JP2010037432A - Polypropylene resin pre-expanded particle - Google Patents

Polypropylene resin pre-expanded particle Download PDF

Info

Publication number
JP2010037432A
JP2010037432A JP2008201860A JP2008201860A JP2010037432A JP 2010037432 A JP2010037432 A JP 2010037432A JP 2008201860 A JP2008201860 A JP 2008201860A JP 2008201860 A JP2008201860 A JP 2008201860A JP 2010037432 A JP2010037432 A JP 2010037432A
Authority
JP
Japan
Prior art keywords
polypropylene resin
weight
particles
expanded
expanded particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008201860A
Other languages
Japanese (ja)
Inventor
Takamasa Imai
貴正 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008201860A priority Critical patent/JP2010037432A/en
Publication of JP2010037432A publication Critical patent/JP2010037432A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide polypropylene resin pre-expanded particles that gives an expansion-molded product having a high expansion magnification, a glossy surface and a small dimensional shrinkage even when an inorganic gas expanding agent is used. <P>SOLUTION: The polypropylene resin pre-expanded particles are obtained by dispersing polypropylene resin particles in an aqueous dispersion medium in a pressure-resistant container, introducing an inorganic gas as an expanding agent, heating and pressurizing the container to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, and releasing the particles to a zone at a pressure lower than the inner pressure of the pressure-resistant container. The pre-expanded resin particles contain, with respect to 100 parts by weight of a polypropylene resin, (a) 0.001 to 0.5 part by weight of an inorganic substance, water of crystallization of which shows a dehydration start temperature of 200°C or higher, (b) 0.005 to 0.5 part by weight of a fatty acid amide, (c) 0.0001 to 0.5 part by weight of a silicate compound, and (d) 0.005 to 0.5 part by weight of a trivalent organic phosphorus compound. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、緩衝包装材、通函、断熱材、自動車部材などに用いられるポリプロピレン系樹脂の型内発泡成形体の製造に好適に使用しうるポリプロピレン系樹脂予備発泡粒子及び該予備発泡粒子を金型内に充填し加熱して得られるポリプロピレン系樹脂発泡成形体に関する。   The present invention relates to a polypropylene resin pre-expanded particle which can be suitably used for the production of an in-mold foam-molded product of a polypropylene resin used for buffer packaging materials, boxing, heat insulating materials, automobile members, etc. The present invention relates to a polypropylene resin foam molded article obtained by filling a mold and heating.

従来、ポリプロピレン系樹脂粒子を難水溶性無機物などの分散剤、界面活性剤などの分散助剤、必要に応じて揮発性有機発泡剤や炭酸ガス、窒素、空気などの無機ガス発泡剤とともに攪拌しながら水性媒体に分散させ、昇温して一定圧力、一定温度として樹脂粒子中に発泡剤を含浸したのち、低圧雰囲気下に放出してポリプロピレン系樹脂発泡粒子を得る方法が知られている(例えば、特許文献1〜3)。   Conventionally, polypropylene resin particles are stirred together with dispersants such as poorly water-soluble inorganic substances, dispersion aids such as surfactants, and inorganic gas foaming agents such as volatile organic foaming agents and carbon dioxide, nitrogen and air as necessary. While being dispersed in an aqueous medium, the temperature is raised and the resin particles are impregnated with a foaming agent at a constant pressure and a constant temperature, and then released into a low-pressure atmosphere to obtain polypropylene resin foamed particles (for example, And Patent Documents 1 to 3).

揮発性発泡剤としてはプロパン、ブタン、ペンタン等が知られているが、これらの多くは可燃性のため危険性が高いばかりでなく、大気に放出された場合に地球温暖化の原因となるといった環境上の問題も有していた。   Propane, butane, pentane, etc. are known as volatile blowing agents, but many of these are not only dangerous due to flammability, but also cause global warming when released to the atmosphere. He also had environmental problems.

一方、炭酸ガス、窒素、空気などの無機ガス発泡剤は、不燃性であり、環境にもやさしいという利点を有しているが、揮発性発泡剤を使用した際に得られるような高い発泡倍率の予備発泡粒子を得ることが困難という問題があった。無機ガス発泡剤におけるこの問題を解決するために、ポリプロピレン樹脂粒子中に水酸化アルミニウムや硼砂などの無機物質を含有させる方法が提案されている(特許文献4、5)。しかしながら、この方法により得られる予備発泡粒子を用いて発泡成形体を製造する場合、気泡径のバラツキが大きいため発泡成形体の外観にムラがあるだけでなく、発泡成形体の収縮率が大きく、発泡成形体の寸法安定性に劣るという問題があった。   On the other hand, inorganic gas foaming agents such as carbon dioxide, nitrogen, and air have the advantage of being nonflammable and environmentally friendly, but have a high foaming ratio that can be obtained when using volatile foaming agents. There was a problem that it was difficult to obtain the pre-expanded particles. In order to solve this problem in the inorganic gas foaming agent, methods have been proposed in which polypropylene resin particles contain an inorganic substance such as aluminum hydroxide or borax (Patent Documents 4 and 5). However, when producing a foam molded article using the pre-expanded particles obtained by this method, not only is the appearance of the foam molded article uneven due to the large variation in cell diameter, but the shrinkage ratio of the foam molded article is large, There was a problem that the dimensional stability of the foam molded article was poor.

このような問題を解決するために、ホウ酸亜鉛等のホウ酸金属塩をポリプロピレン系樹脂粒子中に存在させる方法が提案されている(特許文献6)。この方法によれば、気泡径の均一性が向上し外観のムラも解消されるものの、高発泡倍率を得るためには添加量を増やす必要があり、その場合気泡径が微細になるため、成形時の予備発泡粒子の発泡能力が低下し、成形体表面に多数の粒子間隙が残り、表面美麗性を損なうという問題があった。   In order to solve such a problem, a method in which a metal borate such as zinc borate is present in polypropylene resin particles has been proposed (Patent Document 6). According to this method, the uniformity of the bubble diameter is improved and the uneven appearance is also eliminated, but in order to obtain a high expansion ratio, it is necessary to increase the amount of addition, in which case the bubble diameter becomes fine, There was a problem that the foaming ability of the pre-foamed particles at that time was lowered, and a large number of particle gaps remained on the surface of the molded body, which deteriorated the surface beauty.

また、高発泡倍率とした時の収縮を防止する目的で、ポリプロピレンの結晶核剤として一般的に用いられる5価の有機リン酸化合物であるリン酸2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウムを使用する方法が提案されている(特許文献7、8)。しかしこの方法を用いた場合、気泡径が小さくなり発泡成形体表面の粒子間隙が増加して表面美麗性が損なわれるという問題があった。
特開昭52−77174号公報 特開昭60−245650号公報 特開昭60−229936号公報 特開昭61−4738号公報 特開平3−223347号公報 WO98/25996号公報 特開平5−156065号公報 特開平6−192462号公報
In addition, for the purpose of preventing shrinkage when the expansion ratio is high, 2,2-methylenebis (4,6-di-phosphate), which is a pentavalent organic phosphate compound generally used as a crystal nucleating agent for polypropylene, is used. A method using tert-butylphenyl) sodium has been proposed (Patent Documents 7 and 8). However, when this method is used, there is a problem that the cell diameter is reduced, the particle gap on the surface of the foamed molded article is increased, and the surface beauty is impaired.
JP 52-77174 A JP-A-60-245650 JP 60-229936 A JP 61-4738 A JP-A-3-223347 WO 98/25996 Japanese Patent Laid-Open No. 5-156065 JP-A-6-192462

本発明の目的は、無機ガス発泡剤を使用した場合でも、高発泡倍率であり、かつ、表面美麗で寸法収縮率が小さい発泡成形体を与えるポリプロピレン系樹脂予備発泡粒子を提供するものである。   An object of the present invention is to provide a polypropylene resin pre-expanded particle that provides a foamed molded article having a high expansion ratio, a beautiful surface, and a small dimensional shrinkage even when an inorganic gas foaming agent is used.

本発明者は、上記課題解決のため鋭意研究を行った結果、ポリプロピレン系樹脂予備発泡粒子が、結晶水の脱水開始温度が200℃以上である無機物質、脂肪酸アミド、珪酸塩化合物に加えて3価の有機リン系化合物を表面及び/もしくは内部に含んでなることにより、高発泡倍率でありながら、表面美麗で寸法収縮率が小さい発泡成形体を与えるポリプロピレン系樹脂予備発泡粒子が得られることを見出し、本発明の完成に至った。   As a result of intensive studies for solving the above-mentioned problems, the present inventor has found that the polypropylene resin pre-expanded particles are 3 in addition to the inorganic substance, fatty acid amide and silicate compound whose dehydration start temperature of crystal water is 200 ° C. or higher. By including a polyvalent organic phosphorus compound on the surface and / or inside, it is possible to obtain pre-expanded polypropylene resin particles that give a foamed molded article having a high surface expansion ratio and a small dimensional shrinkage ratio while having a high expansion ratio. The headline, the present invention has been completed.

すなわち本発明の第1は、耐圧容器内に、ポリプロピレン系樹脂粒子を水系分散媒に分散させ、発泡剤として無機ガスを導入し、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、耐圧容器の内圧よりも低い圧力域に放出して得られるポリプロピレン系樹脂予備発泡粒子が、ポリプロピレン系樹脂100重量部に対し、(a)結晶水の脱水開始温度が200℃以上である無機物質0.001重量部以上0.5重量部以下、(b)脂肪酸アミド0.005重量部以上0.5重量部以下、(c)珪酸塩化合物0.0001重量部以上0.5重量部以下、(d)3価の有機リン系化合物0.005重量部以上0.5重量部以下、を含んでなるポリプロピレン系樹脂予備発泡粒子に関する。   That is, in the first aspect of the present invention, polypropylene resin particles are dispersed in an aqueous dispersion medium in a pressure vessel, an inorganic gas is introduced as a foaming agent, and heated and pressurized to a temperature equal to or higher than the softening temperature of the polypropylene resin particles. Thereafter, the polypropylene resin pre-expanded particles obtained by discharging into a pressure region lower than the internal pressure of the pressure vessel are inorganic in which (a) the dehydration start temperature of crystal water is 200 ° C. or more with respect to 100 parts by weight of the polypropylene resin. 0.001 to 0.5 part by weight of the substance, (b) 0.005 to 0.5 part by weight of the fatty acid amide, (c) 0.0001 to 0.5 part by weight of the silicate compound And (d) a polypropylene resin pre-expanded particle comprising 0.005 part by weight or more and 0.5 part by weight or less of a trivalent organophosphorus compound.

好ましい態様としては、
(1)結晶水の脱水開始温度が200℃以上である無機物質が、ホウ酸亜鉛である、
(2)脂肪酸アミドが、エルカ酸アミド、エチレンビスステアリン酸アミドから選ばれる一以上である、
(3)珪酸塩化合物が、タルク、マイカ、カオリンから選ばれる一以上である、
(4)3価の有機リン系化合物が、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスホスフォナイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジフォスファイト、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸から選ばれる一以上である、
(5)耐圧容器内に、ポリプロピレン系樹脂粒子を水系分散媒に分散させ、発泡剤として無機ガスを導入し、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、耐圧容器の内圧よりも低い圧力域に放出して得られるポリプロピレン系樹脂予備発泡粒子に発泡能を付与して加熱して得られる、
前記記載のポリプロピレン系樹脂予備発泡粒子に関する。
As a preferred embodiment,
(1) The inorganic substance whose dehydration start temperature of crystal water is 200 ° C. or higher is zinc borate,
(2) The fatty acid amide is one or more selected from erucic acid amide and ethylene bis stearic acid amide,
(3) The silicate compound is one or more selected from talc, mica, and kaolin.
(4) Trivalent organophosphorus compound is tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) [1,1-biphenyl] -4 , 4'-diylbisphosphonite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] One or more selected from ethyl ester phosphorous acid,
(5) In the pressure vessel, polypropylene resin particles are dispersed in an aqueous dispersion medium, an inorganic gas is introduced as a foaming agent, heated and pressurized to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, Obtained by giving foaming ability to the polypropylene resin pre-expanded particles obtained by releasing into a pressure range lower than the internal pressure, and heating,
The present invention relates to the above-mentioned polypropylene resin pre-expanded particles.

本発明の第2は、前記記載のポリプロピレン系樹脂予備発泡粒子を金型内に充填し加熱して得られることを特徴とするポリプロピレン系樹脂発泡成形体に関する。   A second aspect of the present invention relates to a polypropylene resin foam molded article obtained by filling the polypropylene resin pre-expanded particles described above in a mold and heating.

本発明のポリプロピレン系樹脂予備発泡粒子は、金型内に充填し加熱してポリプロピレン系樹脂発泡成形体を製造しても、高発泡倍率でありながら、表面美麗で寸法収縮率が小さい。   Even if the polypropylene resin pre-expanded particles of the present invention are filled in a mold and heated to produce a polypropylene resin foam molded article, the surface is beautiful and the dimensional shrinkage ratio is small even though the expansion ratio is high.

本発明のポリプロピレン系樹脂予備発泡粒子は、耐圧容器内においてポリプロピレン系樹脂粒子を水系分散媒に分散させ、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、耐圧容器の内圧よりも低い圧力域に放出して得られるものであり、ポリプロピレン系樹脂100重量部に対し、(a)結晶水の脱水開始温度が200℃以上である無機物質0.001重量部以上0.5重量部以下、(b)脂肪酸アミド0.005重量部以上0.5重量部以下、(c)珪酸塩化合物0.0001重量部以上0.5重量部以下、(d)3価の有機リン系化合物0.005重量部以上0.5重量部以下、を含んでなる。   The polypropylene resin pre-expanded particles of the present invention are obtained by dispersing polypropylene resin particles in an aqueous dispersion medium in a pressure vessel and heating and pressurizing to a temperature equal to or higher than the softening temperature of the polypropylene resin particles. Is obtained by discharging to a low pressure region, and (a) the inorganic substance whose dehydration start temperature of crystal water is 200 ° C. or higher is 0.001 part by weight or more and 0.5% by weight with respect to 100 parts by weight of the polypropylene resin. Part (b) fatty acid amide 0.005 part by weight or more and 0.5 part by weight or less, (c) silicate compound 0.0001 part by weight or more and 0.5 part by weight or less, (d) a trivalent organophosphorus compound 0.005 part by weight or more and 0.5 part by weight or less.

本発明におけるポリプロピレン系樹脂予備発泡粒子を構成するポリプロピレン系樹脂としては、チーグラー触媒やメタロセン触媒等を用いて重合されたポリプロピレン、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレンブロック共重合体、エチレン−プロピレン−ブテン3元共重合体等のポリプロピレン系樹脂が挙げられ、これらを単独であるいは混合して用いられる。また、これらのポリプロピレン系樹脂は無架橋のものが好適に使用されるが、架橋したものも使用できる。   As the polypropylene resin constituting the polypropylene resin pre-expanded particles in the present invention, polypropylene polymerized using a Ziegler catalyst or a metallocene catalyst, an ethylene-propylene random copolymer, a propylene-butene random copolymer, an ethylene- Examples thereof include polypropylene resins such as a propylene block copolymer and an ethylene-propylene-butene terpolymer, and these are used alone or in combination. In addition, these polypropylene resins are preferably non-crosslinked, but crosslinked resins can also be used.

ポリプロピレン系樹脂は、既知の方法を用いて、ポリプロピレン系樹脂粒子の形状とする。例えば、押出機、ニーダー、バンバリーミキサー(商標)、ロール等を用いて溶融して、1粒の重量が好ましくは0.2〜10mg、より好ましくは0.5〜6mgのポリプロピレン系樹脂粒子に加工される。一般的には、押出機を用いて溶融し、ストランドカット法にて製造することがこのましい。例えば、円形ダイスからストランド状に押出されたポリプロピレン系樹脂を水、空気等で冷却、固化させたものを切断して、所望の形状のポリプロピレン系樹脂粒子を得ることが出来る。必要に応じて、溶融したポリプロピレン系樹脂を水中に押出し、水中にて切断して造粒するアンダーウォーターカット法を用いてもよい。   A polypropylene resin is made into the shape of a polypropylene resin particle using a known method. For example, it is melted by using an extruder, a kneader, a Banbury mixer (trademark), a roll or the like, and processed into polypropylene resin particles with a weight of preferably 0.2 to 10 mg, more preferably 0.5 to 6 mg. Is done. In general, it is preferable to melt by using an extruder and to manufacture by a strand cutting method. For example, polypropylene resin particles having a desired shape can be obtained by cutting and solidifying polypropylene resin extruded in a strand form from a circular die with water, air, or the like. If necessary, an underwater cut method in which a molten polypropylene resin is extruded into water and then cut and granulated in water may be used.

本発明においては、(a)結晶水の脱水開始温度が200℃以上の無機物質が用いられる。本発明において、結晶水の脱水開始温度とは、熱重量測定(TGA)において重量の減少が開始する温度を言う。このような物質としては、例えば、水酸化アルミニウム(結晶水の脱水開始温度:200℃)、水酸化マグネシウム(結晶水の脱水開始温度:300℃)、ホウ酸亜鉛(結晶水の脱水開始温度:290℃)、などが挙げられ、これらを単独あるいは混合して用いることが出来る。中でも、ホウ酸亜鉛を使用することが好ましい。   In the present invention, (a) an inorganic substance having a crystal water dehydration start temperature of 200 ° C. or higher is used. In the present invention, the dehydration start temperature of crystal water refers to a temperature at which weight reduction starts in thermogravimetry (TGA). Examples of such substances include aluminum hydroxide (crystal water dehydration start temperature: 200 ° C.), magnesium hydroxide (crystal water dehydration start temperature: 300 ° C.), and zinc borate (crystal water dehydration start temperature: 290 ° C.) and the like, and these can be used alone or in combination. Among these, it is preferable to use zinc borate.

結晶水の脱水開始温度が200℃以上の無機物質の使用量は、ポリプロピレン系樹脂100重量部に対して0.001重量部以上0.5重量部以下であり、好ましくは0.01重量部以上0.3重量部以下、更に好ましくは0.01重量部以上0.1重量部以下である。0.001重量部未満では十分な発泡倍率が得られず、0.5重量部を越えるとポリプロピレン系樹脂予備発泡粒子を金型に充填し加熱して得られるポリプロピレン系樹脂発泡成形体の表面に粒子間隙が残る。   The amount of the inorganic substance having a crystal water dehydration start temperature of 200 ° C. or more is 0.001 part by weight or more and 0.5 part by weight or less, preferably 0.01 part by weight or more with respect to 100 parts by weight of the polypropylene resin. 0.3 parts by weight or less, more preferably 0.01 parts by weight or more and 0.1 parts by weight or less. If the amount is less than 0.001 part by weight, a sufficient expansion ratio cannot be obtained. If the amount exceeds 0.5 part by weight, the polypropylene resin pre-expanded particles are filled in a mold and heated to obtain a surface of the polypropylene resin foam molded body. Particle gaps remain.

本発明においては、(b)脂肪酸アミドが用いられる。脂肪酸アミドとしては、例えば、エルカ酸アミド、オレイン酸アミド、ステアリン酸アミド等のモノアミド類、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等のジアミド類が挙げられ、これらを単独あるいは混合して用いることが出来る。これらのうち、エルカ酸アミド、エチレンビスステアリン酸アミドから選ばれる一以上を用いるのが好ましく、エルカ酸アミドを用いるのが最も好ましい。   In the present invention, (b) fatty acid amide is used. Examples of the fatty acid amide include monoamides such as erucic acid amide, oleic acid amide, and stearic acid amide, and diamides such as methylene bis stearic acid amide and ethylene bis stearic acid amide, which are used alone or in combination. I can do it. Among these, it is preferable to use one or more selected from erucic acid amide and ethylenebisstearic acid amide, and it is most preferable to use erucic acid amide.

脂肪酸アミドの使用量は、ポリプロピレン系樹脂100重量部に対して0.005重量部以上0.5重量部以下であり、好ましくは0.01重量部以上0.3重量部以下、更に好ましくは0.01重量部以上0.1重量部以下である。0.005重量部未満ではポリプロピレン系樹脂予備発泡粒子の金型への充填性が悪くなり、0.5重量部を越えると発泡後にポリプロピレン系樹脂予備発泡粒子表面に残留する無機分散剤量が増大し成形時にポリプロピレン系樹脂予備発泡粒子同士の融着が悪くなる。   The amount of the fatty acid amide used is 0.005 part by weight or more and 0.5 part by weight or less, preferably 0.01 part by weight or more and 0.3 part by weight or less, more preferably 0 with respect to 100 parts by weight of the polypropylene resin. 0.01 parts by weight or more and 0.1 parts by weight or less. If the amount is less than 0.005 parts by weight, the filling property of the polypropylene resin pre-expanded particles in the mold is deteriorated. If the amount exceeds 0.5 parts by weight, the amount of the inorganic dispersant remaining on the surface of the polypropylene resin pre-expanded particles after foaming increases. However, the fusion between the polypropylene resin pre-expanded particles becomes worse during molding.

本発明においては、(c)珪酸塩化合物を用いる。珪酸塩化合物としては、例えば、タルク、マイカ、カオリン、輝石、カンラン石、角閃石等が挙げられ、これらを単独あるいは混合して用いることが出来る。中でも、タルク、マイカ、カオリンから選ばれる一以上であることが好ましく、カオリンが最も好ましい。   In the present invention, (c) a silicate compound is used. Examples of the silicate compound include talc, mica, kaolin, pyroxene, olivine, amphibole and the like, and these can be used alone or in combination. Among these, at least one selected from talc, mica, and kaolin is preferable, and kaolin is most preferable.

珪酸塩化合物の使用量は、ポリプロピレン系樹脂100重量部に対して0.0001重量部以上0.5重量部以下である。0.0001重量部未満では気泡径にバラツキが生じると共に発泡倍率が小さくなり、0.5重量部を越えるとポリプロピレン系樹脂予備発泡粒子の気泡径が微細になり、ポリプロピレン系樹脂予備発泡粒子を金型に充填し加熱して得られるポリプロピレン系樹脂発泡成形体の表面に粒子間隙が残る。   The usage-amount of a silicate compound is 0.0001 weight part or more and 0.5 weight part or less with respect to 100 weight part of polypropylene resins. If the amount is less than 0.0001 part by weight, the bubble diameter varies and the expansion ratio becomes small. If the amount exceeds 0.5 part by weight, the bubble diameter of the polypropylene resin pre-expanded particles becomes fine, and the polypropylene resin pre-expanded particles are made of gold. Particle gaps remain on the surface of the polypropylene resin foam molding obtained by filling the mold and heating.

本発明においては、(d)3価の有機リン系化合物を用いる。3価の有機リン系化合物としては、例えば、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスホスフォナイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジフォスファイト、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸などが挙げられ、これらを単独あるいは混合して用いることが出来る。これらの中でも特にトリス(2,4−ジ−t−ブチルフェニル)フォスファイトを使用するのが好ましい。   In the present invention, (d) a trivalent organic phosphorus compound is used. Examples of the trivalent organic phosphorus compound include tris (2,4-di-t-butylphenyl) phosphite and tetrakis (2,4-di-t-butylphenyl) [1,1-biphenyl] -4. , 4'-diylbisphosphonite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] Examples thereof include ethyl ester phosphorous acid, and these can be used alone or in combination. Among these, it is particularly preferable to use tris (2,4-di-t-butylphenyl) phosphite.

3価の有機リン系化合物の使用量は、ポリプロピレン系樹脂100重量部に対して0.005重量部以上0.5重量部以下である。0.005重量部未満では添加する効果が認められず、0.5重量部を越えても効果が飽和する。   The amount of the trivalent organic phosphorus compound used is 0.005 parts by weight or more and 0.5 parts by weight or less with respect to 100 parts by weight of the polypropylene resin. If it is less than 0.005 parts by weight, the effect of addition is not recognized, and if it exceeds 0.5 parts by weight, the effect is saturated.

更に、ポリプロピレン系樹脂粒子の製造の際、必要により種々の添加剤を、ポリプロピレン系樹脂の特性を損なわない範囲内で添加することができる。添加剤としては、例えば、カーボンブラック、有機顔料などの着色剤、アルキルジエタノールアミド、アルキルジエタノールアミン、ヒドロキシアルキルエタノールアミン、脂肪酸モノグリセライド、脂肪酸ジグリセライドなどの帯電防止剤、FLAMESTAB(登録商標)NOR116(チバ)、MELAPUR(登録商標)MC25(チバ)等の非ハロゲン系難燃剤などが例示される。   Furthermore, when manufacturing the polypropylene resin particles, various additives can be added as necessary within the range not impairing the properties of the polypropylene resin. Examples of additives include colorants such as carbon black and organic pigments, antistatic agents such as alkyldiethanolamide, alkyldiethanolamine, hydroxyalkylethanolamine, fatty acid monoglyceride, fatty acid diglyceride, FLAMESTTAB (registered trademark) NOR116 (Ciba), Non-halogen flame retardants such as MELAPUR (registered trademark) MC25 (Ciba) are exemplified.

本発明において、ポリプロピレン系樹脂予備発泡粒子が、(a)〜(d)を含んでなるとは、これらの化合物がポリプロピレン系樹脂予備発泡粒子の表面および/または内部に存在することを言う。   In the present invention, that the polypropylene resin pre-expanded particles contain (a) to (d) means that these compounds are present on the surface and / or inside of the polypropylene resin pre-expanded particles.

本発明のポリプロピレン系樹脂予備発泡粒子は、耐圧容器内においてポリプロピレン系樹脂粒子を水系分散媒に分散させ、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、耐圧容器の内圧よりも低い圧力域に放出して得られる。また、前記方法で得られたポリプロピレン系樹脂予備発泡粒子に発泡能を付与し、加熱してポリプロピレン系樹脂予備発泡粒子としてもよい。このように発泡能を付与して加熱することにより、より発泡倍率の高い予備発泡粒子を得ることができる傾向がある。方法は特に限定しないが、例えば、耐圧容器内においてポリプロピレン系樹脂粒子を水系分散媒に分散させ、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、耐圧容器の内圧よりも低い圧力域に放出して得られたポリプロピレン系樹脂予備発泡粒子を容器内にて空気などの無機ガスにて加圧し、発泡能を付与させたのち、蒸気やヒーターで加熱する方法などが用いられる。   The polypropylene resin pre-expanded particles of the present invention are obtained by dispersing polypropylene resin particles in an aqueous dispersion medium in a pressure vessel and heating and pressurizing to a temperature equal to or higher than the softening temperature of the polypropylene resin particles. Is also obtained by discharging to a low pressure range. Further, the polypropylene resin pre-expanded particles obtained by the above method may be given foaming ability and heated to form polypropylene resin pre-expanded particles. Thus, there exists a tendency which can obtain the pre-expanded particle | grain with a higher expansion ratio by providing foaming ability and heating. The method is not particularly limited. For example, after the polypropylene resin particles are dispersed in an aqueous dispersion medium in a pressure vessel and heated to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, the pressure is lower than the internal pressure of the pressure vessel. The polypropylene resin pre-expanded particles obtained by discharging into the pressure region are pressurized with an inorganic gas such as air in a container to give foaming ability, and then heated with steam or a heater.

なお、以下、耐圧容器内においてポリプロピレン系樹脂粒子を水系分散媒に分散させ、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、耐圧容器の内圧よりも低い圧力域に放出して得られたポリプロピレン系樹脂予備発泡粒子を一段発泡粒子と称する場合があり、一段発泡粒子に発泡能を付与して加熱してえられたポリプロピレン系樹脂予備発泡粒子を二段発泡粒子と称す場合がある。   Hereinafter, after the polypropylene resin particles are dispersed in an aqueous dispersion medium in the pressure vessel and heated and pressurized to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, they are discharged to a pressure range lower than the internal pressure of the pressure vessel. When the polypropylene resin pre-expanded particles obtained are referred to as single-stage expanded particles, and the polypropylene resin pre-expanded particles obtained by adding foaming ability to the single-stage expanded particles and heating are referred to as two-stage expanded particles. There is.

使用する耐圧容器には特に限定はなく、予備発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよく、例えば、オートクレーブ型の耐圧容器が挙げられる。   The pressure vessel to be used is not particularly limited as long as it can withstand the pressure in the vessel and the temperature in the vessel at the time of producing the pre-foamed particles, and examples thereof include an autoclave type pressure vessel.

本発明における水系分散媒は、水を主成分とするものであればよく、通常は水を用いることが好ましい。水系分散媒の使用量は、ポリプロピレン系樹脂粒子の分散媒中での分散性を良好なものにするために、該ポリプロピレン系樹脂粒子100重量部に対して100重量部以上500重量部以下使用するのが好ましい。   The aqueous dispersion medium in the present invention is not particularly limited as long as it contains water as a main component, and it is usually preferable to use water. The amount of the aqueous dispersion medium used is from 100 parts by weight to 500 parts by weight with respect to 100 parts by weight of the polypropylene resin particles in order to improve the dispersibility of the polypropylene resin particles in the dispersion medium. Is preferred.

ポリプロピレン系樹脂粒子を水系分散媒に分散させた分散液に、必要に応じて分散剤、分散助剤を使用することが出来る。本発明で用いられる分散剤としては、特に制限はなく、一般的に用いられている無機系分散剤を使用することができる。   If necessary, a dispersant and a dispersion aid can be used in a dispersion in which polypropylene resin particles are dispersed in an aqueous dispersion medium. There is no restriction | limiting in particular as a dispersing agent used by this invention, The inorganic type dispersing agent generally used can be used.

具体的には、硫酸バリウム、シリカ−アルミナを主成分とする、カオリン、タルク等のアルミノ珪酸塩、酸化アルミニウム、酸化チタン、第3リン酸カルシウム、ヒドロキシアパタイト等のリン酸カルシウム、炭酸カルシウム、ピロリン酸マグネシウム、リン酸マグネシウム、塩基性炭酸マグネシウム、塩基性炭酸亜鉛などが挙げられる。   Specifically, aluminosilicates such as kaolin and talc, mainly composed of barium sulfate and silica-alumina, calcium phosphates such as aluminum oxide, titanium oxide, tricalcium phosphate and hydroxyapatite, calcium carbonate, magnesium pyrophosphate, phosphorus Examples include magnesium acid, basic magnesium carbonate, and basic zinc carbonate.

この中でも、少ない使用量で分散効果があり、排水処理負荷が少ない観点からは、硫酸バリウム、シリカ−アルミナを主成分とするアルミノ珪酸塩、リン酸カルシウム、リン酸マグネシウムが好ましい。   Among these, aluminosilicate, calcium phosphate, and magnesium phosphate mainly composed of barium sulfate and silica-alumina are preferable from the viewpoint of having a dispersion effect with a small amount of use and a small wastewater treatment load.

このような分散剤の添加量としては、特に制限はなく、分散液の安定化効果が発現するよう適宜調整されるものではあり、また、分散助剤との添加比率をも勘案して適宜調整されるものであるが、ポリプロピレン系樹脂粒子100重量部に対し0.01重量部以上5重量部以下であることが好ましく、より好ましくは0.05重量部以上4重量部以下であり、最も好ましくは0.1重量部以上3重量部以下である。0.01重量部未満ではポリプロピレン系樹脂粒子の軟化点温度以上でポリプロピレン系樹脂粒子の分散性が低下する傾向にあり、5重量部を越えると得られるポリプロピレン系樹脂予備発泡粒子の表面に分散剤が多く付着し、型内成形した際の発泡成形体の融着性が低下する傾向にある。   The addition amount of such a dispersant is not particularly limited and is appropriately adjusted so that the dispersion stabilizing effect is manifested, and is appropriately adjusted in consideration of the addition ratio with the dispersion aid. However, it is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 4 parts by weight, most preferably 100 parts by weight of the polypropylene resin particles. Is 0.1 to 3 parts by weight. If the amount is less than 0.01 parts by weight, the dispersibility of the polypropylene resin particles tends to decrease at a temperature higher than the softening point temperature of the polypropylene resin particles. If the amount exceeds 5 parts by weight, a dispersant is added to the surface of the pre-expanded polypropylene resin particles. As a result, the melt-bonding property of the foamed molded product tends to decrease.

本発明で用いられる分散助剤としては、界面活性剤を使用することができる。界面活性剤としては、一般的に用いられているアニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、更には両性界面活性剤などを用いることが出来る。   As the dispersion aid used in the present invention, a surfactant can be used. As the surfactant, commonly used anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants can be used.

具体的には、(イ)アルキルスルホン酸塩(高級アルコール硫酸エステル塩)、アルキルスルホン酸塩、アルカンスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩、アルキル硫酸塩、アルキルエーテル硫酸塩、アルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩、アルキルリン酸塩、アルキルエーテルリン酸塩、アルキルアリルエーテルリン酸塩、アルキルエーテルカルボン酸塩、N−アシルアミノ酸塩などのアニオン系界面活性剤、(ロ)アルキルおよびアルキルアリルポリオキシエチレンエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピルアルキルエーテル、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、高級脂肪酸グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、脂肪族アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、アミンオキシドなどのノニオン系界面活性剤、(ハ)脂肪族アミン塩、ヒドロキシアルキルモノエタノールアミン塩、脂肪族4級アンモニウム塩などのカチオン系界面活性剤、(ニ)カルボキシベタイン、イミダゾリニウムベタイン、アミノカルボン酸塩などの両性界面活性剤、などが挙げられる。   Specifically, (A) alkyl sulfonate (higher alcohol sulfate ester salt), alkyl sulfonate, alkane sulfonate, alkyl benzene sulfonate, alkyl naphthalene sulfonate, sulfosuccinate, α-olefin sulfonic acid Salt, N-acyl sulfonate, alkyl sulfate, alkyl ether sulfate, alkyl allyl ether sulfate, alkyl amide sulfate, alkyl phosphate, alkyl ether phosphate, alkyl allyl ether phosphate, alkyl ether carvone Anionic surfactants such as acid salts and N-acyl amino acid salts, (B) alkyl and alkylallyl polyoxyethylene ethers, alkylallyl formaldehyde condensed polyoxyethylene ethers, polyoxyethylene polyoxypropyl alkyl ethers Glycerin ester polyoxyethylene ether, sorbitan ester polyoxyethylene ether, sorbitol ester polyoxyethylene ether, polyethylene glycol fatty acid ester, glycerin ester, higher fatty acid glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester, Nonionic surfactants such as sucrose ester, aliphatic alkanolamide, polyoxyethylene fatty acid amide, polyoxyethylene alkylamine, amine oxide, (c) aliphatic amine salt, hydroxyalkyl monoethanolamine salt, aliphatic quaternary Cationic surfactants such as ammonium salts, amphoteric surfactants such as (d) carboxybetaine, imidazolinium betaine, aminocarboxylate Agents, etc.

分散液の安定性の観点からは、界面活性剤としては、アニオン系界面活性剤が好ましく、より好ましくはアルキルスルホン酸塩、アルカンスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩、アルキル硫酸塩、アルキルエーテル硫酸塩、アルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩などのスルホン酸塩であり、最も好ましくはアルキルスルホン酸塩、アルカンスルホン酸塩、α−オレフィンスルホン酸塩、アルキルベンゼンスルホン酸塩である。   From the viewpoint of the stability of the dispersion, the surfactant is preferably an anionic surfactant, more preferably an alkyl sulfonate, alkane sulfonate, alkyl benzene sulfonate, alkyl naphthalene sulfonate, sulfosuccinic acid. Sulfonates such as salts, α-olefin sulfonates, N-acyl sulfonates, alkyl sulfates, alkyl ether sulfates, alkyl allyl ether sulfates, alkyl amide sulfates, most preferably alkyl sulfonates , Alkane sulfonate, α-olefin sulfonate, and alkylbenzene sulfonate.

このような分散助剤の添加量としては、特に制限はなく、分散液が安定するよう適宜調整されるものではあるが、ポリプロピレン系樹脂粒子100重量部に対し0.001重量部以上0.5重量部以下であることが好ましく、より好ましくは0.003重量部以上0.3重量部以下であり、最も好ましくは0.005重量部以上0.2重量部以下である。0.001重量部未満ではポリプロピレン系樹脂粒子の軟化点温度以上でポリプロピレン系樹脂粒子の分散性が低下する傾向にあり、0.5重量部を越えると分散液の泡立ちが激しくなり、排水処理の負荷が大きくなる傾向にある。   The addition amount of such a dispersion aid is not particularly limited and may be appropriately adjusted so that the dispersion is stable, but is 0.001 part by weight or more and 0.5 part by weight based on 100 parts by weight of the polypropylene resin particles. The amount is preferably not more than parts by weight, more preferably not less than 0.003 parts by weight and not more than 0.3 parts by weight, and most preferably not less than 0.005 parts by weight and not more than 0.2 parts by weight. If the amount is less than 0.001 part by weight, the dispersibility of the polypropylene resin particle tends to be lowered at a temperature higher than the softening point temperature of the polypropylene resin particle. If the amount exceeds 0.5 part by weight, foaming of the dispersion becomes intense and wastewater treatment is difficult. The load tends to increase.

本発明においては、発泡剤として無機ガスを用いる。無機ガスとしては例えば、炭酸ガス(二酸化炭素)、空気、酸素、窒素、水などが挙げられ、これらの中でも、発泡性と得られるポリプロピレン系樹脂発泡粒子の倍率バラツキが小さく、かつ気泡径バラツキが小さくなる観点からは炭酸ガス、あるいは炭酸ガスと水を併用して用いることが好ましい。   In the present invention, an inorganic gas is used as the foaming agent. Examples of the inorganic gas include carbon dioxide (carbon dioxide), air, oxygen, nitrogen, water, and the like. Among these, foaming property and the resulting polypropylene resin foamed particles have a small variation in magnification and a variation in bubble diameter. From the viewpoint of reducing the size, it is preferable to use carbon dioxide or a combination of carbon dioxide and water.

具体的には、耐圧容器内に、ポリプロピレン系樹脂粒子、必要に応じて分散剤、分散助剤を水系分散媒に分散させ、発泡剤として無機ガスを導入し、攪拌下、所定の圧力まで加圧され、ポリプロピレン系樹脂粒子の軟化温度以上の所定の温度まで昇温され、一定時間、好ましくは5〜180分間、より好ましくは10〜60分間保持された後、耐圧容器内の分散液を、耐圧容器下部に設けられたバルブを開放して低圧雰囲気下(通常は大気圧下)に放出することによりポリプロピレン系樹脂予備発泡粒子を製造することができる。   Specifically, polypropylene resin particles, if necessary, a dispersant and a dispersion aid are dispersed in an aqueous dispersion medium in a pressure vessel, an inorganic gas is introduced as a foaming agent, and the mixture is heated to a predetermined pressure with stirring. And heated to a predetermined temperature equal to or higher than the softening temperature of the polypropylene resin particles and held for a certain period of time, preferably 5 to 180 minutes, more preferably 10 to 60 minutes. Polypropylene resin pre-expanded particles can be produced by opening a valve provided in the lower part of the pressure vessel and releasing it under a low-pressure atmosphere (usually under atmospheric pressure).

なお、発泡剤として、水系分散媒を構成する水を使用する場合、耐圧容器内は窒素、空気、二酸化炭素等の無機ガスにて加圧することが好ましい。   In addition, when using the water which comprises an aqueous dispersion medium as a foaming agent, it is preferable to pressurize the inside of a pressure-resistant container with inorganic gas, such as nitrogen, air, and a carbon dioxide.

ポリプロピレン系樹脂粒子を含んだ分散液を低圧雰囲気下に放出する際、流量調整、倍率バラツキ低減などの目的で2〜10mmφの開口オリフィスを通して放出することもできる。また、発泡倍率を高くする目的で、前記低圧雰囲気を飽和水蒸気で満たす場合もある。   When the dispersion containing the polypropylene resin particles is discharged under a low-pressure atmosphere, it can also be discharged through an opening orifice of 2 to 10 mmφ for the purpose of adjusting the flow rate and reducing variation in magnification. In some cases, the low-pressure atmosphere is filled with saturated steam for the purpose of increasing the expansion ratio.

耐圧容器内を加熱する温度(以下、発泡温度と称す場合がある)は、用いるポリプロピレン系樹脂の融点[Tm(℃)]、発泡剤の種類等により異なり、一概には規定できないが、ポリプロピレン系樹脂の軟化温度以上であり、好ましくはTm−30(℃)〜Tm+10(℃)の範囲である。また、耐圧容器内を加圧する圧力(以下、発泡圧力と称す場合がある)は、用いるポリプロピレン系樹脂の種類、発泡剤の種類、所望の予備発泡粒子の発泡倍率によって異なり、一概には規定できないが、概ね1〜8MPa(ゲージ圧)の範囲から決定される。   The temperature at which the inside of the pressure vessel is heated (hereinafter sometimes referred to as the foaming temperature) varies depending on the melting point [Tm (° C.)] of the polypropylene resin used, the type of foaming agent, etc. The temperature is equal to or higher than the softening temperature of the resin, and is preferably in the range of Tm-30 (° C) to Tm + 10 (° C). Further, the pressure for pressurizing the inside of the pressure vessel (hereinafter sometimes referred to as foaming pressure) varies depending on the type of polypropylene resin used, the type of foaming agent, and the desired expansion ratio of the pre-expanded particles, and cannot be specified unconditionally. Is determined from a range of approximately 1 to 8 MPa (gauge pressure).

なおここでいうポリプロピレン系樹脂の融点とは、示差走査熱量計を用いて、試料5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事によりポリプロピレン系樹脂を融解し、その後10℃/minで220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに得られるDSC曲線から、2回目の昇温時の融解ピーク温度として求められる値である。   The melting point of the polypropylene resin here refers to melting the polypropylene resin by heating the sample 5 to 6 mg from 40 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter. From the DSC curve obtained when the temperature was further increased from 40 ° C. to 220 ° C. at 10 ° C./min after crystallization by lowering the temperature from 220 ° C. to 40 ° C. at 10 ° C./min. This is a value obtained as the melting peak temperature at the time of temperature rise.

本発明のポリプロピレン系樹脂予備発泡粒子の平均気泡径(L(av))は130μm以上500μm以下が好ましく、より好ましくは160μm以上400μm以下であり、さらに好ましくは210μm以上350μm以下である。平均気泡径(L(av))が130μm未満の場合、得られるポリプロピレン系樹脂発泡成形体の融着性が低下する、形状が歪む、表面にしわが発生するなどの問題が生じる場合があり、500μmを越える場合、得られるポリプロピレン系樹脂発泡成形体の緩衝特性が低下する傾向がある。なお、本発明における平均気泡径(L(av))と気泡径バラツキ(S)は、発泡粒子のほぼ中央を切断し、現れた断面を拡大観察して行うが、詳細は後述する。   The average cell diameter (L (av)) of the polypropylene resin pre-expanded particles of the present invention is preferably 130 μm or more and 500 μm or less, more preferably 160 μm or more and 400 μm or less, and further preferably 210 μm or more and 350 μm or less. When the average cell diameter (L (av)) is less than 130 μm, the resulting polypropylene-based resin foam molded article may suffer from problems such as poor fusion properties, distorted shape, and wrinkles on the surface. In the case of exceeding the above, there is a tendency that the buffer characteristics of the obtained polypropylene resin foam molded article are lowered. The average bubble diameter (L (av)) and the bubble diameter variation (S) in the present invention are performed by cutting substantially the center of the expanded particle and observing the enlarged cross section, which will be described in detail later.

本発明により得られるポリプロピレン系樹脂予備発泡粒子の発泡倍率に特に制限はないが、50倍以下が好ましい。発泡倍率が50倍を越える場合は得られるポリプロピレン系樹脂予備発泡粒子の気泡が破泡したり、ポリプロピレン系樹脂発泡成形体を成形した際、寸法精度、機械的強度、耐熱性などが不充分となる傾向がある。   Although there is no restriction | limiting in particular in the expansion ratio of the polypropylene resin pre-expanded particle obtained by this invention, 50 times or less are preferable. When the expansion ratio exceeds 50 times, when the foam of the polypropylene resin pre-expanded particles obtained is broken or the polypropylene resin foam molded article is molded, the dimensional accuracy, mechanical strength, heat resistance, etc. are insufficient. Tend to be.

以上のようにして得たポリプロピレン系樹脂予備発泡粒子は、従来から知られている成形方法により、ポリプロピレン系樹脂発泡成形体にすることができる。例えば、イ)予備発泡粒子を無機ガス、例えば空気や窒素等で加圧処理して予備発泡粒子内に無機ガスを含浸させ所定の予備発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法、ロ)予備発泡粒子をガス圧力で圧縮して金型に充填し、予備発泡粒子の回復力を利用して、水蒸気で加熱融着させる方法、ハ)特に前処理することなく予備発泡粒子を金型に充填し、水蒸気で加熱融着させる方法、などの方法が利用し得る。   The polypropylene resin pre-expanded particles obtained as described above can be made into a polypropylene resin foam molded body by a conventionally known molding method. For example, a) Pre-expanded particles are pressurized with an inorganic gas, such as air or nitrogen, impregnated with the inorganic gas in the pre-expanded particles to give a predetermined internal pressure of the pre-expanded particles, filled in a mold, (B) A method in which pre-expanded particles are compressed by gas pressure and filled in a mold, and a heat-fusing method is carried out with steam using the recovery force of the pre-expanded particles. A method such as a method in which pre-expanded particles are filled in a mold without being heated and heat-sealed with water vapor can be used.

以下、実施例および比較例をあげて、本発明をさらに具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。なお、実施例および比較例における評価は、次の方法により行なった。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to such examples. The evaluation in the examples and comparative examples was performed by the following method.

(発泡倍率)
ポリプロピレン系樹脂予備発泡粒子3〜10g程度を取り、60℃で6時間乾燥したのち重量wを測定後、水を入れたメスシリンダーに投入して水没させ、水面上昇から体積vを測定し、発泡粒子の真比重ρb=w/vを求め、原料樹脂組成物の密度ρr(=0.9g/cm3)との比から発泡倍率K=ρr/ρbを求めた。
(Foaming ratio)
Take 3 to 10 g of polypropylene resin pre-expanded particles, dry at 60 ° C. for 6 hours, measure the weight w, put in a graduated cylinder filled with water, submerge, measure volume v from rising water surface, expand The true specific gravity ρb = w / v of the particles was determined, and the expansion ratio K = ρr / ρb was determined from the ratio to the density ρr (= 0.9 g / cm 3 ) of the raw resin composition.

(平均気泡径(L(av)))
無作為に選んだ20個の発泡粒子のそれぞれについて、ほぼ中央を切断し、現れた断面を拡大観察する。ここで、断面ほぼ中心で直交するX軸とY軸を引き、断面ほぼ中心のX軸とY軸が交差する点を中心O、X軸が断面端部と交差する点をそれぞれA、A’、Y軸が断面端部と交差する点をB、B’とした。
(Average bubble diameter (L (av)))
For each of the 20 randomly selected expanded particles, the center is cut and the cross section that appears is magnified. Here, the X axis and the Y axis perpendicular to each other at the approximate center of the cross section are drawn, the point where the X axis and the Y axis at the approximate center of the cross section intersect with each other is the center O, and the point where the X axis intersects with the end of the cross section. The points where the Y axis intersects the end of the cross section are designated as B and B ′.

次いで線分OAがクロスする気泡壁の数を数え、線分OAの長さを気泡壁数で除した値を更に0.616で除することにより気泡径L(OA)を求める。   Next, the number of bubble walls intersected by the line segment OA is counted, and the value obtained by dividing the length of the line segment OA by the number of bubble walls is further divided by 0.616 to obtain the bubble diameter L (OA).

線分OA’、線分OB、線分OB’についても同様に行い、それぞれL(OA’)、L(OB)、L(OB’)を求める。なお、気泡壁上に中心Oがある場合は、気泡壁として数えた。   The same processing is performed for the line segment OA ', the line segment OB, and the line segment OB', and L (OA '), L (OB), and L (OB') are obtained, respectively. In addition, when there was the center O on the bubble wall, it counted as a bubble wall.

L(OA)、L(OA’)、L(OB)、L(OB’)の4つの相加平均値L’(av)を算出し、20個のポリプロピレン系樹脂発泡粒子のL’(av)を更に相加平均した値を平均気泡径L(av)とした。   Four arithmetic average values L ′ (av) of L (OA), L (OA ′), L (OB), and L (OB ′) are calculated, and L ′ (av) of 20 polypropylene-based resin expanded particles is calculated. ) Was further arithmetically averaged to obtain an average cell diameter L (av).

(成形体融着率)
発泡成形体の表面にナイフで約5mmの深さのクラックを入れたのち、このクラックに沿って発泡成形体を割り、破断面を観察し、観察した全粒子数に対する破壊粒子数の割合を求め、成形体融着率とした。
(Molded product fusion rate)
After a crack with a depth of about 5 mm is made on the surface of the foamed molded product with a knife, the foamed molded product is divided along the crack, the fracture surface is observed, and the ratio of the number of broken particles to the total number of particles observed is obtained. The molded product fusion rate was used.

(表面美麗性)
○:しわ少なく、粒間(発泡粒子の間のへこみ、穴など)少なく、美麗
△:しわが少ないが、粒間(発泡粒子の間のへこみ、穴など)がやや目立つ
×:しわがある、あるいは粒間が顕著であり、ヒケなどもあり外観不良
(Surface beauty)
○: Less wrinkles, less intergranular (dents and holes between foam particles), beautiful △: Less wrinkles, but slightly intergranular (dents and holes between foamed particles) ×: wrinkles, Or, the intergranularity is noticeable, and there are sink marks etc.

(寸法収縮率)
金型寸法400mm(長さ)×300mm(幅)×50mm(厚さ)に対して、得られた成形体の長さamm、幅bmm、厚さcmmを実測し、以下の式で寸法収縮率を算出した。
寸法収縮率(%)=[(400−a)/400+(300−b)/300+(50−c)/50]/3×100
(Dimension shrinkage)
Measure the length amm, width bmm, and thickness cmm of the molded body for the mold dimensions 400mm (length) x 300mm (width) x 50mm (thickness) Was calculated.
Dimensional shrinkage (%) = [(400−a) / 400 + (300−b) / 300 + (50−c) / 50] / 3 × 100

(実施例1〜9、比較例1〜3)
エチレン成分量が4重量%のエチレン−プロピレンランダム共重合体(密度0.90g/cm3、メルトフローレート(MFR)7.3g/10分、融点138℃)100重量部に対し、表1に示した添加剤を所定量加えた後タンブラーミキサーでブレンドした。次いで、該ブレンド物を50mmφ単軸押出機に供給し、溶融混練したのち、直径1.8mmφの円筒ダイより押出し、水冷後、カッターで切断し、円柱状のポリプロピレン系樹脂粒子(1.2mg/粒)を得た。
(Examples 1-9, Comparative Examples 1-3)
Table 1 shows 100 parts by weight of an ethylene-propylene random copolymer having an ethylene content of 4% by weight (density 0.90 g / cm 3 , melt flow rate (MFR) 7.3 g / 10 min, melting point 138 ° C.). A predetermined amount of the indicated additives was added and then blended in a tumbler mixer. Next, the blended product was supplied to a 50 mmφ single screw extruder, melt-kneaded, extruded from a cylindrical die having a diameter of 1.8 mmφ, cooled with water, cut with a cutter, and cylindrical polypropylene resin particles (1.2 mg / Grain).

得られたポリプロピレン系樹脂粒子100重量部を、純水200重量部、第3リン酸カルシウム1.0重量部およびドデシルベンゼンスルホン酸ソーダ0.05重量部とともに耐圧容器に投入したのち、脱気し、攪拌しながら炭酸ガス6重量部を耐圧容器内に入れ、143℃に加熱した。このときの圧力は3MPaであった。すぐに耐圧容器下部のバルブを開いて、内容物を直径4mmφのオリフィスを通じて大気圧下に放出して発泡粒子(一段発泡粒子)を得た。この際、放出中は容器内の圧力が低下しないように、炭酸ガスで圧力を保持した。得られた一段発泡粒子の発泡倍率、平均気泡径を表2に示す。   100 parts by weight of the obtained polypropylene resin particles were put into a pressure vessel together with 200 parts by weight of pure water, 1.0 part by weight of tricalcium phosphate and 0.05 part by weight of sodium dodecylbenzenesulfonate, and then deaerated and stirred. Then, 6 parts by weight of carbon dioxide gas was put in a pressure vessel and heated to 143 ° C. The pressure at this time was 3 MPa. Immediately after opening the valve at the bottom of the pressure vessel, the contents were discharged under atmospheric pressure through an orifice with a diameter of 4 mmφ to obtain expanded particles (single-stage expanded particles). At this time, during discharge, the pressure was maintained with carbon dioxide gas so that the pressure in the container did not decrease. Table 2 shows the expansion ratio and average cell diameter of the obtained single-stage expanded particles.

ここで得た一段発泡粒子を60℃にて6時間乾燥させた後、耐圧容器内に導入し、容器を0.6MPaの空気で15時間加圧したところ、発泡粒子内部の空気圧が表2に示す値となった。該発泡粒子を表2に示す圧力の蒸気と接触させることで二段発泡させ、表2に示す発泡倍率の二段発泡粒子を得た。次に、該二段発泡粒子を再度、耐圧容器内に導入し0.3MPaの空気で17時間加圧し、発泡粒子内圧を表2に示す値とした後、300×400×50mmの金型内に充填し、0.25MPaの加圧蒸気を使って型内発泡成形を行った。得られた発泡成形体の評価結果を表2に示す。   The single-stage expanded particles obtained here were dried at 60 ° C. for 6 hours and then introduced into a pressure resistant container. When the container was pressurized with 0.6 MPa air for 15 hours, the air pressure inside the expanded particles was as shown in Table 2. It became the value shown. The foamed particles were subjected to two-stage foaming by contacting with steam at a pressure shown in Table 2 to obtain two-stage foamed particles having a foaming ratio shown in Table 2. Next, the two-stage expanded particles are again introduced into the pressure resistant container and pressurized with 0.3 MPa air for 17 hours, and the internal pressure of the expanded particles is set to the value shown in Table 2, and then inside the 300 × 400 × 50 mm mold. In-mold foam molding was performed using pressurized steam of 0.25 MPa. Table 2 shows the evaluation results of the obtained foamed molded product.

Figure 2010037432
Figure 2010037432

Figure 2010037432
Figure 2010037432

Claims (7)

耐圧容器内に、ポリプロピレン系樹脂粒子を水系分散媒に分散させ、発泡剤として無機ガスを導入し、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、耐圧容器の内圧よりも低い圧力域に放出して得られるポリプロピレン系樹脂予備発泡粒子が、ポリプロピレン系樹脂100重量部に対し、(a)結晶水の脱水開始温度が200℃以上である無機物質0.001重量部以上0.5重量部以下、(b)脂肪酸アミド0.005重量部以上0.5重量部以下、(c)珪酸塩化合物0.0001重量部以上0.5重量部以下、(d)3価の有機リン系化合物0.005重量部以上0.5重量部以下、を含んでなるポリプロピレン系樹脂予備発泡粒子。   In a pressure vessel, polypropylene resin particles are dispersed in an aqueous dispersion medium, an inorganic gas is introduced as a foaming agent, heated to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, and then the internal pressure of the pressure vessel is exceeded. The polypropylene resin pre-expanded particles obtained by releasing in a low pressure range are (a) 0.001 part by weight or more of inorganic substance whose dehydration start temperature of crystal water is 200 ° C. or more with respect to 100 parts by weight of polypropylene resin. .5 parts by weight or less, (b) fatty acid amide 0.005 part by weight or more and 0.5 part by weight or less, (c) silicate compound 0.0001 part by weight or more and 0.5 part by weight or less, (d) trivalent organic A polypropylene resin pre-expanded particle comprising 0.005 part by weight or more and 0.5 part by weight or less of a phosphorus compound. 結晶水の脱水開始温度が200℃以上である無機物質が、ホウ酸亜鉛である請求項1に記載のポリプロピレン系樹脂予備発泡粒子。   The polypropylene resin pre-expanded particles according to claim 1, wherein the inorganic substance having a crystal water dehydration start temperature of 200 ° C or higher is zinc borate. 脂肪酸アミドが、エルカ酸アミド、エチレンビスステアリン酸アミドから選ばれる一以上である請求項1または2に記載のポリプロピレン系樹脂予備発泡粒子。   The polypropylene resin pre-expanded particles according to claim 1 or 2, wherein the fatty acid amide is at least one selected from erucic acid amide and ethylenebisstearic acid amide. 珪酸塩化合物が、タルク、マイカ、カオリンから選ばれる一以上である請求項1〜3何れか一項に記載のポリプロピレン系樹脂予備発泡粒子。   The polypropylene resin pre-expanded particles according to any one of claims 1 to 3, wherein the silicate compound is one or more selected from talc, mica, and kaolin. 3価の有機リン系化合物が、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスホスフォナイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジフォスファイト、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸から選ばれる一以上である請求項1〜4何れか一項に記載のポリプロピレン系樹脂予備発泡粒子。   Trivalent organophosphorus compounds are tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) [1,1-biphenyl] -4,4 ′. -Diylbisphosphonite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester It is one or more chosen from phosphoric acid, The polypropylene resin pre-expanded particle as described in any one of Claims 1-4. 耐圧容器内に、ポリプロピレン系樹脂粒子を水系分散媒に分散させ、発泡剤として無機ガスを導入し、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、耐圧容器の内圧よりも低い圧力域に放出して得られるポリプロピレン系樹脂予備発泡粒子に発泡能を付与して加熱して得られる請求項1〜5何れか一項に記載のポリプロピレン系樹脂予備発泡粒子。   In a pressure vessel, polypropylene resin particles are dispersed in an aqueous dispersion medium, an inorganic gas is introduced as a foaming agent, heated to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, and then the internal pressure of the pressure vessel is exceeded. The polypropylene resin pre-expanded particles according to any one of claims 1 to 5, which are obtained by imparting foaming ability to the polypropylene resin pre-expanded particles obtained by releasing in a low pressure range and heating. 請求項1〜6何れか一項に記載のポリプロピレン系樹脂予備発泡粒子を金型内に充填し加熱して得られることを特徴とするポリプロピレン系樹脂発泡成形体。   A polypropylene resin foamed molded article obtained by filling the polypropylene resin prefoamed particles according to any one of claims 1 to 6 in a mold and heating.
JP2008201860A 2008-08-05 2008-08-05 Polypropylene resin pre-expanded particle Pending JP2010037432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008201860A JP2010037432A (en) 2008-08-05 2008-08-05 Polypropylene resin pre-expanded particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008201860A JP2010037432A (en) 2008-08-05 2008-08-05 Polypropylene resin pre-expanded particle

Publications (1)

Publication Number Publication Date
JP2010037432A true JP2010037432A (en) 2010-02-18

Family

ID=42010313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008201860A Pending JP2010037432A (en) 2008-08-05 2008-08-05 Polypropylene resin pre-expanded particle

Country Status (1)

Country Link
JP (1) JP2010037432A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031409A (en) * 2012-08-02 2014-02-20 Sharp Corp Thermoplastic resin composition and molded artifact of the same
CN109206791A (en) * 2018-09-21 2019-01-15 佛山市森昂生物科技有限公司 A kind of preparation method of air bubble bag packing material
WO2019172204A1 (en) * 2018-03-08 2019-09-12 株式会社カネカ Polypropylene resin foamed particle and method of producing same
WO2019189462A1 (en) * 2018-03-27 2019-10-03 株式会社カネカ Method for manufacturing polypropylene resin foamed particles
JP6757871B1 (en) * 2019-03-19 2020-09-23 株式会社ジェイエスピー Method for producing polyolefin-based resin foamed particles, polyolefin-based resin foamed particle molded product, and polyolefin-based resin foamed particles
WO2020189389A1 (en) * 2019-03-19 2020-09-24 株式会社ジェイエスピー Polyolefin-based resin foam particles, polyolefin-based resin foam particle molded body, and production method for polyolefin-based resin foam particles
CN113831647A (en) * 2021-09-18 2021-12-24 无锡会通轻质材料股份有限公司 Preparation method of expanded polypropylene beads

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251437A (en) * 1997-03-10 1998-09-22 Jsp Corp Molded item of foamed polypropylene resin particle
JPH11147972A (en) * 1997-11-17 1999-06-02 Jsp Corp Production of foamed polypropylene resin particle, foamed polypropylene resin particle, and molded item thereof
JP2003528189A (en) * 2000-03-17 2003-09-24 ダウ グローバル テクノロジーズ インコーポレーテッド Method for producing macrocellular acoustic foam
JP2004534125A (en) * 2001-06-20 2004-11-11 ベー・ペー・ベルギー・ナムローゼ・フェンノートシャップ Expanded polypropylene granule composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251437A (en) * 1997-03-10 1998-09-22 Jsp Corp Molded item of foamed polypropylene resin particle
JPH11147972A (en) * 1997-11-17 1999-06-02 Jsp Corp Production of foamed polypropylene resin particle, foamed polypropylene resin particle, and molded item thereof
JP2003528189A (en) * 2000-03-17 2003-09-24 ダウ グローバル テクノロジーズ インコーポレーテッド Method for producing macrocellular acoustic foam
JP2004534125A (en) * 2001-06-20 2004-11-11 ベー・ペー・ベルギー・ナムローゼ・フェンノートシャップ Expanded polypropylene granule composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031409A (en) * 2012-08-02 2014-02-20 Sharp Corp Thermoplastic resin composition and molded artifact of the same
WO2019172204A1 (en) * 2018-03-08 2019-09-12 株式会社カネカ Polypropylene resin foamed particle and method of producing same
JPWO2019172204A1 (en) * 2018-03-08 2021-02-18 株式会社カネカ Polypropylene resin foam particles and their manufacturing method
JP7269220B2 (en) 2018-03-08 2023-05-08 株式会社カネカ Expanded polypropylene resin particles and method for producing the same
WO2019189462A1 (en) * 2018-03-27 2019-10-03 株式会社カネカ Method for manufacturing polypropylene resin foamed particles
JPWO2019189462A1 (en) * 2018-03-27 2021-03-11 株式会社カネカ Manufacturing method of polypropylene-based resin foam particles
JP7162051B2 (en) 2018-03-27 2022-10-27 株式会社カネカ Method for producing expanded polypropylene resin particles
CN109206791A (en) * 2018-09-21 2019-01-15 佛山市森昂生物科技有限公司 A kind of preparation method of air bubble bag packing material
JP6757871B1 (en) * 2019-03-19 2020-09-23 株式会社ジェイエスピー Method for producing polyolefin-based resin foamed particles, polyolefin-based resin foamed particle molded product, and polyolefin-based resin foamed particles
WO2020189389A1 (en) * 2019-03-19 2020-09-24 株式会社ジェイエスピー Polyolefin-based resin foam particles, polyolefin-based resin foam particle molded body, and production method for polyolefin-based resin foam particles
CN113831647A (en) * 2021-09-18 2021-12-24 无锡会通轻质材料股份有限公司 Preparation method of expanded polypropylene beads

Similar Documents

Publication Publication Date Title
JP2010037432A (en) Polypropylene resin pre-expanded particle
JP5553476B2 (en) Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles
JP5129641B2 (en) POLYPROPYLENE RESIN FOAM PARTICLE, IN-MOLD FOAM MOLDED PRODUCT AND METHOD FOR PRODUCING FOAM PARTICLE
JP7227223B2 (en) POLYOLEFIN RESIN EXPANSION PARTICLES, METHOD FOR PRODUCING SAME AND POLYOLEFIN RESIN EXPANSION MOLDED PRODUCT
WO2013137411A1 (en) Polypropylene resin foam particles, in-mold foam molded body comprising polypropylene resin foam particles, and method for producing same
JP5400323B2 (en) Method for producing polyolefin resin pre-expanded particles with reduced amount of adhesion dispersant
JP5324804B2 (en) Method for producing polypropylene resin expanded particles, polypropylene resin expanded particles, and expanded foam in polypropylene resin mold
JP5090213B2 (en) Method for producing expanded polypropylene resin particles
JP2009221451A (en) Method for manufacturing polypropylene resin foam particle, foam particle and foam molded body
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JP2010031243A (en) Method for producing polyolefin-based resin expanded particle, polyolefin-based resin expanded particle, and in-mold expansion molded product obtained from the same method for production
JP2006213877A (en) Polypropylene resin pre-expanded particle and expanded molding obtainable therefrom
JP5112771B2 (en) Method for producing polyolefin resin pre-expanded particles
WO2018190353A1 (en) Method for producing polypropylene resin foam particles, polypropylene resin foam particles, and polypropylene resin in-mold foaming molded body
JPWO2016158686A1 (en) Method for producing polyethylene resin foam molding
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JP5064745B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP6609559B2 (en) Conductive polypropylene resin expanded particles having excellent antifouling property and moldability, method for producing polypropylene resin expanded particles, and polypropylene resin expanded foam
JP2006297807A (en) Polypropylene-based resin in-mold foam-molding body
JP5277798B2 (en) Process for producing polyolefin resin expanded particles, polyolefin resin expanded particles obtained from the process, and in-mold foam molded article
JP6847584B2 (en) Polyethylene resin foam particles and polyethylene resin foam molded products with antistatic performance and their manufacturing methods
JP7269220B2 (en) Expanded polypropylene resin particles and method for producing the same
JP5256664B2 (en) Method for producing polyolefin resin pre-expanded particles with reduced amount of adhesion dispersant
JP5295557B2 (en) Method for producing polyolefin resin pre-expanded particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716