JP5295557B2 - Method for producing polyolefin resin pre-expanded particles - Google Patents

Method for producing polyolefin resin pre-expanded particles Download PDF

Info

Publication number
JP5295557B2
JP5295557B2 JP2007337161A JP2007337161A JP5295557B2 JP 5295557 B2 JP5295557 B2 JP 5295557B2 JP 2007337161 A JP2007337161 A JP 2007337161A JP 2007337161 A JP2007337161 A JP 2007337161A JP 5295557 B2 JP5295557 B2 JP 5295557B2
Authority
JP
Japan
Prior art keywords
polyolefin resin
dispersion
pressure
expanded particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007337161A
Other languages
Japanese (ja)
Other versions
JP2009155536A (en
Inventor
孝元 海老名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007337161A priority Critical patent/JP5295557B2/en
Publication of JP2009155536A publication Critical patent/JP2009155536A/en
Application granted granted Critical
Publication of JP5295557B2 publication Critical patent/JP5295557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing preliminarily foamed particles of a polyolefin-based resin, which are stably dispersed in a dispersion medium and characterized in that a dispersing agent sticking on the surface of each particle does not inhibit mutual fusion during molding and does not contaminate or corrode a mold. <P>SOLUTION: The method for producing the preliminarily foamed particles of a polyolefin-based resin, comprises charging a dispersion containing polyolefin-based resin particles, water, a dispersing agent and a dispersing aid, and a foaming agent into a pressure-resistant container, then heating the inside of the pressure-resistant container to a prescribed temperature under pressure, and releasing the dispersion into an atmosphere having a pressure lower than that in the pressure-resistant container while keeping the temperature and pressure constant, wherein the dispersing agent is magnesium phosphate and the pH of the dispersion in the pressure-resistant container is &lt;9. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、緩衝包装材、通函、断熱材、自動車のバンパー芯材などに用いられるポリオレフィン系樹脂型内発泡成形体の製造に好適に使用しうるポリオレフィン系樹脂予備発泡粒子の製造方法、前記製造方法によって得られるポリオレフィン系樹脂予備発泡粒子および該ポリオレフィン系樹脂予備発泡粒子から得られるポリオレフィン系樹脂型内発泡成形体に関する。   The present invention relates to a method for producing polyolefin resin pre-expanded particles that can be suitably used for producing a polyolefin resin-in-mold foam-molded article used for buffer packaging materials, boxing, heat insulating materials, automobile bumper core materials, and the like, The present invention relates to polyolefin resin pre-expanded particles obtained by a production method and a polyolefin resin in-mold foam-molded product obtained from the polyolefin resin pre-expanded particles.

ポリオレフィン系樹脂型内発泡成形体は、緩衝包装材や自動車のバンパー等多方面に使用されており、このような型内発泡成形体は、予め製造したポリオレフィン系樹脂予備発泡粒子を金型に充填して成形することにより製造されている。ここで使用されるポリオレフィン系樹脂予備発泡粒子は、ポリオレフィン系樹脂粒子を発泡剤と共に密閉容器内で水等の分散媒に分散させ、加熱してポリオレフィン系樹脂粒子に発泡剤を含浸させた後、該ポリオレフィン系樹脂粒子を容器内より低圧の雰囲気下に放出することによって一般的に製造される。   Polyolefin resin in-mold foam moldings are used in various fields such as cushioning packaging materials and automobile bumpers, and such in-mold foam moldings are filled with pre-manufactured polyolefin resin pre-expanded particles in a mold. It is manufactured by molding. The polyolefin resin pre-expanded particles used here are dispersed in a dispersion medium such as water in a closed container together with the foaming agent, and heated to impregnate the polyolefin resin particles with the foaming agent. Generally, the polyolefin resin particles are produced by discharging them from a container under a low pressure atmosphere.

前記製造方法において、ポリオレフィン系樹脂粒子を分散媒に分散させる際、該樹脂粒子の分散媒への分散状態を安定化するために、分散剤を使用することは知られており、例えば、炭酸カルシウム、リン酸三カルシウム、塩基性炭酸マグネシウムなどの無機物質やN−ポリビニルピロリドン、ポリビニルアルコールなどの水性高分子保護コロイド剤、等の分散剤を、必要に応じて界面活性剤などの分散助剤と組み合わせて使用する。これら分散剤・分散助剤は、樹脂粒子の表面を被覆して樹脂粒子を水に馴染みやすくしたり、樹脂粒子同士の接着を妨げる作用がある為、分散状態の安定化に寄与するものである。   In the production method, when dispersing the polyolefin resin particles in the dispersion medium, it is known to use a dispersant to stabilize the dispersion state of the resin particles in the dispersion medium. For example, calcium carbonate Dispersing agents such as inorganic substances such as tricalcium phosphate and basic magnesium carbonate, and aqueous polymer protective colloids such as N-polyvinylpyrrolidone and polyvinyl alcohol, and dispersing aids such as surfactants as necessary. Use in combination. These dispersing agents / dispersing aids contribute to stabilization of the dispersion state because the surface of the resin particles is coated to make the resin particles easy to conform to water or to prevent adhesion between the resin particles. .

このようにして得られた予備発泡粒子の表面には、分散剤が残留することも知られており、残留する分散剤の量や分散剤の種類・特性によっては、予備発泡粒子を成形する際に予備発泡粒子相互の融着性を阻害し、良好な融着性の型内発泡成形体が得られない場合がある。また、予備発泡粒子表面に残留していた分散剤が成形の際に剥離し、剥離した分散剤が予備発泡粒子の製造工程などで発生した樹脂の欠片とともに金型を形成する金属と作用して金型を汚染するという問題も生じうる。そのため予備発泡粒子に付着する分散剤を除去する方法が種々検討されてきた。   It is also known that a dispersant remains on the surface of the pre-expanded particles thus obtained. Depending on the amount of the remaining dispersant and the kind and characteristics of the dispersant, the pre-expanded particles may be formed. In addition, the melt-bonding properties of the pre-foamed particles may be hindered, and an in-mold foam-molded product having good meltability may not be obtained. In addition, the dispersant remaining on the surface of the pre-expanded particles is peeled off at the time of molding, and the peeled dispersant acts with the metal forming the mold together with the resin fragments generated in the pre-expanded particle manufacturing process. The problem of contaminating the mold can also arise. Therefore, various methods for removing the dispersant adhering to the pre-expanded particles have been studied.

予備発泡粒子表面の分散剤を除去する方法としては、予備発泡粒子を水没させて洗浄する方法(特許文献1)、ノズルから大量の水を噴霧して洗浄する方法(特許文献2)等が知られている。しかしながら、これらの方法では、洗浄するために大量の水が必要となり洗浄コストがかかるうえに除去効率が悪いなどの問題があった。   As a method for removing the dispersant on the surface of the pre-foamed particles, there are known a method in which pre-foamed particles are submerged and washed (Patent Document 1), a method in which a large amount of water is sprayed from a nozzle and washed (Patent Document 2), and the like. It has been. However, these methods have problems such as that a large amount of water is required for cleaning, and the cleaning cost is high and the removal efficiency is poor.

特許文献3には、アルカリ土類金属の無機弱酸塩である第三リン酸カルシウムやピロリン酸マグネシウムを懸濁剤として使用することが開示されているが、洗浄を行わないと表面の懸濁剤の残存量が0.4〜0.65部/発泡粒子100部であり、洗浄無しでは発泡粒子の表面に付着した懸濁剤は低減しない。
特開昭60−56514号公報 特開平4−57838号公報 特開平8−225675号公報
Patent Document 3 discloses the use of tribasic calcium phosphate and magnesium pyrophosphate, which are inorganic weak acid salts of alkaline earth metals, as suspending agents, but the surface suspending agent remains without washing. The amount is 0.4 to 0.65 part / 100 parts of the foamed particles, and without washing, the suspending agent attached to the surface of the foamed particles is not reduced.
JP 60-56514 A JP-A-4-57838 JP-A-8-225675

本発明の目的は、分散媒中において分散安定であり、洗浄等の特別な操作をしなくても予備発泡粒子表面に付着する分散剤が少なく成形時に融着を阻害せず、なおかつ予備発泡粒子表面に付着する分散剤が金型を汚染・腐食することのないポリオレフィン系樹脂発泡予備発泡粒子の製造方法を提供することにある。   An object of the present invention is dispersion-stable in a dispersion medium, and there is little dispersant adhering to the surface of the pre-expanded particles without special operations such as washing, and the pre-expanded particles do not inhibit fusion during molding. It is an object of the present invention to provide a method for producing pre-expanded polyolefin resin foam particles in which the dispersant adhering to the surface does not contaminate or corrode the mold.

我々は、上記課題を解決すべく鋭意研究を重ねた結果、ポリオレフィン系樹脂粒子を分散媒、分散剤、分散助剤を含んでなる分散液を耐圧容器内に入れ、加圧下、耐圧容器内を所定の温度まで加熱した後、温度及び圧力を一定に保ちながら、前記分散液を前記耐圧容器内よりも低圧雰囲気下に放出してポリオレフィン系樹脂予備発泡粒子を製造する際に、分散剤として第二リン酸マグネシウム及び第三リン酸マグネシウムの単体及びその水和物、これらの混合物を用いることにより、耐圧容器内におけるポリオレフィン系樹脂粒子の分散が安定な状態となり、更にその際、耐圧容器内の分散液のpHが9未満であることによって予備発泡粒子に対して洗浄等の特別な操作を行うことなく融着性の良好な型内発泡成形体を得られ、予備発泡粒子表面に付着した分散剤が金型を汚染、腐食することのないポリオレフィン系樹脂発泡予備発泡粒子が得られることを見出し本発明の完成に至った。
As a result of intensive research to solve the above problems, we put a dispersion liquid containing a polyolefin resin particle in a pressure-resistant container with a dispersion medium, a dispersing agent, and a dispersion aid. After heating to a predetermined temperature, while maintaining the temperature and pressure constant, the dispersion is discharged as a dispersant in the production of polyolefin resin pre-expanded particles by releasing the dispersion into a low-pressure atmosphere than in the pressure-resistant container . By using a simple substance of magnesium diphosphate and tribasic magnesium phosphate and a hydrate thereof , or a mixture thereof , the dispersion of the polyolefin-based resin particles in the pressure vessel becomes stable. When the pH of the dispersion is less than 9, an in-mold foam molded article having good fusion properties can be obtained without performing special operations such as washing on the prefoamed particles. Dispersing agent adhered to the surface contamination of the mold, polyolefin-based resin foam pre-expanded particles without the corrosion and have completed the present invention found that the resulting.

すなわち、本発明の第1は、ポリオレフィン系樹脂粒子、分散媒、分散剤、分散助剤を含んでなる分散液と発泡剤を耐圧容器内に入れ、加圧下、耐圧容器内を所定の温度まで加熱した後、温度及び圧力を一定に保ちながら、前記分散液を耐圧容器内よりも低圧雰囲気下に放出するポリオレフィン系樹脂予備発泡粒子の製造方法において、
前記分散剤が第二リン酸マグネシウム及び第三リン酸マグネシウムの単体及びその水和物、これらの混合物であり、耐圧容器内の分散液のpHが9未満であるポリオレフィン系樹脂予備発泡粒子の製造方法に関する。
That is, according to the first aspect of the present invention, a dispersion liquid and a foaming agent containing polyolefin resin particles, a dispersion medium, a dispersant, and a dispersion aid are placed in a pressure vessel, and the pressure vessel is pressurized to a predetermined temperature. In the method for producing polyolefin resin pre-expanded particles, after heating, releasing the dispersion into a low-pressure atmosphere than in the pressure vessel while keeping the temperature and pressure constant,
Production of polyolefin resin pre-expanded particles in which the dispersant is a simple substance of dibasic magnesium phosphate and tribasic magnesium phosphate and hydrates thereof , or a mixture thereof , and the pH of the dispersion in the pressure vessel is less than 9. Regarding the method.

好ましい実施態様としては、
(1)前記分散剤が、第三リン酸マグネシウムである、請求項1記載のポリオレフィン系樹脂予備発泡粒子の製造方法。
(2)前記分散助剤が疎水基として炭素数10〜18の直鎖状の炭素鎖を持つアニオン系界面活性剤である、
(3)前記分散助剤が炭素数12の直鎖状のアルキルスルホン酸塩である、
(4)前記発泡剤が、二酸化炭素を含んでなる、
前記記載のポリオレフィン系樹脂予備発泡粒子の製造方法に関する。
As a preferred embodiment,
(1) The method for producing polyolefin resin pre-expanded particles according to claim 1, wherein the dispersant is tribasic magnesium phosphate.
(2) The dispersion aid is an anionic surfactant having a linear carbon chain having 10 to 18 carbon atoms as a hydrophobic group.
(3) The dispersion aid is a linear alkyl sulfonate having 12 carbon atoms,
(4) The foaming agent comprises carbon dioxide,
The present invention relates to a method for producing the polyolefin resin pre-expanded particles described above.

本発明の第2は、前記記載のポリオレフィン系樹脂予備発泡粒子の製造方法によって得られるポリオレフィン系樹脂予備発泡粒子に関し、本発明の第3は、前記記載のポリオレフィン系樹脂予備発泡粒子を金型に充填し、加熱して得られるポリオレフィン系樹脂型内発泡成形体に関する。   A second aspect of the present invention relates to a polyolefin resin pre-expanded particle obtained by the method for producing a polyolefin resin pre-expanded particle described above, and a third aspect of the present invention uses the polyolefin resin pre-expanded particle as a mold. The present invention relates to a polyolefin resin in-mold foam molded article obtained by filling and heating.

本発明の製造方法によれば、得られる予備発泡粒子は、洗浄せずとも得られた付着分散剤量が少ない。また、発泡剤として二酸化炭素を使用する場合、pH調整剤のような添加剤を使用せずとも、耐圧容器内の分散液のpHを9未満に調整することが出来る上、分散安定性がより良好となる。   According to the production method of the present invention, the pre-expanded particles obtained have a small amount of the adhering dispersant obtained without washing. In addition, when carbon dioxide is used as the foaming agent, the pH of the dispersion in the pressure vessel can be adjusted to less than 9 without using an additive such as a pH adjuster, and the dispersion stability is further improved. It becomes good.

さらに、本発明で使用する分散剤は、アルミニウムに付着しにくい性質を有していることが見出された。従って、ポリオレフィン系樹脂予備発泡粒子表面に分散剤が付着していても、成形時において金型に分散剤が付着しにくく、また、金型に付着しても容易に落とすことができ、金型を汚染することなく成形効率を向上させることができる。   Furthermore, it has been found that the dispersant used in the present invention has a property that it is difficult to adhere to aluminum. Therefore, even if a dispersant is attached to the surface of the polyolefin resin pre-expanded particles, it is difficult for the dispersant to adhere to the mold during molding, and it can be easily dropped even if attached to the mold. The molding efficiency can be improved without contaminating.

本発明のポリオレフィン系樹脂予備発泡粒子の製造方法は、ポリオレフィン系樹脂粒子、分散媒、分散剤、分散助剤を含んでなる分散液と発泡剤を耐圧容器内に入れ、加圧下、耐圧容器内を所定の温度まで加熱した後、温度及び圧力を一定に保ちながら、前記分散液を耐圧容器内よりも低圧雰囲気下に放出するポリオレフィン系樹脂予備発泡粒子の製造方法において、前記分散剤が第二リン酸マグネシウム及び第三リン酸マグネシウムの単体及びその水和物、これらの混合物を使用し、耐圧容器内の分散液のpHを9未満にすることを特徴とする。 The method for producing pre-expanded polyolefin resin particles according to the present invention comprises placing a dispersion liquid comprising a polyolefin resin particle, a dispersion medium, a dispersant, a dispersion aid and a foaming agent in a pressure vessel, In the method for producing polyolefin-based resin pre-expanded particles, in which the dispersion is discharged under a low-pressure atmosphere from inside the pressure-resistant container while keeping the temperature and pressure constant after heating to a predetermined temperature . A simple substance of magnesium phosphate and tribasic magnesium phosphate, a hydrate thereof, and a mixture thereof are used, and the pH of the dispersion in the pressure vessel is made to be less than 9.

本発明において用いるポリオレフィン系樹脂粒子を構成するポリオレフィン系樹脂としては、高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレン、エチレン−酢酸ビニル共重合体等のポリエチレン系樹脂、プロピレン単独重合体、エチレン−プロピレンランダム共重合体、エチレン−プロピレンブロック共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体、無水マレイン酸−プロピレンランダム共重合体、無水マレイン酸−プロピレンブロック共重合体、プロピレン−無水マレイン酸グラフト共重合体等のポリプロピレン系樹脂、スチレン改質ポリオレフィン等が挙げられる。これらのポリオレフィン系樹脂は無架橋のものが好ましいが、架橋したものも使用できる。   As the polyolefin resin constituting the polyolefin resin particles used in the present invention, high-density polyethylene, linear low-density polyethylene, low-density polyethylene, ethylene-vinyl acetate copolymer and other polyethylene resins, propylene homopolymer, Ethylene-propylene random copolymer, ethylene-propylene block copolymer, propylene-butene random copolymer, ethylene-propylene-butene random copolymer, maleic anhydride-propylene random copolymer, maleic anhydride-propylene block Examples thereof include polypropylene resins such as copolymers, propylene-maleic anhydride graft copolymers, and styrene-modified polyolefins. These polyolefin-based resins are preferably non-crosslinked, but crosslinked resins can also be used.

ポリオレフィン系樹脂は、既知の方法を用いて、ポリオレフィン系樹脂粒子の形状とする。例えば、押出機、ニーダー、バンバリーミキサー(商標)、ロール等を用いて溶融して、1粒の重量が好ましくは0.2〜10mg、より好ましくは0.5〜6mgのポリオレフィン系樹脂粒子に加工される。一般的には、押出機を用いて溶融し、ストランドカット法にて製造することが好ましい。例えば、円形ダイスからストランド状に押出されたポリオレフィン系樹脂を水、空気等で冷却、固化させたものを切断して、所望の形状のポリオレフィン系樹脂粒子を得る。   The polyolefin resin is formed into the shape of polyolefin resin particles using a known method. For example, it is melted by using an extruder, a kneader, a Banbury mixer (trademark), a roll or the like, and processed into a polyolefin resin particle in which the weight of one grain is preferably 0.2 to 10 mg, more preferably 0.5 to 6 mg. Is done. Generally, it is preferable to melt by using an extruder and to manufacture by a strand cut method. For example, a polyolefin resin extruded in a strand form from a circular die is cooled and solidified with water, air or the like to cut a polyolefin resin particle having a desired shape.

また、スチレン改質ポリオレフィンの樹脂粒子の製造方法としては、例えば前記と同様にしてポリオレフィン樹脂粒子を作製し、該ポリオレフィン系樹脂粒子を、分散媒中に分散させながら、スチレンなどのビニル系単量体を含浸重合させることにより、樹脂粒子形状とする方法がある。   In addition, as a method for producing resin particles of styrene-modified polyolefin, for example, polyolefin resin particles are produced in the same manner as described above, and while the polyolefin resin particles are dispersed in a dispersion medium, a vinyl monomer such as styrene is used. There is a method of forming resin particles by impregnating and polymerizing the body.

ポリオレフィン系樹脂粒子の製造の際には、セル造核剤を添加することが、ポリオレフィン系樹脂予備発泡粒子とした時のセル径を所望の値に調整することが出来るため好ましい。セル造核剤としては、タルク、炭酸カルシウム、シリカ、カオリン、酸化チタン、ベントナイト、硫酸バリウム等の造核剤が一般に使用される。セル造核剤の添加量は、使用するポリオレフィン系樹脂の種類、セル造核剤の種類により異なり一概には規定できないが、ポリオレフィン系樹脂100重量部に対して、概ね0.001重量部以上2重量部以下であることが好ましい。   In the production of the polyolefin resin particles, it is preferable to add a cell nucleating agent because the cell diameter when the polyolefin resin pre-expanded particles can be adjusted to a desired value. As the cell nucleating agent, nucleating agents such as talc, calcium carbonate, silica, kaolin, titanium oxide, bentonite and barium sulfate are generally used. The amount of the cell nucleating agent added varies depending on the type of polyolefin resin to be used and the type of cell nucleating agent, and cannot be specified unconditionally, but is generally 0.001 part by weight or more with respect to 100 parts by weight of the polyolefin resin. It is preferable that it is below the weight part.

更に、ポリオレフィン系樹脂粒子の製造の際、必要により種々の添加剤を、ポリオレフィン系樹脂の特性を損なわない範囲内で添加することができる。添加剤としては、例えば、カーボンブラック、有機顔料などの着色剤;   Furthermore, when manufacturing the polyolefin resin particles, various additives can be added as necessary within the range not impairing the properties of the polyolefin resin. Examples of additives include colorants such as carbon black and organic pigments;

アルキルジエタノールアミド、アルキルジエタノールアミン、ヒドロキシアルキルエタノールアミン、脂肪酸モノグリセライド、脂肪酸ジグリセライドなどの帯電防止剤;
IRGANOX(登録商標)1010(チバ スペシャルティ ケミカルズ)、IRGANOX(登録商標)1076(チバ スペシャルティ ケミカルズ)、IRGANOX(登録商標)1330(チバ スペシャルティ ケミカルズ)、IRGANOX(登録商標)1425WL(チバ スペシャルティ ケミカルズ)、IRGANOX(登録商標)3114(登録商標)(チバ スペシャルティ ケミカルズ)等のヒンダードフェノール系酸化防止剤;
Antistatic agents such as alkyldiethanolamides, alkyldiethanolamines, hydroxyalkylethanolamines, fatty acid monoglycerides, fatty acid diglycerides;
IRGANOX (registered trademark) 1010 (Ciba Specialty Chemicals), IRGANOX (registered trademark) 1076 (Ciba Specialty Chemicals), IRGANOX (registered trademark) 1330 (Ciba Specialty Chemicals), IRGANOX (registered trademark) 1425 WL (Ciba Specialty Chemicals), IRGANOX ( Hindered phenolic antioxidants such as (registered trademark) 3114 (registered trademark) (Ciba Specialty Chemicals);

IRGAFOS(登録商標)168(チバ スペシャルティ ケミカルズ)、IRGAFOS(登録商標)P−EPQ(チバ スペシャルティ ケミカルズ)、IRGAFOS126、等のリン系加工安定剤;
ラクトン系加工安定剤;
Phosphorus processing stabilizers such as IRGAFOS (registered trademark) 168 (Ciba Specialty Chemicals), IRGAFOS (registered trademark) P-EPQ (Ciba Specialty Chemicals), IRGAFOS 126;
Lactone processing stabilizers;

ヒドロキシルアミン系加工安定剤、IRGANOX(登録商標)MD1024(チバ スペシャルティ ケミカルズ)等の金属不活性剤;
TINUVIN(登録商標)326(チバ スペシャルティ ケミカルズ)、TINUVIN(登録商標)327等のベンゾトリアゾール系紫外線吸収剤;
TINUVIN(登録商標)120等のベンゾエート系光安定剤;
Metal deactivators such as hydroxylamine-based processing stabilizers, IRGANOX® MD 1024 (Ciba Specialty Chemicals);
Benzotriazole ultraviolet absorbers such as TINUVIN (registered trademark) 326 (Ciba Specialty Chemicals), TINUVIN (registered trademark) 327;
Benzoate light stabilizers such as TINUVIN® 120;

CHIMASSORB119(チバ スペシャルティ ケミカルズ)、CHIMASSORB(登録商標)944(チバ スペシャルティ ケミカルズ)、TINUVIN(登録商標)622(チバ スペシャルティ ケミカルズ)、TINUVIN(登録商標)770等のヒンダードアミン系光安定剤;
ハロゲン系難燃剤および三酸化アンチモン等の難燃助剤;
FLAMESTAB(登録商標)NOR116(チバ スペシャルティ ケミカルズ)、MELAPUR(登録商標)MC25(チバ スペシャルティ ケミカルズ)等の非ハロゲン系難燃剤;
Hindered amine light stabilizers such as CHIMASSORB 119 (Ciba Specialty Chemicals), CHIMASSORB (registered trademark) 944 (Ciba Specialty Chemicals), TINUVIN (registered trademark) 622 (Ciba Specialty Chemicals), TINUVIN (registered trademark) 770;
Flame retardant aids such as halogen flame retardants and antimony trioxide;
Non-halogen flame retardants such as FLAMESTAB (registered trademark) NOR116 (Ciba Specialty Chemicals), MELAPUR (registered trademark) MC25 (Ciba Specialty Chemicals);

ハイドロタルサイト、ステアリン酸カルシウム等の酸中和剤;
IRGASTAB(登録商標)NA11(チバ スペシャルティ ケミカルズ)等の結晶核剤;
エルカ酸アミド、エチレンビスステアリン酸アミド等のアミド系添加剤などが例示される。
Acid neutralizers such as hydrotalcite and calcium stearate;
Crystal nucleating agents such as IRGASTAB (registered trademark) NA11 (Ciba Specialty Chemicals);
Examples include amide type additives such as erucic acid amide and ethylene bis stearic acid amide.

本発明におけるポリオレフィン系樹脂予備発泡粒子は、耐圧容器内に、ポリオレフィン系樹脂粒子、分散媒、分散剤、分散助剤を含んでなる分散液と発泡剤を耐圧容器内に仕込み、所定の温度まで加熱し、加圧下のもと、温度及び圧力を一定に保ちながら、前記分散液を前記耐圧容器内よりも低圧の雰囲気下に放出することによって得られる。   In the pressure-resistant container, the polyolefin resin pre-expanded particles in the present invention are charged with a dispersion liquid and a foaming agent containing polyolefin resin particles, a dispersion medium, a dispersing agent, and a dispersion aid in a pressure container, up to a predetermined temperature. It is obtained by heating and releasing the dispersion into an atmosphere at a lower pressure than in the pressure vessel while keeping the temperature and pressure constant under pressure.

使用する耐圧容器には特に限定はなく、予備発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよく、例えば、オートクレーブ型の耐圧容器が挙げられる。   The pressure vessel to be used is not particularly limited as long as it can withstand the pressure in the vessel and the temperature in the vessel at the time of producing the pre-foamed particles, and examples thereof include an autoclave type pressure vessel.

前記発泡剤としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロブタン、シクロペンタン等の環式脂肪族炭化水素類、トリクロロフロロメタン、ジクロロジフロロメタン、ジクロロテトラフロロエタン、メチルクロライド、エチルクロライド、メチレンクロライド等のハロゲン化炭化水素類等の揮発性有機化合物や二酸化炭素、窒素などの無機ガス及び水などが挙げられ、これらを単独又は混合して使用できる。中でも発泡剤が、二酸化炭素を含んでなることが、pH調製剤を使用せずとも耐圧容器内の分散液のpHを9未満にすることができる上、分散安定性がより良好であり、発泡力と安全性、コストの観点から好ましく、発泡剤が二酸化炭素からなることがより好ましい。   Examples of the blowing agent include aliphatic hydrocarbons such as propane, butane, pentane, hexane and heptane, cyclic aliphatic hydrocarbons such as cyclobutane and cyclopentane, trichlorofluoromethane, dichlorodifluoromethane, dichlorotetra Examples include volatile organic compounds such as halogenated hydrocarbons such as fluoroethane, methyl chloride, ethyl chloride, and methylene chloride, inorganic gases such as carbon dioxide and nitrogen, and water. These can be used alone or in combination. Among them, the foaming agent contains carbon dioxide, so that the pH of the dispersion in the pressure vessel can be made less than 9 without using a pH adjuster, and the dispersion stability is better, and foaming is performed. It is preferable from the viewpoint of strength, safety, and cost, and the foaming agent is more preferably made of carbon dioxide.

発泡剤の使用量は、使用するポリオレフィン系樹脂の種類、発泡剤の種類、目的とする発泡倍率等により異なり、一概には規定できないが、ポリオレフィン系樹脂粒子100重量部に対して、2重量部以上60重量部以下であることが好ましい。   The amount of foaming agent used varies depending on the type of polyolefin resin used, the type of foaming agent, the target foaming ratio, etc., and cannot be specified unconditionally, but is 2 parts by weight with respect to 100 parts by weight of polyolefin resin particles. The amount is preferably 60 parts by weight or less.

本発明において、分散媒としては、ポリオレフィン系樹脂粒子を溶解させないものであれば良く、例えば、水、メタノール、エタノール、グリセリン、エチレングリコール等が挙げられるが、水を用いることが好ましい。   In the present invention, the dispersion medium is not particularly limited as long as it does not dissolve the polyolefin resin particles, and examples thereof include water, methanol, ethanol, glycerin, ethylene glycol, and the like, but it is preferable to use water.

分散媒の使用量は、ポリオレフィン系樹脂粒子の分散媒中での分散性を良好なものにするために、該ポリオレフィン系樹脂粒子100重量部に対して水100重量部以上500重量部以下であることが好ましい。   The amount of the dispersion medium used is 100 parts by weight or more and 500 parts by weight or less of water with respect to 100 parts by weight of the polyolefin resin particles in order to improve the dispersibility of the polyolefin resin particles in the dispersion medium. It is preferable.

本発明においては分散剤としてリン酸マグネシウムを使用する。本発明でいうところのリン酸マグネシウムは、第二リン酸マグネシウム及び第三リン酸マグネシウムの単体及びその水和物を含んでなるものであり、これらの混合物でも良い。さらにこれに加え、その他のリン酸マグネシウム塩が含まれたものでも良い。中でも第三リン酸マグネシウムが、分散性が良好であるためより好ましい。   In the present invention, magnesium phosphate is used as a dispersant. The magnesium phosphate referred to in the present invention comprises a simple substance of dibasic magnesium phosphate and tertiary magnesium phosphate and hydrates thereof, and a mixture thereof may be used. In addition, other magnesium phosphate salts may be included. Of these, tribasic magnesium phosphate is more preferred because of its good dispersibility.

分散剤の使用量は、ポリオレフィン系樹脂粒子の種類・量、発泡剤等によって異なり、一概に規定できないが、ポリオレフィン系樹脂粒子100重量部に対して、0.2重量部以上5.0重量部以下であることが好ましく、さらには0.5重量部以上3.0重量部以下であることが好ましい。   The amount of the dispersant used varies depending on the type and amount of the polyolefin resin particles, the foaming agent, etc., and cannot be generally specified, but is 0.2 to 5.0 parts by weight with respect to 100 parts by weight of the polyolefin resin particles. Or less, and more preferably 0.5 parts by weight or more and 3.0 parts by weight or less.

分散助剤としては、アルキルベンゼンスルホン酸塩やn−パラフィンスルホン酸塩、α−オレフィンスルホン酸塩等のアニオン系界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル等のノニオン系界面活性剤、アルキルベタイン、アルキルアミンオキシド等の両性界面活性剤、ポリアクリル酸塩、ポリスチレンスルホン酸塩、マレイン酸α−オレフィン共重合体塩等のアニオン系高分子界面活性剤、ポリビニルアルコール等のノニオン系高分子界面活性剤等の界面活性剤が挙げられ、単独あるいは2種以上を併用して使用することができる。   Dispersing aids include anionic surfactants such as alkylbenzene sulfonates, n-paraffin sulfonates and α-olefin sulfonates, and nonionic surfactants such as polyoxyethylene alkyl ethers and polyoxyethylene sorbitan fatty acid esters. Agents, amphoteric surfactants such as alkylbetaines and alkylamine oxides, anionic polymer surfactants such as polyacrylates, polystyrene sulfonates, maleic acid α-olefin copolymer salts, and nonionics such as polyvinyl alcohol Surfactants such as polymer surfactants can be mentioned, and these can be used alone or in combination of two or more.

その中でも、アニオン系界面活性剤を使用することが好ましく、中でも、疎水基として炭素数10〜18の直鎖状の炭素鎖を持つアニオン系界面活性剤を使用することがより好ましい。疎水基として炭素数10〜18の直鎖状の炭素鎖を持つアニオン系界面活性剤としては、たとえば炭素数10〜18のアルキルサルフェート、炭素数10〜18のアルキルスルホン酸塩、炭素数10〜18の脂肪酸塩炭素数10〜18のアルキルホスフェートなどが挙げられる。その中でも炭素数10〜18のアルキルスルホン酸塩が分散安定性、型内発泡成形体の融着性、金型の汚染・腐食防止及びコスト、排水処理の観点からもより好ましく、炭素数12の直鎖状のアルキルスルホン酸塩を使用することでその効果を最大限に発揮できることから好適である。炭素数12の直鎖状のアルキルスルホン酸塩としては、ラウリルスルホン酸ナトリウムが挙げられる。   Among them, it is preferable to use an anionic surfactant, and it is more preferable to use an anionic surfactant having a linear carbon chain having 10 to 18 carbon atoms as a hydrophobic group. Examples of the anionic surfactant having a linear carbon chain having 10 to 18 carbon atoms as a hydrophobic group include alkyl sulfates having 10 to 18 carbon atoms, alkyl sulfonates having 10 to 18 carbon atoms, and 10 to 10 carbon atoms. 18 fatty acid salt C10-18 alkyl phosphate and the like. Among these, alkyl sulfonates having 10 to 18 carbon atoms are more preferable from the viewpoints of dispersion stability, fusion property of in-mold foam moldings, prevention of mold contamination / corrosion and cost, and wastewater treatment. It is preferable to use a linear alkyl sulfonate because the effect can be maximized. Examples of the linear alkyl sulfonate having 12 carbon atoms include sodium lauryl sulfonate.

分散助剤の使用量は、その種類や用いるポリオレフィン系樹脂の種類・量、発泡剤の種類などによって異なり一概に規定できないが、分散剤の1.5〜10重量%であることが好ましく、更に好ましくは4.5〜7.5重量%である。分散助剤量が前記範囲内であると、より良好な分散安定性が得られる傾向にあるため好ましい。   The amount of dispersing aid used varies depending on the type, type and amount of polyolefin resin used, type of foaming agent, etc., and cannot be specified unconditionally, but is preferably 1.5 to 10% by weight of the dispersing agent. Preferably it is 4.5 to 7.5 weight%. It is preferable for the amount of the dispersion aid to be in the above-mentioned range because better dispersion stability tends to be obtained.

耐圧容器内に調整されたポリオレフィン系樹脂粒子、分散媒、分散剤、分散助剤を含んでなる分散液をpH9未満に調整する方法は特に限定はなく、例えば、pH調整剤として酸および/または弱酸塩を使用することや二酸化炭素のように、分散媒に溶解した際に酸性を示す発泡剤を使用する方法などが挙げられる。ここで二酸化炭素を含んでなる発泡剤を使用する場合、二酸化炭素が分散媒に溶け込むことによって発泡に必要な添加量でpH9未満に出来ることからpH調整剤を添加する手間が省けるため好適である。   There is no particular limitation on the method of adjusting the dispersion containing the polyolefin resin particles, dispersion medium, dispersant, and dispersion aid adjusted in the pressure vessel to less than pH 9, for example, acid and / or as a pH adjuster. Examples thereof include the use of a weak acid salt and a method of using a foaming agent that exhibits acidity when dissolved in a dispersion medium, such as carbon dioxide. Here, when a foaming agent containing carbon dioxide is used, it is preferable because the amount of carbon dioxide dissolved in the dispersion medium can be reduced to a pH of less than 9 by adding the amount necessary for foaming, which is preferable. .

本発明において分散液のpHは、耐圧容器内にポリオレフィン系樹脂粒子、分散媒、分散剤、分散助剤を含んでなる分散液のpHを測定してもよいし、発泡剤を入れることによって分散液のpHが変わる場合は、発泡剤を入れ、加圧下、耐圧容器内を所定の温度まで加熱した後、温度及び圧力を一定に保ちながら、前記分散液を耐圧容器内よりも低圧雰囲気下に放出した直後に採取した分散液を測定したものでもよい。   In the present invention, the pH of the dispersion may be measured by measuring the pH of the dispersion containing polyolefin resin particles, a dispersion medium, a dispersant, and a dispersion aid in a pressure resistant container, or dispersed by adding a foaming agent. When the pH of the liquid changes, after adding a foaming agent and heating the inside of the pressure vessel to a predetermined temperature under pressure, the dispersion is put under a lower pressure atmosphere than inside the pressure vessel while keeping the temperature and pressure constant. What measured the dispersion liquid extract | collected immediately after discharge | release may be used.

pH調整剤によって耐圧容器内の分散液のpHを9未満に調整する場合には、加圧前の分散液のpHを9未満に調整しておくことが好ましい。   When adjusting the pH of the dispersion in the pressure vessel to less than 9 with a pH adjuster, it is preferable to adjust the pH of the dispersion before pressurization to less than 9.

耐圧容器内の分散液のpHは9未満であり、好ましくは8以下であり、より好ましくは7以下である。   The pH of the dispersion in the pressure vessel is less than 9, preferably 8 or less, more preferably 7 or less.

分散液のpHが9以上であれば得られたポリオレフィン系樹脂予備発泡粒子に付着する分散剤量が多く、該ポリオレフィン系樹脂予備発泡粒子を成形した場合に良好な融着性が得られない。   If the pH of the dispersion is 9 or more, the amount of dispersant adhering to the obtained polyolefin resin pre-expanded particles is large, and good fusion properties cannot be obtained when the polyolefin resin pre-expanded particles are molded.

この様にして耐圧容器内に調整されたポリオレフィン系樹脂粒子、分散媒、分散剤、分散助剤を含んでなる分散液は、発泡剤を添加し、攪拌下、所定の圧力まで加圧され、所定の温度まで昇温され、一定時間、通常5〜180分間、好ましくは10〜60分間保持された後、加圧された分散液を、耐圧容器下部に設けられたバルブを開放して低圧雰囲気下(通常は大気圧下)に放出することによりポリオレフィン系樹脂予備発泡粒子を製造することができる。   In this way, the dispersion containing polyolefin-based resin particles, dispersion medium, dispersant, and dispersion aid adjusted in the pressure vessel is added with a foaming agent and pressurized to a predetermined pressure with stirring. After the temperature is raised to a predetermined temperature and held for a fixed time, usually 5 to 180 minutes, preferably 10 to 60 minutes, the pressurized dispersion is opened in a low pressure atmosphere by opening a valve provided at the lower part of the pressure vessel. The polyolefin resin pre-expanded particles can be produced by releasing them under (normally atmospheric pressure).

なお、発泡剤として、分散媒を構成する水を使用する場合、耐圧容器内は窒素、空気、二酸化炭素等の無機ガスにて加圧することが好ましい。   In addition, when using the water which comprises a dispersion medium as a foaming agent, it is preferable to pressurize inside a pressure-resistant container with inorganic gas, such as nitrogen, air, and a carbon dioxide.

ポリオレフィン系樹脂粒子を含んだ分散液を低圧雰囲気に放出する際、流量調整、倍率バラツキ低減などの目的で直径2〜10mmの開口オリフィスを通して放出することもできる。また、発泡倍率を高くする目的で、前記低圧雰囲気を飽和水蒸気で満たす場合もある。   When the dispersion containing polyolefin resin particles is discharged into a low-pressure atmosphere, it can also be discharged through an opening orifice having a diameter of 2 to 10 mm for the purpose of adjusting the flow rate and reducing variation in magnification. In some cases, the low-pressure atmosphere is filled with saturated steam for the purpose of increasing the expansion ratio.

耐圧容器内を加熱する温度(以下、発泡温度と称す場合がある)は、用いるポリオレフィン系樹脂の融点[Tm(℃)]、発泡剤の種類等により異なり、一概には規定できないが、概ねTm−30(℃)〜Tm+10(℃)の範囲から決定される。また、耐圧容器内を加圧する圧力(以下、発泡圧力と称す場合がある)は、用いるポリオレフィン系樹脂の種類、発泡剤の種類、所望の予備発泡粒子の発泡倍率によって異なり、一概には規定できないが、概ね1〜8MPa(ゲージ圧)の範囲から決定される。   The temperature at which the inside of the pressure vessel is heated (hereinafter sometimes referred to as the foaming temperature) varies depending on the melting point [Tm (° C.)] of the polyolefin resin to be used, the type of foaming agent, etc., and cannot generally be specified. It is determined from the range of −30 (° C.) to Tm + 10 (° C.). In addition, the pressure for pressurizing the inside of the pressure vessel (hereinafter sometimes referred to as foaming pressure) varies depending on the type of polyolefin resin used, the type of foaming agent, and the desired expansion ratio of the pre-expanded particles, and cannot be specified unconditionally. Is determined from a range of approximately 1 to 8 MPa (gauge pressure).

なおここでいうポリオレフィン系樹脂の融点とは、示差走査熱量計を用いて、試料5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事によりポリオレフィン系樹脂粒子を融解し、その後10℃/minで220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに得られるDSC曲線から、2回目の昇温時の融解ピーク温度として求められる値である。   The melting point of the polyolefin-based resin here refers to the polyolefin-based resin particles by heating the sample 5-6 mg from 40 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter. From the DSC curve obtained by melting and then crystallizing by lowering the temperature from 220 ° C. to 40 ° C. at 10 ° C./min, and then increasing the temperature from 40 ° C. to 220 ° C. at 10 ° C./min. It is a value calculated | required as a melting peak temperature at the time of temperature rising.

以上のようにして得たポリオレフィン系樹脂予備発泡粒子は、従来から知られている成形方法により、ポリオレフィン系樹脂型内発泡成形体にすることができる。例えば、イ)予備発泡粒子を無機ガス、例えば空気や窒素等で加圧処理して予備発泡粒子内に無機ガスを含浸させ所定の予備発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法、ロ)予備発泡粒子をガス圧力で圧縮して金型に充填し、予備発泡粒子の回復力を利用して、水蒸気で加熱融着させる方法、ハ)特に前処理することなく予備発泡粒子を金型に充填し、水蒸気で加熱融着させる方法、などの方法が利用し得る。このようにして得られたポリオレフィン系樹脂型内発泡成形体は、良好な融着性を示す。   The polyolefin resin pre-expanded particles obtained as described above can be made into a polyolefin resin in-mold foam-molded product by a conventionally known molding method. For example, a) Pre-expanded particles are pressurized with an inorganic gas, such as air or nitrogen, impregnated with the inorganic gas in the pre-expanded particles to give a predetermined internal pressure of the pre-expanded particles, filled in a mold, (B) A method in which pre-expanded particles are compressed by gas pressure and filled in a mold, and a heat-fusing method is carried out with steam using the recovery force of the pre-expanded particles. A method such as a method in which pre-expanded particles are filled in a mold without being heated and heat-sealed with water vapor can be used. The polyolefin resin-in-mold foam-molded article thus obtained exhibits good fusion properties.

次に、本発明のポリオレフィン系樹脂予備発泡粒子の製造方法を実施例及び比較例を挙げて、詳細に説明する。本発明は以下の実施例に限定されるものではない。評価は次のとおり行った。   Next, the manufacturing method of the polyolefin resin pre-expanded particles of the present invention will be described in detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples. Evaluation was performed as follows.

<分散安定性の評価>
分散安定性の評価ついては以下の指標で評価した。即ち、耐圧容器内で水系分散媒に分散させたポリオレフィン系樹脂粒子をポリオレフィン系樹脂粒子の軟化温度以上の温度に加熱したときに、耐圧容器内が攪拌不可能となり予備発泡できなくなった状態を×とし、予備発泡できた場合については、得られた発泡粒子を乾燥後に観察し粒子相互に融着がなく良好な球体の発泡粒子であるものを○、発泡粒子相互に融着が生じ、発泡粒子の大きさ形状が不規則なものを△とした。
<Evaluation of dispersion stability>
The evaluation of dispersion stability was evaluated by the following index. That is, when the polyolefin resin particles dispersed in the aqueous dispersion medium in the pressure vessel are heated to a temperature equal to or higher than the softening temperature of the polyolefin resin particles, the pressure vessel cannot be stirred and cannot be pre-foamed. In the case of pre-foaming, the obtained foamed particles are observed after drying, and the particles that are good sphere foam particles without fusing each other are fused, and the foam particles are fused with each other. Those having an irregular size and shape were marked with Δ.

<予備発泡粒子の表面付着分散剤量の測定>
乾燥させた予備発泡粒子をメタバナジン酸アンモニウム0.022%(重量%、以下同様)、モリブデン酸アンモニウム0.54%および硝酸3%を含む水溶液(比色液)50.0mLとW(g)の予備発泡粒子をコニカルビーカーに採り、1分間撹拌したのち10分間放置した。得られた液相を光路長1.0cmの石英セルに採り、分光光度計により410nmでの吸光度A(−)を測定した。
<Measurement of surface adhering dispersant amount of pre-expanded particles>
An aqueous solution (colorimetric solution) containing 50.0 mL of W (g) and an aqueous solution (colorimetric liquid) containing 0.022% ammonium metavanadate (% by weight, the same applies hereinafter), 0.54% ammonium molybdate and 3% nitric acid. Pre-expanded particles were collected in a conical beaker, stirred for 1 minute, and allowed to stand for 10 minutes. The obtained liquid phase was put in a quartz cell having an optical path length of 1.0 cm, and the absorbance A (−) at 410 nm was measured with a spectrophotometer.

同一の比色液について、予め測定しておいた第三リン酸カルシウム及び第三リン酸マグネシウムの410nmでの吸光度係数ε(g/L・cm)を用いて、付着分散剤量C(ppm)=4.0×104・ε・A/W(第三リン酸カルシウム)、C(ppm)=4.7×104・ε・A/W(第三リン酸マグネシウム)と求めた。 For the same colorimetric solution, the amount of adhering dispersant C (ppm) = 4 using the absorbance coefficient ε (g / L · cm) at 410 nm of tricalcium phosphate and tribasic magnesium phosphate measured in advance. 0.0 × 10 4 · ε · A / W (tricalcium phosphate), C (ppm) = 4.7 × 10 4 · ε · A / W (tribasic magnesium phosphate).

<型内発泡成形体における融着性の評価>
得られたポリオレフィン系樹脂型内発泡成形体を、カッターナイフで型内発泡成形体の厚み方向に約10mmの切り込みを入れた後、手で切り込み部から型内発泡成形体を破断する。破断面を観察し、予備発泡粒子境界での破壊がなく予備発泡粒子の材質破壊を生じるものを○、予備発泡粒子の材質破壊と予備発泡粒子境界での破壊が混合して生じるものを△、完全に予備発泡粒子境界での破壊が生じるものを×とした。
<Evaluation of fusing property in in-mold foam molding>
The obtained polyolefin resin in-mold foam-molded product is cut by about 10 mm in the thickness direction of the in-mold foam-molded product with a cutter knife, and then the in-mold foam-molded product is broken by hand from the cut portion. Observe the fractured surface, ○ that does not break at the boundary of the pre-foamed particles and causes the material destruction of the pre-foamed particles, △ that the material destruction of the pre-foamed particles and the fracture at the boundary of the pre-foamed particles are mixed, △, The case where the breakage at the boundary of the pre-expanded particles completely occurred was marked as x.

<予備発泡粒子の発泡倍率>
予備発泡粒子の発泡倍率はいわゆる真倍率であり、予め重量を測定した予備発泡粒子を、予め体積の分かっているエタノールに沈め、増加したエタノール体積から予備発泡粒子の密度を求め、発泡前の樹脂密度から予備発泡粒子の密度を除して求めた。
<Expansion ratio of pre-expanded particles>
The expansion ratio of the pre-expanded particles is a so-called true magnification. The pre-expanded particles whose weight has been measured in advance are submerged in ethanol whose volume is known in advance, and the density of the pre-expanded particles is obtained from the increased ethanol volume, and the resin before expansion The density was obtained by dividing the density of the pre-expanded particles from the density.

(実施例1〜3)
まず、エチレン−プロピレンランダムコポリマー(樹脂密度:0.90g/cm3、メルトフローインデックス:7g/10分、融点:142℃)100重量部およびメラミン(BASF社製)0.1重量部とタルク0.03重量部をドライブレンドして混合物とし、該混合物を押出機内で溶融混練し円形ダイよりストランド状に押出し、水冷後、カッターで切断し、一粒の重量が1.2mg/粒のポリプロピレン系樹脂粒子を得た。
(Examples 1-3)
First, ethylene-propylene random copolymer (resin density: 0.90 g / cm 3 , melt flow index: 7 g / 10 min, melting point: 142 ° C.) 100 parts by weight and melamine (BASF) 0.1 part by weight and talc 0 .03 parts by weight of the mixture is dry blended into a mixture, the mixture is melt-kneaded in an extruder, extruded into a strand from a circular die, cooled with water, cut with a cutter, and the weight of one grain is 1.2 mg / grain Resin particles were obtained.

得られた樹脂粒子を、撹拌機を有する10リットル容の耐圧容器の中に入れ、樹脂粒子100重量部(1.55kg)を、分散剤として第三リン酸マグネシウム(太平化学産業(株)製)および分散助剤としてラウリルスルホン酸ナトリウム(以下、Raと表記する場合がある)を表1に示す量を水300重量部中に分散させて分散液とした。分散液を撹拌しながら、液状炭酸ガス14重量部を加え、分散液を147.2℃に加熱した。このとき、ガス状の炭酸ガスを追加して耐圧容器の内圧が3.2MPaとなるように調整した。   The obtained resin particles are put into a 10-liter pressure vessel having a stirrer, and 100 parts by weight (1.55 kg) of the resin particles are used as a dispersing agent, magnesium triphosphate (manufactured by Taihei Chemical Industrial Co., Ltd.). ) And sodium lauryl sulfonate (hereinafter sometimes referred to as Ra) as a dispersion aid were dispersed in 300 parts by weight of water to obtain a dispersion. While stirring the dispersion, 14 parts by weight of liquid carbon dioxide gas was added, and the dispersion was heated to 147.2 ° C. At this time, gaseous carbon dioxide was added to adjust the internal pressure of the pressure vessel to 3.2 MPa.

つぎに、耐圧容器内の内圧をガス状炭酸ガスで3.0〜3.2MPa(ゲージ圧)に保圧しながら、樹脂粒子および水の混合物を直径3.6mmの円形オリフィスを通して大気中に放出してポリプロピレン系樹脂予備発泡粒子(以下、予備発泡粒子と称す場合がある)をえた。   Next, a mixture of resin particles and water is discharged into the atmosphere through a circular orifice having a diameter of 3.6 mm while maintaining the internal pressure in the pressure resistant vessel at 3.0 to 3.2 MPa (gauge pressure) with gaseous carbon dioxide. Thus, polypropylene resin pre-expanded particles (hereinafter sometimes referred to as pre-expanded particles) were obtained.

得られたポリプロピレン系樹脂予備発泡粒子を水洗し、乾燥した後に粒子同士の融着の有無及び発泡倍率、表面付着分散剤量の測定を行った。結果を表1に示す。   The obtained polypropylene resin pre-foamed particles were washed with water and dried, and then the presence / absence of fusion between the particles, the foaming ratio, and the amount of the surface adhering dispersant were measured. The results are shown in Table 1.

水洗し、乾燥した予備発泡粒子を常温、常圧下で6時間放置後、20℃、3kg/cm2の空気で24時間加圧処理し、次いでこの予備発泡粒子を400mm×300mm×60mmの金型に充填し0.3〜0.24MPa(ゲージ圧)の水蒸気で加熱して成形した。得られた型内発泡成形体を75℃のオーブン内で15時間乾燥した後、該型内発泡成形体における発泡粒子相互の融着状態を測定した結果を表1に併せて示す。 Washed and dried pre-expanded particles are allowed to stand at room temperature and normal pressure for 6 hours and then subjected to pressure treatment with air at 20 ° C. and 3 kg / cm 2 for 24 hours, and then the pre-expanded particles are molded into a 400 mm × 300 mm × 60 mm mold. And heated with water vapor of 0.3 to 0.24 MPa (gauge pressure). The obtained in-mold foam molded article was dried in an oven at 75 ° C. for 15 hours, and the results of measuring the fused state between the foamed particles in the in-mold foam molded article are shown in Table 1.

(実施例4)
まず、エチレン−プロピレンランダムコポリマー(樹脂密度:0.90g/cm3、メルトフローインデックス:7g/10分、融点:142℃)100重量部とタルク0.03重量部をドライブレンドして混合物とし、該混合物を押出機内で溶融混練し円形ダイよりストランド状に押出し、水冷後、カッターで切断し、一粒の重量が1.8mg/粒のポリプロピレン系樹脂粒子を得た。
Example 4
First, 100 parts by weight of ethylene-propylene random copolymer (resin density: 0.90 g / cm 3 , melt flow index: 7 g / 10 min, melting point: 142 ° C.) and 0.03 part by weight of talc are dry blended to form a mixture, The mixture was melt-kneaded in an extruder, extruded into a strand from a circular die, cooled with water, and cut with a cutter to obtain polypropylene resin particles having a weight of 1.8 mg / grain.

得られたポリプロピレン系樹脂粒子100重量部(1kg)、水200重量部、分散剤として表1に示す量の第三リン酸マグネシウム(太平化学産業(株)製)、分散助剤として表1に示す量のラウリルスルホン酸ナトリウム(Ra)を10リットル容の耐圧オートクレーブ中に仕込み、1N塩酸で分散液のpHを8.9に調整した後、攪拌下、発泡剤としてイソブタンを18重量部添加した。オートクレーブ内容物を昇温し、137℃の発泡温度まで加熱した。その後、イソブタンを追加圧入してオートクレーブ内を1.8MPaの発泡圧力まで昇圧し、前記発泡温度、発泡圧力で30分間保持した後、オートクレーブ下部のバルブを開き、直径4.0mmの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出してポリプロピレン系樹脂予備発泡粒子を得た。それ以外は実施例1〜3と同様の評価を行った。   100 parts by weight (1 kg) of the obtained polypropylene resin particles, 200 parts by weight of water, the amount of tribasic magnesium phosphate (produced by Taihei Chemical Sangyo Co., Ltd.) shown in Table 1 as a dispersant, and Table 1 as a dispersion aid. The indicated amount of sodium lauryl sulfonate (Ra) was charged into a 10 liter pressure-resistant autoclave, the pH of the dispersion was adjusted to 8.9 with 1N hydrochloric acid, and 18 parts by weight of isobutane was added as a blowing agent with stirring. . The autoclave contents were heated to a foaming temperature of 137 ° C. Thereafter, isobutane was additionally injected to increase the pressure inside the autoclave to a foaming pressure of 1.8 MPa. After maintaining the foaming temperature and the foaming pressure for 30 minutes, the valve at the bottom of the autoclave was opened, and through an opening orifice having a diameter of 4.0 mm, The contents of the autoclave were released under atmospheric pressure to obtain polypropylene resin pre-expanded particles. Other than that evaluated similarly to Examples 1-3.

(比較例1〜6)
分散剤として表1に示す量の第三リン酸マグネシウム(比較例1,2)、第三リン酸カルシウム(比較例3〜5)、ピロリン酸カルシウム(比較例6)、ピロリン酸マグネシウム(比較例7)、メタリン酸カリウム(比較例8)(全て太平化学産業(株)製)分散助剤として表1に示す量のラウリルスルホン酸ナトリウム(Ra)を用いた以外は実施例1〜3と同様に予備発泡粒子を得、評価を行った。
(Comparative Examples 1-6)
The amount of tribasic magnesium phosphate (Comparative Examples 1 and 2), tribasic calcium phosphate (Comparative Examples 3 to 5), calcium pyrophosphate (Comparative Example 6), magnesium pyrophosphate (Comparative Example 7) shown in Table 1 as the dispersant. Potassium metaphosphate (Comparative Example 8) (all manufactured by Taihei Chemical Industrial Co., Ltd.) Pre-foaming as in Examples 1 to 3 except that sodium lauryl sulfonate (Ra) in the amount shown in Table 1 was used as a dispersion aid. Particles were obtained and evaluated.

(比較例9)
分散液のpHを調整しなかった以外は実施例4と同様の評価を行った。
(Comparative Example 9)
The same evaluation as in Example 4 was performed except that the pH of the dispersion was not adjusted.

表1に示した結果から、本発明の製造方法では少ない分散剤量でも得られた予備発泡粒子は粒子同士の融着がないことから、十分な分散安定性が保たれることが分かる。また予備発泡粒子表面に付着した分散剤の成形における融着阻害効果が少ないことが分かる。   From the results shown in Table 1, it can be seen that the pre-expanded particles obtained even with a small amount of dispersant in the production method of the present invention have no fusion between the particles, so that sufficient dispersion stability is maintained. Moreover, it turns out that the fusion inhibitory effect in shaping | molding of the dispersing agent adhering to the pre-expanded particle surface is small.

比較例3〜8において種々の一般的な分散剤と比較すると本発明の製造方法は明らかに耐圧容器内における分散が安定であることが分かる。第三リン酸カルシウムでも粒子が融着せずに発泡粒子が得られるが、実施例と比較すると多量の分散剤を使用するうえに、付着量も多く型内発泡成形体における融着阻害性が大きい傾向にある。また分散液のpHが9以下の領域で分散安定な上に、型内発泡成形体における融着阻害性がないのは第三リン酸マグネシウムのみであり、比較例1、2、9からも分かるように分散液のpHが9以上では分散はするものの型内発泡成形体における融着阻害性が大きくなる。   In Comparative Examples 3 to 8, it can be seen that the dispersion of the production method of the present invention is stable in the pressure vessel when compared with various general dispersants. Even with tribasic calcium phosphate, expanded particles can be obtained without fusing the particles. Compared to the examples, in addition to using a large amount of dispersant, the amount of adhesion tends to be large and the inhibition of fusion in the in-mold foam molded product tends to be large. is there. In addition, the dispersion is stable in the region where the pH is 9 or less, and it is only the tertiary magnesium phosphate that has no fusion inhibition in the in-mold foam molded product. As described above, when the pH of the dispersion is 9 or more, although the dispersion is performed, the fusion-inhibiting property in the in-mold foam-molded product is increased.

(実施例5、比較例10)
金属と各種分散剤との反応性を比較するために、市販されているアルミカップに分散液のモデルとして第2表に示す量の第三リン酸マグネシウム、第三リン酸カルシウム(どちらも太平化学産業(株)製)をラウリルスルホン酸ナトリウム(Ra)の存在下に水100部中に分散させたものを10ml注ぎ、140℃のオーブンで3時間乾燥させた。乾燥後オーブンから取り出し、付着した乾固物の付着状況について
(1)アルミカップに振動を与え、乾固物を払い落とす
(2)アルミカップに純水を静かに掛け、乾固物を洗い流す
(3)キムワイプ(登録商標)で拭いて、乾固物を拭う
上記の3つの方法で評価を行い、その方法で完全に落とすことができ、金属光沢が復活するものを◎、その方法で完全に落とすことができるが金属に変色が見られるものを○、その方法で落とすことができるが一部残存するものを△、落とすことができないものを×として評価した。その結果を表2に示す。
(Example 5, Comparative Example 10)
In order to compare the reactivity of metals with various dispersants, commercially available aluminum cups were used as dispersion models in the amounts of tribasic magnesium phosphate and tribasic calcium phosphate shown in Table 2 (both Taihei Chemical Industry ( 10 ml of a dispersion of 100 parts of water in the presence of sodium lauryl sulfonate (Ra) was added and dried in an oven at 140 ° C. for 3 hours. After drying, take it out of the oven and attach the dried solids. (1) Give vibration to the aluminum cup and wipe off the dried solids. (2) Gently pour pure water into the aluminum cup and wash away the dried solids ( 3) Wipe with Kimwipe (Registered Trademark) and wipe dry matter. Evaluate by the above three methods, and it can be completely removed by that method. Evaluation was made with ◯ indicating that the metal could be discolored but having discoloration, △ indicating that the metal could be removed by the method, but △ indicating that the metal remained, and x indicating that the metal could not be removed. The results are shown in Table 2.

表2に示したとおり、本発明における分散剤の乾固物は水洗等によって容易に落とすことができ、洗浄後のアルミカップの表面には金属光沢が復活していることから金属との反応性が小さいということが分かる。 As shown in Table 2, the dried solid product of the dispersant in the present invention can be easily removed by washing with water, etc., and since the metallic luster has been restored on the surface of the aluminum cup after washing, it is reactive with metal. It can be seen that is small.

一方、比較例で示した分散剤の乾固物は洗浄に難がある上に、洗浄後のアルミカップの表面には変色が見られることから金属との反応性があることが分かった。   On the other hand, it was found that the dried solid product of the dispersant shown in the comparative example is difficult to wash and the surface of the aluminum cup after washing is discolored, so that it has reactivity with the metal.

Claims (7)

ポリオレフィン系樹脂粒子、分散媒、分散剤、分散助剤を含んでなる分散液と発泡剤を耐圧容器内に入れ、加圧下、耐圧容器内を所定の温度まで加熱した後、温度及び圧力を一定に保ちながら、前記分散液を耐圧容器内よりも低圧雰囲気下に放出するポリオレフィン系樹脂予備発泡粒子の製造方法において、
前記分散剤が第二リン酸マグネシウム及び第三リン酸マグネシウムの単体及びその水和物、これらの混合物であり、耐圧容器内の分散液のpHが9未満である、ポリオレフィン系樹脂予備発泡粒子の製造方法。
A dispersion liquid and a foaming agent containing polyolefin resin particles, a dispersion medium, a dispersant, and a dispersion aid are placed in a pressure vessel, and the pressure vessel is heated to a predetermined temperature under pressure, and then the temperature and pressure are kept constant. In the method for producing polyolefin resin pre-expanded particles, in which the dispersion is released in a low-pressure atmosphere than in the pressure-resistant container,
The polyolefin resin pre-expanded particles, wherein the dispersant is a simple substance of dibasic magnesium phosphate and tribasic magnesium phosphate and a hydrate thereof, or a mixture thereof, and the pH of the dispersion in the pressure vessel is less than 9. Production method.
前記分散剤が、第三リン酸マグネシウムである、請求項1記載のポリオレフィン系樹脂予備発泡粒子の製造方法。   The method for producing pre-expanded polyolefin-based resin particles according to claim 1, wherein the dispersant is magnesium triphosphate. 前記分散助剤が疎水基として炭素数10〜18の直鎖状の炭素鎖を持つアニオン系界面活性剤である、請求項1または2に記載のポリオレフィン系樹脂予備発泡粒子の製造方法。   The method for producing polyolefin resin pre-expanded particles according to claim 1 or 2, wherein the dispersion aid is an anionic surfactant having a linear carbon chain having 10 to 18 carbon atoms as a hydrophobic group. 前記分散助剤が炭素数12の直鎖状のアルキルスルホン酸塩である、請求項に記載のポリオレフィン系樹脂予備発泡粒子の製造方法。 The method for producing pre-expanded polyolefin resin particles according to claim 3 , wherein the dispersion aid is a linear alkyl sulfonate having 12 carbon atoms. 前記発泡剤が、二酸化炭素を含んでなる、請求項1〜4何れか一項に記載のポリオレフィン系樹脂予備発泡粒子の製造方法。   The method for producing polyolefin resin pre-expanded particles according to any one of claims 1 to 4, wherein the foaming agent comprises carbon dioxide. 請求項1〜5の何れか一項に記載のポリオレフィン系樹脂予備発泡粒子の製造方法によって得られる、ポリオレフィン系樹脂予備発泡粒子。   Polyolefin resin pre-expanded particles obtained by the method for producing polyolefin resin pre-expanded particles according to any one of claims 1 to 5. 請求項6記載のポリオレフィン系樹脂予備発泡粒子を金型に充填し、加熱して得られる、ポリオレフィン系樹脂型内発泡成形体。
A polyolefin resin-in-mold foam-molded product obtained by filling the polyolefin resin pre-expanded particles according to claim 6 in a mold and heating.
JP2007337161A 2007-12-27 2007-12-27 Method for producing polyolefin resin pre-expanded particles Expired - Fee Related JP5295557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007337161A JP5295557B2 (en) 2007-12-27 2007-12-27 Method for producing polyolefin resin pre-expanded particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007337161A JP5295557B2 (en) 2007-12-27 2007-12-27 Method for producing polyolefin resin pre-expanded particles

Publications (2)

Publication Number Publication Date
JP2009155536A JP2009155536A (en) 2009-07-16
JP5295557B2 true JP5295557B2 (en) 2013-09-18

Family

ID=40959886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007337161A Expired - Fee Related JP5295557B2 (en) 2007-12-27 2007-12-27 Method for producing polyolefin resin pre-expanded particles

Country Status (1)

Country Link
JP (1) JP5295557B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120622B (en) * 2023-01-31 2024-04-09 无锡会通轻质材料股份有限公司 Polypropylene foaming bead, preparation method and molded part thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08225675A (en) * 1994-12-13 1996-09-03 Mitsubishi Chem Basf Co Ltd Preparation of foamable polyolefinic resin particles
JP3909617B2 (en) * 1997-11-17 2007-04-25 株式会社ジェイエスピー Method for producing polypropylene resin expanded particles, polypropylene resin expanded particles and molded article thereof
JP3507699B2 (en) * 1998-06-01 2004-03-15 積水化成品工業株式会社 Method for producing polypropylene resin pre-expanded particles
JP2007238717A (en) * 2006-03-07 2007-09-20 Kaneka Corp Method for producing pre-expanded particle
JP5400323B2 (en) * 2007-07-03 2014-01-29 株式会社カネカ Method for producing polyolefin resin pre-expanded particles with reduced amount of adhesion dispersant

Also Published As

Publication number Publication date
JP2009155536A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5400323B2 (en) Method for producing polyolefin resin pre-expanded particles with reduced amount of adhesion dispersant
JP4953891B2 (en) Black polypropylene resin pre-expanded particles
JP5976098B2 (en) In-mold foam molded article comprising polypropylene resin expanded particles, polypropylene resin expanded particles, and methods for producing the same
JP2009167236A (en) Process for producing expanded polypropylene-based resin bead and expanded polypropylene-based resin bead
JP5188144B2 (en) Polypropylene resin pre-expanded particles without friction noise
JP5112771B2 (en) Method for producing polyolefin resin pre-expanded particles
JP5242321B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP4070606B2 (en) Expandable polyolefin bead material
JP5295557B2 (en) Method for producing polyolefin resin pre-expanded particles
JP5491083B2 (en) Polyolefin resin pre-expanded particles with little variation in magnification and method for producing the same
JP5064745B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP5475149B2 (en) Polypropylene resin pre-expanded particles without friction noise
JP2006213877A (en) Polypropylene resin pre-expanded particle and expanded molding obtainable therefrom
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JP2009161668A (en) Method for producing polyolefinic resin pre-expanded particle
JP6609559B2 (en) Conductive polypropylene resin expanded particles having excellent antifouling property and moldability, method for producing polypropylene resin expanded particles, and polypropylene resin expanded foam
JP2010180295A (en) Polyolefin resin pre-expanded bead in control of sound of friction
JP2006297807A (en) Polypropylene-based resin in-mold foam-molding body
JP2010043209A (en) Manufacturing method of pre-expanded particle of polypropylene resin, and pre-expanded particle of polypropylene resin
JP5277798B2 (en) Process for producing polyolefin resin expanded particles, polyolefin resin expanded particles obtained from the process, and in-mold foam molded article
JP5256664B2 (en) Method for producing polyolefin resin pre-expanded particles with reduced amount of adhesion dispersant
JP5410080B2 (en) Method for reducing poorly water-soluble inorganic compounds adhering to the surface of polyolefin resin foam particles
JP7269220B2 (en) Expanded polypropylene resin particles and method for producing the same
JP4907118B2 (en) Method for producing polypropylene resin pre-expanded particles
JP2006255993A (en) Manufacturing method of polypropylene resin foamed product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees