JP5253119B2 - Method for producing thermoplastic resin expanded particles - Google Patents

Method for producing thermoplastic resin expanded particles Download PDF

Info

Publication number
JP5253119B2
JP5253119B2 JP2008310719A JP2008310719A JP5253119B2 JP 5253119 B2 JP5253119 B2 JP 5253119B2 JP 2008310719 A JP2008310719 A JP 2008310719A JP 2008310719 A JP2008310719 A JP 2008310719A JP 5253119 B2 JP5253119 B2 JP 5253119B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
particles
weight
foaming
polyethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008310719A
Other languages
Japanese (ja)
Other versions
JP2009161738A (en
Inventor
淳 福澤
浩司 常石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008310719A priority Critical patent/JP5253119B2/en
Publication of JP2009161738A publication Critical patent/JP2009161738A/en
Application granted granted Critical
Publication of JP5253119B2 publication Critical patent/JP5253119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は熱可塑性樹脂発泡粒子の製造方法に関する。さらに詳しくは、たとえば型内発泡成形体の原料として好適に使用し得る熱可塑性樹脂発泡粒子の製造方法に関する。   The present invention relates to a method for producing thermoplastic resin expanded particles. More specifically, for example, the present invention relates to a method for producing thermoplastic resin foam particles that can be suitably used as a raw material for an in-mold foam molded article.

従来、熱可塑性樹脂粒子を発泡剤とともに水系分散媒に分散させ、昇温して一定圧力、一定温度として樹脂粒子中に発泡剤を含浸させたのち、低圧雰囲気下に放出して発泡粒子を得る方法が知られている。発泡剤としては、プロパン、ブタンといった揮発性有機発泡剤を使用する方法(例えば、特許文献1)、炭酸ガス、窒素、空気などの無機ガスを使用する方法(例えば、特許文献2,3)が開示されている。   Conventionally, thermoplastic resin particles are dispersed in an aqueous dispersion medium together with a foaming agent, and the temperature is raised and the resin particles are impregnated with the foaming agent at a constant pressure and constant temperature, and then released into a low-pressure atmosphere to obtain foamed particles. The method is known. Examples of the blowing agent include a method using a volatile organic blowing agent such as propane and butane (for example, Patent Document 1) and a method using an inorganic gas such as carbon dioxide, nitrogen, and air (for example, Patent Documents 2 and 3). It is disclosed.

しかしながら、揮発性有機発泡剤は、地球温暖化係数が炭酸ガスよりも大きい物質であり、また、プロパン、ブタンなどの揮発性有機発泡剤は、熱可塑性樹脂を可塑化する作用があり、高発泡倍率を得やすい反面、その可塑化作用のため、発泡粒子の発泡倍率および結晶状態のコントロールが難しい。また、可燃性物質であるため、設備の防爆化が必要となるために、設備コスト高となる欠点を有している。   However, volatile organic blowing agents are substances whose global warming potential is larger than that of carbon dioxide, and volatile organic blowing agents such as propane and butane have the effect of plasticizing thermoplastic resins and are highly foamed. Although it is easy to obtain the magnification, it is difficult to control the expansion ratio and crystal state of the expanded particles due to its plasticizing action. In addition, since it is a flammable substance, it is necessary to make the equipment explosion-proof, which has the disadvantage of increasing the equipment cost.

一方、窒素、空気などの無機ガスを使用する場合は、熱可塑性樹脂への含浸能が非常に低く、高い圧力としても高発泡化に充分な含浸量が得られない問題があった。   On the other hand, when an inorganic gas such as nitrogen or air is used, the impregnation ability into the thermoplastic resin is very low, and there is a problem that a sufficient impregnation amount for high foaming cannot be obtained even at high pressure.

これらの欠点を解決し、型内発泡成形体の製造に好適に使用しうるポリオレフィン系樹脂発泡粒子を経済的に製造する方法として、分散媒に使用する水を発泡剤として利用する方法が提案されている。   As a method for solving these drawbacks and economically producing polyolefin resin expanded particles that can be suitably used for the production of in-mold foam molded articles, a method using water used as a dispersion medium as a blowing agent has been proposed. ing.

水を発泡剤とする方法として、無機充填剤を10〜70重量%含有する結晶性ポリオレフィン重合体粒子を密閉容器で分散媒である水に分散させ、この分散液の飽和蒸気圧以上の圧力および結晶性ポリオレフィン重合体粒子の融点以下で、かつこの重合体粒子の結晶化が進行する温度条件下にある高圧域に保持して、分散媒である水を含浸させ、ついでこの分散液を低圧域に放出させて結晶性ポリオレフィン重合体発泡粒子を製造する方法が提案されている(特許文献4)。しかし、この方法で得られる発泡粒子は、大量の無機充填剤を含有しているため、気泡径が微細であり、また連泡率が高くなる傾向となり、型内発泡成形体とした時の融着、表面外観、圧縮強度等の機械的物性が十分でない。この様に、吸水性鉱物、水溶性無機物などを熱可塑性樹脂に添加し、水を発泡剤として作用させることも試みられてきているが、親水性ポリマーに比較して多量の添加が必要であり、またそれ自体が発泡核剤の機能も持つために気泡の小さい発泡粒子となる傾向にあり、成形性が不良となっていた。   As a method using water as a foaming agent, crystalline polyolefin polymer particles containing 10 to 70% by weight of an inorganic filler are dispersed in water as a dispersion medium in a sealed container, and a pressure equal to or higher than the saturated vapor pressure of the dispersion and The dispersion is maintained in a high pressure region below the melting point of the crystalline polyolefin polymer particles and under a temperature condition where the crystallization of the polymer particles proceeds, and impregnated with water as a dispersion medium, There has been proposed a method for producing crystalline polyolefin polymer foamed particles by releasing the polymer (Patent Document 4). However, since the expanded particles obtained by this method contain a large amount of inorganic filler, the cell diameter tends to be fine and the open cell ratio tends to be high. Mechanical properties such as wear, surface appearance and compressive strength are not sufficient. In this way, attempts have been made to add water-absorbing minerals, water-soluble inorganic substances, etc. to the thermoplastic resin and to allow water to act as a foaming agent, but a large amount of addition is required compared to hydrophilic polymers. Also, since it itself has the function of a foam nucleating agent, it tends to be foamed particles with small bubbles, and the moldability is poor.

密閉容器内で親水性ポリマーおよび無機充填剤を含有するポリオレフィン系樹脂粒子を水に分散させ、この樹脂粒子の軟化温度以上に加熱して含水ポリオレフィン系樹脂粒子とした後、この分散液を低圧域に放出させてポリオレフィン系樹脂発泡粒子を製造する方法が提案されている(例えば、特許文献5〜7)。この方法では、環境に優しい水を発泡剤として使用しながら、低い容器内圧で高発泡倍率のポリオレフィン系樹脂発泡粒子を得ることができる。しかしながら、得られる発泡粒子の気泡が微細化したり、不均一化し易い傾向があり、そこで得た発泡粒子を用いた型内発泡成形においては、低倍率の成形体では特に問題の無い成形体が得られるものの、高発泡倍率成形体の成形条件を、近年の生産コストの追及から、成形サイクルを短く、また成形後の養生時間を短くした場合、成形体の表面にしわが発生したり、成形体の寸法収縮が大きく、成形体形状が歪むなどの問題が見られ、成形品の商品価値の低下や成形体の生産性の悪化をもたらしている。   In a closed container, polyolefin resin particles containing a hydrophilic polymer and an inorganic filler are dispersed in water, heated to a temperature equal to or higher than the softening temperature of the resin particles to obtain water-containing polyolefin resin particles, and then the dispersion is reduced to a low pressure region. A method for producing a polyolefin resin foamed particle by releasing it into a resin has been proposed (for example, Patent Documents 5 to 7). In this method, polyolefin-based resin expanded particles having a high expansion ratio can be obtained at a low container internal pressure while using environmentally friendly water as a foaming agent. However, the foamed particles obtained tend to be fine or non-uniform, and in-mold foam molding using the foamed particles obtained there can be obtained a molded product with no particular problems with a low-magnification molded product. However, if the molding conditions of the high expansion ratio molded product are shortened due to the recent increase in production costs, and the curing time after molding is shortened, the surface of the molded product may be wrinkled, Problems such as large dimensional shrinkage and distortion of the shape of the molded product are observed, resulting in a decrease in the commercial value of the molded product and a deterioration in the productivity of the molded product.

さらに、前記、親水性ポリマーおよび無機充填剤を含有するポリオレフィン系樹脂粒子より製造したポリオレフィン系樹脂発泡粒子は、水を発泡剤として利用するために親水性ポリマーを添加するが、一般に親水性ポリマーがポリオレフィン系樹脂中での分散性に乏しいことから、発泡粒子の倍率バラツキを発生させたり、成形体としたときの粒子どうしの融着が不良となり易い欠点も見られている。   Further, the polyolefin resin foam particles produced from the polyolefin resin particles containing the hydrophilic polymer and the inorganic filler are added with a hydrophilic polymer in order to use water as a foaming agent. Due to the poor dispersibility in polyolefin resins, there are also disadvantages in which the variation in the magnification of the expanded particles is likely to occur and the fusion between the particles when formed into a molded product tends to be poor.

そして、特定の親水性ポリマーであるアイオノマー樹脂を、発泡剤に水と炭酸ガスを使用して、ポリオレフィン系樹脂発泡粒子を得る製造方法が提案されている(特許文献8)。この方法にて発泡粒子の気泡の均一性を高め、成形性を改良させる試みがされているが、気泡の均一性が不充分であり、成形体を得た際の表面性や寸法精度にやや劣ること、さらにアイオノマーが非常に高価な物質であるために、工業的利用に不向きであった。   And the manufacturing method which obtains the polyolefin-type resin expanded particle using the ionomer resin which is a specific hydrophilic polymer using water and a carbon dioxide gas for a foaming agent is proposed (patent document 8). Attempts have been made to improve the foam uniformity of foamed particles and improve the moldability by this method, but the foam uniformity is insufficient, and the surface properties and dimensional accuracy at the time of obtaining the molded product are somewhat. Inferior, and ionomers are very expensive materials, which makes them unsuitable for industrial use.

また、発泡剤に炭酸ガスを使用し、無機物とともにポリプロピレングリコール・ポリエチレングリコール重合体を含有する重合体粒子を発泡させ、気泡が微細化することのない発泡粒子の製造方法が開示されている(特許文献9)。この方法ではポリオレフィン樹脂への相溶性が低いために、重合体粒子を作成する工程での分散不良によるストランド切れの発生や、押出機での溶融樹脂の送り変動などのトラブルを発生させ易い、そのため微量添加しかできず、吸水性が低いため炭酸ガスによる発泡に頼らざるを得なかった。また、平均分子量が大きいものを使用するために成形体とした際の発泡粒子どうしの融着率が低下し易いことや、耐熱性の低下、強度の低下が欠点となっていた。
特公昭56−1344号公報 特公平4−64332号公報 特公平4−64334号公報 特公昭49−2183号公報 特開平10−298338号公報 特開平10−306179号公報 特開平11−106576号公報 特開平10−152474号公報 特開平5−163381号公報
Also disclosed is a method for producing foamed particles in which carbon dioxide gas is used as a foaming agent, polymer particles containing polypropylene glycol / polyethylene glycol polymer together with inorganic substances are foamed, and bubbles are not refined (patent) Reference 9). Since this method has low compatibility with polyolefin resin, it is easy to cause troubles such as strand breakage due to poor dispersion in the process of creating polymer particles and fluctuation of molten resin feed in the extruder. Since only a small amount could be added and water absorption was low, it was necessary to rely on foaming with carbon dioxide gas. Moreover, since the one having a large average molecular weight is used, the fusion rate between the foamed particles when formed into a molded body is easily reduced, and the heat resistance and strength are disadvantageously reduced.
Japanese Patent Publication No.56-1344 Japanese Patent Publication No. 4-64332 Japanese Examined Patent Publication No. 4-64334 Japanese Patent Publication No.49-2183 JP-A-10-298338 Japanese Patent Laid-Open No. 10-306179 JP-A-11-106576 Japanese Patent Laid-Open No. 10-152474 Japanese Patent Laid-Open No. 5-163381

本発明は、水を発泡剤として用いる熱可塑性樹脂発泡粒子の製造方法において、発泡粒子の気泡の不均一化や気泡の微細化を起こさず、また型内発泡成形を行った際に、融着性が良好で、かつ表面性が良好で、寸法精度の高い型内発泡成形体が得られる熱可塑性樹脂発泡粒子を提供することを目的とする。   The present invention relates to a method for producing foamed thermoplastic resin particles using water as a foaming agent. An object of the present invention is to provide foamed thermoplastic resin particles that can provide an in-mold foam-molded article having good properties and surface properties and high dimensional accuracy.

本発明者らは鋭意検討の結果、熱可塑性樹脂100重量部に対し、ポリエチレングリコール0.05重量部以上2重量部以下、および発泡核剤を含んでなる熱可塑性樹脂組成物からなる熱可塑性樹脂粒子を使用することで、上記課題が解決することを見出し、本発明の完成に至った。   As a result of intensive studies, the present inventors have made a thermoplastic resin comprising a thermoplastic resin composition containing 0.05 to 2 parts by weight of polyethylene glycol and a foam nucleating agent with respect to 100 parts by weight of the thermoplastic resin. The inventors have found that the above problems can be solved by using particles, and have completed the present invention.

すなわち本発明の第1は、密閉容器内に熱可塑性樹脂粒子を水系分散媒に分散させ、熱可塑性樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出する、水系分散媒に含まれる水を発泡剤とする熱可塑性樹脂発泡粒子の製造方法において、前記熱可塑性樹脂粒子が、熱可塑性樹脂100重量部に対し、ポリエチレングリコール0.05重量部以上2重量部以下、および発泡核剤を含んでなる熱可塑性樹脂組成物からなることを特徴とする熱可塑性樹脂発泡粒子の製造方法に関する。   That is, in the first aspect of the present invention, the thermoplastic resin particles are dispersed in an aqueous dispersion medium in a sealed container, heated and pressurized to a temperature equal to or higher than the softening temperature of the thermoplastic resin particles, and then a pressure lower than the internal pressure of the sealed container. In the method for producing a thermoplastic resin foamed particle using water contained in an aqueous dispersion medium as a foaming agent to be released into the region, the thermoplastic resin particle is 0.05 part by weight of polyethylene glycol with respect to 100 parts by weight of the thermoplastic resin. The present invention relates to a method for producing foamed thermoplastic resin particles, comprising a thermoplastic resin composition comprising 2 parts by weight or less and a foam nucleating agent.

好ましい態様としては、
(1)熱可塑性樹脂が、ポリオレフィン系樹脂である、
(2)ポリオレフィン系樹脂が、ポリプロピレン系樹脂である、
(3)前記ポリエチレングリコールの分子量が200以上9000以下である、
(4)前記ポリエチレングリコールの分子量が200以上600以下である、
(5)発泡剤として炭酸ガスを併用する、
前記記載の熱可塑性樹脂発泡粒子の製造方法に関する。
As a preferred embodiment,
(1) The thermoplastic resin is a polyolefin resin.
(2) The polyolefin resin is a polypropylene resin.
(3) The molecular weight of the polyethylene glycol is 200 or more and 9000 or less.
(4) The molecular weight of the polyethylene glycol is 200 or more and 600 or less.
(5) Carbon dioxide gas is used as a foaming agent.
The present invention relates to a method for producing the thermoplastic resin expanded particles described above.

本発明の第2は、前記記載の熱可塑性樹脂発泡粒子の製造方法によって得られる熱可塑性樹脂発泡粒子であって、ポリエチレングリコールを0.05重量%以上2重量%以下含み、発泡倍率が10倍以上45倍以下、平均気泡径が50μm以上800μm以下、示差走査熱量計法による測定において、2つ以上の融点を示す結晶構造を有する熱可塑性樹脂発泡粒子に関する。   A second aspect of the present invention is a thermoplastic resin foam particle obtained by the above-described method for producing a thermoplastic resin foam particle, comprising 0.05% by weight or more and 2% by weight or less of polyethylene glycol, and the expansion ratio is 10 times. The present invention relates to thermoplastic resin foam particles having a crystal structure of 45 times or less, an average cell diameter of 50 μm or more and 800 μm or less, and having two or more melting points in measurement by differential scanning calorimetry.

本発明の第3は、前記記載熱可塑性樹脂発泡粒子を、型内発泡成形してなる型内発泡成形体に関する。   A third aspect of the present invention relates to an in-mold foam-molded product obtained by foam-molding the above-mentioned thermoplastic resin foam particles.

本発明によると、水を発泡剤として用いる熱可塑性樹脂発泡粒子の製造方法においても、発泡粒子の気泡の不均一化や気泡の微細化が起こりにくい熱可塑性樹脂発泡粒子を得ることが出来る。また、本発明の製造方法によって得られた熱可塑性樹脂発泡粒子を用いて型内発泡成形を行うと、融着性が良好で、かつ表面性が良好で、寸法精度の高い型内発泡成形体が得られる。特に本発明の熱可塑性樹脂発泡粒子を二段発泡によって高倍化させたのち、型内発泡成形体を成形する場合において、従来の水を発泡剤として使用した場合と比べて良好な型内発泡成形体を得ることが可能である。   According to the present invention, it is possible to obtain thermoplastic resin foam particles in which the foamed particles are less likely to be non-uniform and finer than those in the method for producing thermoplastic resin foam particles using water as a foaming agent. Further, when in-mold foam molding is performed using the thermoplastic resin foam particles obtained by the production method of the present invention, the in-mold foam molded article has good fusion property, good surface properties, and high dimensional accuracy. Is obtained. In particular, after the thermoplastic resin foam particles of the present invention are doubled by two-stage foaming, when molding an in-mold foam molded article, it is better in-mold foam molding than when conventional water is used as a foaming agent. It is possible to get a body.

本発明の熱可塑性樹脂発泡粒子の製造方法は、密閉容器内に熱可塑性樹脂粒子を水系分散媒に分散させ、加圧し、熱可塑性樹脂粒子の軟化温度以上の温度まで加熱した後、水系分散媒に含まれる水を発泡剤として密閉容器の内圧よりも低い圧力域に放出するものであり、前記熱可塑性樹脂粒子が、熱可塑性樹脂100重量部に対し、0.05重量部以上2重量部以下のポリエチレングリコール、および発泡核剤を含んでなる熱可塑性樹脂組成物からなることを特徴とするものである。   The method for producing the thermoplastic resin foamed particles of the present invention is obtained by dispersing thermoplastic resin particles in an aqueous dispersion medium in an airtight container, pressurizing and heating the thermoplastic resin particles to a temperature equal to or higher than the softening temperature of the thermoplastic resin particles. The water contained in is discharged into a pressure region lower than the internal pressure of the sealed container as a foaming agent, and the thermoplastic resin particles are 0.05 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. A thermoplastic resin composition comprising a polyethylene glycol and a foam nucleating agent.

本発明で使用するポリエチレングリコールとは、エチレングリコールが重合した構造を有する非イオン性の水溶性ポリマーであり、分子量は概ね5万以下のものである。本発明で使用するポリエチレングリコールは、平均分子量が200以上9000以下であることが好ましく、より好ましくは200以上600以下である。一般にグリコール類は熱可塑性樹脂への相溶性にやや劣る特性があるが、ポリエチレングリコールの平均分子量200以上9000以下のポリエチレングリコールであれば、熱可塑性樹脂とポリエチレングリコールを押出機にて混練、ストランドカット法にて熱可塑性樹脂粒子を作製する工程においても比較的良好に分散するためストランド切れの発生や、溶融樹脂の送り不安定などのトラブルの発生が少ない傾向がある。さらに均一な気泡で倍率バラツキが小さい熱可塑性樹脂発泡粒子が得られる。該熱可塑性樹脂発泡粒子を用いて型内発泡成形して得られた型内発泡成形体は融着率が高く、表面が美麗であり、寸法収縮率も小さい。   The polyethylene glycol used in the present invention is a nonionic water-soluble polymer having a structure in which ethylene glycol is polymerized, and has a molecular weight of approximately 50,000 or less. The polyethylene glycol used in the present invention preferably has an average molecular weight of 200 or more and 9000 or less, more preferably 200 or more and 600 or less. In general, glycols are slightly inferior in compatibility with thermoplastic resins, but if polyethylene glycol has an average molecular weight of 200 or more and 9000 or less, the thermoplastic resin and polyethylene glycol are kneaded with an extruder and strand cut. Even in the process of producing thermoplastic resin particles by the method, since the dispersion is relatively good, troubles such as occurrence of strand breakage and unstable feeding of molten resin tend to be small. Further, expanded thermoplastic resin particles having uniform bubbles and small variation in magnification can be obtained. An in-mold foam molded article obtained by in-mold foam molding using the thermoplastic resin foam particles has a high fusion rate, a beautiful surface, and a small dimensional shrinkage rate.

また、ポリエチレングリコールの分子量が異なるものを併用することも可能である。ただし、グリコール類の類似物質であるポリプロピレングリコール・ポリエチレングリコール重合物などは熱可塑性樹脂への分散性が悪いために微量添加に限られ、さらに吸水性も低いために併用は適さない。また、平均分子量200以上600以下の平均分子量が小さいポリエチレングリコールを選択すると、水と併用すると好適である炭酸ガスの含浸性が高くなることから、高発泡倍率の熱可塑性樹脂発泡粒子を得やすい傾向にある。また、架橋ポリアルキレンオキサイドが市販されており入手可能であるが、含水量を得ようとすると多くの添加量が必要で、かつ高価な物質であるために非常にコスト高となる。   In addition, polyethylene glycol having different molecular weights can be used in combination. However, a polypropylene glycol / polyethylene glycol polymer, which is a similar substance to glycols, is limited to addition in a very small amount because of its poor dispersibility in thermoplastic resins, and is not suitable for combined use because of its low water absorption. Further, when polyethylene glycol having an average molecular weight of 200 or more and 600 or less and having a small average molecular weight is selected, the carbon dioxide gas impregnation property, which is preferable when used in combination with water, is increased, and thus it is easy to obtain thermoplastic resin expanded particles having a high expansion ratio It is in. Moreover, although the crosslinked polyalkylene oxide is commercially available and available, when it is attempted to obtain the water content, a large amount of addition is necessary and the cost is very high because it is an expensive substance.

ここで、ポリエチレングリコールの平均分子量は、たとえば、サーモフィッシャーサイエンティフィック製LCQアドバンテージなどの液体クロマトグラフ質量分析装置を使用し測定できる。   Here, the average molecular weight of polyethylene glycol can be measured, for example, using a liquid chromatograph mass spectrometer such as LCQ Advantage manufactured by Thermo Fisher Scientific.

ポリエチレングリコールの添加量は、熱可塑性樹脂100重量部に対して0.05重量部以上2重量部以下であり、好ましくは0.05重量部以上1重量部以下、更に好ましくは0.1重量部以上0.5重量部以下である。ただし、ポリエチレングリコールの平均分子量が小さいほど含水率を高くすることができる傾向があり、平均分子量が大きいものでは、同等の含水率を得ようとすると、それよりも添加量が増える傾向があるため、所望の発泡倍率、所望の含水率や物性とのバランスで使用するポリエチレングリコールの分子量と添加量を選択することが出来る。ここでポリエチレングリコールの添加量とは、吸水していないポリエチレングリコールの重量を指す。   The amount of polyethylene glycol added is 0.05 to 2 parts by weight, preferably 0.05 to 1 part by weight, more preferably 0.1 parts by weight, relative to 100 parts by weight of the thermoplastic resin. The amount is 0.5 parts by weight or less. However, the smaller the average molecular weight of polyethylene glycol, the higher the water content tends to be, and the higher the average molecular weight, the more the added amount tends to increase when trying to obtain an equivalent water content. The molecular weight and addition amount of polyethylene glycol used can be selected in balance with a desired expansion ratio, desired moisture content and physical properties. Here, the addition amount of polyethylene glycol refers to the weight of polyethylene glycol that has not absorbed water.

ポリエチレングリコールの添加量が0.05重量部より少ないと、熱可塑性樹脂発泡粒子の発泡倍率を向上させることができなかったり、気泡の均一化効果が低減する。添加量が2重量部を超えては、熱可塑性樹脂発泡粒子の収縮が生じ易くなったり、熱可塑性樹脂中へのポリエチレングリコールの分散が不十分となる。   When the addition amount of polyethylene glycol is less than 0.05 parts by weight, the expansion ratio of the thermoplastic resin expanded particles cannot be improved, or the effect of uniforming the bubbles is reduced. When the addition amount exceeds 2 parts by weight, shrinkage of the thermoplastic resin expanded particles is likely to occur, or dispersion of polyethylene glycol in the thermoplastic resin becomes insufficient.

ポリエチレングリコールは、きわめて毒性の低い物質であり、本発明の熱可塑性樹脂発泡粒子は、食品との接触がある用途に用いられる型内発泡成形体の原料として用いることも可能である。   Polyethylene glycol is a substance having extremely low toxicity, and the thermoplastic resin foamed particles of the present invention can be used as a raw material for an in-mold foam molded article used for an application having contact with food.

熱可塑性樹脂にポリエチレングリコールを含有させるには、例えば、ペレット状の熱可塑性樹脂にポリエチレングリコールを予めブレンドしたものを押出機にて溶融混練し、ダイスより押出し、冷却したのち、カッターにて細断することで粒子形状とすることが出来る。あるいは、ポリエチレングリコールを押出機の途中で、溶融させた熱可塑性樹脂に液体状で添加し、混練しても良い。その液体添加の際、ポリエチレングリコールの分子量が1000以上3000以下のものに関しては、常温にてろう状であるため、加温し融解させたのち添加することが好ましい。また、分子量が4000以下のものではポリエチレングリコールの蒸散を少なくするため、押出機のシリンダー、ダイス部の温度を250℃以下の低めにすることが望ましい。平均分子量が4000より大きいものでは、予め熱可塑性樹脂とのマスターバッチを作製しておき、さらに熱可塑性樹脂と溶融混練しても良い。また押出機に熱可塑性樹脂を投入するホッパー部分においてポリエチレングリコールを液体状で定量供給してもよい。   To include polyethylene glycol in the thermoplastic resin, for example, a pellet-shaped thermoplastic resin pre-blended with polyethylene glycol is melt-kneaded with an extruder, extruded from a die, cooled, and then chopped with a cutter By doing so, the particle shape can be obtained. Alternatively, polyethylene glycol may be added in a liquid state to the molten thermoplastic resin in the middle of the extruder and kneaded. When the liquid is added, polyethylene glycol having a molecular weight of 1000 or more and 3000 or less is waxy at room temperature, so it is preferable to add after heating and melting. Further, when the molecular weight is 4000 or less, it is desirable to lower the temperature of the cylinder and the die part of the extruder to 250 ° C. or less in order to reduce the transpiration of polyethylene glycol. If the average molecular weight is greater than 4000, a masterbatch with a thermoplastic resin may be prepared in advance and then melt-kneaded with the thermoplastic resin. Further, polyethylene glycol may be quantitatively supplied in a liquid state in a hopper portion where the thermoplastic resin is charged into the extruder.

本発明で使用する発泡核剤は、発泡の時に気泡核の形成を促す物質をいい、たとえば、タルク、炭酸カルシウム、シリカ、カオリン、硫酸バリウム、水酸化カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン、ゼオライト等の無機物質、ステアリン酸カルシウム、ステアリン酸バリウムなどの脂肪酸金属塩、メラミン、メラミンシアヌレート等の高融点でかつ水に完全溶解しない有機物質、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸カルシウム、ホウ酸アルミニウム等のホウ酸金属塩などが挙げられる。これらの発泡核剤は、単独で用いてもよく、2種以上を併用しても良い。これらの中でも、タルク、炭酸カルシウムが好ましく、特に安価でポリエチレングリコールとの馴染みが良いタルクを使用すると、ポリエチレングリコールの熱可塑性樹脂中への分散性が向上し、均一な気泡を有する熱可塑性樹脂発泡粒子を得易くなるため好適である。   The foam nucleating agent used in the present invention refers to a substance that promotes the formation of cell nuclei during foaming. For example, talc, calcium carbonate, silica, kaolin, barium sulfate, calcium hydroxide, aluminum hydroxide, aluminum oxide, titanium oxide , Inorganic materials such as zeolite, fatty acid metal salts such as calcium stearate and barium stearate, high melting point organic materials such as melamine and melamine cyanurate, zinc borate, barium metaborate, calcium borate, Examples thereof include metal borate salts such as aluminum borate. These foam nucleating agents may be used alone or in combination of two or more. Among these, talc and calcium carbonate are preferable, and when using talc that is inexpensive and familiar with polyethylene glycol, the dispersibility of polyethylene glycol in the thermoplastic resin is improved, and a thermoplastic resin foam having uniform bubbles is obtained. It is preferable because particles are easily obtained.

発泡核剤の添加量は使用する発泡核剤によって異なり、一概には決めることが出来ないが、熱可塑性樹脂100重量部に対して、0.005重量部以上2重量部以下であることが好ましく、0.01重量部以上1重量部以下であることがより好ましい。また、たとえば発泡核剤としてタルクを使用する場合、熱可塑性樹脂100重量部に対して、0.005重量部以上1重量部以下であることが好ましく、さらに好ましくは0.01重量部以上0.5重量部以下、より好ましくは0.02重量部以上0.2重量部以下である。   The amount of the foam nucleating agent varies depending on the foam nucleating agent to be used and cannot be generally determined, but is preferably 0.005 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. More preferably, the content is 0.01 parts by weight or more and 1 part by weight or less. For example, when talc is used as the foam nucleating agent, the amount is preferably 0.005 parts by weight or more and 1 part by weight or less, more preferably 0.01 parts by weight or more and 0.001 part by weight or less with respect to 100 parts by weight of the thermoplastic resin. 5 parts by weight or less, more preferably 0.02 parts by weight or more and 0.2 parts by weight or less.

発泡核剤の添加量が0.005重量部より少ない場合は、熱可塑性樹脂発泡粒子の発泡倍率を大きくすることができなかったり、気泡の均一性が低下してしまう場合がある。発泡核剤の添加量が2重量部より多い場合は熱可塑性樹脂発泡粒子の平均気泡径が小さくなり過ぎ、型内発泡成形性が不良となる傾向にある。   When the addition amount of the foam nucleating agent is less than 0.005 parts by weight, the foaming ratio of the thermoplastic resin foam particles may not be increased or the uniformity of the bubbles may be deteriorated. When the amount of the foam nucleating agent added is more than 2 parts by weight, the average cell diameter of the thermoplastic resin expanded particles tends to be too small, and the in-mold foam moldability tends to be poor.

また、相溶化剤、帯電防止剤、着色剤、安定剤、耐候剤、難燃剤、銅害防止剤などの各種添加剤は本発明の効果を損わない程度に適宜添加可能である。   Various additives such as a compatibilizing agent, an antistatic agent, a colorant, a stabilizer, a weathering agent, a flame retardant, and a copper damage preventing agent can be appropriately added to such an extent that the effects of the present invention are not impaired.

発泡核剤、および必要に応じて添加される前記添加剤は、ポリエチレングリコールの添加方法と同様に、熱可塑性樹脂を溶融混練する際に添加することが出来る。   The foaming nucleating agent and the additive that is added as necessary can be added when the thermoplastic resin is melt-kneaded, as in the method of adding polyethylene glycol.

本発明に用いられる熱可塑性樹脂は、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリメチルメタクリレート樹脂、ポリエステル系樹脂、ポリ乳酸系樹脂、マレイミド系共重合体樹脂などが挙げられる。中でもポリプロピレン系、ポリエチレン系などのポリオレフィン系樹脂が好ましい。   Examples of the thermoplastic resin used in the present invention include polyolefin resins, polystyrene resins, polymethyl methacrylate resins, polyester resins, polylactic acid resins, maleimide copolymer resins, and the like. Among these, polyolefin resins such as polypropylene and polyethylene are preferable.

ポリエチレン系樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、等が挙げられ、これらは、単独で用いてもよく、2種以上併用してもよい。   Examples of the polyethylene resin include high-density polyethylene, medium-density polyethylene, low-density polyethylene, and linear low-density polyethylene. These may be used alone or in combination of two or more.

ポリプロピレン系樹脂としては、プロピレンホモポリマー、α−オレフィン−プロピレンランダム共重合体、α−オレフィン−プロピレンブロック共重合体などが挙げられる。これらは、単独で用いてもよく、2種以上併用してもよい。特に、エチレン−プロピレンランダム共重合体、エチレン−プロピレン−ブテン−1ランダム共重合体、プロピレン−ブテン−1ランダム共重合体が低発泡から高発泡まで発泡倍率のコントロールが容易であり、好適に使用し得る。   Examples of the polypropylene resin include a propylene homopolymer, an α-olefin-propylene random copolymer, an α-olefin-propylene block copolymer, and the like. These may be used alone or in combination of two or more. In particular, ethylene-propylene random copolymer, ethylene-propylene-butene-1 random copolymer, and propylene-butene-1 random copolymer can be used suitably because the foaming ratio can be easily controlled from low foaming to high foaming. Can do.

本発明で用いることが出来るポリプロピレン系樹脂の融点は、130℃以上165℃以下であることが好ましく、更には135℃以上155℃以下のものが好ましい。融点が130℃未満の場合、耐熱性、機械的強度が十分でない傾向がある。また、融点が165℃を超える場合、型内発泡成形時の融着を確保することが難しくなる傾向がある。ここで、前記融点とは、示差走査熱量計によってポリプロピレン系樹脂1mg以上10mg以下を40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。   The melting point of the polypropylene resin that can be used in the present invention is preferably 130 ° C. or higher and 165 ° C. or lower, and more preferably 135 ° C. or higher and 155 ° C. or lower. When the melting point is less than 130 ° C., heat resistance and mechanical strength tend to be insufficient. Moreover, when melting | fusing point exceeds 165 degreeC, there exists a tendency for it to become difficult to ensure the melt | fusion at the time of in-mold foam molding. Here, the melting point refers to a temperature of 10 to 10 mg of polypropylene-based resin raised from 40 ° C. to 220 ° C. at a rate of 10 ° C./min by a differential scanning calorimeter, and then cooled to 40 ° C. at a rate of 10 ° C./min. The peak temperature of the endothermic peak in the DSC curve obtained when the temperature is increased again to 220 ° C. at a rate of 10 ° C./min.

本発明で用いることが出来るポリプロピレン系樹脂のメルトインデックス(以下、MI値)は、0.5g/10分以上30g/10分以下であることが好ましく、更には2g/10分以上20g/10分以下のものが好ましい。   The melt index (hereinafter referred to as MI value) of the polypropylene resin that can be used in the present invention is preferably 0.5 g / 10 min or more and 30 g / 10 min or less, and more preferably 2 g / 10 min or more and 20 g / 10 min. The following are preferred.

MI値が0.5g/10分未満の場合、高発泡倍率の熱可塑性樹脂発泡粒子が得られにくく、30g/10分を超える場合、熱可塑性樹脂発泡粒子の気泡が破泡し易く、熱可塑性樹脂発泡粒子の連泡率が高くなる傾向にある。なお、本発明において、MI値とはJIS K7210に準拠し、温度230℃、荷重2.16kgで測定した値である。   When the MI value is less than 0.5 g / 10 minutes, it is difficult to obtain thermoplastic resin expanded particles having a high expansion ratio. When the MI value exceeds 30 g / 10 minutes, the bubbles of the thermoplastic resin expanded particles are likely to break, and the thermoplasticity The open cell ratio of the resin foam particles tends to increase. In the present invention, the MI value is a value measured at a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.

ポリオレフィン系樹脂の中でも、ポリプロピレン系樹脂を用いることが、水を発泡剤として用いる場合においても高発泡倍率の熱可塑性樹脂発泡粒子を得やすい点でより好ましい。   Among polyolefin-based resins, it is more preferable to use a polypropylene-based resin because it is easy to obtain thermoplastic resin expanded particles having a high expansion ratio even when water is used as a foaming agent.

熱可塑性樹脂100重量部に対しポリエチレングリコール0.05重量部以上2重量部以下、および発泡核剤を含有させた熱可塑性樹脂粒子を、密閉容器内の水系分散媒に分散させ、熱可塑性樹脂の軟化温度以上の温度まで加熱、加圧後、密閉容器の内圧よりも低い圧力域に放出して熱可塑性樹脂発泡粒子を製造する方法においては、水系分散媒に含まれる水が発泡剤となり、低圧域に放出する前に窒素もしくは空気を圧入することで密閉容器内の内圧を高め、発泡時の圧力開放速度を調節し、発泡倍率や平均気泡径の調整を行うことができる。また炭酸ガスなどの常温で気体の物理発泡剤を併用する場合は、熱可塑性樹脂粒子と水系分散媒を密閉容器に投入したのち、炭酸ガスなどの物理発泡剤を容器内に導入すれば良い。   The thermoplastic resin particles containing 0.05 part by weight or more and 2 parts by weight or less of polyethylene glycol and 100 parts by weight of the thermoplastic resin and containing the foam nucleating agent are dispersed in an aqueous dispersion medium in a sealed container, and the thermoplastic resin In the method of producing thermoplastic resin foam particles by heating and pressurizing to a temperature higher than the softening temperature and then releasing into a pressure range lower than the internal pressure of the sealed container, the water contained in the aqueous dispersion medium becomes the foaming agent, and the low pressure Nitrogen or air is press-fitted before being discharged into the region, thereby increasing the internal pressure in the sealed container, adjusting the pressure release speed during foaming, and adjusting the foaming ratio and the average cell diameter. When a gaseous physical foaming agent such as carbon dioxide gas is used at room temperature, the physical foaming agent such as carbon dioxide gas may be introduced into the container after the thermoplastic resin particles and the aqueous dispersion medium are introduced into the sealed container.

水系分散媒としては水が好ましい。メタノール、エタノール、エチレングリコール、グリセリン等を水に添加した分散媒も水系分散媒として使用できる。   Water is preferable as the aqueous dispersion medium. A dispersion medium in which methanol, ethanol, ethylene glycol, glycerin, or the like is added to water can also be used as the aqueous dispersion medium.

本発明においては、発泡剤として水を使用する。本発明において、「水を発泡剤として用いる」とは、後述する含水率を測定することにより判別することが出来る。また他の方法として、発泡直後の発泡粒子をポリマー用水分計、あるいはカールフィッシャー水分計などで測定することも可能である。   In the present invention, water is used as the foaming agent. In the present invention, “use water as a blowing agent” can be determined by measuring the moisture content described later. As another method, it is also possible to measure the expanded particles immediately after expansion with a polymer moisture meter or a Karl Fischer moisture meter.

水を発泡剤として使用していれば、他の物理発泡剤を併用してもよい。他の物理発泡剤としては、プロパン、ブタン、ペンタン等の飽和炭化水素類、ジメチルエーテル等のエーテル類、メタノール、エタノール等のアルコール類、空気、窒素、炭酸ガス等の無機ガスが挙げられる。中でも特に環境負荷が小さく、燃焼危険性も無いことから、炭酸ガスを併用することが望ましい。水と炭酸ガスを併用することで、発泡力を大きくし易いことから、高発泡倍率を得る際においても、発泡核剤の添加量を少なくすることができ、結果として平均気泡径が大きい発泡粒子が得られ、2次発泡性も良好なものとなる傾向がある。   If water is used as a foaming agent, other physical foaming agents may be used in combination. Examples of other physical foaming agents include saturated hydrocarbons such as propane, butane and pentane, ethers such as dimethyl ether, alcohols such as methanol and ethanol, and inorganic gases such as air, nitrogen and carbon dioxide. Among them, it is desirable to use carbon dioxide gas in combination because it has a particularly low environmental load and no danger of combustion. By using water and carbon dioxide gas in combination, it is easy to increase the foaming power, so even when obtaining a high expansion ratio, the amount of foam nucleating agent added can be reduced, resulting in expanded particles having a large average cell diameter. And secondary foamability tends to be good.

具体的には、例えば以下の手順で行うことが出来る。   Specifically, for example, the following procedure can be used.

密閉容器に熱可塑性樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて、密閉容器内を真空引きした後、1MPa(ゲージ圧)以上2MPa以下(ゲージ圧)程度の炭酸ガスを導入し、熱可塑性樹脂の軟化温度以上の温度まで加熱する。加熱することによって密閉容器内の圧力が約1.5MPa(ゲージ圧)以上5MPa以下(ゲージ圧)程度まで上がる。発泡温度付近にてさらに炭酸ガスを追加して所望の発泡圧力に調整、さらに温度調整を行った後、密閉容器の内圧よりも低い圧力域に放出して熱可塑性樹脂発泡粒子を得る。   After charging thermoplastic resin particles, water-based dispersion medium, and dispersing agent, if necessary, in a sealed container, the inside of the sealed container is evacuated and then 1 MPa (gauge pressure) to 2 MPa (gauge pressure). About carbon dioxide gas is introduced and heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin. By heating, the pressure in the sealed container rises to about 1.5 MPa (gauge pressure) or more and 5 MPa or less (gauge pressure). Carbon dioxide gas is further added near the foaming temperature to adjust to a desired foaming pressure, and further the temperature is adjusted, and then released into a pressure range lower than the internal pressure of the sealed container to obtain thermoplastic resin foam particles.

或いは、密閉容器に熱可塑性樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて密閉容器内を真空引きした後、熱可塑性樹脂の軟化温度以上の温度まで加熱しながら炭酸ガスを導入してもよい。   Alternatively, after preparing thermoplastic resin particles, an aqueous dispersion medium, and a dispersant as required in a sealed container, the inside of the sealed container is evacuated as necessary, and then heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin. Carbon dioxide gas may be introduced while being introduced.

また、密閉容器に熱可塑性樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、発泡温度付近まで加熱した後、さらに空気や窒素等を導入した後、発泡温度とし、密閉容器の内圧よりも低い圧力域に放出して熱可塑性樹脂発泡粒子を得る。   In addition, after preparing thermoplastic resin particles, an aqueous dispersion medium, and a dispersant as necessary in a sealed container, heating to near the foaming temperature, introducing air, nitrogen, etc., and then setting the foaming temperature, the sealed container The foamed thermoplastic resin particles are obtained by discharging into a pressure range lower than the internal pressure.

本発明の製造方法により得られる発泡粒子の発泡倍率に特に制限は無く、1倍を超えて10倍未満の発泡粒子の製造も可能であるが、10倍以上がより好ましい。発泡倍率の上限としては45倍以下であることが好ましく、さらに好ましくは20倍以下であり、最も好ましくは17倍以下である。   There is no restriction | limiting in particular in the expansion ratio of the expanded particle obtained by the manufacturing method of this invention, Although the manufacture of the expanded particle exceeding 1 time and less than 10 times is also possible, 10 times or more are more preferable. The upper limit of the expansion ratio is preferably 45 times or less, more preferably 20 times or less, and most preferably 17 times or less.

本発明においては、上述の方法によって得られた熱可塑性樹脂発泡粒子を耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、加熱することでさらに発泡させ、さらに高倍化してもよい。   In the present invention, the foamed thermoplastic resin particles obtained by the above-described method are pressurized with an inorganic gas such as air in a pressure-resistant container, and after applying an internal pressure, further foaming is performed by heating, and further higher magnification. May be used.

なお、本発明においては、熱可塑性樹脂粒子を密閉容器内の水系分散媒に分散させ、高温、高圧下にて発泡剤を含浸させ、密閉容器の内圧よりも低い圧力域に放出させて発泡させることを「一段発泡」と称し、一段発泡により得られる発泡粒子を「一段発泡粒子」と呼ぶ場合がある。   In the present invention, the thermoplastic resin particles are dispersed in an aqueous dispersion medium in a sealed container, impregnated with a foaming agent at high temperature and high pressure, and released into a pressure range lower than the internal pressure of the sealed container for foaming. This is referred to as “single-stage foaming”, and the foamed particles obtained by single-stage foaming may be referred to as “single-stage foamed particles”.

さらに、一段発泡粒子を耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、加熱することでさらに発泡させることを「二段発泡」と称し、二段発泡によって得られた発泡粒子を「二段発泡粒子」と呼ぶ場合がある。   Furthermore, pressurizing the first-stage foamed particles with an inorganic gas such as air in a pressure-resistant container, applying internal pressure, and then further foaming by heating is called “two-stage foaming” and is obtained by two-stage foaming. The obtained expanded particles may be referred to as “two-stage expanded particles”.

本発明においては、発泡倍率20倍以上の熱可塑性樹脂発泡粒子を得ようとする際は、一段発泡にて得られた一段発泡粒子をさらに二段発泡することが出来る。   In the present invention, when obtaining thermoplastic resin expanded particles having an expansion ratio of 20 times or more, the first-stage expanded particles obtained by the first-stage expansion can be further expanded in two stages.

発泡倍率が10倍未満の場合は、軽量化のメリットが得られず、また得られる型内発泡成形体の柔軟性、緩衝特性などが不充分となる傾向があり、45倍を越える場合は得られる型内発泡成形体の寸法精度、機械的強度、耐熱性などが不充分となる傾向がある。   If the expansion ratio is less than 10 times, the advantages of weight reduction cannot be obtained, and the flexibility and buffering properties of the obtained in-mold foam molded product tend to be insufficient. There is a tendency that the dimensional accuracy, mechanical strength, heat resistance and the like of the in-mold foam-molded product are insufficient.

なお本発明において、熱可塑性樹脂発泡粒子の発泡倍率とは、熱可塑性樹脂発泡粒子の重量w(g)を測定後、水没法にて体積v(cm3)を測定し、熱可塑性樹脂発泡粒子の真比重ρb=w/vを求め、発泡前の熱可塑性樹脂粒子の密度ρrとの比である。 In the present invention, the expansion ratio of the foamed thermoplastic resin particles means that after measuring the weight w (g) of the foamed thermoplastic resin particles, the volume v (cm 3 ) is measured by a submerging method, and the foamed thermoplastic resin particles The true specific gravity ρb = w / v is obtained and is a ratio with the density ρr of the thermoplastic resin particles before foaming.

本発明の熱可塑性樹脂発泡粒子の平均気泡径は50μm以上800μm以下であることが好ましく、より好ましくは100μm以上600μm以下、さらに好ましくは200μm以上500μm以下である。平均気泡径が50μm未満の場合、得られる型内発泡成形体の形状が歪む、表面にしわが発生するなどの問題が生じる場合があり、800μmを越える場合、得られる型内発泡成形体の緩衝特性が低下する場合がある。   The average cell diameter of the thermoplastic resin expanded particles of the present invention is preferably 50 μm or more and 800 μm or less, more preferably 100 μm or more and 600 μm or less, and further preferably 200 μm or more and 500 μm or less. When the average cell diameter is less than 50 μm, there are cases where the shape of the obtained in-mold foam molded product is distorted and the surface is wrinkled. When the average cell diameter exceeds 800 μm, the buffer properties of the in-mold foam molded product to be obtained May decrease.

なお平均気泡径は、熱可塑性樹脂発泡粒子の切断面について、表層部を除く部分についてASTM D3576の理論に従い測定する。   The average cell diameter is measured according to the theory of ASTM D3576 with respect to the cut surface of the thermoplastic resin foamed particles, except for the surface layer portion.

本発明の熱可塑性樹脂発泡粒子の連泡率は0%以上12%以下であることが好ましく、より好ましくは0%以上8%以下、さらに好ましくは0%以上5%以下である。連泡率が12%を超えては、型内発泡成形に用いた際に発泡粒子の型内での蒸気加熱時の発泡性に劣り、得られた型内発泡成形体は収縮してしまう傾向にある。   The open cell ratio of the thermoplastic resin expanded particles of the present invention is preferably 0% or more and 12% or less, more preferably 0% or more and 8% or less, and further preferably 0% or more and 5% or less. When the open cell ratio exceeds 12%, when used for in-mold foam molding, the foamed particles are inferior in foaming property during steam heating in the mold, and the obtained in-mold foam molded product tends to shrink. It is in.

本発明の熱可塑性樹脂発泡粒子の含水率は0.7%以上10%以下であることが好ましく、より好ましくは1%以上8%以下、さらに好ましくは1%以上5%以下である。含水率が0.7%未満の場合、発泡倍率が低いものしか得られない場合があり、10%を越える場合においては発泡後の発泡粒子内が低内圧となるために発泡粒子が収縮し易く、発泡後にオーブン養生させても収縮が残ってしまうことがある。   The moisture content of the thermoplastic resin expanded particles of the present invention is preferably 0.7% or more and 10% or less, more preferably 1% or more and 8% or less, and further preferably 1% or more and 5% or less. When the moisture content is less than 0.7%, only low foaming ratio may be obtained. When the moisture content exceeds 10%, the foamed particles are easily shrunk because the foamed particles have a low internal pressure after foaming. Shrinkage may remain even after oven curing after foaming.

本発明の熱可塑性樹脂発泡粒子は、示差走査熱量測定によって得られるDSC曲線において、2つの融解ピークを有するものが好ましい。2つの融解ピークを有する熱可塑性樹脂発泡粒子の場合、型内発泡成形性が良く、機械的強度や耐熱性の良好な型内発泡成形体が得られる傾向にある。   The thermoplastic resin expanded particles of the present invention preferably have two melting peaks in a DSC curve obtained by differential scanning calorimetry. In the case of thermoplastic resin foam particles having two melting peaks, in-mold foam moldability is good, and there is a tendency to obtain an in-mold foam molded article having good mechanical strength and heat resistance.

ここで、熱可塑性樹脂発泡粒子の示差走査熱量測定によって得られるDSC曲線とは、熱可塑性樹脂発泡粒子1mg以上10mg以下を示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線のことである。   Here, the DSC curve obtained by differential scanning calorimetry of the thermoplastic resin foam particles is 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min with a differential scanning calorimeter of 1 mg to 10 mg of the thermoplastic resin foam particles. DSC curve obtained when the temperature is raised to.

前記のごとく2つの融解ピークを有する熱可塑性樹脂発泡粒子は、発泡時の密閉容器内温度を適切な値に設定することにより容易に得られる。熱可塑性樹脂がポリオレフィン系樹脂の場合、発泡剤を含浸したポリオレフィン系樹脂粒子の軟化温度は、通常、基材となるポリオレフィン系樹脂の融点以上、好ましくは融点+3℃以上、融解終了温度未満、好ましくは融解終了温度−2℃以下の温度から選定される。   As described above, the foamed thermoplastic resin particles having two melting peaks can be easily obtained by setting the temperature in the closed container at the time of foaming to an appropriate value. When the thermoplastic resin is a polyolefin-based resin, the softening temperature of the polyolefin-based resin particles impregnated with the foaming agent is usually at least the melting point of the polyolefin-based resin that is the base material, preferably the melting point + 3 ° C. or more, preferably less than the melting end temperature. Is selected from a melting end temperature of −2 ° C. or lower.

ここで、前記融解終了温度とは、示差走査熱量計によってポリオレフィン系樹脂1mg以上10mg以下を40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線の融解ピークのすそが高温側でベースラインの位置に戻ったときの温度である。   Here, the melting end temperature is a temperature of 10 to 10 mg of polyolefin resin from 40 ° C. to 220 ° C. at a rate of 10 ° C./min with a differential scanning calorimeter, and then a rate of 10 ° C./min to 40 ° C. This is the temperature at which the bottom of the melting peak of the DSC curve obtained when the temperature is cooled again to 220 ° C. at a rate of 10 ° C./min returns to the baseline position on the high temperature side.

以上のようにして得た熱可塑性樹脂発泡粒子は、従来から知られている型内発泡成形により、型内発泡成形体にすることができる。例えば、イ)熱可塑性樹脂発泡粒子を無機ガス、例えば空気や窒素等で加圧処理して予備発泡粒子内に無機ガスを含浸させ所定の予備発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法、ロ)熱可塑性樹脂発泡粒子をガス圧力で圧縮して金型に充填し、予備発泡粒子の回復力を利用して、水蒸気で加熱融着させる方法、ハ)特に前処理することなく熱可塑性樹脂発泡粒子を金型に充填し、水蒸気で加熱融着させる方法、などの方法が利用し得る。   The foamed thermoplastic resin particles obtained as described above can be formed into an in-mold foam molded body by a conventionally known in-mold foam molding. For example, a) The thermoplastic resin expanded particles are pressurized with an inorganic gas, such as air or nitrogen, impregnated with the inorganic gas in the pre-expanded particles to give a predetermined internal pressure of the pre-expanded particles, and then filled into the mold. B) Method of heat-sealing with steam, b) Method of compressing foamed thermoplastic resin particles with gas pressure, filling the mold, and heat-sealing with water vapor using the recovery power of the pre-foamed particles, c) In particular, a method such as a method of filling thermoplastic resin foam particles in a mold without heat treatment and heat-sealing with water vapor can be used.

以下、実施例および比較例をあげて、本発明をさらに具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。なお、実施例および比較例における評価は、つぎの方法により行なった。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to such examples. In addition, evaluation in Examples and Comparative Examples was performed by the following method.

(発泡倍率)
発泡粒子3g以上10g以下程度を取り、60℃で6時間乾燥したのち重量w(g)を測定後、水没法にて体積v(cm3)を測定し、発泡粒子の真比重ρb=w/vを求め、発泡前の熱可塑性樹脂粒子の密度ρrとの比から発泡倍率K=ρr/ρbを求めた。
(Foaming ratio)
After taking 3 g or more and 10 g or less of the expanded particles and drying at 60 ° C. for 6 hours, and measuring the weight w (g), the volume v (cm 3 ) is measured by the submersion method, and the true specific gravity of the expanded particles ρb = w / v was determined, and the expansion ratio K = ρr / ρb was determined from the ratio to the density ρr of the thermoplastic resin particles before foaming.

(連泡率)
空気比較式比重計(東京サイエンス(株)製、1000型)を用い、えられた発泡粒子の独立気泡体積を求め、これを別途水没法により求めた見かけの体積で除してえられた独立気泡率(%)を、100から引くことにより求めた。
(Open cell rate)
Using an air comparative hydrometer (manufactured by Tokyo Science Co., Ltd., model 1000), the closed cell volume of the obtained foamed particles was obtained, and this was obtained by dividing this by the apparent volume obtained separately by the submerged method. The bubble rate (%) was determined by subtracting from 100.

(気泡の均一性、平均気泡径)
セル膜が破壊されないように充分注意して発泡粒子をほぼ中央で切断し、その切断面をマイクロスコープで拡大観察し、発泡粒子直径の5%長さの表層部を除く部分(A)に関して、ある任意の方向をx方向とし、それに直交する方向をy方向とした時に、セルのx、y方向のフェレ径をそれぞれdx、dyとして測定し、その1個のセル径diを求める。これを(A)の部分内で半径方向に偏りのない様に、連続して隣り合う40個以上のセルについて測定する。そしてセル径バラツキの標準偏差(σ)、平均気泡径d、1個の発泡粒子における気泡の均一性uを算出した。これを3個以上の発泡粒子について行い、その平均をUとして気泡の均一性を評価した。
(Bubble uniformity, average bubble diameter)
With careful attention not to break the cell membrane, the foamed particles are cut almost at the center, the cut surface is magnified with a microscope, and the portion (A) excluding the surface layer portion having a length of 5% of the diameter of the foamed particles, When a certain arbitrary direction is an x direction and a direction orthogonal to the x direction is a y direction, the ferret diameters of the cells in the x and y directions are measured as dx and dy, respectively, and one cell diameter di is obtained. This is measured for 40 or more cells adjacent to each other so that there is no deviation in the radial direction within the portion (A). Then, the standard deviation (σ) of the cell diameter variation, the average bubble diameter d, and the bubble uniformity u in one expanded particle were calculated. This was performed for three or more foamed particles, and the average of the foamed particles was defined as U to evaluate the uniformity of the bubbles.

di=(dx+dy)/(2×0.785)
d=Σ(di)/n
u=σ/d×100
◎:Uが30以下
〇:Uが30を越えて35以下
×:Uが35超
di = (dx + dy) / (2 × 0.785)
d = Σ (di) / n
u = σ / d × 100
◎: U is 30 or less ○: U exceeds 30 and 35 or less ×: U is more than 35

(含水率)
他の発泡剤を併用した場合についても、水のみを発泡剤として使用して同じ発泡温度、発泡圧力にて発泡させた直後の発泡粒子を使用し、その粒子表面に付着した水を、空気気流で脱水させたのち、その重量(W1)を測定し、さらにその発泡粒子を80℃のオーブン中で12時間乾燥させた時の重量(W2)を測定し、次式により算出し、その値を使用した。
含水率(%)=(W1−W2)/W2×100
(Moisture content)
Even when other foaming agents are used in combination, the foamed particles immediately after foaming at the same foaming temperature and foaming pressure using only water as the foaming agent are used. After the dehydration, the weight (W1) is measured, the weight (W2) when the foamed particles are dried in an oven at 80 ° C. for 12 hours is measured and calculated by the following formula. used.
Moisture content (%) = (W1-W2) / W2 × 100

(二段発泡性)
二段発泡して得られた発泡粒子を目視観察し、次のように評価した。
○:スティック(発泡粒子が複数個くっついたもの)の発生が無い
△:少量のスティックが発生する
×:高い蒸気圧が必要となり、多数のスティックが発生する
(Two-stage foaming)
The foamed particles obtained by the two-stage foaming were visually observed and evaluated as follows.
○: No stick (with multiple foam particles attached) △: A small amount of stick is generated ×: High vapor pressure is required and many sticks are generated

(型内発泡成形性)
成形評価では、成形体設計外形寸法が400mm×300mm×20mmの金型を用いた。
(In-mold foam moldability)
In the molding evaluation, a mold having a molded body design outer dimension of 400 mm × 300 mm × 20 mm was used.

(型内発泡成形体融着率)
型内発泡成形体の表面にナイフで約5mmの深さのクラックを入れたのち、このクラックに沿って成形体を割り、破断面を観察し、破断面の全粒子数に対する破壊粒子数の割合を求め、型内発泡成形体融着率とした。
(In-mold foam molding fusion rate)
A crack with a depth of about 5 mm is made with a knife on the surface of the in-mold foam molded body, and then the molded body is divided along the crack, the fracture surface is observed, and the ratio of the number of fractured particles to the total number of particles on the fracture surface Was determined as the in-mold foam molding fusion rate.

(成形体の表面性)
成形後、23℃で2時間静置し、つぎに65℃で6時間養生したのち、23℃の室内に4時間放置して得られた型内発泡成形体の表面について以下の基準で評価した。
◎:しわ、粒間少なく、美麗
〇:僅かなしわ、粒間あるが良好
×:しわ、ヒケがあり外観不良
(Surface properties of molded products)
After molding, the mixture was allowed to stand at 23 ° C. for 2 hours, then cured at 65 ° C. for 6 hours, and then allowed to stand in a room at 23 ° C. for 4 hours. .
◎: Wrinkles, less intergranular, beautiful ○: Slight wrinkles, intergranular but good x: Wrinkles, sink marks and poor appearance

(成形体の寸法収縮率)
成形後、23℃で2時間静置し、つぎに65℃で6時間養生したのち、23℃の室内に4時間放置して得られた型内発泡成形体の長手寸法を測定し、対応する金型寸法に対する、金型寸法と型内発泡成形体の寸法との差の割合を対金型寸法収縮率とし、以下の基準で評価した。
◎:対金型寸法収縮率が4%以下
〇:対金型寸法収縮率が4%を超えて7%以下
×:対金型寸法収縮率が7%より大きい
(Dimension shrinkage of molded product)
After molding, it is allowed to stand at 23 ° C. for 2 hours, then cured at 65 ° C. for 6 hours, and then measured for the longitudinal dimension of the in-mold foam molded product obtained by leaving it in a room at 23 ° C. for 4 hours. The ratio of the difference between the mold dimension and the dimension of the in-mold foam molded body with respect to the mold dimension was defined as the mold dimension shrinkage rate, and was evaluated according to the following criteria.
◎: Dimensional shrinkage ratio against mold is 4% or less ○: Dimensional shrinkage ratio against mold exceeds 4% and 7% or less ×: Dimensional shrinkage ratio against mold is larger than 7%

(実施例1)
ポリプロピレン系樹脂(プロピレン−エチレンランダム共重合体:エチレン含有率3.0%、MI=6g/10分、融点143℃)100重量部に対し、ポリエチレングリコール(平均分子量300、ライオン(株)製)を0.5重量部プリブレンドし、次に発泡核剤としてタルク(林化成(株)製、タルカンパウダーPK−S)0.05重量部を加えブレンドした。50φ単軸押出機に供給し、溶融混練したのち、直径1.8mmの円筒ダイより押出し、水冷後、カッターで切断し、円柱状のポリオレフィン系樹脂粒子(1.2mg/粒)を得た。
Example 1
Polyethylene glycol (average molecular weight 300, manufactured by Lion Corporation) with respect to 100 parts by weight of polypropylene resin (propylene-ethylene random copolymer: ethylene content 3.0%, MI = 6 g / 10 min, melting point 143 ° C.) Next, 0.5 parts by weight of talc (manufactured by Hayashi Kasei Co., Ltd., Talcan Powder PK-S) was added and blended as a foam nucleating agent. After supplying to a 50φ single-screw extruder and melt-kneading, it was extruded from a cylindrical die having a diameter of 1.8 mm, cooled with water, and cut with a cutter to obtain cylindrical polyolefin resin particles (1.2 mg / particle).

得られたポリオレフィン系樹脂粒子100重量部を、純水200重量部、第3リン酸カルシウム1.0重量部およびドデシルベンゼンスルホン酸ソーダ0.05重量部とともに耐圧密閉容器に投入したのち、脱気し、攪拌しながら炭酸ガス6重量部を密閉容器内に入れ、148℃に加熱した。このときの圧力は3MPa(ゲージ圧)であった。すぐに密閉容器下部のバルブを開いて、水分散物(樹脂粒子および水系分散媒)を直径4mmのオリフィスを通じて大気圧下に放出して発泡粒子(一段発泡粒子)を得た。この際、放出中は容器内の圧力が低下しないように、炭酸ガスで圧力を保持した。   100 parts by weight of the obtained polyolefin-based resin particles were put into a pressure-resistant sealed container together with 200 parts by weight of pure water, 1.0 part by weight of tricalcium phosphate and 0.05 part by weight of sodium dodecylbenzenesulfonate, and then deaerated. While stirring, 6 parts by weight of carbon dioxide gas was placed in a sealed container and heated to 148 ° C. The pressure at this time was 3 MPa (gauge pressure). Immediately after opening the valve at the bottom of the sealed container, the aqueous dispersion (resin particles and aqueous dispersion medium) was discharged under atmospheric pressure through an orifice having a diameter of 4 mm to obtain expanded particles (single-stage expanded particles). At this time, during discharge, the pressure was maintained with carbon dioxide gas so that the pressure in the container did not decrease.

得られた一段発泡粒子は示差走査熱量計測定において、138℃と157℃に2つの融点を示し、発泡倍率、連泡率、平均気泡径を測定した結果、発泡倍率19倍、連泡率0.6%、気泡の均一性に優れ、平均気泡径340μmであった。含水率は、密閉容器内温度を上記と同じ148℃にして水発泡させて測定したところ3.3%であった。   The obtained first-stage expanded particles showed two melting points at 138 ° C. and 157 ° C. in differential scanning calorimetry, and the expansion ratio, the open cell ratio, and the average cell diameter were measured. As a result, the expansion ratio was 19 times and the open cell ratio was 0. .6%, excellent bubble uniformity, and average bubble diameter of 340 μm. The water content was 3.3% when measured by foaming with water at 148 ° C., the same as above, in the sealed container.

ここで得た一段発泡粒子を60℃にて6時間乾燥させたのち、耐圧容器内にて、加圧空気を含浸させて、内圧を約0.4MPa(絶対圧)にしたのち、約0.08MPa(ゲージ圧)の蒸気と接触させることで二段発泡させ、発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、連泡率1.3%、平均気泡径435μmで気泡の均一性に優れていた。二段発泡させた発泡粒子表面を電子顕微鏡にて観察した結果、表面部分の気泡径が均一で、かつ表面の粗れがなく、発泡粒子表面膜の厚みが薄い部分も少ない発泡粒子であった。次に、二段発泡させた発泡粒子を再度、耐圧容器内にて空気で加圧し、約0.19MPa(絶対圧)の空気内圧とし、型内発泡成形を行った。得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、型内発泡成形体の寸法収縮が小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。   The single-stage expanded particles obtained here were dried at 60 ° C. for 6 hours and then impregnated with pressurized air in a pressure-resistant container to adjust the internal pressure to about 0.4 MPa (absolute pressure). Two-stage foaming was performed by contacting with steam of 08 MPa (gauge pressure) to obtain two-stage foamed particles having a foaming ratio of 30 times. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 1.3% and an average cell diameter of 435 μm. As a result of observing the surface of the two-stage expanded foam particles with an electron microscope, it was found that the foam diameter of the surface portion was uniform, the surface was not rough, and the thickness of the foam particle surface film was small. . Next, the two-stage foamed particles were again pressurized with air in a pressure-resistant container to obtain an air pressure of about 0.19 MPa (absolute pressure), and in-mold foam molding was performed. The surface of the obtained in-mold foam molded article has excellent smoothness, no wrinkles, small dimensional shrinkage of the in-mold foam molded article, little distortion of the in-mold foam molded article, and excellent fusion of particles. It was a beautiful in-mold foam molding.

Figure 0005253119
(実施例2)
添加剤のポリエチレングリコール(平均分子量300)を0.2重量部、タルクを0.1重量部とした他は実施例1と同様に発泡、二段発泡、型内発泡成形した。一段発泡粒子は2つの融点を示し、発泡倍率15倍、連泡率0.7%、気泡の均一性に優れ、平均気泡径270μmであった。含水率は2.0%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、連泡率0.8%、平均気泡径375μmで気泡の均一性に優れていた。型内発泡成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、型内発泡成形体の寸法収縮が小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
Figure 0005253119
(Example 2)
Foaming, two-stage foaming, and in-mold foaming were carried out in the same manner as in Example 1 except that the additive polyethylene glycol (average molecular weight 300) was 0.2 parts by weight and talc was 0.1 parts by weight. The first-stage expanded particles exhibited two melting points, the expansion ratio was 15 times, the open cell ratio was 0.7%, the cell uniformity was excellent, and the average cell diameter was 270 μm. The water content was 2.0%. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 0.8% and an average cell diameter of 375 μm. As a result of in-mold foam molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the in-mold foam molded article is small, and distortion of the in-mold foam molded article is small. It was a beautiful in-mold foam molded article with excellent fusion between particles.

(実施例3)
添加剤のポリエチレングリコール(平均分子量300)を0.1重量部とした他は実施例1と同様に発泡、二段発泡、型内発泡成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率11倍、連泡率0.7%、気泡の均一性に優れ、平均気泡径275μmであった。含水率は1.3%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、連泡率0.8%、平均気泡径420μmで気泡の均一性に優れていた。型内発泡成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、型内発泡成形体の寸法収縮が小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 3)
Foaming, two-stage foaming, and in-mold foaming were performed in the same manner as in Example 1 except that the additive polyethylene glycol (average molecular weight 300) was 0.1 parts by weight. The single-stage expanded particles obtained by the single-stage expansion exhibited two melting points, an expansion ratio of 11 times, a continuous bubble ratio of 0.7%, excellent bubble uniformity, and an average cell diameter of 275 μm. The water content was 1.3%. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 0.8% and an average cell diameter of 420 μm. As a result of in-mold foam molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the in-mold foam molded article is small, and distortion of the in-mold foam molded article is small. It was a beautiful in-mold foam molded article with excellent fusion between particles.

(実施例4)
添加剤のポリエチレングリコール(平均分子量6000)を1.0重量部、タルクを0.1重量部とした他は実施例1と同様に発泡、二段発泡、型内発泡成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率12倍、連泡率1.3%、平均気泡径260μmであった。気泡の均一性は実施例1〜3に比較するとやや劣るもののほぼ均一であった。含水率は2.2%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、連泡率2.0%、平均気泡径390μmで気泡の均一性に優れていた。型内発泡成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、型内発泡成形体の寸法収縮が小さく、型内発泡成形体の歪が少なく、美麗な型内発泡成形体であった。粒子どうしの融着は実施例1から3と比較すると僅かに未融着部分が見られた。
Example 4
Foaming, two-stage foaming, and in-mold foam molding were performed in the same manner as in Example 1 except that the additive polyethylene glycol (average molecular weight 6000) was 1.0 part by weight and talc was 0.1 part by weight. The first-stage expanded particles obtained by the first-stage expansion showed two melting points, the expansion ratio was 12 times, the open cell ratio was 1.3%, and the average cell diameter was 260 μm. The uniformity of the bubbles was almost uniform, although somewhat inferior to Examples 1-3. The water content was 2.2%. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement and had excellent bubble uniformity with an open cell ratio of 2.0% and an average cell diameter of 390 μm. As a result of in-mold foam molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the in-mold foam molded article is small, and distortion of the in-mold foam molded article is small. It was a beautiful in-mold foam molding. In the fusion of the particles, a slightly unfused portion was observed as compared with Examples 1 to 3.

(実施例5)
添加剤のポリエチレングリコール(平均分子量300)を0.05重量部、炭酸ガスを3重量部とした他は実施例1と同様に発泡、二段発泡、型内発泡成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率6倍、連泡率0.7%、平均気泡径dは200μmであった。気泡の均一性は実施例1〜3に比較するとやや劣るもののほぼ均一であった。また、含水率は0.7%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、連泡率0.8%、平均気泡径dは330μmで気泡の均一性は良好であった。型内発泡成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、型内発泡成形体の寸法収縮が小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 5)
Foaming, two-stage foaming, and in-mold foaming were carried out in the same manner as in Example 1 except that 0.05 part by weight of polyethylene glycol (average molecular weight 300) and 3 parts by weight of carbon dioxide gas were added. The single-stage expanded particles obtained by single-stage expansion exhibited two melting points, the expansion ratio was 6 times, the open cell ratio was 0.7%, and the average cell diameter d was 200 μm. The uniformity of the bubbles was almost uniform, although somewhat inferior to Examples 1-3. The water content was 0.7%. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement. The open cell ratio was 0.8%, the average bubble diameter d was 330 μm, and the bubble uniformity was good. As a result of in-mold foam molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the in-mold foam molded article is small, and distortion of the in-mold foam molded article is small. It was a beautiful in-mold foam molded article with excellent fusion between particles.

(実施例6)
添加剤のポリエチレングリコール(平均分子量300)を0.5重量部、タルク0.1重量部とし、発泡剤の炭酸ガスは使用せず、窒素ガスを導入し、151℃に加熱した。その他は実施例1と同様に一段発泡、二段発泡、型内発泡成形評価した。一段発泡の密閉容器内圧は3.0MPa(ゲージ圧)とした。一段発泡にて得られた発泡粒子は2つの融点を示し、発泡倍率12倍、連泡率1.1%、平均気泡径235μmであった。気泡の均一性は実施例1〜3に比較するとやや劣るもののほぼ均一であった。含水率は3.3%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、連泡率2.3%、平均気泡径355μmで気泡の均一性に優れていた。型内発泡成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、型内発泡成形体の寸法収縮が小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 6)
The additive polyethylene glycol (average molecular weight 300) was 0.5 parts by weight and talc 0.1 parts by weight. Carbon dioxide gas as a blowing agent was not used, nitrogen gas was introduced, and the mixture was heated to 151 ° C. Others were evaluated in the same manner as in Example 1, one-stage foaming, two-stage foaming, and in-mold foam molding. The internal pressure of the one-stage foamed sealed container was 3.0 MPa (gauge pressure). The expanded particles obtained by the single-stage expansion had two melting points, the expansion ratio was 12 times, the open cell ratio was 1.1%, and the average cell diameter was 235 μm. The uniformity of the bubbles was almost uniform, although somewhat inferior to Examples 1-3. The water content was 3.3%. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, and had excellent bubble uniformity with an open cell ratio of 2.3% and an average cell diameter of 355 μm. As a result of in-mold foam molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the in-mold foam molded article is small, and distortion of the in-mold foam molded article is small. It was a beautiful in-mold foam molded article with excellent fusion between particles.

(実施例7)
添加剤のポリエチレングリコール(平均分子量600)を0.5重量部とした他は、実施例6と同様に一段発泡、二段発泡、型内発泡成形評価した。一段発泡の密閉容器内圧は3.0MPa(ゲージ圧)とした。一段発泡にて得られた発泡粒子は2つの融点を示し、発泡倍率10倍、連泡率1.2%、平均気泡径225μmであった。気泡の均一性は実施例1〜3に比較するとやや劣るもののほぼ均一であった。含水率は3.0%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、連泡率2.5%、平均気泡径345μmで気泡の均一性に優れていた。型内発泡成形した。型内発泡成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、型内発泡成形体の寸法収縮が小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 7)
One-stage foaming, two-stage foaming, and in-mold foam molding were evaluated in the same manner as in Example 6 except that the additive polyethylene glycol (average molecular weight 600) was 0.5 parts by weight. The internal pressure of the one-stage foamed sealed container was 3.0 MPa (gauge pressure). The expanded particles obtained by the single-stage expansion had two melting points, the expansion ratio was 10 times, the open cell ratio was 1.2%, and the average cell diameter was 225 μm. The uniformity of the bubbles was almost uniform, although somewhat inferior to Examples 1-3. The water content was 3.0%. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 2.5% and an average cell diameter of 345 μm. In-mold foam molding. As a result of in-mold foam molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the in-mold foam molded article is small, and distortion of the in-mold foam molded article is small. It was a beautiful in-mold foam molded article with excellent fusion between particles.

(実施例8)
直鎖状低密度ポリエチレン系樹脂(MI=1.9g/10分、融点122℃)100重量部に対し、ポリエチレングリコール(平均分子量300、ライオン(株)製)を0.5重量部プリブレンドし、次に発泡核剤としてタルク(林化成(株)製、タルカンパウダーPK−S)0.1重量部を加えブレンドした。50φ単軸押出機に供給し、溶融混練したのち、直径1.8mmの円筒ダイより押出し、水冷後、カッターで切断し、円柱状の直鎖状低密度ポリエチレン系樹脂粒子(1.2mg/粒)を得た。
(Example 8)
0.5 parts by weight of polyethylene glycol (average molecular weight 300, manufactured by Lion Corporation) is pre-blended with 100 parts by weight of a linear low-density polyethylene resin (MI = 1.9 g / 10 min, melting point 122 ° C.). Next, 0.1 part by weight of talc (manufactured by Hayashi Kasei Co., Ltd., Talcan Powder PK-S) was added and blended as a foam nucleating agent. After feeding to a 50φ single screw extruder, melt kneading, extrusion from a cylindrical die having a diameter of 1.8 mm, water cooling, cutting with a cutter, and cylindrical linear low density polyethylene resin particles (1.2 mg / particle) )

得られた直鎖低密度ポリエチレン系樹脂粒子100重量部を、純水200重量部、第3リン酸カルシウム1.0重量部およびドデシルベンゼンスルホン酸ソーダ0.05重量部とともに耐圧密閉容器に投入したのち、脱気し、攪拌しながら炭酸ガス12重量部を密閉容器内に入れ、123℃に加熱した。この時の耐圧密閉容器内の圧力は4.5MPa(ゲージ圧)であった。すぐに密閉容器下部のバルブを開いて、水分散物(樹脂粒子および水系分散媒)を直径3.6mmのオリフィスを通じて大気圧下に放出して発泡粒子(一段発泡粒子)を得た。この際、放出中は容器内の圧力が低下しないように、炭酸ガスで圧力を保持した。   After 100 parts by weight of the obtained linear low density polyethylene resin particles were put into a pressure-resistant sealed container together with 200 parts by weight of pure water, 1.0 part by weight of tricalcium phosphate and 0.05 part by weight of sodium dodecylbenzenesulfonate, While deaerated, 12 parts by weight of carbon dioxide gas was placed in a sealed container while stirring and heated to 123 ° C. The pressure in the pressure-resistant airtight container at this time was 4.5 MPa (gauge pressure). Immediately after opening the valve at the bottom of the sealed container, the aqueous dispersion (resin particles and aqueous dispersion medium) was discharged under atmospheric pressure through an orifice having a diameter of 3.6 mm to obtain expanded particles (single-stage expanded particles). At this time, during discharge, the pressure was maintained with carbon dioxide gas so that the pressure in the container did not decrease.

得られた一段発泡粒子は示差走査熱量計測定において、117℃と128℃に2つの融点を示し、発泡倍率、連泡率、平均気泡径を測定した結果、発泡倍率5倍、連泡率0.6%、気泡の均一性に優れ、平均気泡径dは160μmであった。含水率は、密閉容器内温度を上記と同じ123℃にして水発泡させて測定したところ2.4%であった。   The obtained first-stage expanded particles showed two melting points at 117 ° C. and 128 ° C. in differential scanning calorimetry, and the expansion ratio, the open cell ratio, and the average cell diameter were measured. As a result, the expansion ratio was 5 times and the open cell ratio was 0. .6%, excellent bubble uniformity, and average bubble diameter d was 160 μm. The moisture content was 2.4% when measured by foaming with water at the same internal temperature of 123 ° C. as described above.

ここで得た一段発泡粒子を60℃にて6時間乾燥させたのち、耐圧容器内にて、加圧空気を含浸させて、内圧を約0.4MPa(絶対圧)にしたのち、約0.03MPa(ゲージ圧)の蒸気と接触させることで二段発泡させ、発泡倍率20倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、連泡率1.3%、平均気泡径dは270μmで気泡の均一性に優れていた。二段発泡させた発泡粒子表面を電子顕微鏡にて観察した結果、表面部分の気泡径が均一で、かつ表面の粗れがなく、発泡粒子表面膜の厚みが薄い部分も少ない発泡粒子であった。次に、この二段発泡させた発泡粒子を用いて型内発泡成形を行った。得られた型内発泡成形体の表面は僅かなしわや粒間があったが平滑性に優れ、型内発泡成形体の寸法収縮も比較的小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。   The single-stage expanded particles obtained here were dried at 60 ° C. for 6 hours and then impregnated with pressurized air in a pressure-resistant container to adjust the internal pressure to about 0.4 MPa (absolute pressure). Two-stage foaming was performed by contacting with steam of 03 MPa (gauge pressure) to obtain two-stage foamed particles having an expansion ratio of 20 times. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, the open cell ratio was 1.3%, the average cell diameter d was 270 μm, and the cell uniformity was excellent. As a result of observing the surface of the two-stage expanded foam particles with an electron microscope, it was found that the foam diameter of the surface portion was uniform, the surface was not rough, and the thickness of the foam particle surface film was small. . Next, in-mold foam molding was performed using the foamed particles obtained by two-stage foaming. The surface of the obtained in-mold foam molded product had slight wrinkles and intergranularity, but it was excellent in smoothness, the dimensional shrinkage of the in-mold foam molded product was relatively small, the in-mold foam molded product had less distortion, and the particles It was a beautiful in-mold foam molded article with excellent fusion between each other.

(比較例1)
ポリエチレングリコールを使用せず、表に示す条件にて実施例1と同様に発泡させた。発泡倍率6倍と低い倍率しか得られず、平均気泡径150μmと小さいものであった。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、発泡粒子どうしが付着するスティックの発生が多数見られた。その二段発泡粒子を使用し、型内発泡成形したところ、得られた型内発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。
(Comparative Example 1)
Polyethylene glycol was not used, and foaming was performed in the same manner as in Example 1 under the conditions shown in the table. Only a low expansion ratio of 6 times was obtained, and the average bubble diameter was as small as 150 μm. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and many sticks to which the foamed particles adhere are observed. When the two-stage foamed particles were used and subjected to in-mold foam molding, the resulting in-mold foam molded article had a large dimensional shrinkage, wrinkles were observed, and the appearance was poor.

(比較例2)
ポリエチレングリコールの代わりに架橋ポリアルキレンオキサイドを1重量部使用した他は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。得られた型内発泡成形体の寸法収縮が大きく、粒子どうしの融着が劣る特徴があった。
(Comparative Example 2)
One-stage foaming, two-stage foaming, and in-mold foam molding were performed in the same manner as in Example 1 except that 1 part by weight of a crosslinked polyalkylene oxide was used instead of polyethylene glycol. The obtained in-mold foam molded article was characterized by large dimensional shrinkage and inferior fusion between particles.

(比較例3)
ポリエチレングリコールの代わりにポリアクリル酸ナトリウムを0.5重量部使用した他は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。一段発泡粒子の気泡は大気泡と小気泡が混在しており、均一性に劣った。その二段発泡粒子を使用し、型内発泡成形体を得たところ、型内発泡成形体の表面にしわの発生が見られ、寸法収縮が大きく、粒子どうしの融着に関しても劣るものであった。
(Comparative Example 3)
One-stage foaming, two-stage foaming, and in-mold foam molding were performed in the same manner as in Example 1 except that 0.5 parts by weight of sodium polyacrylate was used instead of polyethylene glycol. The bubbles of the first-stage expanded particles were inferior in uniformity because large bubbles and small bubbles were mixed. When the two-stage expanded particles were used to obtain an in-mold foam molded product, wrinkles were observed on the surface of the in-mold foam molded product, the dimensional shrinkage was large, and the fusion between the particles was inferior. It was.

(比較例4)
ポリエチレングリコールの代わりに添加剤にカルボキシメチルセルロースナトリウム0.3重量部を使用し、タルクを0.1重量部とした他は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。一段発泡粒子の気泡は大気泡と小気泡が混在しており、均一性に劣った。その二段発泡粒子を使用し、型内発泡成形体を得たところ、型内発泡成形体の表面にしわの発生が見られ、寸法収縮が大きく、粒子どうしの融着に関しても劣るものであった。
(Comparative Example 4)
Single-stage foaming, two-stage foaming, and in-mold foam molding were performed in the same manner as in Example 1 except that 0.3 parts by weight of sodium carboxymethylcellulose was used as an additive instead of polyethylene glycol and talc was 0.1 parts by weight. went. The bubbles of the first-stage expanded particles were inferior in uniformity because large bubbles and small bubbles were mixed. When the two-stage expanded particles were used to obtain an in-mold foam molded product, wrinkles were observed on the surface of the in-mold foam molded product, the dimensional shrinkage was large, and the fusion between the particles was inferior. It was.

(比較例5)
ポリエチレングリコールの代わりにゼオライトA型1.0重量部を使用し、タルクは使用しなかったこと以外は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。一段発泡粒子の気泡は粗大な気泡と小気泡が混在するもので均一性に劣った。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、発泡粒子どうしの付着が少し見られた。その二段発泡粒子を使用し、型内発泡成形体を得たところ、型内発泡成形体の表面にしわの発生が顕著であり、寸法収縮が大きいものであった。
(Comparative Example 5)
One-stage foaming, two-stage foaming, and in-mold foaming were performed in the same manner as in Example 1 except that 1.0 part by weight of zeolite A type was used instead of polyethylene glycol and talc was not used. The air bubbles of the first-stage expanded particles are a mixture of coarse and small bubbles, and are inferior in uniformity. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and a slight amount of adhesion between the expanded particles was observed. When the two-stage expanded particles were used to obtain an in-mold foam molded article, wrinkles were conspicuous on the surface of the in-mold foam molded article, and the dimensional shrinkage was large.

(比較例6)
添加剤にポリプロピレングリコール(平均分子量2000)0.2重量部、タルク0.1重量部を使用した他は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。発泡倍率9倍と低い倍率しか得られず、平均気泡径160μmと小さいものであった。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、発泡粒子どうしが付着するスティックの発生が多数見られた。その二段発泡粒子を使用し、型内発泡成形したところ、型内発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。
(Comparative Example 6)
One-stage foaming, two-stage foaming, and in-mold foam molding were performed in the same manner as in Example 1 except that 0.2 parts by weight of polypropylene glycol (average molecular weight 2000) and 0.1 parts by weight of talc were used as additives. Only a low expansion ratio of 9 times was obtained, and the average bubble diameter was as small as 160 μm. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and many sticks to which the foamed particles adhere are observed. When the two-stage expanded particles were used and in-mold foam molding was performed, the dimensional shrinkage ratio of the in-mold foam molded article was large, wrinkles were observed, and the appearance was inferior.

Claims (8)

密閉容器内に熱可塑性樹脂粒子を水系分散媒に分散させ、熱可塑性樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出する、水系分散媒に含まれる水を発泡剤とする熱可塑性樹脂発泡粒子の製造方法において、前記熱可塑性樹脂粒子が、熱可塑性樹脂100重量部に対し、ポリエチレングリコール0.05重量部以上2重量部以下、および発泡核剤を含んでなる熱可塑性樹脂組成物からなることを特徴とする熱可塑性樹脂発泡粒子の製造方法。   An aqueous dispersion medium in which thermoplastic resin particles are dispersed in an aqueous dispersion medium in an airtight container, heated and pressurized to a temperature equal to or higher than the softening temperature of the thermoplastic resin particles, and then released to a pressure range lower than the internal pressure of the airtight container. In the method for producing foamed thermoplastic resin particles using water contained in the foaming agent, the thermoplastic resin particles are 0.05 parts by weight or more and 2 parts by weight or less of polyethylene glycol with respect to 100 parts by weight of the thermoplastic resin. A method for producing foamed thermoplastic resin particles, comprising a thermoplastic resin composition comprising a nucleating agent. 熱可塑性樹脂が、ポリオレフィン系樹脂である請求項1記載の熱可塑性樹脂発泡粒子の製造方法。   The method for producing foamed thermoplastic resin particles according to claim 1, wherein the thermoplastic resin is a polyolefin resin. ポリオレフィン系樹脂が、ポリプロピレン系樹脂である請求項2記載の熱可塑性樹脂発泡粒子の製造方法。   The method for producing expanded thermoplastic resin particles according to claim 2, wherein the polyolefin resin is a polypropylene resin. 前記ポリエチレングリコールの分子量が200以上9000以下である請求項1〜3何れか一項に記載の熱可塑性樹脂発泡粒子の製造方法。   The molecular weight of the said polyethylene glycol is 200-9000, The manufacturing method of the thermoplastic resin expanded particle as described in any one of Claims 1-3. 前記ポリエチレングリコールの分子量が200以上600以下である請求項1〜4何れか一項に記載の熱可塑性樹脂発泡粒子の製造方法。   5. The method for producing expanded thermoplastic resin particles according to claim 1, wherein the polyethylene glycol has a molecular weight of 200 or more and 600 or less. 発泡剤として炭酸ガスを併用する請求項1〜5何れか一項に記載の熱可塑性樹脂発泡粒子の製造方法。   The method for producing foamed thermoplastic resin particles according to any one of claims 1 to 5, wherein carbon dioxide gas is used in combination as a foaming agent. 請求項1〜6何れか一項に記載の熱可塑性樹脂発泡粒子の製造方法によって得られる熱可塑性樹脂発泡粒子であって、ポリエチレングリコールを0.05重量%以上2重量%以下含み、発泡倍率が10倍以上45倍以下、平均気泡径が50μm以上800μm以下、示差走査熱量計法による測定において、2つ以上の融点を示す結晶構造を有する熱可塑性樹脂発泡粒子。   A thermoplastic resin foam particle obtained by the method for producing a thermoplastic resin foam particle according to any one of claims 1 to 6, comprising 0.05% by weight to 2% by weight of polyethylene glycol, and having a foaming ratio of Thermoplastic resin foamed particles having a crystal structure of 10 or more and 45 or less, an average cell diameter of 50 μm or more and 800 μm or less, and having two or more melting points in measurement by differential scanning calorimetry. 請求項7記載の熱可塑性樹脂発泡粒子を、型内発泡成形してなる型内発泡成形体。   An in-mold foam-molded article obtained by foam-molding the thermoplastic resin foam particles according to claim 7.
JP2008310719A 2007-12-11 2008-12-05 Method for producing thermoplastic resin expanded particles Active JP5253119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310719A JP5253119B2 (en) 2007-12-11 2008-12-05 Method for producing thermoplastic resin expanded particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007319308 2007-12-11
JP2007319308 2007-12-11
JP2008310719A JP5253119B2 (en) 2007-12-11 2008-12-05 Method for producing thermoplastic resin expanded particles

Publications (2)

Publication Number Publication Date
JP2009161738A JP2009161738A (en) 2009-07-23
JP5253119B2 true JP5253119B2 (en) 2013-07-31

Family

ID=40964702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310719A Active JP5253119B2 (en) 2007-12-11 2008-12-05 Method for producing thermoplastic resin expanded particles

Country Status (1)

Country Link
JP (1) JP5253119B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258025B2 (en) * 2008-05-08 2013-08-07 株式会社ジェイエスピー Polyethylene resin extruded foam
JP5324804B2 (en) * 2008-03-12 2013-10-23 株式会社カネカ Method for producing polypropylene resin expanded particles, polypropylene resin expanded particles, and expanded foam in polypropylene resin mold
JP6225707B2 (en) 2011-07-15 2017-11-08 株式会社カネカ Non-crosslinked polyethylene resin foam particles having antistatic properties and non-crosslinked polyethylene resin foam moldings
JP6331323B2 (en) 2012-10-18 2018-05-30 株式会社カネカ Bulk density measuring device for pre-expanded particles and method for producing pre-expanded particles
CN104870534B (en) * 2012-12-21 2019-01-04 陶氏环球技术有限责任公司 For improving foaming characteristic and enhancing the polyolefin-based cable compound preparation of machinability

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171272B2 (en) * 1991-12-16 2001-05-28 株式会社ジエイエスピー Method for producing expanded polymer particles
DE69723280T2 (en) * 1996-04-05 2004-04-22 Kaneka Corp. AQUEOUS POLYOLEFIN COMPOSITION, PRE-EXPANDED PARTICLES MADE THEREOF, METHOD FOR THEIR PRODUCTION AND EXPANDED MOLDED PARTS
JPH10152574A (en) * 1996-11-25 1998-06-09 Kanegafuchi Chem Ind Co Ltd Production of polyolefin-based resin prefoaming particle
JPH1192599A (en) * 1997-09-25 1999-04-06 Kanegafuchi Chem Ind Co Ltd Polyolefin resin composition, prefoamed particle comprising this and its preparation method
JP2001131327A (en) * 1999-11-05 2001-05-15 Kanegafuchi Chem Ind Co Ltd Molded foam of polypropylene resin composition

Also Published As

Publication number Publication date
JP2009161738A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP5553476B2 (en) Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles
JP5689819B2 (en) Polyethylene resin expanded particles and polyethylene resin in-mold expanded molding
JP6767980B2 (en) Polypropylene resin foamed particles, polypropylene resin foamed particles manufacturing method, polypropylene resin foamed molded product manufacturing method, polypropylene resin foamed molded product
WO2015076306A1 (en) Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JP5630591B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
WO2013137411A1 (en) Polypropylene resin foam particles, in-mold foam molded body comprising polypropylene resin foam particles, and method for producing same
JP5587605B2 (en) Polypropylene resin pre-expanded particles and in-mold foam-molded product obtained from the pre-expanded particles
WO2019189564A1 (en) Polyolefin resin foamable particles, method for producing same, and foam molded article of polyolefin resin
JP5324967B2 (en) Thermoplastic resin expanded particles and method for producing the same
JP5528002B2 (en) Polypropylene resin pre-expanded particles
JP6084046B2 (en) Polyethylene resin foamed particles, polyethylene resin in-mold foam molded product, and method for producing the same
JP5591965B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP2013100555A (en) Pre-expanded particle of polyolefin resin, and method for producing the same
JP6701174B2 (en) Method for producing polyethylene-based resin foam molding
JP2000327825A (en) Polypropylenic resin pre-expanded particle, and preparation of the pre-expanded particle and in-mold expanded molded product
JP6625472B2 (en) Foamed polypropylene resin particles, foamed molded article in polypropylene resin mold, and method for producing the same
JP5220486B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
WO2016147775A1 (en) Polyethylene resin foam particles having antistatic performance, and polyethylene resin in-mold foam-molded article and method for manufacturing same
JP2006297807A (en) Polypropylene-based resin in-mold foam-molding body
JP2006022138A (en) Preliminary expanded polypropylene-based resin particle
WO2019189462A1 (en) Method for manufacturing polypropylene resin foamed particles
JP6847584B2 (en) Polyethylene resin foam particles and polyethylene resin foam molded products with antistatic performance and their manufacturing methods
JP2021001255A (en) Polypropylene resin foam particles and polypropylene resin foam particle compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5253119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250