JP4907118B2 - Method for producing polypropylene resin pre-expanded particles - Google Patents

Method for producing polypropylene resin pre-expanded particles Download PDF

Info

Publication number
JP4907118B2
JP4907118B2 JP2005208117A JP2005208117A JP4907118B2 JP 4907118 B2 JP4907118 B2 JP 4907118B2 JP 2005208117 A JP2005208117 A JP 2005208117A JP 2005208117 A JP2005208117 A JP 2005208117A JP 4907118 B2 JP4907118 B2 JP 4907118B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
particles
expanded
expanded particles
crystal nucleating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005208117A
Other languages
Japanese (ja)
Other versions
JP2007023172A (en
Inventor
哲也 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005208117A priority Critical patent/JP4907118B2/en
Publication of JP2007023172A publication Critical patent/JP2007023172A/en
Application granted granted Critical
Publication of JP4907118B2 publication Critical patent/JP4907118B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ポリプロピレン系樹脂予備発泡粒子の製造方法に関し、更に詳しくは、高温高圧の密閉容器内から低圧の雰囲気中に粒子を放出した際に、予備発泡粒子同士の融着が少ないことから、良好な生産性でポリプロピレン系樹脂予備発泡粒子を得ることができる製造方法に関する。   The present invention relates to a method for producing polypropylene resin pre-expanded particles, and more specifically, when the particles are released from a high-temperature and high-pressure sealed container into a low-pressure atmosphere, the pre-expanded particles are less fused, The present invention relates to a production method capable of obtaining polypropylene resin pre-expanded particles with good productivity.

ポリプロピレン系樹脂型内発泡成形体は、ポリスチレン系樹脂型内発泡成形体と比較して、耐薬品性能、耐熱性能、緩衝性能、圧縮歪み回復性能に優れ、ポリエチレン系樹脂型内発泡成形体と比較しても、耐熱性能、圧縮強度に優れることから、緩衝包装資材や通い箱、自動車用部材として広く用いられている。   Polypropylene resin in-mold foam molded products have superior chemical resistance, heat resistance, buffer performance, and compression strain recovery performance compared to polystyrene resin in-mold foam molded products. Compared to polyethylene resin in-mold foam molded products. Even so, since it is excellent in heat resistance and compressive strength, it is widely used as a buffer packaging material, a returnable box, and an automobile member.

特に、様々な形状の緩衝包装資材として、内包する商品や部材の形状に合わせて柔軟に、かつ切削加工無しで成形できることから、電子機械から産業資材など幅広く利用されている。   In particular, as buffer packaging materials of various shapes, they can be molded flexibly and without cutting work in accordance with the shape of products and members to be included, so that they are widely used from electronic machines to industrial materials.

型内発泡成形用ポリプロピレン系樹脂予備発泡粒子の製造方法として、高温・高圧の容器内から低圧の雰囲気中に放出し、発泡する際に、60℃以上の水蒸気や空気などと接触させることで、発泡倍率を高めたり、予備発泡粒子の発泡倍率ばらつきを抑制する方法は知られている(特許文献1、2)。しかしながらこのように低圧の雰囲気中に60℃以上の水蒸気や空気などと接触させると、発泡倍率ばらつきは低減できるものの、予備発泡粒子同士が融着しやすいという問題があった。   As a method for producing pre-expanded polypropylene resin particles for in-mold foam molding, by releasing into a low-pressure atmosphere from a high-temperature and high-pressure container, when foaming, by contacting with steam or air of 60 ° C. or higher, Methods for increasing the expansion ratio and suppressing variations in expansion ratio of pre-expanded particles are known (Patent Documents 1 and 2). However, when contacted with water vapor or air of 60 ° C. or higher in a low-pressure atmosphere as described above, there is a problem that the pre-expanded particles are easily fused with each other, although the variation in expansion ratio can be reduced.

ポリプロピレン系樹脂予備発泡粒子を加熱成形して得られる型内発泡成形体の幅広い需要から、従来と比較して、より薄肉の部位や少量の蒸気加熱で美麗な型形状を有する製品が熱望され、そのためには、低温で融解しやすい結晶を多く有するポリプロピレン系樹脂が使用されつつある。   Due to the wide demand for in-mold foam moldings obtained by heat-molding polypropylene resin pre-expanded particles, products with a beautiful mold shape with thinner parts and a small amount of steam heating are eagerly desired, For this purpose, a polypropylene resin having many crystals that are easily melted at a low temperature is being used.

しかし、このような樹脂を使用して前記のごとく高温高圧容器内から低圧かつ高温雰囲気中に放出すると予備発泡粒子同士が融着しやすいという問題点があった。融着した予備発泡粒子は、通常シフター等の篩で除去されることで収率を低下させる課題があるのみでなく、融着した予備発泡粒子の量が多いと、送粒能力の低下を招いたり、最悪の場合、送粒配管の閉塞につながる場合もあるため、製造上大きな問題となっていた。   However, when such a resin is used and released into the low-pressure and high-temperature atmosphere from the high-temperature and high-pressure vessel as described above, there is a problem that the pre-expanded particles are easily fused. The fused pre-foamed particles are usually removed by a sieve such as a shifter, which not only reduces the yield, but if the amount of fused pre-foamed particles is large, the granulation ability is lowered. In the worst case, it may lead to blockage of the granulation pipe, which is a big problem in production.

一方結晶核剤を含有するポリプロピレン系樹脂組成物を用いて製造した予備発泡粒子については、剛性を高めたり(特許文献3)、予備発泡後の予備発泡粒子の収縮を防ぐ(特許文献4)ことを目的として行われているが、0.01〜0.1重量%程度の少量の添加では15倍以上の高発泡倍率の場合、剛性向上効果はほとんど無い上、予備発泡粒子同士の融着については、密閉容器から低圧下へ予備発泡粒子を放出する際に高温雰囲気下へ放出していないため、元来予備発泡粒子同士が融着しやすい条件下での態様ではないため、予備発泡粒子同士の融着については課題となっていなかった。発泡剤として水を用い、高温雰囲気に放出することで発生する予備発泡粒子同士の融着に関する課題は、異なる発泡剤を使用する(特許文献4)の予備発泡粒子の製造では挙げられていない。
特開平11−106546号公報、 特開2002−338724号公報 特開平5−179049号公報 特開平5−156065号公報
On the other hand, for pre-expanded particles produced using a polypropylene resin composition containing a crystal nucleating agent, increase rigidity (Patent Document 3) or prevent shrinkage of pre-expanded particles after pre-expansion (Patent Document 4). In the case of a high expansion ratio of 15 times or more with addition of a small amount of about 0.01 to 0.1% by weight, there is almost no effect of improving the rigidity, and the pre-expanded particles are fused. Is not released under a high temperature atmosphere when releasing the pre-expanded particles from the sealed container under a low pressure. There was no problem with the fusion. The problem regarding the fusion of the pre-expanded particles generated by using water as a foaming agent and releasing it in a high-temperature atmosphere is not mentioned in the production of the pre-expanded particles using a different foaming agent (Patent Document 4).
JP-A-11-106546, JP 2002-338724 A Japanese Patent Laid-Open No. 5-179049 Japanese Patent Laid-Open No. 5-156065

本発明の目的は、型内発泡成形用ポリプロピレン系樹脂予備発泡粒子を良好な生産性にて安定的に製造可能なポリプロピレン系樹脂予備発泡粒子の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the polypropylene resin pre-expanded particle which can manufacture stably the polypropylene resin pre-expanded particle for in-mold foam-molding with favorable productivity.

本発明者らは前記実情に鑑み、鋭意研究を重ねた結果、次のような知見が得られた。即ち、高温高圧の密閉容器から低圧かつ高温雰囲気下にポリプロピレン系樹脂組成物からなる粒子を放出するポリプロピレン系予備発泡粒子の製造方法において、結晶核剤を含有するポリプロピレン系樹脂組成物を用いることで、予備発泡粒子同士が融着しやすい条件下においても予備発泡粒子同士の融着を防ぎ、安定かつ高収率で予備発泡粒子の製造が行えることを見出し、本発明を完成するに至った。   In view of the above circumstances, the present inventors have made extensive studies and as a result, obtained the following knowledge. That is, by using a polypropylene resin composition containing a crystal nucleating agent in a method for producing polypropylene pre-foamed particles that releases particles made of a polypropylene resin composition from a high temperature and high pressure sealed container under a low pressure and high temperature atmosphere. The inventors have found that pre-foamed particles can be produced stably and with high yield by preventing fusion of the pre-foamed particles even under conditions where the pre-foamed particles are easily fused together, and the present invention has been completed.

すなわち、本発明は、ポリプロピレン系樹脂組成物からなる粒子を密閉容器内で水系分散媒に分散させ前記粒子を前記ポリプロピレン系樹脂組成物の軟化温度以上の温度に加熱し、分散媒である水を発泡剤として該粒子内に含浸せしめた後、密閉容器内の内圧よりも低圧かつ80℃以上の雰囲気中に放出することによって予備発泡させるポリプロピレン系樹脂予備発泡粒子の製造方法において、前記ポリプロピレン系樹脂組成物が、有機リン系結晶核剤、アルミニウム系結晶核剤、ソルビトール系結晶核剤から選ばれる1種以上である結晶核剤を含有することを特徴とするポリオレフィン系樹脂予備発泡粒子の製造方法に関する。
That is, in the present invention, particles made of a polypropylene resin composition are dispersed in an aqueous dispersion medium in a closed container, the particles are heated to a temperature equal to or higher than the softening temperature of the polypropylene resin composition, and water as a dispersion medium is added. In the method for producing pre-expanded polypropylene resin particles, the polypropylene resin is pre-expanded by impregnating the particles as a foaming agent and then releasing into an atmosphere at a pressure lower than the internal pressure in the sealed container and 80 ° C. or higher. A method for producing pre-expanded polyolefin resin particles, characterized in that the composition contains at least one crystal nucleating agent selected from an organic phosphorus crystal nucleating agent, an aluminum crystal nucleating agent, and a sorbitol crystal nucleating agent. About.

好ましい実施態様としては、示差走査熱量計法によるポリプロピレン系樹脂予備発泡粒子の測定において、2つの融点を有し、低温側融点が143℃以下かつ低温融解結晶量比率が90%以下であることを特徴とする前記記載のポリプロピレン系樹脂予備発泡粒子の製造方法に関し別の好ましい態様としては、ポリプロピレン系樹脂組成物が、親水性ポリマー、トリアジン骨格を有する化合物から選ばれる1種以上を含有することを特徴とする前記記載のポリプロピレン系樹脂予備発泡粒子の製造方法に関する。 As a preferred embodiment, in the measurement of polypropylene resin pre-expanded particles by differential scanning calorimetry, it has two melting points, the low-temperature side melting point is 143 ° C. or less, and the low-temperature melting crystal content ratio is 90% or less. relates to a manufacturing method of polypropylene resin pre-expanded particles of the wherein, as another preferred embodiment, the polypropylene resin composition contains at least one member selected from compounds having a hydrophilic polymer, a triazine skeleton And a method for producing the pre-expanded polypropylene resin particles described above.

本発明によれば、高温高圧の密閉容器から低圧かつ80℃以上の雰囲気下にポリプロピレン系樹脂組成物からなる粒子を放出するポリプロピレン系予備発泡粒子の製造方法において、結晶核剤を含有するポリプロピレン系樹脂組成物を用いることで、予備発泡粒子同士の融着を防ぎ、安定かつ高収率で高発泡倍率の予備発泡粒子の製造を提供することができる。   According to the present invention, in a method for producing polypropylene-based pre-expanded particles in which particles made of a polypropylene-based resin composition are released from a high-temperature / high-pressure sealed container under a low pressure and an atmosphere of 80 ° C. or higher, the polypropylene-based polypropylene containing a crystal nucleating agent By using the resin composition, it is possible to prevent the pre-expanded particles from being fused to each other, and to provide the manufacture of the pre-expanded particles having a stable and high yield and a high expansion ratio.

本発明のポリプロピレン系樹脂予備発泡粒子を構成するポリプロピレン系樹脂としては、単量体として、プロピレンを80重量%以上、より好ましくは85重量%以上、さらに好ましくは90重量%以上含むものであれば、その組成、合成法に特に制限はなく、例えば、プロピレン単独重合体、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレンブロック共重合体、エチレン−プロピレン−ブテン三元共重合体などが挙げられる。   As the polypropylene resin constituting the polypropylene resin pre-expanded particles of the present invention, as long as it contains propylene as a monomer in an amount of 80% by weight or more, more preferably 85% by weight or more, and further preferably 90% by weight or more. The composition and the synthesis method are not particularly limited, for example, propylene homopolymer, ethylene-propylene random copolymer, propylene-butene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-butene ternary. A copolymer etc. are mentioned.

本発明におけるポリプロピレン系樹脂組成物に含有される結晶核剤としては、リン酸2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウムやリン酸ビス(4−tert―ブチルフェニル)ナトリウムなどの有機リン系結晶核剤、ヒドロキシ−ジ(tert−ブチル安息香酸)アルミニウムなどの有機アルミニウム系結晶核剤、ビス(p−エチルベンジリデン)ソルビトール、ビス(4−メチルベンジリデン)ソルビトールなどのソルビトール系結晶核剤の内、1種または2種以上であることが好ましい。これらの結晶核剤の内、添加量対効果の点から有機リン系結晶核剤が好ましく、少なくとも、リン酸2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウムを含む1種以上であることがより好ましい。   Examples of the crystal nucleating agent contained in the polypropylene resin composition in the present invention include 2,2-methylenebis (4,6-di-tert-butylphenyl) phosphate and bis (4-tert-butylphenyl) phosphate. Organic phosphorus crystal nucleating agents such as sodium, organoaluminum crystal nucleating agents such as hydroxy-di (tert-butylbenzoic acid) aluminum, sorbitol such as bis (p-ethylbenzylidene) sorbitol, bis (4-methylbenzylidene) sorbitol It is preferable that it is 1 type (s) or 2 or more types among type | system | group crystal nucleating agents. Among these crystal nucleating agents, an organophosphorus crystal nucleating agent is preferable from the viewpoint of the effect of addition amount, and at least one kind containing sodium 2,2-methylenebis (4,6-di-tert-butylphenyl) phosphate. More preferably.

各種結晶核剤の添加量に対する効果は異なるが、結晶核剤の総量として、ポリプロピレン系樹脂100重量部に対し0.001重量部以上0.5重量部以下が好ましく、0.005重量部以上0.3重量部以下がより好ましい。結晶核剤総量の添加量が0.001重量部未満である場合、本発明の効果が得られにくく、0.5重量部より多い場合、発泡セル造核剤としての効果が強くなり、セルが微細化しすぎることがある。結晶核剤の添加方法としては、特に制限はないが、従来公知の方法によりポリプロピレン系樹脂を粒子状に加熱成形する際に、結晶核剤を添加し溶融混練しても良いが、あらかじめ結晶核剤の濃度を高く造粒した樹脂粒子を所望の比率になるよう調整混合して、溶融混練しても良い。   Although the effect on the added amount of various crystal nucleating agents is different, the total amount of the crystal nucleating agent is preferably 0.001 to 0.5 parts by weight, preferably 0.005 to 0 parts by weight with respect to 100 parts by weight of the polypropylene resin. More preferred is 3 parts by weight or less. When the total amount of the crystal nucleating agent is less than 0.001 part by weight, it is difficult to obtain the effect of the present invention, and when it is more than 0.5 part by weight, the effect as a foam cell nucleating agent is strengthened, May be too fine. The method for adding the crystal nucleating agent is not particularly limited, but when a polypropylene resin is thermoformed into particles by a conventionally known method, the crystal nucleating agent may be added and melt-kneaded. The resin particles granulated with a high concentration of the agent may be adjusted and mixed so as to have a desired ratio and then melt-kneaded.

本発明におけるポリプロピレン系樹脂組成物は、樹脂融点としては、特に制限はなく、130℃以上170℃未満が好ましく、135℃以上165℃未満がより好ましく、140℃以上160℃未満がさらに好ましい。   The polypropylene resin composition in the present invention is not particularly limited as the resin melting point, preferably 130 ° C. or higher and lower than 170 ° C., more preferably 135 ° C. or higher and lower than 165 ° C., and further preferably 140 ° C. or higher and lower than 160 ° C.

本発明におけるポリプロピレン系樹脂のメルトインデックスは、予備発泡粒子を製造しうる範囲であれば、特に制限はなく、0.2g/10min以上50g/10min以下であることが好ましく、1g/10min以上30g/10min以下であることがより好ましい。メルトインデックスが該範囲である場合、高い二次発泡性と良好な寸法性の両立が容易となる。メルトインデックスが0.2g/10min未満である場合、溶融粘度が高すぎて高発泡の予備発泡粒子が得られにくく、50g/10minより大きい場合、発泡時の樹脂の伸びに対する溶融粘度が低すぎて、破泡しやすくなる。該メルトインデックスは、例えば、有機過酸化物の使用などにより調整してもよい。   The melt index of the polypropylene resin in the present invention is not particularly limited as long as the pre-expanded particles can be produced, and is preferably 0.2 g / 10 min or more and 50 g / 10 min or less, and preferably 1 g / 10 min or more and 30 g / min. More preferably, it is 10 min or less. When the melt index is within this range, it is easy to achieve both high secondary foamability and good dimensionality. When the melt index is less than 0.2 g / 10 min, the melt viscosity is too high and it is difficult to obtain highly foamed pre-expanded particles, and when it is greater than 50 g / 10 min, the melt viscosity with respect to the elongation of the resin during foaming is too low. , Easy to break. The melt index may be adjusted, for example, by using an organic peroxide.

ポリプロピレン系樹脂にポリプロピレン系樹脂以外の他の合成樹脂を、本発明の効果を損なわない範囲で添加して、基材樹脂としても良い。ポリプロピレン系樹脂以外の他の合成樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン−酢酸ビニル共重合体エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体等のエチレン系樹脂、或いはポリスチレン、スチレン−無水マレイン酸共重合体等のスチレン系樹脂等が例示される。   A synthetic resin other than the polypropylene resin may be added to the polypropylene resin as long as the effects of the present invention are not impaired, so that the base resin may be used. Synthetic resins other than polypropylene resins include high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, ethylene-vinyl acetate copolymer ethylene-acrylic acid. Examples thereof include ethylene resins such as copolymers and ethylene-methacrylic acid copolymers, and styrene resins such as polystyrene and styrene-maleic anhydride copolymers.

本発明のポリプロピレン系樹脂には親水性ポリマー、トリアジン骨格を有する化合物のうち1種以上の化合物を添加することが好ましい。本発明で親水性ポリマーとは、エチレン−アクリル酸−無水マレイン酸三元共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸共重合体を金属イオンで架橋したアイオノマー樹脂などのカルボキシル基含有ポリマー等があげられる。これらは単独で用いてもよく、2種以上を併用しても良い。特にエチレン−(メタ)アクリル酸共重合体をナトリウムイオン、カリウムイオンなどのアルカリ金属イオンで架橋させたエチレン系アイオノマー樹脂が良好な含水率を与え、良好な発泡性を与えることから好ましい。さらにはエチレン−(メタ)アクリル酸共重合体をカリウムイオンで架橋させたエチレン系アイオノマー樹脂がより大きな平均セル径を与えることから、より好ましい。   It is preferable to add one or more compounds among the hydrophilic polymer and the compound having a triazine skeleton to the polypropylene resin of the present invention. In the present invention, the hydrophilic polymer refers to an ethylene-acrylic acid-maleic anhydride terpolymer, an ethylene- (meth) acrylic acid copolymer, and an ethylene- (meth) acrylic acid copolymer crosslinked with a metal ion. Examples thereof include carboxyl group-containing polymers such as ionomer resins. These may be used alone or in combination of two or more. In particular, an ethylene ionomer resin obtained by crosslinking an ethylene- (meth) acrylic acid copolymer with an alkali metal ion such as sodium ion or potassium ion is preferable because it provides a good water content and good foamability. Further, an ethylene ionomer resin obtained by crosslinking an ethylene- (meth) acrylic acid copolymer with potassium ions is more preferable because it gives a larger average cell diameter.

前記親水性ポリマーの使用量は親水性ポリマーの種類にもより、特に限定されないが、通常ポリプロピレン系樹脂100重量部に対して、0.01重量部以上20重量部未満が好ましく、0.5重量部以上5重量部未満がより好ましい。0.01重量部未満では、高発泡倍率の予備発泡粒子が得られにくく、20重量部以上では耐熱性、機械強度の低下が大きくなる場合がある。   The amount of the hydrophilic polymer used is not particularly limited depending on the kind of the hydrophilic polymer, but it is preferably 0.01 parts by weight or more and less than 20 parts by weight with respect to 100 parts by weight of the polypropylene-based resin. More preferred is less than 5 parts by weight. If it is less than 0.01 parts by weight, it is difficult to obtain pre-expanded particles having a high expansion ratio, and if it is 20 parts by weight or more, the heat resistance and mechanical strength may be greatly reduced.

本発明でトリアジン骨格を有する化合物とは、単位トリアジン骨格あたりの分子量が300以下のものが好ましい。ここで、トリアジン骨格あたりの分子量とは、1分子中に含まれるトリアジン骨格数で分子量を除した値である。単位トリアジン骨格あたりの分子量が300を超えると発泡倍率ばらつき、セル径ばらつきが目立つ場合がある。単位トリアジン骨格あたりの分子量が300以下の化合物としては、例えば、メラミン(化学名1,3,5−トリアジン−2,4,6−トリアミン)、アンメリン(同1,3,5−トリアジン−2−ヒドロキシ−4,6−ジアミン)、アンメリド(同1,3,5−トリアジン−2,4−ヒドロキシ−6−アミン)、シアヌル酸(同1,3,5−トリアジン−2,4,6−トリオール)、トリス(メチル)シアヌレート、トリス(エチル)シアヌレート、トリス(ブチル)シアヌレート、トリス(2−ヒドロキシエチル)シアヌレート、メラミン・イソシアヌル酸縮合物などがあげられる。これらは単独で用いてもよく、2種以上併用しても良い。これらの内、高発泡倍率の予備発泡粒子を発泡倍率ばらつき、セル径ばらつきが少なく得るためには、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物を使用することが好ましい。   In the present invention, the compound having a triazine skeleton preferably has a molecular weight per unit triazine skeleton of 300 or less. Here, the molecular weight per triazine skeleton is a value obtained by dividing the molecular weight by the number of triazine skeletons contained in one molecule. When the molecular weight per unit triazine skeleton exceeds 300, variation in foaming ratio and variation in cell diameter may be noticeable. Examples of the compound having a molecular weight per unit triazine skeleton of 300 or less include melamine (chemical name 1,3,5-triazine-2,4,6-triamine), ammelin (1,3,5-triazine-2- Hydroxy-4,6-diamine), ammelide (1,3,5-triazine-2,4-hydroxy-6-amine), cyanuric acid (1,3,5-triazine-2,4,6-triol) ), Tris (methyl) cyanurate, tris (ethyl) cyanurate, tris (butyl) cyanurate, tris (2-hydroxyethyl) cyanurate, melamine isocyanuric acid condensate and the like. These may be used alone or in combination of two or more. Among these, it is preferable to use melamine, isocyanuric acid, and melamine / isocyanuric acid condensate in order to obtain pre-expanded particles having a high expansion ratio with small variations in expansion ratio and cell diameter.

さらに、必要に応じて、例えば、タルク等のセル造核剤をはじめ酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸などの安定剤または架橋剤、連鎖移動剤、滑剤、可塑剤、充填剤、強化剤、顔料、染料、難燃剤、帯電防止剤等を本発明の効果を損なわない範囲で基材樹脂に添加してポリプロピレン系樹脂混合物としてもよい。   Furthermore, if necessary, for example, cell nucleating agents such as talc, antioxidants, metal deactivators, phosphorus processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, etc. Stabilizers or crosslinkers, chain transfer agents, lubricants, plasticizers, fillers, reinforcing agents, pigments, dyes, flame retardants, antistatic agents, etc. are added to the base resin to the extent that the effects of the present invention are not impaired. It is good also as a system resin mixture.

前記ポリプロピレン系樹脂粒子を、従来から知られている方法を利用して、例えば、耐圧容器内で水中に分散させ、プロピレン系樹脂分散物とし、該分散物を好ましくは該ポリプロピレン系樹脂粒子の融点−25℃から+25℃、更に好ましくは−10℃から+10℃の範囲の温度に加熱するとともに窒素、空気などの無機ガスにより加圧して該ポリプロピレン系樹脂粒子内に水を含浸させ、加圧下で容器内の温度、圧力を一定に保持しながら、該ポリプロピレン系樹脂粒子と水との分散物を容器内よりも低圧の雰囲気下に放出することによりポリプロピレン系予備発泡粒子を製造する。低圧雰囲気に放出する際、該低圧雰囲気は、発泡倍率を高くするために80℃以上に保持されていることが必要であり、高温空気、水蒸気などで好ましくは90℃以上100℃以下に保持する。80℃未満である場合、高発泡倍率の予備発泡粒子が得られず、予備発泡粒子を発泡直後に冷却する効果から予備発泡粒子の収縮を招く。100℃を超えた場合、予備発泡粒子の融着を防ぐことが困難となる場合がある。   The polypropylene resin particles are dispersed in water in a pressure vessel using a conventionally known method, for example, to form a propylene resin dispersion, and the dispersion is preferably a melting point of the polypropylene resin particles. The polypropylene resin particles are impregnated with water by heating to a temperature in the range of −25 ° C. to + 25 ° C., more preferably −10 ° C. to + 10 ° C. and pressurizing with an inorganic gas such as nitrogen or air. While keeping the temperature and pressure inside the container constant, the polypropylene-based pre-expanded particles are produced by releasing the dispersion of the polypropylene resin particles and water in a lower pressure atmosphere than in the container. When discharging into a low-pressure atmosphere, the low-pressure atmosphere needs to be maintained at 80 ° C. or higher in order to increase the expansion ratio, and is preferably maintained at 90 ° C. or higher and 100 ° C. or lower with high-temperature air or water vapor. . When the temperature is less than 80 ° C., pre-expanded particles having a high expansion ratio cannot be obtained, and the pre-expanded particles shrink due to the effect of cooling the pre-expanded particles immediately after expansion. When the temperature exceeds 100 ° C., it may be difficult to prevent the pre-foamed particles from being fused.

予備発泡粒子製造時における密閉容器には特に制限はなく、予備発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよいが、例えばオートクレーブ型の耐圧容器があげられる。   There are no particular limitations on the sealed container at the time of producing the pre-foamed particles, and any container that can withstand the pressure and temperature in the container at the time of producing the pre-foamed particles may be used. For example, an autoclave type pressure-resistant container may be mentioned.

前記分散物の調製に際しては、分散剤として、例えば、第三リン酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム等の無機系分散剤と、例えばドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等の分散助剤を使用されることが好ましい。これらの中でも第三リン酸カルシウムとドデシルベンゼンスルホン酸ナトリウムの併用が更に好ましい。分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して分散剤0.2〜3重量部を配合することが好ましく、分散助剤0.001〜0.1重量部を配合することが好ましい。また、ポリプロピレン系樹脂粒子は、水中での分散性を良好なものにするために、通常、水100重量部に対して20〜100重量部使用するのが好ましい。   In the preparation of the dispersion, as a dispersant, for example, inorganic dispersants such as tribasic calcium phosphate, basic magnesium carbonate, calcium carbonate, and so on, for example, sodium dodecylbenzenesulfonate, sodium n-paraffinsulfonate, α-olefin It is preferable to use a dispersion aid such as sodium sulfonate. Among these, the combined use of tricalcium phosphate and sodium dodecylbenzenesulfonate is more preferable. The amount of dispersant and dispersion aid used varies depending on the type and the type and amount of polypropylene resin used, but usually 0.2 to 3 parts by weight of the dispersant is added to 100 parts by weight of water. It is preferable to add 0.001 to 0.1 parts by weight of a dispersion aid. Moreover, in order to make a polypropylene resin particle favorable in the dispersibility in water, it is preferable to use normally 20-100 weight part with respect to 100 weight part of water.

以上の製造方法により得られるポリプロピレン系樹脂予備発泡粒子の発泡倍率は、5倍以上50倍以下であり、好ましくは7倍以上45倍以下である。   The expansion ratio of the polypropylene resin pre-expanded particles obtained by the above production method is 5 to 50 times, preferably 7 to 45 times.

また、一旦5倍以上35倍以下の予備発泡粒子を製造し、予備発泡粒子を密閉容器内に入れて窒素、空気などを含浸させる加圧処理により予備発泡粒子内の圧力を常圧よりも高くした後、該発泡粒子をスチーム等で加熱して更に発泡させる二段発泡法等の方法で50倍以上の二段発泡予備発泡粒子を得ても良い。   Moreover, once the pre-expanded particles of 5 times to 35 times are manufactured, the pressure in the pre-expanded particles is made higher than the normal pressure by pressurizing the pre-expanded particles in a sealed container and impregnating with nitrogen, air, etc. Then, the foamed particles may be heated by steam or the like to obtain two-stage foamed pre-foamed particles 50 times or more by a method such as a two-stage foaming method for further foaming.

ここで、かくして得られた予備発泡粒子は示差走査熱量測定によって得られるDSC曲線において、2つの融点ピークを有し、低い方の融点(以下、低温側融点と称す)が143℃以下かつ低温融解結晶量比率が90%以下であることが好ましく、該低温側融点が140℃以下かつ低温融解結晶量比率が70%以下であることがより好ましい。低温側融点が143℃より高い場合、もしくは低温融解結晶量比率が90%を超えた場合、該予備発泡粒子で薄肉の部位を有する型形状を型内成形する際や少量の蒸気加熱で型内成形する際に外観美麗な成形体となりにくい。予備発泡粒子の安定的な生産と該予備発泡粒子を用いた型内成形時の成形性を維持できる下限としては、低温側融点130℃、低温融解結晶比率60%であることが望ましい。   Here, the pre-expanded particles thus obtained have two melting point peaks in the DSC curve obtained by differential scanning calorimetry, the lower melting point (hereinafter referred to as the low temperature side melting point) is 143 ° C. or lower, and the low temperature melting is performed. The crystal content ratio is preferably 90% or less, more preferably the low-temperature melting point is 140 ° C. or less and the low-temperature melt crystal content ratio is 70% or less. When the low-temperature melting point is higher than 143 ° C., or when the low-temperature melting crystal content ratio exceeds 90%, the pre-expanded particles are molded into the mold having thin-walled parts in the mold or by a small amount of steam heating. It is difficult to form a molded article with a beautiful appearance when molding. The lower limit for the stable production of pre-expanded particles and the ability to maintain moldability during in-mold molding using the pre-expanded particles is desirably a low-temperature melting point of 130 ° C. and a low-temperature melting crystal ratio of 60%.

ここで、本発明における低温融解結晶量比率とは、示差走査熱量測定(DSC)において、試料4〜10mgを40℃から200℃まで10℃/分の速度で昇温した時に、ポリプロピレン系樹脂予備発泡粒子の基材樹脂が本来有していた結晶状態に基づく融解ピーク(以下、低温ピークと称す。)の融解ピーク熱量α(J/g)と当該ピークより高温側に現れる融解ピーク(以下、高温ピークと称す。)の融解ピーク熱量β(J/g)としたときに、低温ピーク熱量の総融解ピーク全体に対する比率(α/(α+β))(以下、低温DSCピーク比と称す場合がある)を言う。図1に前記条件で得られたDSCチャートの模式図を示す。   Here, the low-temperature melting crystal amount ratio in the present invention means that when a sample 4 to 10 mg is heated from 40 ° C. to 200 ° C. at a rate of 10 ° C./min in differential scanning calorimetry (DSC), The melting peak calorie α (J / g) of the melting peak (hereinafter referred to as the low temperature peak) based on the crystalline state originally possessed by the base resin of the expanded particles and the melting peak (hereinafter referred to as the high temperature side) from the peak. When the melting peak calorie β (J / g) of the high-temperature peak is defined as the ratio (α / (α + β)) of the total melting peak of the low-temperature peak calorie (hereinafter referred to as the low-temperature DSC peak ratio). ) FIG. 1 shows a schematic diagram of a DSC chart obtained under the above conditions.

本発明の製造方法により得られるポリプロピレン系樹脂予備発泡粒子を型内発泡成形体にするには、例えば、イ)発泡粒子を無機ガスで加圧処理して粒子内に無機ガスを含浸させ所定の粒子内圧を付与した後、金型に充填し、蒸気等で加熱融着させる方法(特公昭51−22951号)、ロ)発泡粒子をガス圧力で圧縮して金型に充填し粒子の回復力を利用して、蒸気等で加熱融着させる方法(特公昭53−33996号)等の方法が利用しうる。   In order to make the pre-expanded polypropylene resin particles obtained by the production method of the present invention into an in-mold foam molded article, for example, a) Pressurizing the foamed particles with an inorganic gas to impregnate the particles with an inorganic gas, A method in which the inner pressure of the particles is applied, and then filled into a mold and heat-sealed with steam or the like (Japanese Examined Patent Publication No. 51-22951). B) Resilience of the particles by compressing the expanded particles with gas pressure and filling the mold. A method of heating and fusing with steam or the like (Japanese Patent Publication No. 53-33996) can be used.

次に、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
〈発泡倍率測定〉
試料となる予備発泡粒子重量と、該試料をメスフラスコ中のエタノールに水没させてえられる容積から予備発泡粒子密度を算出し、基材樹脂密度を除して発泡倍率とした。
〈融着予備発泡粒子比率〉
目開き4.75mmの篩に重量20〜100gの予備発泡粒子をのせ、篩を1分間振動させ、篩上に残った予備発泡粒子重量の重量比率を算出し、融着予備発泡粒子比率とした。
ポリプロピレン系樹脂a:エチレン−プロピレンランダム共重合体 融点 149.6℃ メルトフローレート 7.3g/10min
ポリプロピレン系樹脂b:エチレン−プロピレン−ブテンランダム共重合体 融点 145.6℃ メルトフローレート 9.0g/10min
ポリプロピレン系樹脂c:エチレン−プロピレンランダム共重合体 融点 142.0℃ メルトフローレート 7.0g/10min
結晶核剤A:リン酸2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウム
結晶核剤B:ヒドロキシ−ジ(tert−ブチル安息香酸)アルミニウム
結晶核剤C:ビス(4−メチルベンジリデン)ソルビトール
EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited only to these Examples.
<Measurement of foaming ratio>
The pre-foamed particle density was calculated from the weight of the pre-foamed particles used as a sample and the volume obtained by immersing the sample in ethanol in a volumetric flask, and the base resin density was divided to obtain the expansion ratio.
<Fused pre-foamed particle ratio>
Pre-expanded particles having a weight of 20 to 100 g are placed on a sieve having a mesh opening of 4.75 mm, the sieve is vibrated for 1 minute, and the weight ratio of the weight of the pre-expanded particles remaining on the sieve is calculated to obtain the fused pre-expanded particle ratio. .
Polypropylene resin a: ethylene-propylene random copolymer Melting point 149.6 ° C. Melt flow rate 7.3 g / 10 min
Polypropylene resin b: ethylene-propylene-butene random copolymer Melting point: 145.6 ° C. Melt flow rate: 9.0 g / 10 min
Polypropylene resin c: ethylene-propylene random copolymer Melting point 142.0 ° C Melt flow rate 7.0 g / 10 min
Crystal nucleating agent A: Sodium 2,2-methylenebis (4,6-di-tert-butylphenyl) phosphate Crystal nucleating agent B: Hydroxy-di (tert-butylbenzoic acid) aluminum Crystal nucleating agent C: Bis (4- Methylbenzylidene) sorbitol

(実施例1)
ポリプロピレン系樹脂aを100重量部にパウダー状タルク0.1重量部、結晶核剤A0.01重量部、トリアジン骨格を有する化合物としてメラミン0.3重量部をドライブレンドし、該ブレンド物を50mm単軸押出機にて押し出し、ポリプロピレン系樹脂粒子とした。得られた樹脂粒子100重量部(2.4kg)を、攪拌機を有する10L容の耐圧容器の中に入れ、第3リン酸カルシウム(大平化学産業社製)2.0重量部及びノルマルパラフィンスルホン酸ナトリウム0.03重量部の存在下で、水200重量部中に分散させた。該分散液を攪拌しながら、該分散液を165.4℃に加熱した後、該耐圧容器の内部圧力を2.98MPaになるように調整した。次に、耐圧容器下部に設置した内径25mmの放出バルブを解放し、放出バルブの後方端に取り付けた直径4mmの円形オリフィスを通して、ペレット及び水の分散液を、水蒸気にて雰囲気温度を100℃に調整した大気中に放出して、発泡倍率17.0倍、低温融解結晶比率72%の予備発泡粒子を得た。融着予備発泡粒子比率は0%であった。

Figure 0004907118
Example 1
100 parts by weight of polypropylene resin a is dry blended with 0.1 parts by weight of powdered talc, 0.01 parts by weight of crystal nucleating agent A, and 0.3 parts by weight of melamine as a compound having a triazine skeleton. Extrusion was performed with a screw extruder to obtain polypropylene resin particles. 100 parts by weight (2.4 kg) of the obtained resin particles are put in a 10 L pressure vessel having a stirrer, and 2.0 parts by weight of tribasic calcium phosphate (manufactured by Ohira Chemical Industry Co., Ltd.) and sodium normal paraffin sulfonate 0 Dispersed in 200 parts by weight of water in the presence of 0.03 parts by weight. While stirring the dispersion, the dispersion was heated to 165.4 ° C., and then the internal pressure of the pressure vessel was adjusted to 2.98 MPa. Next, the discharge valve with an inner diameter of 25 mm installed at the lower part of the pressure vessel is released, and the pellet and water dispersion are brought to an atmospheric temperature of 100 ° C. with water vapor through a circular orifice with a diameter of 4 mm attached to the rear end of the discharge valve. Release into the adjusted atmosphere to obtain pre-expanded particles having an expansion ratio of 17.0 times and a low-melting crystal ratio of 72%. The fusion pre-expanded particle ratio was 0%.
Figure 0004907118

(実施例2)
実施例1で用いたポリプロピレン系樹脂を用いる代わりに、ポリプロピレン系樹脂bを用い、結晶核剤bを0.05重量部、トリアジン骨格を有する化合物としてイソシアヌル酸1重量部を押し出し、分散液を159.8℃に加熱し、該耐圧容器の内圧1.99MPaになるように調整し、水蒸気により90℃に調整した大気中に予備発泡粒子を放出した以外は実施例1と同様な方法により、発泡倍率14.5倍、低温融解結晶比率70%の予備発泡粒子を得た。融着予備発泡粒子比率は0.5%であった。
(Example 2)
Instead of using the polypropylene resin used in Example 1, the polypropylene resin b was used, 0.05 part by weight of the crystal nucleating agent b, 1 part by weight of isocyanuric acid as a compound having a triazine skeleton were extruded, and the dispersion liquid was 159. Foaming was carried out in the same manner as in Example 1 except that the pre-expanded particles were discharged into the atmosphere adjusted to 90 ° C. with water vapor, adjusted to an internal pressure of 1.99 MPa, and heated to 0.8 ° C. Pre-expanded particles having a magnification of 14.5 times and a low-melting crystal ratio of 70% were obtained. The ratio of the fused pre-expanded particles was 0.5%.

(実施例3)
実施例1で用いたポリプロピレン系樹脂を用いる代わりに、ポリプロピレン系樹脂bを用い、結晶核剤a0.01重量部の代わりに結晶核剤c0.1重量部用い、トリアジン骨格を有する化合物の代わりにエチレン−(メタ)アクリル酸共重合体をナトリウムイオンで架橋させたエチレン系アイオノマー樹脂を3重量部添加し、分散液を160.5℃に加熱し、該耐圧容器の内圧2.00MPaに調整したこと以外は実施例1と同様な方法により、発泡倍率14.2倍、低温融解結晶比率77%の予備発泡粒子を得た。融着予備発泡粒子比率は0%であった。
Example 3
Instead of using the polypropylene resin used in Example 1, the polypropylene resin b was used, the crystal nucleating agent c was used in an amount of 0.1 part by weight instead of 0.01 part by weight, and the compound having a triazine skeleton was used. 3 parts by weight of an ethylene ionomer resin obtained by crosslinking an ethylene- (meth) acrylic acid copolymer with sodium ions was added, and the dispersion was heated to 160.5 ° C. to adjust the internal pressure of the pressure vessel to 2.00 MPa. Except for this, pre-expanded particles having the expansion ratio of 14.2 times and the low-temperature melting crystal ratio of 77% were obtained in the same manner as in Example 1. The fusion pre-expanded particle ratio was 0%.

(実施例4)
実施例1で用いたポリプロピレン系樹脂を用いる代わりに、ポリプロピレン系樹脂cを用い、結晶核剤a0.01重量部の代わりに結晶核剤c0.05重量部用い、分散液を154.0℃に加熱し、該耐圧容器の内圧3.00MPaに調整し、水蒸気により90℃に調整した大気中に予備発泡粒子を放出したこと以外は実施例1と同様な方法により、発泡倍率17.3倍、低温融解結晶比率81%の予備発泡粒子を得た。融着予備発泡粒子比率は0%であった。
Example 4
Instead of using the polypropylene resin used in Example 1, the polypropylene resin c was used, and 0.05 part by weight of the crystal nucleating agent c was used instead of 0.01 part by weight of the crystal nucleating agent a, and the dispersion was maintained at 154.0 ° C. By heating, adjusting the internal pressure of the pressure vessel to 3.00 MPa, and releasing the pre-expanded particles into the atmosphere adjusted to 90 ° C. with water vapor, the expansion ratio was 17.3 times by the same method as in Example 1. Pre-expanded particles having a low-temperature melting crystal ratio of 81% were obtained. The fusion pre-expanded particle ratio was 0%.

(比較例1)
実施例1で用いた結晶核剤aを添加せず、分散液を166.3℃に加熱し、耐圧容器の内圧1.98MPaに調整した以外は実施例1と同様な方法により、発泡倍率14.2倍、低温融解結晶比率78%の予備発泡粒子を得た。融着予備発泡粒子比率は25%であった。
(Comparative Example 1)
In the same manner as in Example 1, except that the crystal nucleating agent a used in Example 1 was not added, and the dispersion was heated to 166.3 ° C. and adjusted to an internal pressure of 1.98 MPa in the pressure vessel, an expansion ratio of 14 Pre-expanded particles having a ratio of low-temperature melting crystal of 78% were obtained. The ratio of the fused pre-expanded particles was 25%.

(比較例2)
実施例2で用いた結晶核剤bを添加せず、分散液を160.5℃に加熱した以外は実施例2と同様な方法により、発泡倍率14.0倍、低温融解結晶比率85%の予備発泡粒子を得た。融着予備発泡粒子比率は55%であった。
実施例1〜4および比較例1〜2に示すとおり、結晶核剤をポリプロピレン系樹脂に添加することにより、融着予備発泡粒子は劇的に抑制できることがわかる。
(Comparative Example 2)
Except that the crystal nucleating agent b used in Example 2 was not added and the dispersion was heated to 160.5 ° C., a foaming ratio of 14.0 times and a low-temperature melting crystal ratio of 85% were obtained in the same manner as in Example 2. Pre-expanded particles were obtained. The ratio of the fused pre-expanded particles was 55%.
As shown in Examples 1 to 4 and Comparative Examples 1 and 2, it can be seen that by adding the crystal nucleating agent to the polypropylene resin, the fused pre-expanded particles can be dramatically suppressed.

ポリプロピレン系樹脂予備発泡粒子のDSCチャートの模式図Schematic diagram of DSC chart of polypropylene resin pre-expanded particles

符号の説明Explanation of symbols

α 低温融解ピーク熱量
β 高温融解ピーク熱量
α Low temperature melting peak heat β High temperature melting peak heat

Claims (3)

ポリプロピレン系樹脂組成物からなる粒子を密閉容器内で水系分散媒に分散させ前記粒子を前記ポリプロピレン系樹脂組成物の軟化温度以上の温度に加熱し、分散媒である水を発泡剤として該粒子内に含浸せしめた後、密閉容器内の内圧よりも低圧かつ80℃以上の雰囲気中に放出することによって予備発泡させるポリプロピレン系樹脂予備発泡粒子の製造方法において、
前記ポリプロピレン系樹脂組成物が、有機リン系結晶核剤、アルミニウム系結晶核剤、ソルビトール系結晶核剤から選ばれる1種以上である結晶核剤を含有することを特徴とするポリオレフィン系樹脂予備発泡粒子の製造方法。
Particles composed of a polypropylene resin composition are dispersed in an aqueous dispersion medium in a closed container, the particles are heated to a temperature equal to or higher than the softening temperature of the polypropylene resin composition, and water as a dispersion medium is used as a blowing agent in the particles. In the method for producing polypropylene resin pre-expanded particles that are pre-expanded by being discharged into an atmosphere at a pressure lower than the internal pressure in the sealed container and 80 ° C. or higher after impregnation into
The polyolefin resin preliminary , wherein the polypropylene resin composition contains one or more crystal nucleating agents selected from an organic phosphorus crystal nucleating agent, an aluminum crystal nucleating agent, and a sorbitol crystal nucleating agent A method for producing expanded particles.
示差走査熱量計法によるポリプロピレン系樹脂予備発泡粒子の測定において、2つの融点を有し、低温側融点が143℃以下かつ低温融解結晶量比率が90%以下であることを特徴とする請求項1記載のポリプロピレン系樹脂予備発泡粒子の製造方法。 In the measurement of the pre-expanded polypropylene resin particles by differential scanning calorimetry, has two melting points, low temperature-side melting point of 143 ° C. or less and a low-melting crystal amount ratio is equal to or less than 90%, claim 2. A method for producing pre-expanded polypropylene resin particles according to 1. ポリプロピレン系樹脂組成物が、親水性ポリマー、トリアジン骨格を有する化合物から選ばれる1種以上を含有することを特徴とする請求項1または2に記載のポリプロピレン系樹脂予備発泡粒子の製造方法。 Polypropylene resin composition, characterized by containing at least one member selected from compounds having a hydrophilic polymer, a triazine skeleton, a manufacturing method of polypropylene resin pre-expanded particles according to claim 1 or 2.
JP2005208117A 2005-07-19 2005-07-19 Method for producing polypropylene resin pre-expanded particles Expired - Fee Related JP4907118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005208117A JP4907118B2 (en) 2005-07-19 2005-07-19 Method for producing polypropylene resin pre-expanded particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005208117A JP4907118B2 (en) 2005-07-19 2005-07-19 Method for producing polypropylene resin pre-expanded particles

Publications (2)

Publication Number Publication Date
JP2007023172A JP2007023172A (en) 2007-02-01
JP4907118B2 true JP4907118B2 (en) 2012-03-28

Family

ID=37784376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208117A Expired - Fee Related JP4907118B2 (en) 2005-07-19 2005-07-19 Method for producing polypropylene resin pre-expanded particles

Country Status (1)

Country Link
JP (1) JP4907118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107556621A (en) * 2017-10-13 2018-01-09 铜陵市永创变压器电子有限公司 A kind of preparation method of nano aluminium oxide butadiene-styrene rubber capillary polypropylene composite shock-absorbing cushion material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612741A (en) * 1984-06-14 1986-01-08 Japan Styrene Paper Co Ltd Manufacture of polypropylene resin expanded beads
JP3281904B2 (en) * 1991-12-28 2002-05-13 株式会社ジエイエスピー Expanded polypropylene resin particles and molded article thereof
JP3198469B2 (en) * 1992-12-22 2001-08-13 株式会社ジエイエスピー Expanded polyolefin resin particles and method for producing the same
JPH08183873A (en) * 1994-12-28 1996-07-16 Kanegafuchi Chem Ind Co Ltd Pre-expanded polypropylene resin partile and its production
JP3600930B2 (en) * 1997-05-15 2004-12-15 株式会社カネカ Polypropylene resin pre-expanded particles and in-mold expanded molded article
JP4031314B2 (en) * 2002-08-02 2008-01-09 株式会社カネカ Polypropylene resin pre-expanded particles

Also Published As

Publication number Publication date
JP2007023172A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5041812B2 (en) Polypropylene resin pre-expanded particles and in-mold foam molding
JP5058557B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP7227223B2 (en) POLYOLEFIN RESIN EXPANSION PARTICLES, METHOD FOR PRODUCING SAME AND POLYOLEFIN RESIN EXPANSION MOLDED PRODUCT
JP5365901B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5400323B2 (en) Method for producing polyolefin resin pre-expanded particles with reduced amount of adhesion dispersant
JP5587605B2 (en) Polypropylene resin pre-expanded particles and in-mold foam-molded product obtained from the pre-expanded particles
JP5188144B2 (en) Polypropylene resin pre-expanded particles without friction noise
JP4779330B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP5324804B2 (en) Method for producing polypropylene resin expanded particles, polypropylene resin expanded particles, and expanded foam in polypropylene resin mold
JP2009126914A (en) Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
JP5528002B2 (en) Polypropylene resin pre-expanded particles
JP4965163B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP4907118B2 (en) Method for producing polypropylene resin pre-expanded particles
JP5491083B2 (en) Polyolefin resin pre-expanded particles with little variation in magnification and method for producing the same
JP5040167B2 (en) Polypropylene resin pre-expanded particles and in-mold foam moldings thereof
JP5022094B2 (en) Polypropylene resin pre-expanded particles, method for producing the same, and in-mold foam molded article
JP5064745B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP5281333B2 (en) Process for producing polypropylene resin pre-expanded particles and polypropylene resin pre-expanded particles
JP5177247B2 (en) Polypropylene-based resin pre-expanded particles, in-mold foam molded product, and method for producing the same
JP5384028B2 (en) Method for producing polypropylene resin pre-expanded particles
JP2004067768A (en) Polypropylene-based resin preliminary foamed particle
JP5256664B2 (en) Method for producing polyolefin resin pre-expanded particles with reduced amount of adhesion dispersant
WO2022186281A1 (en) Polyethylene resin foamed particles, polyethylene resin in-mold foam molded body, and method for manufacturing these
JP2010053274A (en) Method for producing polyolefin-based resin foamed particles, and polyolefin-based resin foamed particles and in-mold expansion molded articles formed by the same
JP5256823B2 (en) Method for producing polypropylene resin foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4907118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees