルユニットに通じる各樹脂流路を両側から挟むように、ヒーター深さ(樹脂吐出面からの距離)15mmの位置に前記円周を横切って放射状に配置された8本のカートリッジヒーター(直径12mm)と、樹脂吐出面の中央部に装着された断熱材と、備えている。さらに、図2に示すように複数の測温体19A,19Bを配置し、ダイス本体の循環水流入側のヒーター4本と循環水流出側のヒーター4本とにエリアを2分割して制御して、ダイス本体の温度(ダイス保持温度)を300℃に保持した。
[Example 1]
In Example 1, the granulating die 1 shown in FIGS. 2 and 3 was attached to the granulating apparatus T shown in FIG. 1 to produce expandable polystyrene resin particles.
A granulation die was attached to a single screw extruder having a diameter of 90 mm (L / D = 35).
The granulation dies used consisted of eight nozzle units (a plate having 25 nozzles with a diameter of 0.6 mm and a land length of 3.0 mm) arranged on the circumference of the resin discharge surface, and the resin discharge surface side. Eight cartridge heaters (diameter: 12 mm in diameter) arranged radially across the circumference at a heater depth (distance from the resin discharge surface) of 15 mm so as to sandwich the resin flow paths leading to the nozzle unit from both sides And a heat insulating material attached to the center of the resin discharge surface. Further, as shown in FIG. 2, a plurality of temperature measuring elements 19A and 19B are arranged, and the area is divided into two parts: four heaters on the circulating water inflow side and four heaters on the circulating water outflow side of the die body. The temperature of the die body (die holding temperature) was kept at 300 ° C.
 実施例1では、以下の工程を順に実行した。
(工程1)ポリスチレン樹脂(東洋スチレン社製、商品名「HRM10N」、ビカット軟化点温度102℃)100質量部に微粉末タルク0.3質量部を予めタンブラーミキサーにて均一に混合したものを、毎時130kgの割合で押出機内へ供給した。
(工程2)押出機内の最高温度を220℃に設定して樹脂を溶融させた後、発泡剤として樹脂100質量部に対して6質量部のペンタン(イソペンタン/ノルマルペンタン=20/80混合物)を押出機の途中より圧入した。
(工程3)押出機内で樹脂と発泡剤を混練しつつ、発泡剤含有溶融樹脂をダイホルダ(押出機とダイス本体の連結部)に通して、300℃に保持した前記ダイス本体に輸送した。
(工程4)30℃の冷却水が循環するチャンバー内に発泡剤含有溶融樹脂を押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイスに密着させて、毎分3300回転で押し出された発泡剤含有溶融樹脂を切断した。
(工程5)冷却水から押し出された発泡剤含有溶融樹脂を分離し、脱水乾燥して球形の発泡性ポリスチレン樹脂粒子を得た。
上記工程において、ダイホルダでの溶融樹脂温度は180℃であり、発泡性ポリスチレン樹脂粒子の吐出量は138kg/hであった。
押出開始1時間目では、造粒用ダイスへの樹脂導入部の圧力は10.0MPa、乾燥後の樹脂粒子100粒の質量は0.0417g、ダイスの開孔率は92.0%と、良好な造粒環境であった。
 押出開始48時間目においても、造粒用ダイスへの樹脂導入部の圧力は10.5MPa、乾燥後の樹脂粒子100粒の質量は0.0426g、ダイスの開孔率は90.0%と、良好な造粒状況が維持された。すなわち、この実施例1では、48時間以上安定して造粒可能であることが確認できた。
In Example 1, the following steps were performed in order.
(Step 1) Polystyrene resin (manufactured by Toyo Styrene Co., Ltd., trade name “HRM10N”, Vicat softening point temperature: 102 ° C.) 100 parts by mass of finely powdered talc 0.3 parts by mass previously mixed in a tumbler mixer, It was fed into the extruder at a rate of 130 kg per hour.
(Step 2) After setting the maximum temperature in the extruder to 220 ° C. and melting the resin, 6 parts by weight of pentane (isopentane / normal pentane = 20/80 mixture) with respect to 100 parts by weight of the resin as a foaming agent It was press-fitted from the middle of the extruder.
(Step 3) While the resin and the foaming agent were kneaded in the extruder, the foaming agent-containing molten resin was passed through a die holder (connecting portion between the extruder and the die body) and transported to the die body held at 300 ° C.
(Step 4) At the same time as extruding the foaming agent-containing molten resin into the chamber through which the cooling water of 30 ° C. circulates, a high-speed rotating cutter having 10 blades in the circumferential direction is brought into close contact with the die at 3300 revolutions per minute The extruded foaming agent-containing molten resin was cut.
(Step 5) The foaming agent-containing molten resin extruded from the cooling water was separated and dehydrated and dried to obtain spherical expandable polystyrene resin particles.
In the said process, the molten resin temperature in a die holder was 180 degreeC, and the discharge amount of the expandable polystyrene resin particle was 138 kg / h.
In the first hour after extrusion, the pressure of the resin introduction part to the granulation die was 10.0 MPa, the mass of 100 resin particles after drying was 0.0417 g, and the opening rate of the die was as good as 92.0%. It was a natural granulation environment.
Even at 48 hours after the start of extrusion, the pressure of the resin introduction part to the granulation die was 10.5 MPa, the mass of 100 resin particles after drying was 0.0426 g, and the die opening rate was 90.0%. Good granulation status was maintained. That is, in Example 1, it was confirmed that stable granulation was possible for 48 hours or more.
[比較例1]
 ダイス本体の温度(ダイス保持温度)を220℃としたこと以外は、実施例1と同様にして、吐出量138kg/hでほぼ球状の発泡性ポリスチレン樹脂粒子を得た。この時のダイホルダでの溶融樹脂温度は180℃であった。
 この比較例1では、押出開始1時間以内にダイスへの樹脂導入部の圧力がダイスの耐圧上限(25MPa)に到達したため、押出を打ち切った。1時間押出できなかったため、評価不能であった。
[Comparative Example 1]
Except that the temperature of the die body (die holding temperature) was 220 ° C., substantially spherical expandable polystyrene resin particles were obtained at a discharge rate of 138 kg / h in the same manner as in Example 1. The molten resin temperature in the die holder at this time was 180 ° C.
In Comparative Example 1, since the pressure of the resin introduction portion to the die reached the die pressure limit (25 MPa) within 1 hour from the start of extrusion, the extrusion was terminated. Since it was not able to extrude for 1 hour, evaluation was impossible.
[比較例2]
 ダイス本体の温度を290℃としたこと以外は、実施例1と同様にして、吐出量138kg/hでほぼ球状の発泡性ポリスチレン樹脂粒子を得た。この時のダイホルダでの溶融樹脂温度は180℃であった。
 押出開始1時間目では、造粒用ダイスへの樹脂導入部の圧力は、12.0MPa、乾燥後の樹脂粒子100粒の質量は0.0446g、ダイスの開孔率は86.0%と、良好な造粒環境であった。
 押出開始48時間目においても、造粒用ダイスへの樹脂導入部の圧力は13.0MPa、乾燥後の樹脂粒子100粒の質量は0.0451g、ダイスの開孔率は85.0%と、良好な造粒環境が維持された。すなわち、この比較例2では、48時間以上安定して造粒可能であることが確認できた。
[Comparative Example 2]
Except that the temperature of the die body was 290 ° C., substantially spherical expandable polystyrene resin particles were obtained at a discharge rate of 138 kg / h in the same manner as in Example 1. The molten resin temperature in the die holder at this time was 180 ° C.
In the first hour after extrusion, the pressure of the resin introduction part to the granulation die was 12.0 MPa, the mass of 100 resin particles after drying was 0.0446 g, and the opening rate of the die was 86.0%. It was a good granulation environment.
Even at 48 hours after the start of extrusion, the pressure of the resin introduction part to the granulation die was 13.0 MPa, the mass of 100 resin particles after drying was 0.0451 g, and the die opening rate was 85.0%. A good granulation environment was maintained. That is, in Comparative Example 2, it was confirmed that stable granulation was possible for 48 hours or more.
 実施例1及び比較例1~2での発泡性ポリスチレン樹脂粒子の製造時、及び得られた発泡性ポリスチレン樹脂粒子について、以下の各項目の測定・評価を実施した。その結果を表1にまとめて記す。 The following items were measured and evaluated during the production of the expandable polystyrene resin particles in Example 1 and Comparative Examples 1 and 2, and the obtained expandable polystyrene resin particles. The results are summarized in Table 1.
<ダイスの開孔率>
 開孔率は、次式(1)で定義される。
  式(1) 開孔率(ダイス表面の吐出ノズルの押出時開孔率)=開孔数/ダイス全ノズル数×100(%)
吐出量は、次式(2)で定義される。
  式(2) 吐出量(kg/h)=1hあたり、カッターで切り出される全発泡性粒子の総質量
      =開孔数×切り出し個数×1粒質量
      =開孔数×カッター刃数×カッター回転数×1粒質量
 式(2)より、開孔数は次式(3)で定義できる。
  式(3) 開孔数=吐出量(kg/h)/〔カッター刃数×カッター回転数(rph) ×1粒質量(kg/個)〕
式(1)および式(3)より、開孔率は次式(4)で算出できる。
  式(4) 開孔率(E)= 開孔数/全吐出ノズル数×100(%)
 =〔Q/(N×R×60×(M/100)/1000)〕/H×100(%)
[Qは吐出量(kg/h)、Nはカッター刃の枚数、Rはカッター回転数(rpm)、Mは100粒質量(g)(発泡性粒子から任意の100粒を選び、最小目盛0.0001gの電子天秤で計量した値を100粒質量とした)、Hはダイスの全ノズル数、をそれぞれ表す。]
<Die opening rate>
The hole area ratio is defined by the following formula (1).
Formula (1) Opening ratio (opening ratio during extrusion of the discharge nozzle on the die surface) = number of openings / total number of nozzles of the die × 100 (%)
The discharge amount is defined by the following equation (2).
Formula (2) Discharge rate (kg / h) = total mass of all expandable particles cut out by a cutter per 1 h = number of holes x number of cuts x 1 grain mass = number of holes x number of cutter blades x number of cutter rotations x 1 grain mass From the formula (2), the number of holes can be defined by the following formula (3).
Formula (3) Number of apertures = discharge rate (kg / h) / [number of cutter blades × cutter rotation speed (rph) × 1 grain mass (kg / piece)]
From the equations (1) and (3), the hole area ratio can be calculated by the following equation (4).
Formula (4) Opening ratio (E) = Number of openings / total number of discharge nozzles x 100 (%)
= [Q / (N × R × 60 × (M / 100) / 1000)] / H × 100 (%)
[Q is the discharge rate (kg / h), N is the number of cutter blades, R is the number of revolutions of the cutter (rpm), M is 100 particles (g) (choose any 100 particles from the expandable particles, minimum scale 0 The value weighed with an electronic balance of .0001 g was taken as the mass of 100 grains), and H represents the total number of nozzles of the die. ]
<開孔率の評価基準>
 開孔率(E)は、以下の基準で評価した。
 ◎:50%≦E
 ○:40%≦E<50%
 △:30%≦E<40%
 ×:E<30%
<Evaluation criteria for hole area ratio>
The hole area ratio (E) was evaluated according to the following criteria.
A: 50% ≦ E
○: 40% ≦ E <50%
Δ: 30% ≦ E <40%
×: E <30%
<発泡性粒子のボイドの観察>
 実施例1及び比較例2にて得た発泡性粒子を剃刀刃で切断し、その切断面を走査型電子顕微鏡(日立製作所社製、S-3000N)で70倍に拡大して撮影することにより、粒子内のボイドを観察した。
 図6は、本発明に係る実施例1で製造した発泡性ポリスチレン系樹脂粒子の断面の拡大画像である。図7は、比較例2で製造した発泡性ポリスチレン系樹脂粒子の断面の拡大画像である。
<Observation of voids in expandable particles>
By cutting the expandable particles obtained in Example 1 and Comparative Example 2 with a razor blade and photographing the cut surface with a scanning electron microscope (S-3000N, manufactured by Hitachi, Ltd.) at a magnification of 70 times. The voids in the particles were observed.
FIG. 6 is an enlarged image of a cross section of the expandable polystyrene resin particles produced in Example 1 according to the present invention. FIG. 7 is an enlarged image of a cross section of the expandable polystyrene resin particles produced in Comparative Example 2.
<発泡成形体の製造>
 前述のように、はじめに、押出48時間目に得られた発泡性ポリスチレン樹脂粒子を20℃で1日放置した。その後、発泡性ポリスチレン樹脂粒子100質量部に対して、ステアリン酸亜鉛0.1質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部、ステアリン酸モノグリセライド0.05質量部を添加、混合して樹脂粒子表面に被覆した。その後、小型バッチ式予備発泡機(内容積40L)に投入して、撹拌しながら、吹込み圧0.05MPa(ゲージ圧)の水蒸気により加熱し、嵩発泡倍数50倍(嵩密度0.02g/cm)の予備発泡粒子を作製した。
 続いて、得られた予備発泡粒子を23℃で1日熟成させた。その後、外形寸法300×400×100mm(肉厚30mm)で内部に肉厚5mm、10mm、25mmの中仕切部を有する金型を取り付けた自動成形機(積水工機製作所製、ACE-3SP型)を用いて、下記成形条件にて予備発泡粒子を成形し、発泡倍数50倍(密度0.02g/cm)の発泡成形体を得た。
 成形条件(ACE-3SP QS成形モード)
  成形蒸気圧 0.08MPa(ゲージ圧)
  金型加熱 3秒
  一方加熱(圧力設定) 0.03MPa(ゲージ圧)
  逆一方加熱 2秒
  両面加熱 12秒
  水冷 10秒
  設定取出し面圧 0.02MPa
<Manufacture of foam molding>
As described above, first, expandable polystyrene resin particles obtained at 48 hours after extrusion were allowed to stand at 20 ° C. for 1 day. Thereafter, with respect to 100 parts by mass of expandable polystyrene resin particles, 0.1 parts by mass of zinc stearate, 0.05 parts by mass of hydroxystearic acid triglyceride, and 0.05 parts by mass of monoglyceride stearate were added and mixed to obtain resin particle surfaces. Coated. Thereafter, the mixture was put into a small batch type pre-foaming machine (internal volume 40 L) and heated with water vapor with a blowing pressure of 0.05 MPa (gauge pressure) while stirring, and the bulk foaming factor was 50 times (bulk density 0.02 g / cm 3 ) pre-expanded particles were prepared.
Subsequently, the obtained pre-expanded particles were aged at 23 ° C. for 1 day. After that, an automatic molding machine (ACE-3SP type, manufactured by Sekisui Koki Co., Ltd.) with an outer dimension of 300 × 400 × 100 mm (thickness 30 mm) and a mold having a partition part of thickness 5 mm, 10 mm, and 25 mm inside. Was used to mold pre-expanded particles under the following molding conditions to obtain a foam-molded product having an expansion ratio of 50 times (density 0.02 g / cm 3 ).
Molding conditions (ACE-3SP QS molding mode)
Molding vapor pressure 0.08MPa (gauge pressure)
Mold heating 3 seconds One-side heating (pressure setting) 0.03 MPa (gauge pressure)
Reverse one heating 2 seconds Double-sided heating 12 seconds Water cooling 10 seconds Set extraction surface pressure 0.02 MPa
<予備発泡粒子の金型充填性の評価基準>
 上記発泡成形体を目視により観察し、金型充填性について下記のような評価を実施した。
 ◎:肉厚5mm中仕切部分まできっちり充填されている。
 ○:肉厚5mm中仕切部分の充填が甘く過大発泡粒が認められるが、 中仕切部は形成されている。
 △:肉厚5mm中仕切部分に、充填不良による粒子欠損が見られ、中仕切部が完全には形成されていない。
 ×:肉厚5mm中仕切部分は充填不良であり、中仕切部が全く形成されていない。
<Evaluation criteria for mold filling properties of pre-expanded particles>
The foamed molded product was visually observed, and the following evaluation was performed on the mold filling property.
(Double-circle): It fills up to the partition part 5mm thick.
○: Filling of the partition part with a thickness of 5 mm is sweet and excessive foam particles are observed, but the partition part is formed.
(Triangle | delta): The particle | grain defect | deletion by poor filling is seen in the partition part with thickness 5mm, and the partition part is not formed completely.
X: The partition part with a thickness of 5 mm is poorly filled, and no partition part is formed at all.
<粒子100粒の合計質量>
 発泡性ポリスチレン系樹脂粒子においては、任意に選んだ粒子100粒の合計質量が0.02~0.09gの範囲であることが好ましい。粒子100粒の合計質量が0.09gを超える場合、成形金型細部への充填が困難となる。その結果、成形可能な金型が単純形状のものに限定される可能性がある。一方、粒子100粒の合計質量が0.02g未満である場合、粒子の生産性が劣る可能性がある。すなわち、粒子100粒の合計質量において、より好ましい範囲は0.04~0.06gである。なお、ポリスチレン系樹脂以外の樹脂では、上記範囲に樹脂の比重を乗じた値が、好ましい粒子100粒の合計質量の範囲となる。
<Total mass of 100 particles>
In the expandable polystyrene resin particles, the total mass of 100 arbitrarily selected particles is preferably in the range of 0.02 to 0.09 g. When the total mass of 100 particles exceeds 0.09 g, it becomes difficult to fill the details of the molding die. As a result, there is a possibility that moldable molds are limited to simple shapes. On the other hand, when the total mass of 100 particles is less than 0.02 g, the productivity of the particles may be inferior. That is, a more preferable range is 0.04 to 0.06 g in the total mass of 100 particles. For resins other than polystyrene-based resins, a value obtained by multiplying the above range by the specific gravity of the resin is the range of the total mass of 100 preferable particles.
<予備発泡粒子の嵩発泡倍数の測定方法>
 十分乾燥した予備発泡粒子をメスシリンダー(例えば、500mL容量)内に、漏斗を用いて自然落下させた。その後、予備発泡粒子の容積が一定となるまで、メスシリンダーの底をたたいて予備発泡粒子を充填した。このときの予備発泡粒子の容積と質量を測定し、次式(5)により予備発泡粒子の嵩発泡倍数を算出した。なお容積は1mL単位で読みとり、質量は最小目盛0.01gの電子天秤にて測定した。スチレン系樹脂の樹脂比重は1.0として計算し、嵩発泡倍数は小数点以下1桁目を四捨五入した。
 式(5) 嵩発泡倍数(倍)=予備発泡粒子の容積(mL)/予備発泡粒子の質量(g)×樹脂比重
<Method for measuring bulk expansion ratio of pre-expanded particles>
The sufficiently dried pre-expanded particles were naturally dropped into a graduated cylinder (for example, 500 mL capacity) using a funnel. Thereafter, the pre-expanded particles were filled by hitting the bottom of the graduated cylinder until the volume of the pre-expanded particles became constant. The volume and mass of the pre-expanded particles at this time were measured, and the bulk expansion ratio of the pre-expanded particles was calculated by the following formula (5). The volume was read in units of 1 mL, and the mass was measured with an electronic balance having a minimum scale of 0.01 g. The resin specific gravity of the styrene resin was calculated as 1.0, and the bulk expansion factor was rounded off to the first decimal place.
Formula (5) Bulk expansion ratio (times) = volume of pre-expanded particles (mL) / mass of pre-expanded particles (g) × resin specific gravity
<発泡成形体の発泡倍数の測定方法>
 十分に乾燥させた発泡成形体から、測定用試験片(例300×400×30mm)を切出し、この試験片の寸法と質量を測定した。この測定した寸法を基に試験片の体積を算出し、次式(6)により発泡成形体の発砲倍数を算出した。なお、スチレン系樹脂の樹脂比重は1.0とした。
 式(6) 発泡倍数(倍)=試験片体積(cm)/試験片質量(g)×樹脂比重
<Measurement method of expansion ratio of foamed molded product>
A test specimen for measurement (example 300 × 400 × 30 mm) was cut out from the foamed molded article that had been sufficiently dried, and the dimensions and mass of the test specimen were measured. The volume of the test piece was calculated based on the measured dimensions, and the foaming multiple of the foamed molded product was calculated by the following formula (6). The specific gravity of the styrene resin was 1.0.
Formula (6) Foaming multiple (times) = test piece volume (cm 3 ) / test piece mass (g) × resin specific gravity
<ビカット軟化点の測定方法>
 東芝機械社製射出成形機(IS-80CNV)を用いて、シリンダー温度220℃で12.7mm×64mm×6.4mm寸法の試験片を成形した。この試験片を用い、JISK7206に準拠して、荷重50Nの条件で測定した(単位:℃)。
<Measurement method of Vicat softening point>
A test piece having a size of 12.7 mm × 64 mm × 6.4 mm was molded at a cylinder temperature of 220 ° C. using an injection molding machine (IS-80CNV) manufactured by Toshiba Machine. Using this test piece, measurement was performed under the condition of a load of 50 N in accordance with JISK7206 (unit: ° C.).
<強度の評価>
 JISA9511:2006「発泡プラスチック保温材」記載の方法にて、曲げ強度を測定した。すなわち、テンシロン万能試験機UCT-10T(オリエンテック社製)を用いて、試験帯サイズを75mm×300mm×30mm、圧縮速度を10mm/min、先端治具を加圧楔10Rおよび支持台10R、支点間距離を200mmとして測定し、次式(7)により曲げ強度を算出した。試験片の数は3個とし、その平均値を求めた。
  式(7) 曲げ強度(MPa)=3FL/2bh
[Fは曲げ最大荷重(N)、Lは支点間距離(mm)、bは試験片の幅(mm)、hは試験片の厚み(mm)、をそれぞれ表す。]
なお、曲げ強度の評価として、曲げ強度の値が0.28MPa以上を○、0.28MPa未満を×とした。
<Strength evaluation>
The bending strength was measured by the method described in JIS A9511: 2006 “Foamed plastic heat insulating material”. In other words, using a Tensilon universal testing machine UCT-10T (Orientec Co., Ltd.), the test strip size is 75 mm × 300 mm × 30 mm, the compression speed is 10 mm / min, the tip jig is the pressure wedge 10R and the support base 10R, the fulcrum The distance was measured as 200 mm, and the bending strength was calculated by the following formula (7). The number of test pieces was three, and the average value was obtained.
Formula (7) Bending strength (MPa) = 3FL / 2bh 2
[F represents the maximum bending load (N), L represents the distance between supporting points (mm), b represents the width (mm) of the test piece, and h represents the thickness (mm) of the test piece. ]
In addition, as evaluation of bending strength, the value of bending strength was 0.28 MPa or more, and ○ was less than 0.28 MPa.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明に係る実施例1では、ダイス本体の温度(ダイス保持温度)を溶融樹脂温度よりも120℃高い300℃に保持して運転したことにより、造粒開始から48時間経過時点でも、ダイス圧力の上昇が少なく、ノズルの開孔率が高いままであった(表1を参照)。すなわち、48時間以上の連続運転が十分に可能であった。
 実施例1では、造粒開始1時間後の製造物100粒の質量が0.0417gであるのに対し、48時間後の製造物100粒の質量が0.0426gであった(表1を参照)。すなわち、連続運転における製造物の質量増加率が2%程度と小さかった。
 実施例1で得られた発泡性ポリスチレン樹脂粒子(図6を参照)は、比較例2で得られた樹脂粒子(図7を参照)と比べ、粒子内のボイド(図6及び図7中で粒子内に見える空隙)の数が少なかった。
 実施例1で得られた発泡性ポリスチレン樹脂粒子を予備発泡後、型内発泡成形して得られた発泡成形体は、比較例2で得られたものと比べ、高い強度を示した(表1を参照)。
In Example 1 according to the present invention, the die pressure (die holding temperature) was maintained at 300 ° C., which is 120 ° C. higher than the molten resin temperature. And the nozzle opening rate remained high (see Table 1). That is, continuous operation for 48 hours or more was sufficiently possible.
In Example 1, the mass of 100 products after 1 hour of granulation was 0.0417 g, whereas the mass of 100 products after 48 hours was 0.0426 g (see Table 1). ). That is, the mass increase rate of the product in the continuous operation was as small as about 2%.
The expandable polystyrene resin particles obtained in Example 1 (see FIG. 6) are more voids in the particles (see FIGS. 6 and 7) than the resin particles obtained in Comparative Example 2 (see FIG. 7). The number of voids visible in the particles was small.
The foamed molded product obtained by pre-foaming the expandable polystyrene resin particles obtained in Example 1 and then in-mold foam-molding showed higher strength than that obtained in Comparative Example 2 (Table 1). See).
 これに対して、比較例1では、ダイス本体の温度(ダイス保持温度)を溶融樹脂温度よりも20℃高い200℃に保持して運転した。この比較例1では、ノズルが速やかに閉塞すると共に造粒開始から1時間以内でダイス耐圧上限まで圧力上昇し、以降の運転ができなかった(表1を参照)。 In contrast, in Comparative Example 1, the temperature of the die body (die holding temperature) was maintained at 200 ° C., which is 20 ° C. higher than the molten resin temperature. In Comparative Example 1, the nozzle quickly closed and the pressure increased to the upper limit of the die pressure resistance within one hour from the start of granulation, and the subsequent operation was not possible (see Table 1).
 また、比較例2では、ダイス本体の温度(ダイス保持温度)を溶融樹脂温度よりも110℃高い290℃に保持して運転した。この比較例2では、造粒開始から48時間後もダイス圧力の上昇は穏やかであり、ノズルの開孔率も高く、連続運転が可能であった。
 しかしながら、造粒開始から48時間経過後に比較例2で得られた発泡性ポリスチレン樹脂粒子は、実施例1で得られた樹脂粒子と比べると、100粒の質量が0.0451gと重くなると共に、嵩密度が低下し、やや大粒の粒子となった。さらに、比較例2では、粒径1.4mm以上の大粒子の割合が0.5%(実施例1では0.1%)と高くなり、粒径にバラツキが大きくなった。
 比較例2で得られた発泡性ポリスチレン樹脂粒子(図7を参照)は、実施例1で得られた樹脂粒子(図6を参照)と比べ、粒子内のボイドが多くなった。
 比較例2で得られた発泡性ポリスチレン樹脂粒子を予備発泡後、型内発泡成形して得られた発泡成形体は、実施例1で得られたものと比べ、低い強度を示した。
In Comparative Example 2, the temperature of the die body (die holding temperature) was maintained at 290 ° C., 110 ° C. higher than the molten resin temperature. In Comparative Example 2, the increase in the die pressure was gentle even after 48 hours from the start of granulation, the nozzle opening rate was high, and continuous operation was possible.
However, the foamable polystyrene resin particles obtained in Comparative Example 2 after 48 hours from the start of granulation have a mass of 100 particles that is as heavy as 0.0451 g when compared with the resin particles obtained in Example 1, The bulk density decreased and the particles became slightly large. Furthermore, in Comparative Example 2, the ratio of large particles having a particle size of 1.4 mm or more was as high as 0.5% (0.1% in Example 1), and the variation in particle size was large.
The expandable polystyrene resin particles (see FIG. 7) obtained in Comparative Example 2 had more voids in the particles than the resin particles obtained in Example 1 (see FIG. 6).
The foamed molded product obtained by pre-expanding the expandable polystyrene resin particles obtained in Comparative Example 2 and then in-mold foam molding showed lower strength than that obtained in Example 1.
 本発明によれば、水中ホットカット法による発泡性熱可塑性樹脂粒子の製造において、押出時間の経過に伴うダイス小孔の閉塞を抑制でき、安定して小粒で均一な発泡性熱可塑性樹脂粒子を製造することができる。本発明で得られる発泡性熱可塑性樹脂粒子は、型内発泡成形法により各種形状に発泡成形され、緩衝材や保温材などとして利用される発泡成形体の製造に利用される。 According to the present invention, in the production of expandable thermoplastic resin particles by the underwater hot-cut method, it is possible to suppress the clogging of the die small holes with the passage of the extrusion time, and stably and uniformly expandable thermoplastic resin particles. Can be manufactured. The foamable thermoplastic resin particles obtained in the present invention are foam-molded into various shapes by an in-mold foam-molding method, and are used for the production of a foam-molded product used as a cushioning material, a heat insulating material or the like.
 1 造粒用ダイス
 2 押出機(樹脂供給装置)
 3 カッター
 4 チャンバー
 6 送水ポンプ
 10 ダイス本体
 11 ダイホルダ
 13 樹脂吐出面
 14、14A 樹脂流路
 14a、14b 斜面(直線部)
 15 ノズル
 16 断熱材
 17 カートリッジヒーター
 18 短ヒーター
 19A,19B 測温体
 T 造粒装置
1 Die for granulation 2 Extruder (resin feeder)
3 Cutter 4 Chamber 6 Water Pump 10 Die Body 11 Die Holder 13 Resin Discharge Surface 14, 14A Resin Channel 14a, 14b Slope (Linear Part)
15 Nozzle 16 Heat insulating material 17 Cartridge heater 18 Short heater 19A, 19B Temperature measuring element T Granulator

Claims (3)

  1.   樹脂吐出面を有するダイス本体を少なくとも有する造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、
      前記熱可塑性樹脂を前記造粒用ダイスに向けて移動させながら前記熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、
      前記ダイス本体の樹脂吐出面に開孔したノズルから吐出される前記発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、を有する発泡性熱可塑性樹脂粒子の製造方法であって、
      前記ダイス本体の温度が発泡剤含有樹脂の溶融樹脂温度より115℃~200℃高い範囲となるように温度制御しつつ、発泡性熱可塑性樹脂粒子を得る発泡性熱可塑性樹脂粒子の製造方法。
    A step of supplying a thermoplastic resin to a resin supply apparatus equipped with a granulation die having at least a die body having a resin discharge surface and melt-kneading the resin supply device;
    A step of injecting a foaming agent into the thermoplastic resin while moving the thermoplastic resin toward the granulation die to form a foaming agent-containing resin;
    Cutting the foaming agent-containing resin discharged from a nozzle opened in the resin discharge surface of the die body in a cooling medium with a cutter to obtain expandable thermoplastic resin particles. A manufacturing method of
    A method for producing foamable thermoplastic resin particles, wherein foamable thermoplastic resin particles are obtained while controlling the temperature of the die body so that the temperature of the die body is 115 ° C to 200 ° C higher than the molten resin temperature of the foaming agent-containing resin.
  2.   樹脂吐出面を有するダイス本体を少なくとも有する造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、
      前記熱可塑性樹脂を前記造粒用ダイスに向けて移動させながら前記熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、
      前記ダイス本体の樹脂吐出面に開孔したノズルから吐出される前記発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、
      前記発泡性熱可塑性樹脂粒子を予備発泡して熱可塑性樹脂発泡粒子を得る工程と、を有する熱可塑性樹脂発泡粒子の製造方法であって、
      前記ダイス本体の温度が発泡剤含有樹脂の溶融樹脂温度より115℃~200℃高い範囲となるように温度制御しつつ、発泡性熱可塑性樹脂粒子を得る熱可塑性樹脂発泡粒子の製造方法。
    A step of supplying a thermoplastic resin to a resin supply apparatus equipped with a granulation die having at least a die body having a resin discharge surface and melt-kneading the resin supply device;
    A step of injecting a foaming agent into the thermoplastic resin while moving the thermoplastic resin toward the granulation die to form a foaming agent-containing resin;
    Cutting the foaming agent-containing resin discharged from a nozzle opened in the resin discharge surface of the die body in a cooling medium with a cutter to obtain expandable thermoplastic resin particles;
    A step of pre-foaming the foamable thermoplastic resin particles to obtain thermoplastic resin foam particles, and a method for producing thermoplastic resin foam particles,
    A method for producing foamed thermoplastic resin particles, wherein foamable thermoplastic resin particles are obtained while controlling the temperature of the die main body to be in a range 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin.
  3.   樹脂吐出面を有するダイス本体を少なくとも有する造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、
      前記熱可塑性樹脂を前記造粒用ダイスに向けて移動させながら前記熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、
      前記ダイス本体の樹脂吐出面に開孔したノズルから吐出される前記発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、
      前記発泡性熱可塑性樹脂粒子を予備発泡して熱可塑性樹脂発泡粒子を得る工程と、
     前記熱可塑性樹脂発泡粒子を型内発泡成形して熱可塑性樹脂発泡成形体を得る工程と、を有する熱可塑性樹脂発泡成形体の製造方法であって、
     前記ダイス本体の温度が発泡剤含有樹脂の溶融樹脂温度より115℃~200℃高い範囲となるように温度制御しつつ、発泡性熱可塑性樹脂粒子を得る熱可塑性樹脂発泡成形体の製造方法。
    A step of supplying a thermoplastic resin to a resin supply apparatus equipped with a granulation die having at least a die body having a resin discharge surface and melt-kneading the resin supply device;
    A step of injecting a foaming agent into the thermoplastic resin while moving the thermoplastic resin toward the granulation die to form a foaming agent-containing resin;
    Cutting the foaming agent-containing resin discharged from a nozzle opened in the resin discharge surface of the die body in a cooling medium with a cutter to obtain expandable thermoplastic resin particles;
    Pre-foaming the foamable thermoplastic resin particles to obtain thermoplastic resin foam particles;
    A process for obtaining a thermoplastic resin foam molded article by foam-molding the thermoplastic resin foam particles in a mold, and a method for producing a thermoplastic resin foam molded article,
    A method for producing a thermoplastic resin foam molded article for obtaining expandable thermoplastic resin particles while controlling the temperature of the die main body to be in a range of 115 ° C. to 200 ° C. higher than the molten resin temperature of the foaming agent-containing resin.
PCT/JP2010/000799 2009-02-09 2010-02-09 Method for manufacturing foamable thermoplastic resin particles, method for manufacturing thermoplastic resin foam particles, and method for manufacturing thermoplastic resin foam molded article WO2010090046A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800160000A CN102387902A (en) 2009-02-09 2010-02-09 Method for manufacturing foamable thermoplastic resin particles, method for manufacturing thermoplastic resin foam particles, and method for manufacturing thermoplastic resin foam molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009027299A JP2010179627A (en) 2009-02-09 2009-02-09 Production method for foaming thermoplastic resin particle, foamed thermoplastic resin particle, and foamed thermoplastic resin molding
JP2009-027299 2009-02-09

Publications (1)

Publication Number Publication Date
WO2010090046A1 true WO2010090046A1 (en) 2010-08-12

Family

ID=42541953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000799 WO2010090046A1 (en) 2009-02-09 2010-02-09 Method for manufacturing foamable thermoplastic resin particles, method for manufacturing thermoplastic resin foam particles, and method for manufacturing thermoplastic resin foam molded article

Country Status (4)

Country Link
JP (1) JP2010179627A (en)
CN (1) CN102387902A (en)
TW (1) TWI410315B (en)
WO (1) WO2010090046A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201688A (en) * 2011-03-23 2012-10-22 Sekisui Plastics Co Ltd Expandable polystyrene resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article
JP2013071995A (en) * 2011-09-28 2013-04-22 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
EP3199314A1 (en) * 2016-01-27 2017-08-02 Coperion GmbH Strand generating device for generating granulatable material strands and granulator device for a worm machine with such a strand generating device
WO2018078726A1 (en) * 2016-10-25 2018-05-03 積水化成品工業株式会社 Olefinic elastomer resin particles, foamable particles, foamed particles, and foamed molded body

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012003566B9 (en) * 2011-08-29 2021-08-05 Sekisui Plastics Co., Ltd. Aromatic polyester-based foamed resin particles for in-mold foam molding and methods for producing the same, in-mold foam molded product, structural composite component, and use of the foam molded product or structural composite component as a component for an automobile
JP6043562B2 (en) * 2012-09-27 2016-12-14 積水化成品工業株式会社 Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP6472405B2 (en) * 2015-09-30 2019-02-20 積水化成品工業株式会社 Olefin-based elastomer resin particles, expandable particles, expanded particles, and expanded molded articles
CN106426624A (en) * 2016-12-04 2017-02-22 重庆精榜高分子材料有限公司 Plastic particle machining device facilitating cutting
JP7084692B2 (en) * 2017-03-03 2022-06-15 株式会社カネカ Method for manufacturing foamable thermoplastic resin particles
JP6962694B2 (en) * 2017-03-03 2021-11-05 株式会社カネカ Method for manufacturing foamable thermoplastic resin particles
EP3613796B1 (en) * 2017-05-26 2021-02-10 Mitsubishi Gas Chemical Company, Inc. Method for producing resin pellets
CN115298252A (en) * 2020-03-24 2022-11-04 株式会社钟化 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, foamed molded article of chlorinated vinyl chloride resin using same, and method for producing expandable chlorinated vinyl chloride resin particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386504A (en) * 1989-08-30 1991-04-11 Mitsubishi Electric Home Appliance Co Ltd Manufacture of thermoplastic resin granular material
JPH0631726A (en) * 1992-07-15 1994-02-08 Mitsubishi Yuka Badische Co Ltd Manufacture of foamable thermoplastic resin particles
JPH10119037A (en) * 1996-10-17 1998-05-12 Kanegafuchi Chem Ind Co Ltd Preparation of polyolefin-based resin particle and prefoamed particle
JP2002166417A (en) * 2000-09-20 2002-06-11 Sumitomo Chem Co Ltd Method for manufacturing powder of thermoplastic elastomer composition
JP2002307427A (en) * 2001-04-13 2002-10-23 Asahi Kasei Corp Method for kneading with excellent physical properties
WO2004080678A1 (en) * 2003-03-12 2004-09-23 Sekisui Plastics Co., Ltd. Granulation die, granulation apparatus and process for producing expandable thermoplastic resin granule

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386504A (en) * 1989-08-30 1991-04-11 Mitsubishi Electric Home Appliance Co Ltd Manufacture of thermoplastic resin granular material
JPH0631726A (en) * 1992-07-15 1994-02-08 Mitsubishi Yuka Badische Co Ltd Manufacture of foamable thermoplastic resin particles
JPH10119037A (en) * 1996-10-17 1998-05-12 Kanegafuchi Chem Ind Co Ltd Preparation of polyolefin-based resin particle and prefoamed particle
JP2002166417A (en) * 2000-09-20 2002-06-11 Sumitomo Chem Co Ltd Method for manufacturing powder of thermoplastic elastomer composition
JP2002307427A (en) * 2001-04-13 2002-10-23 Asahi Kasei Corp Method for kneading with excellent physical properties
WO2004080678A1 (en) * 2003-03-12 2004-09-23 Sekisui Plastics Co., Ltd. Granulation die, granulation apparatus and process for producing expandable thermoplastic resin granule

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201688A (en) * 2011-03-23 2012-10-22 Sekisui Plastics Co Ltd Expandable polystyrene resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article
JP2013071995A (en) * 2011-09-28 2013-04-22 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
EP3199314A1 (en) * 2016-01-27 2017-08-02 Coperion GmbH Strand generating device for generating granulatable material strands and granulator device for a worm machine with such a strand generating device
WO2018078726A1 (en) * 2016-10-25 2018-05-03 積水化成品工業株式会社 Olefinic elastomer resin particles, foamable particles, foamed particles, and foamed molded body

Also Published As

Publication number Publication date
CN102387902A (en) 2012-03-21
JP2010179627A (en) 2010-08-19
TWI410315B (en) 2013-10-01
TW201038383A (en) 2010-11-01

Similar Documents

Publication Publication Date Title
WO2010090046A1 (en) Method for manufacturing foamable thermoplastic resin particles, method for manufacturing thermoplastic resin foam particles, and method for manufacturing thermoplastic resin foam molded article
JP5048793B2 (en) Granulation die, granulation apparatus, and method for producing expandable thermoplastic resin particles
EP2241590B1 (en) Expandable polystyrene resin beads, process for production thereof and expanded moldings
JP4221408B2 (en) Method for producing thermoplastic resin foamable particles
JP4799664B2 (en) Die for granulation, granulator, and method for producing expandable thermoplastic resin particles
TWI529205B (en) Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form
JP5086900B2 (en) Method for producing foamable thermoplastic resin particles, method for producing thermoplastic resin foamed particles, and method for producing thermoplastic resin foam molded article
CN104080847B (en) Foaming polystyrene series resin particle and its manufacture method and expanded moldings
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP5690629B2 (en) Method for producing polystyrene-based expandable resin particles
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JPH07314438A (en) Production of foamable thermoplastic resin granule
JP5986410B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
WO2011065561A1 (en) Foamable thermoplastic resin particles and method for producing same
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP2012207186A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP7231691B2 (en) Method for producing expandable thermoplastic resin particles
JP2012207156A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP5734611B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP2012207157A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP2012077115A (en) Heat insulator and method for producing the same
JP2012076753A (en) Cushioning material and method for manufacturing the same
JP2013071995A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016000.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738385

Country of ref document: EP

Kind code of ref document: A1