JP2010013606A - Polypropylene-based resin pre-expanded particle, and polypropylene-based resin in-mold expansion molded product - Google Patents

Polypropylene-based resin pre-expanded particle, and polypropylene-based resin in-mold expansion molded product Download PDF

Info

Publication number
JP2010013606A
JP2010013606A JP2008177078A JP2008177078A JP2010013606A JP 2010013606 A JP2010013606 A JP 2010013606A JP 2008177078 A JP2008177078 A JP 2008177078A JP 2008177078 A JP2008177078 A JP 2008177078A JP 2010013606 A JP2010013606 A JP 2010013606A
Authority
JP
Japan
Prior art keywords
polypropylene resin
polypropylene
expanded particles
based resin
resin pre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008177078A
Other languages
Japanese (ja)
Inventor
Koji Tsuneishi
浩司 常石
Kenichi Senda
健一 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008177078A priority Critical patent/JP2010013606A/en
Publication of JP2010013606A publication Critical patent/JP2010013606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide polypropylene-based resin pre-expanded particles producible under a low heating vapor pressure, having a small dimensional shrinkage percentage, and affording an in-mold expansion molded product having high surface beautifulness in in-mold expansion molding of the polypropylene-based resin pre-expanded particles. <P>SOLUTION: The polypropylene-based resin pre-expanded particles comprise a polypropylene-based resin polymerized with a metallocene-based polymerization catalyst as a substrate resin, wherein the polypropylene-based resin has the following requirements (a) to (c): (a) 90-100 mol% of a propylene structural unit, and 0-10 mol% of an ethylene and/or a &ge;4C &alpha;-olefin structural units being present; (b) the total amount of regioirregular units based on 2,1-insertion and 1,3-insertion of propylene monomer units of the total polypylene insertions measured by<SP>13</SP>C-NMR being &lt;0.5 mol%; and (c) the melt flow rate being &ge;0.5 to &le;100 g/10 min. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は自動車内装部材、自動車バンパー用芯材、断熱材、緩衝包材、通箱などに用いられるポリプロピレン系樹脂予備発泡粒子、及び該予備発泡粒子を用いて得られるポリプロピレン系樹脂型内発泡成形体に関するものである。   The present invention relates to polypropylene resin pre-expanded particles used for automobile interior members, automobile bumper cores, heat insulating materials, cushioning packaging materials, pass boxes, and the like, and polypropylene resin in-mold foam molding obtained using the pre-expanded particles It is about the body.

ポリプロピレン系樹脂予備発泡粒子を用いて得られるポリプロピレン系樹脂型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴をもつ。また同様の型内発泡成形体と比較しても、ポリスチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、耐薬品性、耐熱性、圧縮後の歪回復率に優れており、またポリエチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、寸法精度、耐熱性、圧縮強度が優れている。これらの特徴により、ポリプロピレン系樹脂予備発泡粒子を用いて得られるポリプロピレン系樹脂型内発泡成形体は、自動車内装部材、自動車バンパー用芯材をはじめ、断熱材、緩衝包装材など様々な用途に用いられている。   The polypropylene resin in-mold foam-molded product obtained by using the polypropylene-based resin pre-expanded particles has characteristics such as shape flexibility, light weight, and heat insulation, which are advantages of the in-mold foam-molded product. Compared to similar in-mold foam moldings, it is superior in chemical resistance, heat resistance and strain recovery after compression compared to in-mold foam moldings obtained using polystyrene resin pre-expanded particles. In addition, the dimensional accuracy, heat resistance, and compressive strength are excellent as compared with the in-mold foam molded body obtained using the polyethylene resin pre-expanded particles. Due to these features, the polypropylene resin-molded in-mold molded products obtained using polypropylene resin pre-expanded particles are used in various applications such as automotive interior parts, automotive bumper core materials, heat insulation materials, and cushioning packaging materials. It has been.

ポリプロピレン系樹脂予備発泡粒子を用いて得られるポリプロピレン系樹脂型内発泡成形体に要求される重要な性質として、ポリプロピレン系樹脂予備発泡粒子間の融着性、表面の美麗性、収縮回復性が挙げられる。   Important properties required for polypropylene resin in-mold foam molded products obtained using polypropylene resin pre-expanded particles include fusion between polypropylene resin pre-expanded particles, surface aesthetics, and shrinkage recovery. It is done.

ポリプロピレン系樹脂予備発泡粒子間の融着性は、ポリプロピレン系樹脂型内発泡成形体におけるポリプロピレン系樹脂予備発泡粒子間の融着の程度であり、融着が不十分であればポリプロピレン系樹脂型内発泡成形体の機械強度が不十分になる。特に型内発泡成形体内部において融着性が不十分になる場合が多い。   The fusion property between the polypropylene resin pre-expanded particles is the degree of fusion between the polypropylene resin pre-expanded particles in the polypropylene resin in-mold foam, and if the fusion is insufficient, The mechanical strength of the foam molded article becomes insufficient. In particular, in many cases, the melt-bonding property is insufficient inside the in-mold foamed molded product.

表面の美麗性はポリプロピレン系樹脂型内発泡成形体表面が平滑である程度である。表面美麗性の低下は、ポリプロピレン系樹脂予備発泡粒子の不十分な発泡に起因すると考えられるポリプロピレン系樹脂型内発泡成形体表面のポリプロピレン系樹脂予備発泡粒子間の溝部分に生じる凹みやポリプロピレン系樹脂型内発泡成形体の収縮に起因すると考えられる筋状の溝によって引き起こされる。   The surface is beautiful to the extent that the surface of the foamed molded product in the polypropylene resin mold is smooth. The decrease in surface aesthetics may be due to insufficient foaming of the polypropylene resin pre-expanded particles. Indentations and polypropylene resin formed in the grooves between the polypropylene resin pre-expanded particles on the surface of the polypropylene resin in-mold molded product It is caused by streak-like grooves that are thought to be caused by the shrinkage of the in-mold foam molding.

ポリプロピレン系樹脂予備発泡粒子を用いて得られるポリプロピレン系樹脂型内発泡成形体は成形後、金型から取り出したとき収縮するのが通常であり、反りや変形を引き起こす。ポリプロピレン系樹脂型内発泡成形体を加温雰囲気下に一定時間保持する、いわゆる養生工程によりポリプロピレン系樹脂型内発泡成形体の収縮や変形を回復させることができる。養生後においてもポリプロピレン系樹脂型内発泡成形体が金型の大きさに回復することはないが、金型に比較し養生後のポリプロピレン系樹脂型内発泡成形体の寸法収縮率が小さい場合、収縮回復性が優れる。   The polypropylene resin in-mold foam-molded product obtained by using the polypropylene resin pre-expanded particles usually shrinks when being taken out from the mold after molding, causing warping and deformation. The shrinkage and deformation of the polypropylene resin-in-mold foam-molded product can be recovered by a so-called curing process in which the polypropylene-based resin mold-in-mold foam-molded product is held in a heated atmosphere for a certain time. Even after curing, the polypropylene resin in-mold foam molded article does not recover to the size of the mold, but when the dimensional shrinkage of the cured polypropylene resin mold in the mold after curing is small, Excellent shrinkage recovery.

ポリプロピレン系樹脂予備発泡粒子の型内発泡成形用の成形機は、耐圧0.4MPaの仕様であるものが大半を占めており、該成形機を用いて通常生産される成形加熱蒸気圧力はおおむね0.36MPa程度までである。型内発泡成形に用いられるポリプロピレン系樹脂予備発泡粒子は、これに対応できるような特性の樹脂を用いており、一般には融点が140〜150℃程度のエチレン-ランダムポリプロピレンが用いられている。しかしながら、昨今の燃料価格の上昇などにより、成形加熱蒸気圧力のさらなる低減策が待望されている。   Most molding machines for in-mold foam molding of polypropylene resin pre-expanded particles occupy a specification with a pressure resistance of 0.4 MPa, and the molding heating steam pressure normally produced using the molding machine is approximately 0. It is up to about 36 MPa. Polypropylene-based resin pre-expanded particles used for in-mold foam molding use a resin having such a characteristic that can cope with this, and generally, ethylene-random polypropylene having a melting point of about 140 to 150 ° C. is used. However, due to the recent increase in fuel prices and the like, further measures for reducing the pressure of the formed heating steam are awaited.

成形加熱蒸気圧力を下げる方法としては、基材樹脂の融点がさらに低いものを用いる方法、つまり130℃台のランダムポリプロピレンを用いる方法があるが、一般に、プロピレン系樹脂の融点と樹脂の剛性とは正の相関関係にあり、融点の低い樹脂を用いると剛性が低く、型内発泡成形体の収縮や変形が大きくなる傾向がある。   As a method for lowering the molding heating steam pressure, there is a method using a material having a lower melting point of the base resin, that is, a method using random polypropylene in the range of 130 ° C. Generally, the melting point of the propylene resin and the rigidity of the resin are When a resin having a positive correlation and a low melting point is used, the rigidity is low, and the shrinkage and deformation of the in-mold foam molded product tend to increase.

一方、高い剛性を達成するためにコモノマー含量の少ない、融点の高い樹脂を用いると、樹脂の融点が高くなるため良好な型内発泡成形体を得るために必要となる成形加熱蒸気圧力は高くなる傾向にある。このため、より高い剛性を求める場合、耐圧仕様の高い成形機や金型を用いる必要があり、設備コストが高くなると共に、ユーティリティコストが高くなるため成形加工コストが高くなる。   On the other hand, if a resin having a low comonomer content and a high melting point is used to achieve high rigidity, the melting point of the resin will be high, and the molding heating steam pressure required to obtain a good in-mold foam molded product will be high There is a tendency. For this reason, when higher rigidity is required, it is necessary to use a molding machine or a die having a high pressure resistance specification, which increases the equipment cost and increases the utility cost, thereby increasing the molding processing cost.

また、近年、型内発泡成形体においても外観が重要視されるものが増えてきている。これは使用者の目に触れる場所に使用される自動車内装部材や通い箱と言った用途に多く、型内発泡成形体に通常求められる剛性、軽量性、断熱性などの物性に加え、良好な外観が求められる。型内発泡成形体はその製法上、予備発泡粒子間の隙間や粒子の亀甲模様が見られるが、外観を重視する製品にはこれらを嫌うものも多い。予備発泡粒子間の隙間を目立たなくさせるためには、一般に型内発泡成形時の成形加熱蒸気圧力を高くし、予備発泡粒子同士の融着を促進させるなどの方法が採られる。すなわち表面美麗性の高い型内発泡成形体を得るためには、型内発泡成形時の成形加熱蒸気圧力を予備発泡粒子間の融着に必要となる圧力より高くする必要がある。   In recent years, the number of in-mold foam molded products whose appearance is regarded as important is increasing. This is often used for automobile interior parts and returnable boxes used in places where users can see. In addition to the physical properties such as rigidity, light weight, and heat insulation that are usually required for in-mold foam molded products, it is good. Appearance is required. In-mold foam moldings show gaps between pre-expanded particles and turtle shell patterns due to the manufacturing method, but many products that emphasize the appearance dislike them. In order to make the gaps between the pre-expanded particles inconspicuous, generally, a method of increasing the molding heating steam pressure at the time of in-mold foam molding and promoting the fusion of the pre-expanded particles is adopted. That is, in order to obtain an in-mold foam molded article having a high surface beauty, it is necessary to make the molding heating steam pressure at the time of in-mold foam molding higher than the pressure required for fusion between the pre-expanded particles.

以上のように、剛性が高く、かつ表面美麗性の高いポリプロピレン系樹脂型内発泡成形体を、特殊な成形機を使用しなくとも安定的により低い成形加工温度で製造することができる技術が求められている。   As described above, there is a need for a technology that can stably produce a foam-in-molded polypropylene resin mold with high rigidity and high surface beauty at a lower molding processing temperature without using a special molding machine. It has been.

ポリプロピレン系樹脂型内発泡成形体の剛性を向上するための技術に関して、ポリプロピレン系樹脂予備発泡粒子に用いる基材樹脂について様々な技術が検討されている。それらに多くは現在汎用的に市販されている、塩化チタンとアルキルアルミニウムからなるいわゆるチーグラー・ナッタ系触媒を用いて重合されたポリプロピレン系樹脂に関するものが大半である。一方、近年、ポリプロピレン系樹脂の重合触媒技術が広範に検討され、ポリプロピレン系樹脂の性能改善が種々検討されつつある。その中で、いわゆるメタロセン系重合触媒を用いることにより、立体規則性が制御され従来のチーグラー系重合触媒を用いて得られたポリプロピレン系樹脂と比較して融点みあいの剛性が高い樹脂が得られている(例えば、特許文献1)。
特開2006−57010号公報
With respect to the technique for improving the rigidity of the polypropylene resin-molded in-mold foam, various techniques have been studied for the base resin used for the polypropylene resin pre-expanded particles. Most of them relate to polypropylene resins polymerized using so-called Ziegler-Natta catalysts made of titanium chloride and alkylaluminum, which are currently commercially available. On the other hand, in recent years, polymerization catalyst technology for polypropylene resins has been extensively studied, and various improvements in the performance of polypropylene resins are being studied. Among them, by using a so-called metallocene polymerization catalyst, a stereoregularity is controlled, and a resin having a high melting point rigidity compared to a polypropylene resin obtained using a conventional Ziegler polymerization catalyst is obtained. (For example, Patent Document 1).
JP 2006-57010 A

ポリプロピレン系樹脂予備発泡粒子を型内発泡成形する際において、低い成形加熱蒸気圧力で生産でき、寸法収縮率が小さく、かつ表面美麗性の高いポリプロピレン系樹脂型内発泡成形体が得られるポリプロピレン系樹脂予備発泡粒子の開発が求められている。   Polypropylene resin that can be produced with low molding heating steam pressure, and has a small dimensional shrinkage and high surface aesthetics. There is a need for the development of pre-expanded particles.

本発明は、上記課題に鑑みて鋭意研究した結果、メタロセン重合触媒を用いて重合された特定構造のプロピレン系樹脂を基材樹脂に用いることにより型内発泡成形時の成形加熱蒸気圧力が著しく低く、さらに得られるポリプロピレン系樹脂型内発泡成形体の寸法収縮率が小さく、かつ表面美麗性が高いことを見出し、本発明を完成させたものである。   As a result of diligent research in view of the above problems, the present invention uses a propylene resin having a specific structure polymerized using a metallocene polymerization catalyst as a base resin, so that the molding heating steam pressure during in-mold foam molding is extremely low. Further, the present invention has been completed by finding out that the obtained polypropylene-based resin-molded foam-molded product has a low dimensional shrinkage and high surface aesthetics.

すなわち、本発明の第1は、メタロセン系重合触媒で重合されたポリプロピレン系樹脂を基材樹脂としてなることを特徴とするポリプロピレン系樹脂予備発泡粒子であって、前記ポリプロピレン系樹脂が下記の要件(a)〜(c)を有するポリプロピレン系樹脂予備発泡粒子に関する。
(a)プロピレンからなる構造単位が90〜100モル%、エチレン及び/又は炭素数が4以上のα−オレフィンからなる構造単位が0〜10モル%存在すること。
(b)13C−NMRで測定した、全ポリピレン挿入中のプロピレンモノマー単位の2,1−挿入及び1,3−挿入に基づく位置不規則単位の合計量が0.5モル%未満であること。
(c)メルトフローレートが0.5g/10min以上100g/10min以下であること。
That is, the first aspect of the present invention is a polypropylene resin pre-expanded particle characterized in that a polypropylene resin polymerized with a metallocene polymerization catalyst is used as a base resin, and the polypropylene resin has the following requirements ( It relates to polypropylene resin pre-expanded particles having a) to (c).
(A) The structural unit consisting of propylene is 90 to 100 mol%, and the structural unit consisting of ethylene and / or an α-olefin having 4 or more carbon atoms is present in an amount of 0 to 10 mol%.
(B) The total amount of position irregular units based on 2,1-insertion and 1,3-insertion of propylene monomer units in all polypropylene insertions, as measured by 13 C-NMR, is less than 0.5 mol%. .
(C) The melt flow rate is 0.5 g / 10 min or more and 100 g / 10 min or less.

好ましい態様としては、
(1)示差走査熱量計法による測定において2つの融解ピークを有し、低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100が10%以上50%以下であることを特徴とする、
(2)表面に付着した無機分散剤量が2000ppm以下であること、
を特徴とする前記記載のポリプロピレン系樹脂予備発泡粒子に関する。
As a preferred embodiment,
(1) The ratio of the melting peak on the high temperature side, Qh / (Ql + Qh, having two melting peaks in the differential scanning calorimetry method, calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side ) × 100 is 10% or more and 50% or less,
(2) The amount of the inorganic dispersant adhering to the surface is 2000 ppm or less,
The above-mentioned polypropylene resin pre-expanded particles are characterized by the following.

本発明の第2は、前記記載のポリプロピレン系樹脂予備発泡粒子を用いて得られる、密度が10kg/m3以上300kg/m3以下であるポリプロピレン系樹脂型内発泡成形体に関する。 A second aspect of the present invention relates to a polypropylene resin-in-mold foam-molded article having a density of 10 kg / m 3 or more and 300 kg / m 3 or less, obtained by using the polypropylene resin pre-expanded particles described above.

本発明により、寸法収縮率が小さく表面美麗性の高いポリプロピレン系樹脂型内発泡成形体を低い成形加熱蒸気圧力で製造することができる。   According to the present invention, it is possible to produce a polypropylene resin in-mold foam-molded product having a small dimensional shrinkage ratio and high surface beauty at a low molding heating steam pressure.

本発明のポリプロピレン系樹脂予備発泡粒子は、下記の要件(a)〜(c)を有するメタロセン系重合触媒で重合されたプロピレン系重合体を基材樹脂としてなることを特徴とするポリプロピレン系樹脂予備発泡粒子である。
(a)プロピレンからなる構造単位が90〜100モル%、エチレン及び/又は炭素数が4以上のα−オレフィンからなる構造単位が0〜10モル%存在すること。
(b)13C−NMRで測定した、全ポリピレン挿入中のプロピレンモノマー単位の2,1−挿入及び1,3−挿入に基づく位置不規則単位の合計量が0.5モル%未満であること。
(c)メルトフローレートが0.5g/10min以上100g/10min以下であること。
The polypropylene resin pre-expanded particles of the present invention comprise a propylene polymer polymerized with a metallocene polymerization catalyst having the following requirements (a) to (c) as a base resin. Expanded particles.
(A) The structural unit consisting of propylene is 90 to 100 mol%, and the structural unit consisting of ethylene and / or an α-olefin having 4 or more carbon atoms is present in an amount of 0 to 10 mol%.
(B) The total amount of position irregular units based on 2,1-insertion and 1,3-insertion of propylene monomer units in all polypropylene insertions, as measured by 13 C-NMR, is less than 0.5 mol%. .
(C) The melt flow rate is 0.5 g / 10 min or more and 100 g / 10 min or less.

本発明のポリプロピレン系樹脂は、プロピレンからなる構造単位が90〜100モル%であり、エチレン及び/又は炭素数が4以上のα−オレフィンからなる構造単位が0〜10モル%である。   In the polypropylene resin of the present invention, the structural unit composed of propylene is 90 to 100 mol%, and the structural unit composed of ethylene and / or an α-olefin having 4 or more carbon atoms is 0 to 10 mol%.

エチレン及び/又は炭素数が4以上のα−オレフィンからなる構造単位としては、エチレン、1−ブテン、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどの炭素数2または4〜12のα−オレフィン、シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエンなどが挙げられ、これらのうち、エチレン、1−ブテンを使用することが耐寒脆性向上、安価等という点で好ましい。 Examples of the structural unit composed of ethylene and / or an α-olefin having 4 or more carbon atoms include ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1- Alpha-olefins having 2 or 4 to 12 carbon atoms such as pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, cyclopentene, norbornene, tetracyclo Cyclic olefins such as [6,2,1 1,8 , 1 3,6 ] -4-dodecene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1, Examples include dienes such as 4-hexadiene and 7-methyl-1,6-octadiene. Among these, the use of ethylene and 1-butene tends to be resistant to cold brittleness. , Preferable in terms of low cost and the like.

本発明のポリプロピレン系樹脂はさらに塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが共重合されていてもかまわない。   The polypropylene resin of the present invention further includes vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, ethyl acrylate, butyl acrylate, methyl methacrylate, maleic anhydride, styrene, methyl styrene, vinyl. Vinyl monomers such as toluene and divinylbenzene may be copolymerized.

本発明のポリプロピレン系樹脂は、13C−NMRで測定した、全ポリピレン挿入中のプロピレンモノマー単位の2,1−挿入及び1,3−挿入に基づく位置不規則単位の合計量が0.5モル%未満である。 The polypropylene resin of the present invention has a total amount of position irregular units based on 2,1-insertion and 1,3-insertion of propylene monomer units in all polypropylene insertions as measured by 13 C-NMR. %.

上記の位置不規則単位量のポリプロピレン系樹脂は、下記一般式[I]で表されるメタロセン化合物を必須成分として含むメタロセン触媒で重合することによって得られる。   The polypropylene resin having the above-mentioned position irregular unit amount can be obtained by polymerization with a metallocene catalyst containing a metallocene compound represented by the following general formula [I] as an essential component.

Figure 2010013606
(上記一般式[I]において、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14は水素、炭化水素基、ケイ素含有基から選ばれ、それぞれ同一でも異なっていてもよい。Mは第4族遷移金属であり、Yは炭素原子またはケイ素原子であり、Qはハロゲン、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組合せで選んでもよく、jは1〜4の整数である。)
なお、本発明のポリプロピレン系樹脂の全ポリピレン挿入中のプロピレンモノマー単位の2,1−挿入及び1,3−挿入に基づく位置不規則単位量は、Polymer, 30, 1350(1989)や特開平7−145212号公報に開示された情報を参考に容易に算出することができる。
Figure 2010013606
(In the above general formula [I], R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14 are selected from hydrogen, hydrocarbon group, silicon-containing group, Each may be the same or different, M is a Group 4 transition metal, Y is a carbon atom or a silicon atom, and Q can be coordinated by a halogen, a hydrocarbon group, an anionic ligand or a lone pair of electrons. The neutral ligands may be selected in the same or different combinations, and j is an integer of 1 to 4.)
The amount of position irregular units based on 2,1-insertion and 1,3-insertion of propylene monomer units during the insertion of all polypropylene in the polypropylene resin of the present invention is described in Polymer, 30, 1350 (1989) and It can be easily calculated with reference to the information disclosed in JP-A-145212.

本発明のポリプロピレン系樹脂はメルトフローレート(MFR)が0.5g/10min以上100g/10min以下であり、好ましくは2g/10min以上50g/10min以下である。本発明に言うMFRの測定は、JIS−K7210記載のMFR測定器を用い、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、荷重2160g、230±0.2℃の条件下で測定したときの値である。MFRが上記範囲にあると比較的大きな発泡倍率のポリプロピレン系樹脂予備発泡粒子が得られやすく、それを型内発泡成形して得られたポリプロピレン系樹脂型内発泡成形体の表面美麗性が優れ、寸法収縮率が小さいものが得られる。   The polypropylene resin of the present invention has a melt flow rate (MFR) of 0.5 g / 10 min to 100 g / 10 min, preferably 2 g / 10 min to 50 g / 10 min. The MFR measurement according to the present invention is performed using an MFR measuring instrument described in JIS-K7210, with an orifice of 2.0959 ± 0.005 mmφ, an orifice length of 8.000 ± 0.025 mm, a load of 2160 g, and 230 ± 0.2 ° C. It is a value when measured under conditions. When the MFR is in the above range, it is easy to obtain polypropylene resin pre-expanded particles having a relatively large expansion ratio, and the surface beauty of the polypropylene resin in-mold foam molding obtained by in-mold foam molding is excellent. A product having a small dimensional shrinkage rate is obtained.

これらのポリプロピレン系樹脂は無架橋の状態が好ましいが、パーオキサイドや放射線により架橋させても良い。またポリプロピレン系樹脂と混合使用可能な他の熱可塑性樹脂、例えば低密度ポリエチレン、直鎖状密度ポリエチレン、ポリスチレン、ポリブテン、アイオノマー等をポリプロプレン系樹脂の特性が失われない範囲で混合使用しても良い。   These polypropylene resins are preferably in a non-crosslinked state, but may be crosslinked by peroxide or radiation. Also, other thermoplastic resins that can be mixed with polypropylene resin, such as low density polyethylene, linear density polyethylene, polystyrene, polybutene, ionomer, etc., may be mixed and used as long as the properties of the polypropylene resin are not lost. good.

上記のポリプロピレン系樹脂は、通常、予備発泡に利用されやすいようにあらかじめ押出機、ニーダー、バンバリミキサー、ロール等を用いて溶融し、円柱状、楕円状、球状、立方体状、直方体状等のような所望の粒子形状に成形加工され、ポリプロピレン系樹脂粒子となる。   The above polypropylene resin is usually melted in advance using an extruder, kneader, Banbury mixer, roll, etc. so as to be easily used for pre-foaming, and has a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc. Molded into a desired particle shape to form polypropylene resin particles.

本発明において、ポリプロピレン系樹脂の他に、帯電防止剤、顔料、難燃性改良剤、導電性改良剤等を必要により加えて、ポリプロピレン系樹脂粒子としてもよく、その場合は、これらは、通常、樹脂粒子の製造過程において溶融した樹脂中に添加することが好ましい。   In the present invention, in addition to the polypropylene resin, an antistatic agent, a pigment, a flame retardant improver, a conductivity improver and the like may be added as necessary to form polypropylene resin particles. It is preferable to add to the molten resin in the production process of the resin particles.

本発明のポリプロピレン系樹脂予備発泡粒子は、ポリプロピレン系樹脂粒子、発泡剤、水、分散剤、分散助剤を含んでなる分散液を耐圧容器に入れて、所定温度まで加熱し、加圧下のもと、容器内混合物を、好ましくはポリプロピレン系樹脂の融点−20℃以上ポリプロピレン系樹脂+10℃以下の範囲の温度に加熱するとともに発泡剤を含浸させ、容器内の温度、圧力を一定に保持しながら、加圧下で、容器内混合物を容器内よりも低圧雰囲気下に放出することにより製造することができる。   The polypropylene resin pre-expanded particles of the present invention are prepared by placing a dispersion containing polypropylene resin particles, a foaming agent, water, a dispersant and a dispersion aid in a pressure vessel, heating to a predetermined temperature, And the mixture in the container is preferably heated to a temperature in the range of the melting point of the polypropylene resin −20 ° C. or higher and the polypropylene resin + 10 ° C. or lower and impregnated with the foaming agent to keep the temperature and pressure in the container constant. It can be produced by releasing the mixture in the container under a lower pressure atmosphere than in the container under pressure.

本発明に使用されるポリプロピレン系樹脂粒子に含浸させる発泡剤としては、例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の脂肪族炭化水素類;シクロペンタン、シクロブタン等の脂肪式環化水素類;空気、窒素、炭酸ガス等の無機ガス類;水、等が挙げられる。これらの発泡剤は単独で用いてもよく、また、2種類以上併用してもよい。なかでも、炭酸ガス、水や、より高倍率での発泡を可能とするイソブタンを用いることが好ましい。   Examples of the foaming agent impregnated into the polypropylene resin particles used in the present invention include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, and hexane; and aliphatic cyclization such as cyclopentane and cyclobutane. Hydrogen; inorganic gases such as air, nitrogen and carbon dioxide; water and the like. These foaming agents may be used alone or in combination of two or more. Among these, it is preferable to use carbon dioxide gas, water, or isobutane that enables foaming at a higher magnification.

また、発泡剤の使用量に限定はなく、ポリプロピレン系樹脂予備発泡粒子の所望の発泡倍率に応じて適宣使用すれば良く、その使用量はポリプロピレン系樹脂粒子100重量部に対して3重量部以上60重量部以下であることが好ましい。   Further, the amount of the foaming agent is not limited, and may be appropriately used according to the desired expansion ratio of the polypropylene resin pre-expanded particles. The amount used is 3 parts by weight with respect to 100 parts by weight of the polypropylene resin particles. The amount is preferably 60 parts by weight or less.

ポリプロピレン系樹脂予備発泡粒子製造時に使用する耐圧容器には特に制限はなく、ポリプロピレン系樹脂予備発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよく、例えばオートクレーブ型の耐圧容器があげられる。   There is no particular limitation on the pressure vessel used when producing the polypropylene resin pre-expanded particles, and any pressure-resistant vessel that can withstand the pressure and temperature in the vessel at the time of producing the polypropylene resin pre-expanded particles may be used. For example, an autoclave-type pressure vessel Can be given.

本発明で使用することが出来る分散剤としては、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、塩基性炭酸亜鉛、酸化アルミニウム、酸化鉄、酸化チタン、アルミノ珪酸塩、硫酸バリウム等の無機分散剤が挙げられる。   Examples of the dispersant that can be used in the present invention include tribasic calcium phosphate, tribasic magnesium phosphate, basic magnesium carbonate, calcium carbonate, basic zinc carbonate, aluminum oxide, iron oxide, titanium oxide, and aluminosilicate. And inorganic dispersants such as barium sulfate.

本発明で使用することが出来る分散助剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等が挙げられる。これらの中でも、分散剤と分散助剤の組み合わせとしては、第三リン酸カルシウムとドデシルベンゼンスルホン酸ナトリウムの組み合わせが好ましい。   Examples of the dispersion aid that can be used in the present invention include sodium dodecylbenzene sulfonate, sodium n-paraffin sulfonate, and sodium α-olefin sulfonate. Among these, as a combination of a dispersant and a dispersion aid, a combination of tricalcium phosphate and sodium dodecylbenzenesulfonate is preferable.

分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して分散剤0.2〜3重量部であることが好ましく、分散助剤0.001〜0.1重量部であることが好ましい。また、ポリプロピレン系樹脂粒子は、水中での分散性を良好なものにするために、通常、水100重量部に対して20〜100重量部使用するのが好ましい。   The amount of the dispersant and the dispersion aid varies depending on the type and the type and amount of the polypropylene-based resin used, but it is usually 0.2 to 3 parts by weight of the dispersant with respect to 100 parts by weight of water. Preferably, the dispersion aid is 0.001 to 0.1 part by weight. Moreover, in order to make a polypropylene resin particle favorable in the dispersibility in water, it is preferable to use normally 20-100 weight part with respect to 100 weight part of water.

以上の製造方法により得られるポリプロピレン系樹脂予備発泡粒子の発泡倍率は、好ましくは5倍以上50倍以下であり、さらに好ましくは7倍以上45倍以下である。また、ポリプロピレン系樹脂粒子、発泡剤、水、分散剤、分散助剤を含んでなる分散液を耐圧容器に入れて、所定温度まで加熱し、加圧下のもと、容器内混合物を、好ましくはポリプロピレン系樹脂の融点−20℃以上ポリプロピレン系樹脂+10℃以下の範囲の温度に加熱するとともに発泡剤を含浸させ、容器内の温度、圧力を一定に保持しながら、加圧下で、容器内混合物を容器内よりも低圧雰囲気下に放出する等、一段目の発泡で5倍以上35倍以下の予備発泡粒子(以下、一段発泡予備発泡粒子と称す場合がある)を製造し、該一段発泡予備発泡粒子を耐圧密閉容器内に入れて窒素、空気などを0.1〜0.6MPa加圧含浸させる加圧処理により一段発泡予備発泡粒子内の圧力を常圧よりも高くした後、該一段発泡予備発泡粒子をスチーム等で加熱して更に発泡させることにより、一段発泡予備発泡粒子の発泡倍率よりも発泡倍率の高いポリプロピレン系樹脂予備発泡粒子(以下、二段発泡予備発泡粒子を称する場合がある)を得ても良い。   The expansion ratio of the polypropylene resin pre-expanded particles obtained by the above production method is preferably 5 to 50 times, and more preferably 7 to 45 times. Further, a dispersion liquid containing polypropylene resin particles, foaming agent, water, dispersant, and dispersion aid is put in a pressure vessel, heated to a predetermined temperature, and under pressure, the mixture in the vessel is preferably Melting point of polypropylene resin −20 ° C. or higher and polypropylene resin + 10 ° C. or lower and impregnating with foaming agent, keeping the temperature and pressure in the container constant, and maintaining the mixture in the container under pressure Manufactures pre-expanded particles (hereinafter sometimes referred to as single-stage pre-expanded particles) that are 5 to 35 times in the first stage of foaming, such as being released in a low-pressure atmosphere from the inside of the container. After the particles are put in a pressure-resistant airtight container and the pressure in the one-stage expanded pre-expanded particles is made higher than the normal pressure by pressure treatment in which nitrogen, air or the like is impregnated with 0.1 to 0.6 MPa, the one-stage expanded preliminary Foam particles By further heating and foaming with a team or the like, a polypropylene resin pre-expanded particle (hereinafter, sometimes referred to as a two-stage expanded pre-expanded particle) having a higher expansion ratio than the expansion ratio of the first-stage expanded pre-expanded particle is obtained. Also good.

ここでポリプロピレン系樹脂予備発泡粒子の発泡倍率は、ポリプロピレン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前のポリプロピレン系樹脂粒子の密度d(g/cm3)から次式により求めたものである。
発泡倍率=d×v/w
Here, the expansion ratio of the polypropylene resin pre-expanded particles is obtained by determining the weight w (g) and the ethanol submerged volume v (cm 3 ) of the polypropylene resin pre-expanded particles, and the density d (g / g cm 3 ) is obtained from the following equation.
Foaming ratio = d × v / w

本発明のポリプロピレン系樹脂予備発泡粒子は図1に示すように、示差走査熱量計法において、ポリプロピレン系樹脂予備発泡粒子を40℃から200℃まで10℃/分の速度で昇温した時に得られるDSC曲線において2つの融解ピークを有し、低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である低温側の融解ピーク熱量Qlと、DSC曲線の高温側ピークと、低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100(以下、DSC比と略す)が10%以上50%以下であることが好ましく、より好ましくは15%以上40%以下の範囲である。DSC比が当該範囲であると、表面美麗性の高いポリプロピレン系樹脂型内発泡成形体が得られやすい。   As shown in FIG. 1, the polypropylene resin pre-expanded particles of the present invention are obtained when the polypropylene resin pre-expanded particles are heated from 40 ° C. to 200 ° C. at a rate of 10 ° C./min in the differential scanning calorimetry method. The DSC curve has two melting peaks, and the melting peak calorie Ql on the low temperature side, which is the amount of heat surrounded by the tangent to the melting start baseline from the maximum point between the low temperature side peak and the high temperature side peak, The ratio Qh of the melting peak on the high temperature side calculated from the high temperature side melting peak calorie Qh, which is the amount of heat surrounded by the tangent to the melting end baseline from the maximum point between the high temperature side peak and the low temperature side peak and the high temperature side peak / (Ql + Qh) × 100 (hereinafter abbreviated as DSC ratio) is preferably 10% to 50%, more preferably 15% to 40%. . When the DSC ratio is within this range, a polypropylene resin-in-mold foam-molded product having a high surface beauty is easily obtained.

本発明のポリプロピレン系樹脂予備発泡粒子は、表面に付着した無機分散剤量が2000ppm以下であることが好ましい。当該範囲であれば、型内発泡成形を行ったときに融着性の良好なポリプロピレン系樹脂型内発泡成形体が得られる傾向にある。   The polypropylene resin pre-expanded particles of the present invention preferably have an amount of inorganic dispersant adhering to the surface of 2000 ppm or less. If it is the said range, it exists in the tendency for a polypropylene resin in-mold foam-molding body with favorable melt | fusion property to be obtained when in-mold foam-molding is performed.

なお、本発明の付着分無機散剤量については各種分光分析や、或いはポリプロピレン系樹脂予備発泡粒子を燃焼したときの灰分量から定量できる。例えば分散剤として、リン酸塩を使用する場合、乾燥させた予備発泡粒子をメタバナジン酸アンモニウム0.022重量%、モリブデン酸アンモニウム0.54重量%および硝酸3重量%を含む水溶液(比色液)50.0mLとW(g)の予備発泡粒子をコニカルビーカーに採り、1分間撹拌したのち10分間放置した。得られた液相を光路長1.0cmの石英セルに採り、分光光度計により410nmでの吸光度A(−)を測定し、標準のリン酸塩溶液の吸光度から求めることが出来る。   In addition, about the amount of adhesion part inorganic powder of this invention, it can quantify from various spectroscopic analyzes or the amount of ash when a polypropylene resin pre-expanded particle is burned. For example, when phosphate is used as a dispersant, the dried pre-foamed particles are an aqueous solution (colorimetric solution) containing 0.022 wt% ammonium metavanadate, 0.54 wt% ammonium molybdate and 3 wt% nitric acid. 50.0 mL and W (g) of pre-expanded particles were placed in a conical beaker, stirred for 1 minute, and allowed to stand for 10 minutes. The obtained liquid phase is put in a quartz cell having an optical path length of 1.0 cm, and the absorbance A (−) at 410 nm is measured with a spectrophotometer, and can be obtained from the absorbance of a standard phosphate solution.

本発明のポリプロピレン系樹脂予備発泡粒子をポリプロピレン系樹脂型内発泡成形体とするには、イ)そのまま型内発泡成形を行う方法、ロ)あらかじめポリプロピレン系樹脂予備発泡粒子中に空気等の無機ガスを圧入し、内圧(発泡能)を付与した後、型内発泡成形を行う方法、ハ)ポリプロピレン系樹脂予備発泡粒子を圧縮状態で金型内に充填し、型内発泡成形を行う方法、など従来既知の方法が使用しうる。   In order to make the polypropylene resin pre-expanded particles of the present invention into a polypropylene resin in-mold foam molded product, a) a method of performing in-mold foam molding as it is, b) an inorganic gas such as air in advance in the polypropylene resin pre-foamed particles Injecting mold and applying internal pressure (foaming ability), then performing in-mold foam molding, c) Filling polypropylene resin pre-expanded particles in a mold in a compressed state, and performing in-mold foam molding, etc. Conventionally known methods can be used.

本発明のポリプロピレン系樹脂予備発泡粒子を用いてポリプロピレン系樹脂型内発泡成形体を得る方法の具体例としては、たとえばあらかじめポリプロピレン系樹脂予備発泡粒子を耐圧容器内で空気加圧し、ポリプロピレン系樹脂予備発泡粒子中に空気を圧入することにより内圧(発泡能)を付与し、これを閉鎖しうるが密閉し得ない成形型内に充填し、水蒸気などを加熱媒体として0.1〜0.4MPa(ゲージ圧)程度の加熱水蒸気圧で3〜30秒程度の加熱時間で成形しポリプロピレン系樹脂予備発泡粒子同士を融着させ、このあと成形金型を水冷により型内発泡成形体取り出し後のポリプロピレン系樹脂型内発泡成形体の変形を抑制できる程度まで冷却した後、金型を開き、ポリプロピレン系樹脂型内発泡成形体を得る方法などが挙げられる。   As a specific example of a method for obtaining a polypropylene resin pre-expanded molded article using the polypropylene resin pre-expanded particles of the present invention, for example, the polypropylene resin pre-expanded particles are preliminarily air-pressurized in a pressure-resistant container, An internal pressure (foaming ability) is imparted by pressurizing air into the foamed particles, and this is filled in a mold that can be closed but cannot be sealed, and 0.1 to 0.4 MPa ( Molded with a steam pressure of about 3 to 30 seconds with a heating steam pressure of about gauge pressure), and the polypropylene-based resin pre-foamed particles are fused together, and then the molding mold is taken out of the in-mold foam-molded product by water cooling. After cooling to a level that can prevent deformation of the foam molded product in the resin mold, the mold is opened, and a method of obtaining a foam molded product in the polypropylene resin mold is listed. It is.

また、ポリプロピレン系樹脂予備発泡粒子の内圧は、例えば耐圧容器内で、1〜48時間、室温〜80℃の温度条件下、空気、窒素等の無機ガスによって0.1〜1.0MPa(ゲージ圧)加圧することによって調整できる。   In addition, the internal pressure of the polypropylene resin pre-expanded particles is 0.1 to 1.0 MPa (gauge pressure) by an inorganic gas such as air and nitrogen under a temperature condition of room temperature to 80 ° C. for 1 to 48 hours, for example. ) Can be adjusted by applying pressure.

このようにして、本発明のポリプロピレン系樹脂予備発泡粒子を用いて得られるポリプロピレン系樹脂型内発泡成形体の密度は10kg/m3以上300kg/m3以下であることが好ましく、より好ましくは15kg/m3以上250kg/m3以下である。 Thus, the density of the polypropylene resin in-mold foam molded product obtained by using the polypropylene resin pre-expanded particles of the present invention is preferably 10 kg / m 3 or more and 300 kg / m 3 or less, more preferably 15 kg. / m 3 or more and 250 kg / m 3 or less.

以下、本発明を実施例によって詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

〔融点の測定〕
セイコーインスツルメンツ(株)製のDSC6200型示差走査熱量計を用いて、ポリプロピレン系樹脂粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事により樹脂粒子を融解し、その後10℃/minで220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに得られるDSC曲線から、2回目の昇温時の融解ピーク温度を融点として求めた。
[Measurement of melting point]
Using a DSC6200 differential scanning calorimeter manufactured by Seiko Instruments Inc., 5-6 mg of polypropylene resin particles are heated from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min to melt the resin particles. Then, after crystallizing by lowering the temperature from 220 ° C. to 40 ° C. at 10 ° C./min, the second rise from the DSC curve obtained when the temperature is further raised from 40 ° C. to 220 ° C. at 10 ° C./min. The melting peak temperature when warm was determined as the melting point.

〔曲げ弾性率の測定〕
ポリプロピレン系樹脂を80℃にて6時間乾燥させた後、35t射出成形機を用い、シリンダー温度200℃、金型温度30℃にて厚み6.4mmバー(幅12mm、長さ127mm)を作製して、一週間以内にASTM D790に従い曲げ試験を行い、曲げ弾性率を求めた。
(Measurement of flexural modulus)
After drying the polypropylene resin at 80 ° C for 6 hours, a 35t injection molding machine is used to produce a 6.4mm bar (width 12mm, length 127mm) at a cylinder temperature of 200 ° C and a mold temperature of 30 ° C. Then, a bending test was performed according to ASTM D790 within one week to obtain a bending elastic modulus.

〔DSC比の測定〕
セイコーインスツルメンツ(株)製のDSC6200型示差走査熱量計を用いて、ポリプロピレン系樹脂予備発泡粒子5〜6mgを40℃から200℃まで10℃/分の速度で昇温して得られたDSC曲線における、2つの融解ピークについて、低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である低温側の融解ピーク熱量Qlと、DSC曲線の高温側ピークと、低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量Qhとし、高温側の融解ピークの比率(Qh/(Ql+Qh)×100)を算出した。
[Measurement of DSC ratio]
In the DSC curve obtained by raising the temperature of polypropylene resin pre-expanded particles 5-6 mg from 40 ° C. to 200 ° C. at a rate of 10 ° C./min using a DSC 6200 type differential scanning calorimeter manufactured by Seiko Instruments Inc. For the two melting peaks, the melting peak calorie Ql on the low temperature side, which is the amount of heat surrounded by the tangent to the melting start baseline from the maximum point between the low temperature side peak and the high temperature side peak, and the high temperature side peak of the DSC curve The high temperature side melting peak heat quantity Qh, which is the amount of heat surrounded by the tangent to the melting end baseline from the maximum point between the low temperature side peak and the high temperature side peak, and the ratio of the high temperature side melting peak (Qh / (Ql + Qh) × 100) was calculated.

〔ポリプロピレン系樹脂予備発泡粒子の発泡倍率〕
嵩体積約50cm3のポリプロピレン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前の樹脂粒子の密度d(g/cm3)から次式により求めた。
発泡倍率=d×v/w
[Expansion ratio of pre-expanded polypropylene resin particles]
Obtains the bulk volume of about 50 cm 3 of polypropylene by weight of the resin pre-expanded particles w (g) and ethanol submerged volume v (cm 3), was determined by the following formula from the density d of before foaming of the resin particles (g / cm 3) .
Foaming ratio = d × v / w

〔付着無機分散剤量の測定(無機分散剤がリン酸カルシウムの場合)〕
乾燥させた予備発泡粒子をメタバナジン酸アンモニウム0.022重量%、モリブデン酸アンモニウム0.54重量%および硝酸3重量%を含む水溶液(比色液)50.0mLとW(g)の予備発泡粒子をコニカルビーカーに採り、1分間撹拌したのち10分間放置した。得られた液相を光路長1.0cmの石英セルに採り、分光光度計により410nmでの吸光度A(−)を測定した。
[Measurement of amount of adhered inorganic dispersant (when inorganic dispersant is calcium phosphate)]
The dried pre-expanded particles were prepared by adding 50.0 mL of an aqueous solution (colorimetric solution) containing 0.022 wt% ammonium metavanadate, 0.54 wt% ammonium molybdate and 3 wt% nitric acid and W (g). The sample was placed in a conical beaker, stirred for 1 minute, and allowed to stand for 10 minutes. The obtained liquid phase was put in a quartz cell having an optical path length of 1.0 cm, and the absorbance A (−) at 410 nm was measured with a spectrophotometer.

同一の比色液について、予め測定しておいた第三リン酸マグネシウムの410nmでの吸光度係数ε(g/L・cm)を用いて、第三リン酸マグネシウムの付着量C(ppm)=5.0×104・ε・A/Wを求めた。 Using the absorbance coefficient ε (g / L · cm) of 410 mg of tribasic magnesium phosphate measured in advance for the same colorimetric solution, the amount of tribasic magnesium phosphate C (ppm) = 5 0.0 × 10 4 · ε · A / W was determined.

〔融着率評価〕
得られたポリプロピレン系樹脂型内発泡成形体を、カッターナイフでポリプロピレン系樹脂型内発泡成形体の厚み方向に約3mmの切り込みを入れた後、手で切り込み部からポリプロピレン系樹脂型内発泡成形体を破断し、破断面を観察して、破断面を構成するポリプロピレン系樹脂予備発泡粒子数に対する破壊されたポリプロピレン系樹脂予備発泡粒子の割合を求めた。
[Fusion rate evaluation]
The obtained polypropylene resin mold in-mold foam was cut with a cutter knife in the direction of the thickness of the polypropylene resin mold in-mold about 3 mm, and then manually in the polypropylene resin mold in-mold foam mold. The fracture surface was observed and the ratio of the destroyed polypropylene resin pre-expanded particles to the number of polypropylene resin pre-expanded particles constituting the fracture surface was determined.

〔表面性評価〕
得られたポリプロピレン系樹脂型内発泡成形体の表面を観察し、10cm2当たりの粒子間の1mm2以上の陥没や間隙の平均個数を求めて以下の判定とした。
100箇所未満・・・○
100箇所以上・・・×
[Surface property evaluation]
The surface of the obtained foamed molded product in the polypropylene resin mold was observed, and the average number of depressions and gaps of 1 mm 2 or more between particles per 10 cm 2 was determined as the following determination.
Less than 100 ... ○
More than 100 ... ×

[寸法収縮率]
得られたポリプロピレン系樹脂型内発泡成形体の長手寸法を測定し、金型寸法(400mm)に対する寸法収縮率を算出して以下の判定とした。
0.1%未満・・・○
0.1%以上・・・×
[Dimensional shrinkage]
The longitudinal dimension of the obtained foamed polypropylene resin mold was measured, and the dimensional shrinkage ratio with respect to the mold dimension (400 mm) was calculated to make the following determination.
Less than 0.1% ... ○
0.1% or more ×

(実施例1)
ポリプロピレン系樹脂として、メタロセン系重合触媒で重合した融点149℃、MFR5.0、曲げ弾性率1325MPaのプロピレン重合体100重量部を用い、セル造核剤としポリエチレングリコール(ライオン(株)製PEG#300)0.5重量部およびタルク(林化成製PKS)0.1重量部をブレンドした後、50mm単軸押出機(大阪精機工作(株)製20VSE−50−28型)内で溶融混練した。得られた溶融混練樹脂を円形ダイよりストランド状に押出し、水冷後、ペレタイザーで切断し、一粒の重量が1.2mg/粒のポリプロピレン系樹脂粒子を得た。
Example 1
As a polypropylene resin, 100 parts by weight of a propylene polymer polymerized with a metallocene polymerization catalyst and having a melting point of 149 ° C., an MFR of 5.0, and a flexural modulus of 1325 MPa is used as a cell nucleating agent, and polyethylene glycol (PEG # 300 manufactured by Lion Corporation). ) After blending 0.5 part by weight and 0.1 part by weight of talc (PKS manufactured by Hayashi Kasei), it was melt-kneaded in a 50 mm single-screw extruder (20VSE-50-28 type, manufactured by Osaka Seiki Co., Ltd.) The obtained melt-kneaded resin was extruded into a strand from a circular die, cooled with water, and cut with a pelletizer to obtain polypropylene resin particles having a weight of 1.2 mg / grain.

得られたポリプロピレン系樹脂粒子100重量部、水200重量部、分散剤として第3リン酸カルシウム1.0重量部、分散助剤としてアルキルスルホン酸ナトリウム0.05重量部を容量10Lの耐圧オートクレーブ中に仕込み、攪拌下、発泡剤として炭酸ガスを6.25重量部添加した。オートクレーブ内容物を昇温し、146.4℃の発泡温度まで加熱した後、さらに炭酸ガスを追加してオートクレーブ内圧を3.0MPa(ゲージ圧)とした。その後、30分間保持した後、オートクレーブ下部のバルブを開き、4.0mmφの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出して一段発泡予備発泡粒子を得た。得られた一段発泡予備発泡粒子の発泡倍率は15倍、融点ピークのDSC比は20%であった。得られた一段発泡予備発泡粒子内に空気含浸により0.32MPaの内圧を付与し、0.11MPa(ゲージ圧)の蒸気により加熱し、発泡倍率約30倍の発泡粒子を得た。結果を表1に示す。   100 parts by weight of the obtained polypropylene resin particles, 200 parts by weight of water, 1.0 part by weight of tertiary calcium phosphate as a dispersing agent, and 0.05 part by weight of sodium alkyl sulfonate as a dispersing aid were charged into a pressure-resistant autoclave having a capacity of 10 L. Under stirring, 6.25 parts by weight of carbon dioxide gas was added as a foaming agent. The temperature of the autoclave was raised and heated to a foaming temperature of 146.4 ° C., and then carbon dioxide was added to make the autoclave internal pressure 3.0 MPa (gauge pressure). Thereafter, after holding for 30 minutes, the valve at the lower part of the autoclave was opened, and the autoclave contents were discharged under atmospheric pressure through an opening orifice of 4.0 mmφ to obtain single-stage expanded pre-expanded particles. The resulting single-stage expanded pre-expanded particles had an expansion ratio of 15 times and a DSC ratio of the melting point peak of 20%. An internal pressure of 0.32 MPa was applied to the obtained one-stage expanded pre-expanded particles by air impregnation and heated with 0.11 MPa (gauge pressure) steam to obtain expanded particles having an expansion ratio of about 30 times. The results are shown in Table 1.

得られたポリプロピレン系樹脂予備発泡粒子を、pH=1の塩酸水溶液で洗浄した後、75℃で乾燥し、ダイセン株式会社製ポリオレフィン発泡成形機KD−345を用い、縦300mm×横400mm×厚み21mmの金型に、あらかじめポリプロピレン系樹脂予備発泡粒子内部の空気圧力が0.20MPaになるように調整したポリプロピレン系樹脂予備発泡粒子を充填し、厚み方向に5%圧縮して加熱成形させることにより、ポリプロピレン系樹脂型内発泡成形体を得た。得られたポリプロピレン系樹脂型内発泡成形体は融着率評価を行い、融着率が60%以上に達する成形加熱蒸気圧を求めた。さらに得られたポリプロピレン系樹脂型内発泡成形体は1時間室温で放置した後、75℃の恒温室内で3時間養生乾燥を行い、再び室温に取出してから室温で1時間放置した後のポリプロピレン系樹脂型内発泡成形体の表面状態および寸法収縮率を評価した。結果を表1に示す。

Figure 2010013606
The obtained polypropylene resin pre-expanded particles were washed with an aqueous hydrochloric acid solution having a pH of 1, and then dried at 75 ° C., and using a polyolefin foam molding machine KD-345 manufactured by Daisen Corporation, the length was 300 mm × width 400 mm × thickness 21 mm. Is filled with polypropylene resin pre-expanded particles adjusted in advance so that the air pressure inside the polypropylene resin pre-expanded particles is 0.20 MPa, and compressed by 5% in the thickness direction and heat-molded, A polypropylene resin molded in-mold foam was obtained. The obtained foamed polypropylene resin mold was subjected to a fusion rate evaluation, and a molding heating vapor pressure at which the fusion rate reached 60% or more was determined. Further, the obtained polypropylene resin-in-mold foam-molded product was allowed to stand at room temperature for 1 hour, then cured and dried in a thermostatic chamber at 75 ° C. for 3 hours, taken out again to room temperature, and then allowed to stand at room temperature for 1 hour. The surface state and the dimensional shrinkage rate of the in-mold foam molded product were evaluated. The results are shown in Table 1.
Figure 2010013606

(実施例2)
実施例1において、ポリプロピレン系樹脂をメタロセン系重合触媒で重合した融点137℃、MFR16.1、曲げ弾性率1053MPaのエチレン−プロピレンランダム共重合体とし、表1記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子と、ポリプロピレン系樹脂型内発泡成形体を得た。結果を表1に示す。
(Example 2)
In Example 1, an ethylene-propylene random copolymer having a melting point of 137 ° C., an MFR of 16.1, and a flexural modulus of 1053 MPa obtained by polymerizing a polypropylene resin with a metallocene polymerization catalyst was used except that the conditions described in Table 1 were used. In the same manner as in No. 1, a polypropylene resin pre-expanded particle and a polypropylene resin in-mold expanded molding were obtained. The results are shown in Table 1.

(実施例3)
実施例1において、ポリプロピレン系樹脂をメタロセン系重合触媒で重合した融点133℃、MFR18.0、曲げ弾性率950MPaのエチレン−プロピレンランダム共重合体とし、表1記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子と、ポリプロピレン系樹脂型内発泡成形体を得た。結果を表1に示す。
(Example 3)
In Example 1, an ethylene-propylene random copolymer having a melting point of 133 ° C., an MFR of 18.0, and a flexural modulus of 950 MPa obtained by polymerizing a polypropylene resin with a metallocene polymerization catalyst was used except that the conditions described in Table 1 were used. In the same manner as in No. 1, a polypropylene resin pre-expanded particle and a polypropylene resin in-mold expanded molding were obtained. The results are shown in Table 1.

(比較例1)
実施例1において、ポリプロピレン系樹脂をチーグラー系重合触媒で重合した融点153℃、MFR6.0、曲げ弾性率1350MPaのエチレン−プロピレンランダム共重合体とし、表1記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子と、ポリプロピレン系樹脂型内発泡成形体を得た。結果を表1に示す。
(Comparative Example 1)
In Example 1, an ethylene-propylene random copolymer having a melting point of 153 ° C., an MFR of 6.0, and a flexural modulus of 1350 MPa obtained by polymerizing a polypropylene resin with a Ziegler polymerization catalyst was used, except that the conditions described in Table 1 were used. In the same manner as in No. 1, a polypropylene resin pre-expanded particle and a polypropylene resin in-mold expanded molding were obtained. The results are shown in Table 1.

(比較例2)
実施例1において、ポリプロピレン系樹脂をチーグラー系重合触媒で重合した融点145℃、MFR6.0、曲げ弾性率1050MPaのエチレン−プロピレン−ブテンランダム共重合体とし、表1記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子と、ポリプロピレン系樹脂型内発泡成形体を得た。結果を表1に示す。
(Comparative Example 2)
In Example 1, an ethylene-propylene-butene random copolymer having a melting point of 145 ° C., an MFR of 6.0, and a flexural modulus of 1050 MPa obtained by polymerizing a polypropylene resin with a Ziegler polymerization catalyst, except for the conditions shown in Table 1, In the same manner as in Example 1, polypropylene resin pre-expanded particles and a polypropylene resin in-mold foam molded article were obtained. The results are shown in Table 1.

(比較例3)
実施例1において、ポリプロピレン系樹脂をチーグラー系重合触媒で重合した融点142℃、MFR6.2、曲げ弾性率860MPaのエチレン−プロピレンランダム共重合体とし、表1記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子と、ポリプロピレン系樹脂型内発泡成形体を得た。結果を表1に示す。
(Comparative Example 3)
In Example 1, an ethylene-propylene random copolymer having a melting point of 142 ° C., an MFR of 6.2, and a flexural modulus of 860 MPa obtained by polymerizing a polypropylene resin with a Ziegler polymerization catalyst was used, except that the conditions described in Table 1 were used. In the same manner as in No. 1, a polypropylene resin pre-expanded particle and a polypropylene resin in-mold expanded molding were obtained. The results are shown in Table 1.

実施例では、いずれも比較例に示した同等曲げ弾性率の樹脂を用いた場合と比較して、低い成形加熱蒸気圧力で成形することができ、表面性、寸法収縮率に優れたポリプロピレン系樹脂型内発泡成形体が得られた。   In the examples, polypropylene resins that can be molded at a lower molding heating steam pressure and superior in surface properties and dimensional shrinkage compared to the case of using the resins having the same flexural modulus shown in the comparative examples. An in-mold foam molded product was obtained.

示差走査熱量計を用い、本発明記載のポリプロピレン系樹脂予備発泡粒子を測定した際に得られるDSC曲線の一例である。横軸は温度、縦軸は吸熱量である。低温側のピークがQl、高温側のピークがQhである。It is an example of a DSC curve obtained when a differential scanning calorimeter is used to measure polypropylene resin pre-expanded particles according to the present invention. The horizontal axis is the temperature, and the vertical axis is the endothermic amount. The peak on the low temperature side is Ql, and the peak on the high temperature side is Qh.

Claims (4)

メタロセン系重合触媒で重合されたポリプロピレン系樹脂を基材樹脂としてなることを特徴とするポリプロピレン系樹脂予備発泡粒子であって、前記ポリプロピレン系樹脂が下記の要件(a)〜(c)を有するポリプロピレン系樹脂予備発泡粒子。
(a)プロピレンからなる構造単位が90〜100モル%、エチレン及び/又は炭素数が4以上のα−オレフィンからなる構造単位が0〜10モル%存在すること。
(b)13C−NMRで測定した、全ポリピレン挿入中のプロピレンモノマー単位の2,1−挿入及び1,3−挿入に基づく位置不規則単位の合計量が0.5モル%未満であること。
(c)メルトフローレートが0.5g/10min以上100g/10min以下であること。
A polypropylene resin pre-expanded particle comprising a polypropylene resin polymerized with a metallocene polymerization catalyst as a base resin, wherein the polypropylene resin has the following requirements (a) to (c): -Based resin pre-expanded particles.
(A) The structural unit consisting of propylene is 90 to 100 mol%, and the structural unit consisting of ethylene and / or an α-olefin having 4 or more carbon atoms is present in an amount of 0 to 10 mol%.
(B) The total amount of position irregular units based on 2,1-insertion and 1,3-insertion of propylene monomer units in all polypropylene insertions, as measured by 13 C-NMR, is less than 0.5 mol%. .
(C) The melt flow rate is 0.5 g / 10 min or more and 100 g / 10 min or less.
示差走査熱量計法による測定において2つの融解ピークを有し、低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100が10%以上50%以下であることを特徴とする、請求項1記載のポリプロピレン系樹脂予備発泡粒子。   In the measurement by the differential scanning calorimetry method, it has two melting peaks, the ratio Qh / (Ql + Qh) × 100 of the melting peak on the high temperature side calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side. The polypropylene resin pre-expanded particles according to claim 1, wherein the ratio is 10% or more and 50% or less. 表面に付着した無機分散剤量が2000ppm以下であることを特徴とする請求項1または2記載のポリプロピレン系樹脂予備発泡粒子。   3. The polypropylene resin pre-expanded particles according to claim 1, wherein the amount of the inorganic dispersant adhering to the surface is 2000 ppm or less. 請求項1〜3何れか1項記載のポリプロピレン系樹脂予備発泡粒子を用いて得られる、密度が10kg/m3以上300kg/m3以下であるポリプロピレン系樹脂型内発泡成形体。 A polypropylene resin in-mold foam-molded article having a density of 10 kg / m 3 or more and 300 kg / m 3 or less, obtained using the polypropylene resin pre-expanded particles according to claim 1.
JP2008177078A 2008-07-07 2008-07-07 Polypropylene-based resin pre-expanded particle, and polypropylene-based resin in-mold expansion molded product Pending JP2010013606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177078A JP2010013606A (en) 2008-07-07 2008-07-07 Polypropylene-based resin pre-expanded particle, and polypropylene-based resin in-mold expansion molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177078A JP2010013606A (en) 2008-07-07 2008-07-07 Polypropylene-based resin pre-expanded particle, and polypropylene-based resin in-mold expansion molded product

Publications (1)

Publication Number Publication Date
JP2010013606A true JP2010013606A (en) 2010-01-21

Family

ID=41700006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177078A Pending JP2010013606A (en) 2008-07-07 2008-07-07 Polypropylene-based resin pre-expanded particle, and polypropylene-based resin in-mold expansion molded product

Country Status (1)

Country Link
JP (1) JP2010013606A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180413A (en) * 1997-08-29 1999-03-26 Kanegafuchi Chem Ind Co Ltd Process for in-mold molding of pre-expanded polyolefin resin particle
JPH11315175A (en) * 1998-01-21 1999-11-16 Fina Res Sa Polyolefin and its use
WO2008032735A1 (en) * 2006-09-12 2008-03-20 Mitsui Chemicals, Inc. Polypropylene resin and blown container
JP2008303376A (en) * 2007-05-09 2008-12-18 Jsp Corp Polypropylene resin foam particle and molded article therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180413A (en) * 1997-08-29 1999-03-26 Kanegafuchi Chem Ind Co Ltd Process for in-mold molding of pre-expanded polyolefin resin particle
JPH11315175A (en) * 1998-01-21 1999-11-16 Fina Res Sa Polyolefin and its use
WO2008032735A1 (en) * 2006-09-12 2008-03-20 Mitsui Chemicals, Inc. Polypropylene resin and blown container
JP2008303376A (en) * 2007-05-09 2008-12-18 Jsp Corp Polypropylene resin foam particle and molded article therefrom

Similar Documents

Publication Publication Date Title
JP6421165B2 (en) Polypropylene-based resin expanded particles and method for producing polypropylene-based resin expanded particles
JP6447494B2 (en) Method for producing expanded polypropylene resin particles
JP5666918B2 (en) Polypropylene resin pre-expanded particles, method for producing the same, and polypropylene resin in-mold foam molded article
JP5219375B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5587867B2 (en) Polypropylene copolymer resin expanded particles
JP5365901B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5058557B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP3732418B2 (en) Expandable styrene resin particles
JP5841076B2 (en) Polypropylene-based resin foamed particles and polypropylene-based resin in-mold foam molding
JP2005298769A (en) Polypropylenic resin pre-expanded particle and in-mold expansion molded product
JP5749039B2 (en) POLYPROPYLENE RESIN FOAM PARTICLE, POLYPROPYLENE RESIN IN-MOLD FOAM MOLDED PRODUCT, AND METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM
JP6038479B2 (en) Polypropylene resin in-mold foam molding
JP2004115785A (en) Polypropylene-based resin expanded particle and in-mold formed body using the same
JP5460227B2 (en) Polypropylene resin in-mold foam molding
JP2010013606A (en) Polypropylene-based resin pre-expanded particle, and polypropylene-based resin in-mold expansion molded product
JP2005139350A (en) Polypropylene resin expandable particle and in-mold molded product obtained using the same
JP5315759B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP2010209286A (en) Polyolefin resin foaming particle
JP2009256410A (en) Method for producing polypropylene-based resin foam particle
JP5252957B2 (en) Polypropylene resin pre-expanded particles and in-mold molded body comprising the same
JP5331344B2 (en) Polypropylene resin pre-expanded particles
JP5161593B2 (en) Method for producing expanded polypropylene resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110519

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Effective date: 20121023

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

RD02 Notification of acceptance of power of attorney

Effective date: 20121219

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A131 Notification of reasons for refusal

Effective date: 20130326

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730