JPWO2019189462A1 - Manufacturing method of polypropylene-based resin foam particles - Google Patents

Manufacturing method of polypropylene-based resin foam particles Download PDF

Info

Publication number
JPWO2019189462A1
JPWO2019189462A1 JP2020509251A JP2020509251A JPWO2019189462A1 JP WO2019189462 A1 JPWO2019189462 A1 JP WO2019189462A1 JP 2020509251 A JP2020509251 A JP 2020509251A JP 2020509251 A JP2020509251 A JP 2020509251A JP WO2019189462 A1 JPWO2019189462 A1 JP WO2019189462A1
Authority
JP
Japan
Prior art keywords
polypropylene
based resin
particles
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020509251A
Other languages
Japanese (ja)
Other versions
JP7162051B2 (en
Inventor
新太郎 三浦
新太郎 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2019189462A1 publication Critical patent/JPWO2019189462A1/en
Application granted granted Critical
Publication of JP7162051B2 publication Critical patent/JP7162051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Abstract

高い空隙率を有し、且つ高倍率であるポリプロピレン系樹脂型内発泡成形体を提供し得るポリプロピレン系樹脂発泡粒子を、無機系発泡剤を用いて提供することを課題とする。ポリプロピレン系樹脂、親水性物質、発泡核剤、および高級脂肪酸アミドを特定量含有するポリプロピレン系樹脂組成物、並びに無機系発泡剤を用いて製造され、特定のセル径、DSC比、平均L/D比を有するポリプロピレン系樹脂発泡粒子、とする。An object of the present invention is to provide polypropylene-based resin foamed particles having a high porosity and capable of providing a polypropylene-based resin foamed molded article having a high magnification by using an inorganic foaming agent. Manufactured using a polypropylene resin composition containing a specific amount of a polypropylene resin, a hydrophilic substance, a foam nucleating agent, and a higher fatty acid amide, and an inorganic foaming agent, a specific cell diameter, DSC ratio, average L 1 /. Let it be a polypropylene-based resin foamed particle having a D 1 ratio.

Description

本発明は、ポリプロピレン系樹脂発泡粒子の製造方法およびその利用に関する。 The present invention relates to a method for producing polypropylene-based resin foam particles and its use.

ポリプロピレン系樹脂型内発泡成形体(以下、「型内発泡成形体」、「発泡成形体」または「成形体」とも称する。)は、緩衝包装材、物流資材(例えば、通い箱、トラック輸送用緩衝材など)、断熱材、土木建築部材、自動車部材(例えば、ツールボックス、フロアー芯材など)などの用途に広く使われている。ポリプロピレン系樹脂型内発泡成形体は、また、空隙を持たせることにより、通水性、通気性、並びに吸音性等の特性を当該成形体に付与でき、吸音材等の用途にも利用されている。 The polypropylene-based resin in-mold foam molded product (hereinafter, also referred to as “in-mold foam molded product”, “foam molded product” or “molded product”) is a buffer packaging material, a distribution material (for example, a return box, for truck transportation). It is widely used in applications such as cushioning materials), heat insulating materials, civil engineering and building materials, and automobile parts (for example, tool boxes, floor core materials, etc.). The polypropylene-based resin mold in-foam molded product can also be provided with characteristics such as water permeability, breathability, and sound absorption by providing voids, and is also used as a sound absorbing material. ..

ポリプロピレン系樹脂発泡粒子(以下、「発泡粒子」とも称する。)を成形してなり、連通した空隙を有するポリプロピレン系樹脂発泡成形体の製造方法として、特定形状のポリプロピレン系樹脂発泡粒子を加熱成形する方法が開示されている(特許文献1および特許文献2)。これらの文献で開示されている技術は、中空円筒ないし中空異形状、あるいは断面形状が十字形のような凹凸を有するポリプロピレン系樹脂発泡粒子を使用することを特徴としている。 Polypropylene-based resin foamed particles (hereinafter, also referred to as “foamed particles”) are molded, and polypropylene-based resin foamed particles having a specific shape are heat-molded as a method for producing a polypropylene-based resin foamed molded article having communicating voids. The method is disclosed (Patent Document 1 and Patent Document 2). The techniques disclosed in these documents are characterized by using polypropylene-based resin foam particles having a hollow cylinder or a hollow irregular shape, or a cross-shaped unevenness such as a cross shape.

特許文献3および特許文献4には、高い空隙率のポリプロピレン系樹脂発泡成形体を得る方法が開示されている。これらの方法によれば、樹脂粒子は中空の複雑形状ではないため、樹脂粒子の生産性が低下することなく、高い空隙率を有するポリプロピレン系樹脂発泡成形体を簡便で経済的に提供可能である。 Patent Document 3 and Patent Document 4 disclose a method for obtaining a polypropylene-based resin foam molded article having a high porosity. According to these methods, since the resin particles are not hollow and have a complicated shape, it is possible to easily and economically provide a polypropylene-based resin foam molded product having a high void ratio without reducing the productivity of the resin particles. ..

発泡粒子を得る方法としては、(1)容器内にて、熱可塑性樹脂粒子を発泡剤と共に、水系分散媒に分散させ分散液を調製し、(2)容器内を昇温して容器内を一定圧力・一定温度として熱可塑性樹脂粒子中に発泡剤を含浸させた後、(3)当該分散液を低圧雰囲気下に放出して発泡粒子を得る方法が知られている。発泡剤としては、プロパン、ブタンといった揮発性有機発泡剤を使用する方法(特許文献5)、二酸化炭素、窒素、空気などの無機系発泡剤を使用する方法(特許文献6および特許文献7)が開示されている。 As a method for obtaining foamed particles, (1) in the container, the thermoplastic resin particles are dispersed together with the foaming agent in an aqueous dispersion medium to prepare a dispersion liquid, and (2) the inside of the container is heated to raise the temperature inside the container. A method is known in which a thermoplastic resin particle is impregnated with a foaming agent at a constant pressure and a constant temperature, and then (3) the dispersion liquid is discharged under a low pressure atmosphere to obtain foamed particles. Examples of the foaming agent include a method using a volatile organic foaming agent such as propane and butane (Patent Document 5) and a method using an inorganic foaming agent such as carbon dioxide, nitrogen and air (Patent Documents 6 and 7). It is disclosed.

また、分散媒に使用する水を発泡剤として利用する方法が知られている(特許文献8および特許文献9)。 Further, a method of using water used as a dispersion medium as a foaming agent is known (Patent Document 8 and Patent Document 9).

特開平7−138399号公報Japanese Unexamined Patent Publication No. 7-138399 特開平7−138400号公報Japanese Unexamined Patent Publication No. 7-138400 国際公開WO2006/016478International release WO2006 / 016478 特開2007−217597号公報Japanese Unexamined Patent Publication No. 2007-217579 特公昭56−1344号公報Special Publication No. 56-1344 特公平4−64332号公報Tokuho 4-6433 特公昭62−61227号公報Special Publication No. 62-61227 特開2003−171516号公報Japanese Unexamined Patent Publication No. 2003-171516 特開2004−67768号公報Japanese Unexamined Patent Publication No. 2004-67768

しかしながら、上述のような従来技術は、発泡剤として無機系発泡剤を使用する場合、高い空隙率を有し、且つ高倍率であるポリプロピレン系樹脂型内発泡成形体を提供し得るポリプロピレン系樹脂発泡粒子を得る、という観点からは、さらなる改善の余地があった。 However, in the above-mentioned prior art, when an inorganic foaming agent is used as the foaming agent, polypropylene-based resin foaming can provide a polypropylene-based resin in-mold foam molded product having a high porosity and a high magnification. From the point of view of obtaining particles, there was room for further improvement.

本発明の一実施形態は、前記問題点に鑑みなされたものであり、その目的は、(i)無機系発泡剤を用いるポリプロピレン系樹脂発泡粒子の製造方法において、高い空隙率を有し、且つ高倍率であるポリプロピレン系樹脂型内発泡成形体を提供し得る、新規のポリプロピレン系樹脂発泡粒子、および(ii)高い空隙率を有し、且つ高倍率である、新規のポリプロピレン系樹脂型内発泡成形体、を提供することにある。 One embodiment of the present invention has been made in view of the above problems, and an object of the present invention is (i) a method for producing polypropylene-based resin foamed particles using an inorganic foaming agent, which has a high void ratio and has a high void ratio. New polypropylene-based resin foamed particles capable of providing a high-magnification polypropylene-based resin in-mold foam molded article, and (ii) new polypropylene-based resin in-mold foam having a high void ratio and high magnification. To provide a molded body.

本発明者らは、前記課題を解決するため鋭意検討した結果、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have completed the present invention.

即ち、本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、ポリプロピレン系樹脂粒子を耐圧容器内で発泡剤と共に水系分散媒に分散させる工程、上記ポリプロピレン系樹脂粒子の軟化温度以上の温度まで上記耐圧容器内を加熱し、かつ、上記耐圧容器内を加圧する工程、および上記ポリプロピレン系樹脂粒子および上記発泡剤が分散している上記水系分散媒を上記耐圧容器の内圧よりも低い圧力域に放出して、ポリプロピレン系樹脂発泡粒子を得る工程、を有し、上記ポリプロピレン系樹脂粒子は、ポリプロピレン系樹脂(a)、並びにポリプロピレン系樹脂(a)100重量部に対し、親水性物質(b)1.0重量部以上10重量部以下、且つ、発泡核剤(c)1.0重量部以上10重量部以下、且つ、上記親水性物質(b)と上記発泡核剤(c)との合計量が2.5重量部以上20重量部以下、且つ、高級脂肪酸アミド(d)1.0重量部以上5.0重量部以下を含有する、ポリプロピレン系樹脂組成物からなり、上記ポリプロピレン系樹脂発泡粒子は、平均L/D比が1.3以上3.5以下であり、セル径が30μm以上100μm以下であり、発泡粒子の示差走査熱量測定(DSC)で、40℃から220℃まで10℃/分の速度で昇温した時に得られるDSC曲線から算出されるDSC比が40%以上70%以下であり、且つ、発泡倍率が15倍以上35倍以下であり、上記発泡剤は二酸化炭素を含む無機系発泡剤である。That is, the method for producing the polypropylene-based resin foamed particles according to the embodiment of the present invention is a step of dispersing the polypropylene-based resin particles in an aqueous dispersion medium together with a foaming agent in a pressure-resistant container, which is equal to or higher than the softening temperature of the polypropylene-based resin particles. The step of heating the inside of the pressure-resistant container to a temperature and pressurizing the inside of the pressure-resistant container, and the pressure of the aqueous dispersion medium in which the polypropylene-based resin particles and the foaming agent are dispersed are lower than the internal pressure of the pressure-resistant container. It has a step of releasing it into a region to obtain polypropylene-based resin foam particles, and the polypropylene-based resin particles are hydrophilic substances (a) with respect to 100 parts by weight of the polypropylene-based resin (a) and the polypropylene-based resin (a). b) 1.0 part by weight or more and 10 parts by weight or less, and 1.0 part by weight or more and 10 parts by weight or less of the foam nucleating agent (c), and the hydrophilic substance (b) and the foaming nucleating agent (c) The polypropylene-based resin composition comprises a total amount of 2.5 parts by weight or more and 20 parts by weight or less and 1.0 part by weight or more and 5.0 parts by weight or less of the higher fatty acid amide (d). The resin foam particles have an average L 1 / D 1 ratio of 1.3 or more and 3.5 or less, a cell diameter of 30 μm or more and 100 μm or less, and are 40 ° C. to 220 ° C. by differential scanning calorimetry (DSC) of the foamed particles. The DSC ratio calculated from the DSC curve obtained when the temperature is raised to 10 ° C./min is 40% or more and 70% or less, and the foaming ratio is 15 times or more and 35 times or less. Is an inorganic foaming agent containing carbon dioxide.

本発明の一実施形態では、発泡剤として無機系発泡剤を使用する製造方法において、高い空隙率を有し、且つ高倍率であるポリプロピレン系樹脂型内発泡成形体を提供し得る、ポリプロピレン系樹脂発泡粒子を得ることができる。 In one embodiment of the present invention, a polypropylene-based resin capable of providing a polypropylene-based resin in-mold foam molded article having a high porosity and a high magnification in a production method using an inorganic foaming agent as a foaming agent. Foamed particles can be obtained.

(a)は、本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の外観図であり、当該ポリプロピレン系樹脂発泡粒子のL/D比を計算するために用いるL、Dmax、Dminの各値について説明した図であり、(b)は、本発明の一実施形態に係るポリプロピレン系樹脂粒子の外観図であり、当該ポリプロピレン系樹脂粒子のL/D比を計算するために用いるL、Dmax、Dminの各値について説明した図である。(A) is an external view of polypropylene-based resin foamed particles according to an embodiment of the present invention, and L 1 , D 1 max, used for calculating the L 1 / D 1 ratio of the polypropylene-based resin foamed particles. is a diagram that describes the values of D 1 min, (b) is an external view of a polypropylene resin particles according to an embodiment of the present invention, it calculates the L 2 / D 2 ratio of the polypropylene resin particles It is a figure explaining each value of L 2 , D 2 max, and D 2 min used for this. ポリプロピレン系樹脂発泡粒子の1回目の昇温時のDSC曲線の一例である。This is an example of the DSC curve at the time of the first temperature rise of the polypropylene-based resin foamed particles.

本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。 An embodiment of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to the configurations described below, and various modifications can be made within the scope of the claims. The technical scope of the present invention also includes embodiments or examples obtained by appropriately combining the technical means disclosed in the different embodiments or examples. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment. In addition, all the academic documents and patent documents described in the present specification are incorporated as references in the present specification.

本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。 Unless otherwise specified in the present specification, "A to B" representing a numerical range is intended to be "A or more (including A and larger than A) and B or less (including B and smaller than B)".

本明細書において特記しない限り、構成単位として、X単量体に由来する構成単位と、X単量体に由来する構成単位と、・・・およびX単量体(nは2以上の整数)とを含む共重合体を、「X−X−・・・−X共重合体」とも称する。X−X−・・・−X共重合体としては、明示されている場合を除き、重合様式は特に限定されず、ランダム共重合体であってもよく、ブロック共重合体であってもよく、グラフト共重合体であってもよい。Unless otherwise specified in the present specification, the structural units include a structural unit derived from an X 1 monomer, a structural unit derived from an X 2 monomer, ..., And an X n monomer (n is 2 or more). A copolymer containing (an integer of) is also referred to as "X 1- X 2 -...- X n copolymer". Unless otherwise specified, the X 1 −X 2 − ··· −X n copolymer is not particularly limited in the polymerization mode, and may be a random copolymer or a block copolymer. It may be a graft copolymer or a graft copolymer.

〔1.本発明の一実施形態の技術的思想〕
本発明者が鋭意検討した結果、上述した特許文献1〜3には、以下に示すような改善の余地または問題点があることを見出した。
[1. Technical Thought of One Embodiment of the Present Invention]
As a result of diligent studies by the present inventor, it has been found that the above-mentioned Patent Documents 1 to 3 have room for improvement or problems as shown below.

特許文献1および2には、特定の形状を有する、すなわち異形であるポリプロピレン系樹脂発泡粒子を使用する技術が開示されている。これら異形のポリプロピレン系樹脂発泡粒子を製造するには、その形状に対応した樹脂粒子を製造する必要があるが、該樹脂粒子の製造が複雑なため、ポリプロピレン系樹脂発泡粒子の型内発泡成形に一般に使用される一粒が1〜10mgといった粒子サイズの該樹脂粒子での生産性は低く、経済的に不利であった。 Patent Documents 1 and 2 disclose techniques for using polypropylene-based resin foam particles having a specific shape, that is, a variant shape. In order to produce these irregularly shaped polypropylene-based resin foam particles, it is necessary to produce resin particles corresponding to the shape. However, since the production of the resin particles is complicated, in-mold foam molding of polypropylene-based resin foam particles is performed. The productivity of the resin particles having a particle size of 1 to 10 mg, which is generally used, is low, which is economically disadvantageous.

特許文献3および4の実施例には、高発泡倍率を得るための発泡剤としては揮発性有機発泡剤を使用した事例しか開示されていない。これら、揮発性有機発泡剤を使用した技術には、環境面および設備コストの面で改善の余地があった。また、揮発性有機発泡剤は、熱可塑性樹脂を可塑化する作用があり、高発泡倍率を得やすい反面、その可塑化作用のため、発泡粒子の発泡倍率および結晶状態のコントロールが難しくなることを、本発明者は独自に見出した。具体的には、鋭意検討した結果、特許文献3および4の実施例の配合から発泡剤のみを無機系発泡剤に変更して実施する場合、高い空隙率を有し、且つ高倍率である型内発泡成形体を得るのが困難であることを、本発明者は独自に見出した。 In the examples of Patent Documents 3 and 4, only the case where a volatile organic foaming agent is used as the foaming agent for obtaining a high foaming ratio is disclosed. These technologies using volatile organic foaming agents have room for improvement in terms of environment and equipment cost. In addition, the volatile organic foaming agent has the effect of plasticizing the thermoplastic resin, and while it is easy to obtain a high foaming ratio, the plasticizing effect makes it difficult to control the foaming ratio and the crystal state of the foamed particles. , The present inventor has found it independently. Specifically, as a result of diligent studies, when the compounding of the examples of Patent Documents 3 and 4 is carried out by changing only the foaming agent to an inorganic foaming agent, the mold has a high porosity and a high magnification. The present inventor has independently found that it is difficult to obtain an internally foamed molded product.

窒素、空気などの無機系発泡剤を使用する場合は、地球温暖化係数が揮発性有機発泡剤に比べて小さく、設備の防爆化が不要であるため、環境への影響および設備コストの点で有利である。そのため、本発明の一実施形態に係る目的は、発泡剤として無機系発泡剤を使用する製造方法において、高い空隙率を有し、且つ高倍率であるポリプロピレン系樹脂型内発泡成形体を提供し得る、ポリプロピレン系樹脂発泡粒子を得ることである。 When using inorganic foaming agents such as nitrogen and air, the global warming potential is smaller than that of volatile organic foaming agents, and equipment does not need to be explosion-proof. It is advantageous. Therefore, an object according to an embodiment of the present invention is to provide a polypropylene-based resin in-mold foam molded article having a high porosity and a high magnification in a production method using an inorganic foaming agent as a foaming agent. It is to obtain polypropylene-based resin foamed particles.

本発明者は、無機系発泡剤を使用する場合、無機系発泡剤は熱可塑性樹脂への含浸性能が非常に低く、そのため、高い圧力としても高発泡化に十分な含浸量が得られないという問題を独自に見出した。この問題を解決するために、本発明者は鋭意検討した。その結果、ポリプロピレン系樹脂(a)、親水性物質(b)、発泡核剤(c)、および高級脂肪酸アミド(d)を、それぞれ特定量含有するポリプロピレン系樹脂組成物からなるポリプロピレン系樹脂粒子を用い、無機系発泡剤にて製造される、特定のセル径、DSC比、および平均L/D比を有するポリプロピレン系樹脂発泡粒子とすることにより、上記課題が解決することを見出し、本発明の完成に至った。According to the present inventor, when an inorganic foaming agent is used, the impregnation performance of the inorganic foaming agent into the thermoplastic resin is very low, and therefore a sufficient impregnation amount for high foaming cannot be obtained even at a high pressure. I found the problem on my own. In order to solve this problem, the present inventor has studied diligently. As a result, polypropylene-based resin particles composed of a polypropylene-based resin composition containing a specific amount of each of the polypropylene-based resin (a), the hydrophilic substance (b), the foam nucleating agent (c), and the higher fatty acid amide (d). used, is manufactured in inorganic foaming agent, a particular cell size, by a foamed polypropylene resin particles having a DSC ratio, and average L 1 / D 1 ratio, found that the above problems can be solved, the The invention was completed.

〔2.ポリプロピレン系樹脂発泡粒子の製造方法〕
本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、ポリプロピレン系樹脂粒子を耐圧容器内で発泡剤と共に水系分散媒に分散させる工程、上記ポリプロピレン系樹脂粒子の軟化温度以上の温度まで上記耐圧容器内を加熱し、かつ、上記耐圧容器内を加圧する工程、および上記ポリプロピレン系樹脂粒子および上記発泡剤が分散している上記水系分散媒を上記耐圧容器の内圧よりも低い圧力域に放出して、ポリプロピレン系樹脂発泡粒子を得る工程、を有し、上記ポリプロピレン系樹脂粒子は、ポリプロピレン系樹脂(a)、並びにポリプロピレン系樹脂(a)100重量部に対し、親水性物質(b)1.0重量部以上10重量部以下、且つ、発泡核剤(c)1.0重量部以上10重量部以下、且つ、上記親水性物質(b)と上記発泡核剤(c)との合計量が2.5重量部以上20重量部以下、且つ、高級脂肪酸アミド(d)1.0重量部以上5.0重量部以下を含有する、ポリプロピレン系樹脂組成物からなり、上記ポリプロピレン系樹脂発泡粒子は、平均L/D比が1.3以上3.5以下であり、セル径が30μm以上100μm以下であり、発泡粒子の示差走査熱量測定(DSC)で、40℃から220℃まで10℃/分の速度で昇温した時に得られるDSC曲線から算出されるDSC比が40%以上70%以下であり、且つ、発泡倍率が15倍以上35倍以下であり、上記発泡剤は二酸化炭素を含む無機系発泡剤である。
[2. Manufacturing method of polypropylene-based resin foam particles]
The method for producing polypropylene-based resin foam particles according to an embodiment of the present invention is a step of dispersing the polypropylene-based resin particles in an aqueous dispersion medium together with a foaming agent in a pressure-resistant container, up to a temperature equal to or higher than the softening temperature of the polypropylene-based resin particles. The step of heating the inside of the pressure-resistant container and pressurizing the inside of the pressure-resistant container, and the aqueous dispersion medium in which the polypropylene-based resin particles and the foaming agent are dispersed are placed in a pressure range lower than the internal pressure of the pressure-resistant container. It has a step of releasing to obtain polypropylene-based resin foam particles, and the polypropylene-based resin particles are hydrophilic substances (b) with respect to 100 parts by weight of the polypropylene-based resin (a) and the polypropylene-based resin (a). 1.0 part by weight or more and 10 parts by weight or less, and 1.0 part by weight or more and 10 parts by weight or less of the foam nucleating agent (c), and the total of the hydrophilic substance (b) and the foaming nucleating agent (c). The polypropylene-based resin composition comprises a polypropylene-based resin composition having an amount of 2.5 parts by weight or more and 20 parts by weight or less and 1.0 part by weight or more and 5.0 parts by weight or less of the higher fatty acid amide (d). The particles have an average L 1 / D 1 ratio of 1.3 or more and 3.5 or less, a cell diameter of 30 μm or more and 100 μm or less, and are from 40 ° C. to 220 ° C. by differential scanning calorimetry (DSC) of foamed particles. The DSC ratio calculated from the DSC curve obtained when the temperature is raised at a rate of 10 ° C./min is 40% or more and 70% or less, and the foaming ratio is 15 times or more and 35 times or less. It is an inorganic foaming agent containing carbon.

ここで、上記平均L/D比とは、ランダムに選択された上記ポリプロピレン系樹脂発泡粒子10粒のL/D比から算出される平均値であり、Lは、ポリプロピレン系樹脂発泡粒子の最長部の長さであり、Dは、上記ポリプロピレン系樹脂発泡粒子の上記L方向と垂直な断面における最大径Dmaxと最小径Dminとの平均値であり、下記式(1)にて計算される値である:
=(Dmax+Dmin)/2 ・・・・・式(1)。
Here, the average L 1 / D 1 ratio is an average value calculated from the L 1 / D 1 ratio of 10 randomly selected polypropylene-based resin foamed particles , and L 1 is a polypropylene-based resin. D 1 is the length of the longest part of the foamed particles, and D 1 is the average value of the maximum diameter D 1 max and the minimum diameter D 1 min in the cross section perpendicular to the L 1 direction of the polypropylene resin foam particles, and is described below. It is a value calculated by the formula (1):
D 1 = (D 1 max + D 1 min) / 2 ... Equation (1).

本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、上記構成を有するため、発泡剤として無機系発泡剤を使用する製造方法において、高い空隙率を有し、且つ高倍率であるポリプロピレン系樹脂型内発泡成形体を提供し得る、ポリプロピレン系樹脂発泡粒子を提供することができる。さらに、本発明の一実施形態では、摩擦音が抑制された、ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂型内発泡成形体を得ることができる。 Since the method for producing polypropylene-based resin foam particles according to one embodiment of the present invention has the above configuration, it has a high porosity and a high magnification in the production method using an inorganic foaming agent as a foaming agent. It is possible to provide polypropylene-based resin foamed particles, which can provide a polypropylene-based resin in-mold foam molded product. Further, in one embodiment of the present invention, polypropylene-based resin foamed particles and polypropylene-based resin foamed molded article in which friction noise is suppressed can be obtained.

本明細書において、「ポリプロピレン系樹脂発泡粒子の製造方法」を、「製造方法」と称する場合もある。本明細書において、「ポリプロピレン系樹脂粒子」を、「樹脂粒子」と称する場合もある。 In the present specification, the "method for producing polypropylene-based resin foam particles" may be referred to as a "production method". In the present specification, "polypropylene resin particles" may be referred to as "resin particles".

(2−1.ポリプロピレン系樹脂粒子)
(ポリプロピレン系樹脂(a))
本発明の一実施形態で用いられるポリプロピレン系樹脂(a)は、プロピレンモノマー単位が50重量%以上、好ましくは80重量%以上、更に好ましくは90重量%以上からなる重合体である。本発明の一実施形態で用いられるポリプロピレン系樹脂(a)は、メタロセン触媒またはチーグラー型塩化チタン系触媒で重合された、立体規則性の高いものが好ましい。ポリプロピレン系樹脂(a)の具体例としては、例えば、プロピレン単独重合体、エチレン−プロピレンランダム共重合体(「エチレン−プロピレン系ランダム共重合体」とも称する。)、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体(「ブテン−エチレン−プロピレン系ランダム共重合体」とも称する。)、エチレン−プロピレンブロック共重合体、無水マレイン酸−プロピレンランダム共重合体、無水マレイン酸−プロピレンブロック共重合体、無水マレイン酸−g−プロピレングラフト共重合体等が挙げられ、それぞれ1種を単独であるいは2種以上を混合して用いられる。特に、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、およびエチレン−プロピレン−ブテンランダム共重合体が好適に使用され得る。また、これらのポリプロピレン系樹脂(a)は無架橋のものが好ましいが、架橋したものも使用できる。本明細書において、「ブテン」は、「1−ブテン」を意図する。「無水マレイン酸−g−プロピレングラフト共重合体」は、プロピレン重合体の主鎖に対して無水マレイン酸がグラフトしていることを意図する。
(2-1. Polypropylene resin particles)
(Polypropylene resin (a))
The polypropylene-based resin (a) used in one embodiment of the present invention is a polymer in which the propylene monomer unit is 50% by weight or more, preferably 80% by weight or more, and more preferably 90% by weight or more. The polypropylene-based resin (a) used in one embodiment of the present invention is preferably one that is polymerized with a metallocene catalyst or a Ziegler-type titanium chloride-based catalyst and has high stereoregularity. Specific examples of the polypropylene-based resin (a) include a propylene homopolymer, an ethylene-propylene random copolymer (also referred to as "ethylene-propylene-based random copolymer"), a propylene-butene random copolymer, and the like. Ethylene-propylene-butene random copolymer (also referred to as "butene-ethylene-propylene-based random copolymer"), ethylene-propylene block copolymer, maleic anhydride-propylene random copolymer, maleic anhydride-propylene Examples thereof include a block copolymer, a maleic anhydride-g-propylene graft copolymer, and the like, and each of them is used alone or in combination of two or more. In particular, ethylene-propylene random copolymers, propylene-butene random copolymers, and ethylene-propylene-butene random copolymers can be preferably used. Further, these polypropylene-based resins (a) are preferably non-crosslinked, but crosslinked ones can also be used. As used herein, "butene" is intended as "1-butene". The "maleic anhydride-g-propylene graft copolymer" is intended to have maleic anhydride grafted onto the main chain of the propylene polymer.

本発明の一実施形態で用いられるポリプロピレン系樹脂(a)は、メルトインデックス(以下、MI)が、1g/10分以上30g/10分以下であることが好ましく、2g/10分以上20g/10分以下であることがより好ましい。 The polypropylene-based resin (a) used in one embodiment of the present invention preferably has a melt index (hereinafter, MI) of 1 g / 10 minutes or more and 30 g / 10 minutes or less, and 2 g / 10 minutes or more and 20 g / 10. More preferably, it is less than a minute.

ポリプロピレン系樹脂(a)のMIが1g/10分未満では、発泡粒子を製造するときの発泡力が低く、高発泡倍率の発泡粒子を得るのが難しくなる傾向がある。その結果、得られる発泡粒子を発泡成形体としたときの発泡粒子間の融着強度を確保することが難しくなる傾向がある。ポリプロピレン系樹脂(a)のMIが30g/10分を超えると、ポリプロピレン系樹脂発泡粒子の気泡が破泡し易く(破れ易く)、ポリプロピレン系樹脂発泡粒子の連泡率が高くなる傾向にある。 If the MI of the polypropylene-based resin (a) is less than 1 g / 10 minutes, the foaming power at the time of producing the foamed particles is low, and it tends to be difficult to obtain the foamed particles having a high foaming ratio. As a result, it tends to be difficult to secure the fusion strength between the foamed particles when the obtained foamed particles are used as a foamed molded product. When the MI of the polypropylene-based resin (a) exceeds 30 g / 10 minutes, the bubbles of the polypropylene-based resin foamed particles tend to break easily (easily break), and the continuous foaming rate of the polypropylene-based resin foamed particles tends to increase.

なお、ポリプロピレン系樹脂(a)のMI値は、JIS K7210に準拠し、温度230℃、および荷重2.16kgで測定した値である。 The MI value of the polypropylene-based resin (a) is a value measured at a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.

本発明の一実施形態で用いられるポリプロピレン系樹脂(a)は、機械的強度、耐熱性に優れた発泡成形体を得るために、融点は、好ましくは130〜168℃、更に好ましくは133〜160℃、特に好ましくは135〜155℃である。ポリプロピレン系樹脂(a)の融点が135〜155℃の場合、成形性と機械的強度および耐熱性とのバランスが取り易い傾向が強い。 The polypropylene-based resin (a) used in one embodiment of the present invention has a melting point of preferably 130 to 168 ° C., more preferably 133 to 160 ° C. in order to obtain a foamed molded product having excellent mechanical strength and heat resistance. ° C., particularly preferably 135-155 ° C. When the melting point of the polypropylene-based resin (a) is 135 to 155 ° C., there is a strong tendency to easily balance moldability with mechanical strength and heat resistance.

ここで、ポリプロピレン系樹脂(a)の融点とは、示差走査熱量計を用いて行う示差走査熱量測定(Differential Scanning Calorimetry;DSC)の結果得られた値とする。具体的な操作手順は以下の通りである:(1)ポリプロピレン系樹脂1〜10mgを40℃から220℃まで10℃/分の速度で昇温して融解させた後;(2)220℃から40℃まで10℃/分の速度で冷却して結晶化させた後;(3)再度40℃から220℃まで10℃/分の速度で昇温する。2回目の昇温時(すなわち(3)のとき)に得られるDSC曲線における吸熱ピークのピーク温度を融点とする。 Here, the melting point of the polypropylene-based resin (a) is a value obtained as a result of differential scanning calorimetry (DSC) performed using a differential scanning calorimetry. The specific operation procedure is as follows: (1) After heating 1 to 10 mg of polypropylene resin from 40 ° C. to 220 ° C. at a rate of 10 ° C./min to melt; (2) from 220 ° C. After cooling to 40 ° C. at a rate of 10 ° C./min for crystallization; (3) the temperature is raised again from 40 ° C. to 220 ° C. at a rate of 10 ° C./min. The peak temperature of the endothermic peak in the DSC curve obtained at the time of the second temperature rise (that is, at the time of (3)) is defined as the melting point.

本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法においては、ポリプロピレン系樹脂(a)に親水性物質(b)および発泡核剤(c)を添加したポリプロピレン系樹脂組成物からなるポリプロピレン系樹脂粒子を使用する。これにより、水系分散媒として使用する水を発泡剤として利用することが可能となり、かつ、発泡剤として利用する水を樹脂中に取り込みやすく且つセル径状を微細化させやすくなる。その結果、本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法によると、高倍率且つ空隙率の高いポリプロピレン系樹脂型内発泡成形体を提供し得る、高倍率のポリプロピレン系樹脂発泡粒子を得ることができる。「セル」は「気泡」と称する場合もある。 In the method for producing polypropylene-based resin foamed particles according to an embodiment of the present invention, polypropylene composed of a polypropylene-based resin composition obtained by adding a hydrophilic substance (b) and a foaming nucleating agent (c) to a polypropylene-based resin (a). Uses based resin particles. As a result, water used as an aqueous dispersion medium can be used as a foaming agent, and water used as a foaming agent can be easily taken into the resin and the cell diameter can be easily miniaturized. As a result, according to the method for producing polypropylene-based resin foamed particles according to an embodiment of the present invention, the polypropylene-based resin foamed particles having a high magnification and a high void ratio can be provided. Can be obtained. The "cell" may also be referred to as a "bubble".

(親水性物質(b))
本発明の一実施形態で用いられる親水性物質(b)は、(i)ホウ砂、ホウ酸亜鉛等のホウ酸金属塩、(ii)塩化ナトリウム、塩化カルシウム、塩化マグネシウム、等の水溶性無機物、(iii)アンメリン、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物等のトリアジン骨格を有する吸水性有機物、(iv)ポリエチレングリコール、ポリエチレンオキシド等のポリエーテル、および(v)グリセリン、ジグリセリン等のポリオール、からなる群から選択され得る。これら親水性物質(b)は、1種を単独で使用しても良いし、2種以上併用しても良い。
(Hydrophilic substance (b))
The hydrophilic substance (b) used in one embodiment of the present invention is (i) metal borate salts such as borosand and zinc borate, and (ii) water-soluble inorganic substances such as sodium chloride, calcium chloride and magnesium chloride. , (Iii) water-absorbent organic substances having a triazine skeleton such as ammeline, melamine, isocyanuric acid, melamine / isocyanuric acid condensate, (iv) polyethylene glycol, polyether such as polyethylene oxide, and (v) glycerin, diglycerin and the like. It can be selected from the group consisting of polyols. These hydrophilic substances (b) may be used alone or in combination of two or more.

本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法では、親水性物質(b)が、(i)トリアジン骨格を有し単位トリアジン骨格あたりの分子量が300以下の有機物、および(ii)ホウ酸金属塩、からなる群から選択される少なくとも1種を含むことが好ましい。換言すれば、上述した親水性物質(b)のなかでは、ポリプロピレン系樹脂粒子を製造する際に添加が容易であり、発泡粒子の発泡倍率を高くし易い点から、メラミン等のトリアジン骨格を有し単位トリアジン骨格あたりの分子量が300以下の有機物、または、ホウ酸金属塩の少なくとも1種を含む、親水性物質(b)が好ましい。 In the method for producing polypropylene-based resin foam particles according to an embodiment of the present invention, the hydrophilic substance (b) is (i) an organic substance having a triazine skeleton and having a molecular weight of 300 or less per unit triazine skeleton, and (ii). It is preferable to contain at least one selected from the group consisting of metal borate salts. In other words, among the above-mentioned hydrophilic substances (b), a triazine skeleton such as melamine is present because it is easy to add when producing polypropylene-based resin particles and it is easy to increase the expansion ratio of the expanded particles. A hydrophilic substance (b) containing at least one organic substance having a molecular weight of 300 or less per unit triazine skeleton or a metal borate salt is preferable.

ここで、本明細書において、以下の物質は、親水性物質(b)としてみなさないものとする:(i)エチレン−アクリル酸−無水マレイン酸三元共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸共重合体を金属イオンで架橋したアイオノマー樹脂などのカルボキシル基含有ポリマー、(ii)ナイロン6、ナイロン6,6、共重合ナイロンなどのポリアミド、および(iii)ポリブチレンテレフタレート、ポリテトラメチレングリコールのブロック共重合体などの熱可塑性ポリエステル系エラストマー。上述したカルボキシル基含有ポリマー、ポリアミドおよび熱可塑性ポリエステル系エラストマーは、「親水性ポリマー」と称される場合もある。 Here, in the present specification, the following substances shall not be regarded as hydrophilic substances (b): (i) ethylene-acrylic acid-maleic anhydride ternary copolymer, ethylene- (meth) acrylic acid. Copolymers, carboxyl group-containing polymers such as ionomer resins obtained by cross-linking ethylene- (meth) acrylic acid copolymers with metal ions, polyamides such as (ii) nylon 6, nylon 6,6, and copolymerized nylon, and (iii). ) Thermoplastic polyester-based elastomers such as polybutylene terephthalate and block copolymers of polytetramethylene glycol. The above-mentioned carboxyl group-containing polymers, polyamides and thermoplastic polyester-based elastomers are sometimes referred to as "hydrophilic polymers".

本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、以下の物質を実質的に使用しない態様であってもよい:(i)エチレン−アクリル酸−無水マレイン酸三元共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸共重合体を金属イオンで架橋したアイオノマー樹脂などのカルボキシル基含有ポリマー、(ii)ナイロン6、ナイロン6,6、共重合ナイロンなどのポリアミド、および(iii)ポリブチレンテレフタレート、ポリテトラメチレングリコールのブロック共重合体などの熱可塑性ポリエステル系エラストマー。ここで、「以下の物質を実質的に使用しない」とは、得られるポリプロピレン系樹脂発泡粒子に含まれる上記物質が、ポリプロピレン系樹脂発泡粒子を基準として、10ppm以下であるともいえる。 The method for producing polypropylene-based resin foam particles according to an embodiment of the present invention may be an embodiment in which the following substances are substantially not used: (i) Ethylene-acrylic acid-maleic anhydride ternary copolymer. , Ethylene- (meth) acrylic acid copolymer, carboxyl group-containing polymer such as ionomer resin obtained by cross-linking ethylene- (meth) acrylic acid copolymer with metal ions, (ii) nylon 6, nylon 6,6, copolymerization Polypolymers such as nylon, and thermoplastic polyester elastomers such as (iii) polybutylene terephthalate and block copolymers of polytetramethylene glycol. Here, "substantially not using the following substances" can be said to mean that the substance contained in the obtained polypropylene-based resin foamed particles is 10 ppm or less based on the polypropylene-based resin foamed particles.

本発明の一実施形態に係る製造方法における親水性物質(b)の添加量は、ポリプロピレン系樹脂(a)100重量部に対して、1.0重量部以上10重量部以下であることが好ましく、1.5重量部以上9.5重量部以下であることがより好ましい。ここで、親水性物質(b)の添加量とは、吸水していない状態での親水性物質(b)の重量を指す。本明細書において、「添加量」は「使用量」ともいえる。上記親水性物質(b)の添加量は、ポリプロピレン系樹脂組成物における親水性物質(b)の含有量ともいえる。 The amount of the hydrophilic substance (b) added in the production method according to the embodiment of the present invention is preferably 1.0 part by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polypropylene resin (a). , 1.5 parts by weight or more and 9.5 parts by weight or less is more preferable. Here, the amount of the hydrophilic substance (b) added refers to the weight of the hydrophilic substance (b) in a state where it does not absorb water. In the present specification, the "addition amount" can also be said to be the "usage amount". The amount of the hydrophilic substance (b) added can also be said to be the content of the hydrophilic substance (b) in the polypropylene-based resin composition.

親水性物質(b)の添加量がポリプロピレン系樹脂(a)100重量部に対して1.0重量部より少ないと、ポリプロピレン系樹脂発泡粒子の発泡倍率を向上させることができなくなる傾向がある。親水性物質(b)の添加量がポリプロピレン系樹脂(a)100重量部に対して10重量部を超えると、成形体の乾燥時間が長くなり、且つ、成形体の収縮率が悪化して、すなわち収縮率が増加して成形体の空隙が埋まりやすくなる傾向となる。 If the amount of the hydrophilic substance (b) added is less than 1.0 part by weight with respect to 100 parts by weight of the polypropylene resin (a), the expansion ratio of the polypropylene resin foamed particles tends to be unable to be improved. When the amount of the hydrophilic substance (b) added exceeds 10 parts by weight with respect to 100 parts by weight of the polypropylene resin (a), the drying time of the molded product becomes long and the shrinkage rate of the molded product deteriorates. That is, the shrinkage rate tends to increase and the voids in the molded product tend to be easily filled.

(発泡核剤(c))
本発明の一実施形態で用いられる発泡核剤(c)は、樹脂粒子の発泡の時に気泡核の形成を促す物質である。発泡核剤(c)の例としては、タルク、炭酸カルシウム、シリカ、カオリン、硫酸バリウム、水酸化カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン等の無機物質が挙げられる。これら発泡核剤(c)は、1種を単独で使用しても良く、2種以上を併用しても良い。発泡核剤(c)としては、これらの中でも、タルクが、ポリプロピレン系樹脂(a)中への分散性が良好で均一な気泡を有する発泡粒子を得易くなるため好ましい。
(Effervescent nucleating agent (c))
The foaming nucleating agent (c) used in one embodiment of the present invention is a substance that promotes the formation of bubble nuclei when the resin particles are foamed. Examples of the effervescent nucleating agent (c) include inorganic substances such as talc, calcium carbonate, silica, kaolin, barium sulfate, calcium hydroxide, aluminum hydroxide, aluminum oxide, and titanium oxide. As these effervescent nucleating agents (c), one type may be used alone, or two or more types may be used in combination. Among these, talc is preferable as the effervescent nucleating agent (c) because talc has good dispersibility in the polypropylene resin (a) and makes it easy to obtain effervescent particles having uniform bubbles.

本発明の一実施形態に係る製造方法における発泡核剤(c)の添加量は、ポリプロピレン系樹脂(a)100重量部に対して、1.0重量部以上10重量部以下であることが好ましく、1.5重量部以上9.5重量部以下であることがより好ましい。上記発泡核剤(c)の添加量は、ポリプロピレン系樹脂組成物における発泡核剤(c)の含有量ともいえる。 The amount of the foam nucleating agent (c) added in the production method according to the embodiment of the present invention is preferably 1.0 part by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polypropylene resin (a). , 1.5 parts by weight or more and 9.5 parts by weight or less is more preferable. The amount of the foaming nucleating agent (c) added can also be said to be the content of the foaming nucleating agent (c) in the polypropylene-based resin composition.

発泡核剤(c)の添加量がポリプロピレン系樹脂(a)100重量部に対して1.0重量部より少ない場合は、ポリプロピレン系樹脂発泡粒子の空隙率を向上させることができなくなる傾向がある。発泡核剤(c)の添加量がポリプロピレン系樹脂(a)100重量部に対して10重量部より多い場合は、発泡粒子のセル径が細かくなりすぎて、型内発泡成形時の発泡粒子の二次発泡力が悪化し、型内発泡成形体の融着性が悪化し割れが発生しやすくなる傾向となる。 When the amount of the foam nucleating agent (c) added is less than 1.0 part by weight with respect to 100 parts by weight of the polypropylene resin (a), the porosity of the polypropylene resin foam particles tends to be unable to be improved. .. When the amount of the foam nucleating agent (c) added is more than 10 parts by weight with respect to 100 parts by weight of the polypropylene resin (a), the cell diameter of the foamed particles becomes too fine, and the foamed particles during in-mold foam molding The secondary foaming force deteriorates, the meltability of the foamed molded product in the mold deteriorates, and cracks tend to occur easily.

本発明の一実施形態に係る製造方法におけるポリプロピレン系樹脂組成物に含有される親水性物質(b)と発泡核剤(c)との合計量は2.5重量部以上20重量部以下であることが好ましく、3.0重量部以上18.0重量部以下がより好ましく、4.0重量部以上8.0重量部以下がさらに好ましい。親水性物質(b)と発泡核剤(c)との合計添加量が2.5重量部より少ない場合は、発泡性と空隙率とが低下する傾向となり、上記合計添加量が20重量部を超えると発泡粒子が極度に収縮しやすくなり、良品が得られない傾向となる。 The total amount of the hydrophilic substance (b) and the foam nucleating agent (c) contained in the polypropylene-based resin composition in the production method according to the embodiment of the present invention is 2.5 parts by weight or more and 20 parts by weight or less. It is preferable, more preferably 3.0 parts by weight or more and 18.0 parts by weight or less, and further preferably 4.0 parts by weight or more and 8.0 parts by weight or less. When the total addition amount of the hydrophilic substance (b) and the foam nucleating agent (c) is less than 2.5 parts by weight, the foamability and porosity tend to decrease, and the total addition amount is 20 parts by weight. If it exceeds the limit, the foamed particles tend to shrink extremely easily, and a good product cannot be obtained.

(高級脂肪酸アミド(d))
本発明の一実施形態で用いられる高級脂肪酸アミドは、炭素数10〜25の高級脂肪酸を原料として形成されるものが好ましい。炭素数10未満の高級脂肪酸を原料として形成される高級脂肪酸アミドでは、摩擦音の抑制効果が十分に発揮されず、炭素数25を越える高級脂肪酸は入手が困難で、実用的ではない。高級脂肪酸アミド(d)としては、飽和脂肪酸アミド、不飽和脂肪酸アミドおよびビス脂肪酸アミド等が挙げられる。具体的に、飽和脂肪酸アミドとしては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘミン酸アミド等、不飽和脂肪酸アミドとしてはエルカ酸アミド、オレイン酸アミド、ブラシジン酸アミド、エライジン酸アミド等、ビス脂肪酸アミドとしてはメチレンビスステアリン酸アミド、メチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、メチレンビスオレイン酸アミド、メチレンビスエルカ酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド等が挙げられる。これらの高級脂肪酸アミド(d)は、1種のみを用いてもよく又は2種以上を組み合わせて用いることができる。
(Higher fatty acid amide (d))
The higher fatty acid amide used in one embodiment of the present invention is preferably formed from a higher fatty acid having 10 to 25 carbon atoms as a raw material. Higher fatty acid amides formed from higher fatty acids having less than 10 carbon atoms are not sufficiently effective in suppressing friction noise, and higher fatty acids having more than 25 carbon atoms are difficult to obtain and are not practical. Examples of the higher fatty acid amide (d) include saturated fatty acid amides, unsaturated fatty acid amides and bis fatty acid amides. Specifically, the saturated fatty acid amide includes lauric acid amide, palmitate amide, stearic acid amide, behemic acid amide and the like, and the unsaturated fatty acid amide includes erucic acid amide, oleic acid amide, brassic acid amide, ellagic acid amide and the like. Examples of bis fatty acid amides include methylene bisstearic acid amide, methylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bislauric acid amide, methylene bisoleic acid amide, methylene biserucic acid amide, ethylene bisoleic acid amide, and ethylene bisuelka. Acid amide and the like can be mentioned. These higher fatty acid amides (d) may be used alone or in combination of two or more.

本発明の一実施形態に係る製造方法における高級脂肪酸アミド(d)の添加量は、ポリプロピレン系樹脂(a)100重量部に対して、1.0重量部以上5.0重量部以下であることが好ましく、1.5重量部以上4.5重量部以下であることがより好ましい。上記高級脂肪酸アミド(d)の添加量は、ポリプロピレン系樹脂組成物における高級脂肪酸アミド(d)の含有量ともいえる。 The amount of the higher fatty acid amide (d) added in the production method according to the embodiment of the present invention is 1.0 part by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the polypropylene resin (a). Is preferable, and more preferably 1.5 parts by weight or more and 4.5 parts by weight or less. The amount of the higher fatty acid amide (d) added can also be said to be the content of the higher fatty acid amide (d) in the polypropylene-based resin composition.

高級脂肪酸アミド(d)の添加量がポリプロピレン系樹脂(a)100重量部に対して1.0重量部より少ない場合は、摩擦音の抑制効果が発揮されない。高級脂肪酸アミド(d)の添加量がポリプロピレン系樹脂(a)100重量部に対して5.0重量部より多い場合は、得られるポリプロピレン系樹脂発泡粒子の表面に分散剤が付着しやすくなる。その結果、当該発泡粒子を用いて型内発泡成形を行うときに発泡粒子同士の融着不良が起こりやすい傾向となる。 When the amount of the higher fatty acid amide (d) added is less than 1.0 part by weight with respect to 100 parts by weight of the polypropylene resin (a), the effect of suppressing friction noise is not exhibited. When the amount of the higher fatty acid amide (d) added is more than 5.0 parts by weight with respect to 100 parts by weight of the polypropylene resin (a), the dispersant easily adheres to the surface of the obtained polypropylene-based resin foamed particles. As a result, when in-mold foam molding is performed using the foamed particles, poor fusion between the foamed particles tends to occur.

(添加剤)
本発明の一実施形態に係る製造方法においては、ポリプロピレン系樹脂粒子の製造の際、さらに、必要に応じて、着色剤、帯電防止剤、酸化防止剤、リン系加工安定剤、ラクトン系加工安定剤、滑剤、金属不活性剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系光安定剤、ヒンダードアミン系光安定剤、難燃剤、難燃助剤、酸中和剤、結晶核剤、アミド系添加剤等の各種添加剤を、ポリプロピレン系樹脂(a)の特性を損なわない範囲内でポリプロピレン系樹脂(a)に添加することができる。着色剤としては、カーボンブラックが挙げられる。
(Additive)
In the production method according to the embodiment of the present invention, when the polypropylene-based resin particles are produced, if necessary, a colorant, an antistatic agent, an antioxidant, a phosphorus-based processing stabilizer, and a lactone-based processing stabilizer are used. Agents, lubricants, metal deactivators, benzotriazole UV absorbers, benzoate light stabilizers, hindered amine light stabilizers, flame retardants, flame retardants, acid neutralizers, crystal nucleating agents, amide additives, etc. Various additives can be added to the polypropylene-based resin (a) within a range that does not impair the characteristics of the polypropylene-based resin (a). Examples of the colorant include carbon black.

本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法では、親水性化合物(b)としてはみなされない、上述したカルボキシル基含有ポリマー、ポリアミドおよび熱可塑性ポリエステル系エラストマーなどを、ポリプロピレン系樹脂(a)に添加することもできる。 In the method for producing polypropylene-based resin foamed particles according to an embodiment of the present invention, the above-mentioned carboxyl group-containing polymer, polyamide, thermoplastic polyester-based elastomer, etc., which are not regarded as the hydrophilic compound (b), are used in the polypropylene-based resin ( It can also be added to a).

ポリプロピレン系樹脂(a)に各種添加剤を加える場合、上記ポリプロピレン系樹脂粒子の製造前にブレンダー等を用いて、各種添加剤とポリプロピレン系樹脂(a)とを混合することが好ましい。また、ポリプロピレン系樹脂粒子の製造において、溶融したポリプロピレン系樹脂(a)中に各種添加剤を添加してもよい。 When various additives are added to the polypropylene-based resin (a), it is preferable to mix the various additives with the polypropylene-based resin (a) using a blender or the like before producing the polypropylene-based resin particles. Further, in the production of polypropylene-based resin particles, various additives may be added to the molten polypropylene-based resin (a).

(ポリプロピレン系樹脂粒子の製造方法)
本発明の一実施形態に係る製造方法におけるポリプロピレン系樹脂(a)は、通常、発泡粒子を製造するために、押出機、ニーダー、バンバリーミキサー、ロール等を用いて溶融混練され、円柱状、楕円状、球状、立方体状、直方体状等の樹脂粒子形状に加工され得る。
(Manufacturing method of polypropylene resin particles)
The polypropylene-based resin (a) in the production method according to the embodiment of the present invention is usually melt-kneaded using an extruder, a kneader, a Banbury mixer, a roll, or the like to produce foamed particles, and is cylindrical or elliptical. It can be processed into a resin particle shape such as a shape, a sphere, a cube shape, or a rectangular parallelepiped shape.

ポリプロピレン系樹脂(a)を樹脂粒子形状に加工する工程、換言すればポリプロピレン系樹脂粒子を製造する工程を、造粒工程とも称する。本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、造粒工程をさらに有していてもよい。 The step of processing the polypropylene-based resin (a) into the shape of resin particles, in other words, the step of producing polypropylene-based resin particles is also referred to as a granulation step. The method for producing polypropylene-based resin foamed particles according to an embodiment of the present invention may further include a granulating step.

ポリプロピレン系樹脂粒子を製造する方法としては、例えば、(1)押出機、ニーダー、バンバリミキサー、ロール等を用いてポリプロピレン系樹脂組成物を溶融混練し、溶融混練物を調製した後、(2)当該溶融混練物を冷却するとともに、(3)当該溶融混練物を、円柱状、楕円状、球状、立方体状、直方体状、筒状(ストロー状)等のような所望の形状に成形することにより、ポリプロピレン系樹脂粒子を得る方法があげられる。 As a method for producing polypropylene-based resin particles, for example, (1) the polypropylene-based resin composition is melt-kneaded using an extruder, a kneader, a Bambari mixer, a roll, or the like to prepare a melt-kneaded product, and then (2). By cooling the melt-kneaded product and (3) forming the melt-kneaded product into a desired shape such as a columnar shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular shape, a tubular shape (straw shape), or the like. , A method of obtaining polypropylene-based resin particles can be mentioned.

以下、押出機を用いた場合を例に挙げ、ポリプロピレン系樹脂粒子を製造する方法を具体的に説明する。例えば、以下の(A1)〜(A5)の方法によって、ポリプロピレン系樹脂粒子を製造することができる:(A1)ポリプロピレン系樹脂(a)、親水性物質(b)、発泡核剤(c)および高級脂肪酸アミド(d)、並びに必要に応じて、各種添加剤をブレンドしてブレンド物を調製し、(A2)当該ブレンド物を押出機に投入して溶融混練してポリプロピレン系樹脂組成物を調製し、(A3)ポリプロピレン系樹脂組成物を押出機が備えるダイスより押出し、(A4)押出されたポリプロピレン系樹脂組成物を水中に通す等により冷却することによって固化した後、(A5)固化されたポリプロピレン系樹脂組成物をカッターにて、円柱状、楕円状、球状、立方体状、直方体状等のような所望の形状に細断する。あるいは、前記(A3)にて、溶融混練されたポリプロピレン系樹脂組成物を押出機が備えるダイスより直接水中に押出し、直後に粒子形状に細断し、冷却し、固化しても良い。このように、ブレンド物を溶融混練することにより、より均一なポリプロピレン系樹脂粒子を得ることができる。 Hereinafter, a method for producing polypropylene-based resin particles will be specifically described by taking the case of using an extruder as an example. For example, polypropylene-based resin particles can be produced by the following methods (A1) to (A5): (A1) polypropylene-based resin (a), hydrophilic substance (b), foam nucleating agent (c) and The higher fatty acid amide (d) and, if necessary, various additives are blended to prepare a blend, and (A2) the blend is put into an extruder and melt-kneaded to prepare a polypropylene resin composition. Then, (A3) the polypropylene-based resin composition was extruded from a die provided in the extruder, and (A4) the extruded polypropylene-based resin composition was solidified by being cooled by passing it through water or the like, and then (A5) solidified. The polypropylene-based resin composition is shredded into a desired shape such as a columnar shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular shape, or the like with a cutter. Alternatively, in the above (A3), the polypropylene-based resin composition melt-kneaded may be extruded directly into water from a die provided in the extruder, and immediately after that, it may be shredded into particle shapes, cooled, and solidified. By melt-kneading the blended product in this way, more uniform polypropylene-based resin particles can be obtained.

必要に応じて用いられる各種添加剤の各々は、マスターバッチ化されてもよい。つまり予め、その他の樹脂に添加剤を高濃度で含有させたマスターバッチ樹脂が調製されていてもよい。この場合、添加剤として、当該マスターバッチが添加されうる。マスターバッチ樹脂を調製するときに用いられる樹脂としては、ポリプロピレン系樹脂が好ましく、相溶性がよいという観点から基材樹脂のポリプロピレン系樹脂と同じ種類のポリプロピレン系樹脂を用いてマスターバッチ化することが最も好ましい。 Each of the various additives used as needed may be masterbatched. That is, a masterbatch resin in which an additive is contained in a high concentration in another resin may be prepared in advance. In this case, the masterbatch can be added as an additive. As the resin used when preparing the masterbatch resin, a polypropylene-based resin is preferable, and from the viewpoint of good compatibility, a masterbatch can be made using the same type of polypropylene-based resin as the polypropylene-based resin of the base resin. Most preferred.

(ポリプロピレン系樹脂粒子の粒重量)
本発明の一実施形態に係る製造方法におけるポリプロピレン系樹脂粒子の大きさは、一粒あたりの重量(粒重量とも称する。)が0.1mg以上30mg以下であることが好ましく、0.3mg以上10mg以下がより好ましい。ここで、ポリプロピレン系樹脂粒子の一粒あたりの重量は、ポリプロピレン系樹脂粒子をランダムに選んだ100粒から得られる平均樹脂粒子重量であり、以下、mg/粒で表示する。
(Grain weight of polypropylene resin particles)
The size of the polypropylene-based resin particles in the production method according to the embodiment of the present invention is preferably such that the weight per grain (also referred to as grain weight) is 0.1 mg or more and 30 mg or less, and 0.3 mg or more and 10 mg. The following is more preferable. Here, the weight per grain of the polypropylene-based resin particles is the average resin particle weight obtained from 100 randomly selected polypropylene-based resin particles, and is hereinafter expressed in mg / grain.

(ポリプロピレン系樹脂粒子の平均L/D比)
本発明の一実施形態に係る製造方法におけるポリプロピレン系樹脂粒子の形状としては、ポリプロピレン系樹脂粒子の平均L/D比が2.5以上7.0以下であることが好ましい。
(Average L 2 / D 2 ratio of polypropylene resin particles)
As for the shape of the polypropylene-based resin particles in the production method according to the embodiment of the present invention, it is preferable that the average L 2 / D 2 ratio of the polypropylene-based resin particles is 2.5 or more and 7.0 or less.

ここで、ポリプロピレン系樹脂粒子の平均L/D比とは、ランダムに選択されたポリプロピレン系樹脂粒子10粒のL/D比から算出される平均値である。LおよびDについて、図1の(b)を参照して説明する。図1の(b)は、本発明の一実施形態に係るポリプロピレン系樹脂粒子の外観図であり、当該ポリプロピレン系樹脂粒子のL/D比を計算するために用いるL、Dmax、Dminの各値について説明した図である。図1の(b)に示すように、Lはポリプロピレン系樹脂粒子の最長部の長さである。図1の(b)に示すように、Dはポリプロピレン系樹脂粒子のL方向と垂直な断面における最大径Dmaxと最小径Dminとの平均値であり、下記式(2)にて計算される値である。
=(Dmax+Dmin)/2 ・・・・・式(2)
図1の(b)に示すように、Lはポリプロピレン系樹脂粒子の長手方向の、最長部の長さであるともいえる。ポリプロピレン系樹脂粒子が、後述するように、押出機等から押出されて製造される場合、Lはポリプロピレン系樹脂粒子の押出方向の、最長部の長さであるともいえる。Dは、ポリプロピレン系樹脂粒子の最大径部分のL方向と垂直な断面における、最大径Dmaxと最小径Dminとの平均値であり、上記式(2)にて計算される値である、ともいえる。ポリプロピレン系樹脂粒子が、長手方向の中央の直径が長手方向の端部の直径よりも小さいような鼓状である場合、ポリプロピレン系樹脂粒子の最大径部分は、ポリプロピレン系樹脂粒子の端部であり得る。ポリプロピレン系樹脂粒子が略球状である場合、ポリプロピレン系樹脂粒子の最大径部分は、ポリプロピレン系樹脂粒子のL方向の中央であり得る。
Here, the average L 2 / D 2 ratio of the polypropylene-based resin particles is an average value calculated from the L 2 / D 2 ratio of 10 randomly selected polypropylene-based resin particles. L 2 and D 2 will be described with reference to FIG. 1 (b). FIG. 1B is an external view of the polypropylene-based resin particles according to the embodiment of the present invention, and L 2 , D 2 max used for calculating the L 2 / D 2 ratio of the polypropylene-based resin particles. , D 2 min is the figure explaining each value. As shown in FIG. 1 (b), L 2 is the length of the longest portion of the polypropylene-based resin particles. As shown in FIG. 1 (b), D 2 is an average value of the maximum diameter D 2 max and the minimum diameter D 2 min in the cross section perpendicular to the L 2 direction of the polypropylene resin particles, and is the following equation (2). It is a value calculated in.
D 2 = (D 2 max + D 2 min) / 2 ・ ・ ・ ・ ・ Equation (2)
As shown in FIG. 1 (b), it can be said that L 2 is the length of the longest portion of the polypropylene-based resin particles in the longitudinal direction. When the polypropylene-based resin particles are produced by being extruded from an extruder or the like, as will be described later, L 2 can be said to be the longest length in the extrusion direction of the polypropylene-based resin particles. D 2 is an average value of the maximum diameter D 2 max and the minimum diameter D 2 min in the cross section perpendicular to the L 2 direction of the maximum diameter portion of the polypropylene resin particles, and is calculated by the above formula (2). It can be said that it is a value. When the polypropylene-based resin particles are drum-shaped such that the central diameter in the longitudinal direction is smaller than the diameter of the end portion in the longitudinal direction, the maximum diameter portion of the polypropylene-based resin particles is the end portion of the polypropylene-based resin particles. obtain. When the polypropylene resin particles are substantially spherical, the maximum diameter portion of the polypropylene resin particles may be L 2 direction of the center of the polypropylene resin particles.

ポリプロピレン系樹脂粒子が図1の(b)に示すような円柱状である場合、L方向に垂直な断面形状は、円、楕円等の凹部のない閉じた曲線であり得、DmaxおよびDminはL方向に沿って略一定の値をとり得る。When the polypropylene resin particles is cylindrical as shown in (b) of FIG. 1, the cross-sectional shape perpendicular to the L 2 direction, the circle may be a free closed curve of the concave portion such as an ellipse, D 2 max and D 2 min can take a substantially constant value along the L 2 direction.

本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法では、ポリプロピレン系樹脂粒子は、平均L/D比が4.0未満であることがより好ましい。平均L/D比が4.0未満であるポリプロピレン系樹脂粒子は、平均L/D比が4.0以上であるポリプロピレン系樹脂粒子と比較して、製造がより容易である。そのため、上記構成によると、ポリプロピレン系樹脂発泡粒子の製造方法は生産性に優れるものとなる。本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法では、ポリプロピレン系樹脂粒子は、平均L/D比が2.5以上4.0未満であることがさらに好ましい。In the method for producing polypropylene-based resin foam particles according to an embodiment of the present invention, it is more preferable that the polypropylene-based resin particles have an average L 2 / D 2 ratio of less than 4.0. Polypropylene resin particles having an average L 2 / D 2 ratio is less than 4.0, compared with the average L 2 / D 2 ratio is 4.0 or more polypropylene resin particles, manufacture is easier. Therefore, according to the above configuration, the method for producing polypropylene-based resin foam particles is excellent in productivity. In the method for producing polypropylene-based resin foam particles according to an embodiment of the present invention, it is more preferable that the polypropylene-based resin particles have an average L 2 / D 2 ratio of 2.5 or more and less than 4.0.

本発明の一実施形態に係る製造方法においては、(1)上記ポリプロピレン系樹脂粒子を耐圧容器内にて発泡剤と共に水系分散媒に分散させ、(2)ポリプロピレン系樹脂粒子の軟化温度以上の温度まで耐圧容器内を加熱し、かつ、耐圧容器内を加圧した後、(3)ポリプロピレン系樹脂粒子および発泡剤が分散している上記水系分散媒を耐圧容器の内圧よりも低い圧力域に放出することにより、ポリプロピレン系樹脂発泡粒子を得ることができる。「ポリプロピレン系樹脂粒子および発泡剤が分散している水系分散媒」を「分散液」と称する場合もある。 In the production method according to the embodiment of the present invention, (1) the polypropylene-based resin particles are dispersed in an aqueous dispersion medium together with a foaming agent in a pressure-resistant container, and (2) a temperature equal to or higher than the softening temperature of the polypropylene-based resin particles. After heating the inside of the pressure-resistant container and pressurizing the inside of the pressure-resistant container, (3) the aqueous dispersion medium in which polypropylene-based resin particles and foaming agent are dispersed is released to a pressure range lower than the internal pressure of the pressure-resistant container. By doing so, polypropylene-based resin foamed particles can be obtained. An "aqueous dispersion medium in which polypropylene-based resin particles and a foaming agent are dispersed" may be referred to as a "dispersion liquid".

(発泡剤)
本発明の一実施形態に係る製造方法において用いられる発泡剤は二酸化炭素を含む無機系発泡剤であり、好ましくは二酸化炭素単独である。二酸化炭素とあわせて使用できる無機系発泡剤としては、例えば、水、窒素、空気(酸素、窒素、二酸化炭素の混合物)等が挙げられる。
(Foaming agent)
The foaming agent used in the production method according to the embodiment of the present invention is an inorganic foaming agent containing carbon dioxide, preferably carbon dioxide alone. Examples of the inorganic foaming agent that can be used in combination with carbon dioxide include water, nitrogen, and air (mixture of oxygen, nitrogen, and carbon dioxide).

本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法によると、無機系発泡剤を用いることにより、揮発性有機発泡剤を用いることなく、高い空隙率を有し、且つ高倍率であるポリプロピレン系樹脂型内発泡成形体を提供し得る、ポリプロピレン系樹脂発泡粒子を得ることができる。プロパン、ブタンなどの揮発性有機発泡剤は、(i)地球温暖化係数が二酸化炭素よりも大きい物質であること、(ii)熱可塑性樹脂を可塑化する作用があり、高発泡倍率を得やすい反面、その可塑化作用のため、発泡粒子の発泡倍率および結晶状態のコントロールが難しくなること、さらに(iii)可燃性物質であるため、設備の防爆化が必要となるために、設備コスト高となること、などの欠点を有している。 According to the method for producing polypropylene-based resin foamed particles according to an embodiment of the present invention, by using an inorganic foaming agent, it has a high porosity and a high magnification without using a volatile organic foaming agent. It is possible to obtain polypropylene-based resin foamed particles that can provide a polypropylene-based resin in-mold foam molded product. Volatile organic foaming agents such as propane and butane have (i) a substance having a global warming coefficient higher than that of carbon dioxide, and (ii) have the effect of plasticizing a thermoplastic resin, making it easy to obtain a high foaming ratio. On the other hand, due to its plasticizing action, it is difficult to control the expansion ratio and crystal state of the foamed particles, and since it is a (iii) flammable substance, it is necessary to make the equipment explosive, resulting in high equipment cost. It has drawbacks such as becoming.

本発明の一実施形態に係る構成を採用することで、二酸化炭素を含む無機系発泡剤を使用した場合でも発泡力を大きくさせやすくなり、高倍率かつ空隙率の高いポリプロピレン系樹脂型内発泡成形体を提供し得る、高倍率のポリプロピレン系樹脂発泡粒子を得ることができる。また、設備の防爆化が不要であるため、設備コストの点で有利となる。 By adopting the configuration according to one embodiment of the present invention, it becomes easy to increase the foaming force even when an inorganic foaming agent containing carbon dioxide is used, and foam molding in a polypropylene resin mold having a high magnification and a high porosity. It is possible to obtain high-magnification polypropylene-based resin foam particles that can provide a body. In addition, since it is not necessary to make the equipment explosion-proof, it is advantageous in terms of equipment cost.

本発明の一実施形態に係る製造方法における無機系発泡剤の使用量は、使用するポリプロピレン系樹脂(a)の種類、および目的とする発泡倍率等により異なり、一概には規定できない。無機系発泡剤の使用量は、ポリプロピレン系樹脂(a)100重量部に対して、概ね2〜60重量部の範囲である。 The amount of the inorganic foaming agent used in the production method according to the embodiment of the present invention varies depending on the type of polypropylene resin (a) used, the target foaming ratio, and the like, and cannot be unconditionally specified. The amount of the inorganic foaming agent used is generally in the range of 2 to 60 parts by weight with respect to 100 parts by weight of the polypropylene resin (a).

(耐圧容器)
ポリプロピレン系樹脂粒子を分散させる耐圧容器には特に制限はなく、発泡粒子製造時における容器内圧力、および容器内温度に耐えられるものであればよい。耐圧容器としては、例えば、オートクレーブ型の耐圧容器があげられる。
(Pressure-resistant container)
The pressure-resistant container in which the polypropylene-based resin particles are dispersed is not particularly limited as long as it can withstand the pressure inside the container and the temperature inside the container during the production of foamed particles. Examples of the pressure-resistant container include an autoclave type pressure-resistant container.

(水系分散媒)
前記水系分散媒としては、水が好ましい。メタノール、エタノール、エチレングリコール、グリセリン等を水に添加した分散媒も使用できる。
(Aqueous dispersion medium)
Water is preferable as the aqueous dispersion medium. A dispersion medium in which methanol, ethanol, ethylene glycol, glycerin or the like is added to water can also be used.

(分散剤および分散助剤)
本発明の一実施形態に係る製造方法においては、ポリプロピレン系樹脂粒子同士の合着を防止するために、水系分散媒中に、分散剤を添加することが好ましい。分散剤としては、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、カオリン、タルク、クレー等の無機系分散剤が例示できる。これらは、1種を単独で使用しても良く、2種以上を併用しても良い。
(Dispersant and dispersion aid)
In the production method according to the embodiment of the present invention, it is preferable to add a dispersant to the aqueous dispersion medium in order to prevent the polypropylene-based resin particles from coalescing with each other. Examples of the dispersant include inorganic dispersants such as calcium tertiary phosphate, magnesium tertiary phosphate, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc, and clay. These may be used alone or in combination of two or more.

また、水系分散媒中に、分散剤と共に分散助剤を添加することが好ましい。分散助剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、α−オレフィンスルホン酸ナトリウム等が挙げられる。これらは、1種を単独で使用しても良く、2種以上を併用しても良い。 Further, it is preferable to add a dispersion aid together with the dispersant in the aqueous dispersion medium. Examples of the dispersion aid include sodium dodecylbenzenesulfonate, sodium alkanesulfonate, sodium alkylsulfonate, sodium alkyldiphenyl ether disulfonate, sodium α-olefin sulfonate and the like. These may be used alone or in combination of two or more.

分散剤および分散助剤の添加量は、それらの種類、並びに用いるポリプロピレン系樹脂(a)の種類および使用量によって異なり、適宜設定できる。分散剤および分散助剤の添加量は、通常、水系分散媒100重量部に対して、分散剤0.1重量部以上3重量部以下であることが好ましく、分散助剤0.001重量部以上0.200重量部以下であることが好ましい。 The amount of the dispersant and the dispersion aid added varies depending on the type thereof and the type and amount of the polypropylene-based resin (a) used, and can be appropriately set. The amount of the dispersant and the dispersion aid added is usually preferably 0.1 part by weight or more and 3 parts by weight or less of the dispersant with respect to 100 parts by weight of the aqueous dispersion medium, and 0.001 part by weight or more of the dispersion aid. It is preferably 0.200 parts by weight or less.

本発明の一実施形態に係る製造方法においては、水系分散媒中での分散性を良好なものにするために、ポリプロピレン系樹脂粒子は、通常、水系分散媒100重量部に対して、20重量部以上100重量部以下使用するのが好ましい。 In the production method according to the embodiment of the present invention, in order to improve the dispersibility in the aqueous dispersion medium, polypropylene-based resin particles are usually 20% by weight based on 100 parts by weight of the aqueous dispersion medium. It is preferable to use more than 100 parts by weight.

本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法の具体例としては、次のとおりである。 Specific examples of the method for producing polypropylene-based resin foam particles according to an embodiment of the present invention are as follows.

すなわち、(B1)ポリプロピレン系樹脂(a)100重量部に対し、親水性物質(b)を1.0重量部以上10重量部以下、発泡核剤(c)を1.0重量部以上10重量部以下、かつ、高級脂肪酸アミド(d)1.0重量部以上5.0重量部以下含有させたポリプロピレン系樹脂粒子を、耐圧容器内の水系分散媒に分散させ、分散剤等を仕込んだ後、(B2)耐圧容器内に、1〜2MPa(ゲージ圧)程度の二酸化炭素を発泡剤として導入し、(B3)ポリプロピレン系樹脂(a)の軟化温度以上(好ましくは、ポリプロピレン系樹脂粒子の融点−25℃以上、かつ、ポリプロピレン系樹脂粒子の融点+25℃以下の温度範囲、さらに好ましくは、ポリプロピレン系樹脂粒子の融点−15℃以上でポリプロピレン系樹脂粒子の融点+15℃以下の温度範囲)まで、耐圧容器内を加熱する。(B4)加熱することにより、耐圧容器内の圧力が約1.5MPa(ゲージ圧)〜3MPa(ゲージ圧)程度まで上がる。(B5)発泡させる温度付近にて、さらに二酸化炭素を耐圧容器内に追加して、所望の発泡圧力に調整、さらに発泡に適した温度(以下、「発泡温度」と称する場合がある。)に温度調整を行った後、(B6)耐圧容器の内圧よりも低い圧力域に放出してポリプロピレン系樹脂発泡粒子を得る。 That is, with respect to 100 parts by weight of the (B1) polypropylene resin (a), 1.0 part by weight or more and 10 parts by weight or less of the hydrophilic substance (b) and 1.0 part by weight or more and 10 parts by weight of the foam nucleating agent (c). After the polypropylene-based resin particles containing 1.0 part by weight or more and 5.0 parts by weight or less of the higher fatty acid amide (d) are dispersed in an aqueous dispersion medium in a pressure-resistant container and charged with a dispersant or the like. , (B2) Carbon dioxide of about 1 to 2 MPa (gauge pressure) is introduced as a foaming agent into the pressure-resistant container, and (B3) the softening temperature or higher of the polypropylene-based resin (a) (preferably the melting point of the polypropylene-based resin particles). Temperature range of -25 ° C or higher and the melting point of polypropylene resin particles + 25 ° C or lower, more preferably the melting point of polypropylene resin particles -15 ° C or higher and melting point of polypropylene resin particles + 15 ° C or lower) Heat the inside of the pressure-resistant container. (B4) By heating, the pressure inside the pressure-resistant container rises to about 1.5 MPa (gauge pressure) to about 3 MPa (gauge pressure). (B5) In the vicinity of the foaming temperature, carbon dioxide is further added to the pressure-resistant container to adjust the foaming pressure to a desired level, and the temperature is adjusted to a temperature suitable for foaming (hereinafter, may be referred to as “foaming temperature”). After adjusting the temperature, it is released into a pressure range lower than the internal pressure of the (B6) pressure-resistant container to obtain polypropylene-based resin foam particles.

発泡剤として二酸化炭素を導入する時宜としては、あるいは、耐圧容器にポリプロピレン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、耐圧容器内をポリプロピレン系樹脂(a)の軟化温度以上の温度まで加熱しながら、耐圧容器内に二酸化炭素を導入してもよい。 When carbon dioxide is introduced as a foaming agent, or after charging polypropylene-based resin particles, an aqueous dispersion medium, a dispersant, etc., in a pressure-resistant container, the inside of the pressure-resistant container is softened. Carbon dioxide may be introduced into the pressure-resistant container while heating to a temperature higher than the temperature.

なお、樹脂粒子から発泡粒子を製造するための、上記(B1)〜(B6)の工程をまとめて、「一段発泡工程」とも呼び、得られたポリプロピレン系樹脂発泡粒子を「一段発泡粒子」とも呼ぶ。 The steps (B1) to (B6) for producing the foamed particles from the resin particles are collectively referred to as a "one-step foaming step", and the obtained polypropylene-based resin foamed particles are also referred to as "one-step foamed particles". Call.

本明細書において、ポリプロピレン系樹脂粒子の融点は、ポリプロピレン系樹脂に代えて、ポリプロピレン系樹脂粒子を使用する以外は、ポリプロピレン系樹脂(a)の融点と同様の方法(DSC)で測定して得られた値とする。本発明の一実施形態では、ポリプロピレン系樹脂(a)の融点を、ポリプロピレン系樹脂粒子の融点とみなすこともできる。 In the present specification, the melting point of the polypropylene-based resin particles is obtained by measuring by the same method (DSC) as the melting point of the polypropylene-based resin (a) except that polypropylene-based resin particles are used instead of the polypropylene-based resin. The value is set. In one embodiment of the present invention, the melting point of the polypropylene-based resin (a) can also be regarded as the melting point of the polypropylene-based resin particles.

本発明の一実施形態に係る製造方法により得られるポリプロピレン系樹脂発泡粒子の形状は、型内発泡成形時に発泡粒子を金型内へ充填するときに、発泡粒子同士の適度な接触面積を保って、高い空隙を形成することが可能となることから、平均L/D比が1.3以上3.5以下の柱状形状であることが好ましい。The shape of the polypropylene-based resin foamed particles obtained by the production method according to the embodiment of the present invention maintains an appropriate contact area between the foamed particles when the foamed particles are filled into the mold during in-mold foam molding. Since it is possible to form high voids, it is preferable that the columnar shape has an average L 1 / D 1 ratio of 1.3 or more and 3.5 or less.

(ポリプロピレン系樹脂発泡粒子の平均L/D比)
ここで、平均L/Dとは、ランダムに選択されたポリプロピレン系樹脂発泡粒子10粒のL/D比から算出される平均値である。LおよびDについて、図1の(a)を参照して説明する。図1の(a)は、本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の外観図であり、当該ポリプロピレン系樹脂発泡粒子のL/D比を計算するために用いるL、Dmax、Dminの各値について説明した図である。図1の(a)に示すように、Lは、上記ポリプロピレン系樹脂発泡粒子の最長部の長さである。図1の(a)に示すように、Dは、上記ポリプロピレン系樹脂発泡粒子の上記L方向と垂直な断面における最大径Dmaxと最小径Dminとの平均値であり、下記式(1)にて計算される値である:
=(Dmax+Dmin)/2 ・・・・・(1)。
(Average L 1 / D 1 ratio of polypropylene-based resin foam particles)
Here, the average L 1 / D 1 is an average value calculated from the L 1 / D 1 ratio of 10 randomly selected polypropylene-based resin foam particles. L 1 and D 1 will be described with reference to FIG. 1 (a). FIG. 1A is an external view of the polypropylene-based resin foamed particles according to the embodiment of the present invention, and L 1 , D used to calculate the L 1 / D 1 ratio of the polypropylene-based resin foamed particles. It is a figure explaining each value of 1 max and D 1 min. As shown in FIG. 1 (a), L 1 is the length of the longest portion of the polypropylene-based resin foamed particles. As shown in FIG. 1 (a), D 1 is an average value of the maximum diameter D 1 max and the minimum diameter D 1 min in the cross section perpendicular to the L 1 direction of the polypropylene resin foamed particles, and is as follows. It is a value calculated by the formula (1):
D 1 = (D 1 max + D 1 min) / 2 ... (1).

図1の(a)に示すように、Lはポリプロピレン系樹脂発泡粒子の長手方向の、最長部の長さであるともいえる。Dは、ポリプロピレン系樹脂発泡粒子の最大径部分のL方向と垂直な断面における、最大径Dmaxと最小径Dminとの平均値であり、上記式(1)にて計算される値である、ともいえる。ポリプロピレン系樹脂発泡粒子が、長手方向の中央の直径が長手方向の端部の直径よりも小さいような鼓状である場合、ポリプロピレン系樹脂発泡粒子の最大径部分は、ポリプロピレン系樹脂発泡粒子の端部であり得る。ポリプロピレン系樹脂発泡粒子が略球状である場合、ポリプロピレン系樹脂発泡粒子の最大径部分は、ポリプロピレン系樹脂発泡粒子のL方向の中央であり得る。As shown in FIG. 1 (a), it can be said that L 1 is the length of the longest portion of the polypropylene-based resin foam particles in the longitudinal direction. D 1 is the average value of the maximum diameter D 1 max and the minimum diameter D 1 min in the cross section perpendicular to the L 1 direction of the maximum diameter portion of the polypropylene resin foamed particles, and is calculated by the above formula (1). It can be said that it is a value. When the polypropylene-based resin foam particles are drum-shaped such that the central diameter in the longitudinal direction is smaller than the diameter of the end portion in the longitudinal direction, the maximum diameter portion of the polypropylene-based resin foam particles is the edge of the polypropylene-based resin foam particles. Can be a department. When PP beads are substantially spherical, the maximum diameter portion of the foamed polypropylene resin particles may be L 1 direction of the center of the PP beads.

柱状形状の発泡粒子の具体例としては、円柱形状、楕円柱形状が挙げられる。ポリプロピレン系樹脂発泡粒子が図1の(a)に示すような柱状形状(円柱状)を有する場合、L方向に垂直な断面形状は、円、楕円等の凹部のない閉じた曲線となり得、DmaxおよびDminはL方向に沿って略一定の値をとり得る。Specific examples of the columnar foam particles include a columnar shape and an elliptical columnar shape. If the polypropylene resin expanded particles have a columnar shape (cylindrical shape) as shown in (a) of FIG. 1, L 1 direction perpendicular cross-sectional shape, a circle, can become a recess without closed curve such as an ellipse, D 1 max and D 1 min can take substantially constant values along the L 1 direction.

発泡粒子の平均L/D比が1.3未満となると、発泡粒子を金型に充填して型内発泡成形したときに十分な空隙率を有する発泡成形体を得ることが困難となる傾向がある。発泡粒子の平均L/D比が3.5を超えると、発泡粒子を金型に充填するとき、充填口で発泡粒子の目詰まりが発生し易く、発泡粒子の充填不良の原因となるばかりか、得られる発泡成形体の局所間での空隙率にバラツキが生じ易くなる。If the average L 1 / D 1 ratio of the foamed particles is less than 1.3, it becomes difficult to obtain a foamed molded product having a sufficient porosity when the foamed particles are filled in a mold and foamed in the mold. Tend. If the average L 1 / D 1 ratio of the foamed particles exceeds 3.5, the foamed particles are likely to be clogged at the filling port when the foamed particles are filled in the mold, which causes poor filling of the foamed particles. Not only that, the porosity of the obtained foamed molded product between the regions tends to vary.

なお、ポリプロピレン系樹脂粒子のL/Dを調整することにより、ポリプロピレン系樹脂発泡粒子の平均L/Dを調整することができる。By adjusting L 2 / D 2 of the polypropylene-based resin particles, the average L 1 / D 1 of the polypropylene-based resin foamed particles can be adjusted.

本発明の一実施形態に係る製造方法により得られるポリプロピレン系樹脂発泡粒子のセル径は、発泡粒子の二次発泡力が適度なバランスとなり、その結果、発泡粒子の金型への充填の際に生じた空隙を保持するとともに、発泡粒子間を強固に融着させ易いことから、30μm以上100μm以下であることが好ましい。 The cell diameter of the polypropylene-based resin foamed particles obtained by the production method according to the embodiment of the present invention has an appropriate balance of the secondary foaming force of the foamed particles, and as a result, when the foamed particles are filled in the mold. It is preferably 30 μm or more and 100 μm or less because the generated voids are retained and the foamed particles are easily fused firmly.

発泡粒子のセル径が30μm未満の場合、型内発泡成形時の二次発泡力が低下しすぎて、成形体の融着性が悪化する傾向がある。セル径が100μmを超えると、型内発泡成形時の二次発泡力が高まりすぎて発泡成形体とした時の空隙率が低くなる傾向となる。特に、金型面と接触した表面層において空隙率が低下し易い傾向がある。 When the cell diameter of the foamed particles is less than 30 μm, the secondary foaming force during in-mold foam molding tends to be too low, and the meltability of the molded product tends to deteriorate. If the cell diameter exceeds 100 μm, the secondary foaming force during in-mold foam molding tends to be too high, and the porosity when the foamed molded product is formed tends to be low. In particular, the porosity tends to decrease in the surface layer in contact with the mold surface.

なお、ポリプロピレン系樹脂発泡粒子のセル径は、発泡圧力および発泡核剤(c)の使用量を調整することにより、調整することができる。 The cell diameter of the polypropylene-based resin foamed particles can be adjusted by adjusting the foaming pressure and the amount of the foaming nucleating agent (c) used.

(ポリプロピレン系樹脂発泡粒子のDSC比)
本発明の一実施形態に係る製造方法により得られるポリプロピレン系樹脂発泡粒子は、示差走査熱量測定(DSC)によって得られるDSC曲線に2つの融解ピークを有し、該低温側ピークの融解熱量α(J/g)、該高温側ピークの融解熱量β(J/g)としたときのβ/(α+β)に100を乗じた値(以下、「DSC比」と称す場合があり、単位は%である)が40%以上70%以下であることが好ましく、45%以上60%以下であることがより好ましい。
(DSC ratio of polypropylene-based resin foam particles)
The polypropylene-based resin foam particles obtained by the production method according to the embodiment of the present invention have two melting peaks on the DSC curve obtained by differential scanning calorimetry (DSC), and the heat of fusion α (calorific value α of the low temperature side peak). J / g), the value obtained by multiplying β / (α + β) when the heat of fusion β (J / g) of the high temperature side peak is 100 (hereinafter, may be referred to as “DSC ratio”, and the unit is%. There is) is preferably 40% or more and 70% or less, and more preferably 45% or more and 60% or less.

発泡粒子のDSC比が40%未満の場合、発泡成形体の空隙率を高くすることが困難となる傾向がある。これは、発泡粒子の二次発泡力が高くなるため、型内発泡成形のときに空隙率が低下するためと考えられる。発泡粒子のDSC比が70%を超えると、型内発泡成形のときに発泡粒子間の融着が困難となる傾向がある。型内発泡成形のとき、発泡粒子間の融着を促進するために成形に用いる蒸気の温度を上げると、得られる発泡成形体の空隙率が低下するため、空隙率の確保と融着との両立が困難となる傾向がある。 When the DSC ratio of the foamed particles is less than 40%, it tends to be difficult to increase the porosity of the foamed molded product. It is considered that this is because the secondary foaming force of the foamed particles is increased and the porosity is reduced during in-mold foam molding. If the DSC ratio of the foamed particles exceeds 70%, fusion between the foamed particles tends to be difficult during in-mold foam molding. In in-mold foam molding, if the temperature of the steam used for molding is raised to promote fusion between the foamed particles, the porosity of the obtained foamed molded product decreases, so that the porosity can be secured and fused. It tends to be difficult to achieve both.

なお、ポリプロピレン系樹脂発泡粒子のDSC比は、発泡温度を調整することにより、調整することができる。 The DSC ratio of the polypropylene-based resin foamed particles can be adjusted by adjusting the foaming temperature.

ここで、ポリプロピレン系樹脂発泡粒子のDSC比は、発泡粒子の示差走査熱量測定によって得られる1回目の昇温時のDSC曲線から求めることができる。発泡粒子の1回目の昇温時のDSC曲線とは、発泡粒子1〜10mgを示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線のことである。 Here, the DSC ratio of the polypropylene-based resin foamed particles can be obtained from the DSC curve at the time of the first temperature rise obtained by the differential scanning calorimetry of the foamed particles. The DSC curve at the time of the first temperature rise of the foamed particles is a DSC curve obtained when 1 to 10 mg of the foamed particles are heated from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min by a differential scanning calorimeter. That is.

融解熱量αおよび融解熱量βについて、図2を参照して説明する。図2は、ポリプロピレン系樹脂発泡粒子の1回目の昇温時のDSC曲線の一例である。図2に示される、1回目の昇温時のDSC曲線における各点について説明する。低温側ピークと高温側ピークとの2つの融解ピークの間の吸熱量が最も小さくなる点をAとする。点Aは極大点もいえる。極大点Aを通る直線とDSC曲線との低温側の接点をB、極大点Aを通る直線と高温側の接点をCとする。線分ABとDSC曲線とで囲まれた面積から低温側ピークの融解熱量α(J/g)が、線分ACとDSC曲線とで囲まれた面積から高温側ピークの融解熱量β(J/g)が、それぞれ算出される。 The heat of fusion α and the heat of fusion β will be described with reference to FIG. FIG. 2 is an example of the DSC curve at the time of the first temperature rise of the polypropylene-based resin foamed particles. Each point in the DSC curve at the time of the first temperature rise shown in FIG. 2 will be described. Let A be the point where the amount of heat absorption between the two melting peaks, the low temperature side peak and the high temperature side peak, is the smallest. Point A can also be said to be a maximum point. Let B be the point of contact between the straight line passing through the maximum point A and the DSC curve on the low temperature side, and let C be the point of contact between the straight line passing through the maximum point A and the high temperature side. The heat of fusion α (J / g) of the peak on the low temperature side from the area surrounded by the line segments AB and the DSC curve, and the heat of fusion β (J / g) of the peak on the high temperature side from the area surrounded by the line segments AC and the DSC curve. g) is calculated respectively.

なお、ポリプロピレン系樹脂発泡粒子の一段発泡倍率は、発泡温度、発泡圧力、親水性物質(b)の使用量、および発泡核剤(c)の使用量を調整することにより、調整することができる。 The one-step expansion ratio of the polypropylene-based resin foam particles can be adjusted by adjusting the foaming temperature, the foaming pressure, the amount of the hydrophilic substance (b) used, and the amount of the foaming nucleating agent (c) used. ..

また、一段発泡粒子を高倍率に調整する方法として二段発泡工程が知られており、以下に示す方法を例示することができる。 Further, a two-stage foaming step is known as a method for adjusting the one-stage foamed particles to a high magnification, and the methods shown below can be exemplified.

例えば、一段発泡工程を行って得られたポリプロピレン系樹脂発泡粒子を、耐圧密閉容器内に入れた後、窒素、空気、二酸化炭素等で0.1MPa(ゲージ圧)以上、0.6MPa(ゲージ圧)以下の範囲で加圧含浸(加圧処理)させて、ポリプロピレン系樹脂発泡粒子内の圧力を常圧(1気圧)よりも高くする。その後、当該ポリプロピレン系樹脂発泡粒子を、圧力が0.01MPa(ゲージ圧)以上、0.60MPa(ゲージ圧)以下の範囲の水蒸気等で加熱して更に発泡させる。これにより、発泡倍率が一段発泡粒子より高いポリプロピレン系樹脂発泡粒子を得ることができる。 For example, polypropylene-based resin foam particles obtained by performing a one-step foaming step are placed in a pressure-resistant airtight container and then charged with nitrogen, air, carbon dioxide, etc. at 0.1 MPa (gauge pressure) or more, 0.6 MPa (gauge pressure). ) Pressure impregnation (pressure treatment) is performed in the following range to make the pressure in the polypropylene-based resin foam particles higher than the normal pressure (1 atm). Then, the polypropylene-based resin foamed particles are further foamed by heating with steam or the like having a pressure in the range of 0.01 MPa (gauge pressure) or more and 0.60 MPa (gauge pressure) or less. As a result, polypropylene-based resin foamed particles having a foaming ratio higher than that of the one-stage foamed particles can be obtained.

一段発泡粒子を高倍率に調整する工程を「二段発泡工程」と呼び、得られたポリプロピレン系樹脂発泡粒子を「二段発泡粒子」と呼ぶ。本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、一段発泡工程および二段発泡工程を含んでいてもよい。 The process of adjusting the one-stage foamed particles to a high magnification is called a "two-stage foaming process", and the obtained polypropylene-based resin foamed particles are called "two-stage foamed particles". The method for producing polypropylene-based resin foamed particles according to an embodiment of the present invention may include a one-step foaming step and a two-step foaming step.

本発明の一実施形態に係る製造方法により得られるポリプロピレン系樹脂発泡粒子(一段発泡および/または二段発泡)の発泡倍率は、15倍以上35倍以下である。発泡粒子の発泡倍率が、(i)15倍未満の場合は、軽量化のメリットが得られず、(ii)35倍を超える場合は得られる型内発泡成形体の寸法精度、機械的強度等が不十分となる傾向がある。 The foaming ratio of the polypropylene-based resin foamed particles (one-stage foaming and / or two-stage foaming) obtained by the production method according to the embodiment of the present invention is 15 times or more and 35 times or less. If the foaming ratio of the foamed particles is (i) less than 15 times, the merit of weight reduction cannot be obtained, and if (ii) exceeds 35 times, the dimensional accuracy, mechanical strength, etc. of the foamed molded product in the mold can be obtained. Tends to be inadequate.

ポリプロピレン系樹脂粒子を用いて製造されたポリプロピレン系樹脂発泡粒子において、当該ポリプロピレン系樹脂粒子の構造は変化するが、ポリプロピレン系樹脂粒子の組成は変化しない。また、ポリプロピレン系樹脂粒子を用いて製造されたポリプロピレン系樹脂発泡粒子を用いて製造されたポリプロピレン系樹脂型内発泡成形体において、当該ポリプロピレン系樹脂発泡粒子の構造は変化するが、ポリプロピレン系樹脂発泡粒子の組成は変化しない。したがって、
(i)ポリプロピレン系樹脂発泡粒子またはポリプロピレン系樹脂型内発泡成形体を解析して得られた融点、またはMIの値は、それぞれ、それらの原料であるポリプロピレン系樹脂粒子に含まれるポリプロピレン系樹脂(a)の融点、またはMIの値であるとみなすことができ、
(ii)ポリプロピレン系樹脂型内発泡成形体を解析して得られたDSC比は、その原料であるポリプロピレン系樹脂発泡粒子のDSC比であるとみなすことができる。
In the polypropylene-based resin foamed particles produced using the polypropylene-based resin particles, the structure of the polypropylene-based resin particles changes, but the composition of the polypropylene-based resin particles does not change. Further, in the polypropylene-based resin in-mold foam molded body produced by using the polypropylene-based resin foamed particles produced by using the polypropylene-based resin particles, the structure of the polypropylene-based resin foamed particles changes, but the polypropylene-based resin foamed. The composition of the particles does not change. Therefore,
(I) The value of the melting point or MI obtained by analyzing the polypropylene-based resin foamed particles or the polypropylene-based resin in-mold foam molded product is the polypropylene-based resin contained in the polypropylene-based resin particles as raw materials thereof (i). It can be regarded as the melting point of a) or the value of MI,
(Ii) The DSC ratio obtained by analyzing the polypropylene-based resin foamed molded article can be regarded as the DSC ratio of the polypropylene-based resin foamed particles as the raw material thereof.

本明細書において、ポリプロピレン系樹脂発泡粒子またはポリプロピレン系樹脂型内発泡成形体の融点は、ポリプロピレン系樹脂に代えて、ポリプロピレン系樹脂発泡粒子またはポリプロピレン系樹脂型内発泡成形体をそれぞれ使用する以外は、ポリプロピレン系樹脂(a)の融点と同様の方法(DSC)で測定して得られた値とする。 In the present specification, the melting point of the polypropylene-based resin foamed particles or the polypropylene-based resin in-mold foam molded product is different from the polypropylene-based resin, except that the polypropylene-based resin foamed particles or the polypropylene-based resin in-mold foamed molded product are used, respectively. , The value obtained by measuring by the same method (DSC) as the melting point of the polypropylene resin (a).

本明細書において、ポリプロピレン系樹脂発泡粒子のMIは、次のように測定することができる:(C1)ポリプロピレン系樹脂発泡粒子同士が接触しないように減圧可能なオーブンの中にポリプロピレン系樹脂発泡粒子を静置する;(C2)次に、−0.05〜−0.10MPa(ゲージ圧)の圧力下で、かつ、ポリプロピレン系樹脂発泡粒子の融点+20〜35℃の温度下で30分間処理することにより、ポリプロピレン系樹脂発泡粒子の内部の空気を除きながら、ポリプロピレン系樹脂発泡粒子をポリプロピレン系樹脂に戻す;(C3)そして、オーブンから上記ポリプロピレン系樹脂を取り出し、ポリプロピレン系樹脂を十分に冷却する;(C4)その後、ポリプロピレン系樹脂(a)と同じ方法により、上記ポリプロピレン系樹脂のMIを測定する。 In the present specification, the MI of the polypropylene-based resin foam particles can be measured as follows: (C1) The polypropylene-based resin foam particles are placed in a decompressable oven so that the polypropylene-based resin foam particles do not come into contact with each other. (C2) Next, the polypropylene-based resin foamed particles are treated at a pressure of -0.05 to -0.10 MPa (gauge pressure) and at a temperature of + 20 to 35 ° C. for 30 minutes. Thereby, the polypropylene-based resin foamed particles are returned to the polypropylene-based resin while removing the air inside the polypropylene-based resin foamed particles; (C3) Then, the polypropylene-based resin is taken out from the oven and the polypropylene-based resin is sufficiently cooled. (C4) Then, the MI of the polypropylene-based resin is measured by the same method as that of the polypropylene-based resin (a).

本明細書において、ポリプロピレン系樹脂型内発泡成形体のMIは、次のように測定することができる:(D1)ミキサーなどを用いてポリプロピレン系樹脂型内発泡成形体を粉砕する;(D2)次に、ポリプロピレン系樹脂発泡粒子の代わりに粉砕されたポリプロピレン系樹脂型内発泡成形体を用いる以外は、上述したポリプロピレン系樹脂発泡粒子と同じ処理((C1)および(C2))を行い、ポリプロピレン系樹脂型内発泡成形体をポリプロピレン系樹脂に戻す;(D3)そして、オーブンから上記ポリプロピレン系樹脂を取り出し、ポリプロピレン系樹脂を十分に冷却する;(D4)その後、ポリプロピレン系樹脂(a)と同じ方法により、上記ポリプロピレン系樹脂のMIを測定する。 In the present specification, the MI of the polypropylene-based resin in-mold foam molded product can be measured as follows: (D1) The polypropylene-based resin in-mold foam molded product is pulverized using a mixer or the like; (D2). Next, the same treatments ((C1) and (C2)) as those for the polypropylene-based resin foamed particles described above were performed except that the crushed polypropylene-based resin foamed molded product was used instead of the polypropylene-based resin foamed particles, and polypropylene was used. The foamed molded product in the based resin mold is returned to the polypropylene-based resin; (D3), and the polypropylene-based resin is taken out from the oven to sufficiently cool the polypropylene-based resin; (D4), and then the same as the polypropylene-based resin (a). The MI of the polypropylene-based resin is measured by the method.

本明細書において、ポリプロピレン系樹脂型内発泡成形体のDSC比は、ポリプロピレン系樹脂発泡粒子に代えて、ポリプロピレン系樹脂型内発泡成形体を使用する以外は、ポリプロピレン系樹脂発泡粒子と同様の方法(DSC)で得られる1回目の昇温時のDSC曲線に基づき、ポリプロピレン系樹脂発泡粒子と同様の方法にて得られた値とする。 In the present specification, the DSC ratio of the polypropylene-based resin foamed molded product is the same as that of the polypropylene-based resin foamed particles except that the polypropylene-based resin foamed molded product is used instead of the polypropylene-based resin foamed particles. Based on the DSC curve at the time of the first temperature rise obtained in (DSC), the value is set to the value obtained by the same method as the polypropylene-based resin foamed particles.

〔3.ポリプロピレン系樹脂発泡粒子〕
本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子は、上記〔2.ポリプロピレン系樹脂発泡粒子の製造方法〕の項にて説明したポリプロピレン系樹脂発泡粒子の製造方法により製造されたものである。本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子は、上記構成を有するため、高い空隙率を有し、且つ高倍率であるポリプロピレン系樹脂型内発泡成形体を提供することができる。さらに、本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子は、上記構成を有するため、摩擦音が小さいという利点を有し、且つ、摩擦音が抑制されたポリプロピレン系樹脂型内発泡成形体を提供することができる。
[3. Polypropylene resin foam particles]
The polypropylene-based resin foamed particles according to the embodiment of the present invention are described in the above [2. Method for producing polypropylene-based resin foam particles]], the polypropylene-based resin foam particles are produced by the method for producing polypropylene-based resin foam particles. Since the polypropylene-based resin foamed particles according to the embodiment of the present invention have the above-mentioned structure, it is possible to provide a polypropylene-based resin in-mold foam molded product having a high porosity and a high magnification. Further, since the polypropylene-based resin foamed particles according to the embodiment of the present invention have the above-mentioned structure, they have an advantage that the frictional noise is small, and provide a polypropylene-based resin in-mold foam molded product in which the frictional noise is suppressed. be able to.

〔4.ポリプロピレン系樹脂型内発泡成形体〕
本発明の一実施形態に係るポリプロピレン系樹脂型内発泡成形体は、上記〔2.ポリプロピレン系樹脂発泡粒子の製造方法〕の項にて説明したポリプロピレン系樹脂発泡粒子の製造方法により製造されたポリプロピレン系樹脂発泡粒子を型内発泡成形して得られるものである。本発明の一実施形態に係るポリプロピレン系樹脂型内発泡成形体は、上記構成を有するため、高い空隙率を有し、且つ高倍率である。さらに、本発明の一実施形態に係るポリプロピレン系樹脂型内発泡成形体は、上記構成を有するため、摩擦音が小さいという利点を有する。
[4. Polypropylene resin mold in-foam molding]
The polypropylene-based resin in-mold foam molded product according to an embodiment of the present invention is described in the above [2. It is obtained by in-mold foam molding of polypropylene-based resin foamed particles produced by the method for producing polypropylene-based resin foamed particles described in the section [Method for producing polypropylene-based resin foamed particles]. Since the polypropylene-based resin in-mold foam molded product according to the embodiment of the present invention has the above-mentioned structure, it has a high porosity and a high magnification. Further, since the polypropylene-based resin in-mold foam molded product according to the embodiment of the present invention has the above-mentioned structure, it has an advantage that the friction noise is small.

上記〔2.ポリプロピレン系樹脂発泡粒子の製造方法〕の項にて説明したポリプロピレン系樹脂発泡粒子の製造方法により製造されたポリプロピレン系樹脂発泡粒子、および、上記〔3.ポリプロピレン系樹脂発泡粒子〕の項にて説明したポリプロピレン系樹脂発泡粒子は、一般的な型内発泡成形することによってポリプロピレン系樹脂型内発泡成形体となる。型内発泡成形法は、公知の方法を採用することができる。型内発泡成形体の空隙率は、吸音特性と強く関係している。本発明の一実施形態に係る製造方法により得られる発泡粒子を用いて得られる型内発泡成形体の空隙率は、5%以上50%以下が好ましく、10%以上45%以下がより好ましい。上記型内発泡成形体の空隙率が5%未満となると、ピーク周波数における吸音率が低下し、十分な吸音特性が得られない。上記型内発泡成形体の空隙率が50%を超えると、発泡粒子間の接触面積が低下して型内発泡成形体の割れが生じ易くなるばかりか、機械強度が低下して実用上の使用に耐えない。 Above [2. Method for producing polypropylene-based resin foamed particles] The polypropylene-based resin foamed particles produced by the method for producing polypropylene-based resin foamed particles described in the section described above, and the above [3. The polypropylene-based resin foamed particles described in the section of [Polypropylene-based resin foamed particles] become a polypropylene-based resin foamed molded product by general in-mold foam molding. As the in-mold foam molding method, a known method can be adopted. The porosity of the foamed molded product in the mold is strongly related to the sound absorption characteristics. The porosity of the foamed molded product in the mold obtained by using the foamed particles obtained by the production method according to the embodiment of the present invention is preferably 5% or more and 50% or less, and more preferably 10% or more and 45% or less. If the porosity of the foamed molded product in the mold is less than 5%, the sound absorption coefficient at the peak frequency decreases, and sufficient sound absorption characteristics cannot be obtained. When the porosity of the foamed molded product in the mold exceeds 50%, not only the contact area between the foamed particles is reduced and the foamed molded product in the mold is likely to be cracked, but also the mechanical strength is lowered for practical use. Can't stand.

本発明の一実施形態は、以下の様な構成であってもよい。 One embodiment of the present invention may have the following configuration.

〔1〕ポリプロピレン系樹脂粒子を耐圧容器内で発泡剤と共に水系分散媒に分散させる工程、上記ポリプロピレン系樹脂粒子の軟化温度以上の温度まで上記耐圧容器内を加熱し、かつ、上記耐圧容器内を加圧する工程、および上記ポリプロピレン系樹脂粒子および上記発泡剤が分散している上記水系分散媒を上記耐圧容器の内圧よりも低い圧力域に放出して、ポリプロピレン系樹脂発泡粒子を得る工程、を有し、上記ポリプロピレン系樹脂粒子は、ポリプロピレン系樹脂(a)、並びにポリプロピレン系樹脂(a)100重量部に対し、親水性物質(b)1.0重量部以上10重量部以下、且つ、発泡核剤(c)1.0重量部以上10重量部以下、且つ、上記親水性物質(b)と上記発泡核剤(c)との合計量が2.5重量部以上20重量部以下、且つ、高級脂肪酸アミド(d)1.0重量部以上5.0重量部以下を含有する、ポリプロピレン系樹脂組成物からなり、上記ポリプロピレン系樹脂発泡粒子は、平均L/D比が1.3以上3.5以下であり、セル径が30μm以上100μm以下であり、発泡粒子の示差走査熱量測定(DSC)で、40℃から220℃まで10℃/分の速度で昇温した時に得られるDSC曲線から算出されるDSC比が40%以上70%以下であり、且つ、発泡倍率が15倍以上35倍以下であり、上記発泡剤は二酸化炭素を含む無機系発泡剤である、ことを特徴とする、ポリプロピレン系樹脂発泡粒子の製造方法。[1] A step of dispersing polypropylene-based resin particles in an aqueous dispersion medium together with a foaming agent in the pressure-resistant container, heating the inside of the pressure-resistant container to a temperature equal to or higher than the softening temperature of the polypropylene-based resin particles, and the inside of the pressure-resistant container. It includes a step of pressurizing and a step of releasing the aqueous dispersion medium in which the polypropylene-based resin particles and the foaming agent are dispersed into a pressure range lower than the internal pressure of the pressure-resistant container to obtain polypropylene-based resin foamed particles. The polypropylene-based resin particles are 1.0 part by weight or more and 10 parts by weight or less of the hydrophilic substance (b) and foam nuclei with respect to 100 parts by weight of the polypropylene-based resin (a) and the polypropylene-based resin (a). Agent (c) 1.0 parts by weight or more and 10 parts by weight or less, and the total amount of the hydrophilic substance (b) and the foam nucleating agent (c) is 2.5 parts by weight or more and 20 parts by weight or less, and It is composed of a polypropylene-based resin composition containing 1.0 part by weight or more and 5.0 parts by weight or less of the higher fatty acid amide (d), and the polypropylene-based resin foamed particles have an average L 1 / D 1 ratio of 1.3 or more. DSC curve obtained when the temperature is 3.5 or less, the cell diameter is 30 μm or more and 100 μm or less, and the temperature is raised from 40 ° C. to 220 ° C. at a rate of 10 ° C./min by differential scanning calorimetry (DSC) of foamed particles. The DSC ratio calculated from the above is 40% or more and 70% or less, the foaming ratio is 15 times or more and 35 times or less, and the foaming agent is an inorganic foaming agent containing carbon dioxide. , A method for producing polypropylene-based resin foam particles.

〔2〕上記親水性物質(b)が、(i)トリアジン骨格を有し単位トリアジン骨格あたりの分子量が300以下の有機物、および(ii)ホウ酸金属塩、からなる群から選択される少なくとも1種を含む、〔1〕に記載のポリプロピレン系樹脂発泡粒子の製造方法。 [2] At least one selected from the group consisting of (i) an organic substance having a triazine skeleton and a molecular weight of 300 or less per unit triazine skeleton, and (ii) a metal borate salt. The method for producing polypropylene-based resin foam particles according to [1], which comprises seeds.

〔3〕上記ポリプロピレン系樹脂粒子は、平均L/D比が4.0未満である、〔1〕または〔2〕に記載のポリプロピレン系樹脂発泡粒子の製造方法。[3] the polypropylene-based resin particles have an average L 2 / D 2 ratio is less than 4.0, the production method of the polypropylene resin foamed beads according to [1] or [2].

〔4〕〔1〕〜〔3〕の何れか1つに記載のポリプロピレン系樹脂発泡粒子の製造方法で得られたポリプロピレン系樹脂発泡粒子。 [4] Polypropylene resin foamed particles obtained by the method for producing polypropylene resin foamed particles according to any one of [1] to [3].

〔5〕〔4〕に記載のポリプロピレン系樹脂発泡粒子を用いてなる型内発泡成形体であって、上記型内発泡成形体の空隙率が5%以上50%以下である、ことを特徴とするポリプロピレン系樹脂型内発泡成形体。 [5] An in-mold foam molded product using the polypropylene-based resin foamed particles according to [4], wherein the void ratio of the in-mold foam molded product is 5% or more and 50% or less. Polypropylene resin mold in-foam molding.

次に本発明の一実施形態を実施例および比較例に基づき説明するが、本発明はこれら実施例に限定されるものではない。 Next, one embodiment of the present invention will be described based on Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例および比較例において使用したポリプロピレン系樹脂および添加剤は、以下のとおりである。 The polypropylene-based resins and additives used in Examples and Comparative Examples are as follows.

(1)ポリプロピレン系樹脂(a)
・ポリプロピレン系樹脂A:融点149℃、密度0.90g/cm、1−ブテン含量3.8重量%およびエチレン含量0.5重量%、MI10.0g/10分のブテン−エチレン−プロピレン系ランダム共重合体
・ポリプロピレン系樹脂B:融点144℃、密度0.90g/cm、エチレン含量3.5重量%、MI7.0g/10分のエチレン−プロピレン系ランダム共重合体
(2)親水性物質(b)
・メラミン[製品名:メラミン、日産科学工業株式会社製]
・アンメリン[製品名:アンメリン、東京化成工業株式会社製]
・ホウ酸亜鉛[製品名:HA−1、堺化学工業株式会社製]
(3)発泡核剤(c)
・タルク[製品名:タルカンパウダーPK−S、林化成株式会社製]
(4)高級脂肪酸アミド(d)
・エチレンビスステアリン酸アミド[製品名:アルフローH50F、日油株式会社製]
・エルカ酸アミド[製品名:アルフローP−10、日油株式会社製]
(5)その他添加剤
・カーボンブラック[製品名:MCF88、三菱ケミカル株式会社製]
・親水性ポリマー(カルボキシル基含有ポリマー)[製品名:ハイミランSD100、三井デュポンポリケミカル株式会社製:エチレン-メタクリル酸共重合体の分子間を金属イオンで架橋したエチレン系アイオノマー樹脂]
(6)発泡剤
・二酸化炭素[エア・ウォーター株式会社製]
・イソブタン[三井化学株式会社製]。
(1) Polypropylene resin (a)
-Polypropylene resin A: melting point 149 ° C., density 0.90 g / cm 3 , 1-butene content 3.8% by weight and ethylene content 0.5% by weight, MI 10.0 g / 10 minutes butene-ethylene-propylene random Copolymer / Polypropylene resin B: Ethylene-propylene-based random copolymer having a melting point of 144 ° C., a density of 0.90 g / cm 3 , an ethylene content of 3.5% by weight, and a MI of 7.0 g / 10 minutes (2) Hydrophilic substance (B)
・ Melamine [Product name: Melamine, manufactured by Nissan Kagaku Kogyo Co., Ltd.]
・ Ammeline [Product name: Ammeline, manufactured by Tokyo Chemical Industry Co., Ltd.]
・ Zinc borate [Product name: HA-1, manufactured by Sakai Chemical Industry Co., Ltd.]
(3) Effervescent nucleating agent (c)
・ Talc [Product name: Talcan powder PK-S, manufactured by Hayashi Kasei Co., Ltd.]
(4) Higher fatty acid amide (d)
-Ethylene bisstearic acid amide [Product name: Alflo H50F, manufactured by NOF CORPORATION]
・ Erucic acid amide [Product name: Alflo P-10, manufactured by NOF CORPORATION]
(5) Other additives-Carbon black [Product name: MCF88, manufactured by Mitsubishi Chemical Corporation]
-Hydrophilic polymer (carboxyl group-containing polymer) [Product name: Hymilan SD100, manufactured by Mitsui DuPont Polychemical Co., Ltd .: Ethylene ionomer resin in which the molecules of an ethylene-methacrylic acid copolymer are crosslinked with metal ions]
(6) Foaming agent / carbon dioxide [manufactured by Air Water Inc.]
-Isobutane [manufactured by Mitsui Chemicals, Inc.].

なお、実施例および比較例における評価は、次の方法により行なった。 The evaluation in Examples and Comparative Examples was carried out by the following method.

<ポリプロピレン系樹脂発泡粒子のDSC比>
DSC比[={β/(α+β)}×100(%)]の測定は、示差走査熱量計[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、ポリプロピレン系樹脂発泡粒子5〜6mgを10℃/分の昇温速度で40℃から220℃まで昇温するときに得られる、1回目の昇温時のDSC曲線(図2参照)から、算出した。
<DSC ratio of polypropylene-based resin foam particles>
To measure the DSC ratio [= {β / (α + β)} × 100 (%)], use a differential scanning calorimeter [manufactured by Seiko Instruments Co., Ltd., DSC6200 type] to measure 5 to 6 mg of polypropylene-based resin foam particles. It was calculated from the DSC curve (see FIG. 2) at the time of the first temperature rise obtained when the temperature was raised from 40 ° C. to 220 ° C. at a temperature rising rate of ° C./min.

<ポリプロピレン系樹脂粒子の平均L/D比、ポリプロピレン系樹脂発泡粒子の平均L/D比>
ポリプロピレン系樹脂粒子について、図1の(b)に示すL(最長部の長さ)、Dmax(L方向と垂直な断面における最大径)、Dmin(L方向と垂直な断面における最小径)をノギスを使って測定し、L/D比を算出した。Dは下記式(2)に従い算出した。そして、ポリプロピレン系樹脂粒子10粒のL/D比の平均値より、平均L/D比を算出した。
=(Dmax+Dmin)/2 ・・・・・(2)。
<Average L 2 / D 2 ratio of polypropylene resin particles, average L 1 / D 1 ratio of polypropylene resin foam particles>
Regarding polypropylene-based resin particles, L 2 (length of the longest part), D 2 max (maximum diameter in the cross section perpendicular to the L 2 direction), and D 2 min (vertical to the L 2 direction) shown in FIG. 1 (b). the minimum diameter) was measured using a caliper in the cross section was calculated L 2 / D 2 ratio. D 2 was calculated according to the following equation (2). Then, the average L 2 / D 2 ratio was calculated from the average value of the L 2 / D 2 ratio of 10 polypropylene-based resin particles.
D 2 = (D 2 max + D 2 min) / 2 ... (2).

ポリプロピレン系樹脂発泡粒子について、図1の(a)に示すL(最長部の長さ)、Dmax(L方向と垂直な断面における最大径)、Dmin(L方向と垂直な断面における最小径)をノギスを使って測定し、L/D比を算出した。Dは下記式(1)に従い算出した。そして、ポリプロピレン系樹脂発泡粒子10粒のL/D比の平均値より、平均L/D比を算出した。
=(Dmax+Dmin)/2 ・・・・・(1)。
For polypropylene-based resin foamed particles, (the length of the longest portion) L 1 shown in FIGS. 1 (a), (maximum diameter in the L 1 direction perpendicular cross section) D 1 max, D 1 min (L 1 and vertical The minimum diameter in a cross section) was measured using a caliper, and the L 1 / D 1 ratio was calculated. D 1 was calculated according to the following formula (1). Then, the average L 1 / D 1 ratio was calculated from the average value of the L 1 / D 1 ratio of 10 polypropylene-based resin foam particles.
D 1 = (D 1 max + D 1 min) / 2 ... (1).

<ポリプロピレン系樹脂発泡粒子のセル径>
任意に10個のポリプロピレン系樹脂発泡粒子を取り出し、切断した。各発泡粒子の切断面を2mmのゲージを装備した拡大倍率60倍の拡大鏡で観察し、ゲージ上に掛るセルの個数を数えた。測定した10個のポリプロピレン系樹脂発泡粒子のセル数の平均値をN(個)として、下記式(2)によりセル径を算出した。
セル径(μm)=2000/N(個) ・・・・・(2)。
<Cell diameter of polypropylene-based resin foam particles>
Arbitrarily 10 polypropylene-based resin foam particles were taken out and cut. The cut surface of each foamed particle was observed with a magnifying glass equipped with a gauge of 2 mm and a magnifying glass of 60 times, and the number of cells hung on the gauge was counted. The cell diameter was calculated by the following formula (2), where N (pieces) was taken as the average value of the measured number of cells of the 10 polypropylene-based resin foam particles.
Cell diameter (μm) = 2000 / N (pieces) ... (2).

<ポリプロピレン系樹脂発泡粒子(一段発泡粒子および二段発泡粒子)の発泡倍率>
嵩体積約50cmのポリプロピレン系樹脂発泡粒子の重量(g)(wとする)を求めた。当該ポリプロピレン系樹脂発泡粒子をメスシリンダー中に入っているエタノール中に沈め、メスシリンダーの液面の位置の上昇分に基づきポリプロピレン系樹脂発泡粒子の体積(エタノール水没体積、とも称する。)(cm)(vとする)を測定した。重量w、体積vおよびポリプロピレン系樹脂(a)の密度(g/cm)(dとする)から下記式(3)により発泡倍率を求めた。なお、ポリプロピレン系樹脂組成物の密度dは、0.9g/cmであった。
ポリプロピレン系樹脂発泡粒子の発泡倍率=d×v/w ・・・・・(3)。
<Expansion ratio of polypropylene resin foam particles (one-stage foam particles and two-stage foam particles)>
The weights (g) (w) of the polypropylene-based resin foam particles having a bulk volume of about 50 cm 3 were determined. The polypropylene-based resin foamed particles are submerged in ethanol contained in the measuring cylinder, and the volume of the polypropylene-based resin foamed particles (also referred to as ethanol submerged volume) (cm 3) based on the increase in the liquid level position of the measuring cylinder. ) (Let's be v) was measured. The foaming ratio was determined by the following formula (3) from the weight w, the volume v, and the density (g / cm 3) (d) of the polypropylene resin (a). The density d of the polypropylene-based resin composition was 0.9 g / cm 3 .
Foaming magnification of polypropylene-based resin foamed particles = d × v / w (3).

<ポリプロピレン系樹脂発泡粒子(一段発泡粒子および二段発泡粒子)の見かけ密度>
広口の10リットル容器にポリプロピレン系樹脂発泡粒子を静かに、あふれるまで投入した後、投入されたポリプロピレン系樹脂発泡粒子の体積が10Lとなるよう10L容器の口を擦り切った。10L容器に入ったポリプロピレン系樹脂発泡粒子の重量を測定後、容積10Lで除し、見かけ密度をg/Lの単位で表した。
<Apparent density of polypropylene-based resin foam particles (one-stage foam particles and two-stage foam particles)>
The polypropylene-based resin foam particles were gently charged into a wide-mouthed 10-liter container until it overflowed, and then the mouth of the 10 L container was scraped off so that the volume of the charged polypropylene-based resin foam particles became 10 L. After measuring the weight of the polypropylene-based resin foam particles contained in the 10 L container, the weight was divided by the volume of 10 L, and the apparent density was expressed in units of g / L.

<ポリプロピレン系樹脂型内発泡成形体の密度>
得られたポリプロピレン系樹脂型内発泡成形体(縦400mm×横300mm×厚み40mm)の重量(g)(Wとする)を測定し、当該成形体の縦、横および厚み寸法をノギスで測定して体積(cm)(Vとする)を算出した。成形体密度をW/Vにて求めた。但し、単位がg/Lとなるように換算した。
<Density of foam molded product in polypropylene resin mold>
The weight (g) (W) of the obtained polypropylene-based resin mold in-foam molded product (length 400 mm × width 300 mm × thickness 40 mm) was measured, and the length, width and thickness of the molded product were measured with a caliper. The volume (cm 3 ) (referred to as V) was calculated. The molded body density was determined by W / V. However, it was converted so that the unit was g / L.

<ポリプロピレン系樹脂型内発泡成形体の空隙率>
得られたポリプロピレン系樹脂型内発泡成形体(縦400mm×横300mm×厚み40mm)から、20×20×40mmの直方体試料を、表面スキン層を含むように切り出した。外形寸法より直方体試料の見掛け体積(cm)(V1とする)を求めた。更に、直方体試料をメスシリンダー中に入っている一定量のエタノール中に浸漬し、その時のメスシリンダーの液面の位置の上昇分に基づき、直方体試料の容積(cm)(V2とする)を測定した。空隙率を下記式(4)により求めた。
空隙率(%)={(V1―V2)/V1}×100 ・・・・・(4)。
<Porosity of foam molded product in polypropylene resin mold>
From the obtained polypropylene-based resin mold in-foam molded product (length 400 mm × width 300 mm × thickness 40 mm), a rectangular parallelepiped sample having a size of 20 × 20 × 40 mm was cut out so as to include a surface skin layer. The apparent volume (cm 3 ) (referred to as V1) of the rectangular parallelepiped sample was determined from the external dimensions. Furthermore, the rectangular parallelepiped sample is immersed in a certain amount of ethanol contained in the graduated cylinder, and the volume (cm 3 ) (V2) of the rectangular parallelepiped sample is increased based on the amount of increase in the liquid level position of the graduated cylinder at that time. It was measured. The porosity was calculated by the following formula (4).
Porosity (%) = {(V1-V2) / V1} x 100 ... (4).

<ポリプロピレン系樹脂型内発泡成形体の摩擦音>
得られたポリプロピレン系樹脂型内発泡成形体(縦400mm×横300mm×厚み40mm)の平面部に、別途作成したもう1枚のポリプロピレン系樹脂発泡成形体(同サイズ)の角部を接触させた状態で当該角部を往復移動させることにより、ポリプロピレン系樹脂発泡成形体同士を擦り合わせ、摩擦音の発生の有無を評価した。評価基準は、下記による。
○:殆ど摩擦音が発生しないが、数回移動させると僅かに発生する。
×:移動させた時に大きな摩擦音が発生する。
<Fricative sound of foamed molded product in polypropylene resin mold>
The flat portion of the obtained polypropylene-based resin foam molded article (length 400 mm × width 300 mm × thickness 40 mm) was brought into contact with the corner portion of another polypropylene-based resin foam molded article (same size) prepared separately. By reciprocating the corners in this state, the polypropylene-based resin foam molded products were rubbed against each other, and the presence or absence of friction noise was evaluated. The evaluation criteria are as follows.
◯: Almost no friction noise is generated, but it is slightly generated after moving several times.
X: A loud fricative is generated when the vehicle is moved.

<ポリプロピレン系樹脂型内発泡成形体のピーク吸音率>
JIS A1405に準拠し、試料厚み40.0mmで500〜6400Hzでの垂直入射吸音率を測定した。ポリプロピレン系樹脂型内発泡成形体(縦400mm×横300mm×厚み40mm)より、表面スキン層を有する面が音波入射面となるように、φ29mm、厚み40.0mmで切り出した。垂直入射吸音率の測定は、音波を反射する剛体壁と試料が密着した状態、つまり背後空気が無い状態でおこなった。垂直入射吸音率の測定には小野測器社製の垂直入射吸音率測定装置SR−4100を用いた。
<Peak sound absorption coefficient of foam molded product in polypropylene resin mold>
According to JIS A1405, the vertical incident sound absorption coefficient at a sample thickness of 40.0 mm and 500 to 6400 Hz was measured. It was cut out from a polypropylene-based resin mold in-foam molded product (length 400 mm × width 300 mm × thickness 40 mm) with a diameter of 29 mm and a thickness of 40.0 mm so that the surface having the surface skin layer became the sound wave incident surface. The vertical incident sound absorption coefficient was measured in a state where the rigid wall reflecting sound waves and the sample were in close contact with each other, that is, in a state where there was no back air. A vertical incident sound absorption coefficient measuring device SR-4100 manufactured by Ono Sokki Co., Ltd. was used for measuring the vertical incident sound absorption coefficient.

得られた周波数−垂直入射吸音率曲線より、垂直入射吸音率が最大となる周波数での垂直入射吸音率(ピーク吸音率)を読み取った。 From the obtained frequency-vertical incident sound absorption curve, the vertical incident sound absorption coefficient (peak sound absorption coefficient) at the frequency at which the vertical incident sound absorption coefficient was maximized was read.

<実施例1〜18、比較例1〜22>
[ポリプロピレン系樹脂粒子の作製]
表1〜6に示す種類および重量部のポリプロピレン系樹脂(a)、親水性物質(b)、発泡核剤(c)、高級脂肪酸アミド(d)および必要に応じてその他添加剤を混合し、混合物(ブレンド物)を調製した。混合物を26mmφの二軸押出機で溶融混練(樹脂温度210℃)し、ポリプロピレン系樹脂組成物を調製した。ポリプロピレン系樹脂組成物を押出機先端からストランド状に押出した後、押し出されたポリプロピレン系樹脂組成物をカッティングすることにより造粒し、表1〜6に記載の樹脂粒子L/Dを有する、ポリプロピレン系樹脂粒子(1.2mg/粒)を製造した。
<Examples 1 to 18, Comparative Examples 1 to 22>
[Preparation of polypropylene resin particles]
The polypropylene resin (a), the hydrophilic substance (b), the effervescent nucleating agent (c), the higher fatty acid amide (d) and other additives shown in Tables 1 to 6 are mixed, if necessary. A mixture (blend) was prepared. The mixture was melt-kneaded (resin temperature 210 ° C.) with a 26 mmφ twin-screw extruder to prepare a polypropylene-based resin composition. Polypropylene-based resin composition is extruded into a strand shape from the tip of an extruder, and then granulated by cutting the extruded polypropylene-based resin composition, and polypropylene having the resin particles L / D shown in Tables 1 to 6. A based resin particle (1.2 mg / grain) was produced.

[ポリプロピレン系樹脂発泡粒子(一段発泡粒子)の作製]
10L耐圧容器に、得られたポリプロピレン系樹脂粒子100重量部、水系分散媒として水200重量部、分散剤として第三リン酸カルシウム0.4重量部、分散助剤としてアルカンスルホン酸ナトリウム0.07重量部、ならびに発泡剤として二酸化炭素6重量部(実施例1〜18、比較例1〜20)またはイソブタン15重量部(比較例21〜22)を仕込んだ。仕込んだ原料を、撹拌し、ポリプロピレン系樹脂粒子を耐圧容器内で発泡剤と共に水系分散媒に分散させた。撹拌下、耐圧容器内を加熱して、発泡温度(耐圧容器内温度)を表1〜6に記載の温度に到達させた。その後、耐圧容器内に二酸化炭素(実施例1〜18、比較例1〜21)またはイソブタン(比較例21〜22)を追加して耐圧容器内を加圧して、耐圧容器内の圧力を、表1〜6に記載の圧力(発泡圧力)に調整した。耐圧容器内を、表1〜6に記載の発泡温度および発泡圧力にて30分間保持した。その後、二酸化炭素(実施例1〜18、比較例1〜20)もしくはイソブタン(比較例21〜22)で容器内の発泡圧力を保持しながら、耐圧容器の下部に設けた3.6mmφオリフィスを通して分散液(ポリプロピレン系樹脂粒子および発泡剤が分散している水系分散媒)を大気圧下に放出し、ポリプロピレン系樹脂発泡粒子(一段発泡粒子)を得た。その後、一段発泡粒子を75℃で24時間乾燥した。なお、上記発泡温度は、使用したポリプロピレン系樹脂粒子の軟化温度以上である。得られた一段発泡粒子について、DSC比、セル系、発泡倍率、および見かけ密度を測定し、結果を表1〜6に示した。
[Preparation of polypropylene-based resin foamed particles (single-stage foamed particles)]
In a 10 L pressure resistant container, 100 parts by weight of the obtained polypropylene-based resin particles, 200 parts by weight of water as an aqueous dispersion medium, 0.4 parts by weight of tertiary calcium phosphate as a dispersant, and 0.07 parts by weight of sodium alkanesulfonate as a dispersion aid. , And 6 parts by weight of carbon dioxide (Examples 1 to 18, Comparative Examples 1 to 20) or 15 parts by weight of isobutane (Comparative Examples 21 to 22) were charged as a foaming agent. The charged raw materials were stirred, and polypropylene-based resin particles were dispersed in an aqueous dispersion medium together with a foaming agent in a pressure-resistant container. The inside of the pressure-resistant container was heated under stirring to bring the foaming temperature (temperature inside the pressure-resistant container) to the temperature shown in Tables 1 to 6. After that, carbon dioxide (Examples 1 to 18, Comparative Examples 1 to 21) or isobutane (Comparative Examples 21 to 22) is added to the pressure-resistant container to pressurize the inside of the pressure-resistant container, and the pressure inside the pressure-resistant container is shown in the table. The pressure was adjusted to the pressure (foaming pressure) described in 1 to 6. The inside of the pressure-resistant container was held at the foaming temperature and foaming pressure shown in Tables 1 to 6 for 30 minutes. Then, while maintaining the foaming pressure in the container with carbon dioxide (Examples 1 to 18 and Comparative Examples 1 to 20) or isobutane (Comparative Examples 21 to 22), the mixture is dispersed through a 3.6 mmφ orifice provided at the bottom of the pressure-resistant container. The liquid (an aqueous dispersion medium in which polypropylene-based resin particles and a foaming agent are dispersed) was released under atmospheric pressure to obtain polypropylene-based resin foamed particles (one-stage foamed particles). Then, the one-stage foamed particles were dried at 75 ° C. for 24 hours. The foaming temperature is equal to or higher than the softening temperature of the polypropylene-based resin particles used. The DSC ratio, cell system, foaming ratio, and apparent density of the obtained one-stage foamed particles were measured, and the results are shown in Tables 1 to 6.

[ポリプロピレン系樹脂発泡粒子(二段発泡粒子)の作製]
実施例1〜11、13〜18、比較例1〜13、15〜18、20にて得られた一段発泡粒子をそれぞれ1mの耐圧容器に仕込み、空気加圧して一段発泡粒子に0.30〜0.40MPa(絶対圧)の内圧を付与した。次いで一段発泡粒子を二段発泡機に移送した後、0.040〜0.120MPa(ゲージ圧)の水蒸気で一段発泡粒子を加熱して、一段発泡粒子を更に発泡させ、ポリプロピレン系樹脂発泡粒子(二段発泡粒子)を得た。得られた二段発泡粒子について、DSC比、セル系、発泡倍率、および見かけ密度を測定し、結果を表1〜6に示した。
[Preparation of polypropylene-based resin foam particles (two-stage foam particles)]
The one-stage foamed particles obtained in Examples 1 to 11 and 13 to 18 and Comparative Examples 1 to 13, 15 to 18 and 20 were placed in a pressure-resistant container of 1 m 3 and air-pressurized to 0.30 into the one-stage foamed particles. An internal pressure of ~ 0.40 MPa (absolute pressure) was applied. Next, after transferring the one-stage foamed particles to the two-stage foaming machine, the one-stage foamed particles are heated with steam of 0.040 to 0.120 MPa (gauge pressure) to further foam the one-stage foamed particles, and the polypropylene-based resin foamed particles (polypropylene resin foamed particles). Two-stage foamed particles) were obtained. The DSC ratio, cell system, foaming ratio, and apparent density of the obtained two-stage foamed particles were measured, and the results are shown in Tables 1 to 6.

[ポリプロピレン系樹脂型内発泡成形体の作製]
実施例1〜11、13〜18、比較例1〜13、15〜18、20にて得られた二段発泡粒子、および実施例12、比較例14、19、21、22で得られた一段発泡粒子に内圧を付与せずに、二段発泡粒子または一段発泡粒子を長さ400mm×幅300mm×厚み40mmの金型に充填した。ここで、クラッキング量を6mmとした。その後、0.30MPa(ゲージ圧)の水蒸気にて金型および発泡粒子を加熱し、発泡粒子同士を融着させ、型内発泡成形体を得た。得られた型内発泡成形体について、成形体密度、空隙率および吸音率を測定し、摩擦音を評価して、それらの結果を表1〜6に示した。

Figure 2019189462
Figure 2019189462
Figure 2019189462
Figure 2019189462
Figure 2019189462
[Preparation of foamed molded article in polypropylene resin mold]
Two-stage foamed particles obtained in Examples 1-11, 13-18, Comparative Examples 1-13, 15-18, 20, and one-stage particles obtained in Example 12, Comparative Examples 14, 19, 21, 22. The two-stage foamed particles or the one-stage foamed particles were filled in a mold having a length of 400 mm, a width of 300 mm, and a thickness of 40 mm without applying internal pressure to the foamed particles. Here, the cracking amount was set to 6 mm. Then, the mold and the foamed particles were heated with steam of 0.30 MPa (gauge pressure), and the foamed particles were fused to each other to obtain an in-mold foamed molded product. With respect to the obtained in-mold foam molded product, the molded product density, porosity and sound absorption coefficient were measured, the frictional sound was evaluated, and the results are shown in Tables 1 to 6.
Figure 2019189462
Figure 2019189462
Figure 2019189462
Figure 2019189462
Figure 2019189462

Figure 2019189462
実施例1〜18では、本発明の範囲内のポリプロピレン系樹脂(a)と、親水性物質(b)と、発泡核剤(c)と、高級脂肪酸アミド(d)とを所定の配合としてなる発泡粒子は、高発泡倍率であり、且つ空隙率および吸音率が高く、且つ摩擦音抑制性能が良好な型内発泡成形体を提供できることが分かる。
Figure 2019189462
In Examples 1 to 18, the polypropylene-based resin (a) within the scope of the present invention, the hydrophilic substance (b), the effervescent nucleating agent (c), and the higher fatty acid amide (d) are blended in a predetermined manner. It can be seen that the foamed particles can provide an in-mold foamed molded product having a high foaming ratio, high porosity and sound absorption coefficient, and good friction noise suppression performance.

比較例1では、親水性物質(b)の量が不足することで発泡性が劣り性能(発泡倍率)不十分であることが分かる。 In Comparative Example 1, it can be seen that the foamability is inferior and the performance (foaming ratio) is insufficient due to the insufficient amount of the hydrophilic substance (b).

比較例2では、発泡核剤(c)の量が不足することでセル径が粗大となり、型内発泡成形時の二次発泡力が高くなった結果、型内発泡成形体の空隙が埋まり吸音率が不十分となることが分かる。 In Comparative Example 2, the cell diameter became coarse due to the insufficient amount of the foam nucleating agent (c), and the secondary foaming force during the foam molding in the mold became high. As a result, the voids of the foam molded product in the mold were filled and sound absorption was performed. It turns out that the rate is insufficient.

比較例3では、親水性物質(b)の量が過剰となることで型内発泡成形体が収縮して空隙が埋まり吸音率が不十分となることが分かる。 In Comparative Example 3, it can be seen that when the amount of the hydrophilic substance (b) becomes excessive, the foamed molded product in the mold shrinks, the voids are filled, and the sound absorption coefficient becomes insufficient.

比較例4では、発泡核剤(c)の量が過剰となることでセル径が微細化し、型内発泡成形時の二次発泡力が低くなりすぎた結果、型内発泡成形体の融着が悪化して割れが発生し、良好な型内発泡成形体を得ることができなかった。 In Comparative Example 4, the cell diameter became finer due to the excessive amount of the foam nucleating agent (c), and the secondary foaming force during in-mold foam molding became too low. As a result, the in-mold foam molded product was fused. Was deteriorated and cracks were generated, and a good in-mold foam molded product could not be obtained.

比較例5では、高級脂肪酸アミド(d)を添加しない結果、型内発泡成形体の摩擦音が発生し、性能不十分(摩擦音評価が×)であることが分かる。 In Comparative Example 5, as a result of not adding the higher fatty acid amide (d), a fricative sound of the foamed molded product in the mold was generated, and it was found that the performance was insufficient (the friction sound evaluation was ×).

比較例6では、高級脂肪酸アミド(d)の量が過剰となることで、ポリプロピレン系樹脂発泡粒子を製造した際に発泡粒子表面に付着する分散剤の量が増えた結果、型内発泡成形体の融着が悪化して割れが発生し、良好な型内発泡成形体を得ることができなかった。 In Comparative Example 6, the amount of the higher fatty acid amide (d) was excessive, and as a result, the amount of the dispersant adhering to the surface of the foamed particles when the polypropylene-based resin foamed particles were produced increased. The fusion of the molds deteriorated and cracks occurred, and a good in-mold foam molded product could not be obtained.

比較例7〜9では特許文献3(国際公開WO2006/016478)の実施例範囲内での配合とした結果、発泡性に劣り、発泡倍率が低く、且つ型内発泡成形体の摩擦音が発生し性能不十分であることが分かる。また、セル径が粗大となり、型内発泡成形時の二次発泡力が高くなった結果、型内発泡成形体の空隙が埋まり吸音率が不十分となることが分かる。 In Comparative Examples 7 to 9, as a result of blending within the range of Examples of Patent Document 3 (International Publication WO 2006/016478), the foamability is inferior, the foaming ratio is low, and the fricative noise of the foamed molded product in the mold is generated and the performance is performed. It turns out to be inadequate. Further, it can be seen that the cell diameter becomes coarse and the secondary foaming force at the time of foam molding in the mold becomes high, and as a result, the voids of the foamed molded product in the mold are filled and the sound absorption coefficient becomes insufficient.

比較例10〜11では発泡核剤(c)を添加しない結果、セル径が粗大となり、型内発泡成形時の二次発泡力が高くなった結果、型内発泡成形体の空隙が埋まり吸音率が不十分となることが分かる。また、高級脂肪酸アミド(d)を添加しない結果、型内発泡成形体の摩擦音が発生し、性能不十分(摩擦音評価が×)であることが分かる。 In Comparative Examples 10 to 11, as a result of not adding the foam nucleating agent (c), the cell diameter became coarse and the secondary foaming force at the time of foam molding in the mold increased, and as a result, the voids of the foam molded product in the mold were filled and the sound absorption coefficient. It turns out that is insufficient. Further, it can be seen that as a result of not adding the higher fatty acid amide (d), a fricative noise of the foamed molded product in the mold is generated, and the performance is insufficient (the friction noise evaluation is ×).

比較例12〜13では特許文献8(特開2003−171516号公報)の実施例範囲内での配合とした結果、型内発泡成形体の空隙が埋まり吸音率が不十分となることが分かる。また、高級脂肪酸アミド(d)を添加しない結果、型内発泡成形体の摩擦音が発生し、性能不十分(摩擦音評価が×)であることが分かる。 It can be seen that in Comparative Examples 12 to 13, as a result of blending within the range of Examples of Patent Document 8 (Japanese Unexamined Patent Publication No. 2003-171516), the voids of the foamed molded product in the mold are filled and the sound absorption coefficient becomes insufficient. Further, it can be seen that as a result of not adding the higher fatty acid amide (d), a fricative noise of the foamed molded product in the mold is generated, and the performance is insufficient (the friction noise evaluation is ×).

比較例14ではDSC比が本願範囲を下回った結果、型内発泡成形時の二次発泡力が高くなった結果、型内発泡成形体の空隙が埋まり吸音率が不十分となることが分かる。 In Comparative Example 14, as a result of the DSC ratio falling below the range of the present application, the secondary foaming force during in-mold foam molding increased, and as a result, the voids of the in-mold foam molded product were filled and the sound absorption coefficient became insufficient.

比較例15ではDSC比が本願範囲を上回った結果、型内発泡成形時の二次発泡力が高くなり、発泡性が劣り性能(発泡倍率)不十分であることが分かる。さらに、型内発泡成形体の融着が悪化して割れが発生し、良好な型内発泡成形体を得ることができなかった。 In Comparative Example 15, as a result of the DSC ratio exceeding the range of the present application, it can be seen that the secondary foaming force at the time of in-mold foam molding is high, the foamability is inferior, and the performance (foaming ratio) is insufficient. Further, the fusion of the in-mold foam molded product deteriorated and cracks occurred, so that a good in-mold foam molded product could not be obtained.

比較例16では発泡粒子のL/Dが本願範囲を下回った結果、型内発泡成形時に発泡粒子の充填性が非常によくなり(過剰となり)、型内発泡成形体の空隙が埋まり吸音率が不十分となることが分かる。In Comparative Example 16, as a result of the L 1 / D 1 of the foamed particles falling below the range of the present application, the filling property of the foamed particles became very good (excessive) during the foaming molding in the mold, and the voids of the foamed molded product in the mold were filled to absorb sound. It turns out that the rate is insufficient.

比較例17では発泡粒子のL/Dが本願範囲を上回った結果、型内発泡成形時に発泡粒子の充填性が非常に悪くなり、良好な型内発泡成形体を得ることができなかった。In Comparative Example 17, as a result of the L 1 / D 1 of the foamed particles exceeding the range of the present application, the filling property of the foamed particles became very poor during the foamed molding in the mold, and a good foamed molded product in the mold could not be obtained. ..

比較例18では親水性物質(b)と発泡核剤(c)との合計添加量が本願範囲を下回った結果、発泡性と吸音性能とが劣ることが分かる。 In Comparative Example 18, as a result of the total addition amount of the hydrophilic substance (b) and the foaming nucleating agent (c) being less than the range of the present application, it can be seen that the foaming property and the sound absorbing performance are inferior.

比較例19では親水性物質(b)と発泡核剤(c)との合計添加量が本願範囲を上回った結果、過発泡となり発泡粒子の収縮がひどくなり、良好な発泡粒子を得ることができなかった。 In Comparative Example 19, as a result of the total addition amount of the hydrophilic substance (b) and the effervescent nucleating agent (c) exceeding the range of the present application, hyperfoaming occurs and the shrinkage of the effervescent particles becomes severe, and good effervescent particles can be obtained. There wasn't.

比較例20では特許文献9(特開2004−67768号公報)の実施例13に相当する配合とした結果、発泡性に劣り、発泡倍率が低く、且つ、型内発泡成形体の摩擦音が発生し、性能不十分であることが分かる。 In Comparative Example 20, as a result of the formulation corresponding to Example 13 of Patent Document 9 (Japanese Unexamined Patent Publication No. 2004-67768), the foamability was inferior, the foaming ratio was low, and the fricative noise of the foamed molded product in the mold was generated. , It turns out that the performance is insufficient.

比較例21〜22では、それぞれ、本願実施例1、実施例5と同一の配合で、使用する発泡剤を二酸化炭素からイソブタンへ変更した。その結果、過発泡となり発泡粒子の収縮がひどくなり、良好な発泡粒子を得ることができなかった。 In Comparative Examples 21 to 22, the foaming agent used was changed from carbon dioxide to isobutane in the same formulation as in Examples 1 and 5, respectively. As a result, hyperfoaming occurred and the shrinkage of the foamed particles became severe, and good foamed particles could not be obtained.

本発明の一実施形態によると、高い空隙率を有し、且つ高倍率であるポリプロピレン系樹脂型内発泡成形体を提供し得る、ポリプロピレン系樹脂発泡粒子を得ることができる。そのため、本発明の一実施形態は、包装材分野、緩衝材分野、断熱材分野、建築部材分野など様々な分野で好適に利用できる。 According to one embodiment of the present invention, polypropylene-based resin foamed particles that have a high porosity and can provide a polypropylene-based resin in-mold foam molded article having a high magnification can be obtained. Therefore, one embodiment of the present invention can be suitably used in various fields such as a packaging material field, a cushioning material field, a heat insulating material field, and a building member field.

Claims (5)

ポリプロピレン系樹脂粒子を耐圧容器内で発泡剤と共に水系分散媒に分散させる工程、
上記ポリプロピレン系樹脂粒子の軟化温度以上の温度まで上記耐圧容器内を加熱し、かつ、上記耐圧容器内を加圧する工程、および
上記ポリプロピレン系樹脂粒子および上記発泡剤が分散している上記水系分散媒を上記耐圧容器の内圧よりも低い圧力域に放出して、ポリプロピレン系樹脂発泡粒子を得る工程、を有し、
上記ポリプロピレン系樹脂粒子は、
ポリプロピレン系樹脂(a)、並びに
ポリプロピレン系樹脂(a)100重量部に対し、
親水性物質(b)1.0重量部以上10重量部以下、
且つ、発泡核剤(c)1.0重量部以上10重量部以下、
且つ、上記親水性物質(b)と上記発泡核剤(c)との合計量が2.5重量部以上20重量部以下、
且つ、高級脂肪酸アミド(d)1.0重量部以上5.0重量部以下を含有する、ポリプロピレン系樹脂組成物からなり、
上記ポリプロピレン系樹脂発泡粒子は、
平均L/D比が1.3以上3.5以下であり、
セル径が30μm以上100μm以下であり、
発泡粒子の示差走査熱量測定(DSC)で、40℃から220℃まで10℃/分の速度で昇温した時に得られるDSC曲線から算出されるDSC比が40%以上70%以下であり、
且つ、発泡倍率が15倍以上35倍以下であり、
上記発泡剤は二酸化炭素を含む無機系発泡剤である、
ことを特徴とする、ポリプロピレン系樹脂発泡粒子の製造方法。
A process of dispersing polypropylene-based resin particles in an aqueous dispersion medium together with a foaming agent in a pressure-resistant container.
The step of heating the inside of the pressure-resistant container to a temperature equal to or higher than the softening temperature of the polypropylene-based resin particles and pressurizing the inside of the pressure-resistant container, and the aqueous dispersion medium in which the polypropylene-based resin particles and the foaming agent are dispersed. Is released into a pressure range lower than the internal pressure of the pressure-resistant container to obtain polypropylene-based resin foamed particles.
The polypropylene-based resin particles are
With respect to 100 parts by weight of polypropylene-based resin (a) and polypropylene-based resin (a)
Hydrophilic substance (b) 1.0 part by weight or more and 10 parts by weight or less,
And 1.0 part by weight or more and 10 parts by weight or less of the foam nucleating agent (c),
Moreover, the total amount of the hydrophilic substance (b) and the effervescent nucleating agent (c) is 2.5 parts by weight or more and 20 parts by weight or less.
It is composed of a polypropylene-based resin composition containing 1.0 part by weight or more and 5.0 parts by weight or less of the higher fatty acid amide (d).
The polypropylene-based resin foam particles are
The average L 1 / D 1 ratio is 1.3 or more and 3.5 or less.
The cell diameter is 30 μm or more and 100 μm or less.
In differential scanning calorimetry (DSC) of foamed particles, the DSC ratio calculated from the DSC curve obtained when the temperature is raised from 40 ° C. to 220 ° C. at a rate of 10 ° C./min is 40% or more and 70% or less.
Moreover, the foaming ratio is 15 times or more and 35 times or less.
The foaming agent is an inorganic foaming agent containing carbon dioxide.
A method for producing polypropylene-based resin foam particles, which is characterized by the above.
上記親水性物質(b)が、(i)トリアジン骨格を有し単位トリアジン骨格あたりの分子量が300以下の有機物、および(ii)ホウ酸金属塩、からなる群から選択される少なくとも1種を含む、請求項1に記載のポリプロピレン系樹脂発泡粒子の製造方法。 The hydrophilic substance (b) contains at least one selected from the group consisting of (i) an organic substance having a triazine skeleton and a molecular weight of 300 or less per unit triazine skeleton, and (ii) a metal borate salt. The method for producing polypropylene-based resin foam particles according to claim 1. 上記ポリプロピレン系樹脂粒子は、平均L/D比が4.0未満である、請求項1または2に記載のポリプロピレン系樹脂発泡粒子の製造方法。The polypropylene-based resin particles have an average L 2 / D 2 ratio is less than 4.0, the manufacturing method of the foamed polypropylene resin particles according to claim 1 or 2. 請求項1〜3の何れか1項に記載のポリプロピレン系樹脂発泡粒子の製造方法で得られたポリプロピレン系樹脂発泡粒子。 Polypropylene resin foamed particles obtained by the method for producing polypropylene resin foamed particles according to any one of claims 1 to 3. 請求項4に記載のポリプロピレン系樹脂発泡粒子を用いてなる型内発泡成形体であって、
上記型内発泡成形体の空隙率が5%以上50%以下である、
ことを特徴とするポリプロピレン系樹脂型内発泡成形体。
An in-mold foam molded product using the polypropylene-based resin foamed particles according to claim 4.
The porosity of the foamed molded product in the mold is 5% or more and 50% or less.
A polypropylene-based resin mold in-foam molded product.
JP2020509251A 2018-03-27 2019-03-27 Method for producing expanded polypropylene resin particles Active JP7162051B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018060131 2018-03-27
JP2018060131 2018-03-27
PCT/JP2019/013359 WO2019189462A1 (en) 2018-03-27 2019-03-27 Method for manufacturing polypropylene resin foamed particles

Publications (2)

Publication Number Publication Date
JPWO2019189462A1 true JPWO2019189462A1 (en) 2021-03-11
JP7162051B2 JP7162051B2 (en) 2022-10-27

Family

ID=68059189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020509251A Active JP7162051B2 (en) 2018-03-27 2019-03-27 Method for producing expanded polypropylene resin particles

Country Status (2)

Country Link
JP (1) JP7162051B2 (en)
WO (1) WO2019189462A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201361A (en) * 2001-11-01 2003-07-18 Jsp Corp Method for manufacturing in-mold molded foam polypropylene particle
JP2008069186A (en) * 2006-09-12 2008-03-27 Kaneka Corp Prefoamed polypropylene resin particle having reduced friction noise
JP2008138020A (en) * 2006-11-30 2008-06-19 Jsp Corp Expanded particle and expansion molded product
JP2008255286A (en) * 2007-04-09 2008-10-23 Kaneka Corp Black pre-expanded particle of polypropylene-based resin
JP2009215485A (en) * 2008-03-12 2009-09-24 Kaneka Corp Method for producing foamed polypropylenic resin particles, foamed particles of polypropylenic resin and in-mold expansion formed articles of polypropylenic resin
JP2010031265A (en) * 2008-06-27 2010-02-12 Kaneka Corp Polyolefin-based resin preliminarily foamed particle with little variation of foaming ratio and method for manufacturing the same
JP2010037432A (en) * 2008-08-05 2010-02-18 Kaneka Corp Polypropylene resin pre-expanded particle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201361A (en) * 2001-11-01 2003-07-18 Jsp Corp Method for manufacturing in-mold molded foam polypropylene particle
JP2008069186A (en) * 2006-09-12 2008-03-27 Kaneka Corp Prefoamed polypropylene resin particle having reduced friction noise
JP2008138020A (en) * 2006-11-30 2008-06-19 Jsp Corp Expanded particle and expansion molded product
JP2008255286A (en) * 2007-04-09 2008-10-23 Kaneka Corp Black pre-expanded particle of polypropylene-based resin
JP2009215485A (en) * 2008-03-12 2009-09-24 Kaneka Corp Method for producing foamed polypropylenic resin particles, foamed particles of polypropylenic resin and in-mold expansion formed articles of polypropylenic resin
JP2010031265A (en) * 2008-06-27 2010-02-12 Kaneka Corp Polyolefin-based resin preliminarily foamed particle with little variation of foaming ratio and method for manufacturing the same
JP2010037432A (en) * 2008-08-05 2010-02-18 Kaneka Corp Polypropylene resin pre-expanded particle

Also Published As

Publication number Publication date
WO2019189462A1 (en) 2019-10-03
JP7162051B2 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP6767980B2 (en) Polypropylene resin foamed particles, polypropylene resin foamed particles manufacturing method, polypropylene resin foamed molded product manufacturing method, polypropylene resin foamed molded product
JP6568801B2 (en) Polyolefin resin foam particles and polyolefin resin in-mold foam molding
JP2018076464A (en) Foam particle and molding thereof
JP5976098B2 (en) In-mold foam molded article comprising polypropylene resin expanded particles, polypropylene resin expanded particles, and methods for producing the same
WO2013011951A1 (en) Antistatic non-crosslinked foamed polyethylene resin particles and molded non-crosslinked foamed polyethylene resin body
WO2015076306A1 (en) Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
JP5667087B2 (en) Non-crosslinked polyethylene resin expanded particles and non-crosslinked polyethylene resin expanded foam
JPWO2019189564A1 (en) Polyolefin-based resin foamed particles, their production method, and polyolefin-based resin foam molded article
JP5630591B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP5591965B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP5324967B2 (en) Thermoplastic resin expanded particles and method for producing the same
WO2016098698A1 (en) Polypropylene resin foamed particles
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JP6701174B2 (en) Method for producing polyethylene-based resin foam molding
JP2013100555A (en) Pre-expanded particle of polyolefin resin, and method for producing the same
JPWO2019189462A1 (en) Manufacturing method of polypropylene-based resin foam particles
JP6625472B2 (en) Foamed polypropylene resin particles, foamed molded article in polypropylene resin mold, and method for producing the same
JP6609559B2 (en) Conductive polypropylene resin expanded particles having excellent antifouling property and moldability, method for producing polypropylene resin expanded particles, and polypropylene resin expanded foam
WO2017090432A1 (en) Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article
WO2016147775A1 (en) Polyethylene resin foam particles having antistatic performance, and polyethylene resin in-mold foam-molded article and method for manufacturing same
JP6847584B2 (en) Polyethylene resin foam particles and polyethylene resin foam molded products with antistatic performance and their manufacturing methods
JP5220486B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
WO2020090335A1 (en) Foam particles
JP5161593B2 (en) Method for producing expanded polypropylene resin particles
JP2010265424A (en) Method of production of polypropylene-based resin preliminary foaming particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7162051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150