JP5058557B2 - Polypropylene resin pre-expanded particles, and in-mold foam moldings - Google Patents

Polypropylene resin pre-expanded particles, and in-mold foam moldings Download PDF

Info

Publication number
JP5058557B2
JP5058557B2 JP2006290411A JP2006290411A JP5058557B2 JP 5058557 B2 JP5058557 B2 JP 5058557B2 JP 2006290411 A JP2006290411 A JP 2006290411A JP 2006290411 A JP2006290411 A JP 2006290411A JP 5058557 B2 JP5058557 B2 JP 5058557B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
resin
mfr
polypropylene
expanded particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006290411A
Other languages
Japanese (ja)
Other versions
JP2008106150A (en
Inventor
哲也 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006290411A priority Critical patent/JP5058557B2/en
Publication of JP2008106150A publication Critical patent/JP2008106150A/en
Application granted granted Critical
Publication of JP5058557B2 publication Critical patent/JP5058557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polypropylene resin pre-expanded particle that can easily afford an in-mold molded item having a complicated shape at a low cost utterly without detriment to heat resistance, solvent resistance, heat insulating properties, and shock-absorbing properties inherent in the polypropylene resin as it can solve a problem of inward inclination by a short-time drying and realizes good surface beautifulness, particularly excellently beautiful appearances at a portion having a thin-walled shape in in-mold molding of an item having a complicated shape. <P>SOLUTION: The polypropylene resin pre-expanded particle comprises as a substrate resin a polypropylene resin, which comprises at least 70 wt.% and at most 95 wt.% of a polypropylene resin comprising 1-butene and ethylene as comonomers and having an MFR of at least 10 g/10 min and at most 30 g/10 min and at least 5 wt.% and at most 30 wt.% of a polypropylene resin comprising ethylene as a comonomer and having an MFR of at least 0.1 g/10 min and at most 3 g/10 min and has an MFR of at least 5 g/10 min and at most 20 g/10 min and a melting point of not lower than 140&deg;C and not higher than 155&deg;C, and a petroleum resin and/or a terpene resin. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は緩衝包材、通箱、自動車内装部材、自動車バンパー用芯材、断熱材などに用いられるポリプロピレン系樹脂予備発泡粒子、及び該予備発泡粒子を用いて得られる型内発泡成形体に関するものである。   TECHNICAL FIELD The present invention relates to a polypropylene resin pre-expanded particle used for a buffer wrapping material, a pass box, an automobile interior member, a core material for an automobile bumper, a heat insulating material, and the like, and an in-mold foam-molded article obtained by using the pre-expanded particle. It is.

ポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴をもつ。また同様の型内発泡成形体と比較しても、ポリスチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、耐薬品性、耐熱性、圧縮後の歪回復率に優れており、またポリエチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、寸法精度、耐熱性、圧縮強度が優れている。これらの特徴により、ポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、自動車内装部材、自動車バンパー用芯材をはじめ、断熱材、緩衝包装材など様々な用途に用いられている。   The in-mold foam molded article obtained by using the polypropylene resin pre-expanded particles has characteristics such as shape flexibility, light weight, and heat insulation, which are advantages of the in-mold foam molded article. Compared to similar in-mold foam moldings, it is superior in chemical resistance, heat resistance and strain recovery after compression compared to in-mold foam moldings obtained using polystyrene resin pre-expanded particles. In addition, the dimensional accuracy, heat resistance, and compressive strength are excellent as compared with the in-mold foam molded body obtained using the polyethylene resin pre-expanded particles. Due to these characteristics, in-mold foam molded articles obtained using polypropylene resin pre-expanded particles are used in various applications such as automotive interior members, automotive bumper core materials, heat insulating materials, and cushioning packaging materials. .

一方、近年型内発泡成形体においても外観が重要視されるものが増えてきている。これは使用者の目に触れる場所に使用される一般緩衝包材、自動車内装部材、通い箱と言った用途に多く、型内発泡成形体に通常求められる剛性、軽量性、断熱性などの物性に加え、良好な外観が求められる。型内発泡成形体はその製法上、粒子間の隙間や粒子の亀甲模様が見られるが、外観を重視する製品にはこれらを嫌うものも多い。粒子間の隙間を目立たなくさせるためには、一般に型内発泡成形時の加熱蒸気圧力を高くし、粒子同士の融着を促進させるなどの方法が取られる。これらの技術から分かるように、粒子間の間隙が目立たない外観が良好な型内発泡成形体、すなわち表面美麗性の高い型内発泡成形体を得るためには、型内発泡成形時の成形加熱蒸気圧力を粒子間の融着に必要となる圧力より高くする必要がある。   On the other hand, in recent years, the number of in-mold foam moldings whose appearance is important is increasing. This is often used for applications such as general cushioning packaging, automobile interior parts, and returnable boxes used in places where users can see. Physical properties such as rigidity, lightness, and heat insulation that are usually required for in-mold foam moldings. In addition, a good appearance is required. In-mold foamed moldings show gaps between particles and turtle shell patterns due to the manufacturing method, but many products that emphasize the appearance dislike them. In order to make the gaps between the particles inconspicuous, generally, a method is adopted in which the heating steam pressure at the time of in-mold foam molding is increased to promote fusion between the particles. As can be seen from these technologies, in order to obtain an in-mold foam molded article with a good appearance with no conspicuous gaps between particles, that is, an in-mold foam molded article with a high surface beauty, The vapor pressure needs to be higher than the pressure required for fusion between particles.

また、プロピレン系樹脂型内発泡成形体の最も主要な用途の一つである緩衝包材の、特に箱形形状のものでは、加熱蒸気による成形の直後に“内倒れ”と呼ばれる現象が見られる。“内倒れ”とは、箱形の成形体における端部寸法に対し、中央部寸法が小さくなり、差が生じることをいい、この差は個々の設計製品サイズによって絶対値は変わるが、内倒れが大きい場合、製品として使用できない不良品となる。内倒れのほとんどは60℃以上80℃以下の高温乾燥することで概ね回復する場合があるが、このような乾燥工程の導入は著しく生産性を悪化させる。   In addition, in the case of a shock-absorbing packaging material, which is one of the most important uses of the propylene-based resin-molded foam-molded body, particularly in a box shape, a phenomenon called “inside-down” is observed immediately after molding by heating steam. . “Inclined” means that the center dimension is smaller than the end dimension of the box-shaped molded product, and there is a difference. The absolute value varies depending on the size of each designed product, but it falls inward. If is large, it becomes a defective product that cannot be used as a product. Most of the internal collapse may be recovered by drying at a high temperature of 60 ° C. or more and 80 ° C. or less, but the introduction of such a drying step significantly deteriorates productivity.

加熱成形後の成形体の収縮による内倒れ現象に対し、樹脂剛性の高いポリプロピレン系樹脂を使用し、反力として働く成形体剛性を付与し、変形を抑制することができる。   With respect to the inversion phenomenon due to shrinkage of the molded body after heat molding, a polypropylene resin having a high resin rigidity is used to impart a molded body rigidity that acts as a reaction force, and deformation can be suppressed.

しかし、内倒れ現象を抑制できるような高い剛性を持つポリプロピレン系樹脂とは、一般にコモノマー含量の少ない、融点の高い樹脂となるが、樹脂の融点が高くなるにつれて良好な成形体を得るために必要となる成形加熱蒸気の圧力は高くなる傾向にある。このため、より高い剛性を求める場合、加熱蒸気の多量消費のため、ユーティリティコストが高くなるため成形加工コストが高くなる。さらに高剛性の樹脂を用いた場合、加熱成形圧が高くなることから、耐圧仕様の高い成形機や金型を用いる必要が生じ、ユーティリティコストに加え、設備コストが高くなる。現在ポリプロピレン系樹脂予備発泡粒子の型内発泡成形用の成形機は、耐圧0.4MPaの仕様であるものが大半を占めており、該成形機を用いて通常生産される成形加熱蒸気圧力はおおむね0.36MPa程度までである。型内発泡成形に用いられるポリプロピレン系樹脂予備発泡粒子は、これに対応できるような特性の樹脂を用いており、一般には融点が140〜150℃程度のエチレン-ランダムポリプロピレンが用いられている。   However, polypropylene resin with high rigidity that can suppress the internal falling phenomenon is generally a resin with a low comonomer content and a high melting point, but it is necessary to obtain a good molded product as the melting point of the resin increases. The pressure of the formed heating steam tends to increase. For this reason, when a higher rigidity is required, a large amount of heating steam is consumed, resulting in an increase in utility cost, resulting in an increase in molding processing cost. Further, when a highly rigid resin is used, the heat molding pressure becomes high, so that it is necessary to use a molding machine or a mold having a high pressure resistance specification, which increases the equipment cost in addition to the utility cost. At present, most of the molding machines for in-mold foam molding of polypropylene resin pre-expanded particles occupy a specification with a pressure resistance of 0.4 MPa, and the molding heating steam pressure normally produced by using the molding machine is approximately. Up to about 0.36 MPa. Polypropylene-based resin pre-expanded particles used for in-mold foam molding use a resin having such a characteristic that can cope with this, and generally, ethylene-random polypropylene having a melting point of about 140 to 150 ° C. is used.

これまで、型内発泡成形体の剛性を向上するための技術に関して、様々な技術が検討されている。ポリプロピレン系樹脂で高い剛性を得るためには単純にホモポリプロピレンを用いることが考えられるが、例えば特許文献1には引張弾性率が15000〜25000kg/cm2で示差走査型熱量計にて得られるDSC曲線の高温側ピークの熱量が30〜60J/gであるホモポリプロピレン系樹脂予備発泡粒子に関しての技術が開示されている。また特許文献1にはMFRが20〜100g/10分の範囲にあるホモプロピレン系樹脂を用いて、比較的低い成形温度で型内発泡成形体を得ることのできる予備発泡粒子が作製しうるという技術が開示されている。しかし、特許文献1記載の技術では、良好な発泡成形体を得るために必要な成形時の加熱蒸気の圧力が0.4〜0.6MPaであると記載されており、前述のように0.4MPa耐圧仕様の成形機では成形できない。また成形体の表面美麗性に関しては特段の記載はない。 Up to now, various techniques have been studied for improving the rigidity of the in-mold foam molded article. In order to obtain high rigidity with a polypropylene resin, it is conceivable to simply use homopolypropylene. For example, Patent Document 1 discloses a DSC obtained by a differential scanning calorimeter with a tensile elastic modulus of 15,000 to 25000 kg / cm 2. The technique regarding the homopolypropylene-type resin pre-expanded particle | grains whose calorie | heat amount of the high temperature side peak of a curve is 30-60 J / g is disclosed. Patent Document 1 also discloses that pre-foamed particles capable of obtaining an in-mold foam-molded product at a relatively low molding temperature can be produced using a homopropylene resin having an MFR in the range of 20 to 100 g / 10 min. Technology is disclosed. However, in the technique described in Patent Document 1, it is described that the pressure of the heating steam at the time of molding necessary for obtaining a good foamed molded product is 0.4 to 0.6 MPa. It cannot be molded with a molding machine of 4 MPa pressure resistance specification. Moreover, there is no special description about the surface beauty of a molded object.

また、特許文献2記載の技術ではホモポリプロピレンや、コモノマー含量の少ないランダムポリプロピレン系樹脂を用いているが、表面美麗性に関して特段の記載は無い。類似の評価基準としては、発泡粒子同士の融着が60%以上という基準で評価しているが、該基準は型内発泡成形体内部の粒子同士がそれぞれ部分融着するという評価基準であり、表面美麗性を得るという基準に比べ、低い成形加熱蒸気圧力でも満たしうる基準である。該公報記載の技術では、実際に0.4MPa耐圧使用の成形機では表面美麗な成形体を得ることは難しい。   Further, in the technique described in Patent Document 2, homopolypropylene or a random polypropylene resin having a low comonomer content is used, but there is no particular description regarding the surface beauty. As a similar evaluation standard, the evaluation is based on the standard that the fusion between the foamed particles is 60% or more, but the standard is an evaluation standard in which the particles inside the in-mold foam molded product are partially fused, Compared to the standard for obtaining surface aesthetics, this is a standard that can be satisfied even with a low molding heating steam pressure. With the technique described in this publication, it is difficult to obtain a molded article having a beautiful surface with a molding machine that uses 0.4 MPa pressure.

ホモポリプロピレンほど高い剛性は得られないものの、成形性を重視してポリプロピレン系ランダム共重合体を用いた技術も検討されている。例えば特許文献3には、基材樹脂として融点が149〜157℃、MFRが1〜20g/10分、かつ半結晶時間が一定の値以下のプロピレン系ランダム共重合体を基材樹脂として用いる技術が開示されている。   Although high rigidity cannot be obtained as compared with homopolypropylene, a technique using a polypropylene random copolymer has been studied with emphasis on moldability. For example, Patent Document 3 discloses a technique in which a propylene-based random copolymer having a melting point of 149 to 157 ° C., an MFR of 1 to 20 g / 10 minutes, and a half crystallization time of a certain value or less is used as the base resin. Is disclosed.

また、特許文献4には、型内発泡成形に用いるポリプロピレン系樹脂予備発泡粒子の結晶状態について、示差走査型熱量分析(以下DSCと略す)を用いて得られる融解結晶カーブの高温側結晶量と低温側結晶量の関係を一定の範囲に設定することにより、得られる型内発泡成形体の圧縮強度を向上する技術が開示されている。   Patent Document 4 describes the high-temperature-side crystal amount of a melting crystal curve obtained by using differential scanning calorimetry (hereinafter abbreviated as DSC) for the crystalline state of polypropylene resin pre-expanded particles used for in-mold foam molding. A technique for improving the compressive strength of the obtained in-mold foam molded article by setting the relationship between the low-temperature side crystal amount within a certain range is disclosed.

しかし、これらの技術に関しては、型内発泡成形に必要となる加熱蒸気の圧力は0.4〜0.5MPaと高く、前記特許文献2〜4に記載の技術と同様、特に耐圧性能の高い成形機を用いることによって可能となっている技術である。   However, regarding these techniques, the pressure of the heating steam required for in-mold foam molding is as high as 0.4 to 0.5 MPa, and, as in the techniques described in Patent Documents 2 to 4, molding with particularly high pressure resistance performance. This technology is made possible by using a machine.

さらに特許文献5には、1−ブテンをコモノマーとして含むポリプロピレン系樹脂を用いると樹脂融点に対して高い引っ張り弾性率、すなわち剛性を持つ樹脂が得られ、これを用いることにより、高い剛性をもつ型内発泡成形体を得ることができるという技術が開示されている。   Further, in Patent Document 5, when a polypropylene resin containing 1-butene as a comonomer is used, a resin having a high tensile elastic modulus, that is, a rigidity is obtained with respect to the resin melting point. By using this, a mold having a high rigidity is obtained. A technique is disclosed in which an inner foamed molded product can be obtained.

しかし当該技術に関しても、型内発泡成形に必要となる加熱蒸気の圧力は0.4MPa前後であり、他の技術と比較すると比較的低い成形加熱蒸気圧力であるものの、実施されている例の中で最も低いもので0.36MPaであり、現状よく用いられている0.4MPa耐圧仕様の成形機性能の下限レベルである。また表面美麗性さらには薄肉部位の美麗性に関して特段の記載はなく、表面美麗性を得るためにはさらに高い成形加熱蒸気圧力が必要となると考えられる。   However, even with this technology, the pressure of the heating steam required for in-mold foam molding is around 0.4 MPa. The lowest is 0.36 MPa, which is the lower limit level of the molding machine performance of the 0.4 MPa pressure resistance specification that is often used at present. Further, there is no particular description regarding the surface aesthetics and also the aesthetics of the thin-walled portion, and it is considered that higher molding heating steam pressure is required to obtain the surface aesthetics.

さらに特許文献6には、1−ブテン成分量を3〜12重量%含むプロピレン・1−ブテンランダム共重合体を基材樹脂とするポリプロピレン系樹脂予備発泡粒子を用いることにより、高い剛性を持つポリプロピレン系樹脂発泡成形体が得られる技術が開示されている。当該技術を用いた場合、成形加熱蒸気の圧力が0.3MPa前後と現状よく用いられる0.4MPa耐圧仕様の成形機でも成形可能であると記載されている。しかし、高分子量成分であるMFRの低い成分を含まず、該特許文献記載のエチレン成分を含まない1−ブテン単独系のポリプロピレン系樹脂ランダム共重合体は、エチレン成分を含むポリプロピレン系樹脂ランダム共重合体に比べ硬くもろい性質があり、この性質が発泡体の基材樹脂として用いた場合に、特に、緩衝包材用途の場合には、繰り返し緩衝性能に悪影響を及ぼし、自動車部材用途の場合、緩衝特性、圧縮後の寸法回復性や、低温領域での衝撃特性が劣ると言う性質となる。ポリプロピレン系樹脂発泡成形体は、同じ型内発泡成形体であるポリスチレン系樹脂発泡成形体と比べ、剛性面では劣るものの、繰り返し衝撃への耐性や柔軟性に優位性があり、これをもって緩衝包装材などに用いられている面もある。このため、該技術記載の技術では、剛性のみを目的とする用途以外の一般的な緩衝包材用途には向いていないという欠点もある。   Further, Patent Document 6 discloses a polypropylene having high rigidity by using polypropylene resin pre-expanded particles whose base resin is a propylene / 1-butene random copolymer containing 3 to 12% by weight of 1-butene component. A technique for obtaining a resin-based foamed molded article is disclosed. When this technology is used, it is described that molding can be performed even with a molding machine having a pressure resistance of 0.4 MPa, which is often used at present, with the pressure of the molding heating steam being around 0.3 MPa. However, a 1-butene homopolypropylene resin random copolymer that does not contain a component having a low MFR that is a high molecular weight component and does not contain an ethylene component described in the patent document is a polypropylene resin random copolymer containing an ethylene component. There is a hard and brittle property compared to coalescence, and this property has a negative effect on repeated cushioning performance when used as a base resin for foams, especially in the case of cushioning packaging materials. Properties, dimensional recoverability after compression, and impact properties in a low temperature region are inferior. Polypropylene resin foam molded products are superior to polystyrene resin foam molded products, which are the same in-mold foam molded products, in terms of rigidity, but have superior resistance to repeated impacts and flexibility. Some aspects are used for such purposes. For this reason, the technique described in the technology also has a drawback that it is not suitable for general cushioning packaging applications other than those intended only for rigidity.

以上のように高い剛性を有するポリプロピレン系樹脂を基材とする予備発泡粒子を成形するには、一般に高い成形加熱蒸気圧力に耐えうる特殊な成形機を使用している現状がある。しかし成形機の耐圧性能を上げるためには、成形機の強度を高めるため装置を大型にする必要があり、また金型も肉厚にする必要があるため、装置コストがかなり上昇するという短所がある。成形加熱蒸気の圧力を上げるということは、成形時の加熱に必要な蒸気量も増加することとなり、これを冷却するための冷却水量が増加するなどユーティリティコストも上昇する。さらに、より高温に加熱するために成形時の加熱時間が長くなり、さらに加熱された金型を冷却水で冷却する工程にもより長い時間を必要とするため、製品あたりの生産サイクルが長くなり生産性が悪化する。またさらには型内発泡成形では金型形状が複雑であるため、形状によっては成形加熱時に金型の一部に応力が集中し、金型が破損することもあり、さらにコストアップの原因となる。   As described above, in order to form pre-expanded particles based on a polypropylene-based resin having high rigidity, there is currently a special molding machine that can withstand high molding heating steam pressure. However, in order to increase the pressure resistance of the molding machine, it is necessary to increase the size of the machine in order to increase the strength of the molding machine, and it is also necessary to increase the thickness of the mold. is there. Increasing the pressure of the molding heating steam also increases the amount of steam necessary for heating during molding, which increases utility costs such as increasing the amount of cooling water for cooling the molding steam. Furthermore, the heating time at the time of molding becomes longer in order to heat to a higher temperature, and more time is required for the process of cooling the heated mold with cooling water, so the production cycle per product becomes longer. Productivity deteriorates. Furthermore, since the mold shape is complicated in in-mold foam molding, depending on the shape, stress may concentrate on a part of the mold during molding heating, and the mold may be damaged, which further increases costs. .

以上のように、型内発泡成形において成形加熱蒸気圧力が高いということは様々な欠点を有しており、できる限り低い成形加熱蒸気圧力で成形できることが望ましい。既存技術の範疇では、現状多く用いられている0.4MPa耐圧仕様の成形機にて安定生産でき得る高い剛性を持つ型内発泡成形用ポリプロピレン系樹脂予備発泡粒子を得ることは困難である。   As described above, the high molding heating steam pressure in the in-mold foam molding has various drawbacks, and it is desirable that molding can be performed with the lowest possible molding heating steam pressure. In the category of existing technology, it is difficult to obtain in-mold foam-molded polypropylene resin pre-foamed particles having high rigidity that can be stably produced by a molding machine of 0.4 MPa pressure resistance specification that is widely used at present.

一方、緩衝包材用途の特に精密部品の集合包材では、前記箱形形状内部が複雑な形状となる場合が多い。複雑な形状の成形体を得ようとする場合、所謂”薄肉”形状と呼ばれる、予備発泡粒子が厚み方向に数個程度しか入らないような厚さが薄く狭い形状があると、満足な形状や表面美麗性を得ることが困難な場合がある。そのため、該箇所においては、緩衝性能や強度が十分得られない、予備発泡粒子同士の融着が不良となるなどの不具合を生じやすく、形状設計に大きな制約となっている。   On the other hand, in the case of a packaging material for precision parts, particularly for cushioning packaging materials, the box-shaped interior often has a complicated shape. When trying to obtain a molded body with a complicated shape, if there is a thin and narrow shape, so-called “thin-walled” shape, that only a few of the pre-expanded particles enter in the thickness direction, It may be difficult to obtain surface aesthetics. For this reason, in this part, buffer performance and strength are not sufficiently obtained, and problems such as poor fusion between the pre-expanded particles are likely to occur, which greatly restricts the shape design.

例えば特許文献7では、型内発泡成形用ポリオレフィン系予備発泡粒子で二次発泡性や融着性の良好な予備発泡粒子を得るために、有機過酸化物が存在する分散媒体中にポリプロピレン系樹脂を分散させ、樹脂表面を改質する方法が示されている。しかし、この方法では、有機過酸化物による金属侵食を考慮した設備が必要であったり、分散媒中における効果の不均一性が生じやすく、品質ばらつきを生じやすい。   For example, in Patent Document 7, in order to obtain pre-foamed particles having good secondary foamability and fusing property with polyolefin-based prefoamed particles for in-mold foam molding, a polypropylene resin is contained in a dispersion medium in which an organic peroxide is present. A method of modifying the surface of the resin by dispersing the resin is shown. However, this method requires equipment that takes into account metal erosion due to organic peroxides, tends to cause non-uniform effects in the dispersion medium, and tends to cause quality variations.

また、特許文献8では、表面外観と機械的物性の優れた型内成形体を得るために特定の構造を有するポリプロピレン系樹脂にテルペン系樹脂や石油樹脂を含有させたポリプロピレン系樹脂を予備発泡粒子の基材とする技術が開示されているが、薄肉形状を有する成形体に適用した場合の薄肉部の成形性や美麗性については、言及されていない。また、特定の高価なポリプロピレン系樹脂を使用することから、経済性の面にも問題がある。   In Patent Document 8, in order to obtain an in-mold molded article having excellent surface appearance and mechanical properties, a polypropylene resin in which a terpene resin or a petroleum resin is contained in a polypropylene resin having a specific structure is pre-expanded particles. However, there is no mention of the moldability and aesthetics of the thin portion when applied to a molded body having a thin shape. Further, since a specific expensive polypropylene resin is used, there is a problem in terms of economy.

特定のメルトインデックスの樹脂を混合して得られた特定のメルトインデックスの樹脂によるポリプロピレン系樹脂予備発泡粒子が表面性、融着が良好であることが特許文献9で見出されているが、より高度な二次発泡性や融着性を必要とする薄肉形状を有する成形体に適用する場合は、効果が十分でない場合があった。   It has been found in Patent Document 9 that the pre-expanded polypropylene-based resin particles with a specific melt index resin obtained by mixing a resin with a specific melt index have good surface properties and fusion. When applied to a molded body having a thin wall shape that requires high secondary foaming and fusing properties, the effect may not be sufficient.

以上のように、“内倒れ”となりにくい高剛性の樹脂を基材とした予備発泡粒子を一般的な仕様の成形機で外観美麗な成形体を低コストで得ることは困難であり、なおかつ薄肉部位のような複雑形状を有する型内発泡成形体で満足な成形性や表面美麗性を得ることはさらに困難であった。
特開平8−277340号公報 特開平10−45938号公報 特開平10−316791号公報 特開平11−156879号公報 特開平7−258455号公報 特開平1−242638号公報 特開2002−167460号公報 特開2005−29773号公報 特開2000−327825号公報
As described above, it is difficult to obtain pre-expanded particles based on a high-rigidity resin that is not easily “inside-down” with a general-purpose molding machine at a low cost, and it is thin. It was further difficult to obtain satisfactory moldability and surface aesthetics with an in-mold foam molded body having a complex shape such as a part.
JP-A-8-277340 Japanese Patent Laid-Open No. 10-45938 Japanese Patent Laid-Open No. 10-316791 JP-A-11-156879 JP 7-258455 A JP-A-1-242638 JP 2002-167460 A JP 2005-29773 A JP 2000-327825 A

本発明の目的は、箱型形状のように内倒れの起こりやすい形状、さらには、発泡粒子の粒径1〜3個分程度の厚みである、いわゆる薄肉部位を有する複雑な形状の型内発泡成形体において、内倒れを解消し得、なおかつ良好な表面美麗性が得られ、更には薄肉部位の美麗性が優れた型内発泡成形体からなる通い箱を提供することにある。
The object of the present invention is to form in-mold foam having a complicated shape having a so-called thin-walled portion having a shape that tends to fall inward, such as a box shape, and a thickness of about 1 to 3 particle diameters of the foamed particles. An object of the present invention is to provide a returnable box made of an in-mold foam molded body that can eliminate the internal collapse of the molded body and that has good surface aesthetics, and that is excellent in aesthetics of a thin-walled portion.

本発明は、上記課題に鑑みて鋭意研究した結果、コモノマーとして1−ブテンとエチレンを含み、MFRが10g/10分以上30g/10分以下であるポリプロピレン系樹脂(A)70重量%以上95重量%以下、とコモノマーとしてエチレンを含み、MFRが0.1g/10分以上3g/10分以下であるポリプロピレン系樹脂(B)5重量%以上30重量%以下を含んでなり、MFR、融点がいずれも所定の範囲内にあるポリプロピレン系樹脂、と石油樹脂および/またはテルペン系樹脂を含有するポリプロピレン系樹脂を基材樹脂とすることを特徴とするポリプロピレン系樹脂予備発泡粒子を用いることにより、成形時の成形加工温度が低いながらも、内倒れを抑止し、かつ表面美麗性であり、特に薄肉部位の美麗性が良好な、低密度で箱形形状の型内発泡成形体からなる通い箱が得られることを見出し、本発明を完成させたものである。
As a result of diligent research in view of the above problems, the present invention, as a comonomer, contains 1-butene and ethylene, and a polypropylene resin (A) having an MFR of 10 g / 10 min to 30 g / 10 min of 70 wt% to 95 wt%. % Of polypropylene resin (B) containing ethylene as a comonomer and having an MFR of 0.1 g / 10 min or more and 3 g / 10 min or less. In the molding process, by using polypropylene resin pre-expanded particles characterized in that the base resin is a polypropylene resin containing a polypropylene resin within a predetermined range and a petroleum resin and / or a terpene resin. Although the molding process temperature is low, it suppresses inward tilting and has a beautiful surface, especially a thin-walled part with a low density. In it found that returnable containers made of mold expansion molding of the box-shape is obtained, in which the present invention has been completed.

すなわち、本発明の第1は、ポリプロピレン系樹脂予備発泡粒子を用いて得られる、密度が10kg/m以上300kg/m以下であり、ポリプロピレン系樹脂予備発泡粒子の粒径1〜3個分の厚みの薄肉部位を有する箱形形状であるポリプロピレン系樹脂型内発泡成形体からなる通い箱であって、
該ポリプロピレン系樹脂予備発泡粒子が、プロピレン系樹脂(C)中、下記ポリプロピレン系樹脂(A)70重量%以上95重量%以下と下記ポリプロピレン系樹脂(B)5重量%以上30重量%以下を含んでなり、MFRが5g/10分以上20g/10分以下、融点が140℃以上155℃以下であるポリプロピレン系樹脂(C)と
石油樹脂および/またはテルペン系樹脂を含有するポリプロピレン系樹脂組成物を基材樹脂とする、ポリプロピレン系樹脂予備発泡粒子であることを特徴とする、ポリプロピレン系樹脂型内発泡成形体からなる通い箱
ポリプロピレン系樹脂(A):コモノマーとして1−ブテンとエチレンを含み、MFRが10g/10分以上30g/10分以下
ポリプロピレン系樹脂(B):コモノマーとしてエチレンを含み、MFRが0.1g/10分以上3g/10分以下に関する
に関する。
好ましい態様としては、
(1)石油樹脂および/またはテルペン系樹脂の添加量が、ポリプロピレン系樹脂(C)に対し1重量%以上20重量%以下であること、
(2)ポリプロピレン系樹脂組成物のMFRが5g/10分以上20g/10分以下、融点が140℃以上155℃以下であり、かつ下記条件式を満たすこと、
〔MFR(g/10分)〕≧1.6×〔融点(℃)〕−235 (1)
(3)ポリプロピレン系樹脂予備発泡粒子が、示差走査熱量計法による測定において2つの融解ピークを有し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100が、13%以上50%以下であること、
を特徴とする前記記載のポリプロピレン系樹脂型内発泡成形体からなる通い箱に関する。
That is, according to the first aspect of the present invention, the density is 10 kg / m 3 or more and 300 kg / m 3 or less obtained by using the polypropylene resin pre-expanded particles, and the particle size of the polypropylene resin pre-expanded particles is 1 to 3 particles. It is a returnable box made of a polypropylene resin-in-mold foam-molded body having a box-like shape having a thin-walled portion ,
The polypropylene resin pre-expanded particles contain 70 wt% or more and 95 wt% or less of the following polypropylene resin (A) and 5 wt% or more and 30 wt% or less of the following polypropylene resin (B) in the propylene resin (C). A polypropylene resin composition comprising a polypropylene resin (C) having an MFR of 5 g / 10 min to 20 g / 10 min and a melting point of 140 ° C. to 155 ° C. and a petroleum resin and / or a terpene resin. A pass-through box made of a polypropylene resin-in-mold foam-molded product, characterized by being a polypropylene resin pre-expanded particle as a base resin . Polypropylene resin (A): 1-butene and ethylene as comonomers MFR of 10 g / 10 min or more and 30 g / 10 min or less polypropylene resin (B): ethylene as a comonomer Wherein, MFR is about about 0.1 g / 10 min or more 3 g / 10 minutes or less.
As a preferred embodiment,
(1) The addition amount of petroleum resin and / or terpene resin is 1 wt% or more and 20 wt% or less with respect to polypropylene resin (C),
(2) The MFR of the polypropylene resin composition is 5 g / 10 min to 20 g / 10 min, the melting point is 140 ° C. to 155 ° C., and the following conditional expression is satisfied:
[MFR (g / 10 min)] ≧ 1.6 × [melting point (° C.)]-235 (1)
(3) The polypropylene resin pre-expanded particles have two melting peaks in the measurement by the differential scanning calorimetry method, and calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side among the melting peaks. The ratio Qh / (Ql + Qh) × 100 of the melting peak on the high temperature side is 13% or more and 50% or less,
The present invention relates to a returnable box made of the above-mentioned polypropylene-based in-mold foam molded article.

本発明により、内倒れを防止することが出来、剛性が高く、かつ表面美麗性の高いポリプロピレン系樹脂型内発泡成形体からなる通い箱を、特殊な成形機を使用しなくとも安定的により低い成形加工温度で製造することができる。 According to the present invention, it is possible to prevent the falling of the inside, and the return box made of the expanded foamed polypropylene resin mold having high rigidity and high surface beauty is stably lower without using a special molding machine. It can be manufactured at the molding temperature.

本発明において、ポリプロピレン系樹脂とは、モノマーとしてプロピレンを主体とした樹脂であり、共重合成分としては、エチレン、1−ブテン、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどの炭素数2または4〜12のα−オレフィン、シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエン、塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが挙げられる。これらのうち、エチレン、1−ブテンを使用することが耐寒脆性向上、安価等という点で好ましい。 In the present invention, the polypropylene resin is a resin mainly composed of propylene as a monomer, and the copolymerization component includes ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene. , 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, etc. Olefin, cyclopentene, norbornene, cyclic olefin such as tetracyclo [6,2,1 1,8 , 1 3,6 ] -4-dodecene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4 -Dienes such as hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, vinyl chloride, vinylidene chloride, acryloni Examples include vinyl monomers such as ril, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, ethyl acrylate, butyl acrylate, methyl methacrylate, maleic anhydride, styrene, methylstyrene, vinyltoluene, and divinylbenzene. . Among these, it is preferable to use ethylene and 1-butene from the viewpoint of improving cold brittleness resistance and low cost.

本発明におけるポリプロピレン系樹脂予備発泡粒子を構成する基材樹脂は、ポリプロピレン系樹脂(C)と石油樹脂および/またはテルペン系樹脂を含有するポリプロピレン系樹脂組成物からなる。   The base resin constituting the polypropylene resin pre-expanded particles in the present invention comprises a polypropylene resin composition containing a polypropylene resin (C) and a petroleum resin and / or a terpene resin.

本発明に用いるポリプロピレン系樹脂(C)は、MFRが5g/10分以上20g/10分以下、融点が140℃以上155℃以下であり、さらに、下記条件式を満たすことが好ましい。
〔MFR(g/10分)〕≧1.6×〔融点(℃)〕−235 (1)
さらにポリプロピレン系樹脂(C)は、後述するポリプロピレン系樹脂(A)70重量%以上95重量%以下、とポリプロピレン系樹脂(B)5重量%30重量%以下を含んでなる。ポリプロピレン系樹脂(C)中ポリプロピレン系樹脂(A)を70重量%以上95重量%以下含むと、該ポリプロピレン系樹脂からなる樹脂組成物を基材樹脂とするポリプロピレン系樹脂予備発泡粒子から得られる型内発泡成形体の剛性が高くなる傾向にある。
The polypropylene resin (C) used in the present invention has an MFR of 5 g / 10 min to 20 g / 10 min, a melting point of 140 ° C. to 155 ° C., and preferably satisfies the following conditional expression.
[MFR (g / 10 min)] ≧ 1.6 × [melting point (° C.)]-235 (1)
Furthermore, the polypropylene resin (C) comprises 70% by weight or more and 95% by weight or less of a polypropylene resin (A) described later, and 5% by weight or 30% by weight or less of the polypropylene resin (B). When the polypropylene resin (A) is contained in the polypropylene resin (C) in an amount of 70% by weight or more and 95% by weight or less, the mold is obtained from polypropylene resin pre-expanded particles whose base resin is a resin composition comprising the polypropylene resin. The rigidity of the inner foamed molded product tends to increase.

本発明における、ポリプロピレン系樹脂(A)は、プロピレンを主体として、1−ブテンとエチレンを含んでなる共重合体であり、具体的には、エチレン−ブテン−プロピレンランダムターポリマー、エチレン−ブテン−プロピレンブロックターポリマーなどが挙げられるが、エチレン−ブテン−プロピレンランダムターポリマーが好ましい。該ポリプロピレン系樹脂(A)は、メルトフローレート(MFR)が10g/10分以上30g/10分以下であり、より好ましくは、10g/10分以上20g/10分以下である。   The polypropylene resin (A) in the present invention is a copolymer mainly composed of propylene and containing 1-butene and ethylene. Specifically, the ethylene-butene-propylene random terpolymer, ethylene-butene- Examples include propylene block terpolymers, and ethylene-butene-propylene random terpolymers are preferred. The polypropylene resin (A) has a melt flow rate (MFR) of 10 g / 10 min to 30 g / 10 min, more preferably 10 g / 10 min to 20 g / 10 min.

本発明におけるポリプロピレン系樹脂(B)は、プロピレンを主体として、エチレンを含んでなる共重合体を言い、具体的には、エチレン−プロピレンランダムコポリマー、エチレン−ブテン−プロピレンランダムターポリマー、エチレン−プロピレンブロックコポリマー、エチレン−ブテン−プロピレンブロックターポリマーなどが挙げられるが、エチレン−プロピレンランダムコポリマー、エチレン−ブテン−プロピレンランダムターポリマーが好ましい。該ポリプロピレン系樹脂(B)は、MFRが、0.1g/10分以上3g/10分以下であり、より好ましくは、MFRは0.3g/10分以上2g/10分以下である。   The polypropylene resin (B) in the present invention refers to a copolymer mainly composed of propylene and containing ethylene, and specifically includes an ethylene-propylene random copolymer, an ethylene-butene-propylene random terpolymer, and an ethylene-propylene. Examples thereof include block copolymers and ethylene-butene-propylene block terpolymers, and ethylene-propylene random copolymers and ethylene-butene-propylene random terpolymers are preferred. The polypropylene resin (B) has an MFR of 0.1 g / 10 min or more and 3 g / 10 min or less, and more preferably an MFR of 0.3 g / 10 min or more and 2 g / 10 min or less.

本発明のポリプロピレン系樹脂組成物は、ポリプロピレン系樹脂(C)と石油樹脂および/またはテルペン系樹脂を含有する。   The polypropylene resin composition of the present invention contains a polypropylene resin (C) and a petroleum resin and / or a terpene resin.

前記石油樹脂は、従来公知の石油樹脂及び水添石油樹脂から選ばれる少なくとも1種である。   The petroleum resin is at least one selected from conventionally known petroleum resins and hydrogenated petroleum resins.

この石油樹脂は、シクロペンタジエン等の石油系不飽和炭化水素、高級オレフィン系炭化水素、または芳香族炭化水素等を主原料(50重量%以上)とする樹脂である。これらの石油樹脂の中でも、ポリプロピレン系樹脂への相溶性の高い水素化された水添石油樹脂が好ましい。   This petroleum resin is a resin mainly composed of petroleum unsaturated hydrocarbons such as cyclopentadiene, higher olefinic hydrocarbons, or aromatic hydrocarbons (50% by weight or more). Among these petroleum resins, hydrogenated hydrogenated petroleum resins having high compatibility with polypropylene resins are preferable.

前記テルペン系樹脂は、(C58nの組成で表される炭化水素化合物、すなわちテルペンの単独重合体、またはテルペンと共重合可能なモノマーとテルペンとの共重合体が挙げられる。通常、前記nは、2〜30の整数であるが、8〜20の整数であることが好ましい。前記組成式(C58nで表されるテルペンとしては、例えば、ピネン、ジペンテン、カレン、ミルセン、オシメン、リモネン、テルピノレン、テルピネン、サビネン、トリシクレン、ビサボレン、ジンギベレン、サンタレン、カンホレン、ミレン、トタレン等が挙げられる。 Examples of the terpene-based resin include a hydrocarbon compound represented by a composition of (C 5 H 8 ) n , that is, a terpene homopolymer, or a copolymer of a monomer and a terpene copolymerizable with the terpene. Usually, the n is an integer of 2 to 30, but is preferably an integer of 8 to 20. Examples of the terpene represented by the composition formula (C 5 H 8 ) n include, for example, pinene, dipentene, carene, myrcene, osymene, limonene, terpinolene, terpinene, sabinene, tricyclene, bisabolen, gingiberene, santalen, camphorene, mylene, Examples include totarene.

前記テルペン系樹脂とは、これらの単独重合体または共重合体をいう。これら単独重合体または共重合体の中でも、特にピネン及びジペンテン等の重合体が好ましく、さらに、ポリプロピレン系樹脂への相溶性の高い水素添加物が好ましい。また、水素添加物の中でも、水添率80%以上、特に90%以上のものが好ましい。   The terpene resin refers to these homopolymers or copolymers. Among these homopolymers or copolymers, polymers such as pinene and dipentene are particularly preferable, and hydrogenated products having high compatibility with polypropylene resins are preferable. Among the hydrogenated products, those having a hydrogenation rate of 80% or more, particularly 90% or more are preferable.

これらの石油樹脂、テルペン系樹脂の中でも、環球法により測定した軟化点が80℃〜150℃であるものを使用することが好ましい。石油樹脂および/またはテルペン系樹脂の添加量としては、ポリプロピレン系樹脂(C)100重量部に対して、1重量部以上20重量部以下が好ましく、1重量部以上10重量部以下がより好ましい。1重量部未満であると、効果である予備発泡粒子の加熱成形時の美麗な表面性や融着生を得難くなる傾向があり、20重量部より多くなると、基材樹脂を構成するポリプロピレン系樹脂が本来有する剛性や耐熱性を害する恐れがある。   Among these petroleum resins and terpene resins, those having a softening point of 80 ° C. to 150 ° C. measured by the ring and ball method are preferably used. The amount of the petroleum resin and / or terpene resin added is preferably 1 part by weight or more and 20 parts by weight or less, and more preferably 1 part by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polypropylene resin (C). When the amount is less than 1 part by weight, it tends to be difficult to obtain a beautiful surface property or fusion during heat molding of pre-expanded particles, and when it exceeds 20 parts by weight, the polypropylene resin constituting the base resin There is a risk of harming the inherent rigidity and heat resistance of the resin.

ポリプロピレン系樹脂組成物のMFRは、5g/10分以上20g/10分以下であることが好ましく、さらに好ましくは7g/10分以上15g/10分以下である。MFRが当該範囲内であると型内発泡成形時の成形温度、成形時間のバランスが良く、良好な表面美麗性、特に型形状に薄肉部位がある場合の当該部位が良好な表面美麗性を得やすい傾向にある。   The MFR of the polypropylene resin composition is preferably 5 g / 10 min or more and 20 g / 10 min or less, more preferably 7 g / 10 min or more and 15 g / 10 min or less. If the MFR is within the range, the balance between the molding temperature and molding time at the time of in-mold foam molding is good, and good surface aesthetics, especially when there is a thin part in the mold shape, the part has good surface aesthetics. It tends to be easy.

またポリプロピレン系樹脂組成物の融点は、140℃以上155℃以下であることが好ましく、さらに好ましくは145℃以上152℃以下である。融点が当該範囲内であると、現状よく用いられている0.4MPa耐圧仕様の成形機でも良好な型内発泡成形体が得られる傾向にある。   The melting point of the polypropylene resin composition is preferably 140 ° C. or higher and 155 ° C. or lower, more preferably 145 ° C. or higher and 152 ° C. or lower. If the melting point is within this range, a good in-mold foam molded product tends to be obtained even with a molding machine of 0.4 MPa pressure resistance specification that is often used at present.

また、ポリプロピレン系樹脂組成物は、MFRと融点の間に下記条件式(1)を満たすことが好ましい。
〔MFR(g/10分)〕≧1.6×〔融点(℃)〕−235 (1)
MFR、融点のそれぞれが前記範囲内であり、前記条件式(1)を満たすと、成形加熱蒸気圧力を高くしなくとも、表面美麗性の高い型内発泡成形体を得ることが出来る傾向にある。
Moreover, it is preferable that a polypropylene resin composition satisfy | fills the following conditional expression (1) between MFR and melting | fusing point.
[MFR (g / 10 min)] ≧ 1.6 × [melting point (° C.)]-235 (1)
Each of the MFR and the melting point is within the above range, and when the conditional expression (1) is satisfied, it is likely that an in-mold foam molded article having a high surface beauty can be obtained without increasing the molding heating steam pressure. .

これらのポリプロピレン系樹脂は無架橋の状態が好ましいが、パーオキサイドや放射線により架橋させても良い。またポリプロピレン系樹脂と混合使用可能な他の熱可塑性樹脂、例えば低密度ポリエチレン、直鎖状密度ポリエチレン、ポリスチレン、ポリブテン、アイオノマー等をポリプロプレン系樹脂の特性が失われない範囲で混合使用しても良い。   These polypropylene resins are preferably in a non-crosslinked state, but may be crosslinked by peroxide or radiation. Also, other thermoplastic resins that can be mixed with polypropylene resin, such as low density polyethylene, linear density polyethylene, polystyrene, polybutene, ionomer, etc., may be mixed and used as long as the properties of the polypropylene resin are not lost. good.

上記のポリプロピレン系樹脂は、通常、予備発泡に利用されやすいようにあらかじめ押出機、ニーダー、バンバリミキサー、ロール等を用いて溶融し、円柱状、楕円状、球状、立方体状、直方体状等のような所望の粒子形状で、その粒子の平均粒重量が0.5〜3.0mgが好ましくは0.5〜2.0mg、更に好ましくは0.5〜1.5mgになるように成形加工される。界面活性剤型もしくは高分子型の帯電防止剤、顔料、難燃性改良材、導電性改良材等必要により加えられる成分は、通常、樹脂粒子の製造過程において溶融した樹脂中に添加することが好ましい。   The above polypropylene resin is usually melted in advance using an extruder, kneader, Banbury mixer, roll, etc. so as to be easily used for pre-foaming, and has a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc. In such a desired particle shape, the average particle weight of the particles is molded to 0.5 to 3.0 mg, preferably 0.5 to 2.0 mg, more preferably 0.5 to 1.5 mg. . Surfactant-type or polymer-type antistatic agents, pigments, flame retardancy improving materials, conductivity improving materials, and other necessary components such as surfactants can be usually added to the molten resin in the resin particle production process. preferable.

予備発泡粒子を製造するに当たり、発泡剤に特に制限はなく、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン等の脂肪族炭化水素およびそれらの混合物;空気、窒素、二酸化炭素等の無機ガス;水等が例示できるが、設備コスト、生産コストに優れる水を発泡剤として使用することが好ましい。   In producing the pre-expanded particles, the blowing agent is not particularly limited, and aliphatic hydrocarbons such as propane, isobutane, normal butane, isopentane, and normal pentane and mixtures thereof; inorganic gases such as air, nitrogen, and carbon dioxide; water However, it is preferable to use water that is excellent in equipment cost and production cost as a foaming agent.

水を発泡剤として使用する場合、高い発泡倍率の予備発泡粒子を得るために、ポリプロピレン系樹脂に親水性ポリマー、トリアジン骨格を有する化合物のうち1種以上の化合物を添加することが好ましい。ここで親水性ポリマーとは、エチレン−アクリル酸−無水マレイン酸三元共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸共重合体を金属イオンで架橋したアイオノマー樹脂などのカルボキシル基含有ポリマー等があげられる。これらは単独で用いてもよく、2種以上を併用しても良い。特にエチレン−(メタ)アクリル酸共重合体をナトリウムイオン、カリウムイオンなどのアルカリ金属イオンで架橋させたエチレン系アイオノマー樹脂が良好な含水率を与え、良好な発泡性を与えることから好ましい。さらにはエチレン−(メタ)アクリル酸共重合体をカリウムイオンで架橋させたエチレン系アイオノマー樹脂がより大きな平均セル径を与えることから、より好ましい。   When water is used as a foaming agent, it is preferable to add one or more compounds among the compounds having a hydrophilic polymer and a triazine skeleton to the polypropylene resin in order to obtain pre-expanded particles having a high expansion ratio. Here, the hydrophilic polymer is an ionomer obtained by crosslinking ethylene-acrylic acid-maleic anhydride terpolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid copolymer with metal ions. Examples thereof include carboxyl group-containing polymers such as resins. These may be used alone or in combination of two or more. In particular, an ethylene ionomer resin obtained by crosslinking an ethylene- (meth) acrylic acid copolymer with an alkali metal ion such as sodium ion or potassium ion is preferable because it provides a good water content and good foamability. Further, an ethylene ionomer resin obtained by crosslinking an ethylene- (meth) acrylic acid copolymer with potassium ions is more preferable because it gives a larger average cell diameter.

前記親水性ポリマーの使用量は親水性ポリマーの種類にもより、特に限定されないが、通常ポリプロピレン系樹脂(C)100重量部に対して、0.01重量部以上20重量部未満が好ましく、0.5重量部以上5重量部未満がより好ましい。0.01重量部未満では、高発泡倍率の予備発泡粒子が得られにくく、20重量部以上では耐熱性、機械強度の低下が大きくなる場合がある。   The amount of the hydrophilic polymer used is not particularly limited depending on the kind of the hydrophilic polymer, but is usually 0.01 parts by weight or more and less than 20 parts by weight with respect to 100 parts by weight of the polypropylene resin (C). More preferred is 5 parts by weight or more and less than 5 parts by weight. If it is less than 0.01 parts by weight, it is difficult to obtain pre-expanded particles having a high expansion ratio, and if it is 20 parts by weight or more, the heat resistance and mechanical strength may be greatly reduced.

前記トリアジン骨格とは、単位トリアジン骨格あたりの分子量が300以下のものが好ましい。ここで、トリアジン骨格あたりの分子量とは、1分子中に含まれるトリアジン骨格数で分子量を除した値である。単位トリアジン骨格あたりの分子量が300を超えると発泡倍率ばらつき、セル径ばらつきが目立つ場合がある。単位トリアジン骨格あたりの分子量が300以下の化合物としては、例えば、メラミン(化学名1,3,5−トリアジン−2,4,6−トリアミン)、アンメリン(同1,3,5−トリアジン−2−ヒドロキシ−4,6−ジアミン)、アンメリド(同1,3,5−トリアジン−2,4−ヒドロキシ−6−アミン)、シアヌル酸(同1,3,5−トリアジン−2,4,6−トリオール)、トリス(メチル)シアヌレート、トリス(エチル)シアヌレート、トリス(ブチル)シアヌレート、トリス(2−ヒドロキシエチル)シアヌレート、メラミン・イソシアヌル酸縮合物などがあげられる。これらは単独で用いてもよく、2種以上併用しても良い。これらの内、高発泡倍率の予備発泡粒子を発泡倍率ばらつき、セル径ばらつきが少なく得るためには、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物を使用することが好ましい。   The triazine skeleton preferably has a molecular weight of 300 or less per unit triazine skeleton. Here, the molecular weight per triazine skeleton is a value obtained by dividing the molecular weight by the number of triazine skeletons contained in one molecule. When the molecular weight per unit triazine skeleton exceeds 300, variation in foaming ratio and variation in cell diameter may be noticeable. Examples of the compound having a molecular weight per unit triazine skeleton of 300 or less include melamine (chemical name 1,3,5-triazine-2,4,6-triamine), ammelin (1,3,5-triazine-2- Hydroxy-4,6-diamine), ammelide (1,3,5-triazine-2,4-hydroxy-6-amine), cyanuric acid (1,3,5-triazine-2,4,6-triol) ), Tris (methyl) cyanurate, tris (ethyl) cyanurate, tris (butyl) cyanurate, tris (2-hydroxyethyl) cyanurate, melamine isocyanuric acid condensate and the like. These may be used alone or in combination of two or more. Among these, it is preferable to use melamine, isocyanuric acid, and melamine / isocyanuric acid condensate in order to obtain pre-expanded particles having a high expansion ratio with small variations in expansion ratio and cell diameter.

前記ポリプロピレン系樹脂粒子を、従来から知られている方法を利用して、例えば、耐圧容器内で水中に分散させ、プロピレン系樹脂分散物とし、該分散物を好ましくは該ポリプロピレン系樹脂粒子の融点−25℃から+25℃、更に好ましくは−10℃から+10℃の範囲の温度に加熱するとともに窒素、空気などの無機ガスで加圧して該ポリプロピレン系樹脂粒子内に水を含浸させ、加圧下で容器内の温度、圧力を一定に保持しながら、該ポリプロピレン系樹脂粒子と水との分散物を容器内よりも低圧の雰囲気下に放出することによりポリプロピレン系予備発泡粒子を製造する。低圧雰囲気に放出する際、該低圧雰囲気は、発泡倍率を高くするために高温に保持されていることが好ましく、高温空気、水蒸気などで80℃以上100℃以下、より好ましくは90℃以上100℃以下に保持する。80℃未満である場合、高発泡倍率の予備発泡粒子が得られにくく、予備発泡粒子を発泡直後に冷却する効果から予備発泡粒子の収縮を招きやすい。100℃以上の場合、予備発泡粒子同士の融着を招く場合がある。   The polypropylene resin particles are dispersed in water in a pressure vessel using a conventionally known method, for example, to form a propylene resin dispersion, and the dispersion is preferably a melting point of the polypropylene resin particles. Heat to a temperature in the range of −25 ° C. to + 25 ° C., more preferably −10 ° C. to + 10 ° C. and pressurize with an inorganic gas such as nitrogen or air to impregnate the polypropylene resin particles with water. While keeping the temperature and pressure inside the container constant, the polypropylene-based pre-expanded particles are produced by releasing the dispersion of the polypropylene resin particles and water in a lower pressure atmosphere than in the container. When discharging into a low-pressure atmosphere, the low-pressure atmosphere is preferably maintained at a high temperature in order to increase the expansion ratio, and is preferably 80 ° C. or higher and 100 ° C. or lower, more preferably 90 ° C. or higher and 100 ° C. with high-temperature air or water vapor. Hold below. When the temperature is less than 80 ° C., it is difficult to obtain pre-expanded particles having a high expansion ratio, and the pre-expanded particles tend to shrink due to the effect of cooling the pre-expanded particles immediately after expansion. When the temperature is 100 ° C. or higher, the pre-expanded particles may be fused.

予備発泡粒子製造時における密閉容器には特に制限はなく、予備発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよいが、例えばオートクレーブ型の耐圧容器があげられる。   There are no particular limitations on the sealed container at the time of producing the pre-foamed particles, and any container that can withstand the pressure and temperature in the container at the time of producing the pre-foamed particles may be used. For example, an autoclave type pressure-resistant container may be mentioned.

前記分散物の調製に際しては、分散剤として、例えば第三リン酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム等の無機系分散剤と、例えばドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等の分散助剤を使用されることが好ましい。これらの中でも第三リン酸カルシウムとドデシルベンゼンスルホン酸ナトリウムの併用が更に好ましい。分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して分散剤0.2〜3重量部を配合することが好ましく、分散助剤0.001〜0.1重量部を配合することが好ましい。また、ポリプロピレン系樹脂粒子は、水中での分散性を良好なものにするために、通常、水100重量部に対して20〜100重量部使用するのが好ましい。   In the preparation of the dispersion, as the dispersant, for example, inorganic dispersants such as tribasic calcium phosphate, basic magnesium carbonate, calcium carbonate, and so on, for example, sodium dodecylbenzenesulfonate, sodium n-paraffinsulfonate, α-olefinsulfone. It is preferable to use a dispersion aid such as acid soda. Among these, the combined use of tricalcium phosphate and sodium dodecylbenzenesulfonate is more preferable. The amount of dispersant and dispersion aid used varies depending on the type and the type and amount of polypropylene resin used, but usually 0.2 to 3 parts by weight of the dispersant is added to 100 parts by weight of water. It is preferable to add 0.001 to 0.1 parts by weight of a dispersion aid. Moreover, in order to make a polypropylene resin particle favorable in the dispersibility in water, it is preferable to use normally 20-100 weight part with respect to 100 weight part of water.

以上の製造方法により得られるポリプロピレン系樹脂予備発泡粒子の発泡倍率は、好ましくは5倍以上50倍以下であり、さらに好ましくは7倍以上45倍以下である。
また、一旦5倍以上35倍以下の予備発泡粒子を製造し、予備発泡粒子を密閉容器内に入れて窒素、空気などを含浸させる加圧処理により予備発泡粒子内の圧力を常圧よりも高くした後、該発泡粒子をスチーム等で加熱して更に発泡させる二段発泡法等の方法で50倍以上の二段発泡予備発泡粒子を得ても良い。
The expansion ratio of the polypropylene resin pre-expanded particles obtained by the above production method is preferably 5 to 50 times, and more preferably 7 to 45 times.
Moreover, once the pre-expanded particles of 5 times to 35 times are manufactured, the pressure in the pre-expanded particles is made higher than the normal pressure by pressurizing the pre-expanded particles in a sealed container and impregnating with nitrogen, air, etc. Then, the foamed particles may be heated by steam or the like to obtain two-stage foamed pre-foamed particles 50 times or more by a method such as a two-stage foaming method for further foaming.

本発明のポリプロピレン系予備発泡粒子は、示差走査熱量計法による測定において2つの融解ピークを有し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100(以下、DSC比と略す)が13%以上50%以下であることが好ましく、より好ましくは18%以上40%以下の範囲である。DSC比が当該範囲であると、表面美麗性の高い型内発泡成形体が得られやすい。   The polypropylene-based pre-expanded particles of the present invention have two melting peaks in the measurement by the differential scanning calorimetry method, and were calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side among the melting peaks. The ratio Qh / (Ql + Qh) × 100 (hereinafter abbreviated as DSC ratio) of the melting peak on the high temperature side is preferably 13% or more and 50% or less, more preferably 18% or more and 40% or less. When the DSC ratio is within the above range, an in-mold foam molded product having a high surface beauty is easily obtained.

本発明のポリプロピレン系樹脂予備発泡粒子を型内発泡成形に用いる場合には、イ)そのまま用いる方法、ロ)あらかじめ予備発泡粒子中に空気等の無機ガスを圧入し、発泡能を付与する方法、ハ)予備発泡粒子を圧縮状態で金型内に充填し成形する方法、など従来既知の方法が使用しうる。   When the polypropylene resin pre-foamed particles of the present invention are used for in-mold foam molding, a) a method of using as it is, b) a method of previously injecting an inorganic gas such as air into the pre-foamed particles and imparting foaming capability, C) A conventionally known method such as a method in which pre-expanded particles are filled in a mold in a compressed state and molded may be used.

本発明のポリプロピレン系樹脂予備発泡粒子から型内発泡成形体を成形する方法としては、たとえばあらかじめ予備発泡粒子を耐圧容器内で空気加圧し、粒子中に空気を圧入することにより発泡能を付与し、これを閉鎖しうるが密閉し得ない成形型内に充填し、水蒸気などを加熱媒体として0.20〜0.4MPa程度の加熱水蒸気圧で3〜30秒程度の加熱時間で成形しポリプロピレン系樹脂予備発泡粒子同士を融着させ、このあと成形金型を水冷により型内発泡成形体取り出し後の型内発泡成形体の変形を抑制できる程度まで冷却した後、金型を開き、型内発泡成形体を得る方法などが挙げられる。   As a method for molding an in-mold foam molded body from the polypropylene resin pre-foamed particles of the present invention, for example, the pre-foamed particles are preliminarily air-pressurized in a pressure-resistant container, and air is injected into the particles to give foaming ability. The polypropylene mold is filled in a mold that can be closed but cannot be sealed, and is molded with a water vapor pressure of about 0.20 to 0.4 MPa and a heating time of about 3 to 30 seconds using water vapor as a heating medium. The resin pre-expanded particles are fused together, and then the mold is cooled by water cooling to such an extent that the deformation of the in-mold foam molded product can be suppressed, and then the mold is opened and foamed in the mold. The method of obtaining a molded object etc. are mentioned.

本発明のポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体の密度は、10kg/m3以上300kg/m3以下であることが好ましく、より好ましくは15kg/m3以上250kg/m3以下である。 The density of the in-mold foam molded product obtained using the polypropylene resin pre-expanded particles of the present invention is preferably 10 kg / m 3 or more and 300 kg / m 3 or less, more preferably 15 kg / m 3 or more and 250 kg / m. 3 or less.

本発明の型内発泡成形体は、薄肉部を有する成形体において内倒れを防止し、薄肉部の伸びを良好に出来ることから、一般緩衝包材、自動車内装部材、通い箱等に好適に使用することが出来る。   The in-mold foam molded body of the present invention can be suitably used for general cushioning packaging materials, automobile interior members, returnable boxes, etc., because it can prevent inward collapse in a molded body having a thin wall portion and can improve the elongation of the thin wall portion. I can do it.

次に本発明におけるMFR、融点、DSC比の測定方法について説明する。   Next, the measuring method of MFR, melting | fusing point, and DSC ratio in this invention is demonstrated.

MFRの測定は、JIS−K7210記載のMFR測定器を用い、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、荷重2160g、230±0.2℃の条件下で測定したときの値である。   MFR is measured using the MFR measuring instrument described in JIS-K7210 under the conditions of orifice 2.0959 ± 0.005 mmφ, orifice length 8.000 ± 0.025 mm, load 2160 g, 230 ± 0.2 ° C. This is the value when

融点の測定はセイコーインスツルメンツ(株)製のDSC6200型示差走査熱量計を用いて、ポリプロピレン系樹脂粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事により樹脂粒子を融解し、その後10℃/minで220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに得られるDSC曲線から、2回目の昇温時の融解ピーク温度として求められる値である。   The melting point is measured by using a DSC6200 differential scanning calorimeter manufactured by Seiko Instruments Inc. to heat 5 to 6 mg of polypropylene resin particles from 40 ° C. to 220 ° C. at a rate of 10 ° C./min. From the DSC curve obtained when the particles were melted and then crystallized by lowering the temperature from 220 ° C. to 40 ° C. at 10 ° C./min and then further heated from 40 ° C. to 220 ° C. at 10 ° C./min, This is a value obtained as the melting peak temperature at the second temperature increase.

DSC比の測定はセイコーインスツルメンツ(株)製のDSC6200型示差走査熱量計を用いて、ポリプロピレン系樹脂予備発泡粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する際に得られる融解曲線(図1に例示)において、2つのピークを有し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100で表されるパラメータである。   The DSC ratio is measured using a DSC6200 type differential scanning calorimeter manufactured by Seiko Instruments Inc., and 5-6 mg of polypropylene resin pre-expanded particles are heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min. The melting curve (illustrated in FIG. 1) obtained at this time has two peaks, and the melting on the high temperature side calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side of the melting peaks. This is a parameter represented by the peak ratio Qh / (Ql + Qh) × 100.

つぎに、本発明を実施例及び比較例に基づき説明するが、本発明はこれらの実施例のみに限定されるものではない。   Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited only to these examples.

また実施例及び比較例における評価は下記の方法で行った。   Moreover, the evaluation in an Example and a comparative example was performed with the following method.

〔予備発泡粒子の発泡倍率〕嵩体積約50cm3のポリプロピレン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前の樹脂粒子の密度d(g/cm3)から次式により求める。
発泡倍率=d×v/w
〔最低成形加熱蒸気圧力〕東洋機械金属株式会社製ポリオレフィン発泡成形機パールスターP−150Nを用い、縦270mm×横290mm×厚み40mmのブロック金型に、あらかじめ粒子内部の空気圧力が2.0atmになるように調整したポリプロピレン系樹脂予備発泡粒子を充填し、まず0.1MPaの水蒸気で金型内の空気を追い出し、その後任意の圧力の加熱蒸気を用いて10秒間加熱成形させることにより、ポリプロピレン系樹脂発泡成形体を得る。この発泡成形体の表面状態を観察し、表面に凹凸が無く、かつ各粒子間の間隙もほとんど目立たない成形体を得ることのできる加熱蒸気圧力の内、最低の圧力を最低成形加熱蒸気圧力とした。良好な表面美麗性を与える最も低い成形加熱蒸気圧力であり、表面美麗性、成形性の尺度とし、一般に用いられる0.4MPa耐圧仕様の成形機を用いる場合の連続生産可能圧力である0.34MPa以下を基準とした。
Calculated on the weight of the [expansion ratio of pre-expanded particles] bulk pre-expanded polypropylene resin particles having a volume of about 50cm 3 w (g) and ethanol submerged volume v (cm 3), Density d (g / cm of before foaming resin particles 3 ) Obtain from the following equation.
Foaming ratio = d × v / w
[Minimum forming heating steam pressure] Using a polyolefin foam molding machine Pearlstar P-150N manufactured by Toyo Kikai Metals Co., Ltd., in a block mold measuring 270 mm long, 290 mm wide and 40 mm thick, the air pressure inside the particles is set to 2.0 atm in advance. Filled with polypropylene resin pre-expanded particles adjusted so as to be first, expelling the air in the mold with water vapor of 0.1 MPa, then heat-molded for 10 seconds using heating steam of any pressure, polypropylene-based A resin foam molding is obtained. By observing the surface state of this foamed molded product, the lowest pressure among the heating steam pressures that can obtain a molded product having no irregularities on the surface and almost no conspicuous gaps between the particles is referred to as the lowest molded heating steam pressure. did. The lowest molding heating steam pressure that gives good surface aesthetics, which is a measure of surface aesthetics and moldability, and is a pressure capable of continuous production when using a generally used 0.4 MPa pressure molding machine 0.34 MPa Based on the following:

〔成形評価〕東洋機械金属株式会社製ポリオレフィン発泡成形機パールスターP−150Nを用い、0.28MPaの水蒸気加熱により成形した後、25℃で2時間静置し、次いで65℃に温調した恒温室内に5時間静置した後、取り出し、25℃で放冷し、図3に示す成形体を得た。成形体2試験体の寸法(b)を測定、平均値化し、製品要求品質345mmとの差を求め、要求品質との差が−2.0〜+2.0mmであることを合格とした。また、薄肉部位の表面性の評価では、皺や収縮跡がほとんどないことを合格(○)とした。   [Molding evaluation] After molding by 0.28 MPa steam heating using a polyolefin foam molding machine Pearlstar P-150N manufactured by Toyo Machine Metal Co., Ltd., left at 25 ° C. for 2 hours, and then controlled at 65 ° C. After leaving still indoors for 5 hours, it took out and cooled at 25 degreeC, and the molded object shown in FIG. 3 was obtained. The dimension (b) of the molded body 2 test body was measured and averaged, and the difference from the required product quality of 345 mm was determined. The difference from the required quality was −2.0 to +2.0 mm. Moreover, in evaluation of the surface property of a thin-walled part, it was set as a pass ((circle)) that there were almost no wrinkles and shrinkage marks.

表1に示すMFR、融点を持つポリプロピレン系樹脂を用い、表2に示す比率の樹脂100重量部に対し、造核剤としてタルクを0.3重量部、メラミン0.5重量部になるように添加・混合し、50mmφ単軸押出機で混練したのち造粒し、ポリプロピレン系樹脂粒子(1.3mg/粒)を製造した。   Using polypropylene resin having MFR and melting point shown in Table 1, talc is 0.3 parts by weight and melamine is 0.5 parts by weight with respect to 100 parts by weight of the resin having the ratio shown in Table 2. Addition, mixing, kneading with a 50 mmφ single screw extruder and granulation were carried out to produce polypropylene resin particles (1.3 mg / grain).

Figure 0005058557
該樹脂粒子100重量部、分散剤としてパウダー状塩基性第3リン酸カルシウム2重量部および分散助剤としてn−パラフィンスルホン酸ソーダ0.05重量部を含む水系分散媒300重量部を、内容量10Lの耐圧容器に仕込み、攪拌しながら表2記載の温度まで昇温し、窒素を圧入して表2記載の圧力に調整し、30分間保持した。その後、窒素を圧入しながら容器内温、圧力を3.0MPaに保持しつつ、耐圧容器下部のバルブを開いて、水系分散媒を開孔径4.0mmφのオリフィス板を通して蒸気により95℃に調節された大気圧下に放出することによってポリプロピレン系樹脂予備発泡粒子をえた。得られた予備発泡粒子内に空気含浸により3.0MPaの内圧を付与し、60〜90kPaの蒸気により加熱し、表2に示すように発泡倍率約29倍の発泡粒子を得た。
Figure 0005058557
Figure 0005058557
300 parts by weight of an aqueous dispersion medium containing 100 parts by weight of the resin particles, 2 parts by weight of powdered basic tricalcium phosphate as a dispersant, and 0.05 parts by weight of sodium n-paraffin sulfonate as a dispersion aid, The mixture was charged into a pressure vessel, heated to the temperature shown in Table 2, while stirring, and nitrogen was injected to adjust the pressure to the value shown in Table 2 and held for 30 minutes. Thereafter, the pressure inside the vessel is kept at 3.0 MPa while nitrogen is being injected, the valve at the bottom of the pressure vessel is opened, and the aqueous dispersion medium is adjusted to 95 ° C. by steam through an orifice plate having a 4.0 mm diameter hole. Polypropylene resin pre-expanded particles were obtained by releasing under high atmospheric pressure. The obtained pre-expanded particles were impregnated with an internal pressure of 3.0 MPa by air impregnation and heated with steam of 60 to 90 kPa to obtain expanded particles having an expansion ratio of about 29 times as shown in Table 2.
Figure 0005058557

次に得られた発泡粒子を用いて最低成形加熱蒸気圧力、および箱形成形体の成形評価結果(内倒れ量、薄肉部表面性)を行った。

Figure 0005058557
Next, using the obtained foamed particles, the minimum molding heating steam pressure and the molding evaluation results (inside-down amount, surface property of the thin portion) of the box-shaped form were performed.
Figure 0005058557

実施例で示す樹脂を用いたポリプロピレン系樹脂予備発泡粒子と、比較例1〜4で示す。通常使用されているポリプロピレン系樹脂予備発泡粒子のそれぞれの評価結果を比べると、本発明記載の技術を用いた実施例では、最低成形蒸気過熱圧力、内倒れ量および薄肉部表面性のすべてで優れた結果が得られたのに対し、比較例4では最低加熱圧が装置限界を超える圧力となり、比較例2および3では内倒れ量が大きく、比較例1、2および4では薄肉部の表面性が製品レベルに達しなかった。   It shows with the polypropylene-type resin pre-expanded particle using the resin shown in an Example, and Comparative Examples 1-4. When comparing the evaluation results of each of the commonly used polypropylene resin pre-expanded particles, the examples using the technique described in the present invention are excellent in all of the minimum molding steam overheating pressure, the amount of inclining, and the surface property of the thin wall portion. On the other hand, in Comparative Example 4, the minimum heating pressure exceeded the apparatus limit. In Comparative Examples 2 and 3, the amount of inclining was large. In Comparative Examples 1, 2 and 4, the surface property of the thin portion was Did not reach the product level.

以上のように、ポリプロピレン系樹脂予備発泡粒子において、本発明記載の技術を用いると、現状よく用いられている0.4MPa耐圧仕様の成形機を用いて、表面美麗でかつ乾燥時間が短く成形体を得られることから効率的に成形体の製造が可能である。   As described above, in the polypropylene resin pre-expanded particles, when the technique described in the present invention is used, a molded body having a beautiful surface and a short drying time is obtained by using a molding machine of 0.4 MPa pressure resistance specification which is often used at present. Therefore, it is possible to efficiently produce a molded body.

示差走査熱量計を用い、本発明記載のポリプロピレン系樹脂予備発泡粒子を測定した際に得られるDSC曲線の一例である。横軸は温度、縦軸は吸熱量である。低温側の網掛け部分がQl、高温側の網掛け部分がQhである。It is an example of a DSC curve obtained when a differential scanning calorimeter is used to measure polypropylene resin pre-expanded particles according to the present invention. The horizontal axis is the temperature, and the vertical axis is the endothermic amount. The shaded portion on the low temperature side is Ql, and the shaded portion on the high temperature side is Qh. 成形評価に用いた箱型成形体の形状を示す斜視図である。It is a perspective view which shows the shape of the box-shaped molded object used for shaping | molding evaluation.

符号の説明Explanation of symbols

a 薄肉形状部位
b 中央部寸法を測定した箇所
c 端部寸法を測定した箇所
a Thin-walled part b Location where the center dimension was measured c Location where the end dimension was measured

Claims (4)

ポリプロピレン系樹脂予備発泡粒子を用いて得られる、密度が10kg/m以上300kg/m以下であり、ポリプロピレン系樹脂予備発泡粒子の粒径1〜3個分の厚みの薄肉部位を有する箱形形状であるポリプロピレン系樹脂型内発泡成形体からなる通い箱であって、
該ポリプロピレン系樹脂予備発泡粒子が、プロピレン系樹脂(C)中、下記ポリプロピレン系樹脂(A)70重量%以上95重量%以下と下記ポリプロピレン系樹脂(B)5重量%以上30重量%以下を含んでなり、MFRが5g/10分以上20g/10分以下、融点が140℃以上155℃以下であるポリプロピレン系樹脂(C)と
石油樹脂および/またはテルペン系樹脂を含有するポリプロピレン系樹脂組成物を基材樹脂とする、ポリプロピレン系樹脂予備発泡粒子であることを特徴とする、ポリプロピレン系樹脂型内発泡成形体からなる通い箱
ポリプロピレン系樹脂(A):コモノマーとして1−ブテンとエチレンを含み、MFRが10g/10分以上30g/10分以下
ポリプロピレン系樹脂(B):コモノマーとしてエチレンを含み、MFRが0.1g/10分以上3g/10分以下
A box shape having a density of 10 kg / m 3 or more and 300 kg / m 3 or less, and having a thin-walled portion having a thickness of 1 to 3 particle diameters of the polypropylene resin pre-expanded particles, obtained using the polypropylene resin pre-expanded particles It is a returnable box made of a foamed molded product in a polypropylene resin mold having a shape,
The polypropylene resin pre-expanded particles contain 70 wt% or more and 95 wt% or less of the following polypropylene resin (A) and 5 wt% or more and 30 wt% or less of the following polypropylene resin (B) in the propylene resin (C). A polypropylene resin composition comprising a polypropylene resin (C) having an MFR of 5 g / 10 min to 20 g / 10 min and a melting point of 140 ° C. to 155 ° C. and a petroleum resin and / or a terpene resin. A returnable box made of a polypropylene resin-in-mold foam-molded product, which is a polypropylene resin pre-expanded particle as a base resin.
Polypropylene resin (A): 1-butene and ethylene as comonomer, MFR 10 g / 10 min or more and 30 g / 10 min or less Polypropylene resin (B): ethylene as comonomer, MFR 0.1 g / 10 min More than 3g / 10min
石油樹脂および/またはテルペン系樹脂の添加量が、ポリプロピレン系樹脂(C)に対し1重量%以上20重量%以下であることを特徴とする請求項1記載のポリプロピレン系樹脂型内発泡成形体からなる通い箱The polypropylene resin in-mold foam-molded article according to claim 1 , wherein the amount of petroleum resin and / or terpene resin added is 1 wt% or more and 20 wt% or less based on the polypropylene resin (C). A returnable box consisting of ポリプロピレン系樹脂組成物のMFRが5g/10分以上20g/10分以下、融点が140℃以上155℃以下であり、かつ下記条件式を満たすことを特徴とする請求項1または2記載のポリプロピレン系樹脂型内発泡成形体からなる通い箱
〔MFR(g/10分)〕≧1.6×〔融点(℃)〕−235 (1)
3. The polypropylene according to claim 1 , wherein the polypropylene resin composition has an MFR of 5 g / 10 min to 20 g / 10 min, a melting point of 140 ° C. to 155 ° C., and the following conditional expression: A returnable box made of a foamed product in a resin mold.
[MFR (g / 10 min)] ≧ 1.6 × [melting point (° C.)]-235 (1)
ポリプロピレン系樹脂予備発泡粒子が、示差走査熱量計法による測定において2つの融解ピークを有し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100が、13%以上50%以下であることを特徴とする請求項1〜3何れか一項記載のポリプロピレン系樹脂型内発泡成形体からなる通い箱 The polypropylene resin pre-expanded particles have two melting peaks in the measurement by the differential scanning calorimetry method, and the high temperature calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side among the melting peaks, melting peak ratio Qh / (Ql + Qh) × 100 of the side, characterized in that 50% or less 13% or more, a polypropylene resin mold foamed articles according to any one of claims 1 to 3 A going-to box .
JP2006290411A 2006-10-25 2006-10-25 Polypropylene resin pre-expanded particles, and in-mold foam moldings Expired - Fee Related JP5058557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290411A JP5058557B2 (en) 2006-10-25 2006-10-25 Polypropylene resin pre-expanded particles, and in-mold foam moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290411A JP5058557B2 (en) 2006-10-25 2006-10-25 Polypropylene resin pre-expanded particles, and in-mold foam moldings

Publications (2)

Publication Number Publication Date
JP2008106150A JP2008106150A (en) 2008-05-08
JP5058557B2 true JP5058557B2 (en) 2012-10-24

Family

ID=39439781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290411A Expired - Fee Related JP5058557B2 (en) 2006-10-25 2006-10-25 Polypropylene resin pre-expanded particles, and in-mold foam moldings

Country Status (1)

Country Link
JP (1) JP5058557B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281333B2 (en) * 2008-08-15 2013-09-04 株式会社カネカ Process for producing polypropylene resin pre-expanded particles and polypropylene resin pre-expanded particles
JP5467557B2 (en) * 2009-05-18 2014-04-09 株式会社モルテン Ball and ball manufacturing method
JP5815934B2 (en) * 2010-11-19 2015-11-17 株式会社ジェイエスピー Method for producing composite resin expanded particles, and composite resin expanded particles
JP5976097B2 (en) 2012-03-14 2016-08-23 株式会社カネカ In-mold foam-molded article comprising polypropylene-based resin expanded particles and method for producing the same
JP6757668B2 (en) 2014-10-15 2020-09-23 株式会社カネカ Polypropylene resin foam particles, polypropylene resin in-mold foam molded article and its manufacturing method
CN107428982B (en) 2015-03-13 2020-08-28 株式会社钟化 Polypropylene resin foamed particles and process for producing the same
JP6625472B2 (en) * 2016-03-31 2019-12-25 株式会社カネカ Foamed polypropylene resin particles, foamed molded article in polypropylene resin mold, and method for producing the same
EP3795622A4 (en) * 2018-05-15 2022-02-09 Kaneka Corporation Polypropylene resin foam particles, polypropylene resin in-mold foam molded body, and method for producing polypropylene resin foam particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637504B2 (en) * 1988-09-28 1997-08-06 鐘淵化学工業株式会社 Polypropylene-based resin pre-expanded particles and method for producing the same
JPH05194776A (en) * 1992-01-20 1993-08-03 Dainippon Ink & Chem Inc Production of aromatic vinyl resin foam
JP3904550B2 (en) * 2003-04-18 2007-04-11 株式会社ジェイエスピー Polypropylene resin composition, expanded particles and in-mold molded product
JP2005298769A (en) * 2004-04-16 2005-10-27 Kaneka Corp Polypropylenic resin pre-expanded particle and in-mold expansion molded product

Also Published As

Publication number Publication date
JP2008106150A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5058557B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5219375B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
EP1829919B1 (en) Pre-expanded polypropylene resin particle and molded object obtained by in-mold expansion
JP2009126914A (en) Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
JP5365901B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5528002B2 (en) Polypropylene resin pre-expanded particles
JP4965163B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP2006096805A (en) Polypropylene base resin prefoamed particle and in-mold foamed product
JP5022094B2 (en) Polypropylene resin pre-expanded particles, method for producing the same, and in-mold foam molded article
JP2005298769A (en) Polypropylenic resin pre-expanded particle and in-mold expansion molded product
JP5910626B2 (en) Polypropylene-based resin pre-expanded particles, polypropylene-based in-mold foam-molded article, and method for producing the same
JP5040167B2 (en) Polypropylene resin pre-expanded particles and in-mold foam moldings thereof
JP6038479B2 (en) Polypropylene resin in-mold foam molding
JP6625472B2 (en) Foamed polypropylene resin particles, foamed molded article in polypropylene resin mold, and method for producing the same
JP2006022138A (en) Preliminary expanded polypropylene-based resin particle
JP5064745B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP5384028B2 (en) Method for producing polypropylene resin pre-expanded particles
JP4907118B2 (en) Method for producing polypropylene resin pre-expanded particles
JP5161593B2 (en) Method for producing expanded polypropylene resin particles
JP2012177135A (en) Polypropylene-based resin pre-foamed particle and in-mold foamed molding of the same
JP2010013606A (en) Polypropylene-based resin pre-expanded particle, and polypropylene-based resin in-mold expansion molded product
JP2009084547A (en) Polypropylene-based resin prefoamed particle and inmold molding made of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees