JP2005139350A - Polypropylene resin expandable particle and in-mold molded product obtained using the same - Google Patents

Polypropylene resin expandable particle and in-mold molded product obtained using the same Download PDF

Info

Publication number
JP2005139350A
JP2005139350A JP2003378684A JP2003378684A JP2005139350A JP 2005139350 A JP2005139350 A JP 2005139350A JP 2003378684 A JP2003378684 A JP 2003378684A JP 2003378684 A JP2003378684 A JP 2003378684A JP 2005139350 A JP2005139350 A JP 2005139350A
Authority
JP
Japan
Prior art keywords
propylene
polymer
resin
mold
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003378684A
Other languages
Japanese (ja)
Other versions
JP4282439B2 (en
Inventor
Toru Wada
亨 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2003378684A priority Critical patent/JP4282439B2/en
Publication of JP2005139350A publication Critical patent/JP2005139350A/en
Application granted granted Critical
Publication of JP4282439B2 publication Critical patent/JP4282439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polypropylene resin expandable particle which gives an in-mold molded product exhibiting excellent external appearances and excellent fusion between expandable particles and having a high heat-resistant temperature even when subjected to in-mold molding using a general-purpose molding machine having a low clamping pressure, and the in-mold molded product. <P>SOLUTION: The polypropylene resin expandable particle is composed of a core layer in an expanded state and a covering layer covering the same and the base resin forming the core layer is comprised of a propylene polymer satisfying the following requirements (a)-(c). (a) The propylene polymer contains 98-85 mol% of a structural unit obtained from propylene and 2-15 mol% of a structural unit obtained from ethylene and/or 4-20C α-olefins. (b) The ratio of position irregular units based on 2,1-insertion of propylene monomer units is 0.5-2.0% and the ratio of position irregular units based on 1,3-insertion is 0.005-0.4% in the whole propylene insertion. (c) The melting point Tm is lower than 141°C. The in-mold molded product of the propylene expandable particles is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,優れた融着性を示し,型内成形体を得るための成形温度を低くすることができ,しかも表面外観等に優れた型内成形体を製造することのできるポリプロピレン系樹脂発泡粒子及びこれを用いてなる型内成形体に関する。   The present invention provides a polypropylene resin foam that exhibits excellent fusion properties, can lower the molding temperature for obtaining an in-mold molded product, and can produce an in-mold molded product with excellent surface appearance and the like. The present invention relates to a particle and an in-mold molded body using the same.

樹脂発泡粒子は,任意の形状をとり得ると共に,独立気泡構造に基づく低い熱伝導率を有する。そのため,断熱材,緩衝材,芯材などの型内成形原料として広く使用されている。そして,上記の樹脂発泡粒子を構成する熱可塑性樹脂としては,通常,ポリエチレン,ポリプロピレン,ポリスチレン等が使用される。   The resin foam particles can take any shape and have a low thermal conductivity based on a closed cell structure. For this reason, it is widely used as an in-mold forming raw material such as a heat insulating material, a buffer material, and a core material. And as a thermoplastic resin which comprises said resin expanded particle, polyethylene, a polypropylene, a polystyrene etc. are normally used.

上記の熱可塑性樹脂の中でも,結晶性を有する樹脂,すなわちポリエチレンやポリプロピレンから得られる樹脂発泡粒子を用いて得られる型内成形体は,ポリスチレン系樹脂発泡粒子による成形体に比較して,耐薬品性や耐熱性が優れるという利点がある。   Among the thermoplastic resins described above, in-mold molded products obtained by using crystalline resin, that is, resin expanded particles obtained from polyethylene or polypropylene, are more resistant to chemicals than molded products made of polystyrene resin expanded particles. There is an advantage that the heat resistance and heat resistance are excellent.

しかしながら,ポリプロピレン系樹脂に代表される高融点樹脂の場合には,融点が一般には140℃以上と高いため,型内成形の際に樹脂発泡粒子同士を融着させるための圧力として,0.25MPaG(「G」:ゲージ圧;以下同様)を超える高圧の水蒸気が必要となる。   However, in the case of a high melting point resin typified by a polypropylene resin, since the melting point is generally as high as 140 ° C. or higher, the pressure for fusing the resin foam particles during in-mold molding is 0.25 MPaG. High-pressure water vapor exceeding “G”: gauge pressure;

そのため,型内成形コストが高くなり,しかも,成形サイクルが長くなると言う欠点がある。また,上記の高融点樹脂よりなる樹脂発泡粒子の場合には,広く普及している発泡ポリスチレン用の型内発泡成形機では成形できないため,高圧水蒸気の制御システムを備えると共に,型締圧力が高い型内成形機が必要となる。   For this reason, there is a disadvantage that the molding cost in the mold becomes high and the molding cycle becomes long. In addition, in the case of resin foam particles made of the above-mentioned high melting point resin, since it cannot be molded by a widely used in-mold foam molding machine for expanded polystyrene, a control system for high-pressure steam is provided and the mold clamping pressure is high. An in-mold molding machine is required.

一方,ポリエチレン系樹脂の場合には,融点が125℃以下と低いため,樹脂発泡粒子同士を融着させるための蒸気圧は0.2MPaG未満の低圧であればよく,ポリスチレン用の型内発泡成形機でも殆ど仕様を変えることなく成形できるという利点を有している。
しかしながら,ポリエチレン系樹脂の発泡成形体は,基材樹脂が低融点であるために耐熱性が低く,特に高発泡の発泡成形体(型内成形体)ではエネルギー吸収性能が小さい。したがって,ポリエチレン系樹脂の発泡成形体は,他の熱可塑性樹脂の発泡成形体と比較し,一般に低発泡の分野においてのみ使用可能である。
On the other hand, in the case of polyethylene resin, since the melting point is as low as 125 ° C. or less, the vapor pressure for fusing the resin foam particles may be a low pressure of less than 0.2 MPaG, and in-mold foam molding for polystyrene. The machine has the advantage that it can be molded almost without changing the specifications.
However, polyethylene resin foam molded articles have low heat resistance because the base resin has a low melting point, and particularly high foam foam molded articles (in-mold molded articles) have low energy absorption performance. Therefore, the foamed molded body of polyethylene resin is generally usable only in the field of low foaming compared with the foamed molded body of other thermoplastic resins.

上記の如き種々の課題を解決すべく,結晶性の熱可塑性樹脂から成る発泡状態の芯層とエチレン系重合体から成り,且つ実質的に非発泡状態である被覆層とから構成されているという,特定の構造を有する樹脂発泡粒子が提案されている(特許文献1参照)。
この場合には,型内成形における加熱水蒸気圧が比較的低圧でも優れた融着性を示す樹脂発泡粒子が得られるという特徴があるが,エネルギー低減という観点から,更に低い加熱水蒸気圧で成形できるポリプロピレン系樹脂発泡粒子が望まれていた。また,得られる樹脂発泡粒子を低い加熱水蒸気圧で型内成形して得られる型内成形体についても,その表面外観,発泡粒子間の融着性,及び耐熱温度等が未だ不充分であり,さらなる改良が望まれていた。
In order to solve the various problems as described above, it is composed of a foamed core layer made of a crystalline thermoplastic resin and a coating layer made of an ethylene polymer and substantially non-foamed. Resin foam particles having a specific structure have been proposed (see Patent Document 1).
In this case, there is a feature that resin foam particles exhibiting excellent fusing property can be obtained even when the heating steam pressure in the mold is relatively low, but from the viewpoint of energy reduction, molding can be performed at a lower heating steam pressure. A polypropylene resin expanded particle has been desired. In addition, the in-mold molded product obtained by in-mold molding of the obtained resin foam particles with low heating steam pressure is still insufficient in terms of surface appearance, fusion between foam particles, heat resistance temperature, etc. Further improvements were desired.

特開平10−77359号公報(第2頁〜第4頁)JP-A-10-77359 (pages 2 to 4)

本発明は,型締圧の低い汎用成形機で型内成形しても表面外観,発泡粒子間の融着性に優れ,且つ耐熱温度の高い型内成形体を得ることができるポリプロピレン系樹脂発泡粒子,及びその型内成形体を提供しようとするものである。   The present invention is a polypropylene-based resin foam that can provide an in-mold molded body having excellent surface appearance, fusion between foamed particles and high heat-resistant temperature even when molded in a general-purpose molding machine with a low mold clamping pressure. The present invention intends to provide particles and molded bodies in the mold.

第1の発明は,プロピレン系重合体を基材樹脂とする発泡状態の芯層と,これを被覆する熱可塑性樹脂からなる被覆層とから構成されているポリプロピレン系樹脂発泡粒子において,
上記芯層を形成する上記プロピレン系重合体は,下記の要件(a)〜(c)を有することを特徴とするポリプロピレン系樹脂発泡粒子にある(請求項1)。
(a)プロピレンから得られる構造単位が98〜85モル%,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位が2〜15モル%存在すること(ただし,プロピレンから得られる構造単位と,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位との合計量は100モル%である)。
(b)13C−NMRで測定した,全プロピレン挿入中のプロピレンモノマー単位の2,1−挿入に基づく位置不規則単位の割合が0.5〜2.0%であり,かつプロピレンモノマー単位の1,3−挿入に基づく位置不規則単位の割合が0.005〜0.4%であること。
(c)融点をTm[℃]とした場合に,Tmが下記式(1)
Tm<141[℃] 式(1)
を満足すること。
1st invention is a polypropylene resin expanded particle comprised from the core layer of the foaming state which uses a propylene-type polymer as base resin, and the coating layer which consists of a thermoplastic resin which coat | covers this,
The propylene-based polymer forming the core layer is a polypropylene-based resin expanded particle having the following requirements (a) to (c) (Claim 1).
(A) The structural unit obtained from propylene is 98 to 85 mol%, and the structural unit obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms is present (provided that it is obtained from propylene). The total amount of structural units and structural units obtained from ethylene and / or α-olefin having 4 to 20 carbon atoms is 100 mol%).
(B) The proportion of position irregular units based on 2,1-insertion of propylene monomer units in all propylene insertions measured by 13C-NMR is 0.5 to 2.0%, and 1 of propylene monomer units , 3- The percentage of irregular units based on insertion is 0.005 to 0.4%.
(C) When the melting point is Tm [° C.], Tm is the following formula (1)
Tm <141 [° C.] Formula (1)
To be satisfied.

本発明のポリプロピレン系樹脂発泡粒子においては,上記要件(a)〜(c)を有するプロピレン系重合体を基材樹脂とする発泡状態の芯層と,これを被覆する熱可塑性樹脂層とから構成されている。
そのため,型締め圧の低い汎用成形機で型内成形しても,表面外観,及び発泡粒子間の融着性に優れ,且つ耐熱温度の高い型内成形体を得ることができる。
The expanded polypropylene resin particles of the present invention are composed of a foamed core layer having a propylene polymer having the above requirements (a) to (c) as a base resin, and a thermoplastic resin layer covering the expanded core layer. Has been.
Therefore, even if molding is performed in a mold using a general-purpose molding machine having a low mold clamping pressure, an in-mold molded body having excellent surface appearance and fusion between foamed particles and having a high heat resistance temperature can be obtained.

次に,第2の発明は,ポリプロピレン系樹脂発泡粒子を成形型内において成形してなり,密度0.5〜0.008g/cm3を有する型内成形体であって,かつ上記ポリプロピレン系樹脂発泡粒子は,上記第1の発明のものを用いてなることを特徴とする型内成形体にある(請求項5)。 Next, the second invention is an in-mold molded product having a density of 0.5 to 0.008 g / cm 3 formed by molding polypropylene-based resin expanded particles in a molding die, and the above polypropylene-based resin. The foamed particles are in an in-mold molded product using the above-mentioned first invention (Claim 5).

上記第2の発明の型内成形体は,上記ポリプロピレン系樹脂発泡粒子として上記第1の発明のものを用いてなり,また,その密度が0.5〜0.008g/cm3という特定の範囲にある。
そのため,上記型内成形体は,平滑性,光沢性のような表面外観に優れていると共に,発泡粒子間の融着性,及び圧縮回復性等に優れている。また,上記型内成形体は,耐熱温度の高いものとなる。
The in-mold molded product of the second invention uses the above-mentioned polypropylene resin foamed particles of the first invention, and has a specific density of 0.5 to 0.008 g / cm 3. It is in.
For this reason, the molded body in the mold is excellent in surface appearance such as smoothness and gloss, and is excellent in the fusion property between the expanded particles and the compression recovery property. Further, the in-mold molded body has a high heat resistance temperature.

上記型内成形体の密度が0.5g/cm3より大きくなると,軽量性,衝撃吸収性,断熱性といった発泡体の好ましい特性が充分に発揮されなくなり,低発泡倍率であるがゆえにコスト上の不利を招くおそれがある。
一方,密度が0.008g/cm3よりも小さくなると,独立気泡率が小さくなる傾向にあり,曲げ強度,圧縮強度等の機械的物性が著しく低下するおそれがある。
それ故,上記型内成形体は,例えば包装容器,玩具,自動車部品,ヘルメット芯材,緩衝包装材等に好適である。
尚,上記型内成形体の密度とは,JIS K7222(1999年)で定義される見掛け全体密度を意味する。
When the density of the in-mold molded product is greater than 0.5 g / cm 3 , the preferred properties of the foam such as lightness, shock absorption, and heat insulating properties are not fully exhibited, and the low foaming ratio causes an increase in cost. May cause disadvantages.
On the other hand, when the density is smaller than 0.008 g / cm 3 , the closed cell ratio tends to be small, and mechanical properties such as bending strength and compressive strength may be remarkably lowered.
Therefore, the in-mold molded body is suitable for packaging containers, toys, automobile parts, helmet core materials, buffer packaging materials, and the like.
The density of the in-mold molded product means the apparent overall density defined by JIS K7222 (1999).

本発明において,上記ポリプロピレン系樹脂発泡粒子は,プロピレン系重合体(ポリプロピレン系樹脂)を基材樹脂とする発泡状態の芯層と熱可塑性樹脂からなる被覆層とから形成される複合体構造を有する。
ここに基材樹脂とは,芯層を構成する基本となる樹脂成分を意味する。芯層は,この基材樹脂と必要に応じて添加する他のポリマー成分或いは触媒中和剤,滑剤,結晶核剤,その他の樹脂添加剤等の添加物から成る。但し,他のポリマー成分や添加物は,本発明の目的を阻害しない範囲内で,できる限り少量であることが望ましい。
In the present invention, the polypropylene resin expanded particles have a composite structure formed of a foamed core layer using a propylene polymer (polypropylene resin) as a base resin and a coating layer made of a thermoplastic resin. .
Here, the base resin means a basic resin component constituting the core layer. The core layer is composed of the base resin and other polymer components added as necessary, or additives such as a catalyst neutralizing agent, a lubricant, a crystal nucleating agent, and other resin additives. However, it is desirable that other polymer components and additives be as small as possible within the range not impairing the object of the present invention.

即ち,上記プロピレン系重合体を100重量部とした場合,他のポリマー成分の添加量は40重量部以下にすることが好ましい。より好ましくは,30重量部以下がよく,さらに好ましくは15重量部以下がよい。また,もっとも好ましくは5重量部以下がよい。
また,プロピレン系重合体を100重量部とした場合,上記添加物の添加量(発泡剤のように最終的に気散してなくなるものは除く)は,添加物の使用目的にもよるが40重量部以下が好ましい。より好ましくは,30重量部以下がよく,さらに好ましくは0.001〜15重量部がよい。
That is, when the propylene polymer is 100 parts by weight, the amount of other polymer components added is preferably 40 parts by weight or less. More preferably, it is 30 parts by weight or less, and more preferably 15 parts by weight or less. Most preferably, it is 5 parts by weight or less.
In addition, when the propylene polymer is 100 parts by weight, the amount of the additive (except for the foaming agent that does not eventually dissipate) depends on the intended use of the additive. Part by weight or less is preferred. More preferably, it is 30 parts by weight or less, and more preferably 0.001 to 15 parts by weight.

本発明において,上記芯層を形成する上記プロピレン系重合体は,上記要件(a)〜(c)を満たすものである。まず,上記要件(a)について説明する。
上記要件(a)は,プロピレンから得られる構造単位が98〜85モル%,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位が2〜15モル%存在することにある。即ち,上記要件(a)を満足するプロピレン系重合体は,プロピレンとエチレン及び/又は炭素数4〜20のα−オレフィンとの共重合体である。
In the present invention, the propylene polymer forming the core layer satisfies the requirements (a) to (c). First, the requirement (a) will be described.
The requirement (a) is that the structural unit obtained from propylene is 98 to 85 mol%, and the structural unit obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms is present in 2 to 15 mol%. That is, the propylene polymer satisfying the above requirement (a) is a copolymer of propylene and ethylene and / or an α-olefin having 4 to 20 carbon atoms.

上記プロピレンと共重合されるコモノマーのエチレン及び/又は炭素数4〜20のα−オレフィンとしては,具体的には,エチレン,1−ブテン,1−ペンテン,1−ヘキセン,1−オクテン,4−メチル−1−ブテン等を挙げることができる。   Specific examples of the ethylene comonomer copolymerized with propylene and / or the α-olefin having 4 to 20 carbon atoms include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4- Examples thereof include methyl-1-butene.

また,本発明では,上記プロピレン系重合体として,本発明の目的を阻害しない範囲内において,従来チーグラー/ナッタ触媒においては重合が困難であった他のモノマーをプロピレンに共重合させたものを使用することができる。この場合,上記他のモノマーから得られる構造単位は,上記プロピレン系重合体中で0.01〜20モル%が好ましく,0.05〜10モル%がより好ましい。
こうした上記の他のモノマーとしては,例えば,シクロペンテン,ノルボルネン,1,4,5,8−ジメタノ−1,2,3,4,4a,8,8a,5−オクタヒドロナフタレン等の環状オレフィン,5−メチル−1,4−ヘキサジエン,7−メチル−1,6−オクタジエン等の非共役ジエン,スチレン,ジビニルベンゼン等の芳香族不飽和化合物などの一種又は二種以上を挙げることができる。
Further, in the present invention, as the above-mentioned propylene-based polymer, a copolymer obtained by copolymerizing propylene with another monomer that has been difficult to polymerize in the conventional Ziegler / Natta catalyst within the range not impairing the object of the present invention. can do. In this case, the structural unit obtained from the other monomer is preferably 0.01 to 20 mol%, more preferably 0.05 to 10 mol% in the propylene polymer.
Examples of such other monomers include cyclic olefins such as cyclopentene, norbornene, 1,4,5,8-dimethano-1,2,3,4,4a, 8,8a, 5-octahydronaphthalene, 5 Examples thereof include non-conjugated dienes such as methyl-1,4-hexadiene and 7-methyl-1,6-octadiene and aromatic unsaturated compounds such as styrene and divinylbenzene.

また,本発明において,上記プロピレン系重合体は,該プロピレン系重合体中のプロピレンから得られる構造単位を85モル%〜98モル%含有するプロピレン系共重合体樹脂であり,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位(コモノマーの構造単位)が2〜15モル%の割合で含有されていることが必要である。   In the present invention, the propylene polymer is a propylene copolymer resin containing 85 mol% to 98 mol% of a structural unit obtained from propylene in the propylene polymer, and is composed of ethylene and / or carbon. It is necessary that the structural unit (comonomer structural unit) obtained from the α-olefin of several 4 to 20 is contained in a proportion of 2 to 15 mol%.

コモノマーの構造単位の割合が15モル%を超える場合には,上記芯層を形成する上記プロピレン系重合体の曲げ強度,引張強度などの機械的物性が大きく低下し,所望の効果を有する発泡粒子及びそれより得られる所望の型内成形体が得られない。また,コモノマーの構造単位の割合が2モル%未満の場合には,プロピレン系重合体の融点(Tm)を141℃未満にすることが困難となり,上記ポリプロピレン系樹脂発泡粒子を型締め圧の低い汎用成形機で型内成形した時に芯層が充分に膨張せずに,外観の悪い型内成形体の発生率が高まるおそれがある。   When the proportion of the comonomer structural unit exceeds 15 mol%, the mechanical properties such as bending strength and tensile strength of the propylene-based polymer forming the core layer are greatly reduced, and the expanded particles have a desired effect. And the desired in-mold molded product obtained therefrom cannot be obtained. Further, when the proportion of the structural unit of the comonomer is less than 2 mol%, it becomes difficult to make the melting point (Tm) of the propylene polymer less than 141 ° C., and the polypropylene resin foamed particles have a low clamping pressure. When the molding is performed in a mold by a general-purpose molding machine, the core layer does not sufficiently expand, and there is a concern that the incidence of molded articles with a poor appearance is increased.

次に,上記要件(b)に示すように,上記プロピレン系重合体は,13C−NMRで測定した全プロピレン挿入中のプロピレンモノマー単位の2,1−挿入に基づく位置不規則単位の割合が0.5〜2.0%であり,かつプロピレンモノマー単位の1,3−挿入に基づく位置不規則単位の割合が0.005〜0.4%のものである。
この要件(b)はプロピレン系重合体の位置不規則単位の割合に関するものであり,かかる不規則単位は,プロピレン系重合体の結晶性を低下させる作用を有し,かかるプロピレン系重合体を芯層の基材樹脂とするポリプロピレン系樹脂発泡粒子の発泡適性を高める効果を示す。また,上記位置不規則単位の割合が要件(b)の範囲にある上記プロピレン系重合体を芯層の基材樹脂とする発泡粒子を型内成形して得られる型内成形体は,その圧縮永久歪が小さくなるという特徴がある。
Next, as shown in the requirement (b), the propylene-based polymer has a proportion of position irregular units based on 2,1-insertion of propylene monomer units in all propylene insertions measured by 13C-NMR of 0. 0.5 to 2.0%, and the proportion of position irregular units based on 1,3-insertion of propylene monomer units is 0.005 to 0.4%.
This requirement (b) relates to the proportion of the position irregular units of the propylene polymer, and these irregular units have the effect of lowering the crystallinity of the propylene polymer, and the propylene polymer is the core. The effect which raises the foaming aptitude of the polypropylene-type resin expanded particle used as the base resin of a layer is shown. An in-mold molded product obtained by in-mold molding of foamed particles using the propylene polymer having the proportion of the position irregular unit in the range of the requirement (b) as a base resin for the core layer is There is a feature that permanent set becomes small.

上記2,1−挿入に基づく位置不規則単位の割合が0.5%未満の場合又は上記1,3−挿入に基づく位置不規則単位の割合が0.005%未満の場合には,そのプロピレン系重合体を芯層の基材樹脂としたポリプロピレン系樹脂発泡粒子を型内成形すると,得られる型内成形体の圧縮永久歪を小さくする効果が劣るという問題がある。一方,上記2,1−挿入に基づく位置不規則単位の割合が2.0%を越える場合又は上記1,3−挿入に基づく位置不規則単位の割合が0.4%を越える場合には,基材樹脂としてのプロピレン系重合体の機械的物性,例えば曲げ強度や引張強度が低下するため,発泡粒子及びそれから得られる型内成形体の強度が低くなるという問題がある。   If the proportion of regioregular units based on 2,1-insertion is less than 0.5% or the proportion of regioregular units based on 1,3-insertion is less than 0.005%, propylene When polypropylene-based resin expanded particles having a base polymer as a core layer base resin are molded in the mold, there is a problem that the effect of reducing the compression set of the molded mold in the mold is inferior. On the other hand, when the ratio of the position irregular unit based on the 2,1-insertion exceeds 2.0% or the ratio of the position irregular unit based on the 1,3-insertion exceeds 0.4%, Since the mechanical properties of the propylene-based polymer as the base resin, such as bending strength and tensile strength, are lowered, there is a problem that the strength of the expanded particles and the in-mold molded product obtained therefrom is lowered.

上記要件(b)における2,1―挿入に基づく位置不規則単位及び1,3−挿入に基づく位置不規則単位は,いずれも,これらの単位をその構造中に含有するプロピレン系重合体の結晶性を低下させる効果を有する。さらに具体的には,これらの位置不規則単位は,プロピレン系重合体に対して,その融点を低下させる作用と,その結晶化度を低下させる作用とを有している。   The regioregular unit based on 2,1-insertion and the regioregular unit based on 1,3-insertion in the above requirement (b) are both propylene-based polymer crystals containing these units in their structures. Has the effect of reducing the properties. More specifically, these regioregular units have an action to lower the melting point and an action to lower the crystallinity of the propylene polymer.

これら2つの作用は,かかるプロピレン系重合体を発泡に供した場合に,その発泡適性を高める効果を示すと共に得られる発泡体の圧縮永久歪を小さくする効果を示す。したがって,上記の位置不規則単位を有するプロピレン系重合体を芯層の基材樹脂とする上記ポリプロピレン系樹脂発泡粒子は,発泡に好適に用いることができ,該発泡粒子を型内成形して得られる型内成形体は,圧縮永久歪の小さいものとなる。   These two actions show the effect of improving the foamability when such a propylene-based polymer is subjected to foaming, and the effect of reducing the compression set of the obtained foam. Accordingly, the polypropylene resin foamed particles using the propylene polymer having the position irregular unit as the base resin for the core layer can be suitably used for foaming, and obtained by molding the foamed particles in a mold. The in-mold molded product obtained has a small compression set.

但し,プロピレン系重合体に含まれる位置不規則単位の割合が高すぎると,プロピレン系重合体の融点や結晶化度が低下している度合いが高いがために,かかるプロピレン系重合体を基材樹脂として発泡に供した場合には,得られる発泡粒子中の気泡径が粗大になってしまう,といった問題が生ずるおそれがあり,その場合には,かかる発泡粒子から得られる成形体の外観が損なわれる,という問題がある。さらに,上述した如く,かかる発泡粒子から得られる型内成形体の強度が低くなるという問題も生ずる。   However, if the ratio of the position irregular units contained in the propylene polymer is too high, the melting point and crystallinity of the propylene polymer are high. When subjected to foaming as a resin, there may be a problem that the bubble diameter in the resulting foamed particles becomes coarse. In such a case, the appearance of the molded product obtained from such foamed particles is impaired. There is a problem of being. Further, as described above, there is a problem that the strength of the in-mold molded body obtained from the expanded particles is lowered.

ここで,プロピレン系重合体中のプロピレンから得られる構造単位の分率や,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位の分率,及び後述するアイソタクチックトリアッド分率は,13C−NMR法を用いて測定される値である。
13C−NMRスペクトルの測定法は,例えば下記の通りである。
即ち,直径10mmφのNMR用サンプル管内に,350〜500mg程度の試料を入れ,溶媒としてo−ジクロロベンゼン約2.0ml及びロック用に重水素化ベンゼン約0.5mlを用いて完全に溶解させた後,130℃にてプロトン完全デカップル条件下に測定した。
Here, the fraction of structural units obtained from propylene in the propylene-based polymer, the fraction of structural units obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms, and an isotactic triad described later. The fraction is a value measured using a 13C-NMR method.
The measuring method of 13C-NMR spectrum is, for example, as follows.
That is, a sample of about 350 to 500 mg was placed in an NMR sample tube having a diameter of 10 mmφ and completely dissolved using about 2.0 ml of o-dichlorobenzene as a solvent and about 0.5 ml of deuterated benzene for locking. Thereafter, measurement was performed at 130 ° C. under the condition of complete proton decoupling.

測定条件としては,フリップアングル65deg,パルス間隔 5T1以上(但し,T1はメチル基のスピン格子緩和時間の内の最長の値)を選択した。プロピレン重合体に於いては,メチレン基及びメチン基のスピン格子緩和時間はメチル基のそれよりも短い為,この測定条件では全ての炭素の磁化の回復は99%以上である。
なお,13C−NMR法での位置不規則単位の検出感度は,通常0.01%程度であるが,積算回数を増加することにより,これを高めることが可能である。
As measurement conditions, a flip angle of 65 deg and a pulse interval of 5T1 or more (where T1 is the longest value of the spin lattice relaxation time of the methyl group) were selected. In the propylene polymer, since the spin lattice relaxation time of the methylene group and methine group is shorter than that of the methyl group, the recovery of the magnetization of all the carbons is 99% or more under these measurement conditions.
In addition, the detection sensitivity of the position irregular unit in the 13C-NMR method is usually about 0.01%, but it can be increased by increasing the number of integrations.

また,上記測定におけるケミカルシフトは,頭−尾結合しておりメチル分岐の方向が同一であるプロピレン単位5連鎖の第3単位目のメチル基のピークを21.8ppmとして設定し,このピークを基準として他の炭素ピークのケミカルシフトを設定した。   In addition, the chemical shift in the above measurement was set with 21.8 ppm as the peak of the 3rd unit methyl group in the 5 units of propylene units that are head-to-tail bonded and have the same methyl branching direction. The chemical shifts of other carbon peaks were set as

この基準を用いると,下記式[化1]中のPPP[mm]で示されるプロピレン単位3連鎖中の第2単位目のメチル基に基づくピークは21.3〜22.2ppmの範囲に,PPP[mr]で示されるプロピレン単位3連鎖中の第2単位目のメチル基に基づくピークは20.5〜21.3ppmの範囲に,PPP[rr]で示されるプロピレン単位3連鎖中の第2単位目のメチル基に基づくピークは19.7〜20.5ppmの範囲に現れる。   Using this criterion, the peak based on the methyl group of the second unit in the three propylene units represented by PPP [mm] in the following formula [Chemical Formula 1] is in the range of 21.3 to 22.2 ppm. The peak based on the methyl group of the second unit in the three propylene units represented by [mr] is in the range of 20.5 to 21.3 ppm, and the second unit in the three propylene units represented by PPP [rr] The peak based on the methyl group of the eye appears in the range of 19.7 to 20.5 ppm.

ここで,PPP[mm],PPP[mr],及びPPP[rr]はそれぞれ下記の式[化1]のように示される。   Here, PPP [mm], PPP [mr], and PPP [rr] are each represented by the following formula [Formula 1].

Figure 2005139350
Figure 2005139350

更に,本発明のプロピレン重合体は,プロピレンの2,1−挿入及び1,3−挿入に基づく位置不規則単位を含む下記の式[化2]の部分構造(Ι)及び(ΙΙ)を特定量含有するものである。   Furthermore, the propylene polymer of the present invention specifies partial structures (Ι) and (ΙΙ) of the following formula [Chemical Formula 2] containing regioregular units based on 2,1-insertion and 1,3-insertion of propylene. It is contained in an amount.

Figure 2005139350
Figure 2005139350

この様な部分構造は,例えばメタロセン系触媒を用いて重合反応を行った場合に,プロピレン重合体の重合時に発生する位置不規則性により生ずると考えられている。
即ち,プロピレンモノマーは,通常,メチレン側が触媒中の金属成分と結合する方式,すなわち,いわゆる「1,2−挿入」にて反応するが,希には,「2,1−挿入」や「1,3−挿入」を起こすことがある。「2,1−挿入」は,「1,2−挿入」とは付加方向が逆となる反応形式であり,ポリマー鎖中に上記の部分構造(Ι)で表される構造単位を形成する。
Such a partial structure is considered to be caused by positional irregularities generated during the polymerization of the propylene polymer, for example, when a polymerization reaction is performed using a metallocene catalyst.
That is, the propylene monomer usually reacts by a method in which the methylene side is bonded to a metal component in the catalyst, that is, so-called “1,2-insertion”, but rarely “2,1-insertion” or “1” , 3-insertion ". “2,1-insertion” is a reaction mode in which the addition direction is opposite to “1,2-insertion”, and forms a structural unit represented by the above partial structure (構造) in the polymer chain.

また,「1,3−挿入」とは,プロピレンモノマーのC−1とC−3とでポリマー鎖中に取り込まれるものであり,その結果として直鎖状の構造単位,すなわち上記の部分構造(ΙΙ)を生ずるものである。   Further, “1,3-insertion” means that propylene monomers C-1 and C-3 are incorporated into a polymer chain, and as a result, a linear structural unit, that is, the above partial structure ( Ii).

上記の各位置不規則単位の割合が特定の範囲にある上記プロピレン系重合体は,適当な触媒を選定することにより得ることができる。具体的には,例えばヒドロアズレニル基を配位子として有するメタロセン系重合触媒等を用いて得ることがでできる。ここで,上記メタロセン系重合触媒とは,メタロセン構造を有する遷移金属化合物成分と,助触媒成分とからなるものである。各位置不規則単位の割合は,重合に用いる触媒の金属錯体成分の化学構造によって異なるが,一般には重合温度が高い方が大きくなる傾向にある。本発明においては,上記プロピレン系重合体の各位置不規則単位の割合を特定の範囲にするため,重合温度としては0〜80℃にすることが好ましい。   The propylene-based polymer in which the proportion of each position irregular unit is in a specific range can be obtained by selecting an appropriate catalyst. Specifically, it can be obtained using, for example, a metallocene polymerization catalyst having a hydroazurenyl group as a ligand. Here, the metallocene polymerization catalyst comprises a transition metal compound component having a metallocene structure and a promoter component. The proportion of each position irregular unit varies depending on the chemical structure of the metal complex component of the catalyst used in the polymerization, but generally the higher the polymerization temperature, the higher the tendency. In the present invention, the polymerization temperature is preferably 0 to 80 ° C. in order to make the proportion of each position irregular unit of the propylene polymer in a specific range.

尚,金属錯体成分は,これをそのまま触媒成分として用いることもできるが,無機あるいは有機の,顆粒状ないしは微粒子状の固体である微粒子状担体に,上記金属錯体成分が担持された固体状触媒として用いてもよい。
微粒子状担体に金属錯体成分を担持させる場合,担体1gあたり,金属錯体成分が0.001〜10mmolであることが好ましく,さらに0.001〜5mmolであることが好ましい。
The metal complex component can be used as a catalyst component as it is, but as a solid catalyst in which the metal complex component is supported on an inorganic or organic particulate carrier which is a granular or particulate solid. It may be used.
When the metal complex component is supported on the fine particle carrier, the metal complex component is preferably 0.001 to 10 mmol, more preferably 0.001 to 5 mmol, per 1 g of the carrier.

上記ヒドロアズレニル基を配位子として有するメタロセン触媒に中でも,金属原子として,チタン,ジルコニウム,ハフニウムを用いた触媒が好ましく,なかでも,ジルコニウムを有する錯体が,重合活性が高いという点で好ましい。
また,上記メタロセン系触媒の中でも,ジルコニウムジクロリド型の錯体が好適に使用されるが,その中でも,特に架橋型錯体が好ましい。具体的には,メチレンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,メチレンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,メチレンビス{1,1’−(4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,メチレンビス{1,1’−(4−ナフチルジヒドロアズレニル)}ジルコニウムジクロリド,エチレンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,エチレンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,エチレンビス{1,1’−(4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,エチレンビス{1,1’−(4−ナフチルジヒドロアズレニル)}ジルコニウムジクロリド,イソプロピリデンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,イソプロピリデンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,イソプロピリデンビス{1,1’−(4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,イソプロピリデンビス{1,1’−(4−ナフチルジヒドロアズレニル)}ジルコニウムジクロリド,ジメチルシリレンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジメチルシリレンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジメチルシリレンビス{1,1’−(4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジメチルシリレンビス{1,1’−(4−ナフチルジヒドロアズレニル)}ジルコニウムジクロリド,ジフェニルシリレンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジフェニルシリレンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジフェニルシリレンビス{1,1’−(4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジフェニルシリレンビス{1,1’−(4−ナフチルジヒドロアズレニル)}ジルコニウムジクロリド,等が例示できる。
Among the metallocene catalysts having the hydroazurenyl group as a ligand, a catalyst using titanium, zirconium, or hafnium as a metal atom is preferable, and a complex having zirconium is particularly preferable because of high polymerization activity.
Among the metallocene-based catalysts, zirconium dichloride type complexes are preferably used, and among these, cross-linked complexes are particularly preferable. Specifically, methylenebis {1,1 ′-(2-methyl-4-phenyldihydroazulenyl)} zirconium dichloride, methylenebis {1,1 ′-(2-ethyl-4-phenyldihydroazulenyl)} zirconium dichloride. , Methylenebis {1,1 ′-(4-phenyldihydroazurenyl)} zirconium dichloride, methylenebis {1,1 ′-(4-naphthyldihydroazurenyl)} zirconium dichloride, ethylenebis {1,1 ′-(2- Methyl-4-phenyldihydroazurenyl)} zirconium dichloride, ethylenebis {1,1 ′-(2-ethyl-4-phenyldihydroazurenyl)} zirconium dichloride, ethylenebis {1,1 ′-(4-phenyldihydro) Azulenyl)} zirconium dichloride, ethylenebis {1,1 ′-(4 Naphthyldihydroazulenyl)} zirconium dichloride, isopropylidenebis {1,1 ′-(2-methyl-4-phenyldihydroazurenyl)} zirconium dichloride, isopropylidenebis {1,1 ′-(2-ethyl-4-) Phenyldihydroazurenyl)} zirconium dichloride, isopropylidenebis {1,1 ′-(4-phenyldihydroazulenyl)} zirconium dichloride, isopropylidenebis {1,1 ′-(4-naphthyldihydroazurenyl)} zirconium dichloride , Dimethylsilylenebis {1,1 ′-(2-methyl-4-phenyldihydroazurenyl)} zirconium dichloride, dimethylsilylenebis {1,1 ′-(2-ethyl-4-phenyldihydroazurenyl)} zirconium dichloride , Dimethylsilylenebis {1,1 ′-(4-Phenyldihydroazurenyl)} zirconium dichloride, dimethylsilylenebis {1,1 ′-(4-naphthyldihydroazulenyl)} zirconium dichloride, diphenylsilylenebis {1,1 ′-(2 -Methyl-4-phenyldihydroazurenyl)} zirconium dichloride, diphenylsilylenebis {1,1 ′-(2-ethyl-4-phenyldihydroazurenyl)} zirconium dichloride, diphenylsilylenebis {1,1 ′-(4 -Phenyldihydroazurenyl)} zirconium dichloride, diphenylsilylenebis {1,1 ′-(4-naphthyldihydroazurenyl)} zirconium dichloride, and the like.

これらの中でも,特に,ジメチルシリレンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,及びジメチルシリレンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリドを用いることが好ましい。この場合には,上記の各位置不規則単位の割合を容易に本発明の範囲内にコントロールすることができると共に,後述する要件(d)を満足する(アイソタクチックトリアッド分率が97%以上の)プロピレン系重合体を容易に得ることができる。   Among these, in particular, dimethylsilylenebis {1,1 ′-(2-methyl-4-phenyldihydroazulenyl)} zirconium dichloride, and dimethylsilylenebis {1,1 ′-(2-ethyl-4-phenyldihydro). Azulenyl)} zirconium dichloride is preferably used. In this case, the ratio of each position irregular unit can be easily controlled within the scope of the present invention, and the later-described requirement (d) is satisfied (the isotactic triad fraction is 97%). The propylene-based polymer can be easily obtained.

また,上記助触媒成分としては,メチルアルミノキサン,イソブチルアルミノキサン,メチルイソブチルアルミノキサン等のアルミノキサン類,トリフェニルボラン,トリス(ペンタフルオロフェニル)ボラン,塩化マグネシウム等のルイス酸,ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート等のイオン性化合物が例示できる。また,これらの助触媒成分を,他の有機アルミニウム化合物,例えば,トリメチルアルミニウム,トリエチルアルミニウム,トリイソブチルアルミニウム等のトリアルキルアルミニウムと併用して共存下に用いることも可能である。   The promoter component includes aluminoxanes such as methylaluminoxane, isobutylaluminoxane, methylisobutylaluminoxane, Lewis acid such as triphenylborane, tris (pentafluorophenyl) borane, magnesium chloride, dimethylanilinium tetrakis (pentafluorophenyl). ) An ionic compound such as borate can be exemplified. These promoter components can also be used in the presence of other organoaluminum compounds such as trialkylaluminum such as trimethylaluminum, triethylaluminum and triisobutylaluminum.

本発明に係わるプロピレン系重合体の全ポリマー連鎖中のmm分率(アイソタクチックトリアッド分率)は,次の[数1]式で表される。ところで,部分構造(ΙΙ)では,1,3−挿入の結果として,プロピレンモノマーに由来するメチル基が1個相当分だけ消失している。   The mm fraction (isotactic triad fraction) in the entire polymer chain of the propylene polymer according to the present invention is expressed by the following [Equation 1]. By the way, in the partial structure (ΙΙ), as a result of 1,3-insertion, only one methyl group derived from the propylene monomer has disappeared.

Figure 2005139350
Figure 2005139350

この式において,ΣΙCH3は全メチル基(ケミカルシフトの19〜22ppmのピーク全て)の面積を示す。また,A<1>,A<2>,A<3>,A<4>,A<5>,A<6>,A<7>,A<8>及びA<9>は,それぞれ,42.3ppm,35.9ppm,38.6ppm,30.6ppm,36.0ppm,31.5ppm,31.0ppm,37.2ppm,27.4ppmのピークの面積であり,上記式[化2]における部分構造(Ι)及び(ΙΙ)で示した炭素の存在量比を示す。
また,全プロピレン挿入に対する2,1−挿入したプロピレンの割合,及び1,3−挿入したプロピレンの割合は,下記の式で計算した。
In this formula, ΣΙCH 3 represents the area of all methyl groups (all peaks at 19-22 ppm of chemical shift). A <1>, A <2>, A <3>, A <4>, A <5>, A <6>, A <7>, A <8> and A <9> are respectively 42.3 ppm, 35.9 ppm, 38.6 ppm, 30.6 ppm, 36.0 ppm, 31.5 ppm, 31.0 ppm, 37.2 ppm, 27.4 ppm peak area, part in the above formula [Chemical Formula 2] The abundance ratio of carbon shown in the structures (Ι) and (ΙΙ) is shown.
The ratio of 2,1-inserted propylene and the ratio of 1,3-inserted propylene with respect to the total propylene insertion were calculated by the following equations.

Figure 2005139350
Figure 2005139350

また,本発明において,上記プロピレン系重合体は,該重合体の融点をTm[℃],また,該重合体をフィルムに成形した場合の水蒸気透過度をY[g/m2/24hr]とした場合に,TmとYとが次の関係式(2)を満足するものであることが好ましい。
(−0.20)・Tm+35≦Y≦(−0.33)・Tm+60・・式(2)
Further, in the present invention, the propylene polymer, the melting point of the polymer Tm [° C.], also the water vapor permeability in the case of forming the polymer into a film and Y [g / m 2 / 24hr ] In this case, it is preferable that Tm and Y satisfy the following relational expression (2).
(−0.20) · Tm + 35 ≦ Y ≦ (−0.33) · Tm + 60 ·· Equation (2)

上記水蒸気透過度は,JIS K7129(1992年)「プラスチックフィルム及びシートの水蒸気透過度試験方法」により測定することができる。この測定においては,試験方法は赤外センサー法が採用され,また,試験条件としては,試験温度40±0.5℃,相対湿度(90±2)%RHが採用される。   The water vapor permeability can be measured by JIS K7129 (1992) “Test method for water vapor permeability of plastic films and sheets”. In this measurement, an infrared sensor method is adopted as a test method, and a test temperature of 40 ± 0.5 ° C. and a relative humidity (90 ± 2)% RH are adopted as test conditions.

上記式(2)の範囲内にあるプロピレン系重合体は,適度の水蒸気透過性を示す。適度の水蒸気透過性は,型内成形時において,成形に使用される飽和スチームの発泡粒子内(芯層内)への浸透を助長し,これにより発泡粒子の二次発泡性が高まり,発泡粒子間の空隙のない又は少ない型内成形体の製造が容易となる。
また,ポリプロピレン系樹脂発泡粒子の製造方法としては,樹脂粒子を水に分散させつつ発泡剤を含浸させた後,高温高圧下から低圧下に放出して発泡粒子化する方法が一般的であるが,この際,適度の水蒸気透過性は,樹脂粒子への水及び発泡剤の浸透を行いやすくする。その結果,樹脂粒子内における水及び発泡剤の分散が均一となり,得られる発泡粒子の気泡径を均一にし,また,発泡倍率を向上させることができる。
上記水蒸気透過度(Y)がプロピレン系重合体の融点(Tm)との関係で表現されているのは,一般的に,発泡粒子の製造時の発泡温度や型内成形時の飽和スチーム温度が,基材樹脂であるプロピレン系重合体の融点(Tm)が高いほど高くなり,融点(Tm)が低いほど低くなることに基づいている。
The propylene-based polymer within the range of the above formula (2) exhibits moderate water vapor permeability. The appropriate water vapor permeability facilitates the penetration of saturated steam used for molding into the foamed particles (in the core layer) during molding, thereby increasing the secondary foamability of the foamed particles. It becomes easy to produce an in-mold molded product with no or little space between them.
Also, as a method for producing polypropylene resin expanded particles, a method in which resin particles are dispersed in water and impregnated with a foaming agent and then discharged from high temperature and pressure to low pressure to form expanded particles. In this case, the proper water vapor permeability facilitates the penetration of water and the foaming agent into the resin particles. As a result, the water and the foaming agent are uniformly dispersed in the resin particles, the cell diameter of the obtained foamed particles can be made uniform, and the expansion ratio can be improved.
The water vapor permeability (Y) is expressed in relation to the melting point (Tm) of the propylene-based polymer. Generally, the foaming temperature at the time of production of foamed particles and the saturated steam temperature at the time of in-mold molding are used. This is based on the fact that the higher the melting point (Tm) of the propylene polymer as the base resin, the higher the melting point (Tm), and the lower the melting point (Tm).

上記水蒸気透過度(Y)が[(−0.20)・Tm+35]を下回る場合は,上記芯層を構成する基材樹脂への水蒸気や発泡剤の浸透性が劣るようになり,逆に[(−0.33)・Tm+60]を上回る場合には基材樹脂への水蒸気の浸透性が良くなり過ぎて,いずれにしても,発泡粒子の製造過程で樹脂粒子内における水や発泡剤の分散が不均一となりやすく,得られる発泡粒子の気泡径の均一性が低下するおそれがある。また,上記発泡粒子を型内成形して得られる型内成形体の圧縮強度が低下したり,歪回復性が低下する虞がある。特に,上記水蒸気透過度(Y)が[(−0.33)・Tm+60]を上回る場合には,得られる発泡粒子の芯層内に粗大気泡が混在するおそれがある。   When the water vapor permeability (Y) is lower than [(−0.20) · Tm + 35], the permeability of the water vapor or the foaming agent to the base resin constituting the core layer becomes inferior. If it exceeds (−0.33) · Tm + 60], the permeability of water vapor to the base resin will be too good, and in any case, the dispersion of water and foaming agent in the resin particles during the process of producing foamed particles Tends to be non-uniform, and the uniformity of the bubble diameter of the resulting expanded particles may be reduced. Further, there is a possibility that the compression strength of the in-mold molded product obtained by molding the foamed particles in-mold may be reduced, or the strain recovery property may be reduced. In particular, when the water vapor permeability (Y) exceeds [(−0.33) · Tm + 60], coarse bubbles may be mixed in the core layer of the obtained foamed particles.

融点(Tm)と水蒸気透過度(Y)とが上記式(2)の関係を満たす様なプロピレン系重合体は,該重合体を製造するにあたって,適当な触媒を選定することにより得ることができる。具体的には,例えば,上記メタロセン触媒の中でも,架橋型ビス{1,1’−(4―ヒドロアズレニル)}ジルコニウムジクロリドを金属錯体成分として用いることにより,好適に得ることができる。かかる金属錯体成分の好ましい例は,前述した通りである。   A propylene polymer in which the melting point (Tm) and the water vapor permeability (Y) satisfy the relationship of the above formula (2) can be obtained by selecting an appropriate catalyst in producing the polymer. . Specifically, for example, among the above metallocene catalysts, it can be suitably obtained by using bridged bis {1,1 '-(4-hydroazurenyl)} zirconium dichloride as a metal complex component. Preferred examples of such metal complex components are as described above.

次に,上記(c)要件は,上記プロピレン系重合体の融点Tm[℃]が,次の式(1)を満足することにある。
Tm<141[℃] 式(1)
Next, the requirement (c) is that the melting point Tm [° C.] of the propylene polymer satisfies the following formula (1).
Tm <141 [° C.] Formula (1)

融点Tmが上記式(1)を満たす場合,即ち融点Tmが141℃未満である場合には,上記プロピレン系重合体は,低温での加工性に極めて優れるものとなる。そのため,該プロピレン系重合体を基材樹脂とした発泡芯層を有する上記ポリプロピレン系樹脂発泡粒子を,型締め圧の低い汎用成形機で型内成形しても,発泡粒子の二次発泡性に優れる結果,発泡粒子間の空隙の小さい又は無い外観の良好な型内成形体を得ることができる。また,融点Tmが141℃未満の上記プロピレン系重合体を芯層の基材樹脂とする発泡粒子から得られる型内成形体は,柔軟性と歪回復性にも優れる。   When the melting point Tm satisfies the above formula (1), that is, when the melting point Tm is less than 141 ° C., the propylene-based polymer is extremely excellent in processability at a low temperature. For this reason, even if the polypropylene resin foam particles having a foam core layer using the propylene polymer as a base resin are molded in a mold with a general-purpose molding machine with a low clamping pressure, the secondary foamability of the foam particles is improved. As a result, it is possible to obtain an in-mold molded article having a good appearance with little or no void between the expanded particles. An in-mold molded product obtained from expanded particles having the above propylene polymer having a melting point Tm of less than 141 ° C. as the base resin for the core layer is also excellent in flexibility and strain recovery.

上記融点Tmが141℃以上の場合には,上記融点Tmが141℃未満のものと比較し,外観良好な型内成形体を製造するには高い成形蒸気圧が必要となる。上記融点Tmが141℃以上の場合には,上記融点Tmが141℃未満のものと比較し,上記ポリプロピレン系重合体の曲げ強度及び引張強度などの機械的物性が高すぎるものとなる。そのため,これを基材樹脂とした発泡粒子を用いて得られる型内成形体は,柔軟性に乏しいものとなる。尚,本発明において,上記プロピレン系重合体の上記融点(Tm)は,141℃未満であるが,115℃以上〜141℃未満が好ましく,120℃〜140℃がより好ましく,122℃〜138℃がより一層好ましい。   When the melting point Tm is 141 ° C. or higher, a higher molding vapor pressure is required to produce an in-mold molded article having a better appearance as compared with a melting point Tm of less than 141 ° C. When the melting point Tm is 141 ° C. or higher, mechanical properties such as bending strength and tensile strength of the polypropylene polymer are too high as compared with the melting point Tm of less than 141 ° C. Therefore, the in-mold molded product obtained by using the expanded particles using this as the base resin is poor in flexibility. In the present invention, the melting point (Tm) of the propylene polymer is less than 141 ° C., preferably 115 ° C. or more and less than 141 ° C., more preferably 120 ° C. to 140 ° C., and 122 ° C. to 138 ° C. Is even more preferable.

尚,上記融点(Tm)及び後述する被覆層を形成する熱可塑性樹脂の融点は,いずれも,JIS K7121(1987年)に記載の「一定の熱処理を行った後,融解温度を測定する場合」を採用し(試験片の状態調節における加熱速度と冷却速度は,いずれも,毎分10℃を採用),熱流束DSC装置を使用し,加熱速度毎分10℃にてDSC曲線を描かせ,得られたDSC曲線上の融解ピークの頂点が上記融点(Tm)として採用される。尚,複数の融点が観測された場合には,高温側のベースラインを基準に融解ピークの頂点が最も高いものが採用され,最も高い融解ピークの頂点が複数ある場合はそれらの相加平均値が採用される。また,後述する被覆層に関しても融点はこの方法で測定されたものである。被覆層に関し,「実質的に融点を示さない」とは,上記の方法で測定したときに,明確な融解ピークを示さない場合をいう。明確な融解ピークを示さないものの場合には熱流束DSCによる試験片の状態調節における加熱の最高温度は220℃までとする。   The melting point (Tm) and the melting point of the thermoplastic resin forming the coating layer to be described later are both described in JIS K7121 (1987) "When melting temperature is measured after performing a certain heat treatment" (The heating rate and cooling rate in adjusting the condition of the test piece are both 10 ° C./min), and using a heat flux DSC apparatus, draw a DSC curve at a heating rate of 10 ° C./min. The peak of the melting peak on the obtained DSC curve is adopted as the melting point (Tm). If multiple melting points are observed, the one with the highest peak of the melting peak is adopted based on the baseline on the high temperature side, and if there are multiple peaks with the highest melting peak, the arithmetic average value thereof is used. Is adopted. Further, the melting point of the coating layer described later was also measured by this method. With respect to the coating layer, “substantially no melting point” means a case where no clear melting peak is shown when measured by the above method. In the case of a sample that does not show a clear melting peak, the maximum heating temperature in the conditioning of the test piece by heat flux DSC is up to 220 ° C.

プロピレン系重合体の上記融点(Tm)は,一般的には,コモノマーから得られる構造単位の割合が多くするほど,また,上記各不規則単位の割合を多くするほど,低くすることができる。   In general, the melting point (Tm) of the propylene-based polymer can be lowered as the proportion of the structural units obtained from the comonomer increases and as the proportion of the irregular units increases.

次に,本発明において,上記被覆層を形成する熱可塑性樹脂は,ポリオレフィン系重合体(オレフィンの単独重合体,オレフィンの構造単位を50モル%以上含むオレフィン共重合体,又はこれらの2種以上の混合物),またはポリスチレン系重合体(スチレンの単独重合体又はスチレン構造単位を50モル%以上含むスチレン共重合体又はこれらの2以上の混合物)であることが好ましい。この場合には,上記ポリプロピレン系樹脂発泡粒子を型内成形して得られる上記型内成形体の力学特性が優れるという効果を得ることができる。また,ポリオレフィン系重合体としては,エチレンまたはプロピレンの単独あるいは共重合体が特に好ましい。
また,上記被覆層は非発泡状態又は実質的に非発泡状態であることが好ましい。この場合には,上記ポリプロピレン系樹脂発泡粒子を型内成形したときに,発泡粒子同士の融着が優れた型内成形体を得ることができる。
Next, in the present invention, the thermoplastic resin forming the coating layer is a polyolefin polymer (olefin homopolymer, olefin copolymer containing 50 mol% or more of olefin structural units, or two or more of these). Or a polystyrene-based polymer (a styrene homopolymer or a styrene copolymer containing 50 mol% or more of styrene structural units or a mixture of two or more thereof). In this case, it is possible to obtain an effect that the mechanical properties of the in-mold molded product obtained by molding the polypropylene resin expanded particles in the mold are excellent. The polyolefin polymer is particularly preferably an ethylene or propylene homopolymer or copolymer.
Moreover, it is preferable that the said coating layer is a non-foaming state or a substantially non-foaming state. In this case, when the polypropylene-based resin expanded particles are molded in the mold, an in-mold molded body having excellent fusion between the expanded particles can be obtained.

なお,本発明にかかるポリプロピレン系樹脂発泡粒子は,成形型内に充填して,発泡および加熱融着させて,型内成形体を得るための材料などとして用いられる。   In addition, the polypropylene resin expanded particles according to the present invention are used as a material for filling a molding die, foaming and heat-sealing to obtain an in-mold molded product.

次に,上記被覆層は,上記芯層を形成する上記プロピレン系重合体よりも融点が低いか,または実質的に融点を示さないオレフィン系重合体からなることが好ましい(請求項2)。この場合には,上記ポリプロピレン系樹脂発泡粒子は,より低い加熱水蒸気圧で型内成形しても所望の上記型内成形体を得ることができるものとなる。   Next, the coating layer is preferably made of an olefin polymer having a melting point lower than or substantially not showing the melting point of the propylene polymer forming the core layer. In this case, the above-mentioned polypropylene resin expanded particles can obtain the desired in-mold molded product even if the in-mold molding is performed with a lower heating water vapor pressure.

上記芯層用のプロピレン系重合体よりも低融点のオレフィン系重合体としては,高圧法低密度ポリエチレン,直鎖状低密度ポリエチレン,直鎖状超低密度ポリエチレンの他,酢酸ビニル,不飽和カルボン酸,不飽和カルボン酸エステル等とエチレンの共重合体や,プロピレンと,エチレンやαオレフィン類との共重合体等が挙げられる。   Examples of the olefin polymer having a melting point lower than that of the propylene polymer for the core layer include high pressure method low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, vinyl acetate, unsaturated carboxylic acid. Examples thereof include copolymers of acid, unsaturated carboxylic acid ester and the like with ethylene, and copolymers of propylene with ethylene and α-olefins.

また,上記の実質的に融点を示さないオレフィン系重合体としては,例えば,エチレン・プロピレンゴム,エチレン・プロピレン・ジエンゴム,エチレン・アクリルゴム,塩素化ポリエチレンゴム,クロロスルホン化ポリエチレンゴム等のゴムやエラストマーが挙げられる。また,これらのゴムやエラストマーは,単独使用の他,2種以上の組成物として使用することができる。   Examples of the olefin polymer having substantially no melting point include rubbers such as ethylene / propylene rubber, ethylene / propylene / diene rubber, ethylene / acrylic rubber, chlorinated polyethylene rubber, and chlorosulfonated polyethylene rubber. An elastomer is mentioned. These rubbers and elastomers can be used alone or as two or more compositions.

次に,上記芯層を形成する上記プロピレン系重合体は,更に以下の要件(d)を有することが好ましい(請求項3)。
(d)頭−尾結合からなるプロピレン単位連鎖部の13C−NMRで測定したアイソタクチックトリアッド分率が97%以上であること。
Next, the propylene polymer forming the core layer preferably further has the following requirement (d) (Claim 3).
(D) The isotactic triad fraction measured by 13C-NMR of the propylene unit chain part composed of a head-to-tail bond is 97% or more.

即ち,上記芯層の基材樹脂となる上記プロピレン系重合体として,既に述べた要件(a)〜(c)に加えて,更に頭−尾結合からなるプロピレン単位連鎖部の,13C−NMR(核磁気共鳴法)で測定したアイソタクチックトリアッド分率(即ち,ポリマー鎖中の任意のプロピレン単位3連鎖のうち,各プロピレン単位が頭−尾で結合し,かつプロピレン単位中のメチル分岐の方向が同一であるプロピレン単位3連鎖の割合)が97%以上であるものを用いるものである。   That is, as the propylene polymer serving as the base resin of the core layer, in addition to the requirements (a) to (c) described above, 13C-NMR ( Isotactic triad fraction measured by nuclear magnetic resonance (that is, each propylene unit is linked head-to-tail out of three arbitrary propylene units in the polymer chain, and the methyl branching in the propylene unit is Those having a propylene unit 3 chain ratio in the same direction) of 97% or more are used.

なお,アイソタクチックトリアッド分率を以下,mm分率と記載する。mm分率が97%以上の場合には,上記プロピレン系重合体の機械的物性がより高くなる。そのため,該プロピレン系重合体を上記芯層の基材樹脂とした上記ポリプロピレン系樹脂発泡粒子は,該発泡粒子を型内成形することにより,機械的物性に一層優れた型内成形体を得られるものとなる。なお,更に好ましくはmm分率は98%以上がよい。   The isotactic triad fraction is hereinafter referred to as mm fraction. When the mm fraction is 97% or more, the mechanical properties of the propylene polymer are higher. Therefore, the polypropylene resin foamed particles using the propylene polymer as a base resin for the core layer can be obtained by molding the foamed particles in a mold, thereby obtaining an in-mold molded article having further excellent mechanical properties. It will be a thing. More preferably, the mm fraction is 98% or more.

次に,上記芯層を形成する上記プロピレン系重合体は,更に以下の要件(e)を有することが好ましい(請求項4)。
(e)メルトフローレートが0.5〜100g/10分であること。
Next, the propylene polymer forming the core layer preferably further has the following requirement (e) (claim 4).
(E) The melt flow rate is 0.5 to 100 g / 10 minutes.

この場合には,工業的に有用な製造効率を保ちつつ上記ポリプロピレン系樹脂発泡粒子を生産することができ,かつ該発泡粒子からなる型内成形体の力学物性を向上させることができる。   In this case, the polypropylene resin foamed particles can be produced while maintaining industrially useful production efficiency, and the mechanical properties of the in-mold molded body made of the foamed particles can be improved.

上記メルトフローレート(MFR)が,0.5g/10分未満の場合には,上記ポリプロピレン系樹脂発泡粒子の製造効率,なかでも後述する溶融混練工程での生産性が低下するおそれがある。また,MFRが上記の100g/10分を超える場合には,上記ポリプロピレン系樹脂発泡粒子を型内成形して得られる型内成形体の圧縮強度,引張強度などの力学物性が低くなるおそれがある。なお,好ましくは,上記プロピレン系重合体のMFRは1.0〜50g/10分,更には1.0〜30g/10分がよい。上記MFRとは,JIS K6921−2(1997年)の表3に記載された条件に従って測定されたメルトマスフローレイトを意味する。   When the melt flow rate (MFR) is less than 0.5 g / 10 min, the production efficiency of the polypropylene resin foamed particles, particularly the productivity in the melt-kneading process described later, may be reduced. If the MFR exceeds 100 g / 10 min, the mechanical properties such as compressive strength and tensile strength of the in-mold molded product obtained by molding the polypropylene resin expanded particles in the mold may be lowered. . Preferably, the propylene-based polymer has an MFR of 1.0 to 50 g / 10 minutes, more preferably 1.0 to 30 g / 10 minutes. The MFR means a melt mass flow rate measured according to the conditions described in Table 3 of JIS K6921-2 (1997).

また,上記ポリプロピレン系樹脂発泡粒子の上記芯層を形成する,基材樹脂としてのプロピレン系重合体に対し,上記の通り,本発明の効果を損なわない範囲であれば,他のポリマー成分や添加剤を混合することができる。   In addition, as described above, with respect to the propylene-based polymer as the base resin that forms the core layer of the polypropylene-based resin expanded particles, as long as it does not impair the effects of the present invention, other polymer components and additives are added. Agents can be mixed.

上記,他のポリマー成分としては,例えば高密度ポリエチレン,低密度ポリエチレン,エチレンとα−オレフィン(炭素数4以上)の共重合体である直鎖状低密度ポリエチレン等のエチレン系樹脂;ポリブテン樹脂;エチレン−プロピレン系ゴム;エチレン−プロピレン−ジエン系ゴム;スチレン−ジエンブロック共重合体やスチレン−ジエンブロック共重合体のエチレン系二重結合の少なくとも一部を水素添加により飽和してなる水素添加ブロック共重合体等のスチレン系熱可塑性エラストマー;これら樹脂,エラストマー或いはゴムのアクリル酸系モノマーによるグラフト変成体等が挙げられる。
本発明ではこれら樹脂,エラストマー,ゴム或いはそれら変成物を単独で又は2以上を組み合わせて使用することができる。
Examples of the other polymer components include high-density polyethylene, low-density polyethylene, and ethylene-based resins such as linear low-density polyethylene that is a copolymer of ethylene and α-olefin (4 or more carbon atoms); polybutene resin; Ethylene-propylene rubber; ethylene-propylene-diene rubber; hydrogenated block formed by saturating at least part of ethylene double bonds of styrene-diene block copolymer or styrene-diene block copolymer by hydrogenation Examples thereof include styrene-based thermoplastic elastomers such as copolymers; graft modified products of these resins, elastomers or rubbers with acrylic acid-based monomers.
In the present invention, these resins, elastomers, rubbers or modified products thereof can be used alone or in combination of two or more.

上記添加剤としては,発泡核剤,着色剤,帯電防止剤,滑剤等の各種の添加剤を添加することができる。これらは,通常,後述する溶融混練の際に一緒に添加されて樹脂粒子中に含有される。
上記発泡核剤としては,タルク,炭酸カルシウム,シリカ,酸化チタン,石膏,ゼオライト,ホウ砂,水酸化アルミニウム,ホウ酸亜鉛等の無機化合物の他,カーボン,リン酸系核剤,フェノール系核剤,アミン系核剤等の有機系核剤が挙げられる。これら各種添加剤の添加量は,その添加目的により異なるが,上記プロピレン系重合体100重量部に対して40重量部以下が好ましく,30重量部以下がより好ましく,15重量部以下が更に好ましく,8重量部以下が更により好ましく,5重量部以下が最も好ましい。
As said additive, various additives, such as a foam nucleating agent, a coloring agent, an antistatic agent, and a lubricant, can be added. These are usually added together during the melt kneading described later and contained in the resin particles.
The above foaming nucleating agents include inorganic compounds such as talc, calcium carbonate, silica, titanium oxide, gypsum, zeolite, borax, aluminum hydroxide, zinc borate, carbon, phosphate nucleating agent, phenolic nucleating agent. And organic nucleating agents such as amine nucleating agents. The addition amount of these various additives varies depending on the purpose of addition, but is preferably 40 parts by weight or less, more preferably 30 parts by weight or less, still more preferably 15 parts by weight or less, based on 100 parts by weight of the propylene polymer. 8 parts by weight or less is even more preferable, and 5 parts by weight or less is most preferable.

上記芯層の基材樹脂としてのプロピレン系重合体への上記その他成分の混合は,液体混合あるいは固体混合により行なうこともできるが,一般には溶融混練が利用される。即ち,例えばロール,スクリュー,バンバリーミキサー,ニーダー,ブレンダー,ミル等の各種混練機を使って,上記基材樹脂とその他の成分等とを所望の温度で混練し,混練後は,発泡粒子の製造に適した大きさの樹脂粒子に成形する。   The mixing of the other components with the propylene polymer as the base resin of the core layer can be performed by liquid mixing or solid mixing, but generally melt kneading is used. That is, for example, by using various kneaders such as rolls, screws, Banbury mixers, kneaders, blenders, mills, etc., the base resin and other components are kneaded at a desired temperature, and after kneading, production of expanded particles Molded into resin particles of a size suitable for

上記ポリプロピレン系発泡樹脂粒子の原料は,通常は,非発泡状態の芯層と非発泡状態の被覆層とからなる複合体からなる樹脂粒子である。
かかる複合体からなる樹脂粒子の具体的製造方法としては,例えば次の各方法が使用される。
例えば,特公昭41−16125号公報,同43−23858号公報,同44−29522号公報,特開昭60―185816号公報等に記載の鞘芯型の複合ダイが使用される。
The raw material of the polypropylene-based foamed resin particles is usually resin particles made of a composite composed of a non-foamed core layer and a non-foamed coating layer.
For example, the following methods are used as specific methods for producing resin particles made of such a composite.
For example, a sheath-core type composite die described in Japanese Patent Publication Nos. 41-16125, 43-23858, 44-29522, and JP-A-60-185816 is used.

この場合,2基の押出し機が使用され,一方の押出し機で芯層を形成するための熱可塑性樹脂を溶融混練し,他方の押出し機で被覆層を構成する樹脂を溶融混練した後,ダイで非発泡状態の芯層と非発泡状態の被覆層からなる鞘芯型の複合体を紐状に押出す。
しかる後に,引取機を備えた切断機で規定の重量または大きさに切断し,実質的に発泡していない芯層と被覆層とからなる,柱状ペレット状の樹脂粒子を得る方法が好ましい。被覆層は,厚みが薄ければ薄いほど複合体からなる樹脂粒子を発泡させたときに発泡が生じにくく,薄すぎると十分な被覆が困難となる。よって,被覆層の厚みは,発泡粒子に製造される前で0.5〜60マイクロメーターであることが好ましく,発泡粒子製造後において0.5〜50マイクロメーターであることが好ましい。
In this case, two extruders are used, one of the extruders melts and kneads the thermoplastic resin for forming the core layer, and the other extruder melts and kneads the resin constituting the coating layer. Then, a sheath-core type composite composed of a non-foamed core layer and a non-foamed coating layer is extruded into a string shape.
Thereafter, a method of obtaining resin particles in the form of columnar pellets comprising a core layer and a coating layer that are not substantially foamed by cutting to a specified weight or size with a cutting machine equipped with a take-up machine is preferable. When the coating layer is thinner, foaming is less likely to occur when the composite resin particles are foamed, and when the coating layer is too thin, sufficient coating becomes difficult. Therefore, the thickness of the coating layer is preferably 0.5 to 60 micrometers before being produced into expanded particles, and preferably 0.5 to 50 micrometers after being produced.

また,一般に,樹脂粒子1個の重量が0.1〜20mgであれば,これを加熱発泡させて得られる発泡粒子の製造に支障はない。樹脂粒子1個の重量が0.2〜10mgの範囲にあって,更に粒子間の重量のばらつきが小さければ,発泡粒子の製造が容易になり,得られる発泡粒子の密度ばらつきも小さくなり,成形型内等への発泡粒子の充填性が良好となる。   In general, when the weight of one resin particle is 0.1 to 20 mg, there is no problem in the production of foamed particles obtained by heating and foaming the resin particles. If the weight of one resin particle is in the range of 0.2 to 10 mg and the variation in the weight between the particles is further small, the production of the expanded particles is facilitated, and the variation in the density of the obtained expanded particles is also reduced. Fillability of the expanded particles in the mold or the like is improved.

上記樹脂粒子から,発泡粒子を得る方法としては,上記のようにして作製した樹脂粒子に揮発性発泡剤を含浸した後,加熱発泡する方法,具体的には,例えば,特公昭49−2183号公報,同56−1344号公報,西ドイツ特開第1285722号公報,同第2107683号公報などに記載の方法を使用することができる。   As a method for obtaining expanded particles from the resin particles, a method in which the resin particles produced as described above are impregnated with a volatile foaming agent and then heated and foamed, specifically, for example, Japanese Patent Publication No. 49-2183. The methods described in JP-A No. 56-1344, West German Patent No. 1285722 and No. 2107683 can be used.

上記揮発性発泡剤としては,例えば,ブタン,ペンタン,ヘキサン,ヘプタン等の脂肪族炭化水素類,トリクロロフルオロメタン,ジクロロジフルオロメタン,テトラクロロジフルオロエタン,ジクロロメタン等のハロゲン化炭化水素等を,単独で,または2種以上を混合して用いることができる。また,窒素,空気,二酸化炭素等の無機ガス類を用いることもできる。   Examples of the volatile foaming agent include aliphatic hydrocarbons such as butane, pentane, hexane, and heptane, halogenated hydrocarbons such as trichlorofluoromethane, dichlorodifluoromethane, tetrachlorodifluoroethane, and dichloromethane, Or 2 or more types can be mixed and used. Also, inorganic gases such as nitrogen, air and carbon dioxide can be used.

芯層と被覆層とからなる樹脂粒子に発泡剤を含浸した後,加熱発泡させる場合,密閉し開放できる圧力容器に揮発性発泡剤と共に樹脂粒子を入れ,基材樹脂中の芯層の軟化温度以上に加熱して,樹脂粒子に揮発性発泡剤を含浸させる。
その後,密閉容器内の内容物を密閉容器から低圧の雰囲気に放出した後,乾燥処理する。これにより,ポリプロピレン系樹脂発泡粒子が得られる。
When resin particles consisting of a core layer and a coating layer are impregnated with a foaming agent and then heated and foamed, the resin particles are placed in a pressure vessel that can be sealed and opened together with the volatile foaming agent, and the softening temperature of the core layer in the base resin By heating as described above, the resin particles are impregnated with the volatile foaming agent.
After that, the contents in the sealed container are discharged from the sealed container to a low-pressure atmosphere and then dried. Thereby, a polypropylene resin expanded particle is obtained.

上記ポリプロピレン系樹脂発泡粒子の芯層は,示差走査熱量測定によって求められるDSC曲線(但し,発泡粒子2〜4mgを示差走査熱量計によって10℃/分の昇温速度で常温(20℃〜45℃)から220℃まで昇温した時に得られるDSC曲線)に二つ以上の吸熱ピークを有することが好ましい。このことは,上記基材樹脂に由来する成分が,この樹脂に固有の吸熱ピークを示す部分と,更にそれよりも高温の吸熱ピークを示す部分とを形成していることによって発現する。   The core layer of the polypropylene resin foam particles is a DSC curve obtained by differential scanning calorimetry (however, 2 to 4 mg of foam particles are measured at a normal temperature (20 ° C. to 45 ° C. at a heating rate of 10 ° C./min with a differential scanning calorimeter). It is preferable to have two or more endothermic peaks in the DSC curve obtained when the temperature is raised from 220 to 220 ° C. This is manifested by the component derived from the base resin forming a portion showing an endothermic peak unique to the resin and a portion showing an endothermic peak at a higher temperature.

上記DSC曲線に二つ以上の吸熱ピークが現れる発泡状態の芯層は,例えば特開2002−200635号公報等に記載された方法で製造することが可能であり,上記樹脂粒子を発泡させる際の条件,具体的には低圧の雰囲気に放出する際の温度,圧力,時間等を制御することにより得られる。   The foamed core layer in which two or more endothermic peaks appear in the DSC curve can be produced by, for example, a method described in JP-A-2002-200355 and the like when foaming the resin particles. It can be obtained by controlling the conditions, specifically the temperature, pressure, time, etc. when discharging into a low-pressure atmosphere.

尚,前記の密閉容器内の内容物を密閉容器から低圧の雰囲気に放出して発泡粒子を製造する方法において,上記芯層と被覆層とからなる樹脂粒子中に予め分解型発泡剤を練り込んでおけば圧力容器中に発泡剤を配合しなくとも,上記発泡粒子を得ることが可能である。
上記分解型発泡剤としては,樹脂粒子の発泡温度で分解してガスを発生するものであれば使用することができる。具体的には,たとえば重炭酸ナトリウム,炭酸アンモニウム,アジド化合物,アゾ化合物等が挙げられる。
In the method for producing foamed particles by releasing the contents in the sealed container into a low-pressure atmosphere from the sealed container, a decomposable foaming agent is kneaded in advance into the resin particles comprising the core layer and the coating layer. Therefore, the foamed particles can be obtained without blending a foaming agent in the pressure vessel.
As the above decomposable foaming agent, any gas can be used as long as it decomposes at the foaming temperature of the resin particles to generate gas. Specifically, sodium bicarbonate, ammonium carbonate, an azide compound, an azo compound, etc. are mentioned, for example.

また,加熱発泡時には,樹脂粒子の分散媒として,水,アルコールなどを使用することが好ましい。更に樹脂粒子が分散媒に均一に分散する様に,酸化アルミニウム,第三リン酸カルシウム,ピロリン酸マグネシウム,酸化亜鉛,カオリンなどの難水溶性の無機物質,ポリビニルピロリドン,ポリビニルアルコール,メチルセルロースなどの水溶性高分子系保護コロイド剤,ドデシルベンゼンスルホン酸ナトリウム,アルカンスルホン酸ナトリウム等のアニオン性界面活性剤を単独または2以上混合して使用するのが好ましい。   Further, at the time of heating and foaming, it is preferable to use water, alcohol or the like as a dispersion medium for the resin particles. Furthermore, in order to uniformly disperse the resin particles in the dispersion medium, poorly water-soluble inorganic substances such as aluminum oxide, tricalcium phosphate, magnesium pyrophosphate, zinc oxide and kaolin, and highly water-soluble substances such as polyvinylpyrrolidone, polyvinyl alcohol, and methylcellulose. It is preferable to use an anionic surfactant such as molecular protective colloid agent, sodium dodecylbenzenesulfonate, sodium alkanesulfonate, or a mixture of two or more.

低圧の雰囲気に樹脂粒子を放出する際には,当該放出を容易にするため,前記と同様な無機ガス又は揮発性発泡剤を外部より密閉容器に導入することにより密閉容器内の圧力を一定に保持することが好ましい。   When releasing resin particles to a low-pressure atmosphere, in order to facilitate the release, the same pressure as in the above is introduced by introducing the same inorganic gas or volatile foaming agent into the sealed container from the outside. It is preferable to hold.

次に,本発明の型内成形体は,本発明のポリプロピレン系樹脂発泡粒子を使用して,様々な型内成形方法により製造することができる。
例えば,大気圧または減圧下の凹凸一対の金型よりなるキャビティー内へ,ポリプロピレン系樹脂発泡粒子を充填した後に,金型キャビティー体積を5〜70%減少する様に圧縮し,次いでスチーム等の熱媒をキャビティー内に導入して,ポリプロピレン系樹脂発泡粒子を加熱融着させる圧縮成形法が挙げられる(例えば特公昭46−38359号公報)。
Next, the in-mold molded product of the present invention can be produced by various in-mold molding methods using the polypropylene resin expanded particles of the present invention.
For example, after filling polypropylene resin foam particles into a cavity consisting of a pair of concave and convex molds under atmospheric pressure or reduced pressure, the mold cavity volume is compressed so as to decrease by 5 to 70%, and then steam or the like is used. There is a compression molding method in which the heat transfer medium is introduced into the cavity and the polypropylene resin expanded particles are heated and fused (for example, Japanese Patent Publication No. 46-38359).

また,揮発性発泡剤または無機ガスの1種または2種以上で予め樹脂発泡粒子を処理して芯層中に含浸させることにより発泡粒子の二次発泡力を高め,次いでその二次発泡力を保持しつつ大気圧または減圧下の凹凸一対の金型よりなるキャビティー内に発泡粒子を充填した後,金型キャビティー内に熱媒を導入して樹脂発泡粒子を加熱融着させる加圧熟成成形法もある(例えば特公昭51−22951号公報)。   Also, the secondary foaming power of the foamed particles is increased by pre-treating the resin foamed particles with one or more volatile foaming agents or inorganic gases and impregnating them in the core layer. Pressurized aging in which foamed particles are filled into a cavity consisting of a pair of concave and convex molds under atmospheric pressure or reduced pressure while holding, and then a heat medium is introduced into the mold cavity to heat-fuse resin foam particles There is also a molding method (for example, Japanese Patent Publication No. 51-22951).

また,圧縮ガスにより大気圧以上に加圧した金型キャビティーに,当該圧力以上に加圧した樹脂発泡粒子を充填した後,金型キャビティー内にスチーム等の熱媒を導入して発泡粒子を加熱融着させる圧縮充填成形法もある(例えば特公平4−46217号公報)。   In addition, after filling the mold cavity pressurized above the atmospheric pressure with compressed gas with resin foam particles pressurized above the pressure, a heating medium such as steam is introduced into the mold cavity to expand the foam particles. There is also a compression filling molding method in which the material is heat-sealed (for example, Japanese Patent Publication No. 4-46217).

更に,特殊な条件にて得られる二次発泡力の高い樹脂発泡粒子を使用して大気圧または減圧下の凹凸一対の金型よりなるキャビティー内に発泡粒子を充填し,次いで,金型キャビティー内にスチーム等の熱媒を導入して発泡粒子を加熱融着させる常圧充填成形法もある(例えば特公平6−49795号公報)。また,上記の方法の組合わせによっても成形できる(例えば特公平6−22919号公報参照)。   Furthermore, the foamed particles are filled into a cavity formed by a pair of concave and convex molds under atmospheric pressure or reduced pressure using resin foam particles with high secondary foaming power obtained under special conditions, and then mold cavities There is also an atmospheric pressure filling molding method in which a heat medium such as steam is introduced into the tee and the foamed particles are heated and fused (for example, Japanese Patent Publication No. 6-49795). Moreover, it can also shape | mold by the combination of said method (for example, refer to Japanese Patent Publication No. 6-22919).

また,以上のように成形して得られる型内成形体には,必要に応じてフィルムやシート(以下,フィルム等という)をラミネートすることができる。ラミネートするフィルム等は特に制限が無く,例えば,OPS(2軸延伸ポリスチレンシート),高耐熱性OPS,HIPSなどのポリスチレン系樹脂フィルム等,CPP(無延伸ポリプロピレンフィルム),OPP(2軸延伸ポリプロピレンフィルム)等のポリプロピレン系樹脂のフィルム等あるいはポリエチレン系樹脂フィルム等,ポリエステル系樹脂フィルム等が用いられる。   In addition, a film or a sheet (hereinafter referred to as a film or the like) can be laminated on the in-mold molded body obtained by molding as described above, if necessary. There are no particular restrictions on the film to be laminated. For example, OPS (biaxially stretched polystyrene sheet), polystyrene resin film such as high heat resistant OPS, HIPS, etc., CPP (unstretched polypropylene film), OPP (biaxially stretched polypropylene film) Polypropylene resin film, etc., or polyethylene resin film, polyester resin film, etc. are used.

また,ラミネートするフィルム等の厚さには制限はないが,通常は15μm〜4000μmのフィルムが用いられる。これらのフィルムには必要に応じて印刷が施されてもよい。また,ラミネートを行う場合,発泡粒子の加熱融着成形(型内成形)と同時に行ってもよい。また,一旦成形した型内成形体にラミネートを行ってもよい。尚,必要に応じてホットメルト系の接着剤を用いてラミネーションを行うこともできる。   Moreover, although there is no restriction | limiting in the thickness of the film etc. to laminate, Usually, a film of 15 micrometers-4000 micrometers is used. These films may be printed as necessary. In addition, when laminating, it may be performed simultaneously with heat fusion molding (in-mold molding) of foamed particles. Moreover, you may laminate to the molded object once shape | molded. If necessary, lamination can be performed using a hot-melt adhesive.

次に,本発明の実施例につき説明する。
本例においては,プロピレン系重合体を基材樹脂とする発泡状態の芯層と,これを被覆する熱可塑性樹脂からなる被覆層とから構成されているポリプロピレン系樹脂発泡粒子,及びこれを型内成形してなる型内成形体を作製する。該ポリプロピレン系樹脂発泡粒子は,上記要件(a)〜(c)を有するものである。
また,本例においては,本発明の優れた特徴を明らかにするために比較用のポリプロピレン系樹脂発泡粒子及びこれを型内成形して得られる型内成形体を作製する。以下,本例について詳細に説明する。
Next, examples of the present invention will be described.
In this example, a polypropylene resin foamed particle composed of a foamed core layer made of a propylene polymer as a base resin and a coating layer made of a thermoplastic resin covering the core layer, and this in-mold An in-mold molded product is produced by molding. The expanded polypropylene resin particles have the above requirements (a) to (c).
Further, in this example, in order to clarify the excellent characteristics of the present invention, a comparative polypropylene resin foamed particle and an in-mold molded product obtained by molding the same are molded. Hereinafter, this example will be described in detail.

[基材樹脂の製造1]
まず,芯層を形成する基材樹脂としてのプロピレン系重合体を,次の製造例1〜7に示す方法で合成した。
[Manufacture of base resin 1]
First, a propylene polymer as a base resin for forming a core layer was synthesized by the method shown in the following Production Examples 1 to 7.

製造例1
(i)[ジメチルシリレンビス{1,1’−(2−メチル−4−フェニル−4−ヒドロアズレニル)}ジルコニウムジクロリド]の合成
以下の反応は全て不活性ガス雰囲気で行い,また,反応には予め乾燥精製した溶媒を用いた。
Production Example 1
(I) Synthesis of [dimethylsilylenebis {1,1 ′-(2-methyl-4-phenyl-4-hydroazurenyl)} zirconium dichloride] The following reactions are all carried out in an inert gas atmosphere. A dried and purified solvent was used.

(a)ラセミ・メソ混合物の合成
特開昭62−207232号公報に記載の方法に従って合成した2−メチルアズレン2.22gをヘキサン30mLに溶解し,フェニルリチウムのシクロヘキサン−ジエチルエーテル溶液15.6mL(1.0当量)を0℃にて少量ずつ添加した。
この溶液を室温で1時間撹拌した後,−78℃に冷却し,テトラヒドロフラン30mLを加えた。
(A) Synthesis of racemic / meso mixture 2.22 g of 2-methylazulene synthesized according to the method described in JP-A-62-207232 was dissolved in 30 mL of hexane, and 15.6 mL of cyclohexane-diethyl ether solution of phenyllithium ( 1.0 equivalent) was added in small portions at 0 ° C.
The solution was stirred at room temperature for 1 hour, cooled to -78 ° C, and 30 mL of tetrahydrofuran was added.

次いで,ジメチルジクロロシラン0.95mLを加えた後,室温まで昇温し,更に50℃で90分間加熱した。この後,塩化アンモニウム飽和水溶液を加え,有機層を分離後,硫酸ナトリウムで乾燥し,溶媒を減圧下に留去した。   Subsequently, after adding 0.95 mL of dimethyldichlorosilane, it heated up to room temperature, and also heated at 50 degreeC for 90 minutes. Thereafter, a saturated aqueous solution of ammonium chloride was added, the organic layer was separated, dried over sodium sulfate, and the solvent was distilled off under reduced pressure.

得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン−:ジクロロメタン=5:1)で精製することにより,ビス{1,1’−(2−メチル−4−フェニル−1,4−ジヒドロアズレニル)ジメチルシラン1.48gを得た。
上記で得られたビス{1,1’−(2−メチル−4−フェニル−1,4−ジヒドロアズレニル)ジメチルシラン786mgをジエチルエーテル15mLに溶解し,−78℃でn−ブチルリチウムのヘキサン溶液(1.68mol/L)1.98mLを滴加し,徐々に室温に昇温し,その後室温にて12時間撹拌した。溶媒を減圧留去して得られた固体をヘキサンで洗浄し,減圧乾固した。
The obtained crude product was purified by silica gel column chromatography (hexane: dichloromethane = 5: 1) to give bis {1,1 ′-(2-methyl-4-phenyl-1,4-dihydroazurenyl). ) 1.48 g of dimethylsilane was obtained.
786 mg of the bis {1,1 ′-(2-methyl-4-phenyl-1,4-dihydroazurenyl) dimethylsilane obtained above was dissolved in 15 mL of diethyl ether, and hexane of n-butyllithium was added at −78 ° C. 1.98 mL of the solution (1.68 mol / L) was added dropwise, the temperature was gradually raised to room temperature, and then the mixture was stirred at room temperature for 12 hours. The solid obtained by distilling off the solvent under reduced pressure was washed with hexane and dried under reduced pressure.

更に,トルエン−ジエチルエーテル混合溶媒(40:1)を20mL加え,−60℃にて四塩化ジルコニウム325mgを加え,徐々に昇温して室温で15分間撹拌した。
得られた溶液を減圧下に濃縮し,ヘキサンを加えて再沈殿させることにより,ジメチルシリレンビス{1,1’−(2−メチル−4−フェニル−4−ヒドロアズレニル)}ジルコニウムジクロリドよりなる,ラセミ/メソ混合物150mgを得た。
Furthermore, 20 mL of a toluene-diethyl ether mixed solvent (40: 1) was added, 325 mg of zirconium tetrachloride was added at −60 ° C., the temperature was gradually raised, and the mixture was stirred at room temperature for 15 minutes.
The resulting solution was concentrated under reduced pressure, and reprecipitated by adding hexane, whereby racemic dimethylsilylenebis {1,1 ′-(2-methyl-4-phenyl-4-hydroazurenyl)} zirconium dichloride was prepared. A 150 mg / meso mixture was obtained.

(b)ラセミ体の分離
上記の反応を繰り返して得たラセミ/メソ混合物887mgをガラス容器に入れ,ジクロロメタン30mLに溶解し,高圧水銀ランプで30分間光照射した。その後ジクロロメタンを減圧下に留去し,黄色固体を得た。
この固体にトルエン7mLを添加して撹拌後,静置することにより,黄色固体が沈殿として分離した。上澄みを除去し,固体を減圧乾固して,ジメチルシリレンビス{1,1’−(2−メチル−4−フェニル−4−ヒドロアズレニル)}ジルコニウムジクロリドよりなる,ラセミ体を437mg得た。
(B) Separation of racemic body 887 mg of a racemic / meso mixture obtained by repeating the above reaction was put in a glass container, dissolved in 30 mL of dichloromethane, and irradiated with a high pressure mercury lamp for 30 minutes. Thereafter, dichloromethane was distilled off under reduced pressure to obtain a yellow solid.
7 mL of toluene was added to this solid, stirred, and allowed to stand to separate a yellow solid as a precipitate. The supernatant was removed, and the solid was dried under reduced pressure to obtain 437 mg of a racemate consisting of dimethylsilylene bis {1,1 ′-(2-methyl-4-phenyl-4-hydroazurenyl)} zirconium dichloride.

(ii)触媒の合成
(a)触媒担体の処理
脱塩水135mLと硫酸マグネシウム16gをガラス製容器に入れ,撹拌し溶液とした。この溶液にモンモリロナイト(クニミネ工業製「クニピア−F」)22.2gを加えた後,昇温し,80℃で1時間保持した。
次いで,脱塩水300mLを加えた後に濾過により,固形分を分離した。この固形分に,脱塩水46mLと硫酸23.4g及び硫酸マグネシウム29.2gを加えた後,昇温し,加熱還流下に2時間処理した後,脱塩水200mLを加え,濾過した。
更に脱塩水400mLを加えて濾過する,という操作を2回実施した。その後,固体を100℃で乾燥し,触媒担体としての化学処理モンモリロナイトを得た。
(Ii) Catalyst synthesis (a) Treatment of catalyst carrier 135 mL of demineralized water and 16 g of magnesium sulfate were placed in a glass container and stirred to obtain a solution. After adding 22.2 g of montmorillonite (“Kunipia-F” manufactured by Kunimine Kogyo Co., Ltd.) to this solution, the temperature was raised and kept at 80 ° C. for 1 hour.
Next, after adding 300 mL of demineralized water, the solid content was separated by filtration. After adding 46 mL of demineralized water, 23.4 g of sulfuric acid, and 29.2 g of magnesium sulfate to this solid content, the temperature was raised and the mixture was heated and refluxed for 2 hours, and then 200 mL of demineralized water was added and filtered.
Further, 400 mL of demineralized water was added and filtration was performed twice. Thereafter, the solid was dried at 100 ° C. to obtain chemically treated montmorillonite as a catalyst support.

(b)触媒成分の調製
内容積1リットルの撹拌式オートクレーブ内をプロピレンで十分に置換した後,脱水ヘプタン230mLを導入し,系内温度を40℃に保持した。
ここに,上記にて調製した,触媒担体としての化学処理モンモリロナイト10gを200mLのトルエンに懸濁させて添加した。
(B) Preparation of catalyst component After the inside of a stirring autoclave having an internal volume of 1 liter was sufficiently substituted with propylene, 230 mL of dehydrated heptane was introduced, and the system temperature was maintained at 40 ° C.
Here, 10 g of the chemically treated montmorillonite prepared as described above as a catalyst support was suspended in 200 mL of toluene and added.

更に,上記(i)の(b)において別容器中に調製した,ジメチルシリレンビス{1,1’−(2−メチル−4−フェニル−4−ヒドロアズレニル)}ジルコニウムジクロリドのラセミ体(0.15mmol)と,トリイソブチルアルミニウム(3mmol)とを,トルエン(計20mL)中にて混合したものをオートクレーブ内に添加した。   Furthermore, the racemic form (0.15 mmol) of dimethylsilylenebis {1,1 ′-(2-methyl-4-phenyl-4-hydroazurenyl)} zirconium dichloride prepared in a separate container in (b) of (i) above. ) And triisobutylaluminum (3 mmol) in toluene (20 mL in total) were added to the autoclave.

その後,プロピレンを10g/hrの速度で120分間導入し,更にその後に120分間,重合反応を継続した後,窒素雰囲気下に溶媒を留去,乾燥して固体触媒成分を得た。この触媒成分は,固体成分1gあたり,1.9gの重合体を含有するものであった。   Thereafter, propylene was introduced at a rate of 10 g / hr for 120 minutes, and then the polymerization reaction was continued for 120 minutes. Then, the solvent was distilled off under a nitrogen atmosphere and dried to obtain a solid catalyst component. This catalyst component contained 1.9 g of polymer per 1 g of the solid component.

(iii)プロピレンの重合
内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,トリイソブチルアルミニウムのヘキサン溶液500mL(0.12mol)を添加し,オートクレーブ内を70℃に昇温した。その後,上記固体触媒成分(6.0g)を添加し,プロピレンとエチレンの混合ガス(プロピレン:エチレン=96.5:3.5;但し重量比)を圧力が0.7MPaとなるように導入して重合を開始させ,本条件下に3時間重合反応を行った。
(Iii) Polymerization of propylene After the inside of a stirred autoclave having an internal volume of 200 L is sufficiently substituted with propylene, 60 L of purified n-heptane is introduced, and 500 mL (0.12 mol) of a hexane solution of triisobutylaluminum is added, and the autoclave is added. The inside was heated to 70 ° C. Thereafter, the solid catalyst component (6.0 g) was added, and a mixed gas of propylene and ethylene (propylene: ethylene = 96.5: 3.5; weight ratio) was introduced so that the pressure became 0.7 MPa. Then, the polymerization was started, and the polymerization reaction was carried out for 3 hours under these conditions.

その後,反応系にエタノール100mLを圧入して反応を停止させ,残存ガス成分をパージすることで,芯層用のプロピレン系重合体としての8.8kgのポリマーを得た。
このポリマーは,MFR=8g/10分,アイソタクチックトリアッド分率が99.2%,融点Tmが125℃,プロピレンから得られた構造単位が95.3モル%,エチレンから得られた構造単位が4.7モル%,2,1−挿入に基づく位置不規則単位の割合が0.95%,1,3−挿入に基づく位置不規則単位の割合が0.11%であり,上記要件(a),(b),(c),及び(d)を満たしている。
以下,ここで得られたポリプロピレン系重合体(プロピレン/エチレンランダム共重合体)を「ポリマー1」と称する。
Thereafter, 100 mL of ethanol was injected into the reaction system to stop the reaction, and the remaining gas component was purged to obtain 8.8 kg of a polymer as a propylene polymer for the core layer.
This polymer has MFR = 8 g / 10 min, isotactic triad fraction of 99.2%, melting point Tm of 125 ° C., structural unit obtained from propylene, 95.3 mol%, structure obtained from ethylene The unit is 4.7 mol%, the ratio of position irregular units based on 2,1-insertion is 0.95%, the ratio of position irregular units based on 1,3-insertion is 0.11%, and the above requirements (A), (b), (c), and (d) are satisfied.
Hereinafter, the polypropylene polymer (propylene / ethylene random copolymer) obtained here is referred to as “polymer 1”.

(iv)水蒸気透過度の測定
上記で得られたポリマー1を厚み25ミクロンのフィルムに成形し,JIS K7129に記載の方法に従って水蒸気透過度Yを測定した(以下の製造例も同じ)結果,16.8(g/m2/24hr)であった。
なお,このポリマー1は,融点Tmが125℃であるため,上記式(2)からYは10.0≦Y≦18.8の範囲内にあるべきところ,その範囲内に入っていた。
(Iv) Measurement of water vapor permeability The polymer 1 obtained above was molded into a film having a thickness of 25 microns, and the water vapor permeability Y was measured according to the method described in JIS K7129 (the same is true for the following production examples). was .8 (g / m 2 / 24hr ).
Since this polymer 1 has a melting point Tm of 125 ° C., Y should be within the range of 10.0 ≦ Y ≦ 18.8 from the above formula (2), but was within that range.

製造例2
内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,トリイソブチルアルミニウムのヘキサン溶液500mL(0.12mol)を添加し,オートクレーブ内を70℃に昇温した。その後,上記固体触媒成分(9.0g)を添加し,プロピレンとエチレンの混合ガス(プロピレン:エチレン=97.0:3.0;但し重量比)を圧力が0.7MPaとなるように導入して重合を開始させ,本条件下に3時間重合反応を行った。
Production Example 2
After thoroughly replacing the inside of the stirred autoclave with an internal volume of 200 L with propylene, introduce 60 L of purified n-heptane, add 500 mL (0.12 mol) of hexane solution of triisobutylaluminum, and raise the inside of the autoclave to 70 ° C. Warm up. Thereafter, the solid catalyst component (9.0 g) was added, and a mixed gas of propylene and ethylene (propylene: ethylene = 97.0: 3.0; weight ratio) was introduced so that the pressure became 0.7 MPa. Then, the polymerization was started, and the polymerization reaction was carried out for 3 hours under these conditions.

その後,反応系にエタノール100mLを圧入して反応を停止させ,残存ガス成分をパージすることで,芯層用のプロピレン系重合体としての10.4kgのポリマーを得た。
このポリマーはMFR=10g/10分,アイソタクチックトリアッド分率が99.1%,融点Tmが135℃,プロピレンから得られた構造単位が97.1モル%,エチレンから得られた構造単位が2.9モル%,2,1−挿入に基づく位置不規則単位の割合が1.02%,1,3−挿入に基づく位置不規則単位の割合が0.13%であり,上記要件(a),(b),(c),(d)を満たしている。
以下,ここで得られたポリプロピレン系重合体(プロピレン/エチレンランダム共重合体)を「ポリマー2」と称する。
Thereafter, 100 mL of ethanol was injected into the reaction system to stop the reaction, and the remaining gas component was purged, thereby obtaining 10.4 kg of a polymer as a propylene-based polymer for the core layer.
This polymer has MFR = 10 g / 10 min, isotactic triad fraction of 99.1%, melting point Tm of 135 ° C., structural unit obtained from propylene, 97.1 mol%, structural unit obtained from ethylene Is 2.9 mol%, the ratio of position irregular units based on 2,1-insertion is 1.02%, the ratio of position irregular units based on 1,3-insertion is 0.13%, a), (b), (c), and (d) are satisfied.
Hereinafter, the polypropylene polymer (propylene / ethylene random copolymer) obtained here is referred to as “polymer 2”.

また,上記ポリマー2について,上記ポリマー1と同様にして,フィルムに成形したときの水蒸気透過度Yを調べたところ,13.5(g/m2/24hr)であった。
なお,このポリマー2は,融点Tmが135℃であるため,上記式(2)からYは8.0≦Y≦15.5の範囲内にあるべきところ,その範囲内に入っていた。
As for the polymer 2, as in the polymer 1 was examined the water vapor transmission rate Y when molded into a film was 13.5 (g / m 2 / 24hr ).
Since this polymer 2 has a melting point Tm of 135 ° C., Y should be within the range of 8.0 ≦ Y ≦ 15.5 from the above formula (2), but was within that range.

製造例3
内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,トリイソブチルアルミニウムのヘキサン溶液500mL(0.12mol)を添加し,オートクレーブ内を70℃に昇温した。その後,上記固体触媒成分(9.0g)を添加し,プロピレンとエチレンの混合ガス(プロピレン:エチレン=97.5:2.5;但し重量比)を圧力が0.7MPaとなるように導入して重合を開始させ,本条件下に3時間重合反応を行った。
Production Example 3
After thoroughly replacing the inside of the stirred autoclave with an internal volume of 200 L with propylene, introduce 60 L of purified n-heptane, add 500 mL (0.12 mol) of hexane solution of triisobutylaluminum, and raise the inside of the autoclave to 70 ° C. Warm up. Thereafter, the solid catalyst component (9.0 g) was added, and a mixed gas of propylene and ethylene (propylene: ethylene = 97.5: 2.5; weight ratio) was introduced so that the pressure became 0.7 MPa. Then, the polymerization was started, and the polymerization reaction was carried out for 3 hours under these conditions.

その後,反応系にエタノール100mLを圧入して反応を停止させ,残存ガス成分をパージすることで,9.3kgのポリマーを得た。このポリマーはMFR=8g/10分,プロピレンから得られた構造単位が97.6モル%,エチレンから得られた構造単位が2.4モル%,アイソタクチックトリアッド分率が99.2%,融点Tmが141℃,2,1−挿入に基づく位置不規則単位の割合が1.06%,1,3−挿入に基づく位置不規則単位の割合が0.17%であった。
即ち,このポリマーは,上記要件(a),(b)を満足するが,上記要件(c)を満足しないものである。
以下,ここで得られたプロピレン系重合体(プロピレン/エチレンランダム共重合体)を「ポリマー3」と称する。
Thereafter, 100 mL of ethanol was injected into the reaction system to stop the reaction, and the residual gas component was purged to obtain 9.3 kg of polymer. This polymer has MFR = 8 g / 10 min, 97.6 mol% of structural units obtained from propylene, 2.4 mol% of structural units obtained from ethylene, and 99.2% of isotactic triad fraction. The melting point Tm was 141 ° C., the ratio of position irregular units based on 2,1-insertion was 1.06%, and the ratio of position irregular units based on 1,3-insertion was 0.17%.
That is, this polymer satisfies the requirements (a) and (b) but does not satisfy the requirement (c).
Hereinafter, the propylene polymer (propylene / ethylene random copolymer) obtained here is referred to as “polymer 3”.

また,上記ポリマー3について,上記ポリマー1と同様にして,フィルムに成形したときの水蒸気透過度Yを調べたところ,12.0(g/m2/24hr)であった。
なお,ポリマー3は,融点Tmが141℃であるため,上記式(2)からYは6.8≦Y≦13.5の範囲内にあるべきところ,その範囲内に入っていた。
Further, for the above polymer 3, in the same manner as in the polymer 1 was examined the water vapor transmission rate Y when molded into a film was 12.0 (g / m 2 / 24hr ).
In addition, since the melting point Tm of the polymer 3 is 141 ° C., Y should be in the range of 6.8 ≦ Y ≦ 13.5 from the above formula (2).

製造例4
内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,ジエチルアルミニウムクロリド(40g),丸紅ソルベー社製三塩化チタン触媒7.5gをプロピレン雰囲気下に導入した。更に気相部の水素濃度を7.0容量%に保持しながら,オートクレーブ内温65℃にて,プロピレンとエチレンの混合ガス(プロピレン:エチレン=96.5:3.5;但し重量比)を圧力が0.7MPaとなるように導入した。
Production Example 4
After thoroughly replacing the inside of the stirred autoclave with an internal volume of 200 L with propylene, 60 L of purified n-heptane was introduced, and 7.5 g of diethylaluminum chloride (40 g) and a titanium trichloride catalyst manufactured by Marubeni Solvay Co. were placed in a propylene atmosphere. Introduced. Further, while maintaining the hydrogen concentration in the gas phase at 7.0% by volume, a mixed gas of propylene and ethylene (propylene: ethylene = 96.5: 3.5; weight ratio) at an autoclave temperature of 65 ° C. It introduced so that a pressure might be set to 0.7 Mpa.

混合ガス導入を停止した後,更に1時間反応を継続し,反応系にブタノール100mLを添加して反応を停止させ,残存ガス成分をパージすることで,33kgのポリマーを得た。
このポリマーはMFR=12g/10分,プロピレンから得られた構造単位が96.0モル%,エチレンから得られた構造単位が4.0モル%,融点Tmが141℃,アイソタクチックトリアッド分率が96.5%,2,1−挿入に基づく位置不規則単位の割合が0%,1,3−挿入に基づく位置不規則単位の割合が0%であった。
即ち,このポリマーは,上記要件(a)を満足するが,上記要件(b)及び(c)を満足しないものである。
以下,ここで得られたポリプロピレン系重合体(プロピレン/エチレンランダム共重合体)を「ポリマー4」と称する。
After stopping the introduction of the mixed gas, the reaction was continued for an additional hour, 100 mL of butanol was added to the reaction system to stop the reaction, and the residual gas component was purged to obtain 33 kg of polymer.
This polymer has MFR = 12 g / 10 min, structural unit obtained from propylene 96.0 mol%, structural unit obtained from ethylene 4.0 mol%, melting point Tm 141 ° C., isotactic triad content The rate was 96.5%, the ratio of position irregular units based on 2,1-insertion was 0%, and the ratio of position irregular units based on 1,3-insertion was 0%.
That is, this polymer satisfies the requirement (a) but does not satisfy the requirements (b) and (c).
Hereinafter, the polypropylene polymer (propylene / ethylene random copolymer) obtained here is referred to as “polymer 4”.

また,上記ポリマー4について,上記ポリマー1と同様にして,フィルムに成形したときの水蒸気透過度Yを調べたところ,15.2(g/m2/24hr)であった。
なお,ポリマー4は,融点Tmが141℃であるため,上記式(2)からYは6.8≦Y≦13.5の範囲内にあるべきところ,その範囲内に入っていないものであった。
Further, for the above polymer 4, in the same manner as in the polymer 1 was examined the water vapor transmission rate Y when molded into a film was 15.2 (g / m 2 / 24hr ).
In addition, since the melting point Tm of the polymer 4 is 141 ° C., Y should be within the range of 6.8 ≦ Y ≦ 13.5 from the above formula (2), but not within the range. It was.

製造例5
内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,ジエチルアルミニウムクロリド(40g),丸紅ソルベー社製三塩化チタン触媒7.5gをプロピレン雰囲気下に導入した。更に気相部の水素濃度を7.0容量%に保持しながら,オートクレーブ内温65℃にて,プロピレンとエチレンの混合ガス(プロピレン:エチレン=95.5:4.5;但し重量比)を圧力が0.7MPaとなるように導入した。
Production Example 5
After thoroughly replacing the inside of the stirred autoclave with an internal volume of 200 L with propylene, 60 L of purified n-heptane was introduced, and 7.5 g of diethylaluminum chloride (40 g) and a titanium trichloride catalyst manufactured by Marubeni Solvay Co. were placed in a propylene atmosphere. Introduced. Further, while maintaining the hydrogen concentration in the gas phase at 7.0% by volume, a mixed gas of propylene and ethylene (propylene: ethylene = 95.5: 4.5; weight ratio) at an autoclave temperature of 65 ° C. It introduced so that a pressure might be set to 0.7 Mpa.

混合ガス導入を停止した後,更に1時間反応を継続し,反応系にブタノール100mLを添加して反応を停止させ,残存ガス成分をパージすることで,35kgのポリマーを得た。
このポリマーはMFR=14g/10分,プロピレンから得られた構造単位が94.6モル%,エチレンから得られた構造単位が5.4モル%,融点Tmが135℃,アイソタクチックトリアッド分率が96.5%,2,1−挿入に基づく位置不規則単位の割合が0%,1,3−挿入に基づく位置不規則単位の割合が0%であった。
即ち,このポリマーは,上記要件(a)及び要件(c)は満足するが,上記要件(b)を満足しないものである。
以下,ここで得られたポリプロピレン系重合体(プロピレン/エチレンランダム共重合体)を「ポリマー5」と称する。
After stopping the introduction of the mixed gas, the reaction was continued for another hour, 100 mL of butanol was added to the reaction system to stop the reaction, and the remaining gas components were purged to obtain 35 kg of polymer.
This polymer has MFR = 14 g / 10 min, structural unit obtained from propylene is 94.6 mol%, structural unit obtained from ethylene is 5.4 mol%, melting point Tm is 135 ° C., isotactic triad content. The rate was 96.5%, the ratio of position irregular units based on 2,1-insertion was 0%, and the ratio of position irregular units based on 1,3-insertion was 0%.
That is, this polymer satisfies the requirements (a) and (c) but does not satisfy the requirement (b).
Hereinafter, the polypropylene polymer (propylene / ethylene random copolymer) obtained here is referred to as “polymer 5”.

また,上記ポリマー5について,上記ポリマー1と同様にして,フィルムに成形したときの水蒸気透過度Yを調べたところ,18.9(g/m2/24hr)であった。
なお,ポリマー5は,融点Tmが135℃であるため,上記式(2)からYは8.0≦Y≦15.5の範囲内にあるべきところ,その範囲内に入っていないものであった。
Further, for the above polymer 5, as in the polymer 1 was examined the water vapor transmission rate Y when molded into a film was 18.9 (g / m 2 / 24hr ).
Since the melting point Tm of the polymer 5 is 135 ° C., Y should be within the range of 8.0 ≦ Y ≦ 15.5 from the above formula (2), but is not within the range. It was.

製造例6
特開平6−240041号公報の実施例中の[基材樹脂の製造1]に記載の触媒系を適用して実施した。すなわち,内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,東ソーアクゾ社製のメチルアルモキサン(平均オリゴマー度16)を120g,特開平4−268307号公報に記載の方法で合成したrac−ジメチルシリレンビス(2−メチルインデニル)ジルコニウムジクロリド(150mg)をプロピレン雰囲気下に導入した。更に気相部の水素濃度を0.5容量%に保持しながら,オートクレーブ内温40℃にて,プロピレンとエチレンの混合ガス(プロピレン:エチレン=98.0:2.0;但し重量比)を圧力が0.7MPaになるように導入して重合を開始させ,本条件下に2時間重合反応を行った。
Production Example 6
This was carried out by applying the catalyst system described in [Production of base resin 1] in the examples of JP-A-6-240041. That is, after the inside of a stirring autoclave having an internal volume of 200 L is sufficiently substituted with propylene, 60 L of purified n-heptane is introduced, and 120 g of methylalumoxane (average oligomer degree 16) manufactured by Tosoh Akzo Co., Ltd. is disclosed. Rac-dimethylsilylenebis (2-methylindenyl) zirconium dichloride (150 mg) synthesized by the method described in Japanese Patent No. 268307 was introduced under a propylene atmosphere. Furthermore, while maintaining the hydrogen concentration in the gas phase at 0.5% by volume, a mixed gas of propylene and ethylene (propylene: ethylene = 98.0: 2.0; weight ratio) at an autoclave internal temperature of 40 ° C. The polymerization was started by introducing the pressure so as to be 0.7 MPa, and the polymerization reaction was carried out for 2 hours under these conditions.

その後,反応系にブタノール100mLを添加して反応を停止させ,残存ガス成分をパージすることで,7.3kgのポリマー(プロピレン/エチレンランダム共重合体)を得た。このポリマーを「ポリマー6」と称する。
このポリマー6は,MFR=10g/10分,プロピレンから得られた構造単位が97.1モル%,エチレンから得られた構造単位が2.9モル%,融点Tmが140℃,アイソタクチックトリアッド分率が94.8%,2,1−挿入に基づく位置不規則単位の割合が0.26%,1,3−挿入に基づく位置不規則単位の割合は検出限界以下,すなわち0.005%未満であった。なお,後述する表1においては,ポリマー6の1,3−挿入に基づく位置不規則単位の割合は,0%として表記した。
即ち,このポリマー6は,上記要件(a)及び上記要件(c)を満足するが,上記要件(b)を満足しないものである。
Thereafter, 100 mL of butanol was added to the reaction system to stop the reaction, and the residual gas component was purged to obtain 7.3 kg of a polymer (propylene / ethylene random copolymer). This polymer is referred to as “Polymer 6”.
This polymer 6 has an MFR = 10 g / 10 min, a structural unit obtained from propylene of 97.1 mol%, a structural unit obtained from ethylene of 2.9 mol%, a melting point Tm of 140 ° C., and isotactic tri The add fraction is 94.8%, the ratio of irregular position units based on 2,1-insertion is 0.26%, and the ratio of position irregular units based on 1,3-insertion is below the detection limit, that is, 0.005. %. In Table 1 to be described later, the ratio of the position irregular units based on 1,3-insertion of the polymer 6 was expressed as 0%.
That is, this polymer 6 satisfies the requirement (a) and the requirement (c), but does not satisfy the requirement (b).

また,上記ポリマー6について,上記ポリマー1と同様にして,フィルムに成形したときの水蒸気透過度Yを調べたところ,6.6(g/m2/24hr)であった。
なお,このポリマー6は,融点Tmが140℃であるため,上記式(2)からYは7.0≦Y≦13.8の範囲内にあるべきところ,その範囲内に入っていないものであった。
Further, for the above polymer 6, in the same manner as in the polymer 1 was examined the water vapor transmission rate Y when molded into a film was 6.6 (g / m 2 / 24hr ).
Since this polymer 6 has a melting point Tm of 140 ° C., Y should be within the range of 7.0 ≦ Y ≦ 13.8 from the above formula (2), but not within that range. there were.

製造例7
内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,東ソーアクゾ社製のメチルアルモキサン(平均オリゴマー度16)を120g,公知の方法[エイチ.ヤマザキ他(H.Yamazaki et.al),「ケミストリー レターズ」(“Chemistry Letters”),日本国,1989年,第18巻,p.1853]で合成したrac−ジメチルシリレンビス(3−メチルシクロペンタジエニル)ジルコニウムジクロリド(100mg)をプロピレン雰囲気下に導入した。更に気相部の水素濃度を0.5容量%に保持しながら,オートクレーブ内温40℃にて,プロピレンとエチレンの混合ガス(プロピレン:エチレン=98.5:1.5;但し重量比)を圧力が0.7MPaになるように導入して重合を開始させ,本条件下に3時間重合反応を行った。
Production Example 7
After sufficiently replacing the interior of the stirred autoclave with an internal volume of 200 L with propylene, 60 L of purified n-heptane was introduced, and 120 g of methylalumoxane (average oligomer degree 16) manufactured by Tosoh Akzo Co., Ltd., a known method [H. H. Yamazaki et.al, “Chemistry Letters”, Japan, 1989, Vol. 18, p. Rac-dimethylsilylene bis (3-methylcyclopentadienyl) zirconium dichloride (100 mg) synthesized in 1853] was introduced in a propylene atmosphere. Furthermore, while maintaining the hydrogen concentration in the gas phase at 0.5% by volume, a mixed gas of propylene and ethylene (propylene: ethylene = 98.5: 1.5; weight ratio) at an autoclave internal temperature of 40 ° C. The polymerization was started by introducing the pressure so as to be 0.7 MPa, and the polymerization reaction was carried out for 3 hours under these conditions.

その後,反応系にブタノール100mLを添加して反応を停止させ,残存ガス成分をパージすることで,6.4kgのポリマー(プロピレン/エチレンランダム共重合体)を得た。このポリマーを「ポリマー7」と称する。
このポリマー7は,MFR=19g/10分,プロピレンから得られた構造単位が98.0モル%,エチレンから得られた構造単位が2.0モル%,,融点137℃,アイソタクチックトリアッド分率が92.0%,2,1−挿入に基づく位置不規則単位の割合が2.05%,1,3−挿入に基づく位置不規則単位の割合は0.45%であった。
即ち,このものは,上記要件(a)及び上記要件(c)を満足するが,上記要件(b)を満足しないものである。
Thereafter, 100 mL of butanol was added to the reaction system to stop the reaction, and the residual gas component was purged to obtain 6.4 kg of a polymer (propylene / ethylene random copolymer). This polymer is referred to as “Polymer 7”.
This polymer 7 has an MFR of 19 g / 10 min, a structural unit obtained from propylene of 98.0 mol%, a structural unit obtained from ethylene of 2.0 mol%, a melting point of 137 ° C., and an isotactic triad. The fraction was 92.0%, the ratio of position irregular units based on 2,1-insertion was 2.05%, and the ratio of position irregular units based on 1,3-insertion was 0.45%.
That is, this satisfies the requirement (a) and the requirement (c) but does not satisfy the requirement (b).

また,上記ポリマー7について,上記ポリマー1と同様にして,フィルムに成形したときの水蒸気透過度Yを調べたところ,15.4(g/m2/24hr)であった。
なお,この基材樹脂は,融点Tmが137℃であるため,上記式(2)からYは7.6≦Y≦14.8の範囲内にあるべきところ,その範囲内に入っていないものであった。
As for the polymer 7, in the same manner as in the polymer 1 was examined the water vapor transmission rate Y when molded into a film was 15.4 (g / m 2 / 24hr ).
Since the base resin has a melting point Tm of 137 ° C., Y should be within the range of 7.6 ≦ Y ≦ 14.8 from the above formula (2), but not within the range. Met.

以上の製造例1〜7の結果を表1に示す。   The results of the above Production Examples 1 to 7 are shown in Table 1.

Figure 2005139350
Figure 2005139350

表1からも知られるごとく,上記ポリマー1及びポリマー2は,上記要件(a)〜(c)を満たす。また,上記ポリマー1及びポリマー2は,上記要件(d)及び(e)をも満足する。
一方,上記ポリマー3は,上記要件(a)及び(b)を満たしているが,上記要件(c)を満たしていない。
また,上記ポリマー4は,上記要件(a)を満たしているが,上記要件(b)及び(c)を満足しない。
さらに,上記ポリマー5〜ポリマー7は,上記要件(a)及び(c)を満たしているが,上記要件(b)を満足しない。
As is also known from Table 1, the polymer 1 and the polymer 2 satisfy the requirements (a) to (c). The polymer 1 and the polymer 2 also satisfy the requirements (d) and (e).
On the other hand, the polymer 3 satisfies the requirements (a) and (b) but does not satisfy the requirement (c).
The polymer 4 satisfies the requirement (a) but does not satisfy the requirements (b) and (c).
Furthermore, although the said polymers 5-7 satisfy | fill the said requirements (a) and (c), they do not satisfy the said requirements (b).

次に,上記製造例1〜7により得たプロピレン系重合体(ポリマー1〜ポリマー7)を用いて,ポリプロピレン系樹脂発泡粒子を製造した実施例につき説明する。
なお,以下の各例において,各物性は次の様にして求めた。
Next, Examples in which polypropylene resin expanded particles are produced using the propylene polymers (Polymer 1 to Polymer 7) obtained in Production Examples 1 to 7 will be described.
In each of the following examples, each physical property was obtained as follows.

〈融点〉熱流束示差走査熱量計(DSC)により,上記製造例1〜7により得たプロピレン系重合体または後述する表2〜表4に記載の被覆層の樹脂からなる試料3〜5mgを20℃から220℃まで10℃/分の速度で昇温し,その後10℃/分の速度で20℃迄降温し,さらに再度10℃/分の速度で220℃迄昇温して得られるDSC曲線から,前記の通り,融点を測定した。   <Melting point> 20 to 3 to 5 mg of a sample composed of the propylene-based polymer obtained in the above Production Examples 1 to 7 or the resin of the coating layer described in Tables 2 to 4 described later by a heat flux differential scanning calorimeter (DSC). DSC curve obtained by increasing the temperature from 10 ° C to 220 ° C at a rate of 10 ° C / min, then decreasing to 20 ° C at a rate of 10 ° C / min, and further increasing the temperature to 220 ° C at a rate of 10 ° C / min. From the above, the melting point was measured as described above.

〈耐熱温度〉JIS K6767(1976年)に準じて80℃〜115℃まで5℃刻みで各温度における加熱寸法変化率を測定し,寸法収縮率が3%以下となる上限温度を耐熱温度とした。   <Heat-resistant temperature> According to JIS K6767 (1976), the heating dimensional change rate at each temperature was measured in increments of 5 ° C from 80 ° C to 115 ° C, and the upper limit temperature at which the dimensional shrinkage rate was 3% or less was defined as the heat-resistant temperature. .

実施例1
内径65mmφ単軸押出機を用いて,製造例1で得たプロピレン重合体に酸化防止剤(吉富製薬(株)製 商品名「ヨシノックスBHT」0.05wt%,及びチバガイギー製 商品名「イルガノックス1010」0.10wt%)を加えて混練した。
Example 1
Using an internal diameter 65 mmφ single screw extruder, the propylene polymer obtained in Production Example 1 was added with an antioxidant (trade name “Yoshinox BHT” 0.05 wt%, manufactured by Yoshitomi Pharmaceutical Co., Ltd.), and product name “Irganox 1010” manufactured by Ciba Geigy. “0.10 wt%) was added and kneaded.

次いで,直径1.5mmのダイオリフィスを有するダイから,上記のプロピレン重合体を非発泡状態の芯層とし,密度が0.907g/cm3,融点が100℃の直鎖状低密度ポリエチレン(表2〜4中では「LLDPE1」と表示した。)を非発泡状態の被覆層としてストランド状に押し出した。 Next, from the die having a die orifice with a diameter of 1.5 mm, the above propylene polymer is used as a non-foamed core layer, a linear low density polyethylene having a density of 0.907 g / cm 3 and a melting point of 100 ° C. 2 to 4 were labeled as “LLDPE1”) and extruded as a non-foamed coating layer in the form of a strand.

さらに,このストランドを水槽を通して冷却し,1ヶの重量が重さ1.0mgになる様カットして樹脂粒子としての細粒ペレットを得た。この樹脂粒子(複合体からなる樹脂粒子)を位相差顕微鏡により観察したところ,厚さ30ミクロンの直鎖状低密度ポリエチレンよりなる被覆層がプロピレン重合体よりなる非発泡状態の芯層を被覆する構造を有していた。   Further, this strand was cooled through a water tank, and cut so that the weight of one strand became 1.0 mg to obtain fine pellets as resin particles. When the resin particles (resin particles made of a composite) are observed with a phase contrast microscope, a coating layer made of linear low density polyethylene having a thickness of 30 microns covers a non-foamed core layer made of a propylene polymer. Had a structure.

次に,上記樹脂粒子(複合体粒子)を発泡粒子とするために,上記細粒ペレット(複合体からなる樹脂粒子)1000gを水2500g,第三リン酸カルシウム(但し,10%水分散液)200g,ドデシルベンゼンスルホン酸ナトリウム(2%水溶液)30.0gと共に内容積5リットルのオートクレーブに入れ,更にイソブタン200gを加えて,110℃迄60分間で昇温した後,この温度で30分間保持した。   Next, in order to make the resin particles (composite particles) into expanded particles, 1000 g of the fine pellets (resin particles made of the composite) are 2500 g of water, 200 g of tribasic calcium phosphate (however, 10% aqueous dispersion), The mixture was placed in an autoclave having an internal volume of 5 liters together with 30.0 g of sodium dodecylbenzenesulfonate (2% aqueous solution), 200 g of isobutane was further added, the temperature was raised to 110 ° C. over 60 minutes, and the temperature was maintained for 30 minutes.

その後,オートクレーブ内の圧力を2.3MPaに保持するために外部より圧縮窒素ガスを加えながら,オートクレーブ底部のバルブを開き内容物を大気下へ放出した。
以上の操作により得られたポリプロピレン系樹脂発泡粒子を乾燥後,嵩密度を測定したところ,18g/Lであった。また,発泡粒子の気泡は,平均径が320μであり,非常に均一であった。
Thereafter, in order to keep the pressure in the autoclave at 2.3 MPa, the valve at the bottom of the autoclave was opened while the compressed nitrogen gas was added from the outside, and the contents were released to the atmosphere.
When the bulk density of the expanded polypropylene resin particles obtained by the above operation was measured after drying, it was 18 g / L. Further, the bubbles of the expanded particles had an average diameter of 320 μm and were very uniform.

なお,上記ポリプロピレン系樹脂発泡粒子の気泡の平均径(平均気泡径)は,無作為に選んだ発泡粒子のほぼ中央を通るように切断した発泡粒子の断面を顕微鏡にて観察して得られる顕微鏡写真,又はこの断面を画面上に映し出したものにおいて,無作為の50点の気泡について各気泡の直径(最大長さ)を測定し,その平均値を示したものである。   The average bubble diameter (average bubble diameter) of the polypropylene resin foamed particles is a microscope obtained by observing a cross section of the foamed particles cut through almost the center of the randomly selected foamed particles with a microscope. In the photograph or the cross-section projected on the screen, the diameter (maximum length) of each bubble was measured for 50 random bubbles and the average value was shown.

次に,上記ポリプロピレン系樹脂発泡粒子を用いて,以下のように型内成形体を作製する。
即ち,まず,上記で得られたポリプロピレン系樹脂発泡粒子をホッパーにより圧縮空気を用いて逐次的にアルミニウム製の成形用金型に圧縮しながら充填した。その後,金型のチャンバにゲージ圧0.06MPaのスチーム(下記の表2〜4中では「成形蒸気圧」と表示)を通じて加熱成形し,型内成形体を得た。
Next, an in-mold molded body is produced as follows using the polypropylene resin expanded particles.
That is, first, the polypropylene resin expanded particles obtained above were filled while being compressed sequentially into a mold made of aluminum using compressed air using a hopper. Thereafter, the mold chamber was heat-formed through steam having a gauge pressure of 0.06 MPa (indicated as “molding vapor pressure” in Tables 2 to 4 below) to obtain an in-mold molded body.

この型内成形体は密度30kg/m3,縦300mm,横300mm,厚み50mm,金型寸法収縮率2.0%であり,表面の間隙も少なく,凹凸も無い表面外観が優れた成形体であった。また,型内成形体の中央部より破断し,その断面の融着度を測定したところ,90%であった。 This in-mold molded body has a density of 30 kg / m 3 , a length of 300 mm, a width of 300 mm, a thickness of 50 mm, a mold size shrinkage of 2.0%, a small surface gap, and an excellent surface appearance with no irregularities. there were. Moreover, it fractured | ruptured from the center part of the in-mold molded object, and it was 90% when the fusion degree of the cross section was measured.

尚,上記融着度は,型内成形体から作製した試験片を割断し,その断面における粒子破壊の数と粒子間破壊の数を目視にて計測し,両者の合計数に対する粒子破壊の数の割合(%)で表した。   The degree of fusion is determined by cleaving a test piece prepared from an in-mold molded body, visually measuring the number of particle breaks and the number of interparticle breaks in the cross section, Expressed as a percentage.

また,型内成形体の外観(成形体外観)は,目視により下記の基準により判定した。
○:型内成形体の表面が平滑で,粒子間の間隙もない
△:型内成形体の表面は平滑であるが,粒子間の間隙が目立つ
×:型内成形体の表面は平滑性に欠け,粒子間の間隙が目立つ
Further, the appearance of the molded body in the mold (molded body appearance) was visually judged according to the following criteria.
○: The surface of the molded body in the mold is smooth and there is no gap between particles. △: The surface of the molded body in the mold is smooth, but the gap between particles is conspicuous. ×: The surface of the molded body in the mold is smooth. Chips and gaps between particles are conspicuous

また,同一成形条件で成形した別の型内成形体から,縦50mm,横50mm,厚さ25mmの試験片を作成し,JIS K7220(1999年)に準じて圧縮速度10mm/分にて圧縮試験を実施したところ,50%圧縮時の応力が0.23MPaであった。更に,同じ大きさの試験片を用い,同じくJIS K6767(1976年)に記載の方法により,圧縮永久歪を測定したところ,8%であった。
その結果を後述の表2に示す。
In addition, a test piece having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm was prepared from another in-mold molded body molded under the same molding conditions, and a compression test was performed at a compression rate of 10 mm / min in accordance with JIS K7220 (1999). As a result, the stress at 50% compression was 0.23 MPa. Furthermore, when the compression set was measured by the method described in JIS K6767 (1976) using a test piece of the same size, it was 8%.
The results are shown in Table 2 below.

(実施例2〜4)及び(比較例1〜6)
芯層を形成する基材樹脂として上記製造例1〜7に記したものを,また被覆層を形成する樹脂として下記の表2〜表4に記載のものを使用した以外は,実施例1と同様に実施し,それらの結果を表2〜表4に示した。尚,表2〜表4中に表示した次の略号は,それぞれ,次の意味を持つ。
LLDPE1 密度が0.907g/cm3,融点が100℃の直鎖状低密度ポリエチレン樹脂。
LLDPE2 密度が0.920g/cm3,融点が121℃の直鎖状低密度ポリエチレン樹脂。
HIPS 耐衝撃性ポリスチレン樹脂。
(Examples 2-4) and (Comparative Examples 1-6)
Example 1 except that those described in Production Examples 1 to 7 above were used as the base resin for forming the core layer, and those described in Tables 2 to 4 below were used as the resin for forming the coating layer. It implemented similarly and those results were shown in Table 2-Table 4. The following abbreviations shown in Tables 2 to 4 have the following meanings.
LLDPE1 A linear low density polyethylene resin having a density of 0.907 g / cm 3 and a melting point of 100 ° C.
LLDPE2 A linear low density polyethylene resin having a density of 0.920 g / cm 3 and a melting point of 121 ° C.
HIPS high impact polystyrene resin.

(比較例7)ポリエチレン樹脂発泡粒子の製造(但し,被覆層無し)
本例においては,被覆層のないポリエチレン系の樹脂発泡粒子を作製し,この発泡粒子を用いて型内成形体を作製した。
即ち,まず,実施例2の被覆層に用いた線状低密度ポリエチレン「LLDPE2」を,内径30mmφの単軸押出機を用いて混練し,1ヶの重量が重さ1.0mgになる様カットして樹脂粒子としての細粒ペレットを得た。
(Comparative Example 7) Production of polyethylene resin expanded particles (however, no coating layer)
In this example, polyethylene-based resin expanded particles having no coating layer were prepared, and an in-mold molded product was prepared using the expanded particles.
That is, first, the linear low density polyethylene “LLDPE2” used for the coating layer of Example 2 was kneaded using a single screw extruder having an inner diameter of 30 mmφ, and cut so that the weight of one piece became 1.0 mg. Thus, fine pellets as resin particles were obtained.

次に,上記細粒ペレット1000gを水3000g,第三リン酸カルシウム(但し,10%水分散液)200g,ドデシルベンゼンスルホン酸ナトリウム(2%水溶液)25.0gと共に内容積5リットルのオートクレーブに入れ,更にイソブタン150gを加えて,113℃迄60分間で昇温した後,この温度で30分間保持した。   Next, 1000 g of the above-mentioned fine pellets were put in an autoclave having an internal volume of 5 liters together with 3000 g of water, 200 g of tribasic calcium phosphate (however, 10% aqueous dispersion) and 25.0 g of sodium dodecylbenzenesulfonate (2% aqueous solution). After adding 150 g of isobutane and raising the temperature to 113 ° C. over 60 minutes, this temperature was maintained for 30 minutes.

その後,オートクレーブ内の圧力を2.3MPaに保持するために外部より圧縮窒素ガスを加えながら,オートクレーブ底部のバルブを開き内容物を大気下へ放出した。
以上の操作により得られたポリエチレン系樹脂発泡粒子を乾燥後,嵩密度を測定したところ,27g/Lであった。
Thereafter, in order to keep the pressure in the autoclave at 2.3 MPa, the valve at the bottom of the autoclave was opened while the compressed nitrogen gas was added from the outside, and the contents were released to the atmosphere.
The polyethylene resin expanded particles obtained by the above operation were dried, and the bulk density was measured and found to be 27 g / L.

次に,この発泡粒子を用いて,実施例1と同様の操作で型内成形体を作製した。また,この型内成形体について,実施例1と同様評価を行った。その結果を表4に示す。   Next, using this expanded particle, an in-mold molded product was produced in the same manner as in Example 1. Further, this in-mold molded body was evaluated in the same manner as in Example 1. The results are shown in Table 4.

Figure 2005139350
Figure 2005139350

Figure 2005139350
Figure 2005139350

Figure 2005139350
Figure 2005139350

表3より知られるごとく,上記製造例3より得られたプロピレン系重合体(ポリマー3)を芯層の基材樹脂に用いた場合(比較例1〜2)には,得られたポリプロピレン系樹脂発泡粒子は,芯層の基材樹脂であるプロピレン系重合体の融点が141℃と高温であったため,非常に低い成形蒸気圧(非常に低い成形温度)では外観に優れた型内成形体を得ることができなかった。また,比較例2においては,実施例1〜4と同レベルの低い成形蒸気圧で型内成形した例を示すが,芯層の基材樹脂の融点が高かったため,二次発泡性に劣り,発泡粒子間の隙間の多い型内成形体となってしまい,結果として,圧縮永久歪が大きいものとなった。   As is known from Table 3, when the propylene polymer (Polymer 3) obtained from Production Example 3 was used as the base resin for the core layer (Comparative Examples 1 and 2), the obtained polypropylene resin Since the melting point of the propylene polymer, which is the base resin for the core layer, is as high as 141 ° C., the expanded particles have an in-mold molded product with an excellent appearance at a very low molding vapor pressure (very low molding temperature). Couldn't get. Moreover, in Comparative Example 2, although an example of in-mold molding with a low molding vapor pressure of the same level as in Examples 1 to 4 is shown, since the melting point of the base resin of the core layer is high, the secondary foamability is inferior, This resulted in an in-mold molded product with many gaps between the expanded particles, resulting in a large compression set.

また,表3及び表4より知られるごとく,上記製造例4〜7により得られたプロピレン系重合体(ポリマー4〜7)を芯層の基材樹脂に用いた場合(比較例3,4,5,6)には,これらのポリマー4〜7が上記要件(b)を満たさないため,得られたポリプロピレン系樹脂発泡粒子は,二次発泡性に劣るものであった。また,そのポリプロピレン系樹脂発泡粒子を用いて成形した型内成形体は,実施例1〜4により得られたポリプロピレン系樹脂発泡粒子を用いた場合に比して,成形に要する加熱水蒸気圧(成形蒸気圧)を高いものとしたが,それでも得られた型内成形体の表面外観は悪いものであり,さらに圧縮永久歪が大きいものであった。   Further, as is known from Tables 3 and 4, when the propylene-based polymer (Polymers 4 to 7) obtained in the above Production Examples 4 to 7 was used for the base resin of the core layer (Comparative Examples 3, 4, 5, 6), since these polymers 4 to 7 do not satisfy the requirement (b), the obtained polypropylene resin foamed particles were inferior in secondary foamability. Further, the in-mold molded product molded using the polypropylene resin foamed particles has a heating steam pressure (molded) required for molding as compared with the case where the polypropylene resin foamed particles obtained in Examples 1 to 4 are used. Although the vapor pressure was high, the surface appearance of the molded product thus obtained was still poor and the compression set was large.

これに対して,表2より知られるごとく,本発明にかかる実施例1〜4においては,上記要件(a)〜(c)を満足するプロピレン系重合体を芯層の基材樹脂として使用したため,いずれにおいても,得られたポリプロピレン系樹脂発泡粒子を用いて型内成形を実施した場合には,低い加熱水蒸気圧でも融着度が高く,更に表面外観に優れた型内成形体を得ることができた。また,機械的物性についても柔軟性が高く,圧縮永久歪が非常に小さいものであった。また,実施例1〜4の型内成形体が柔軟性に優れていることは,表2における50%圧縮時の応力から知ることができる。   On the other hand, as is known from Table 2, in Examples 1 to 4 according to the present invention, a propylene polymer satisfying the above requirements (a) to (c) was used as the base resin for the core layer. In any case, when the in-mold molding is performed using the obtained polypropylene resin expanded particles, an in-mold molded body having a high degree of fusion even at a low heating steam pressure and having an excellent surface appearance can be obtained. I was able to. The mechanical properties were also very flexible and the compression set was very small. Moreover, it can be known from the stress at the time of 50% compression in Table 2 that the molded bodies in Examples 1 to 4 are excellent in flexibility.

また,表4より知られるごとく,被覆層を設けなかった直鎖状低密度ポリエチレン樹脂発泡粒子の例を示す比較例7では,使用された直鎖状低密度ポリエチレン樹脂の融点が121℃であったが,これとほぼ同じ融点を持つ樹脂を芯層の基材樹脂として用いた実施例1及び2と比較すると,実施例1及び2の各型内成形体は比較例7よりも耐熱性が高いことがわかる。   Further, as is known from Table 4, in Comparative Example 7, which shows an example of linear low density polyethylene resin expanded particles without a coating layer, the melting point of the used linear low density polyethylene resin was 121 ° C. However, when compared with Examples 1 and 2 in which a resin having substantially the same melting point as this was used as the base resin for the core layer, the molded articles in Examples 1 and 2 had higher heat resistance than Comparative Example 7. I understand that it is expensive.

Claims (5)

プロピレン系重合体を基材樹脂とする発泡状態の芯層と,これを被覆する熱可塑性樹脂からなる被覆層とから構成されているポリプロピレン系樹脂発泡粒子において,
上記芯層を形成する上記プロピレン系重合体は,下記の要件(a)〜(c)を有することを特徴とするポリプロピレン系樹脂発泡粒子。
(a)プロピレンから得られる構造単位が98〜85モル%,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位が2〜15モル%存在すること(ただし,プロピレンから得られる構造単位と,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位との合計量は100モル%である)。
(b)13C−NMRで測定した,全プロピレン挿入中のプロピレンモノマー単位の2,1−挿入に基づく位置不規則単位の割合が0.5〜2.0%であり,かつプロピレンモノマー単位の1,3−挿入に基づく位置不規則単位の割合が0.005〜0.4%であること。
(c)融点をTm[℃]とした場合に,Tmが下記式(1)
Tm<141[℃] 式(1)
を満足すること。
In expanded polypropylene resin particles composed of a core layer in a foamed state using a propylene polymer as a base resin and a coating layer made of a thermoplastic resin covering the core layer,
The propylene-based polymer forming the core layer has the following requirements (a) to (c): Polypropylene-based resin expanded particles,
(A) The structural unit obtained from propylene is 98 to 85 mol%, and the structural unit obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms is present (provided that it is obtained from propylene). The total amount of structural units and structural units obtained from ethylene and / or α-olefin having 4 to 20 carbon atoms is 100 mol%).
(B) The proportion of position irregular units based on 2,1-insertion of propylene monomer units in all propylene insertions measured by 13C-NMR is 0.5 to 2.0%, and 1 of propylene monomer units , 3- The percentage of irregular units based on insertion is 0.005 to 0.4%.
(C) When the melting point is Tm [° C.], Tm is the following formula (1)
Tm <141 [° C.] Formula (1)
To be satisfied.
請求項1において,上記被覆層は,上記芯層を形成する上記プロピレン系重合体よりも融点が低いか,または実質的に融点を示さないオレフィン系重合体からなることを特徴とするポリプロピレン系樹脂発泡粒子。   2. The polypropylene resin according to claim 1, wherein the coating layer is made of an olefin polymer having a melting point lower than or substantially not showing the melting point of the propylene polymer forming the core layer. Expanded particles. 請求項1又は2において,上記芯層を形成する上記プロピレン系重合体は,更に以下の要件(d)を有することを特徴とするポリプロピレン系樹脂発泡粒子。
(d)頭−尾結合からなるプロピレン単位連鎖部の13C−NMRで測定したアイソタクチックトリアッド分率が97%以上であること。
3. The expanded polypropylene resin particle according to claim 1, wherein the propylene polymer forming the core layer further has the following requirement (d).
(D) The isotactic triad fraction measured by 13C-NMR of the propylene unit chain part composed of a head-to-tail bond is 97% or more.
請求項1〜3のいずれか一項において,上記芯層を形成する上記プロピレン系重合体は,更に以下の要件(e)を有することを特徴とするポリプロピレン系樹脂発泡粒子。
(e)メルトフローレートが0.5〜100g/10分であること。
The polypropylene resin expanded particle according to any one of claims 1 to 3, wherein the propylene polymer forming the core layer further has the following requirement (e).
(E) The melt flow rate is 0.5 to 100 g / 10 minutes.
ポリプロピレン系樹脂発泡粒子を成形型内において成形してなり,密度0.5〜0.008g/cm3を有する型内成形体であって,
かつ上記ポリプロピレン系樹脂発泡粒子は,上記請求項1〜4のいずれかに記載のものを用いてなることを特徴とする型内成形体。
An in-mold molded product having a density of 0.5 to 0.008 g / cm 3 formed by molding polypropylene resin expanded particles in a mold,
And the said polypropylene-type resin expanded particle uses the thing in any one of the said Claims 1-4, The molded object in the mold characterized by the above-mentioned.
JP2003378684A 2003-11-07 2003-11-07 Polypropylene resin expanded particles and in-mold molded body using the same Expired - Fee Related JP4282439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378684A JP4282439B2 (en) 2003-11-07 2003-11-07 Polypropylene resin expanded particles and in-mold molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378684A JP4282439B2 (en) 2003-11-07 2003-11-07 Polypropylene resin expanded particles and in-mold molded body using the same

Publications (2)

Publication Number Publication Date
JP2005139350A true JP2005139350A (en) 2005-06-02
JP4282439B2 JP4282439B2 (en) 2009-06-24

Family

ID=34688987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378684A Expired - Fee Related JP4282439B2 (en) 2003-11-07 2003-11-07 Polypropylene resin expanded particles and in-mold molded body using the same

Country Status (1)

Country Link
JP (1) JP4282439B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009643A3 (en) * 2004-06-17 2006-06-15 Henkel Corp Ultra low density thermally clad microspheres
WO2010150466A1 (en) * 2009-06-26 2010-12-29 株式会社ジェイエスピー Expanded polypropylene resin beads and expanded bead molding
JP2012504181A (en) * 2008-09-30 2012-02-16 ヘンケル コーポレイション Nonflammable hollow polymer microspheres
CN105579502A (en) * 2014-03-27 2016-05-11 株式会社Jsp Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
CN105899589A (en) * 2014-01-17 2016-08-24 株式会社Jsp Propylene-based resin foam particle and foam particle molded body
US10487188B2 (en) 2015-07-15 2019-11-26 Jsp Corporation Propylene resin foamed particle and foamed particle molded body
WO2023149207A1 (en) * 2022-02-07 2023-08-10 株式会社ジェイエスピー Polypropylene-based resin foam particles, method for producing polypropylene-based resin foam particles, and logistics packaging material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368167B2 (en) 2004-06-17 2008-05-06 Henkel Corporation Ultra low density thermally clad microspheres and method of making same
WO2006009643A3 (en) * 2004-06-17 2006-06-15 Henkel Corp Ultra low density thermally clad microspheres
JP2014224251A (en) * 2008-09-30 2014-12-04 ヘンケル コーポレイションHenkel Corporation Nonflammable hollow polymeric microspheres
JP2012504181A (en) * 2008-09-30 2012-02-16 ヘンケル コーポレイション Nonflammable hollow polymer microspheres
KR101523418B1 (en) * 2009-06-26 2015-05-27 가부시키가이샤 제이에스피 Expanded polypropylene resin beads and expanded bead molding
CN102471516A (en) * 2009-06-26 2012-05-23 株式会社Jsp Expanded polypropylene resin beads and expanded bead molding
US8518540B2 (en) 2009-06-26 2013-08-27 Jsp Corporation Expanded polypropylene resin beads and expanded bead molding
US20120100376A1 (en) * 2009-06-26 2012-04-26 Jsp Corporation Expanded polypropylene resin beads and expanded bead molding
WO2010150466A1 (en) * 2009-06-26 2010-12-29 株式会社ジェイエスピー Expanded polypropylene resin beads and expanded bead molding
CN105899589A (en) * 2014-01-17 2016-08-24 株式会社Jsp Propylene-based resin foam particle and foam particle molded body
US10385178B2 (en) 2014-01-17 2019-08-20 Jsp Corporation Propylene-based resin foam particle and foam particle molded body
CN105579502A (en) * 2014-03-27 2016-05-11 株式会社Jsp Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
EP3023454A4 (en) * 2014-03-27 2016-06-29 Jsp Corp Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
US10487188B2 (en) 2015-07-15 2019-11-26 Jsp Corporation Propylene resin foamed particle and foamed particle molded body
WO2023149207A1 (en) * 2022-02-07 2023-08-10 株式会社ジェイエスピー Polypropylene-based resin foam particles, method for producing polypropylene-based resin foam particles, and logistics packaging material
JP7329639B1 (en) 2022-02-07 2023-08-18 株式会社ジェイエスピー Expanded polypropylene resin particles, method for producing expanded polypropylene resin particles, and cushioning material for distribution

Also Published As

Publication number Publication date
JP4282439B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
KR100916981B1 (en) Expandable polypropylene resin particle and molded object obtained therefrom by in-mold molding
EP1566255B1 (en) Thick foam molding and process for production thereof
JP6064668B2 (en) Polypropylene resin composition and foam sheet
JP5624851B2 (en) Polypropylene resin composition for foam sheet molding and foam sheet
JPH06240041A (en) Expanded polypropylene resin particle
JPH11514680A (en) Polymer foam
JP2009299029A (en) Polypropylene foamed sheet, multilayer foamed sheet, and thermoformed article using the same
EP1593475A1 (en) Continuous production of foam molding from expanded polyolefin resin beads
JP4282439B2 (en) Polypropylene resin expanded particles and in-mold molded body using the same
JP3904551B2 (en) Polypropylene resin composition, expanded particles and in-mold molded product
JP4272016B2 (en) Polypropylene resin expanded particles and in-mold molded body using the same
JP5315113B2 (en) Polypropylene hollow foam molding
JP2004176047A (en) Polypropylene-based resin foamed particle and in-mold processed product by using the same
JP2005146017A (en) Polyproylene resin expanded particle and in-mold molded product using the same
JP3904550B2 (en) Polypropylene resin composition, expanded particles and in-mold molded product
JP4334924B2 (en) Method for producing in-mold foam molding
JP4499394B2 (en) Polypropylene resin expanded particles and in-mold molded body using the same
JP5147283B2 (en) Polypropylene expanded foam film
JP2004211065A (en) Shock-absorbing material and shock absorber
JP4282438B2 (en) Method for producing in-mold foam molding
JP7331678B2 (en) Polypropylene resin composition and foamed sheet
JP4430375B2 (en) Polypropylene resin foam molding
JP2003327740A (en) Polypropylene resin foaming particle and in-mold molded product using the same
JP2005240025A (en) Thick-walled foam molded product and method for manufacturing the same
JP7331676B2 (en) Polypropylene resin composition and foamed sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

R150 Certificate of patent or registration of utility model

Ref document number: 4282439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees