JPH10119037A - Preparation of polyolefin-based resin particle and prefoamed particle - Google Patents

Preparation of polyolefin-based resin particle and prefoamed particle

Info

Publication number
JPH10119037A
JPH10119037A JP27482796A JP27482796A JPH10119037A JP H10119037 A JPH10119037 A JP H10119037A JP 27482796 A JP27482796 A JP 27482796A JP 27482796 A JP27482796 A JP 27482796A JP H10119037 A JPH10119037 A JP H10119037A
Authority
JP
Japan
Prior art keywords
resin particles
polyolefin
water
surfactant
soluble inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27482796A
Other languages
Japanese (ja)
Inventor
Tomonori Iwamoto
友典 岩本
Kenichi Senda
健一 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP27482796A priority Critical patent/JPH10119037A/en
Publication of JPH10119037A publication Critical patent/JPH10119037A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a polyolefin-based prefoamed particle having a favorable moldability at an in-mold molding by a method wherein a small and uniformly shaped polyolefin-based resin particle can be prepared by an under-water cutting system. SOLUTION: A polyolefin-based resin particle is manufactured by extruding a polyolefin-based resin under melted state through a die nozzle having a bore below 2mm at the flow rate of 0.5-8kg/hr per one bore with an extruder in the hot water having the temperature of 65-95 deg.C prepared by adding a calcium tertiary phosphate as a hard water-soluble inorganic matter and an anionic surfactant having the electric charge opposite to the electric charge on the surface of the above-mentioned inorganic matter such as an n-paraffin sodium carbonate sulfonate, sodium dodecylbenzenesulfonate or the like or a kaolin as a hardly water-soluble inorganic matter and a cationic surfactant having the electric charge opposite to the electric charge on the surface of the above-mentioned inorganic matter such as an alkyltrimethyl ammonium chloride, dialkyl dimethyl ammonium chloride, benzalkonium chloride or the like and then cut with a cutter blade. Finally, the prepared polyolefin- based resin particle is pre-foamed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、緩衝包装材、通
函、断熱材、自動車のバンパー芯材等に用いられるポリ
オレフィン系樹脂の型内発泡成形体の製造に用いられる
ポリオレフィン系樹脂粒子および予備発泡粒子の製造方
法に関するものである。
[0001] The present invention relates to polyolefin resin particles used for the production of in-mold foamed polyolefin resin particles used for cushioning packaging materials, boxes, heat insulating materials, bumper core materials for automobiles and the like. The present invention relates to a method for producing expanded particles.

【0002】[0002]

【従来の技術】ポリオレフィン系樹脂の型内発泡成形体
の製造に用いる予備発泡粒子は、通常0.5〜10mg
/粒程度の樹脂粒子より製造される。この場合、予備発
泡粒子は、前記樹脂粒子を再度混練溶融することなく、
そのまま発泡させて製造されるため、予備発泡前の樹脂
粒子形状が予備発泡粒子形状に大きく影響する。樹脂粒
子が大き過ぎると、予備発泡粒子とした時に粒径が大き
くなり成形型の薄肉部への充填が悪くなる。また、樹脂
粒子形状が均一でないと、予備発泡粒子とした時に粒子
毎の発泡倍率にバラツキが生じ、型内成形して発泡成形
体とした時に成形体毎の目付のバラツキや成形体内部の
密度バラツキが大きくなり、生産効率上あるいは緩衝設
計上好ましくない。さらに、樹脂粒子に残留歪み(残留
応力)があると、予備発泡粒子製造工程において、応力
緩和のため予備発泡粒子が扁平となる場合があり、型内
成形して発泡成形体とする時に成形性に悪影響を与え
る。このため、予備発泡粒子の製造に用いる樹脂粒子
は、形状が均一で小さく、残留歪みが一定か、より好ま
しくは残留歪みが少ない必要がある。このような樹脂粒
子を製造する方法としては、ストランドカット方式、ア
ンダーウォーターカット方式等がある。
2. Description of the Related Art The pre-expanded particles used for producing an in-mold expanded molded article of a polyolefin resin are usually 0.5 to 10 mg.
/ Particles of resin particles. In this case, the pre-expanded particles do not knead and melt the resin particles again,
Since it is manufactured by foaming as it is, the shape of the resin particles before prefoaming greatly affects the shape of the prefoamed particles. If the resin particles are too large, the pre-expanded particles will have a large particle size, and the filling of the thin portion of the mold will be poor. In addition, if the resin particle shape is not uniform, when the pre-expanded particles are formed, the expansion ratio varies for each particle. Variations increase, which is not preferable in terms of production efficiency or buffer design. Furthermore, if there is residual strain (residual stress) in the resin particles, the pre-expanded particles may become flat due to stress relaxation in the pre-expanded particle manufacturing process. Adversely affect For this reason, the resin particles used in the production of the pre-expanded particles need to have a uniform and small shape and a constant residual strain, and more preferably a small residual strain. Methods for producing such resin particles include a strand cut method, an underwater cut method, and the like.

【0003】ストランドカット方式による場合は、樹脂
粒子の残留歪みが大きく、予備発泡粒子製造時に樹脂粒
子の押出方向に大きな収縮がおこり、予備発泡粒子の形
状が大きく変化する。このため、バラツキの小さい所望
の形状の予備発泡粒子を得るためには、予め予備発泡粒
子製造工程での樹脂粒子の形状の変化率を把握して最適
な樹脂粒子製造条件を決定し、この条件を厳密に再現す
る必要がある。しかし、実際には樹脂粒子製造条件を安
定して厳密に再現することは難しく、収率は低くならざ
るを得ない。また、原料樹脂の変更にも多大な事前検討
が必要なこと、樹脂粒子製造設備の設置に長い距離を必
要とすること、ストランド本数を増やすには限度がある
ため比較的生産性が低いこと、ストランド切れのトラブ
ルが多いこと等の課題がある。
[0003] In the case of the strand cut method, the residual distortion of the resin particles is large, and when the pre-expanded particles are produced, a large shrinkage occurs in the extrusion direction of the resin particles, and the shape of the pre-expanded particles changes greatly. For this reason, in order to obtain pre-expanded particles of a desired shape with small variation, the optimum resin particle production conditions are determined by grasping the rate of change of the shape of the resin particles in the pre-expanded particle production step in advance, and this condition is determined. Must be reproduced exactly. However, in practice, it is difficult to stably and strictly reproduce the resin particle production conditions, and the yield must be low. In addition, a great deal of pre-examination is required to change the raw material resin, a long distance is required to install the resin particle manufacturing equipment, and the productivity is relatively low because there is a limit in increasing the number of strands, There are problems such as many strand breaks.

【0004】アンダーウォーターカット方式による樹脂
粒子製造法としては、特開昭61−195808号公報
や特開平1−234212号公報に開示されている方法
がある。これらの方法では、ストランドカット方式のよ
うな押出方向の大きな収縮はないものの、予備発泡粒子
とした時に、大きな空洞が発生したり、非球形となるこ
とがあり、安定して予備発泡粒子を得るには到っておら
ず、必ずしも満足し得る方法とは言い難い。このような
問題点を解決する方法として、本発明者等は、1穴当り
の吐出量が0.5〜8Kg/Hrで口径2mm未満のダ
イノズルより、5〜90℃で且つ樹脂温度より140〜
220℃低い温水中に溶融樹脂を押し出す方法を見い出
した(特開平8−90556号公報)。
As a method for producing resin particles by an underwater cut method, there are methods disclosed in JP-A-61-195808 and JP-A-1-234212. In these methods, although there is no large shrinkage in the extrusion direction as in the case of the strand cut method, when formed into pre-expanded particles, large cavities may be generated or may be non-spherical, so that pre-expanded particles are stably obtained. And it is not always a satisfactory method. As a method for solving such a problem, the present inventors have proposed that a discharge rate per hole is 0.5 to 8 kg / Hr, a die nozzle having a diameter of less than 2 mm is 5 to 90 ° C., and a resin temperature is 140 to 140 ° C.
A method of extruding a molten resin into warm water at 220 ° C. lower has been found (JP-A-8-90556).

【0005】[0005]

【発明が解決しようとする課題】しかし、その後の更な
る研究の結果、アンダーウォーターカット方式で製造し
た樹脂粒子から製造した予備発泡粒子を型内成形した場
合、成形性に劣る、つまり予備発泡粒子間融着が悪くな
るという問題があることがわかった。さらに、融着に大
きく関与する引張物性も同時に悪化することがわかっ
た。そこで、本発明では、アンダーウォーターカット方
式による樹脂粒子の製造に際し、形状が均一で小さいポ
リオレフィン系樹脂粒子を製造しうる方法、および、型
内成形時の成形性が良好な予備発泡粒子を製造する方法
を提供することを目的とする。
However, as a result of further research, when pre-expanded particles produced from resin particles produced by the underwater cut method are molded in a mold, the moldability is poor, that is, the pre-expanded particles are inferior. It was found that there was a problem that the inter-welding became worse. Furthermore, it was found that the tensile properties greatly involved in the fusion also deteriorated at the same time. Therefore, in the present invention, when producing resin particles by an underwater cut method, a method capable of producing polyolefin resin particles having a uniform shape and small size, and producing pre-expanded particles having good moldability during in-mold molding. The aim is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明者等は上記の目的
を達成するために鋭意研究の結果、溶融樹脂を押出機か
ら押し出す際のダイノズル1穴当たりの吐出量、ダイノ
ズル口径、および冷却水の水温を一定の範囲に設定する
ことにより、上記問題を解決しうることを見い出し、本
発明を完成させた。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the discharge amount per die nozzle hole, the die nozzle diameter, and the cooling water when the molten resin is extruded from the extruder. It has been found that the above-mentioned problem can be solved by setting the water temperature within a certain range, and the present invention has been completed.

【0007】即ち、本発明は、押出機を用い、溶融状態
のポリオレフィン系樹脂を、口径2mm未満のダイノズ
ルより、1穴当たりの吐出量を0.5〜8Kg/Hrと
して、難水溶性無機物および該難水溶性無機物表面と逆
の電荷を有する界面活性剤を添加した65〜95℃の温
水中に押し出し、該温水中でカッター刃により切断する
ことを特徴とするポリオレフィン系樹脂粒子の製造方
法、および前記の方法により製造したポリオレフィン系
樹脂粒子を予備発泡することを特徴とするポリオレフィ
ン系樹脂予備発泡粒子の製造方法を主な内容とするもの
である。
That is, according to the present invention, a poorly water-soluble inorganic substance and a molten polyolefin resin are discharged from a die nozzle having a diameter of less than 2 mm at a discharge rate of 0.5 to 8 kg / Hr using an extruder. A method for producing polyolefin-based resin particles, characterized by extruding into a hot water at 65 to 95 ° C. to which a surfactant having a charge opposite to that of the poorly water-soluble inorganic material is added, and cutting with a cutter blade in the warm water; And a method for producing pre-expanded polyolefin-based resin particles, which comprises pre-expanding the polyolefin-based resin particles produced by the above method.

【0008】[0008]

【発明の実施の形態】前記ダイノズル1穴当たりの吐出
量は、押出の安定性や生産量等から設定される。押出時
の樹脂粘度やダイ形状にもよるが、8Kg/Hrを超え
るとダイノズル内での溶融樹脂の流動が安定せず、満足
な形状の樹脂粒子が得られない。また、押出機の能力に
もよるが、実用的な生産規模と押出の安定性を考慮する
と、0.5Kg/Hr以上、好ましくは2Kg/Hr以
上が適当である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The discharge amount per die nozzle hole is set based on extrusion stability, production amount, and the like. Although it depends on the viscosity of the resin during extrusion and the shape of the die, if it exceeds 8 kg / Hr, the flow of the molten resin in the die nozzle will not be stable, and resin particles of a satisfactory shape cannot be obtained. Further, depending on the capacity of the extruder, in consideration of a practical production scale and extrusion stability, 0.5 kg / Hr or more, preferably 2 kg / Hr or more is appropriate.

【0009】また、前記ダイノズル口径は、所望の大き
さの樹脂粒子を得るために、ダイウェルを考慮して設定
される。一般に、所望する大きさのポリオレフィン系樹
脂予備発泡粒子を得るために必要な樹脂粒子は一粒当た
りの重量で管理され、その重量は通常0.2〜10mg
/粒程度である。このためダイノズル口径は2mm未満
が適当である。なお、このダイノズル口径とは、ダイノ
ズルのランド先端部の直径である。
The diameter of the die nozzle is set in consideration of the die well in order to obtain resin particles of a desired size. Generally, resin particles required to obtain polyolefin-based resin pre-expanded particles of a desired size are controlled by the weight per particle, and the weight is usually 0.2 to 10 mg.
/ Grain. Therefore, the diameter of the die nozzle is suitably less than 2 mm. The die nozzle diameter is the diameter of the land tip of the die nozzle.

【0010】また、樹脂粒子の大きさは、0.2〜10
mg/粒、好ましくは0.5〜6mg/粒の範囲とす
る。樹脂粒子の大きさが0.2mg/粒未満の場合に
は、ダイノズル1穴当たりの吐出量を落とす必要があ
り、生産性が低下する。生産性を確保しようとするとダ
イノズル穴径を小さくしてダイノズル穴数を増やす必要
があるが、そうすると穴間距離が短くなり樹脂粒子同士
の融着が増大する。また、1穴当たりの吐出量を落とす
と、ダイノズル内壁とのせん断発熱が減少してノズル詰
まりを起こしやすい。また、樹脂粒子の大きさが10m
g/粒を超えると、予備発泡粒子とした時に粒子径が大
きくなる。予備発泡粒子径が大きいと型内成形時に肉薄
部分への充填性が悪化し、満足な成形体を得られない場
合がある。また、このときのカッター刃の周速は、10
m/sec以上、好ましくは15m/sec以上とす
る。カッター刃の周速が10m/secより遅いと、樹
脂粒子の形状が不定形となり好ましい形状でなくなる場
合があり、また、樹脂粒子が相互に融着する場合もあ
る。なお、このカッター刃の周速とは、ダイノズル位置
での周速を意味する。
[0010] The size of the resin particles is from 0.2 to 10
mg / grain, preferably in the range of 0.5-6 mg / grain. When the size of the resin particles is less than 0.2 mg / particle, it is necessary to reduce the discharge amount per die nozzle hole, and the productivity is reduced. In order to ensure productivity, it is necessary to reduce the diameter of the die nozzle holes and increase the number of die nozzle holes. However, doing so decreases the distance between the holes and increases the fusion between the resin particles. In addition, when the discharge amount per hole is reduced, the heat generated by shearing with the inner wall of the die nozzle is reduced, and the nozzle is easily clogged. In addition, the size of the resin particles is 10 m.
If the amount exceeds g / particle, the particle diameter becomes large when the pre-expanded particles are used. If the diameter of the pre-expanded particles is large, the filling property into a thin portion is deteriorated during in-mold molding, and a satisfactory molded product may not be obtained. The peripheral speed of the cutter blade at this time is 10
m / sec or more, preferably 15 m / sec or more. If the peripheral speed of the cutter blade is lower than 10 m / sec, the shape of the resin particles becomes irregular and may not be a desirable shape, and the resin particles may be fused to each other. The peripheral speed of the cutter blade means the peripheral speed at the position of the die nozzle.

【0011】押出時の樹脂温度は180〜320℃、好
ましくは200〜280℃である。樹脂温度が180℃
未満の場合には、樹脂粘度が高く押し出しが困難で、ダ
イノズル詰まりを起こしやすい。また、樹脂温度が32
0℃を超えると樹脂の熱分解が起こる。
[0011] The resin temperature at the time of extrusion is 180 to 320 ° C, preferably 200 to 280 ° C. 180 ° C resin temperature
If it is less than 3, the resin has a high viscosity and is difficult to extrude. When the resin temperature is 32
If the temperature exceeds 0 ° C., thermal decomposition of the resin occurs.

【0012】さらに、樹脂が押し出される冷却水の温度
は、65℃未満では、得られた樹脂粒子から製造された
予備発泡粒子を型内生成する際の成形性が悪い。その一
方で、95℃を超えると沸騰状態となり、冷却水中に水
蒸気の気泡が混入して樹脂粒子が複数個融着したアグロ
メ粒子が急激に増大し、生産効率が低下するため好まし
くない。また、95℃を超えないまでも、冷却水温度を
高くしていくと、アグロメ粒子が発生し始めるため、生
産効率が低下する。そこで、本発明では、このアグロメ
粒子を減少させるために、冷却水としての温水中に難水
溶性無機物および該難水溶性無機物表面と逆の電荷を有
する界面活性剤を添加する。ここで、前記難水溶性無機
物とは、中性の水に実質的に溶解しない粉末状の無機物
をいい、例えば、第3リン酸カルシウム、炭酸マグネシ
ウム、炭酸カルシウム等の粉末状無機物、カオリン、ベ
ントナイト等の粉末状粘土類等が挙げられる。これらの
難水溶性無機物の表面は、一般に正負いずれかに帯電し
ている。そこで、この難水溶性無機物を添加した温水中
に該難水溶性無機物表面と逆の電荷(イオン)を有する
界面活性剤を加えると、界面活性剤は、その親水基(電
荷イオン)を難水溶性無機物表面側に、疎水基を水相側
にして配位する。これにより、難水溶性無機物表面近傍
は疎水化され、樹脂粒子との親和性が向上し、分散力が
向上して、樹脂粒子製造時のアグロメ粒子の発生が防止
され、生産効率を低下させることなく樹脂粒子を製造す
ることができるのである。したがって、前記難水溶性無
機物および界面活性剤の組合せとしては、難水溶性無機
物が表面が正に帯電する第3リン酸カルシウムの場合に
はアニオン性界面活性剤、また、難水溶性無機物が表面
が負に帯電するカオリンの場合にはカチオン性界面活性
剤が有効である。
Further, if the temperature of the cooling water from which the resin is extruded is less than 65 ° C., the moldability when producing pre-expanded particles produced from the obtained resin particles in a mold is poor. On the other hand, if the temperature exceeds 95 ° C., a boiling state occurs, and bubbles of water vapor are mixed in the cooling water, and the agglomerate particles in which a plurality of resin particles are fused rapidly increase, which is not preferable because the production efficiency decreases. If the temperature of the cooling water is increased even if the temperature does not exceed 95 ° C., agglomerate particles start to be generated, and the production efficiency is reduced. Therefore, in the present invention, in order to reduce the agglomerate particles, a poorly water-soluble inorganic substance and a surfactant having a charge opposite to the surface of the poorly water-soluble inorganic substance are added to warm water as cooling water. Here, the poorly water-soluble inorganic substance refers to a powdery inorganic substance that is not substantially dissolved in neutral water, for example, powdered inorganic substances such as tertiary calcium phosphate, magnesium carbonate, calcium carbonate, kaolin, bentonite, and the like. And powdered clays. The surface of these poorly water-soluble inorganic substances is generally charged to either positive or negative. Therefore, when a surfactant having a charge (ion) opposite to that of the surface of the poorly water-soluble inorganic substance is added to the warm water to which the poorly water-soluble inorganic substance is added, the surfactant dissolves the hydrophilic group (charge ion) of the poorly water-soluble inorganic substance. A hydrophobic group is coordinated to the surface of the inorganic inorganic material with the aqueous phase side. As a result, the vicinity of the surface of the poorly water-soluble inorganic material is hydrophobized, the affinity with the resin particles is improved, the dispersing power is improved, the occurrence of agglomerate particles during the production of the resin particles is prevented, and the production efficiency is reduced. Thus, resin particles can be produced without any need. Therefore, as the combination of the poorly water-soluble inorganic substance and the surfactant, when the poorly water-soluble inorganic substance is tribasic calcium phosphate whose surface is positively charged, the anionic surfactant is used. In the case of kaolin which is charged to a negative polarity, a cationic surfactant is effective.

【0013】さらに、前記第3リン酸カルシウムとして
は、湿式法で合成されて加熱による乾燥工程を経ていな
いスラリー状リン酸カルシウムを使用することが好まし
い。これは、スラリー状リン酸カルシウムは、加熱・乾
燥されたものより表面電荷密度が高いため、リン酸カル
シウム粒子表面への界面活性剤の吸着量が多く、その表
面近傍はより疎水化され、樹脂粒子との親和性がより高
くなるためと推測される。さらに、加熱による乾燥工程
を経ていないため、粒子間の凝集が少なく、粒径が小さ
い。このため、水中に、より均一に分散して樹脂粒子間
の遮蔽効果が高くなるためと推測される。
Further, it is preferable to use, as the third calcium phosphate, slurry calcium phosphate synthesized by a wet method and not subjected to a drying step by heating. This is because the calcium phosphate slurry has a higher surface charge density than the heated and dried calcium phosphate, so that the amount of the surfactant adsorbed on the surface of the calcium phosphate particles is large, the vicinity of the surface is made more hydrophobic, and the affinity with the resin particles is increased. It is presumed that the property becomes higher. Furthermore, since a drying step by heating has not been performed, aggregation between particles is small and the particle size is small. This is presumed to be due to the fact that the resin particles are more uniformly dispersed in water to enhance the shielding effect between the resin particles.

【0014】前記アニオン性界面活性剤としては、n−
パラフィンスルフォン酸ソーダ、ドデシルベンゼンスル
フォン酸ソーダのいずれかを単独で、あるいは両方を併
用して用いることが好ましい。また、カチオン性界面活
性剤としては、塩化ペンザルコニウム、塩化ジアルキル
ジメチルアンモニワム、塩化アルキルトリメチルアンモ
ニウムのいずれかを単独で、あるいは2種以上を併用し
て用いることが好ましい。
As the anionic surfactant, n-
It is preferable to use either sodium paraffin sulfonate or sodium dodecylbenzene sulfonate alone or in combination. As the cationic surfactant, any of penzalkonium chloride, dialkyldimethylammonium chloride and alkyltrimethylammonium chloride is preferably used alone or in combination of two or more.

【0015】上記のような難水溶性無機物と界面活性剤
の使用量としては、難水溶性無機物を0.3〜5重量
%、界面活性剤を0.003〜1.0重量%の範囲で添
加するのが、アグロメ防止効果とコストのバランスから
好ましい。難水溶性無機物の添加量が0.3重量%未満
の場合には、アグロメ粒子減少効果がなく、また、5重
量%を超えると、冷却水としての温水の粘度が上昇して
冷却水を循環させるために高出力のポンプが必要となる
だけでなく、通常、冷却水の循環ラインには樹脂くず等
を取り除くためにストレーナーが設置されているが、冷
却水の粘度が上昇するとストレーナー詰まりを起こしや
すくなる。さらには、過剰の添加は原料コストの上昇に
もつながる。一方、界面活性剤の添加量が0.003重
量%未満ではアグロメ粒子減少効果がなく、また、1.
0重量%を超えるとアグロメ粒子減少効果が飽和し、過
剰の添加となって原料コストの上昇を招くだけでなく、
冷却水の泡立ちが増加し、大量の消泡剤が必要となり、
やはり原料コストの上昇につながるので好ましくない。
また、この界面活性剤の添加量が難水溶性無機物に対し
て大過剰になると、アグロメ粒子減少効果(分散力)を
失う結果ともなる。これは、界面活性剤が配位して疎水
化した難水溶性無機物表面に、さらに界面活性剤が配位
する(ミセル状二重配位)ことにより難水溶性無機物表
面が親水化され、樹脂粒子との親和性を失うことによ
る。
The amount of the water-insoluble inorganic substance and the surfactant used as described above is in the range of 0.3 to 5% by weight of the poorly water-soluble inorganic substance and 0.003 to 1.0% by weight of the surfactant. The addition is preferable from the viewpoint of the balance between the effect of preventing agglomeration and the cost. When the addition amount of the poorly water-soluble inorganic substance is less than 0.3% by weight, there is no effect of reducing the agglomerate particles, and when it exceeds 5% by weight, the viscosity of the warm water as the cooling water increases and the cooling water is circulated. Not only does a high-output pump be required to perform this operation, but strainers are usually installed in the cooling water circulation line to remove resin debris, etc. It will be easier. Furthermore, excessive addition leads to an increase in raw material costs. On the other hand, if the amount of the surfactant added is less than 0.003% by weight, there is no effect of reducing the agglomerate particles.
If it exceeds 0% by weight, the effect of reducing agglomerate particles saturates, and excessive addition leads to an increase in raw material costs,
Bubbling of cooling water increases, a large amount of defoamer is required,
This is also not preferable because it leads to an increase in raw material costs.
In addition, when the amount of the surfactant is too large relative to the poorly water-soluble inorganic substance, the effect of reducing the agglomerate particles (dispersing power) may be lost. This is because the surface of the poorly water-soluble inorganic material is hydrophilized by coordinating the surfactant (micellar double coordination) with the surface of the poorly water-soluble inorganic material that has been hydrophobicized by the coordination of the surfactant. By losing affinity with the particles.

【0016】さらに、前記温水中には、消泡剤を添加す
ることが好ましい。これは、冷却水としての温水中に添
加された界面活性剤は、一部遊離した状態で水中に存在
しており、一般に冷却水は循環させて使用するため、循
環ライン中で泡立つことがあるためである。この消泡剤
としては、シリコン系消泡剤が好ましく、添加量として
は、温水中の界面活性剤の添加量が0.003〜1.0
重量%のとき、消泡剤を0.1〜1.5重量%の範囲で
添加することが好ましい。消泡剤の添加量が0.1重量
%未満では消泡能力が充分ではなく、また、1.5重量
%を超えると難水溶性無機物および界面活性剤による分
散力を低下させる傾向にあるためである。
Furthermore, it is preferable to add an antifoaming agent to the warm water. This is because the surfactant added to the warm water as the cooling water is present in the water in a partially free state, and the cooling water is generally circulated and used, so the foam may be foamed in the circulation line. That's why. As the defoaming agent, a silicon-based defoaming agent is preferable, and the addition amount of the surfactant in warm water is 0.003 to 1.0.
When it is% by weight, it is preferable to add an antifoaming agent in the range of 0.1 to 1.5% by weight. If the amount of the defoaming agent is less than 0.1% by weight, the defoaming ability is not sufficient, and if it exceeds 1.5% by weight, the dispersing power of the poorly water-soluble inorganic substance and the surfactant tends to decrease. It is.

【0017】本発明に用いられるポリオレフィン系樹脂
としては、例えば低密度ポリエチレン、中密度ポリエチ
レン、高密度ポリエチレン、直鎖状低密度ポリエチレ
ン、ポリプロピレンホモポリマー、エチレン−プロピレ
ンランダム共重合体、プロピレン−ブテンランダム共重
合体、エチレンプロピレン−ブテンランダム共重合体、
ポリ(ブテン−1)等が挙げられ、これらは単独でまた
は2種以上を組み合わせて用いることができるが、これ
らに限定されるものではない。
Examples of the polyolefin resin used in the present invention include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, polypropylene homopolymer, ethylene-propylene random copolymer, and propylene-butene random. Copolymer, ethylene propylene-butene random copolymer,
Poly (butene-1) and the like can be used, and these can be used alone or in combination of two or more, but are not limited thereto.

【0018】本発明におけるポリオレフィン系樹脂予備
発泡粒子は、上記の如くして得られたポリオレフィン系
樹脂粒子を、以下に示すような公知の方法で5〜60倍
程度に発泡することにより得られる。 耐圧容器中でポリオレフィン系樹脂粒子、揮発性発泡
剤を水および分散剤とともに攪拌しながら該樹脂粒子の
融点近傍まで昇温して加圧状態にした後、耐圧容器の底
部に設けたバルブを開放して、水分散液と該樹脂粒子を
低圧雰囲気(通常大気圧域)に放出する方法。 ポリオレフィン系樹脂粒子に予め揮発性発泡剤を含有
させ、該樹脂粒子を攪拌機を有する耐圧容器に入れ、必
要に応じて少量の融着防止剤等とともに攪拌しながら、
容器一端より水蒸気等を導入して発泡させる方法。
The pre-expanded polyolefin resin particles in the present invention can be obtained by expanding the polyolefin resin particles obtained as described above to about 5 to 60 times by a known method as described below. After stirring the polyolefin-based resin particles and the volatile foaming agent together with water and a dispersing agent in a pressure-resistant container and raising the temperature to near the melting point of the resin particles to pressurize, open the valve provided at the bottom of the pressure-resistant container. And releasing the aqueous dispersion and the resin particles into a low-pressure atmosphere (usually atmospheric pressure range). Polyolefin-based resin particles contain a volatile foaming agent in advance, put the resin particles in a pressure vessel having a stirrer, and, if necessary, stir with a small amount of an anti-fusion agent, etc.
A method in which water vapor or the like is introduced from one end of a container and foamed.

【0019】[0019]

【実施例】以下、実施例および比較例に基づき本発明を
さらに詳しく説明する。
The present invention will be described below in more detail with reference to Examples and Comparative Examples.

【0020】〔実施例1〜10、比較例1〜5;ポリオ
レフィン系樹脂粒子の製造〕Werner & PFL
EIDERE社製アンダーウォーターカット方式同方向
2軸押出機ZSK70(70mmφスクリュー)を用
い、押出機の先端に装着したダイのノズル(ノズル数9
6、ノズル口径0.8mm)よりエチレン−プロピレン
ランダム共重合体(融点145℃)100重量部、造核
剤としてタルク0.01重量部およびその他配合物から
なる溶融物を、ダイー穴当たりの吐出量を3.6Kg/
Hrの割合として、表1に示す難水溶性無機物、界面活
性剤および消泡剤を添加した各温度の温水中に押し出
し、ダイに近接して周速19m/secで回転するカッ
ター刃(刃数12枚)により切断し、循環する温水から
分離して樹脂粒子を製造した。得られた樹脂粒子1粒当
たりの重量は1.7〜1.9mgであった。得られた樹
脂粒子のアグロメ率および形状を以下の方法により評価
し、結果を表1に示した。
[Examples 1 to 10, Comparative Examples 1 to 5; Production of polyolefin resin particles] Werner & PFL
A nozzle of a die (number of nozzles: 9) mounted at the tip of an extruder using an underwater cut type co-rotating twin screw extruder ZSK70 (70 mmφ screw) manufactured by EIDERE
6. A melt composed of 100 parts by weight of an ethylene-propylene random copolymer (melting point: 145 ° C.), 0.01 part by weight of talc as a nucleating agent and other components is discharged per die hole from a nozzle diameter of 0.8 mm). The amount is 3.6 kg /
As a ratio of Hr, a cutter blade (a number of blades) that is extruded into warm water at each temperature to which a poorly water-soluble inorganic substance, a surfactant and an antifoaming agent shown in Table 1 are added, and rotates at a peripheral speed of 19 m / sec in proximity to the die 12) and separated from the circulating warm water to produce resin particles. The weight per obtained resin particle was 1.7 to 1.9 mg. The agglomeration rate and shape of the obtained resin particles were evaluated by the following methods, and the results are shown in Table 1.

【0021】<アグロメ率>得られた樹脂粒子を約20
g採取し、アグロメ粒子をより分ける。より分けたアグ
ロメ粒子の重量をW1 (g)、融着の無い樹脂粒子の重
量をW2 (g)として下記の式より算出する。 アグロメ率(%)=(W1 )/(W1 +W2 )×100
<Agglomeration ratio>
g and collect the agglomerate particles. The weight of the divided agglomerate particles is W 1 (g), and the weight of the resin particles without fusion is W 2 (g). Agglomeration rate (%) = (W 1 ) / (W 1 + W 2 ) × 100

【0022】<樹脂粒子形状>目視により以下の基準で
評価する。 ○:概ね球状。 △:球状からややはずれるものの、発泡後球状になる可
能性のあるもの。 ×:球状でなく、発泡後も球状になる可能性がないも
の。
<Resin Particle Shape> Visually evaluated according to the following criteria. :: Almost spherical. Δ: Slightly deviated from the sphere, but may become sphere after foaming. X: Not spherical, and there is no possibility of becoming spherical after foaming.

【0023】[0023]

【表1】 [Table 1]

【0024】〔実施例11〜22、比較例6〜11;予
備発泡粒子および型内発泡成形体の製造〕上記実施例1
〜10または比較例1〜5で得た樹脂粒子100重量
部、揮発性発泡剤としてイソブタン5〜10重量部、分
散剤としてパウダー状塩基性第3リン酸カルシウム2重
量部およびn−パラフィンスルフォン酸ソーダ0.03
重量部を水300重量部とともに耐圧容器に仕込み、容
器内温度を142℃に保持し、イソブタン追加圧入によ
り容器内圧力を20Kg/cm2 に調整した。その後、
容器内の温度と圧力をイソブタンを圧入しながら一定に
保持しつつ、耐圧容器下部のバルブを開いて水分散物を
オリフィス板を通して大気圧下に放出して予備発泡粒子
を得た。得られた予備発泡粒子の発泡倍率および形状を
評価した。結果を表2に示す。尚、表中の予備発泡粒子
形状の評価は、「○」は概ね球状のもの、「×」は球状
からはずれるもの、である。
Examples 11 to 22, Comparative Examples 6 to 11; Production of Pre-expanded Particles and In-Mold Expanded Molded Article
To 10 or 100 parts by weight of the resin particles obtained in Comparative Examples 1 to 5, 5 to 10 parts by weight of isobutane as a volatile foaming agent, 2 parts by weight of powdery basic tribasic calcium phosphate as a dispersant, and sodium n-paraffin sulfonate 0 .03
A part by weight was charged together with 300 parts by weight of water into a pressure-resistant container, the temperature in the container was maintained at 142 ° C., and the pressure in the container was adjusted to 20 kg / cm 2 by additional press-fitting of isobutane. afterwards,
While maintaining the temperature and pressure in the vessel constant while press-fitting isobutane, the valve at the bottom of the pressure vessel was opened and the aqueous dispersion was discharged under atmospheric pressure through an orifice plate to obtain pre-expanded particles. The expansion ratio and shape of the obtained pre-expanded particles were evaluated. Table 2 shows the results. In the evaluation of the shape of the pre-expanded particles in the table, “○” indicates a substantially spherical shape, and “×” indicates a shape deviated from a spherical shape.

【0025】上記予備発泡粒子を空気により加圧処理し
て1.7Kg/cm2 の内圧を付与した後、内寸50m
m×300mm×300mmの金型に充填し、表2に示
す所定の蒸気圧で成形した。得られた成形体を80℃の
オーブン内で12時間乾燥した後、室温まで徐冷して融
着率、成形体密度および引張物性を下記の方法で評価し
た。結果を表2に示す。
The pre-expanded particles are pressurized with air to give an internal pressure of 1.7 kg / cm 2 ,
It was filled in a m × 300 mm × 300 mm mold and molded at a predetermined vapor pressure shown in Table 2. The obtained molded body was dried in an oven at 80 ° C. for 12 hours, then gradually cooled to room temperature, and the fusion rate, the molded body density and the tensile properties were evaluated by the following methods. Table 2 shows the results.

【0026】<融着率>成形体表面にナイフで入れた約
5mmの深さのクラックに沿って成形体を割り、被断面
を観察して、粒子の全個数に対する破壊粒子数の割合を
求め、融着率とする。 ◎:融着率80%以上 ○:融着率60〜80%未満 △:融着率50〜60%未満 ×:融着率50%未満 通常、成形体として満足すべき融着率の水準はすくなく
とも60%以上である。
<Fusion Ratio> The formed body was divided along a crack having a depth of about 5 mm into the surface of the formed body with a knife, the cross section was observed, and the ratio of the number of broken particles to the total number of particles was determined. , Fusion rate. ◎: fusion rate of 80% or more :: fusion rate of 60 to less than 80% △: fusion rate of 50 to less than 60% ×: fusion rate of less than 50% Usually, the level of the fusion rate that is satisfactory as a molded article is: It is at least 60% or more.

【0027】<引張物性>成形体表層が残らないよう
に、厚み20±0.5mm、巾25±0.5mm、標線
間距離50±0.5mmのダンベルに切り出し、20℃
の部屋に24時間以上放置した後、引張速度500mm
/min、測定温度20℃で引張試験を行い、破断点で
の力の大きさf(Kg)および標線間の移動距離L(c
m)を測定し、以下の式により引張強度、引張伸びを算
出する。 引張強度(Kg/cm2 )=f/(D×H) 引張伸び(%)=(L−L0 )/L0 ×100 但し、D、H、L0 は、それぞれ測定前の、厚み、巾、
標線間距離であり、単位はcmである。
<Tensile Properties> Cut out into dumbbells having a thickness of 20 ± 0.5 mm, a width of 25 ± 0.5 mm, and a distance between marked lines of 50 ± 0.5 mm at 20 ° C. so that the surface layer of the molded body does not remain.
After leaving in the room for more than 24 hours, pulling speed 500mm
/ Min, a tensile test is performed at a measurement temperature of 20 ° C., the magnitude of the force f (Kg) at the breaking point and the moving distance L (c) between the marked lines
m) is measured, and the tensile strength and the tensile elongation are calculated by the following equations. Tensile strength (Kg / cm 2 ) = f / (D × H) Tensile elongation (%) = (L−L 0 ) / L 0 × 100 where D, H, and L 0 are the thickness, Width,
This is the distance between the marked lines, and the unit is cm.

【0028】[0028]

【表2】 [Table 2]

【0029】表1、表2の結果から明らかなように、ポ
リオレフィン樹脂を難水溶性無機物および該難水溶性無
機物表面と逆の電荷を有する界面活性剤を添加した65
〜95℃の温水中に押し出すことで、アグロメ粒子の発
生を抑制した状態で、球状の好ましい形状の樹脂粒子を
効率よく製造することができ、しかも、この樹脂粒子か
ら製造した予備発泡粒子は、型内発泡成形時における成
形性が良好で、低い成形圧でも良好な型内成形体を得る
ことができる。これに対して、比較例1、2のように、
樹脂押出時の温水の温度が65℃未満の場合には、樹脂
粒子製造時のアグロメ率が比較的低く、また、粒子形状
も良好ではあるものの、比較例6、7および10、11
から明らかなように、この樹脂粒子から製造される予備
発泡粒子は、型内発泡成形時の成形性が悪く、成形体に
おける融着率が低く、成形圧を上げなければ良好な型内
成形体を得ることができない。また、比較例3から明ら
かなように、温水の温度が高い場合、難水溶性無機物や
界面活性剤を添加しないとアグロメ発生が顕著となるだ
けでなく、好ましい形状の樹脂粒子を得ることができな
い。さらに、温水の温度が95℃を超える場合には、比
較例4、5の結果から明らかなように、難水溶性無機物
及び界面活性剤を温水中に添加しても、アグロメ粒子の
発生を抑制することはできず、また好ましい形状の樹脂
粒子を得ることもできない。以上のことから、本発明の
ポリオレフィン樹脂粒子及び予備発泡粒子の製造方法の
効果が明らかとなった。
As is clear from the results shown in Tables 1 and 2, the polyolefin resin was mixed with a poorly water-soluble inorganic substance and a surfactant having a charge opposite to the surface of the poorly water-soluble inorganic substance.
By extruding into hot water at ~ 95 ° C, it is possible to efficiently produce resin particles having a preferable spherical shape while suppressing the generation of agglomerate particles, and the pre-expanded particles produced from these resin particles are: The moldability during in-mold foam molding is good, and a good in-mold molded article can be obtained even with a low molding pressure. On the other hand, as in Comparative Examples 1 and 2,
When the temperature of the hot water at the time of resin extrusion is lower than 65 ° C., the agglomeration rate at the time of resin particle production is relatively low and the particle shape is good, but Comparative Examples 6, 7 and 10, 11
As is apparent from the above, the pre-expanded particles produced from the resin particles have poor moldability during in-mold foam molding, have a low fusion rate in the molded body, and have a good in-mold molded body unless the molding pressure is increased. Can not get. Further, as is apparent from Comparative Example 3, when the temperature of the hot water is high, not only the poorly water-soluble inorganic substance and the surfactant are not added, but also the occurrence of agglomeration becomes remarkable, and it is not possible to obtain resin particles having a preferable shape. . Further, when the temperature of the hot water exceeds 95 ° C., as is apparent from the results of Comparative Examples 4 and 5, even if a poorly water-soluble inorganic substance and a surfactant are added to the hot water, the generation of agglomerate particles is suppressed. It is not possible to obtain resin particles having a preferable shape. From the above, the effect of the method for producing polyolefin resin particles and pre-expanded particles of the present invention has been clarified.

【0030】[0030]

【発明の効果】以上のように、本発明によれば、アンダ
ーウォーターカット方式により、形状が均一で小さいポ
リオレフィン系樹脂粒子、および、型内成形時の成形性
が良好なポリオレフィン樹脂予備発泡粒子を、効率よく
製造することができる。
As described above, according to the present invention, polyolefin resin particles having a uniform and small shape and polyolefin resin pre-expanded particles having good moldability during in-mold molding are obtained by the underwater cut method. , And can be manufactured efficiently.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 押出機を用い、溶融状態のポリオレフィ
ン系樹脂を、口径2mm未満のダイノズルより1穴当た
りの吐出量を0.5〜8Kg/Hrとして、難水溶性無
機物および該難水溶性無機物表面と逆の電荷を有する界
面活性剤を添加した65〜95℃の温水中に押し出し、
該温水中でカッター刃により切断することを特徴とする
ポリオレフィン系樹脂粒子の製造方法。
1. A hardly water-soluble inorganic substance and a hardly water-soluble inorganic substance, wherein an extruder is used to discharge a molten polyolefin resin from a die nozzle having a diameter of less than 2 mm at a discharge rate per hole of 0.5 to 8 kg / Hr. Extruded into 65-95 ° C. hot water to which a surfactant having a charge opposite to the surface is added,
A method for producing polyolefin-based resin particles, comprising cutting with hot water using a cutter blade.
【請求項2】 前記温水中に添加した難水溶性無機物お
よび界面活性剤が第3リン酸カルシウムおよびアニオン
性界面活性剤である請求項1記載のポリオレフィン系樹
脂粒子の製造方法。
2. The method for producing polyolefin resin particles according to claim 1, wherein the poorly water-soluble inorganic substance and the surfactant added to the warm water are a tribasic calcium phosphate and an anionic surfactant.
【請求項3】 前記第3リン酸カルシウムが湿式法で合
成されて乾燥工程を経ていないスラリー状リン酸カルシ
ウムである請求項2記載のポリオレフィン系樹脂粒子の
製造方法。
3. The method for producing polyolefin-based resin particles according to claim 2, wherein the third calcium phosphate is a slurry calcium phosphate synthesized by a wet method and not subjected to a drying step.
【請求項4】 前記アニオン性界面活性剤がn−パラフ
ィンスルフォン酸ソーダおよび/またはドデシルベンゼ
ンスルフォン酸ソーダである請求項2記載のポリオレフ
ィン系樹脂粒子の製造方法。
4. The method for producing polyolefin resin particles according to claim 2, wherein the anionic surfactant is sodium n-paraffin sulfonate and / or sodium dodecylbenzene sulfonate.
【請求項5】 前記温水中に添加した難水溶性無機物お
よび界面活性剤が、カオリンおよびカチオン性界面活性
剤である請求項1記載のポリオレフイン系樹脂粒子の製
造方法。
5. The method for producing polyolefin resin particles according to claim 1, wherein the poorly water-soluble inorganic substance and the surfactant added to the warm water are kaolin and a cationic surfactant.
【請求項6】 前記カチオン性界面活性剤が塩化アルキ
ルトリメチルアンモニウム、塩化ジアルキルジメチルア
ンモニウム、および塩化ベンザルコニウムから選択され
る少なくとも1種である請求項5記載のポリオレフィン
系樹脂粒子の製造方法。
6. The method for producing polyolefin-based resin particles according to claim 5, wherein the cationic surfactant is at least one selected from alkyltrimethylammonium chloride, dialkyldimethylammonium chloride, and benzalkonium chloride.
【請求項7】 前記難水溶性無機物の添加量が0.3〜
5重量%、前記界面活性剤の添加量が0.003〜1.
0重量%である請求項1〜6のいずれかに記載のポリオ
レフィン系樹脂粒子の製造方法。
7. The addition amount of the poorly water-soluble inorganic substance is from 0.3 to
5% by weight, and the amount of the surfactant added is 0.003 to 1.
The method for producing polyolefin-based resin particles according to any one of claims 1 to 6, which is 0% by weight.
【請求項8】 前記温水中にシリコン系消泡剤0.1〜
1.5重量%を添加してなる請求項1〜7のいずれかに
記載のポリオレフィン系樹脂粒子の製造方法。
8. The silicone-based antifoaming agent 0.1 to 0.1 in said warm water.
The method for producing polyolefin-based resin particles according to any one of claims 1 to 7, wherein 1.5% by weight is added.
【請求項9】 請求項1〜請求項8のいずれかに記載の
方法により製造されたポリオレフィン系樹脂粒子を予備
発泡させることを特徴とするポリオレフィン系樹脂予備
発泡粒子の製造方法。
9. A method for producing pre-expanded polyolefin resin particles, wherein the polyolefin resin particles produced by the method according to claim 1 are pre-expanded.
【請求項10】 アンダーウォーターカット方式で製造
され、重量が0.2〜10mg/粒で、表面に難水溶性
無機物および該難水溶性無機物表面と逆の電荷を有する
界面活性剤が付着してなるポリオレフィン系樹脂粒子。
10. A water-insoluble inorganic substance produced by an underwater cut method, weighing 0.2 to 10 mg / particle, and a surfactant having a charge opposite to that of the surface of the poorly water-soluble inorganic substance adhered to the surface. Polyolefin resin particles.
【請求項11】 請求項10に記載のポリオレフィン系
樹脂粒子を予備発泡してなるポリオレフィン系樹脂予備
発泡粒子。
11. Pre-expanded polyolefin resin particles obtained by pre-expanding the polyolefin resin particles according to claim 10.
JP27482796A 1996-10-17 1996-10-17 Preparation of polyolefin-based resin particle and prefoamed particle Pending JPH10119037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27482796A JPH10119037A (en) 1996-10-17 1996-10-17 Preparation of polyolefin-based resin particle and prefoamed particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27482796A JPH10119037A (en) 1996-10-17 1996-10-17 Preparation of polyolefin-based resin particle and prefoamed particle

Publications (1)

Publication Number Publication Date
JPH10119037A true JPH10119037A (en) 1998-05-12

Family

ID=17547133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27482796A Pending JPH10119037A (en) 1996-10-17 1996-10-17 Preparation of polyolefin-based resin particle and prefoamed particle

Country Status (1)

Country Link
JP (1) JPH10119037A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1555102A1 (en) * 2004-01-13 2005-07-20 JSP Corporation Process for preparing thermoplastic resin pellets
JP2005225227A (en) * 2004-01-13 2005-08-25 Jsp Corp Thermoplastic resin particle and its production method, foamed thermoplastic resin particle and its formed article
JP2007015228A (en) * 2005-07-07 2007-01-25 Jsp Corp Manufacturing process of thermoplastic resin foamed particle, thermoplastic resin particle, thermoplastic resin foamed particle and molded body from thermoplastic resin foamed particle
WO2009047998A1 (en) 2007-10-11 2009-04-16 Kaneka Corporation Pre-expanded polypropylene resin particle, and method for production thereof
JP2009280708A (en) * 2008-05-22 2009-12-03 Kaneka Corp Pre-expanded particles of polypropylene-based resin
WO2010090046A1 (en) * 2009-02-09 2010-08-12 積水化成品工業株式会社 Method for manufacturing foamable thermoplastic resin particles, method for manufacturing thermoplastic resin foam particles, and method for manufacturing thermoplastic resin foam molded article
JP2012214567A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Method of manufacturing polypropylene-based resin particle for seed polymerization, polypropylene-based resin particle for seed polymerization, method of manufacturing composite resin particle, composite resin particle, foaming composite resin particle, preliminary foamed particle, and expansion molding body
JP2013121998A (en) * 2011-12-09 2013-06-20 Sekisui Plastics Co Ltd Seed particle, composite resin particle, manufacturing methods of those particles, composite resin particle, foamable particle, preliminary foamed particle, and foamed molding
WO2022050375A1 (en) * 2020-09-04 2022-03-10 株式会社カネカ Extruded foam particles and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642480B2 (en) * 2004-01-13 2011-03-02 株式会社ジェイエスピー Method for producing thermoplastic resin particles
JP2005225227A (en) * 2004-01-13 2005-08-25 Jsp Corp Thermoplastic resin particle and its production method, foamed thermoplastic resin particle and its formed article
CN100460177C (en) * 2004-01-13 2009-02-11 株式会社Jsp Thermoplastic resin pellet, process for preparing thermoplastic resin pellets and expanded thermoplastic resin bead
EP1555102A1 (en) * 2004-01-13 2005-07-20 JSP Corporation Process for preparing thermoplastic resin pellets
JP2007015228A (en) * 2005-07-07 2007-01-25 Jsp Corp Manufacturing process of thermoplastic resin foamed particle, thermoplastic resin particle, thermoplastic resin foamed particle and molded body from thermoplastic resin foamed particle
US8063177B2 (en) 2007-10-11 2011-11-22 Kaneka Corporation Pre-expanded polypropylene resin particle, and method for production thereof
WO2009047998A1 (en) 2007-10-11 2009-04-16 Kaneka Corporation Pre-expanded polypropylene resin particle, and method for production thereof
JP2009280708A (en) * 2008-05-22 2009-12-03 Kaneka Corp Pre-expanded particles of polypropylene-based resin
WO2010090046A1 (en) * 2009-02-09 2010-08-12 積水化成品工業株式会社 Method for manufacturing foamable thermoplastic resin particles, method for manufacturing thermoplastic resin foam particles, and method for manufacturing thermoplastic resin foam molded article
JP2010179627A (en) * 2009-02-09 2010-08-19 Sekisui Plastics Co Ltd Production method for foaming thermoplastic resin particle, foamed thermoplastic resin particle, and foamed thermoplastic resin molding
TWI410315B (en) * 2009-02-09 2013-10-01 Sekisui Plastics Production method of expandable thermoplastic resin pellets, production method of expanded thermoplastic resin pellets, and production method of expanded thermoplastic molded form
JP2012214567A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Method of manufacturing polypropylene-based resin particle for seed polymerization, polypropylene-based resin particle for seed polymerization, method of manufacturing composite resin particle, composite resin particle, foaming composite resin particle, preliminary foamed particle, and expansion molding body
JP2013121998A (en) * 2011-12-09 2013-06-20 Sekisui Plastics Co Ltd Seed particle, composite resin particle, manufacturing methods of those particles, composite resin particle, foamable particle, preliminary foamed particle, and foamed molding
WO2022050375A1 (en) * 2020-09-04 2022-03-10 株式会社カネカ Extruded foam particles and method for producing same

Similar Documents

Publication Publication Date Title
CA2300776C (en) Rotational molding
EP1666222B1 (en) Method of manufacturing thermoplastic resin foam particle
JPH0546852B2 (en)
CA2230093A1 (en) Microcellular polyolefin foam
CN100569476C (en) The preparation method of expanding styrene polymer granules
JP5375613B2 (en) Polypropylene resin pre-expanded particles and method for producing the same
JPH06271701A (en) Expandable uncrosslinked polyethylene resin particle and production of expanded uncrosslinked polyethylene resin particle therefrom
JPH10119037A (en) Preparation of polyolefin-based resin particle and prefoamed particle
KR20120129998A (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JPH07137063A (en) Molded body of foamed polymer chips having gap
JP2805286B2 (en) Polyolefin-based resin foam molded article having communicating voids and method for producing the same
US5911928A (en) Method for the production of polyolefin resin granules
JP5281317B2 (en) Polypropylene resin pre-expanded particles
JP2010037432A (en) Polypropylene resin pre-expanded particle
WO1996030180A1 (en) Foamed rotationally molded articles
JPWO2007004524A1 (en) Foam board for heat insulating building material and method for manufacturing the same
JP2005505637A (en) Expandable polyolefin bead material
JP3683022B2 (en) Method for producing expandable resin particles
JP5358106B2 (en) Polypropylene resin pre-expanded particles
JP2000044717A (en) Pre-expanded polypropylene resin particle, and production of in-mold foamed molding therefrom
JP2003049019A (en) Polypropylene-based resin preliminarily foamed particle and article using the particles and molded and foamed in mold
JP4855138B2 (en) Polypropylene resin foam particles and method for producing the same
JPH09174545A (en) Preparation of polyolefin pellet
JP3020296B2 (en) Method for producing non-crosslinked linear low-density polyethylene resin expanded particles
CN113544202A (en) Polyolefin resin particles and use thereof