JP5553476B2 - Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles - Google Patents

Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles Download PDF

Info

Publication number
JP5553476B2
JP5553476B2 JP2008003962A JP2008003962A JP5553476B2 JP 5553476 B2 JP5553476 B2 JP 5553476B2 JP 2008003962 A JP2008003962 A JP 2008003962A JP 2008003962 A JP2008003962 A JP 2008003962A JP 5553476 B2 JP5553476 B2 JP 5553476B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
particles
weight
foam
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008003962A
Other languages
Japanese (ja)
Other versions
JP2009167236A (en
Inventor
融 吉田
淳 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008003962A priority Critical patent/JP5553476B2/en
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to PCT/JP2008/071933 priority patent/WO2009075208A1/en
Priority to US12/747,050 priority patent/US8513317B2/en
Priority to EP08860267.7A priority patent/EP2221337B1/en
Priority to ES14000668.5T priority patent/ES2688659T3/en
Priority to CN2008801199161A priority patent/CN101896543B/en
Priority to EP14000668.5A priority patent/EP2754687B1/en
Publication of JP2009167236A publication Critical patent/JP2009167236A/en
Priority to US13/778,231 priority patent/US8901182B2/en
Priority to US13/860,847 priority patent/US9216525B2/en
Priority to US13/860,785 priority patent/US9018269B2/en
Application granted granted Critical
Publication of JP5553476B2 publication Critical patent/JP5553476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はポリプロピレン系樹脂発泡粒子、およびその製造方法に関する。さらに詳しくは、例えば型内発泡成形品の原料として好適に使用し得るポリプロピレン系樹脂発泡粒子、およびその製法に関する。   The present invention relates to expanded polypropylene resin particles and a method for producing the same. More specifically, for example, the present invention relates to a polypropylene resin foamed particle that can be suitably used as a raw material for an in-mold foam molded product, and a method for producing the same.

従来、ポリプロピレン系樹脂粒子を発泡剤とともに水系分散媒に分散させ、昇温して一定圧力、一定温度として樹脂粒子中に発泡剤を含浸したのち、低圧雰囲気下に放出して発泡粒子を得る方法が知られている。発泡剤としては、プロパン、ブタンといった揮発性有機発泡剤を使用する方法(例えば、特許文献1)、炭酸ガス、窒素、空気などの無機ガスを使用する方法(例えば、特許文献2、3)が開示されている。   Conventionally, a method in which polypropylene resin particles are dispersed in an aqueous dispersion medium together with a foaming agent, heated to constant pressure and constant temperature, impregnated with the foaming agent in resin particles, and then released into a low-pressure atmosphere to obtain foamed particles. It has been known. Examples of the blowing agent include a method using a volatile organic blowing agent such as propane and butane (for example, Patent Document 1) and a method using an inorganic gas such as carbon dioxide, nitrogen, and air (for example, Patent Documents 2 and 3). It is disclosed.

しかしながら、揮発性有機発泡剤は、地球温暖化係数が炭酸ガスよりも大きい物質であり、環境的に好ましくない。また、プロパン、ブタンなどの揮発性有機発泡剤は、ポリプロピレン系樹脂を可塑化する作用があり、高発泡倍率を得やすい反面、その可塑化作用が大きいため、発泡粒子の発泡倍率および結晶状態のコントロールが難しい。また、可燃性物質であるため、設備の防爆化が必要となるために、設備コスト高となる欠点を有している。   However, the volatile organic foaming agent is a substance having a global warming potential larger than that of carbon dioxide, and is not environmentally preferable. In addition, volatile organic foaming agents such as propane and butane have the effect of plasticizing polypropylene-based resins, and it is easy to obtain a high expansion ratio. On the other hand, since the plasticizing action is large, the expansion ratio and crystalline state of the expanded particles are large. Control is difficult. In addition, since it is a flammable substance, it is necessary to make the equipment explosion-proof, which has the disadvantage of increasing the equipment cost.

一方、窒素、空気などの無機ガスを使用する場合は、ポリプロピレン系樹脂への含浸能が非常に低く、高い圧力としても高発泡化に充分な含浸量が得られない問題があった。   On the other hand, when an inorganic gas such as nitrogen or air is used, the impregnation ability into the polypropylene resin is very low, and there is a problem that a sufficient impregnation amount for high foaming cannot be obtained even at high pressure.

これらの欠点を解決し、型内発泡成形体の製造に好適に使用しうるポリプロピレン系樹脂発泡粒子を経済的に製造する方法として、分散媒に使用する水を発泡剤として利用する方法が提案されている。   As a method for solving these drawbacks and economically producing polypropylene-based resin expanded particles that can be suitably used for the production of in-mold foam molded articles, a method using water used as a dispersion medium as a foaming agent has been proposed. ing.

水を発泡剤とする方法として、無機充填剤を10〜70重量%含有する結晶性ポリオレフィン重合体粒子を密閉容器で分散媒である水に分散させ、この分散液の飽和蒸気圧以上の圧力および結晶性ポリオレフィン重合体粒子の融点以下で、かつこの重合体粒子の結晶化が進行する温度条件下にある高圧域に保持して、分散媒である水を含浸させ、ついでこの分散液を低圧域に放出させて結晶性ポリオレフィン重合体発泡粒子を製造する方法が提案されている(例えば、特許文献4)。しかし、この方法で得られる発泡粒子は、大量の無機充填剤を含有しているため、セル径が微細であり、また連泡率が高くなる傾向となり、型内発泡成形体とした時の融着、表面外観、圧縮強度等の機械的物性が十分でない。   As a method using water as a foaming agent, crystalline polyolefin polymer particles containing 10 to 70% by weight of an inorganic filler are dispersed in water as a dispersion medium in a sealed container, and a pressure equal to or higher than the saturated vapor pressure of the dispersion and The dispersion is maintained in a high pressure region below the melting point of the crystalline polyolefin polymer particles and under a temperature condition where the crystallization of the polymer particles proceeds, and impregnated with water as a dispersion medium, There has been proposed a method for producing crystalline polyolefin polymer expanded particles by releasing them into a polymer (for example, Patent Document 4). However, since the foamed particles obtained by this method contain a large amount of inorganic filler, the cell diameter tends to be fine and the open cell ratio tends to be high. Mechanical properties such as wear, surface appearance and compressive strength are not sufficient.

また、水溶性無機物あるいは親水性ポリマーを含有するポリプロピレン系樹脂粒子を密閉容器内の水に分散させ、この樹脂粒子の軟化温度以上に加熱して含水ポリプロピレン系樹脂粒子とした後、この分散液を低圧域に放出させてポリプロピレン系樹脂発泡粒子を製造する方法が提案されている(例えば、特許文献5〜7)。この方法では、環境に優しい水、炭酸ガス、窒素などを発泡剤として使用しながら、低い容器内圧で高発泡倍率のポリプロピレン系樹脂発泡粒子を得ることができることが記載されている。   Also, after dispersing the polypropylene resin particles containing a water-soluble inorganic substance or hydrophilic polymer in water in a hermetically sealed container and heating to a temperature higher than the softening temperature of the resin particles to obtain water-containing polypropylene resin particles, There has been proposed a method for producing polypropylene resin expanded particles by discharging them into a low pressure region (for example, Patent Documents 5 to 7). This method describes that polypropylene-based resin expanded particles having a high expansion ratio can be obtained with a low internal pressure of the container while using environmentally friendly water, carbon dioxide gas, nitrogen and the like as a foaming agent.

しかしながら、特許文献6記載のような水溶性無機物を含有するポリプロピレン系樹脂粒子から得られる発泡粒子においては、発泡倍率を大きくするため、特に発泡倍率を8倍以上にするために、水溶性無機物の添加量を増加させた場合に、連動して気泡が微細化し易い傾向があり、その結果、得られた発泡粒子を用いた型内発泡成形体においては、発泡粒子間の融着性が低下するなどの問題が見られ、成形品の商品価値の低下や成形体の生産性の悪化をもたらしている。また、発泡倍率と気泡径とが連動して変化するため、例えば気泡径を一定にして発泡倍率のみを調整する(コントロールする)ことが困難であるという問題を有し、所望の物性を有する発泡粒子の製造に制限が生じる。   However, in the expanded particles obtained from the polypropylene-based resin particles containing a water-soluble inorganic substance as described in Patent Document 6, in order to increase the expansion ratio, particularly in order to increase the expansion ratio to 8 times or more, the water-soluble inorganic substance When the amount added is increased, the bubbles tend to be finer in conjunction with each other. As a result, in the in-mold foam molded article using the obtained foamed particles, the fusion property between the foamed particles is lowered. Problems such as these have been observed, leading to a decrease in the product value of molded products and a deterioration in the productivity of molded products. In addition, since the expansion ratio and the bubble diameter change in conjunction with each other, for example, it is difficult to adjust (control) only the expansion ratio while keeping the bubble diameter constant. Limits arise in the production of particles.

また、特許文献7記載のような親水性ポリマーを含有するポリプロピレン系樹脂粒子の含水率を8重量%以上にして炭酸ガスを用いて製造したポリプロピレン系樹脂発泡粒子は、含水率が高いことから発泡直後に発泡粒子が収縮する傾向にあるという欠点も見られている。   Further, the polypropylene resin foam particles produced by using carbon dioxide gas with the water content of the polypropylene resin particles containing the hydrophilic polymer as described in Patent Document 7 being 8% by weight or more are foamed because of their high water content. There is also a drawback that the expanded particles tend to shrink immediately afterward.

一方、発泡剤に炭酸ガスを使用し、無機物とともにポリプロピレングリコール・ポリエチレングリコール重合体を含有する重合体粒子を発泡させ、気泡が微細化することのない発泡粒子の製造方法が開示されている(例えば、特許文献8)。この方法ではポリプロピレン系樹脂への相溶性が低いために、重合体粒子を作成する工程での分散不良によるストランド切れの発生や、押出機での溶融樹脂の送り変動などのトラブルを発生させ易く、そのため微量添加しかできず、吸水性が低いため炭酸ガスによる発泡に頼らざるを得なかった。また、平均分子量が大きいポリプロピレングリコール・ポリエチレングリコール重合体を使用するために、高い発泡倍率のポリプロピレン系樹脂発泡粒子を得ようとした場合、メルトインデックスが10g/10分以上のポリプロピレン系樹脂を用いる必要があった。更には、成形体とした際の発泡粒子どうしの融着率が低下し易いことや、耐熱性の低下、強度の低下が欠点となっていた。
特公昭56−1344号公報 特公平4−64332号公報 特公平4−64334号公報 特公昭49−2183号公報 特開平3−223347号公報 WO98/25996号公報 特開平10−152574号公報 特開平5−163381号公報
On the other hand, carbon dioxide gas is used as a foaming agent, and polymer particles containing a polypropylene glycol / polyethylene glycol polymer together with an inorganic substance are foamed, and a method for producing foamed particles in which bubbles do not become fine is disclosed (for example, Patent Document 8). In this method, since the compatibility with the polypropylene-based resin is low, it is easy to cause troubles such as strand breakage due to poor dispersion in the process of creating polymer particles, and fluctuation of the molten resin feed in the extruder, Therefore, only a small amount could be added, and since water absorption was low, it was forced to rely on foaming with carbon dioxide gas. In addition, in order to use polypropylene glycol / polyethylene glycol polymer having a large average molecular weight, it is necessary to use a polypropylene resin having a melt index of 10 g / 10 min or more when trying to obtain expanded polypropylene resin particles having a high expansion ratio. was there. Furthermore, there are drawbacks in that the fusion rate between the foamed particles when formed into a molded body tends to decrease, the heat resistance decreases, and the strength decreases.
Japanese Patent Publication No.56-1344 Japanese Patent Publication No. 4-64332 Japanese Examined Patent Publication No. 4-64334 Japanese Patent Publication No.49-2183 JP-A-3-223347 WO 98/25996 Japanese Patent Laid-Open No. 10-152574 Japanese Patent Laid-Open No. 5-163381

本発明は、従来の発泡粒子にみられた気泡の不均一、気泡の微細化を起こさず、また、気泡径と発泡倍率を独立してコントロールしやすく、かつ型内発泡成形した際に、融着性が良好で、表面性に優れた発泡成形体が得られるポリプロピレン系樹脂発泡粒子の製造方法を提供することを目的とする。   The present invention does not cause the non-uniformity of bubbles and the micronization of bubbles observed in conventional foamed particles, and it is easy to control the bubble diameter and the foaming ratio independently. It is an object of the present invention to provide a method for producing polypropylene resin expanded particles, which can provide a foamed molded article having good adherence and excellent surface properties.

上述の欠点を解消させるべく、本発明者らは、前記課題の解決のため鋭意研究を行った結果、メルトインデックスが2〜9g/10分のポリプロピレン系樹脂に所定量の発泡核形成作用の無い吸水性物質と発泡核剤を含んでなるポリプロピレン系樹脂粒子に水を含浸させ発泡させることにより、従来の発泡粒子の気泡の不均一、気泡の微細化を起こさず、また、気泡径と発泡倍率が調整されたポリプロピレン系樹脂発泡粒子を製造できることを見出した。   In order to solve the above-mentioned drawbacks, the present inventors have conducted intensive research to solve the above-mentioned problems. As a result, the polypropylene resin having a melt index of 2 to 9 g / 10 min does not have a predetermined amount of foam nucleation. By impregnating and foaming polypropylene resin particles containing a water-absorbing substance and a foam nucleating agent, the foam of conventional foamed particles is not uneven and the bubbles are not made fine. It has been found that expanded polypropylene resin particles with adjusted can be produced.

更には、前記水に加えて炭酸ガスを発泡剤として併用することにより、気泡の均一性がより良好となり、発泡倍率も高めやすいことを見出した。   Furthermore, it has been found that by using carbon dioxide gas as a foaming agent in addition to the water, the uniformity of the bubbles becomes better and the expansion ratio is easily increased.

すなわち本発明の第一は、メルトインデックス2〜9g/10分のポリプロピレン系樹脂100重量部に対して、発泡核形成作用の無い吸水性物質0.01〜5重量部、発泡核剤0.005〜1重量部を含んでなるポリプロピレン系樹脂粒子を、密閉容器に水系分散媒と共に分散させ、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱した後、密閉容器の内圧よりも低い圧力域に放出して発泡させ、揮発分率0.1〜7重量%、発泡倍率8〜25倍、平均気泡径が130〜500μm、気泡径バラツキが0.4未満であるポリプロピレン系樹脂発泡粒子の製造方法に関する。   That is, in the first aspect of the present invention, 0.01 to 5 parts by weight of a water-absorbing substance having no foaming nucleation effect and 0.005 of a foaming nucleating agent are added to 100 parts by weight of a polypropylene resin having a melt index of 2 to 9 g / 10 min. Disperse polypropylene resin particles containing ~ 1 part by weight in an airtight container together with an aqueous dispersion medium, heat to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, and then release to a pressure range lower than the internal pressure of the airtight container And a foaming ratio of 0.1 to 7% by weight, an expansion ratio of 8 to 25 times, an average cell diameter of 130 to 500 μm, and a bubble diameter variation of less than 0.4. .

好ましい態様としては、
(1)炭酸ガスを更に密閉容器内に導入することを特徴とする、
(2)ポリプロピレン系樹脂粒子100重量部に対し、0.5〜20重量部の炭酸ガスを密閉容器内に導入することを特徴とする、
(3)発泡核形成作用の無い吸水性物質が、ポリアルキレングリコール鎖を有する化合物であることを特徴とする、
(4)ポリアルキレングリコール鎖を有する化合物が、ポリエチレングリコールである、
(5)ポリアルキレングリコール鎖を有する化合物が、ポリオレフィンブロックとポリエチレングリコールブロックを含んでなる共重合体である、
(6)発泡核形成作用の無い吸水性物質が、150℃よりも低い融点を有することを特徴とする、
(7)発泡核形成作用の無い吸水性物質が、ベントナイト、合成ヘクトライト、合成ゼオライトから選ばれる少なくとも1種である
、前記記載のポリプロピレン系樹脂発泡粒子の製造方法に関する。
As a preferred embodiment,
(1) Carbon dioxide gas is further introduced into the sealed container,
(2) With respect to 100 parts by weight of the polypropylene resin particles, 0.5 to 20 parts by weight of carbon dioxide gas is introduced into the sealed container,
(3) The water-absorbing substance having no foam nucleation function is a compound having a polyalkylene glycol chain,
(4) The compound having a polyalkylene glycol chain is polyethylene glycol.
(5) The compound having a polyalkylene glycol chain is a copolymer comprising a polyolefin block and a polyethylene glycol block.
(6) The water-absorbing substance having no foam nucleation function has a melting point lower than 150 ° C.,
(7) The present invention relates to the method for producing expanded polypropylene resin particles as described above, wherein the water-absorbing substance having no foam nucleation function is at least one selected from bentonite, synthetic hectorite, and synthetic zeolite.

本発明の第2は、ポリプロピレン系樹脂100重量部に対して、発泡核形成作用の無い吸水性物質0.01〜5重量部、発泡核剤0.005〜1重量部を含んでなるポリプロピレン系樹脂発泡粒子であって、該ポリプロピレン系樹脂発泡粒子のメルトインデックス2〜12g/10分、揮発分率0.1〜7重量%、発泡倍率8〜25倍、平均気泡径が130〜500μm、気泡径バラツキが0.4未満であることを特徴とするポリプロピレン系樹脂系樹脂発泡粒子に関する。   The second of the present invention is a polypropylene system comprising 0.01 to 5 parts by weight of a water-absorbing substance having no foam nucleation function and 0.005 to 1 parts by weight of a foam nucleating agent with respect to 100 parts by weight of a polypropylene resin. A foamed resin particle having a melt index of 2 to 12 g / 10 minutes, a volatile fraction of 0.1 to 7% by weight, an expansion ratio of 8 to 25 times, an average cell diameter of 130 to 500 μm, and a bubble The present invention relates to expanded polypropylene resin-based resin particles having a diameter variation of less than 0.4.

本発明の第3は、前記記載の製造方法で製造したポリプロピレン系樹脂発泡粒子(ポリプロピレン系樹脂発泡粒子(P)と称す)であって、
前記記載の製造方法において、発泡核形成作用の無い吸水性物質を含まずに製造されたポリプロピレン系樹脂発泡粒子(ポリプロピレン系樹脂発泡粒子(Q)と称す)が、揮発分率および平均気泡径において、以下の(A)、(B)の式を満たすとともに、ポリプロピレン系樹脂発泡粒子のメルトインデックス2〜12g/10分であることを特徴とするポリプロピレン系樹脂発泡粒子に関する。
(A)ポリプロピレン系樹脂発泡粒子(P)の揮発分率≧ポリプロピレン系樹脂発泡粒子(Q)の揮発分率×1.1
(B)ポリプロピレン系樹脂発泡粒子(P)の平均気泡径≧ポリプロピレン系樹脂発泡粒子(Q)の平均気泡径×0.7
3rd of this invention is the polypropylene resin expanded particle (it calls a polypropylene resin expanded particle (P)) manufactured with the manufacturing method of the said description,
In the production method described above, the polypropylene resin foam particles (referred to as polypropylene resin foam particles (Q)) produced without containing a water-absorbing substance having no foam nucleation function are obtained in terms of volatile fraction and average cell diameter. Further, the present invention relates to a polypropylene resin foamed particle satisfying the following formulas (A) and (B) and having a melt index of 2 to 12 g / 10 minutes of the polypropylene resin foamed particle.
(A) Volatile fraction of polypropylene resin expanded particles (P) ≧ volatile fraction of polypropylene resin expanded particles (Q) × 1.1
(B) Average cell diameter of polypropylene resin expanded particles (P) ≧ average cell diameter of polypropylene resin expanded particles (Q) × 0.7

本発明によると、発泡剤として水を使用する場合、特に水と炭酸ガスを発泡剤として使用する発泡条件において、ポリプロピレン系樹脂に所定量の発泡核形成作用の無い吸水性物質と発泡核剤を併用することにより、ポリプロピレン系樹脂発泡粒子の気泡が微細化することなく均一となり、また、気泡径と発泡倍率を独立して調整しやすい、高倍率のポリプロピレン系樹脂発泡粒子を得ることができる。本発明のポリプロピレン系樹脂発泡粒子を型内発泡に用いると、融着率が高く、粒間・収縮・歪が小さい表面性の美麗な優れた発泡成形体を得ることができる。   According to the present invention, when water is used as a foaming agent, a water-absorbing substance and a foam nucleating agent that do not have a predetermined amount of foaming nucleation action are added to the polypropylene resin, particularly in foaming conditions in which water and carbon dioxide are used as the foaming agent. By using in combination, it is possible to obtain high-magnification polypropylene-based resin expanded particles in which the bubbles of the polypropylene-based resin expanded particles are uniform without being miniaturized and the cell diameter and the expansion ratio can be easily adjusted independently. When the expanded polypropylene resin particles of the present invention are used for in-mold foaming, it is possible to obtain an excellent foamed molded article having a high fusion rate and a small surface area, shrinkage, and distortion.

とりわけ、本発明のポリプロピレン系樹脂発泡粒子を二段発泡によって高倍化させたポリプロピレン系樹脂発泡粒子を用いて、型内発泡成形を行う場合も融着性と表面性の良好な発泡成形体を得ることが可能である。   In particular, a foamed molded article having good fusion and surface properties can be obtained even when performing in-mold foam molding using the polypropylene resin foamed particles obtained by multiplying the polypropylene resin foamed particles of the present invention by two-stage foaming. It is possible.

本発明は、メルトインデックスが2〜9g/10分のポリプロピレン系樹脂100重量部に対して、発泡核形成作用の無い吸水性物質0.01〜5重量部、発泡核剤0.005〜1重量部を含んでなるポリプロピレン系樹脂粒子を、密閉容器に水系分散媒と共に分散させ、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱した後、密閉容器の内圧よりも低い圧力域に放出して発泡させ、揮発分率0.1〜7重量%、発泡倍率8〜25倍、平均気泡径が130〜500μm、気泡径バラツキが0.4未満であるポリプロピレン系樹脂発泡粒子を製造するものである。   The present invention is based on 100 parts by weight of a polypropylene resin having a melt index of 2 to 9 g / 10 min, 0.01 to 5 parts by weight of a water-absorbing substance having no foam nucleation effect, and 0.005 to 1 part by weight of a foam nucleating agent. The polypropylene resin particles containing the part are dispersed in an airtight container together with an aqueous dispersion medium, heated to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, and then released into a pressure range lower than the internal pressure of the airtight container to foam. Polypropylene resin foamed particles having a volatile content of 0.1 to 7% by weight, an expansion ratio of 8 to 25 times, an average cell diameter of 130 to 500 μm, and a cell diameter variation of less than 0.4 are produced.

本発明における発泡核形成作用の無い吸水性物質とは、発泡核形成作用が無い物質であり、かつ吸水性の物質であることを指す。   In the present invention, the water-absorbing substance having no foaming nucleation function refers to a substance having no foaming nucleation function and a water-absorbing substance.

本発明において「発泡核形成作用が無い」とは、ポリプロピレン系樹脂100重量部に対し、当該物質0.5重量部を含有してなるポリプロピレン系樹脂発泡粒子(a)の平均気泡径と、当該物質を含有させない点を除き全く同じ条件でポリプロピレン系樹脂粒子を発泡させて得たポリプロピレン系樹脂発泡粒子(b)の平均気泡径において、
(a)の平均気泡径≧(b)の平均気泡径×0.7
なる関係を有する場合の物質を言う。ここで平均気泡径とは後述の方法に従って測定した平均気泡径L(av)である。
In the present invention, “having no foam nucleation effect” means that the average cell diameter of the polypropylene resin expanded particles (a) containing 0.5 part by weight of the substance with respect to 100 parts by weight of the polypropylene resin, In the average cell diameter of the expanded polypropylene resin particles (b) obtained by expanding the expanded polypropylene resin particles under exactly the same conditions except that no substance is contained,
(A) average bubble diameter ≧ (b) average bubble diameter × 0.7
A substance when it has a relationship. Here, the average bubble diameter is an average bubble diameter L (av) measured according to a method described later.

本発明における吸水性の物質とは、一般に吸水性、吸湿性、水への溶解性あるいは相溶性があるものをいい、このような物質としては、水溶解性ポリマー、吸水性ポリマー、親水性ポリマー、水溶解性有機物、吸水性有機物、親水性有機物、水溶解性無機物、吸水性無機物、親水性無機物などが挙げられる。   The water-absorbing substance in the present invention generally means a substance having water absorption, hygroscopicity, water solubility or compatibility, and examples of such substances include water-soluble polymers, water-absorbing polymers, hydrophilic polymers. , Water-soluble organic substances, water-absorbing organic substances, hydrophilic organic substances, water-soluble inorganic substances, water-absorbing inorganic substances, hydrophilic inorganic substances, and the like.

これらの物質の吸水率に特に制限はないが、得られるポリプロピレン系樹脂発泡粒子の発泡倍率を向上させる観点からは0.1%以上が好ましく、より好ましくは0.5%以上である。このような吸水率の測定方法としては、例えばASTM D570に準拠して測定することができる。   Although there is no restriction | limiting in particular in the water absorption rate of these substances, From a viewpoint of improving the expansion ratio of the polypropylene resin expanded particle obtained, 0.1% or more is preferable, More preferably, it is 0.5% or more. As a measuring method of such a water absorption rate, it can measure, for example based on ASTM D570.

水溶性無機物などを添加する従来技術においても、水溶性無機物の添加量を増加させることにより発泡粒子の発泡倍率を高めることは可能であったが、水溶性無機物の発泡核形成作用により発泡倍率の増加とともに気泡数の大幅な増加が見られ、平均気泡径が非常に小さくなってしまう。その結果、気泡壁の厚みが小さくなり傾向となり、このような発泡粒子を用いて型内成形した発泡成形体は融着率が低く、粒間・収縮・歪が大きくなってしまう。   In the prior art in which a water-soluble inorganic substance is added, it was possible to increase the expansion ratio of the foamed particles by increasing the amount of the water-soluble inorganic substance added. A significant increase in the number of bubbles is observed with the increase, and the average bubble diameter becomes very small. As a result, the thickness of the bubble wall tends to be reduced, and the foamed molded article formed by using such foamed particles has a low fusion rate and increases intergranularity, shrinkage, and strain.

これに対し本発明によれば、発泡核形成作用の無い吸水性物質を用いることから、その添加量を増加させて発泡倍率を高めた場合でも平均気泡径の大幅な低下が無く、本発明の製造方法による発泡粒子を用いて型内成形した発泡成形体は融着率が高く、粒間・収縮・歪が小さく美麗な優れたものとなる。   On the other hand, according to the present invention, since a water-absorbing substance having no foam nucleation function is used, even when the amount of addition is increased to increase the expansion ratio, there is no significant decrease in the average cell diameter. A foamed molded product molded in-mold using foamed particles produced by the production method has a high fusion rate, and is excellent in beauty with small intergranularity, shrinkage, and strain.

このような発泡核形成作用の無い吸水性物質は、後述の方法により選定されるものであるが、中には従来から知られている物質も含まれる場合がある。しかし、従来技術では、発泡倍率と平均気泡径の独立した調整方法について言及しているものではなく、特に、発泡剤として水だけではなく、炭酸ガスを用いた場合において本発明がより有効な製造方法であることを開示した例はこれまでは認められない。   Such a water-absorbing substance having no foaming nucleation function is selected by the method described later, and may include a conventionally known substance. However, the prior art does not mention an independent adjustment method of the expansion ratio and the average cell diameter, and in particular, the present invention is more effective when not only water but also carbon dioxide is used as a foaming agent. To date, no example has been disclosed that discloses a method.

以上、本発明で用いられる発泡核形成作用の無い吸水性物質について、発泡核形成作用の無い点と吸水性の点から説明したが、発泡核形成作用の無い吸水性物質として具体的には次のような物質が挙げられる。   As described above, the water-absorbing substance having no foaming nucleation action used in the present invention has been described from the point of no foaming nucleation action and water absorption. Examples of such substances are listed below.

すなわち、(A)ポリアルキレングリコールブロックを含む共重合体(例えば三洋化成工業株式会社の商品名ペレスタット)、ポリプロピレングリコール、ポリエチレングリコールなどのポリアルキレングリコール鎖を有する化合物、(B)ポリアクリル酸ナトリウム、セルロース、ポリビニルアルコールなどの親水性ポリマー、(C)ゼオライト、ベントナイト、合成ヘクトライト(ラポナイト)などの無機化合物、が挙げられる。   That is, (A) a copolymer having a polyalkylene glycol block (for example, peristat from Sanyo Chemical Industries, Ltd.), a compound having a polyalkylene glycol chain such as polypropylene glycol or polyethylene glycol, (B) sodium polyacrylate, Examples thereof include hydrophilic polymers such as cellulose and polyvinyl alcohol, and inorganic compounds such as (C) zeolite, bentonite, and synthetic hectorite (laponite).

更に、(D)(イ)脂肪族アミン塩、ヒドロキシアルキルモノエタノールアミン塩、脂肪族4級アンモニウム塩などのカチオン系界面活性剤、(ロ)アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩、アルキル硫酸塩、アルキルエーテル硫酸塩、アルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩、アルキルリン酸塩、アルキルエーテルリン酸塩、アルキルアリルエーテルリン酸塩、アルキルエーテルカルボン酸塩、N−アシルアミノ酸塩などのアニオン系界面活性剤、   Further, (D) (a) cationic surfactants such as aliphatic amine salts, hydroxyalkyl monoethanolamine salts, aliphatic quaternary ammonium salts, (b) alkyl sulfonates, alkyl benzene sulfonates, alkyl naphthalene sulfones. Acid salt, sulfosuccinate, α-olefin sulfonate, N-acyl sulfonate, alkyl sulfate, alkyl ether sulfate, alkyl allyl ether sulfate, alkyl amide sulfate, alkyl phosphate, alkyl ether phosphate Anionic surfactants such as salts, alkyl allyl ether phosphates, alkyl ether carboxylates, N-acyl amino acid salts,

(ハ)アルキルおよびアルキルアリルポリオキシエチレンエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピルアルキルエーテル、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、高級脂肪酸グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、脂肪族アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、アミンオキシドなどのノニオン系界面活性剤、
(ニ)カルボキシベタイン、イミダゾリニウムベタイン、アミノカルボン酸塩などの両性界面活性剤、などの界面活性剤や
(C) Alkyl and alkylallyl polyoxyethylene ether, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropyl alkyl ether, glycerin ester polyoxyethylene ether, sorbitan ester polyoxyethylene ether, sorbitol ester poly Oxyethylene ether, polyethylene glycol fatty acid ester, glycerin ester, higher fatty acid glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester, sucrose ester, aliphatic alkanolamide, polyoxyethylene fatty acid amide, polyoxyethylene alkylamine, amine Nonionic surfactants such as oxides,
(D) Surfactants such as amphoteric surfactants such as carboxybetaine, imidazolinium betaine and aminocarboxylate

(ホ)前記界面活性剤などを主成分とする帯電防止剤、(へ)ポリオレフィンブロックと親水性ポリマーブロックとがエステル結合、アミド結合、エーテル結合、ウレタン結合、イミド結合から選ばれる少なくとも1種の結合を介して繰り返し交互に結合した構造を有する帯電防止剤であって、例えば特許第3488163号の請求の範囲に記載の帯電防止剤、などを挙げることができる。 (E) an antistatic agent comprising the surfactant as a main component, (f) at least one selected from an ester bond, an amide bond, an ether bond, a urethane bond, and an imide bond, wherein the polyolefin block and the hydrophilic polymer block are Examples of the antistatic agent having a structure in which the bonds are alternately and alternately bonded via a bond, such as the antistatic agent described in claims of Japanese Patent No. 3488163, can be given.

これらの発泡核形成作用の無い吸水性物質は、単独で用いてもよく、2種以上を併用して用いても良い。   These water-absorbing substances having no foam nucleation function may be used alone or in combination of two or more.

これらの中でも、より好ましい発泡核形成作用の無い吸水性物質として、ポリアルキレングリコール鎖を有する化合物であることが好ましい。とりわけ、ポリエチレングリコールであることが好ましい。ポリエチレングリコールは、きわめて毒性の低い物質であり、得られた発泡成形体を食品との接触がある用途に用いることも可能である。   Among these, a compound having a polyalkylene glycol chain is preferable as a water-absorbing substance having no more preferable foam nucleation function. In particular, polyethylene glycol is preferable. Polyethylene glycol is a substance with extremely low toxicity, and the obtained foamed molded product can be used for applications where it comes into contact with food.

さらには、平均分子量が200から9000であるポリエチレングリコールであることが好ましく、最も好ましくは平均分子量が200〜600のポリエチレングリコールである。一般に、グリコール類はポリプロピレン系樹脂への相溶性にやや劣る特性があるが、平均分子量200〜9000といった比較的分子量の小さいポリエチレングリコールに関しては、ポリプロピレン系樹脂とポリエチレングリコールを押出機にて混練、ストランドカット法にてポリプロピレン系樹脂粒子を作製する工程での分散不良によるストランド切れや、溶融樹脂の送り不安定などのトラブルの発生が少なく、均一な気泡径で倍率バラツキが小さい発泡粒子が得られる。更にその発泡粒子を用いて型内成形した発泡成形体は、粒間・収縮・歪が小さく、美麗であり、発泡成形体の融着率が高く、耐熱寸法安定性も充分である傾向がある。   Further, polyethylene glycol having an average molecular weight of 200 to 9000 is preferable, and polyethylene glycol having an average molecular weight of 200 to 600 is most preferable. In general, glycols have properties that are slightly inferior in compatibility with polypropylene resins, but for polyethylene glycol having a relatively small molecular weight such as an average molecular weight of 200 to 9000, a polypropylene resin and polyethylene glycol are kneaded with an extruder, a strand There are few troubles such as strand breakage due to poor dispersion in the process of producing polypropylene resin particles by the cutting method and unstable feeding of the molten resin, and foamed particles with uniform bubble diameter and small variation in magnification can be obtained. Furthermore, foam molded products molded in-mold using the foamed particles tend to have small intergranular / shrinkage / distortion, beautify, high fusion rate of foam molded products, and sufficient heat-resistant dimensional stability. .

また、平均分子量が小さいポリエチレングリコールを選択することで、ポリプロピレン系樹脂粒子への炭酸ガスの含浸性が高くなることから、発泡剤として炭酸ガスを併用した場合に、とりわけ高発泡倍率を得やすく、また気泡径の均一性もより向上することからさらに好適となる。   In addition, by selecting polyethylene glycol having a small average molecular weight, the impregnation property of carbon dioxide gas into polypropylene resin particles becomes high, so when using carbon dioxide as a foaming agent, it is particularly easy to obtain a high expansion ratio, Further, the uniformity of the bubble diameter is further improved, which is further preferable.

なお、分子量が異なるポリエチレングリコールを混合使用することも可能である。
また、ポリエチレングリコールの平均分子量は、液体クロマトグラフ質量分析装置(たとえばサーモフィッシャーサイエンティフィック製LCQアドバンテージ)を使用し、測定できる。
It is also possible to use a mixture of polyethylene glycols having different molecular weights.
The average molecular weight of polyethylene glycol can be measured using a liquid chromatograph mass spectrometer (for example, LCQ Advantage manufactured by Thermo Fisher Scientific).

別の好適なポリアルキレングリコール鎖を有する化合物としては、ポリアルキレングリコールブロックを含む共重合体であり、とりわけ、ポリアルキレングリコールブロックとポリオレフィンブロックを含んでなる共重合体が好適である。   Another suitable compound having a polyalkylene glycol chain is a copolymer containing a polyalkylene glycol block, and in particular, a copolymer comprising a polyalkylene glycol block and a polyolefin block is preferred.

具体的には、三洋化成工業株式会社製商品名ペレスタットが挙げられる。このような共重合体は、ポリオレフィンブロックを有することからポリプロピレン系樹脂との相溶性が良好であり、また、固体であることからハンドリングが良好となり、押出混練する際の送り不良が発生することも無い。その結果、押出における吐出ムラが発生することも無く、ストランドカット法による樹脂粒子作製において均一な形状の樹脂粒子を作ることができる。このような樹脂粒子を発泡させた場合、均一な気泡径で倍率バラツキが小さい発泡粒子が得られる。その発泡粒子を用いて型内成形した発泡成形体は粒間・収縮・歪が小さく、美麗であり、発泡成形体の融着率が高く、耐熱寸法安定性も充分である傾向がある。   Specifically, the brand name Perestat manufactured by Sanyo Chemical Industries, Ltd. can be mentioned. Since such a copolymer has a polyolefin block, it has good compatibility with a polypropylene resin, and since it is a solid, handling is good, and poor feeding during extrusion kneading may occur. No. As a result, there is no occurrence of discharge unevenness in extrusion, and resin particles having a uniform shape can be produced in resin particle production by the strand cut method. When such resin particles are foamed, foamed particles having a uniform cell diameter and small variation in magnification can be obtained. Foam molded products molded in-mold using the foamed particles tend to have small intergranularity, shrinkage, and distortion, are beautiful, have high fusion rates, and have sufficient heat-resistant dimensional stability.

更に、発泡核形成作用の無い吸水性物質は、150℃よりも低い融点を有することが好ましい。150℃よりも低い融点を有する物質であれば、発泡時に固体ではなく液体として存在する可能性が高く、核形成作用が更に小さくなり、気泡径と発泡倍率をコントロールしやすくなることから好ましい。150℃以上の融点を有する物質では、発泡核形成作用が発現しやすい傾向にあることから、結果として発泡成形体としたときの融着生や粒間・収縮・歪などの表面性が低下する場合がある。   Furthermore, it is preferable that the water-absorbing substance having no foam nucleation action has a melting point lower than 150 ° C. A substance having a melting point lower than 150 ° C. is preferable because it is highly likely to exist as a liquid rather than a solid at the time of foaming, the nucleation action is further reduced, and the bubble diameter and the foaming ratio can be easily controlled. Substances having a melting point of 150 ° C. or higher tend to easily exhibit foaming nucleation, and as a result, surface properties such as fusion, intergranularity, shrinkage, and strain when foamed molded products are reduced. There is a case.

このような150℃よりも低い融点を有する物質としては、具体的にはポリエチレングリコール(平均分子量300の場合、融点−13℃)、ポリオレフィンブロックとポリアルキレングリコールブロックを有する共重合体である前述のペレスタット(ペレスタット303の場合、融点135℃)などが挙げられる。   Specific examples of the substance having a melting point lower than 150 ° C. include a polyethylene glycol (melting point: −13 ° C. in the case of an average molecular weight of 300), a copolymer having a polyolefin block and a polyalkylene glycol block. Perestat (in the case of perestat 303, the melting point is 135 ° C.).

また、さらに別のより好ましい発泡核形成作用の無い吸水性物質としては、ベントナイト、合成ヘクトライト、合成ゼオライトなどが挙げられる。一般的に無機物質は発泡核形成作用があるとされているが、これらの物質は無機物質ではあるものの予想外に発泡核形成作用が小さいため、好適に用いることができる。   Further, as another more preferable water-absorbing substance having no foaming nucleus forming action, bentonite, synthetic hectorite, synthetic zeolite and the like can be mentioned. In general, inorganic substances are said to have a foam nucleation effect. However, although these substances are inorganic substances, they have an unexpectedly small foam nucleation action, and therefore can be suitably used.

本発明の発泡核形成作用の無い吸水性物質の添加量は、ポリプロピレン系樹脂100重量部に対し、0.01〜5重量部であり、好ましくは、0.03〜3重量部である。添加量の調整により、揮発分率を調整し、発泡倍率を変化させることが可能であり、添加量が0.01重量部未満であると、水あるいは炭酸ガスによる発泡倍率向上作用が小さくなり、気泡径の均一化効果が小さくなってしまう。添加量が5重量部を超えると、ポリプロピレン系樹脂発泡粒子の収縮が生じ易くなり、ポリプロピレン樹脂中への発泡核形成作用の無い吸水性物質の分散が不十分となる。   The addition amount of the water-absorbing substance having no foam nucleation function of the present invention is 0.01 to 5 parts by weight, preferably 0.03 to 3 parts by weight, with respect to 100 parts by weight of the polypropylene resin. By adjusting the addition amount, it is possible to adjust the volatile fraction and change the expansion ratio. When the addition amount is less than 0.01 parts by weight, the effect of improving the expansion ratio by water or carbon dioxide gas is reduced. The effect of uniforming the bubble diameter is reduced. When the added amount exceeds 5 parts by weight, shrinkage of the polypropylene resin foamed particles tends to occur, and the dispersion of the water-absorbing substance having no foaming nucleus forming action in the polypropylene resin becomes insufficient.

本発明で用いる発泡核剤は、発泡の時に気泡核の形成を促す物質をいい、たとえば、タルク、炭酸カルシウム、シリカ、カオリン、硫酸バリウム、水酸化カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン、ゼオライト、ステアリン酸カルシウム、ステアリン酸バリウムなどの脂肪族金属塩、メラミン、ホウ酸金属塩などが挙げられる。これらの発泡核剤は、単独で用いてもよく、2種以上を併用しても良い。   The foam nucleating agent used in the present invention refers to a substance that promotes the formation of cell nuclei during foaming, such as talc, calcium carbonate, silica, kaolin, barium sulfate, calcium hydroxide, aluminum hydroxide, aluminum oxide, titanium oxide, Examples thereof include aliphatic metal salts such as zeolite, calcium stearate and barium stearate, melamine, and metal borate. These foam nucleating agents may be used alone or in combination of two or more.

これらの中では、タルク、ホウ酸金属塩、炭酸カルシウムが好ましく、特に安価で発泡核形成作用の無い吸水性物質との馴染みが良いタルクを使用すると、発泡核形成作用の無い吸水性物質のポリプロピレン系樹脂中への分散性が向上し、均一な気泡径を有する発泡成形体を得易くなるため好適である。   Among these, talc, metal borate, and calcium carbonate are preferable, and when using talc, which is particularly inexpensive and well-adapted to a water-absorbing substance having no foam nucleation action, a water-absorbing substance polypropylene having no foam nucleation action is used. Dispersibility in a resin is improved, and a foamed molded product having a uniform cell diameter can be easily obtained.

添加量は使用する発泡核剤、あるいは所望の発泡倍率等によって適宜調整されるものであるが、ポリプロピレン系樹脂100重量部に対して、0.005〜1重量部が必要であり、好ましくは0.01〜0.7重量部である。0.005重量部未満の場合、発泡倍率を大きくすることができなかったり、気泡径の均一性が低下する。1重量部を超えると発泡成形体の平均気泡径が小さくなり過ぎ、型内発泡成形性が不良となる。   The addition amount is appropriately adjusted depending on the foaming nucleating agent used or the desired foaming ratio, but 0.005 to 1 part by weight is required with respect to 100 parts by weight of the polypropylene resin, preferably 0. 0.01 to 0.7 parts by weight. When the amount is less than 0.005 parts by weight, the expansion ratio cannot be increased or the uniformity of the bubble diameter is lowered. If it exceeds 1 part by weight, the average cell diameter of the foamed molded product becomes too small, resulting in poor in-mold foam moldability.

発泡核剤としてタルクを用いる場合は、ポリプロピレン系樹脂100重量部に対して、0.02〜0.5重量部用いることにより所望の平均気泡径と成りやすく、型内発泡成形性も良好となることから好ましい。   When talc is used as the foam nucleating agent, a desired average cell diameter is easily obtained by using 0.02 to 0.5 parts by weight with respect to 100 parts by weight of the polypropylene resin, and in-mold foam moldability is also improved. Therefore, it is preferable.

本発明のポリプロピレン系樹脂としては、プロピレンホモポリマー、プロピレン−α−オレフィンランダム共重合体、プロピレン−α−オレフィンブロック共重合体などが挙げられる。α−オレフィンとしては炭素数2〜15のα−オレフィンなどが挙げられ、これらは、単独で用いてもよく、2種以上併用してもよい。また、前述のプロピレンホモポリマー、プロピレン−α−オレフィンランダム共重合体、プロピレン−α−オレフィンブロック共重合体を2種以上併用してもよい。   Examples of the polypropylene resin of the present invention include a propylene homopolymer, a propylene-α-olefin random copolymer, and a propylene-α-olefin block copolymer. Examples of the α-olefin include α-olefins having 2 to 15 carbon atoms, and these may be used alone or in combination of two or more. Further, two or more of the aforementioned propylene homopolymer, propylene-α-olefin random copolymer, and propylene-α-olefin block copolymer may be used in combination.

この中でも、特に、プロピレン−エチレンランダム共重合体、プロピレン−エチレン−ブテン−1ランダム共重合体、プロピレン−ブテン−1ランダム共重合体であって、プロピレン以外のコモノマー含量が1〜5重量%である場合に良好な発泡性を示し、好適に使用し得る。また共重合体は、炭酸ガスの含浸がし易い特性も有しており、好適である。   Among these, in particular, a propylene-ethylene random copolymer, a propylene-ethylene-butene-1 random copolymer, and a propylene-butene-1 random copolymer, and the comonomer content other than propylene is 1 to 5% by weight. In some cases, it exhibits good foaming properties and can be suitably used. Further, the copolymer has a characteristic that it can be easily impregnated with carbon dioxide gas, which is preferable.

本発明で用いられるポリプロピレン系樹脂のメルトインデックスは、2〜9g/10分であり、好ましくは3〜8g/10分であり、より好ましくは4〜8g/10分である。メルトインデックスが2g/10分未満では、高発泡倍率の発泡粒子が得られず、気泡も不均一になる。また、メルトインデックスが9g/10分を超えた場合、発泡しやすく高発泡倍率の発泡粒子は得やすくなるが、発泡セルが破泡し、発泡粒子の連泡率が高くなり、気泡も不均一になる。   The melt index of the polypropylene resin used in the present invention is 2 to 9 g / 10 minutes, preferably 3 to 8 g / 10 minutes, and more preferably 4 to 8 g / 10 minutes. When the melt index is less than 2 g / 10 minutes, expanded particles with a high expansion ratio cannot be obtained, and bubbles are not uniform. In addition, when the melt index exceeds 9 g / 10 min, it is easy to foam, and it becomes easy to obtain expanded particles with a high expansion ratio, but the foamed cells break up, the open cell ratio of the expanded particles increases, and the bubbles are also uneven. become.

なお、本発明におけるメルトインデックスは、JIS K7210に準拠し、温度230℃、荷重2.16kgで測定した値である。   The melt index in the present invention is a value measured at a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.

本発明のポリプロピレン系樹脂の融点は、発泡性、成形性に優れ、型内発泡成形体としたときの機械的強度、耐熱性に優れた発泡粒子を得やすいため、130〜165℃であることが好ましく、更には135℃〜155℃のものが好ましい。前記融点が130℃未満の場合、耐熱性、機械的強度が十分でない傾向がある。また、融点が165℃を超える場合、型内発泡成形時の融着を確保することが難しくなる傾向がある。   The melting point of the polypropylene resin of the present invention is 130 to 165 ° C. because it has excellent foamability and moldability, and it is easy to obtain expanded particles having excellent mechanical strength and heat resistance when formed into an in-mold foam molded product. Are preferred, and those of 135 ° C. to 155 ° C. are more preferred. When the melting point is less than 130 ° C., heat resistance and mechanical strength tend to be insufficient. Moreover, when melting | fusing point exceeds 165 degreeC, there exists a tendency for it to become difficult to ensure the melt | fusion at the time of in-mold foam molding.

ここで、融点とは、示差走査熱量計によってポリプロピレン系樹脂1〜10mgを40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。   Here, the melting point is 1 to 10 mg of polypropylene resin is heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min by a differential scanning calorimeter, and then cooled to 40 ° C. at a rate of 10 ° C./min. The peak temperature of the endothermic peak in the DSC curve obtained when the temperature is raised again to 220 ° C. at a rate of 10 ° C./min.

なお、本発明において添加される発泡核形成作用の無い吸水性物質、発泡核剤以外に、相溶化剤、帯電防止剤、着色剤、安定剤、耐候剤、難燃剤などは本発明の効果を損わない程度に適宜添加可能である。   In addition to the water-absorbing substance having no foaming nucleation function and foaming nucleating agent added in the present invention, a compatibilizing agent, antistatic agent, coloring agent, stabilizer, weathering agent, flame retardant and the like have the effects of the present invention. It can be added appropriately to such an extent that it is not damaged.

以上、ポリプロピレン系樹脂、発泡核形成作用の無い吸水性物質および発泡核剤について説明したが、本発明ではこれらをポリプロピレン系樹脂粒子として用いる。   As described above, the polypropylene resin, the water-absorbing substance having no foaming nucleus forming action and the foaming nucleating agent have been described. In the present invention, these are used as the polypropylene resin particles.

ポリプロピレン系樹脂粒子とする方法としては従来周知の方法を用いればよく、例えばあらかじめポリプロピレン系樹脂、発泡核形成作用の無い吸水性物質および発泡核剤をブレンドしたものを押出機にて溶融混練し、ダイスより押出し、冷却したのち、カッターにてポリプロピレン系樹脂粒子とする方法が挙げられる。発泡核形成作用の無い吸水性物質として常温で液体状、あるいは、例えば分子量3000以下のポリエチレングリコールなどのろう状(半液体状)の物質を選択した場合は、前述の方法を用いても良いし、あるいは押出機の投入ホッパー部あるいは押出機途中で、溶融させたポリプロピレン系樹脂に液体状で定量供給し、混練する方法でも良い。液体添加の際、分子量が1000〜3000のポリエチレングリコールなどの、常温にてろう状のものに関しては、加温し融解させたのち添加すれば良い。   As a method for making polypropylene resin particles, a conventionally known method may be used. For example, a polypropylene resin, a water-absorbing substance having no foam nucleation function and a foam nucleating agent previously blended are melt-kneaded in an extruder, An example is a method of extruding from a die, cooling, and then forming polypropylene resin particles with a cutter. If a water-absorbing substance having no foaming nucleation action is selected at room temperature or a waxy (semi-liquid) substance such as polyethylene glycol having a molecular weight of 3000 or less, the above-described method may be used. Alternatively, a method may be used in which a fixed amount is supplied in a liquid state to the molten polypropylene resin and kneaded in the charging hopper of the extruder or in the middle of the extruder. When liquid is added, wax-like materials such as polyethylene glycol having a molecular weight of 1000 to 3000 may be added after heating and melting.

また、分子量が4000以下のポリエチレングリコールなど、押出温度で蒸散しやすい物質の場合は、蒸散を少なくするため、押出機のシリンダー、ダイス部の温度を250℃以下の低めにすることが望ましい。   In addition, in the case of a substance that tends to evaporate at the extrusion temperature, such as polyethylene glycol having a molecular weight of 4000 or less, it is desirable to lower the temperature of the cylinder and the die part of the extruder to 250 ° C. or less in order to reduce the evaporation.

なお、発泡核形成作用の無い吸水性物質や発泡核剤は、あらかじめポリオレフィン系樹脂によりマスターバッチ化しておき、これを最終的に所望の添加量となるようにポリプロピレン系樹脂とブレンドし、押出機にて溶融混練してポリプロピレン系樹脂粒子としても良い。   In addition, the water-absorbing substance and the foam nucleating agent having no foam nucleation function are previously masterbatched with a polyolefin resin, and this is blended with a polypropylene resin so that the final addition amount is obtained. It is good also as a polypropylene-type resin particle by melt-kneading.

次に本発明におけるポリプロピレン系樹脂発泡粒子の製造方法について説明する。   Next, the manufacturing method of the polypropylene resin expanded particle in this invention is demonstrated.

本発明におけるポリプロピレン系樹脂発泡粒子は、前述のようにして作製したポリプロピレン系樹脂粒子を、密閉容器に水系分散媒と共に分散させ、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱後、密閉容器の内圧よりも低い圧力域に放出して製造する。この場合、分散媒である水が発泡剤となり、低圧域に放出する前のいずれかの段階で炭酸ガス、窒素もしくは空気などの無機ガスを圧入することで密閉容器内の内圧を高め、発泡時の圧力開放速度を調節し、発泡倍率や平均気泡径の調整を行うことができる。   The expanded polypropylene resin particles in the present invention are prepared by dispersing the polypropylene resin particles prepared as described above together with an aqueous dispersion medium in a sealed container, heating to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, Manufacture by discharging into a pressure range lower than the internal pressure. In this case, water as the dispersion medium becomes the foaming agent, and the internal pressure in the sealed container is increased by injecting an inorganic gas such as carbon dioxide, nitrogen or air at any stage before being released into the low pressure region. It is possible to adjust the foaming ratio and the average cell diameter by adjusting the pressure release speed.

また本発明のより好ましい態様である炭酸ガスを発泡剤として更に添加する場合は、ポリプロピレン系樹脂粒子と水と固体の炭酸ガス(ドライアイス)を密閉容器に投入しても良いし、ポリプロピレン系樹脂粒子と水を密閉容器に投入した後、低圧域に放出する前のいずれかの段階で気体あるいは液体の炭酸ガスを容器内に導入しても良い。あるいはこれらの方法を組み合わせた方法を採用することもできる。   When carbon dioxide gas, which is a more preferred embodiment of the present invention, is further added as a foaming agent, polypropylene resin particles, water and solid carbon dioxide gas (dry ice) may be charged into a sealed container, or polypropylene resin. Gas or liquid carbon dioxide gas may be introduced into the container at any stage after the particles and water are charged into the sealed container and before being released into the low pressure region. Or the method which combined these methods is also employable.

このように発泡剤として水と炭酸ガスを併用した場合、発泡力を大きくし易いことから、高発泡倍率を得る際においても、発泡核剤の添加量を少なくすることができ、結果として平均気泡径が大きい発泡粒子が得られ、二次発泡性も良好なものとなる。また、発泡核形成作用の無い吸水性物質に、水とともに炭酸ガスも同時に保持されやすくなると推定され、このために均一な気泡径形成が可能となり、いっそう気泡径と発泡倍率をコントロールしやすく成ることからより好ましい。   Thus, when water and carbon dioxide gas are used in combination as a foaming agent, the foaming power can be easily increased, so even when a high foaming ratio is obtained, the amount of foam nucleating agent added can be reduced, resulting in an average cell size. Expanded particles having a large diameter are obtained, and the secondary foamability is also good. In addition, it is presumed that the water-absorbing substance having no foaming nucleation function is likely to hold carbon dioxide together with water, which makes it possible to form a uniform bubble diameter and to further control the bubble diameter and the expansion ratio. To more preferable.

本発明においては、発泡剤としては水が必須であり、水と炭酸ガスを併用することが好ましいが、必要に応じて他の物理発泡剤を補助的に使用することも可能であり、例えば、炭素数が3〜5の飽和炭化水素、ジメチルエーテル、または沸点が発泡可能温度以下であるメタノール、エタノールなどのアルコール類、空気、窒素などの無機発泡剤なども使用できる。なお、発泡剤の水は密閉容器内に収容する水系分散媒の水を利用するものである。   In the present invention, water is essential as a foaming agent, and it is preferable to use water and carbon dioxide gas in combination, but other physical foaming agents can be used as needed, for example, Saturated hydrocarbons having 3 to 5 carbon atoms, dimethyl ether, alcohols such as methanol and ethanol whose boiling point is lower than the foamable temperature, inorganic foaming agents such as air and nitrogen, and the like can also be used. In addition, the water of a foaming agent utilizes the water of the aqueous dispersion medium accommodated in an airtight container.

また、炭酸ガスや他の物理発泡剤は、ポリポリプロピレン系樹脂粒子を、密閉容器に水系分散媒と共に分散した後、加熱する前に密閉容器内に導入しても良いし、加熱中に導入してもよく、また加熱後に導入しても良く、発泡する直前に導入しても良い。また、発泡中に密閉容器内の圧力が低下しないように、導入しつつ発泡しても良い。更には、数回に分けて導入しても構わない。   Carbon dioxide gas and other physical foaming agents may be introduced into the sealed container before heating, after the polypolypropylene resin particles are dispersed together with the aqueous dispersion medium in the sealed container, or during heating. It may be introduced after heating, or may be introduced immediately before foaming. Moreover, you may foam, introducing, so that the pressure in an airtight container may not fall during foaming. Further, it may be introduced in several times.

発泡剤をポリプロピレン系樹脂粒子に十分含浸させ、発泡力を高める点からは、加熱する前に導入しておくことが好ましく、得られるポリプロピレン系樹脂発泡粒子の倍率バラツキを抑制する観点からは、発泡中にも導入することが好ましい。   From the viewpoint of sufficiently impregnating the foaming agent into the polypropylene resin particles and increasing the foaming power, it is preferably introduced before heating. From the viewpoint of suppressing the magnification variation of the obtained polypropylene resin foam particles, foaming is performed. It is also preferable to introduce it into the inside.

このようにして製造した本発明のポリプロピレン系樹脂発泡粒子のメルトインデックスは2〜12g/10分であり、好ましくは3〜11g/10分であり、より好ましくは4〜10g/10分である。メルトインデックスが2g/10分未満であると、二次発泡性が低下することにより型内成形する際の成形性が低下する。また、12g/10分を超えると発泡粒子の気泡が破泡するなど、連泡率が高くなってしまう。なお、ポリプロピレン系樹脂発泡粒子のメルトインデックスは、ポリプロピレン系樹脂のメルトインデックスと同じ条件にて測定することが出来る。   The melt index of the polypropylene resin expanded particles of the present invention thus produced is 2 to 12 g / 10 minutes, preferably 3 to 11 g / 10 minutes, and more preferably 4 to 10 g / 10 minutes. If the melt index is less than 2 g / 10 minutes, the secondary foamability is lowered, and thus the moldability at the time of in-mold molding is lowered. On the other hand, if it exceeds 12 g / 10 minutes, the foaming rate will increase, for example, the bubbles of the foamed particles may break. In addition, the melt index of a polypropylene resin expanded particle can be measured on the same conditions as the melt index of a polypropylene resin.

なお、本発明のポリプロピレン系樹脂発泡粒子の製造方法によれば、ポリプロピレン系樹脂発泡粒子のメルトインデックスは、基材樹脂であるポリプロピレン系樹脂のメルトインデックスより大きくなる傾向にあるが、その差はおおむね3g/10分以下である。この点を考慮してポリプロピレン系樹脂のメルトインデックスを選択すれば、本発明のポリプロピレン系樹脂発泡粒子を得ることが可能である。   According to the method for producing expanded polypropylene resin particles of the present invention, the melt index of the expanded polypropylene resin particles tends to be larger than the melt index of the polypropylene resin as the base resin, but the difference is almost the same. 3 g / 10 min or less. If the melt index of the polypropylene resin is selected in consideration of this point, it is possible to obtain the expanded polypropylene resin particles of the present invention.

本発明のポリプロピレン系樹脂発泡粒子の平均気泡径は130〜500μmである。好ましくは160〜400μmであり、さらに好ましくは210〜350μmである。平均気泡径が130μm未満の場合、得られる発泡成形体の融着性が低下する、形状が歪む、表面にしわが発生するなどの問題が生じ、500μmを越える場合、得られる発泡成形体の緩衝特性が低下する。   The average cell diameter of the expanded polypropylene resin particles of the present invention is 130 to 500 μm. Preferably it is 160-400 micrometers, More preferably, it is 210-350 micrometers. When the average cell diameter is less than 130 μm, there arises problems such as a decrease in the fusibility of the obtained foamed molded product, distortion of the shape, and generation of wrinkles on the surface. Decreases.

本発明により得られるポリプロピレン系樹脂発泡粒子の気泡径バラツキは0.4未満であり、0.3以下が好ましく、0.2以下がより好ましい。気泡径バラツキが0.4以上であると得られる発泡成形体の表面性が悪くなり、シワや発泡粒子の間のへこみ、穴などの粒間が顕著となる。このような気泡径バラツキを達成するためには、本発明で用いられる発泡核形成作用の無い吸水性物質、発泡核剤を用いることで可能となるが、より好ましくは発泡剤として炭酸ガスを併用することで達成しやすくなる。この理由は定かではないが、発泡核形成作用の無い吸水性物質と炭酸ガスの相互作用が影響していると推定される。   The bubble diameter variation of the polypropylene resin expanded particles obtained by the present invention is less than 0.4, preferably 0.3 or less, and more preferably 0.2 or less. When the bubble diameter variation is 0.4 or more, the surface properties of the obtained foamed molded article are deteriorated, and the interstices such as wrinkles and dents between the expanded particles and holes are prominent. In order to achieve such bubble size variation, it is possible to use the water-absorbing substance having no foaming nucleation function and foaming nucleating agent used in the present invention, but more preferably, carbon dioxide gas is used in combination as the foaming agent. This makes it easier to achieve. The reason for this is not clear, but it is presumed that the interaction between a water-absorbing substance having no foaming nucleus forming action and carbon dioxide gas has an influence.

なお、本発明のポリプロピレン系樹脂発泡粒子のメルトインデックス2〜12g/10分、揮発分率0.1〜7重量%、発泡倍率8〜25倍、平均気泡径が130〜500μm、気泡径バラツキが0.4未満である、ポリプロピレン系樹脂発泡粒子は、前述のような水系分散媒を用いた製造方法で製造することが好ましいが、別の方法によっても製造することも可能である。例えば、ポリプロピレン系樹脂粒子を耐圧容器に収容し、例えば気体の炭酸ガス等の発泡剤を注入してポリプロピレン系樹脂粒子に含浸したのち、大気中に取り出し、発泡性樹脂粒子を得る。次いで該発泡性樹脂粒子を発泡装置に収容し、水蒸気やヒーターにより所定時間加熱することにより本発明のポリプロピレン系樹脂発泡粒子を得ることも可能である。   The polypropylene resin foamed particles of the present invention have a melt index of 2 to 12 g / 10 minutes, a volatile fraction of 0.1 to 7% by weight, an expansion ratio of 8 to 25 times, an average cell diameter of 130 to 500 μm, and a variation in cell diameter. Polypropylene resin foamed particles having a particle size of less than 0.4 are preferably produced by a production method using an aqueous dispersion medium as described above, but can also be produced by another method. For example, polypropylene resin particles are contained in a pressure-resistant container, and for example, a foaming agent such as gaseous carbon dioxide gas is injected to impregnate the polypropylene resin particles, and then taken out into the atmosphere to obtain expandable resin particles. Next, it is possible to obtain the expanded polypropylene resin particles of the present invention by storing the expandable resin particles in a foaming apparatus and heating the foamed resin particles for a predetermined time with water vapor or a heater.

なお本発明における平均気泡径L(av)と気泡径バラツキ(S)は次のように決定する。すなわち、無作為に選んだ1個の発泡粒子のほぼ中央を切断し、現れた断面を拡大観察する。ここで、断面ほぼ中心で直交するX軸とY軸を引き、断面ほぼ中心のX軸とY軸が交差する点を中心O、X軸が断面端部と交差する点をそれぞれA、A’、Y軸が断面端部と交差する点をB、B’とする。   The average bubble diameter L (av) and the bubble diameter variation (S) in the present invention are determined as follows. That is, the center of one randomly selected expanded particle is cut and the cross section that appears is magnified. Here, the X axis and the Y axis perpendicular to each other at the approximate center of the cross section are drawn, the point where the X axis and the Y axis at the approximate center of the cross section intersect with each other is the center O, and the point where the X axis intersects with the end of the cross section. , B and B ′ are points where the Y-axis intersects the end of the cross section.

次いで線分OAがクロスする気泡壁の数を数え、線分OAの長さを気泡壁数で除した値を更に0.616で除することにより気泡径L(OA)を求める。すなわち次の式(1)で気泡径L(OA)を求める。   Next, the number of bubble walls intersected by the line segment OA is counted, and the value obtained by dividing the length of the line segment OA by the number of bubble walls is further divided by 0.616 to obtain the bubble diameter L (OA). That is, the bubble diameter L (OA) is obtained by the following equation (1).

Figure 0005553476
線分OA’、線分OB、線分OB’についても同様に行い、それぞれL(OA’)、L(OB)、L(OB’)を求める。なお、気泡壁上に中心Oがある場合は、気泡壁として数える。
Figure 0005553476
The same processing is performed for the line segment OA ′, the line segment OB, and the line segment OB ′, and L (OA ′), L (OB), and L (OB ′) are obtained. In addition, when the center O exists on a bubble wall, it counts as a bubble wall.

ここで、L(OA)、L(OA’)、L(OB)、L(OB’)の4つの平均値L’(av)を算出する。この操作を更に無作為に選んだ19個のポリプロピレン系樹脂発泡粒子について実施し、最終的に20個のポリプロピレン系樹脂発泡粒子のL’(av)を更に平均した値を平均気泡径L(av)とする。   Here, four average values L ′ (av) of L (OA), L (OA ′), L (OB), and L (OB ′) are calculated. This operation was carried out on 19 randomly selected polypropylene resin expanded particles, and finally, the average value of L ′ (av) of 20 polypropylene resin expanded particles was further averaged. ).

一方、1個の発泡粒子における気泡径バラツキ(S’)を次の式(2)で表される値とする。   On the other hand, the bubble diameter variation (S ′) in one expanded particle is set to a value represented by the following equation (2).

Figure 0005553476
これを前述で選び出した残り19個の発泡粒子について実施し、最終的に20個の発泡粒子の気泡径バラツキS’を平均した値を気泡径バラツキSとした。
Figure 0005553476
This was carried out on the remaining 19 expanded particles selected above, and the average value of the bubble diameter variation S ′ of the 20 expanded particles was defined as the bubble diameter variation S.

本発明のポリプロピレン系樹脂発泡粒子の揮発分率は0.1〜7重量%である。揮発分率が0.1重量%未満では後述する所望の発泡倍率が得られず、7重量%を超えると、得られるポリプロピレン系樹脂発泡粒子が収縮し、発泡粒子表面にシワが発生する。   The volatile content of the expanded polypropylene resin particles of the present invention is 0.1 to 7% by weight. If the volatile content is less than 0.1% by weight, the desired expansion ratio described later cannot be obtained, and if it exceeds 7% by weight, the resulting polypropylene resin expanded particles shrink and wrinkles are generated on the surface of the expanded particles.

なお、この揮発分率は次のようにして測定される。ポリプロピレン系樹脂発泡粒子の重量(W1)を測定し、さらにそのポリプロピレン系樹脂発泡粒子を80℃のオーブン中で12時間乾燥させた時の重量(W2)を測定し、次式により算出する。
揮発分率(%)=(W1−W2)/W2×100
なお、発泡させた直後の発泡粒子を使用する場合、その粒子表面に付着した水を、空気気流で脱水させたのち、前述の方法で測定すれば良い。
In addition, this volatile matter rate is measured as follows. The weight (W1) of the polypropylene resin expanded particles is measured, and the weight (W2) when the polypropylene resin expanded particles are dried in an oven at 80 ° C. for 12 hours is measured and calculated by the following formula.
Volatiles (%) = (W1-W2) / W2 × 100
In addition, when foamed particles immediately after foaming are used, water adhering to the particle surface may be dehydrated with an air stream and then measured by the method described above.

このような揮発分は、ポリプロピレン系樹脂発泡粒子中に含まれる水、あるいは炭酸ガスが主成分と考えられる。   Such a volatile component is considered to be mainly composed of water or carbon dioxide contained in the expanded polypropylene resin particles.

本発明のポリプロピレン系樹脂発泡粒子の発泡倍率は8〜25倍であり、8〜20倍が好ましく、より好ましくは9〜17倍である。発泡倍率が8倍以上であれば、発泡核形成作用の無い吸水性物質と発泡核剤の併用による気泡径と発泡倍率との調整を良好に行うことが出来る。また、発泡倍率が25倍以下であればポリプロピレン系樹脂発泡粒子の気泡が破泡すること無く、型内発泡成形した際の発泡成形体の寸法精度、機械的強度、耐熱性などが充分となる。   The expansion ratio of the polypropylene resin expanded particles of the present invention is 8 to 25 times, preferably 8 to 20 times, and more preferably 9 to 17 times. If the expansion ratio is 8 times or more, it is possible to satisfactorily adjust the bubble diameter and the expansion ratio by the combined use of a water-absorbing substance having no foam nucleation function and a foam nucleating agent. Also, if the expansion ratio is 25 times or less, the bubbles of the polypropylene resin foamed particles do not break, and the dimensional accuracy, mechanical strength, heat resistance, etc. of the foamed molded product when in-mold foam molding is sufficient. .

なお、発泡倍率20倍以上のものを得ようとする際は、前述した密閉容器の内圧よりも低い圧力域に放出させる段階(一段発泡と称す場合がある)で20倍以上としても良いが、一段発泡で20倍未満のポリプロピレン系樹脂発泡粒子を製造し、得られたポリプロピレン系樹脂発泡粒子を耐圧容器内にて空気などの無機ガスにて加圧し、内圧を付与させたのち、蒸気加熱することで再度発泡(二段発泡と称す場合がある)させることにより20倍以上に高倍化することが好ましい。特に、本発明の発泡核形成作用の無い吸水性物質を含む場合、二段発泡においても含有されている水を利用することができ、発泡倍率の高倍化が容易となる。   When trying to obtain a foaming ratio of 20 times or more, it may be 20 times or more at the stage of release to a pressure region lower than the internal pressure of the above-mentioned closed container (sometimes referred to as single-stage foaming), Polypropylene resin foam particles of less than 20 times are produced by one-stage foaming, and the obtained polypropylene resin foam particles are pressurized with an inorganic gas such as air in a pressure-resistant container to give an internal pressure, followed by steam heating. Therefore, it is preferable to increase the magnification to 20 times or more by foaming again (sometimes referred to as two-stage foaming). In particular, when the water-absorbing substance having no foam nucleation function of the present invention is included, the water contained in the two-stage foaming can be utilized, and the foaming ratio can be easily increased.

本発明のポリプロピレン系樹脂発泡粒子の製造方法で得たポリプロピレン系樹脂発泡粒子の揮発分率および平均気泡径において、発泡倍率を向上させる点、あるいは型内成形性の観点から、より好ましい態様として以下のことが挙げられる。   From the viewpoint of improving the expansion ratio in terms of the volatile content and average cell diameter of the polypropylene resin foam particles obtained by the method for producing polypropylene resin foam particles of the present invention, or from the viewpoint of in-mold moldability, the following are more preferable embodiments. Can be mentioned.

すなわち、本発明の製造方法でえられたポリプロピレン系樹脂発泡粒子(以下、ポリプロピレン系樹脂発泡粒子(P)と称す)と、発泡核形成作用の無い吸水性物質を含まずに、他の条件はポリプロピレン系樹脂発泡粒子(P)と同じ条件で製造したポリプロピレン系樹脂発泡粒子(以下、ポリプロピレン系樹脂発泡粒子(Q)と称す)が、揮発分率および平均気泡径において、以下の(A)、(B)の式を満たすことが好ましい。
(A)ポリプロピレン系樹脂発泡粒子(P)の揮発分率≧ポリプロピレン系樹脂発泡粒子(Q)の揮発分率×1.1
(B)ポリプロピレン系樹脂発泡粒子(P)の平均気泡径≧ポリプロピレン系樹脂発泡粒子(Q)の平均気泡径×0.7
ポリプロピレン系樹脂発泡粒子(P)の揮発分率が、ポリプロピレン系樹脂発泡粒子(Q)の揮発分率×1.1未満では発泡時の発泡力が低下する傾向にあることから、所望の発泡倍率が得られない場合がある。
That is, the polypropylene resin foamed particles obtained by the production method of the present invention (hereinafter referred to as polypropylene resin foam particles (P)) and the water-absorbing substance having no foam nucleation function are included, and other conditions are The polypropylene resin expanded particles (hereinafter referred to as polypropylene resin expanded particles (Q)) produced under the same conditions as the polypropylene resin expanded particles (P) are the following (A), in terms of volatile fraction and average cell diameter: It is preferable to satisfy the formula (B).
(A) Volatile fraction of polypropylene resin expanded particles (P) ≧ volatile fraction of polypropylene resin expanded particles (Q) × 1.1
(B) Average cell diameter of polypropylene resin expanded particles (P) ≧ average cell diameter of polypropylene resin expanded particles (Q) × 0.7
When the volatile content of the polypropylene resin expanded particles (P) is less than the volatile content ratio of the polypropylene resin expanded particles (Q) × 1.1, the foaming force at the time of foaming tends to decrease. May not be obtained.

また、ポリプロピレン系樹脂発泡粒子(P)の平均気泡径が、ポリプロピレン系樹脂発泡粒子(Q)の平均気泡径×0.7未満では、平均気泡径が小さくなることから型内成形する際の融着性が低下する場合がある。   In addition, when the average cell diameter of the polypropylene resin expanded particles (P) is less than the average cell diameter of the polypropylene resin expanded particles (Q) × 0.7, the average cell diameter is small, so that the melting at the time of in-mold molding is reduced. Wearability may be reduced.

かくして得られた本発明のポリプロピレン系樹脂発泡粒子は、図1に示すように示差走査熱量測定によって得られるDSC曲線において、2つの融解ピークを有するものが好ましい。   The polypropylene resin expanded particles of the present invention thus obtained preferably have two melting peaks in the DSC curve obtained by differential scanning calorimetry as shown in FIG.

2つの融解ピークを有する発泡粒子の場合、型内発泡成形性が良く、機械的強度や耐熱性の良好な型内発泡成形体が得られる傾向にある。   In the case of expanded particles having two melting peaks, in-mold foam moldability is good, and there is a tendency to obtain an in-mold foam molded article having good mechanical strength and heat resistance.

ここで、ポリプロピレン系樹脂発泡粒子の示差走査熱量測定によって得られるDSC曲線とは、発泡粒子1〜10mgを示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線のことである。   Here, the DSC curve obtained by differential scanning calorimetry of polypropylene resin foamed particles refers to 1 to 10 mg of foamed particles heated from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min with a differential scanning calorimeter. It is a DSC curve sometimes obtained.

前記のごとく2つの融解ピークを有するポリプロピレン系樹脂発泡粒子は、発泡時の密閉容器内の温度を適切な値に設定することにより容易に得られる。すなわち本発明の場合、前記密閉容器内の温度は、通常、基材となるポリプロピレン系樹脂の軟化温度以上であり、好ましくは融点以上、より好ましくは融点+5℃以上融解終了温度未満、さらに好ましくは融解終了温度−2℃以下の温度であり、このような場合に2つの融解ピークを有するポリプロピレン系樹脂発泡粒子が得られる傾向にある。   As described above, the expanded polypropylene resin particles having two melting peaks can be easily obtained by setting the temperature in the sealed container at the time of foaming to an appropriate value. That is, in the case of the present invention, the temperature in the closed container is usually not lower than the softening temperature of the polypropylene resin as the base material, preferably not lower than the melting point, more preferably not lower than the melting point + 5 ° C., more preferably lower than the melting end temperature. The melting end temperature is −2 ° C. or lower, and in such a case, expanded polypropylene-based resin particles having two melting peaks tend to be obtained.

なお、前記融解終了温度とは、示差走査熱量計によってポリプロピレン系樹脂1〜10mgを40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線の融解ピークのすそが高温側でベースラインの位置に戻ったときの温度である。   The melting end temperature is a temperature of 10 to 10 ° C./min from 40 ° C. to 220 ° C. and then cooled to 40 ° C. at a rate of 10 ° C./min with a differential scanning calorimeter. The temperature at which the bottom of the melting peak of the DSC curve obtained when the temperature is raised again to 220 ° C. at a rate of 10 ° C./min returns to the baseline position on the high temperature side.

また、2つの融解ピークのうち高温側の吸熱ピーク熱量(以下、Qhと表記する場合がある)は、5〜30J/gが好ましく、より好ましくは、7〜20J/gである。5J/g未満ではポリプロピレン系樹脂発泡粒子の連泡率が高くなる傾向にあり、30J/gを超えると発泡成形体を得る際の融着性が低下する傾向にある。 なお、高温側の吸熱ピーク熱量Qhは図1に示すように、DSC曲線の2つの融解ピーク間で最も吸熱量が小さくなる点をAとし、点AからDSC曲線に対しそれぞれ接線を引き、該接線とDSC曲線に囲まれた部分(図1の斜線部分)について、高温側を高温側の融解ピーク熱量Qh、低温側を低温側の融解ピーク熱量Qlとする。   Further, the endothermic peak calorific value (hereinafter sometimes referred to as Qh) on the high temperature side of the two melting peaks is preferably 5 to 30 J / g, and more preferably 7 to 20 J / g. If it is less than 5 J / g, the open-cell rate of the polypropylene resin expanded particles tends to be high, and if it exceeds 30 J / g, the fusion property when obtaining a foamed molded product tends to be lowered. As shown in FIG. 1, the endothermic peak heat quantity Qh on the high temperature side is defined as A where the endothermic quantity is the smallest between the two melting peaks of the DSC curve, and tangent lines are drawn from the point A to the DSC curve. For the portion surrounded by the tangent line and the DSC curve (shaded portion in FIG. 1), the high temperature side is the melting peak heat amount Qh on the high temperature side and the low temperature side is the melting peak heat amount Ql on the low temperature side.

以下、実施例および比較例をあげて、本発明をさらに具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to such examples.

なお、実施例および比較例における評価は、つぎの方法により行なった。   In addition, evaluation in Examples and Comparative Examples was performed by the following method.

(発泡倍率)
発泡粒子3〜10g程度を取り、60℃で6時間乾燥したのち重量wを測定後、水を入れたメスシリンダーに投入して水没させ、水面上昇から体積vを測定し、発泡粒子の真比重ρb=w/vを求め、原料組成物の密度ρr(=0.9g/cm)との比から発泡倍率K=ρr/ρbを求めた。
(Foaming ratio)
After taking 3 to 10 g of expanded particles, drying at 60 ° C. for 6 hours and measuring the weight w, it is put into a graduated cylinder filled with water and submerged, and the volume v is measured from the rise of the water surface, and the true specific gravity of the expanded particles ρb = w / v was determined, and the expansion ratio K = ρr / ρb was determined from the ratio to the density ρr (= 0.9 g / cm 3 ) of the raw material composition.

(連泡率)
空気比較式比重計(東京サイエンス(株)製、1000型)を用い、得られた発泡粒子の独立気泡体積を求め、これを別途水没法により求めた見かけの体積で除してえられた独立気泡率(%)を、100から引くことにより求めた。
(Open cell rate)
Using an air comparative hydrometer (manufactured by Tokyo Science Co., Ltd., 1000 type), the closed cell volume of the obtained foamed particles was obtained, and this was obtained by dividing this by the apparent volume obtained separately by the submerged method. The bubble rate (%) was determined by subtracting from 100.

(揮発分率)
発泡させた直後の発泡粒子を使用し、その粒子表面に付着した水を、空気気流で吹き飛ばして脱水させたのち、その重量(W1)を測定し、さらにその発泡粒子を80℃のオーブン中で12時間乾燥させた時の重量(W2)を測定し、次式により算出した。
揮発分率(%)=(W1−W2)/W2×100
(Volatile content)
The foam particles immediately after foaming are used, and water adhering to the particle surface is blown off with an air stream and dehydrated. Then, the weight (W1) is measured, and the foam particles are further removed in an oven at 80 ° C. The weight (W2) when dried for 12 hours was measured and calculated by the following formula.
Volatiles (%) = (W1-W2) / W2 × 100

(平均気泡径L(av))
無作為に選んだ20個の発泡粒子のほぼ中央を切断し、現れた断面を拡大観察する。ここで、断面ほぼ中心で直交するX軸とY軸を引き、断面ほぼ中心のX軸とY軸が交差する点を中心O、X軸が断面端部と交差する点をそれぞれA、A’、Y軸が断面端部と交差する点をB、B’とした。
(Average bubble diameter L (av))
Cut almost the center of 20 randomly selected foamed particles, and observe the enlarged section. Here, the X axis and the Y axis perpendicular to each other at the approximate center of the cross section are drawn, the point where the X axis and the Y axis at the approximate center of the cross section intersect with each other is the center O, and the point where the X axis intersects with the end of the cross section. The points where the Y axis intersects the end of the cross section are designated as B and B ′.

次いで線分OAがクロスする気泡壁の数を数え、線分OAの長さを気泡壁数で除した値を更に0.616で除することにより気泡径L(OA)を求める。すなわち次の式(1)で気泡径L(OA)を求める。   Next, the number of bubble walls intersected by the line segment OA is counted, and the value obtained by dividing the length of the line segment OA by the number of bubble walls is further divided by 0.616 to obtain the bubble diameter L (OA). That is, the bubble diameter L (OA) is obtained by the following equation (1).

Figure 0005553476
線分OA’、線分OB、線分OB’についても同様に行い、それぞれL(OA’)、L(OB)、L(OB’)を求める。なお、気泡壁上に中心Oがある場合は、気泡壁として数えた。
Figure 0005553476
The same processing is performed for the line segment OA ′, the line segment OB, and the line segment OB ′, and L (OA ′), L (OB), and L (OB ′) are obtained. In addition, when there was the center O on the bubble wall, it counted as a bubble wall.

L(OA)、L(OA’)、L(OB)、L(OB’)の4つの平均値L’(av)を算出し、20個のポリプロピレン系樹脂発泡粒子のL’(av)を更に平均した値を平均気泡径L(av)とした。   Four average values L ′ (av) of L (OA), L (OA ′), L (OB), and L (OB ′) are calculated, and L ′ (av) of 20 polypropylene-based resin expanded particles is calculated. Furthermore, the averaged value was defined as the average bubble diameter L (av).

(気泡径バラツキS)
平均気泡径の測定において、1個の発泡粒子における気泡径バラツキ(S’)を次の式(2)から算出した。
(Bubble diameter variation S)
In the measurement of the average cell diameter, the cell diameter variation (S ′) in one expanded particle was calculated from the following equation (2).

Figure 0005553476
20個の発泡粒子の気泡径バラツキS’を平均した値を気泡径バラツキ(S)とした。
Figure 0005553476
A value obtained by averaging the bubble size variation S ′ of the 20 expanded particles was defined as a bubble size variation (S).

(発泡粒子収縮・シワ)
○:発泡粒子表面にシワはなく美麗である
×:発泡粒子表面にシワが多く、発泡粒子が収縮している
(Expanded particle shrinkage / wrinkles)
○: The surface of the expanded particle is beautiful without wrinkles. ×: The surface of the expanded particle is wrinkled and the expanded particle is contracted.

(二段発泡性)
○:スティック(発泡粒子が複数個くっついたもの)の発生が無い
△:少量のスティックが発生する。
×:高い蒸気圧が必要となり、多数のスティックが発生する
(Two-stage foaming)
◯: No stick (with a plurality of foam particles attached) △: A small amount of stick occurs.
×: A high vapor pressure is required, and many sticks are generated

(成形体表面性)
○:しわ少なく、粒間(発泡粒子の間のへこみ、穴など)少なく、美麗
△:僅かなしわがあり、粒間あるが良好
×:しわがある、あるいは粒間が顕著であり、ヒケなどもあり外観不良
(Mold surface properties)
○: Less wrinkles, less intergranularity (dents and holes between foamed particles, etc.), beautiful △: Slight wrinkles, intergranular but good ×: Wrinkles or remarkable intergranularity, sink marks, etc. Yes, poor appearance

(成形体融着率)
発泡成形体の表面にナイフで約5mmの深さのクラックを入れたのち、このクラックに沿って発泡成形体を割り、破断面を観察し、観察した全粒子数に対する破壊粒子数の割合を求め、成形体融着率とした。
次の参考例には、本発明の発泡核形成作用の無い吸水性物質であるか否かの選定方法にいて記載する。
(Molded product fusion rate)
After a crack with a depth of about 5 mm is made on the surface of the foamed molded product with a knife, the foamed molded product is divided along the crack, the fracture surface is observed, and the ratio of the number of broken particles to the total number of particles observed is obtained. The molded product fusion rate was used.
The following reference example describes the method for selecting whether or not the water-absorbing substance has no foam nucleation function of the present invention.

(参考例1)
ポリプロピレン系樹脂A(プロピレン/エチレン/ブテン−1ランダム共重合体:エチレン含有率2.6重量%、ブテン−1含有量1.4重量%、メルトインデックス7g/10分、融点145℃)を50φ単軸押出機に供給し、200℃で溶融混練したのち、直径1.8mmの円筒ダイより押出し、水冷後、カッターで切断し、円柱状のポリプロピレン系樹脂粒子(1.2mg/粒)を得た。
(Reference Example 1)
Polypropylene resin A (propylene / ethylene / butene-1 random copolymer: ethylene content 2.6% by weight, butene-1 content 1.4% by weight, melt index 7 g / 10 min, melting point 145 ° C.) 50φ After feeding to a single screw extruder and melt-kneading at 200 ° C., extrusion from a cylindrical die with a diameter of 1.8 mm, water cooling, and cutting with a cutter to obtain cylindrical polypropylene resin particles (1.2 mg / grain) It was.

得られたポリプロピレン系樹脂粒子100重量部を、純水300重量部、第3リン酸カルシウム1.0重量部およびドデシルベンゼンスルホン酸ソーダ0.05重量部とともに耐圧密閉容器に投入したのち、脱気し、攪拌しながら炭酸ガス14重量部を密閉容器内に入れ、149℃に加熱した。このときの密閉容器内の圧力は3MPa(G)であった。すぐに密閉容器下部のバルブを開いてポリプロピレン系樹脂粒子および水系分散媒を含んでなる水分散物を直径4mmのオリフィスを通じて大気圧下に放出してポリプロピレン系樹脂発泡粒子を得た。なお、放出中は容器内の圧力が低下しないように、炭酸ガスで圧力を保持した。   100 parts by weight of the obtained polypropylene resin particles were put into a pressure-resistant sealed container together with 300 parts by weight of pure water, 1.0 part by weight of tricalcium phosphate and 0.05 part by weight of sodium dodecylbenzenesulfonate, and then deaerated. While stirring, 14 parts by weight of carbon dioxide gas was placed in a sealed container and heated to 149 ° C. The pressure in the sealed container at this time was 3 MPa (G). Immediately after opening the valve at the bottom of the sealed container, an aqueous dispersion containing polypropylene resin particles and an aqueous dispersion medium was released under atmospheric pressure through an orifice having a diameter of 4 mm to obtain polypropylene resin expanded particles. During discharge, the pressure was maintained with carbon dioxide gas so that the pressure in the container did not decrease.

このようにして得た添加剤を含有しないポリプロピレン系樹脂発泡粒子の平均気泡径は260μmであった。   The average cell diameter of the polypropylene resin expanded particles not containing the additive thus obtained was 260 μm.

(参考例2)
ポリプロピレン系樹脂A100重量部に対し、添加剤Dとしてポリエチレングリコール(平均分子量300、ライオン製)を0.5重量部ブレンドし、これを50φ単軸押出機に供給し、200℃で溶融混練したのち、直径1.8mmの円筒ダイより押出し、水冷後、カッターで切断し、円柱状のポリエチレングリコール含有ポリプロピレン系樹脂粒子(1.2mg/粒)を得た。
(Reference Example 2)
After blending 0.5 parts by weight of polyethylene glycol (average molecular weight 300, manufactured by Lion) as additive D with 100 parts by weight of polypropylene resin A, this is fed to a 50φ single screw extruder and melt kneaded at 200 ° C. The product was extruded from a cylindrical die having a diameter of 1.8 mm, cooled with water, and cut with a cutter to obtain cylindrical polyethylene glycol-containing polypropylene resin particles (1.2 mg / particle).

その後、参考例1と全く同様にしてポリエチレングリコール含有ポリプロピレン系樹脂発泡粒子を作製した。えられた発泡粒子の平均気泡径を表1に示す。参考例1との比較から、ポリエチレングリコールは本発明の発泡核形成作用の無い吸水性物質であることがわかる。   Thereafter, polyethylene glycol-containing polypropylene resin expanded particles were produced in exactly the same manner as in Reference Example 1. Table 1 shows the average cell diameter of the obtained expanded particles. From a comparison with Reference Example 1, it can be seen that polyethylene glycol is a water-absorbing substance having no foam nucleation function of the present invention.

Figure 0005553476
(参考例3)
添加剤Dのポリエチレングリコールの代わりに、添加剤Eとしてポリオレフィンブロックとポリアルキレングリコールブロックを有するブロック共重合体(ペレスタット303、三洋化成製)を用いた以外は参考例2と全く同様にしてポリプロピレン系樹脂発泡粒子を作製した。えられた発泡粒子の平均気泡径を表1に示す。参考例1との比較から、ポリオレフィンブロックとポリアルキレングリコールブロックを有するブロック共重合体は本発明の発泡核形成作用の無い吸水性物質であることがわかる。
Figure 0005553476
(Reference Example 3)
Polypropylene system in exactly the same manner as in Reference Example 2, except that a block copolymer having a polyolefin block and a polyalkylene glycol block (Pelestat 303, manufactured by Sanyo Chemical Co., Ltd.) was used as additive E instead of polyethylene glycol as additive D. Resin foam particles were prepared. Table 1 shows the average cell diameter of the obtained expanded particles. From a comparison with Reference Example 1, it can be seen that the block copolymer having a polyolefin block and a polyalkylene glycol block is a water-absorbing substance having no foam nucleation function of the present invention.

(参考例4〜9)
添加剤Dのポリエチレングリコールの代わりに、以下の添加剤F〜Kを用いた以外は参考例2と全く同様にしてポリプロピレン系樹脂発泡粒子を作製した。得られた発泡粒子の揮発分率と平均気泡径を表1に示す。いずれの添加剤も本発明の発泡核形成作用の無い吸水性物質であることがわかる。
(Reference Examples 4-9)
Polypropylene resin expanded particles were produced in exactly the same manner as in Reference Example 2 except that the following additives F to K were used instead of the additive D polyethylene glycol. Table 1 shows the volatile content and average cell diameter of the obtained foamed particles. It can be seen that any of the additives is a water-absorbing substance having no foam nucleation function of the present invention.

添加剤
F:ポリアクリル酸ナトリウム(アクアキープ10SH−NF、住友精化製)
G:カルボキシメチルセルロースナトリウム(MAC20、日本製紙ケミカル製)
H:ポリビニルアルコール(PVA205S、クラレ製)
I:ベントナイト(ベンゲルブライト25、ホージュン製)
J:合成ヘクトライト(ラポナイトRD、東新化成製)
K:合成ゼオライト(NX−100P、日本化学製)
Additive F: Sodium polyacrylate (Aquakeep 10SH-NF, manufactured by Sumitomo Seika)
G: Sodium carboxymethylcellulose (MAC20, manufactured by Nippon Paper Chemicals)
H: Polyvinyl alcohol (PVA205S, manufactured by Kuraray)
I: Bentonite (Wenger Bright 25, manufactured by Hojun)
J: Synthetic hectorite (Laponite RD, manufactured by Toshin Kasei)
K: Synthetic zeolite (NX-100P, manufactured by Nippon Chemical)

(参考例10)
添加剤Dのポリエチレングリコールの代わりに、添加剤Lとしてホウ酸亜鉛(ホウ酸亜鉛2335、富田製薬製)を用いた以外は参考例3と全く同様にしてポリプロピレン系樹脂発泡粒子を作製し、該発泡粒子の平均気泡径を表1に示す。この添加剤は、本発明の発泡核形成作用の無い吸水性物質ではないことがわかる。
(Reference Example 10)
Polypropylene resin expanded particles were prepared in exactly the same manner as in Reference Example 3 except that zinc borate (zinc borate 2335, manufactured by Tomita Pharmaceutical Co., Ltd.) was used as additive L instead of polyethylene glycol as additive D. Table 1 shows the average cell diameter of the expanded particles. It can be seen that this additive is not a water-absorbing substance having no foam nucleation function of the present invention.

次に本発明の実施例について記載する。   Next, examples of the present invention will be described.

(実施例1)
ポリプロピレン系樹脂A(プロピレン/エチレン/ブテン−1ランダム共重合体:エチレン含有率2.6重量%、ブテン−1含有量1.4重量%、メルトインデックス7g/10分、融点145℃)100重量部に対し、添加剤D(平均分子量300のポリエチレングリコール、ライオン製)を0.5重量部プリブレンドし、次に発泡核剤としてタルク(林化成製、タルカンパウダーPK−S)0.03重量部を加えブレンドした。これを50φ単軸押出機に供給し、ダイス先端温度200℃で溶融混練したのち、直径1.8mmの円筒ダイより押出し、水冷後、カッターで切断し、円柱状のポリプロピレン系樹脂粒子(1.2mg/粒)を得た。
Example 1
Polypropylene resin A (propylene / ethylene / butene-1 random copolymer: ethylene content 2.6 wt%, butene-1 content 1.4 wt%, melt index 7 g / 10 min, melting point 145 ° C.) 100 wt 0.5 parts by weight of additive D (polyethylene glycol having an average molecular weight of 300, manufactured by Lion) is pre-blended with respect to parts, and then 0.03 wt. Of talc (manufactured by Hayashi Kasei, Talcan powder PK-S) as a foam nucleating agent. Part was blended. This was supplied to a 50φ single-screw extruder, melt-kneaded at a die tip temperature of 200 ° C., extruded from a cylindrical die having a diameter of 1.8 mm, cooled with water, cut with a cutter, and cylindrical polypropylene resin particles (1. 2 mg / grain) was obtained.

得られたポリプロピレン系樹脂粒子100重量部を、純水300重量部、第3リン酸カルシウム2.0重量部およびドデシルベンゼンスルホン酸ソーダ0.05重量部とともに耐圧密閉容器に投入したのち、脱気し、攪拌しながら炭酸ガス14重量部を密閉容器内に入れ、149℃に加熱した。このときの密閉容器内圧力は2.9MPa(G)であった。更に炭酸ガスを追加し密閉容器内温度を3.3MPa(G)とし10分間保持した。その後、密閉容器下部のバルブを開いて、水分散物(樹脂粒子および水系分散媒)を直径4mmのオリフィスを通じて大気圧下に放出してポリプロピレン系樹脂発泡粒子(一段発泡粒子)を得た。この際、放出中は容器内の圧力が低下しないように、炭酸ガスで圧力を保持した。   100 parts by weight of the obtained polypropylene resin particles were put into a pressure-resistant sealed container together with 300 parts by weight of pure water, 2.0 parts by weight of tricalcium phosphate and 0.05 parts by weight of sodium dodecylbenzenesulfonate, and then deaerated. While stirring, 14 parts by weight of carbon dioxide gas was placed in a sealed container and heated to 149 ° C. The pressure in the sealed container at this time was 2.9 MPa (G). Further, carbon dioxide gas was added, and the temperature inside the sealed container was set to 3.3 MPa (G) and held for 10 minutes. Thereafter, the valve at the bottom of the sealed container was opened, and the aqueous dispersion (resin particles and aqueous dispersion medium) was released under atmospheric pressure through an orifice having a diameter of 4 mm to obtain polypropylene resin expanded particles (single-stage expanded particles). At this time, during discharge, the pressure was maintained with carbon dioxide gas so that the pressure in the container did not decrease.

得られた一段発泡粒子は示差走査熱量計測定において、約142℃と約159℃に2つの吸熱ピークを示し、発泡倍率、連泡率、平均気泡径を測定した結果、発泡倍率15倍、連泡率0.6%、揮発分率3.0%、平均気泡径270μm、気泡径バラツキ0.07で気泡径の均一性に優れたものであった。   The obtained single-stage expanded particles showed two endothermic peaks at about 142 ° C. and about 159 ° C. in differential scanning calorimetry, and as a result of measuring the expansion ratio, the open cell ratio, and the average cell diameter, the expansion ratio was 15 times. The foam ratio was 0.6%, the volatile content ratio was 3.0%, the average bubble diameter was 270 μm, and the bubble diameter variation was 0.07, and the bubble diameter uniformity was excellent.

ここで得た一段発泡粒子を酸洗浄し、60℃にて6時間乾燥させたのち、耐圧容器内にて、加圧空気を含浸させて、内圧を約0.4MPaにしたのち、約0.07MPa(G)の蒸気と接触させることで二段発泡させ、発泡倍率30倍の二段発泡粒子を得た。二段発泡させた発泡粒子表面を電子顕微鏡にて観察した結果、表面部分の気泡径が均一で、かつ表面の粗れがなく、発泡粒子表面膜の厚みが薄い部分も少ない発泡粒子であった。次に、二段発泡させた発泡粒子を再度、耐圧容器内にて空気で加圧し、約0.2MPaの空気内圧とし、型内発泡成形を行った。発泡成形体の表面は平滑性に優れ、しわの発生も無く、発泡成形体の寸法収縮が小さく、発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な発泡成形体であった。結果を表2に示す。   The single-stage expanded particles obtained here were washed with an acid, dried at 60 ° C. for 6 hours, impregnated with pressurized air in a pressure-resistant container to bring the internal pressure to about 0.4 MPa, and then about 0.1 MPa. Two-stage foaming was performed by contacting with steam of 07 MPa (G) to obtain two-stage foamed particles having an expansion ratio of 30 times. As a result of observing the surface of the two-stage expanded foam particles with an electron microscope, it was found that the foam diameter of the surface portion was uniform, the surface was not rough, and the thickness of the foam particle surface film was small. . Next, the two-staged foamed particles were again pressurized with air in a pressure-resistant container to achieve an air pressure of about 0.2 MPa, and in-mold foam molding was performed. The surface of the foamed molded product was excellent in smoothness, no wrinkles were generated, the dimensional shrinkage of the foamed molded product was small, the distortion of the foamed molded product was small, the particles were fused well, and it was a beautiful foamed molded product. . The results are shown in Table 2.

Figure 0005553476
(実施例2)
発泡核剤のタルク量を0.3重量部とし、二段発泡条件を表2記載の条件とした以外は実施例1と同様にして一段発泡粒子を得、次いで発泡倍率30倍の二段発泡粒子とした後、型内成形した。得られた一段発泡粒子は示差走査熱量計測定において、約142℃と約159℃に2つの吸熱ピークを示し、気泡径の均一性は良好であった。また、二段発泡させた発泡粒子表面を電子顕微鏡にて観察した結果、表面部分の気泡径が均一で、かつ表面の粗れがなく、発泡粒子表面膜の厚みが薄い部分も少ない発泡粒子であった。その二段発泡粒子を使用し、型内発泡成形したところ、発泡成形体の表面は平滑性に優れ、しわの発生も無く、発泡成形体の寸法収縮が小さく、発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な発泡成形体であった。結果を表2に示す。
Figure 0005553476
(Example 2)
Single-stage foamed particles were obtained in the same manner as in Example 1 except that the amount of talc of the foam nucleating agent was 0.3 parts by weight and the two-stage foaming conditions were as shown in Table 2, followed by two-stage foaming with a foaming ratio of 30 times After forming particles, molding was performed in a mold. The obtained single-stage expanded particles showed two endothermic peaks at about 142 ° C. and about 159 ° C. in differential scanning calorimetry, and the bubble diameter uniformity was good. In addition, as a result of observing the surface of the expanded foam particles that have been two-stage expanded with an electron microscope, the foam diameter of the surface portion is uniform, the surface is not rough, and the expanded particle surface film has a small thickness. there were. Using the two-stage foamed particles, and foam molding in the mold, the surface of the foam molded body is excellent in smoothness, no wrinkles, dimensional shrinkage of the foam molded body, less distortion of the foam molded body, It was a beautiful foamed molded article with excellent fusion between particles. The results are shown in Table 2.

参考例11〜14,実施例7〜8)
添加剤Dのポリエチレングリコールの代わりに、添加剤F、G、H、J、Kを用い、これらの添加剤量、発泡核剤のタルク量を表2記載の量とし、二段発泡条件を表2記載の条件とした以外は実施例1と同様にして一段発泡粒子を得、次いで発泡倍率30倍の二段発泡粒子とした後、型内成形した。得られた一段発泡粒子は示差走査熱量計測定において、約142℃と約159℃に2つの吸熱ピークを示し、気泡径の均一性は良好であった。また、二段発泡させた発泡粒子表面を電子顕微鏡にて観察した結果、表面部分の気泡径が均一で、かつ表面の粗れがなく、発泡粒子表面膜の厚みが薄い部分も少ない発泡粒子であった。その二段発泡粒子を使用し、型内発泡成形したところ、発泡成形体の表面は平滑性に優れ、しわの発生も無く、発泡成形体の寸法収縮が小さく、発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な発泡成形体であった。結果を表2に示す。
( Reference Examples 11-14, Examples 7-8 )
Additives F, G, H, J, and K are used in place of polyethylene glycol as additive D, and the amount of these additives and the amount of talc of the foam nucleating agent are those shown in Table 2, and the two-stage foaming conditions are shown. Except for the conditions described in 2, the first-stage expanded particles were obtained in the same manner as in Example 1, and then the second-stage expanded particles having an expansion ratio of 30 times were obtained, followed by in-mold molding. The obtained single-stage expanded particles showed two endothermic peaks at about 142 ° C. and about 159 ° C. in differential scanning calorimetry, and the bubble diameter uniformity was good. In addition, as a result of observing the surface of the expanded foam particles that have been two-stage expanded with an electron microscope, the foam diameter of the surface portion is uniform, the surface is not rough, and the expanded particle surface film has a small thickness. there were. Using the two-stage foamed particles, and foam molding in the mold, the surface of the foam molded body is excellent in smoothness, no wrinkles, dimensional shrinkage of the foam molded body, less distortion of the foam molded body, It was a beautiful foamed molded article with excellent fusion between particles. The results are shown in Table 2.

(実施例9)
ポリプロピレン系樹脂B(プロピレン/エチレンランダム共重合体:エチレン含有率3.2重量%、MI=6g/10分、融点142℃)100重量部に対し、添加剤D(平均分子量300のポリエチレングリコール、ライオン製)を0.5重量部プリブレンドし、次に発泡核剤としてタルク(林化成製、タルカンパウダーPK−S)0.05重量部を加えブレンドした。これを50φ単軸押出機に供給し、ダイス先端温度200℃で溶融混練したのち、直径1.8mmの円筒ダイより押出し、水冷後、カッターで切断し、円柱状のポリオレフィン系樹脂粒子(1.2mg/粒)を得た。
Example 9
For 100 parts by weight of polypropylene resin B (propylene / ethylene random copolymer: ethylene content 3.2% by weight, MI = 6 g / 10 min, melting point 142 ° C.), additive D (polyethylene glycol having an average molecular weight of 300, (Lion) 0.5 parts by weight was pre-blended, and then 0.05 parts by weight of talc (manufactured by Hayashi Kasei Co., Ltd., Talcan Powder PK-S) was added and blended. This was supplied to a 50φ single-screw extruder, melt-kneaded at a die tip temperature of 200 ° C., extruded from a cylindrical die having a diameter of 1.8 mm, cooled with water, cut with a cutter, and cylindrical polyolefin resin particles (1. 2 mg / grain) was obtained.

得られたポリプロピレン系樹脂粒子100重量部を、純水200部、第3リン酸カルシウム2.0重量部およびドデシルベンゼンスルホン酸ソーダ0.05重量部とともに耐圧密閉容器に投入したのち、脱気し、攪拌しながら炭酸ガス6部を密閉容器内に入れ、148℃に加熱した。このときの密閉容器内圧力は2.8MPa(G)であった。更に炭酸ガスを追加し密閉容器内温度を3.0MPa(G)とし10分間保持した。その後、密閉容器下部のバルブを開いて、ポリプロピレン系樹脂粒子および水系分散媒を含んでなる水分散物を直径4mmのオリフィスを通じて大気圧下に放出してポリプロピレン系樹脂発泡粒子(一段発泡粒子)を得た。この際、放出中は容器内の圧力が低下しないように、炭酸ガスで圧力を保持した。   100 parts by weight of the obtained polypropylene resin particles were put into a pressure-resistant sealed container together with 200 parts of pure water, 2.0 parts by weight of tricalcium phosphate and 0.05 parts by weight of sodium dodecylbenzenesulfonate, and then deaerated and stirred. Then, 6 parts of carbon dioxide gas was put in a sealed container and heated to 148 ° C. The pressure in the sealed container at this time was 2.8 MPa (G). Further, carbon dioxide gas was added, and the temperature inside the sealed container was set to 3.0 MPa (G) and held for 10 minutes. Thereafter, the valve at the lower part of the sealed container is opened, and the aqueous dispersion containing the polypropylene resin particles and the aqueous dispersion medium is released under atmospheric pressure through an orifice having a diameter of 4 mm to obtain polypropylene resin expanded particles (single-stage expanded particles). Obtained. At this time, during discharge, the pressure was maintained with carbon dioxide gas so that the pressure in the container did not decrease.

得られた一段発泡粒子は示差走査熱量計測定において、約138℃と約157℃に2つの融点を示し、発泡倍率、連泡率、平均気泡径を測定した結果、発泡倍率19倍、連泡率0.6%、揮発分率3.1%、平均気泡径350μm、気泡径ばらつき0.05で気泡径の均一性に優れたものであった。   The obtained single-stage expanded particles showed two melting points at about 138 ° C. and about 157 ° C. in differential scanning calorimetry. As a result of measuring the expansion ratio, the open cell ratio, and the average cell diameter, the expansion ratio was 19 times. The ratio was 0.6%, the volatile content ratio was 3.1%, the average bubble diameter was 350 μm, the bubble diameter variation was 0.05, and the bubble diameter uniformity was excellent.

ここで得た一段発泡粒子を酸洗浄し、60℃にて6時間乾燥させたのち、耐圧容器内にて、加圧空気を含浸させて、内圧を約0.4MPaにしたのち、約0.06MPa(G)の蒸気と接触させることで二段発泡させ、発泡倍率30倍の二段発泡粒子を得た。二段発泡させた発泡粒子表面を電子顕微鏡にて観察した結果、表面部分の気泡径が均一で、かつ表面の粗れがなく、発泡粒子表面膜の厚みが薄い部分も少ない発泡粒子であった。次に、二段発泡させた発泡粒子を再度、耐圧容器内にて空気で加圧し、約0.2MPaの空気内圧とし、型内発泡成形を行った。発泡成形体の表面は平滑性に優れ、しわの発生も無く、発泡成形体の寸法収縮が小さく、発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な発泡成形体であった。結果を表2に示す。   The single-stage expanded particles obtained here were washed with an acid, dried at 60 ° C. for 6 hours, impregnated with pressurized air in a pressure-resistant container to bring the internal pressure to about 0.4 MPa, and then about 0.1 MPa. Two-stage foaming was performed by contacting with steam of 06 MPa (G) to obtain two-stage foamed particles having an expansion ratio of 30 times. As a result of observing the surface of the two-stage expanded foam particles with an electron microscope, it was found that the foam diameter of the surface portion was uniform, the surface was not rough, and the thickness of the foam particle surface film was small. . Next, the two-staged foamed particles were again pressurized with air in a pressure-resistant container to achieve an air pressure of about 0.2 MPa, and in-mold foam molding was performed. The surface of the foamed molded product was excellent in smoothness, no wrinkles were generated, the dimensional shrinkage of the foamed molded product was small, the distortion of the foamed molded product was small, the particles were fused well, and it was a beautiful foamed molded product. . The results are shown in Table 2.

(実施例10〜11)
添加剤Dのポリエチレングリコールの代わりに、添加剤E、Iを用い、これらの添加剤量、発泡核剤のタルク量を表2記載の量とし、二段発泡条件を表2記載の条件とした以外は実施例9と同様にして一段発泡粒子を得、次いで発泡倍率30倍の二段発泡粒子とした後、型内成形した。得られた一段発泡粒子は示差走査熱量計測定において、約138℃と約157℃に2つの融点を示し、気泡径の均一性は良好であった。また、二段発泡させた発泡粒子表面を電子顕微鏡にて観察した結果、表面部分の気泡径が均一で、かつ表面の粗れがなく、発泡粒子表面膜の厚みが薄い部分も少ない発泡粒子であった。その二段発泡粒子を使用し、型内発泡成形したところ、発泡成形体の表面は平滑性に優れ、しわの発生も無く、発泡成形体の寸法収縮が小さく、発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な発泡成形体であった。結果を表2に示す。
(Examples 10 to 11)
In place of polyethylene glycol as additive D, additives E and I were used, the amounts of these additives and the amount of talc of the foam nucleating agent were those shown in Table 2, and the two-stage foaming conditions were those shown in Table 2. Except for the above, single-stage expanded particles were obtained in the same manner as in Example 9, and then formed into two-stage expanded particles with an expansion ratio of 30 times, followed by in-mold molding. The obtained single-stage expanded particles had two melting points at about 138 ° C. and about 157 ° C. in differential scanning calorimetry, and the bubble diameter uniformity was good. In addition, as a result of observing the surface of the expanded foam particles that have been two-stage expanded with an electron microscope, the foam diameter of the surface portion is uniform, the surface is not rough, and the expanded particle surface film has a small thickness. there were. Using the two-stage foamed particles, and foam molding in the mold, the surface of the foam molded body is excellent in smoothness, no wrinkles, dimensional shrinkage of the foam molded body, less distortion of the foam molded body, It was a beautiful foamed molded article with excellent fusion between particles. The results are shown in Table 2.

(比較例1)
添加剤Dを用いないこと、および二段発泡条件を表3記載の条件とした以外は実施例1と同様にして一段発泡粒子を得、次いで発泡倍率30倍の二段発泡粒子とした後、型内成形した。得られた一段発泡粒子は示差走査熱量計測定において、約142℃と約159℃に2つの吸熱ピークを示したが、気泡径の均一性は悪く、大小ばらつきがみられた。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、発泡粒子どうしが付着するスティックの発生が少量見られた。その二段発泡粒子を使用し、型内発泡成形したところ発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。結果を表3に示す。
(Comparative Example 1)
Except that additive D was not used, and the two-stage foaming conditions were the same as those described in Table 3, after obtaining single-stage foamed particles in the same manner as in Example 1, and then into two-stage foamed particles with an expansion ratio of 30 times, Molded in-mold. The obtained single-stage expanded particles showed two endothermic peaks at about 142 ° C. and about 159 ° C. in differential scanning calorimetry, but the bubble diameter uniformity was poor and there were large and small variations. In the two-stage foaming, a high vapor pressure is required to increase the foaming ratio to 30 times, and a small amount of sticks to which the foamed particles adhere are observed. When the two-stage foamed particles were used and foam-molded in the mold, the dimensional shrinkage ratio of the foam-molded product was large, wrinkles were observed, and the appearance was poor. The results are shown in Table 3.

Figure 0005553476
(比較例2〜3)
添加剤Dの代わりに添加剤H、Lを用い、これらの添加剤量、発泡核剤のタルク量を表3記載の量とし、二段発泡条件を表3記載の条件とした以外は実施例1と同様にして一段発泡粒子を得、次いで発泡倍率30倍の二段発泡粒子とした後、型内成形した。
Figure 0005553476
(Comparative Examples 2-3)
Examples except that additives H and L were used in place of additive D, the amounts of these additives and the amount of talc of the foam nucleating agent were those shown in Table 3, and the two-stage foaming conditions were those shown in Table 3. In the same manner as in No. 1, single-stage expanded particles were obtained, and then double-stage expanded particles having an expansion ratio of 30 times were obtained, followed by molding in a mold.

添加剤Hを用い、タルクを添加しなかった場合、得られた一段発泡粒子は示差走査熱量計測定において、約142℃と約159℃に2つの吸熱ピークを示したが、気泡径の均一性は悪く、大小ばらつきがみられた。また、二段発泡により発泡倍率を30倍にするには高い蒸気圧が必要となり、発泡粒子どうしが付着するスティックの発生が多数見られた。この二段発泡粒子を使用し、型内発泡成形したところ発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。   When additive H was used and talc was not added, the obtained single-stage expanded particles showed two endothermic peaks at about 142 ° C. and about 159 ° C. in the differential scanning calorimetry measurement. It was bad and there were large and small variations. Further, in order to increase the expansion ratio to 30 times by two-stage foaming, a high vapor pressure is required, and many sticks to which the expanded particles adhere are observed. When these two-stage expanded particles were used and subjected to in-mold foam molding, the dimensional shrinkage ratio of the foam molded article was large, wrinkles were observed, and the appearance was inferior.

添加剤Lを用い、タルクを添加しなかった場合は、一段発泡粒子の気泡径の均一性は良好であるものの、気泡径が小さく、シワが多く見られ、発泡粒子は収縮していた。また、型内発泡成形したところしわの発生が見られ、融着性が劣るものであった。以上の結果を表3に示す。   When additive L was used and talc was not added, the uniformity of the bubble diameter of the single-stage expanded particles was good, but the bubble diameter was small, wrinkles were observed, and the expanded particles were contracted. In addition, when foam molding was performed in the mold, wrinkles were observed, and the fusing property was poor. The above results are shown in Table 3.

(比較例4)
添加剤Dを用いないこと、および二段発泡条件を表3記載の条件とした以外は実施例9と同様にして一段発泡粒子を得、次いで発泡倍率30倍の二段発泡粒子とした後、型内成形した。得られた一段発泡粒子は示差走査熱量計測定において、約138℃と約157℃に2つの融点を示したが、気泡径は若干ばらついていた。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、発泡粒子どうしが付着するスティックの発生が多数見られた。その二段発泡粒子を使用し、型内発泡成形したところ発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。結果を表3に示す。
(Comparative Example 4)
Except that additive D was not used, and the two-stage foaming conditions were the same as those described in Table 3, after obtaining single-stage foamed particles in the same manner as in Example 9, and then into two-stage foamed particles with an expansion ratio of 30 times, Molded in-mold. The obtained single-stage expanded particles showed two melting points at about 138 ° C. and about 157 ° C. in differential scanning calorimetry, but the bubble diameters were slightly different. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and many sticks to which the foamed particles adhere are observed. When the two-stage foamed particles were used and foam-molded in the mold, the dimensional shrinkage ratio of the foam-molded product was large, wrinkles were observed, and the appearance was poor. The results are shown in Table 3.

(実施例12)
添加剤Dのポリエチレングリコールの添加量を0.1重量部とした以外は実施例1と同様にして発泡し、示差走査熱量計測定において、約142℃と約159℃に2つの吸熱ピークを有する一段発泡粒子を得た。発泡倍率は9倍、平均気泡径は250μmであった。実施例1の結果を含めて発泡倍率と平均気泡径の関係を図2に示す。前記のとおりに得た一段発泡粒子、実施例1で得た一段発泡粒子をそれぞれ耐圧容器内にて空気で加圧し、約0.2MPaの空気内圧とし、型内発泡成形を行い融着率の評価を行った。結果を表4に示す。
(Example 12)
Foaming was performed in the same manner as in Example 1 except that the addition amount of polyethylene glycol as additive D was 0.1 part by weight, and two endothermic peaks were observed at about 142 ° C. and about 159 ° C. in differential scanning calorimetry. Single-stage expanded particles were obtained. The expansion ratio was 9 times, and the average cell diameter was 250 μm. The relationship between the expansion ratio and the average cell diameter including the results of Example 1 is shown in FIG. The single-stage expanded particles obtained as described above and the single-stage expanded particles obtained in Example 1 were each pressurized with air in a pressure-resistant container to an air pressure of about 0.2 MPa, and subjected to in-mold foam molding to achieve a fusion rate. Evaluation was performed. The results are shown in Table 4.

Figure 0005553476
本実施例においては発泡倍率が変化しても平均気泡径の変化が小さく、平均気泡径が変化することによる影響を受けずに、発泡倍率のコントロールが行えることがわかる。また、発泡倍率を増加させても発泡成形体の融着率が低下しないことがわかる。
Figure 0005553476
In this example, it can be seen that even if the expansion ratio changes, the change in the average cell diameter is small and the expansion ratio can be controlled without being affected by the change in the average cell diameter. It can also be seen that the fusion rate of the foamed molded product does not decrease even when the expansion ratio is increased.

(比較例5)
添加剤Lのホウ酸亜鉛の添加量を0.01重量部、あるいは0.1重量部とした以外は比較例3と同様にして発泡し、示差走査熱量計測定において、約142℃と約159℃に2つの吸熱ピークを有する一段発泡粒子を得た。添加量0.01重量部の時の発泡倍率は8倍、平均気泡径は260μmであり、添加量0.1重量部の時の発泡倍率は15倍、平均気泡径は190μmであった。発泡倍率と平均気泡径の関係を図2に示す。また、それぞれの一段発泡粒子を耐圧容器内にて空気で加圧し、約0.2MPaの空気内圧とし、型内発泡成形を行い融着率の評価を行った。結果を表4に示す。
(Comparative Example 5)
Foaming was carried out in the same manner as in Comparative Example 3 except that the additive amount of zinc borate as additive L was changed to 0.01 part by weight or 0.1 part by weight. Single-stage expanded particles having two endothermic peaks at 0 ° C. were obtained. When the addition amount was 0.01 parts by weight, the expansion ratio was 8 times and the average cell diameter was 260 μm. When the addition amount was 0.1 parts by weight, the expansion ratio was 15 times and the average cell diameter was 190 μm. The relationship between the expansion ratio and the average cell diameter is shown in FIG. In addition, each single-stage expanded particle was pressurized with air in a pressure-resistant vessel to an air pressure of about 0.2 MPa, and in-mold foam molding was performed to evaluate the fusion rate. The results are shown in Table 4.

本比較例では、発泡倍率の増加とともに平均気泡径が大きく変化してしまい、平均気泡径を大幅に変化させずに発泡倍率をコントロールすることが困難であることがわかる。また、発泡倍率を増加させた場合、発泡成形体の融着率が低下することもわかる。   In this comparative example, it can be seen that the average cell diameter changes greatly with an increase in the expansion ratio, and it is difficult to control the expansion ratio without significantly changing the average cell diameter. It can also be seen that when the expansion ratio is increased, the fusion rate of the foamed molded product decreases.

本発明のポリプロピレン系樹脂発泡粒子1〜10mgを示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線の一例である。DSC曲線の2つの融解ピーク間で最も吸熱量が小さくなる点をAとし、点AからDSC曲線に対しそれぞれ接線を引き、該接線とDSC曲線に囲まれた部分のうち、高温側が高温側の融解ピーク熱量Qh、低温側が低温側の融解ピーク熱量Qlである。It is an example of a DSC curve obtained when the polypropylene resin foamed particles of 1 to 10 mg of the present invention are heated from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min by a differential scanning calorimeter. A point where the endotherm is the smallest between the two melting peaks of the DSC curve is A, and a tangent line is drawn from the point A to the DSC curve. Of the part surrounded by the tangent line and the DSC curve, the high temperature side is the high temperature side. The melting peak heat amount Qh, and the low temperature side is the melting peak heat amount Ql on the low temperature side. 添加剤量を変えて異なる発泡倍率のポリプロピレン系樹脂発泡粒子を得た時の、発泡倍率と平均気泡径を示すグラフである。It is a graph which shows an expansion ratio and an average bubble diameter when changing the amount of additives and obtaining polypropylene resin expanded particles having different expansion ratios.

Claims (12)

メルトインデックス2〜9g/10分のポリプロピレン系樹脂100重量部に対して、発泡核形成作用の無い吸水性物質0.01〜5重量部、発泡核剤0.005〜1重量部を含んでなるポリプロピレン系樹脂粒子を、密閉容器に水系分散媒と共に分散させ、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱した後、密閉容器の内圧よりも低い圧力域に放出して発泡させ、揮発分率0.1〜7重量%、発泡倍率8〜25倍、平均気泡径が130〜500μm、気泡径バラツキが0.4未満であり、
前記発泡核形成作用の無い吸水性物質が150℃よりも低い融点を有するポリプロピレン系樹脂発泡粒子を得ることを特徴とする、ポリプロピレン系樹脂発泡粒子の製造方法。
It comprises 0.01 to 5 parts by weight of a water-absorbing substance having no foam nucleation effect and 0.005 to 1 part by weight of a foam nucleating agent with respect to 100 parts by weight of a polypropylene resin having a melt index of 2 to 9 g / 10 min. Polypropylene resin particles are dispersed in an airtight container together with an aqueous dispersion medium, heated to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, and then released into a pressure region lower than the internal pressure of the airtight container to be foamed, and the volatile content rate 0.1 to 7% by weight, expansion ratio 8 to 25 times, average bubble diameter 130 to 500 μm, bubble diameter variation is less than 0.4,
A method for producing polypropylene resin expanded particles, comprising obtaining polypropylene resin expanded particles in which the water-absorbing substance having no foam nucleation function has a melting point lower than 150 ° C.
メルトインデックス2〜9g/10分のポリプロピレン系樹脂100重量部に対して、発泡核形成作用の無い吸水性物質0.01〜5重量部、発泡核剤0.005〜1重量部を含んでなるポリプロピレン系樹脂粒子を、密閉容器に水系分散媒と共に分散させ、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱した後、密閉容器の内圧よりも低い圧力域に放出して発泡させ、揮発分率0.1〜7重量%、発泡倍率8〜25倍、平均気泡径が130〜500μm、気泡径バラツキが0.4未満であり、
前記発泡核形成作用の無い吸水性物質が、ベントナイト、合成ヘクトライト、合成ゼオライトから選ばれる少なくとも1種であるポリプロピレン系樹脂発泡粒子を得ることを特徴とする、ポリプロピレン系樹脂発泡粒子の製造方法。
It comprises 0.01 to 5 parts by weight of a water-absorbing substance having no foam nucleation effect and 0.005 to 1 part by weight of a foam nucleating agent with respect to 100 parts by weight of a polypropylene resin having a melt index of 2 to 9 g / 10 min. Polypropylene resin particles are dispersed in an airtight container together with an aqueous dispersion medium, heated to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, and then released into a pressure region lower than the internal pressure of the airtight container to be foamed, and the volatile content rate 0.1 to 7% by weight, expansion ratio 8 to 25 times, average bubble diameter 130 to 500 μm, bubble diameter variation is less than 0.4,
A method for producing a polypropylene resin foamed particle, wherein the water-absorbing substance having no foaming nucleation action is at least one selected from bentonite, synthetic hectorite, and synthetic zeolite.
炭酸ガスを更に密閉容器内に導入することを特徴とする請求項1に記載のポリプロピレン系樹脂発泡粒子の製造方法。 Method for producing a foamed polypropylene resin particles according to claim 1, characterized in that introduced into the further closed container carbon dioxide. 酸ガスを更に密閉容器内に導入することを特徴とする請求項2に記載のポリプロピレン系樹脂発泡粒子の製造方法。 Method for producing a foamed polypropylene resin particles according to claim 2, characterized in that introduced into the further closed container a carbonated gas. ポリプロピレン系樹脂粒子100重量部に対し、0.5〜20重量部の炭酸ガスを密閉容器内に導入することを特徴とする請求項3に記載のポリプロピレン系樹脂発泡粒子の製造方法。   The method for producing expanded polypropylene resin particles according to claim 3, wherein 0.5 to 20 parts by weight of carbon dioxide gas is introduced into the sealed container with respect to 100 parts by weight of the polypropylene resin particles. ポリプロピレン系樹脂粒子100重量部に対し、0.5〜20重量部の炭酸ガスを密閉容器内に導入することを特徴とする請求項4に記載のポリプロピレン系樹脂発泡粒子の製造方法。The method for producing expanded polypropylene resin particles according to claim 4, wherein 0.5 to 20 parts by weight of carbon dioxide gas is introduced into the sealed container with respect to 100 parts by weight of the polypropylene resin particles. 発泡核形成作用の無い吸水性物質が、ポリアルキレングリコール鎖を有する化合物であることを特徴とする請求項1、3又はの何れか一項に記載のポリプロピレン系樹脂発泡粒子の製造方法。 The method for producing expanded polypropylene resin particles according to any one of claims 1, 3, and 5 , wherein the water-absorbing substance having no foaming nucleus forming action is a compound having a polyalkylene glycol chain. ポリアルキレングリコール鎖を有する化合物が、ポリエチレングリコールである請求項に記載のポリプロピレン系樹脂発泡粒子の製造方法。 The method for producing expanded polypropylene resin particles according to claim 7 , wherein the compound having a polyalkylene glycol chain is polyethylene glycol. ポリアルキレングリコール鎖を有する化合物が、ポリオレフィンブロックとポリエチレングリコールブロックを含んでなる共重合体である請求項に記載のポリプロピレン系樹脂発泡粒子の製造方法。 The method for producing expanded polypropylene resin particles according to claim 7 , wherein the compound having a polyalkylene glycol chain is a copolymer comprising a polyolefin block and a polyethylene glycol block. ポリプロピレン系樹脂100重量部に対して、発泡核形成作用の無い吸水性物質0.01〜5重量部、発泡核剤0.005〜1重量部を含んでなるポリプロピレン系樹脂発泡粒子であって、該ポリプロピレン系樹脂発泡粒子のメルトインデックス2〜12g/10分、揮発分率0.1〜7重量%、発泡倍率8〜25倍、平均気泡径が130〜500μm、気泡径バラツキが0.4未満であり、
前記発泡核形成作用の無い吸水性物質が、150℃よりも低い融点を有することを特徴とするポリプロピレン系樹脂系樹脂発泡粒子。
A polypropylene resin foamed particle comprising 0.01 to 5 parts by weight of a water-absorbing substance having no foam nucleation function and 0.005 to 1 part by weight of a foam nucleating agent with respect to 100 parts by weight of a polypropylene resin, Melt index of the polypropylene resin expanded particles is 2 to 12 g / 10 minutes, volatile content is 0.1 to 7% by weight, expansion ratio is 8 to 25 times, average bubble diameter is 130 to 500 μm, and bubble diameter variation is less than 0.4 And
The polypropylene-based resin-based resin expanded particles, wherein the water-absorbing substance having no function of forming foam nuclei has a melting point lower than 150 ° C.
ポリプロピレン系樹脂100重量部に対して、発泡核形成作用の無い吸水性物質0.01〜5重量部、発泡核剤0.005〜1重量部を含んでなるポリプロピレン系樹脂発泡粒子であって、該ポリプロピレン系樹脂発泡粒子のメルトインデックス2〜12g/10分、揮発分率0.1〜7重量%、発泡倍率8〜25倍、平均気泡径が130〜500μm、気泡径バラツキが0.4未満であり、
前記発泡核形成作用の無い吸水性物質が、ベントナイト、合成ヘクトライト、合成ゼオライトから選ばれる少なくとも1種であることを特徴とするポリプロピレン系樹脂系樹脂発泡粒子。
A polypropylene resin foamed particle comprising 0.01 to 5 parts by weight of a water-absorbing substance having no foam nucleation function and 0.005 to 1 part by weight of a foam nucleating agent with respect to 100 parts by weight of a polypropylene resin, Melt index of the polypropylene resin expanded particles is 2 to 12 g / 10 minutes, volatile content is 0.1 to 7% by weight, expansion ratio is 8 to 25 times, average bubble diameter is 130 to 500 μm, and bubble diameter variation is less than 0.4 And
The polypropylene-based resin-based resin foamed particles, wherein the water-absorbing substance having no foam nucleation function is at least one selected from bentonite, synthetic hectorite, and synthetic zeolite.
請求項1又は2に記載の製造方法で製造したポリプロピレン系樹脂発泡粒子(ポリプロピレン系樹脂発泡粒子(P)と称す)であって、
請求項1又は2に記載の製造方法において、発泡核形成作用の無い吸水性物質を含まずに製造されたポリプロピレン系樹脂発泡粒子(ポリプロピレン系樹脂発泡粒子(Q)と称す)が、揮発分率および平均気泡径において、以下の(A)、(B)の式を満たすとともに、ポリプロピレン系樹脂発泡粒子(P)のメルトインデックス2〜12g/10分であることを特徴とするポリプロピレン系樹脂発泡粒子。
(A)ポリプロピレン系樹脂発泡粒子(P)の揮発分率≧ポリプロピレン系樹脂発泡粒子(Q)の揮発分率×1.1
(B)ポリプロピレン系樹脂発泡粒子(P)の平均気泡径≧ポリプロピレン系樹脂発泡粒子(Q)の平均気泡径×0.7
A polypropylene resin expanded particle (referred to as polypropylene resin expanded particle (P)) manufactured by the manufacturing method according to claim 1 or 2,
3. The production method according to claim 1, wherein the polypropylene resin foam particles (referred to as polypropylene resin foam particles (Q)) produced without containing a water-absorbing substance having no foam nucleation function are volatile fractions. In addition, in the average cell diameter, the polypropylene resin foamed particles satisfy the following formulas (A) and (B) and have a melt index of 2 to 12 g / 10 min of the polypropylene resin foamed particles (P). .
(A) Volatile fraction of polypropylene resin expanded particles (P) ≧ volatile fraction of polypropylene resin expanded particles (Q) × 1.1
(B) Average cell diameter of polypropylene resin expanded particles (P) ≧ average cell diameter of polypropylene resin expanded particles (Q) × 0.7
JP2008003962A 2007-11-12 2008-01-11 Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles Active JP5553476B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2008003962A JP5553476B2 (en) 2008-01-11 2008-01-11 Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles
US12/747,050 US8513317B2 (en) 2007-12-11 2008-12-03 Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
EP08860267.7A EP2221337B1 (en) 2007-12-11 2008-12-03 Process for producing expanded polyolefin resin bead and expanded polyolefin resin bead
ES14000668.5T ES2688659T3 (en) 2007-12-11 2008-12-03 Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
CN2008801199161A CN101896543B (en) 2007-12-11 2008-12-03 Process for producing expanded polyolefin resin bead and expanded polyolefin resin bead
EP14000668.5A EP2754687B1 (en) 2007-12-11 2008-12-03 Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
PCT/JP2008/071933 WO2009075208A1 (en) 2007-12-11 2008-12-03 Process for producing expanded polyolefin resin bead and expanded polyolefin resin bead
US13/778,231 US8901182B2 (en) 2007-12-11 2013-02-27 Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
US13/860,847 US9216525B2 (en) 2007-12-11 2013-04-11 Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
US13/860,785 US9018269B2 (en) 2007-11-12 2013-04-11 Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008003962A JP5553476B2 (en) 2008-01-11 2008-01-11 Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles

Publications (2)

Publication Number Publication Date
JP2009167236A JP2009167236A (en) 2009-07-30
JP5553476B2 true JP5553476B2 (en) 2014-07-16

Family

ID=40968809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008003962A Active JP5553476B2 (en) 2007-11-12 2008-01-11 Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles

Country Status (1)

Country Link
JP (1) JP5553476B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220486B2 (en) * 2008-06-13 2013-06-26 株式会社カネカ Polyolefin resin pre-expanded particles and method for producing the same
JP6038479B2 (en) * 2011-04-21 2016-12-07 株式会社カネカ Polypropylene resin in-mold foam molding
JP5591965B2 (en) * 2013-02-27 2014-09-17 株式会社カネカ Polyolefin resin pre-expanded particles and method for producing the same
US20160319095A1 (en) * 2013-12-27 2016-11-03 Kaneka Corporation Polyolefin resin foam particles, and polyolefin resin in-mold expansion molded article
JP5630591B2 (en) * 2014-01-31 2014-11-26 株式会社カネカ Polyolefin resin pre-expanded particles and method for producing the same
JP6767980B2 (en) * 2015-08-20 2020-10-14 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin foamed particles manufacturing method, polypropylene resin foamed molded product manufacturing method, polypropylene resin foamed molded product
CN110317395A (en) * 2018-03-30 2019-10-11 株式会社钟化 Foamed polyolefin resin particle and preparation method and polyolefin resin foam molding
EP3659785A1 (en) * 2018-11-29 2020-06-03 Ricoh Company, Ltd. Powder for forming three-dimensional object, forming device, forming method, and powder
JP2020093515A (en) * 2018-11-29 2020-06-18 株式会社リコー Powder for stereo-lithography, molding device, molding method and powder
CN116082692A (en) * 2022-12-13 2023-05-09 中广核博繁新材料(南通)有限公司 Method for manufacturing foamed polypropylene particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3717942B2 (en) * 1996-04-05 2005-11-16 株式会社カネカ Water-containing polyolefin resin composition, pre-expanded particles comprising the same, method for producing the same, and foam-molded product

Also Published As

Publication number Publication date
JP2009167236A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5553476B2 (en) Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles
WO2015098619A1 (en) Polyolefin resin foam particles, and polyolefin resin in-mold expansion molded article
JP5129641B2 (en) POLYPROPYLENE RESIN FOAM PARTICLE, IN-MOLD FOAM MOLDED PRODUCT AND METHOD FOR PRODUCING FOAM PARTICLE
JP5976098B2 (en) In-mold foam molded article comprising polypropylene resin expanded particles, polypropylene resin expanded particles, and methods for producing the same
JP7227223B2 (en) POLYOLEFIN RESIN EXPANSION PARTICLES, METHOD FOR PRODUCING SAME AND POLYOLEFIN RESIN EXPANSION MOLDED PRODUCT
JP5587605B2 (en) Polypropylene resin pre-expanded particles and in-mold foam-molded product obtained from the pre-expanded particles
WO2015076306A1 (en) Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
JP5324804B2 (en) Method for producing polypropylene resin expanded particles, polypropylene resin expanded particles, and expanded foam in polypropylene resin mold
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JP2010037432A (en) Polypropylene resin pre-expanded particle
JP5324967B2 (en) Thermoplastic resin expanded particles and method for producing the same
JP2014098161A (en) Pre-expanded particle of polyolefinic resin and method for producing the same
JP5090213B2 (en) Method for producing expanded polypropylene resin particles
JP5509679B2 (en) Process for producing polyolefin resin expanded particles, polyolefin resin expanded particles obtained from the process, and in-mold foam molded article
JP5497940B2 (en) Method for producing polypropylene resin pre-expanded particles
JP2013100555A (en) Pre-expanded particle of polyolefin resin, and method for producing the same
US10403416B2 (en) Conductive polypropylene-based foamed resin particles, method for production thereof, and polypropylene-based foamed molding article
JP2006022138A (en) Preliminary expanded polypropylene-based resin particle
JP5064745B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP5220486B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP2010043209A (en) Manufacturing method of pre-expanded particle of polypropylene resin, and pre-expanded particle of polypropylene resin
JP2004067768A (en) Polypropylene-based resin preliminary foamed particle
JP6847584B2 (en) Polyethylene resin foam particles and polyethylene resin foam molded products with antistatic performance and their manufacturing methods
JP5279413B2 (en) Method for producing polypropylene resin pre-expanded particles
JP2011137172A (en) Polypropylene resin preliminary foamed particle, in-mold foamed molding, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140527

R150 Certificate of patent or registration of utility model

Ref document number: 5553476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250