WO2019172204A1 - Polypropylene resin foamed particle and method of producing same - Google Patents

Polypropylene resin foamed particle and method of producing same Download PDF

Info

Publication number
WO2019172204A1
WO2019172204A1 PCT/JP2019/008472 JP2019008472W WO2019172204A1 WO 2019172204 A1 WO2019172204 A1 WO 2019172204A1 JP 2019008472 W JP2019008472 W JP 2019008472W WO 2019172204 A1 WO2019172204 A1 WO 2019172204A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene resin
weight
particles
parts
expanded
Prior art date
Application number
PCT/JP2019/008472
Other languages
French (fr)
Japanese (ja)
Inventor
義之 望月
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020505026A priority Critical patent/JP7269220B2/en
Priority to CN201980008984.9A priority patent/CN111615532A/en
Publication of WO2019172204A1 publication Critical patent/WO2019172204A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent

Definitions

  • the present invention relates to a polypropylene resin expanded particle and a method for producing the same.
  • a polypropylene resin foam molded body (hereinafter also simply referred to as “in-mold foam molded body”) composed of polypropylene resin foam particles (hereinafter also referred to as “resin foam particles”, “foam particles” or “beads”). Excellent physical properties such as buffering property and heat insulating property. For this reason, polypropylene resin foam moldings are used in various fields such as packaging materials, cushioning materials, heat insulating materials, and building materials.
  • the in-mold foam molding method for filling a mold with polypropylene resin foam particles and heating them with water vapor or the like to fuse the foam particles together to obtain an in-mold foam molded product of a predetermined shape is a product of various shapes. Since it can be obtained relatively easily, it is used in many applications.
  • the polypropylene resin expanded particles mainly contain polypropylene resin particles, water as a dispersion medium, an inorganic gas based foaming agent, a dispersing agent and a dispersion aid together in a pressure resistant container, and are dispersed by stirring. After heating and pressurizing the inside of the container, the dispersion liquid in the pressure-resistant container is discharged into a pressure region lower than the pressure in the container to foam the polypropylene resin particles.
  • the dispersant is added to prevent fusion (blocking) between the resin particles in the pressure vessel or between the resin foam particles immediately after being released to the outside of the pressure vessel.
  • tricalcium phosphate is preferably used (for example, Patent Documents 1 and 2).
  • Patent Document 2 a polypropylene resin foam that provides an in-mold foam molded article that takes advantage of the original strength of the base resin without losing physical properties and quality such as fusion and surface properties during in-mold foam molding.
  • a method of using polypropylene resin particles comprising a polypropylene resin composition in which a specific polyethylene resin is mixed with a polypropylene resin is disclosed.
  • Patent Document 3 discloses a method for producing expanded polypropylene resin particles containing an NH type hindered amine compound. This document describes an improvement in the blocking prevention effect at the time of foaming by an inorganic dispersant by containing a specific amount of an NH type hindered amine compound.
  • JP 2017-179281 A International Publication Number WO2017 / 090432 JP-A-11-147972
  • the object of one embodiment of the present invention is that when silicate is used as a dispersant, blocking outside the pressure vessel does not occur even if the weight ratio between the polypropylene resin particles and the aqueous dispersion medium is close, That is, an object of the present invention is to provide a method for producing polypropylene resin expanded particles for in-mold foam molding with high productivity.
  • the present inventors have used a polypropylene resin in which a specific polyethylene resin and an amine compound are mixed with the polypropylene resin, so that the weight ratio of the polypropylene resin particles to the aqueous dispersion medium is close.
  • the present inventors have found that polypropylene-based resin expanded particles having no blocking can be obtained even under conditions in which a small amount of silicate is used as a dispersant, that is, conditions in which expanded particles are likely to be blocked outside the pressure vessel. That is, one embodiment of the present invention has the following configuration.
  • a method for producing polypropylene resin foam particles according to an embodiment of the present invention includes a polypropylene resin particle, an inorganic gas foaming agent, and an inorganic dispersant silicate in an aqueous dispersion medium in a sealed container.
  • Polypropylene resin (Z) consisting of 1 to 15% by weight of polyethylene resin (Y) of the above (the total of (X) and (Y) is 100% by weight); 0.01 parts by weight or more and 1 part by weight or less of an amine compound with respect to 100 parts by weight of the resin (Z), and the dispersion is (i) 0 with respect to 100 parts by weight of the polypropylene resin particles. .05 parts by weight or more and 0.4 parts by weight or less of the silicate, and (ii) 100 parts by weight or more and 250 parts by weight or less of the aqueous dispersion medium.
  • the polypropylene resin expanded particles include a polypropylene resin, and the polypropylene resin includes 85 to 99% by weight of the polypropylene resin (X) and Polypropylene resin (Z) consisting of 1 to 15% by weight of a polyethylene resin (Y) having a density of 0.945 g / cm 3 or more [the total of (X) and (Y) is 100% by weight], and the polypropylene resin 0.01 parts by weight or more and 1 part by weight or less of an amine compound with respect to 100 parts by weight of the resin (Z), and present on the surface of the expanded polypropylene resin particles with respect to 100 parts by weight of the polypropylene resin.
  • the amount of silicate is more than 0 parts by weight and not more than 0.20 parts by weight.
  • One embodiment of the present invention has an effect that it is possible to provide a highly productive method for producing expanded polypropylene resin particles for in-mold foam molding.
  • a to B representing a numerical range is intended to be “A or more (including A and greater than A) and B or less (including B and less than B)”.
  • constituent units a constituent unit derived from X 1 monomer, a constitutional unit derived from the X 2 monomer, ..., and X n monomer (n is And an integer of 2 or more) is also referred to as “X 1 / X 2 /... / X n copolymer”.
  • the X 1 / X 2 /... / X n copolymer is not particularly limited unless otherwise specified, and may be a random copolymer or a block copolymer. It may be a graft copolymer.
  • Patent Documents 1 to 3 described above have room for improvement or problems as described below.
  • tricalcium phosphate is used as a dispersant.
  • the resin foam particles obtained by using tricalcium phosphate are separated from the resin foam particles by the tricalcium phosphate adhering to the surface of the resin foam particles during in-mold foam molding using the resin foam particles.
  • the inventor has uniquely found that the metal deposits on the mold.
  • silicate is used as a dispersant.
  • the case where silicate is used as a dispersant will be described.
  • polypropylene resin expanded particles obtained by using a large amount of silicate can be obtained although no silicate is deposited on the mold during in-mold expansion molding using the expanded particles.
  • fusion property of an in-mold foam molding to deteriorate was seen.
  • the treatment of waste water containing a large amount of silicate is costly and there is a problem in productivity.
  • polypropylene resin particles In the production of polypropylene resin particles, a case where the amount of a dispersion medium (for example, an aqueous dispersion medium) is large relative to the polypropylene resin particles will be described.
  • a dispersion medium for example, an aqueous dispersion medium
  • polypropylene resin particles raw materials that can be supplied into containers having a certain volume (for example, sealed containers and pressure-resistant containers) are reduced, so that polypropylene can be produced per batch cycle (per production). Resin-based foamed particles are reduced. Therefore, it can be said that the production method is inferior in productivity as the amount of the dispersion medium with respect to the polypropylene resin particles is larger.
  • the weight ratio between the polypropylene resin particles and the aqueous dispersion medium is close, blocking outside the container (such as a sealed container and a pressure-resistant container) tends to occur.
  • the object of one embodiment of the present invention is to (1) have high productivity by reducing the amount of aqueous dispersion medium relative to polypropylene resin particles, and (2) the weight of polypropylene resin particles and aqueous dispersion medium.
  • An object of the present invention is to provide a method for producing polypropylene resin foamed particles for in-mold foam molding, in which blocking outside the container is prevented even when the ratio is close.
  • a method for producing polypropylene resin foam particles according to an embodiment of the present invention includes a polypropylene resin particle, an inorganic gas foaming agent, and an inorganic dispersant silicate in an aqueous dispersion medium in a sealed container.
  • Polypropylene resin (Z) consisting of 1 to 15% by weight of polyethylene resin (Y) of the above (the total of (X) and (Y) is 100% by weight); 0.01 parts by weight or more and 1 part by weight or less of an amine compound with respect to 100 parts by weight of the resin (Z), and the dispersion is (i) 0 with respect to 100 parts by weight of the polypropylene resin particles. .05 parts by weight or more and 0.4 parts by weight or less of the silicate, and (ii) 100 parts by weight or more and 250 parts by weight or less of the aqueous dispersion medium.
  • the method for producing expanded polypropylene resin particles according to an embodiment of the present invention has the above-described configuration, the aqueous dispersion medium for the polypropylene resin particles is compared with the conventional technique using silicate as an inorganic dispersant. Even when the amount is small, blocking outside the sealed container can be prevented.
  • the method for producing expanded polypropylene resin particles according to an embodiment of the present invention can provide a method for producing expanded polypropylene resin particles for in-mold foam molding with high productivity.
  • the “polypropylene-based resin (X)” used in one embodiment of the present invention has a propylene-derived component as a main copolymer component, and includes a polypropylene homopolymer, an ethylene / propylene random copolymer, butene-1 / Propylene random copolymer, ethylene / butene-1 / propylene random copolymer, ethylene / propylene block copolymer, butene-1 / propylene block copolymer, propylene / chlorinated vinyl copolymer, propylene / maleic anhydride Examples thereof include copolymers and blends thereof.
  • ethylene / propylene random copolymer, butene-1 / propylene random copolymer or ethylene / butene-1 / propylene random copolymer has good foamability and good moldability.
  • butene-1 may also be expressed as “1-butene”.
  • the component derived from propylene is the main copolymer component” means that 50% or more of all copolymer components (also referred to as constituent components) in the copolymer are components derived from propylene. .
  • the content of the comonomer-derived component which is a copolymer component other than the propylene-derived component, is 0.2 wt% to 10 wt% in 100 wt% of each copolymer.
  • a polypropylene resin (X) only 1 type may be used and 2 or more types may be used together.
  • the polymerization catalyst for synthesizing the polypropylene resin (X) used in one embodiment of the present invention is not particularly limited, and a Ziegler catalyst, a metallocene catalyst, or the like can be used.
  • the melting point of the polypropylene resin (X) used in one embodiment of the present invention is not particularly limited, but is preferably 130 ° C. or higher and 160 ° C. or lower, more preferably 140 ° C. or higher and 155 ° C. or lower.
  • the melting point of the polypropylene resin (X) is in the above-described range, there is a tendency that an in-mold foam molded article having an excellent balance between mechanical strength and surface appearance tends to be obtained.
  • the melting point of the polypropylene resin (X) is a value obtained as a result of differential scanning calorimetry (DSC) performed using a differential scanning calorimeter.
  • the specific operation procedure is as follows: (1) After 5-6 mg of polypropylene resin is melted by raising the temperature from 40 ° C. to 220 ° C. at a temperature raising rate of 10 ° C./min; (2) 10 After crystallizing by lowering the temperature from 220 ° C. to 40 ° C. at a temperature lowering rate of 3 ° C./min; The temperature of the peak (melting peak) of the DSC curve obtained at the second temperature increase (that is, (3)) can be determined as the melting point.
  • the melt flow rate (hereinafter sometimes referred to as MFR) of the polypropylene resin (X) used in one embodiment of the present invention is preferably 3.0 g / 10 min or more and 12 g / 10 min or less, more Preferably they are 5.0 g / 10min or more and 9.0 g / 10min or less.
  • MFR melt flow rate
  • the MFR measurement in one embodiment of the present invention uses an MFR measuring instrument described in JIS K7210, with an orifice of 2.0959 ⁇ 0.005 mm ⁇ , an orifice length of 8.000 ⁇ 0.025 mm, a load of 2160 g, and 230 ⁇ 0.2. It is a value when measured under the condition of ° C.
  • the density of the polyethylene resin (Y) in one embodiment of the present invention is 0.945 g / cm 3 or more, preferably 0.960 g / cm 3 or more.
  • the density of the polyethylene resin (Y) is less than 0.945 g / cm 3, the effect of suppressing the blocking of the polypropylene resin foamed particles is not sufficiently exhibited.
  • the polyethylene resin (Y) used in one embodiment of the present invention may contain a component derived from a comonomer copolymerizable with ethylene in addition to the component derived from ethylene as long as it has a predetermined density.
  • an ⁇ -olefin having 3 to 18 carbon atoms can be used as the comonomer copolymerizable with ethylene.
  • the ⁇ -olefin having 3 to 18 carbon atoms include propene, 1-butene, 1-pentene, 1-hexene, 3,3-dimethyl / 1-butene, 4-methyl / 1-pentene, 4, Examples thereof include 4-dimethyl / 1-pentene and 1-octene, and these may be used alone or in combination of two or more.
  • the melting point of the polyethylene resin (Y) used in one embodiment of the present invention is not particularly limited, but those having a temperature of 125 ° C. or higher and 140 ° C. or lower are preferably used.
  • the melting point of the polyethylene resin (Y) is measured by the same method (DSC) as the melting point of the polypropylene resin (X) except that a polyethylene resin is used instead of the polypropylene resin. The obtained value.
  • the MFR of the polyethylene resin (Y) used in one embodiment of the present invention is not particularly limited, but is preferably the same as that of the polypropylene resin (X).
  • the MFR of the polyethylene resin (Y) is a value obtained by measurement by the same method as the MFR of the polypropylene resin (X).
  • the mixing ratio of the polypropylene resin (X) and the polyethylene resin (Y) is 100% by weight of the polypropylene resin (Z) [in other words, The total of (X) and (Y) is 100 wt%], and the polyethylene resin (X) is 85 wt% or more and 99 wt% or less, and the polyethylene resin (Y) is 1 wt% or more and 15 wt% or less. . Furthermore, 90 to 95 weight% of polypropylene resin (X) and 5 to 10 weight% of polyethylene resin (Y) are preferable.
  • the “mixing ratio” can be said to be a “content ratio”.
  • the mixing ratio of the polypropylene resin (X) and the polyethylene resin (Y) is more than 99% by weight of the polypropylene resin (X) with respect to 100% by weight of the polypropylene resin (Z), and the polyethylene resin (Y). If it is less than 1% by weight, the effect of inhibiting blocking is not sufficiently exhibited in the production of polypropylene resin expanded particles.
  • the mixing ratio of the polypropylene resin (X) and the polyethylene resin (Y) is less than 85% by weight of the polypropylene resin (X) with respect to 100% by weight of the polypropylene resin (Z), and the polyethylene resin ( Y) If it exceeds 15% by weight, the elongation of the polypropylene resin foamed particles during in-mold molding may be reduced, and the surface appearance may be deteriorated.
  • the MFR of the polypropylene resin (Z) used in one embodiment of the present invention is preferably 3.0 g / 10 min or more and 12 g / 10 min or less, more preferably 5.0 g / 10 min or more and 9.0 g / min. 10 minutes or less.
  • the melt flow rate of the polypropylene-based resin (Z) is in the above-described range, there is a tendency that an in-mold foam-molded product with little deformation and excellent surface beauty is easily obtained.
  • the MFR of the polypropylene resin (Z) is a value obtained by measurement by the same method as the MFR of the polypropylene resin (X).
  • the “amine compound” used in one embodiment of the present invention is not particularly limited as long as it is available.
  • Hindered amines, and the like. may be used alone or in combination of two or more.
  • hindered amine is preferable because it has an effect as an ultraviolet absorber that enhances the light resistance of the foamed resin particles and the in-mold foam molded article.
  • alkyl (C 16 -C 18 ) is intended to be alkyl having 16 to 18 carbon atoms.
  • the content of the amine compound according to one embodiment of the present invention is 0.01 part by weight or more and 1 part by weight or less with respect to 100 parts by weight of the polypropylene resin (Z). More preferably, it is 0.1 parts by weight or more and 0.5 parts by weight or less.
  • the content of the amine compound is less than 0.01 parts by weight with respect to 100 parts by weight of the polypropylene resin (Z)
  • the dispersion stability during the production of the expanded polypropylene resin particles is deteriorated, and the expanded particles cannot be obtained.
  • the method for producing expanded polypropylene resin particles according to an embodiment of the present invention may further include a step of producing polypropylene resin particles.
  • Examples of the method for producing polypropylene resin particles according to an embodiment of the present invention include the following methods.
  • a mixture of a polypropylene resin (X), a polyethylene resin (Y), an amine compound, and, if necessary, other additives is mixed by a mixing method such as a dry blend method or a master batch method.
  • the obtained melt-kneaded product is shredded using a cutter, a pelletizer, and the like.
  • a cutter By setting the particle shape, polypropylene resin particles can be obtained.
  • the polypropylene resin particles according to an embodiment of the present invention may contain a cell nucleating agent, a hydrophilic compound, an antioxidant, an antistatic agent, a flame retardant, and the like as other additives as necessary. Can do. Such other additives may be added to other resins in a high concentration in advance to form a master batch, and this master batch resin may be added to the polypropylene resin (Z).
  • the resin used for such a masterbatch resin is preferably a polyolefin resin, and more preferably a masterbatch using a polypropylene resin.
  • Examples of the cell nucleating agent used as needed in one embodiment of the present invention include inorganic nucleating agents such as talc, calcium stearate, calcium carbonate, silica, kaolin, titanium oxide, bentonite, and barium sulfate. Generally used. These may be used alone or in combination of two or more. Among these cell nucleating agents, a cell having uniform talc can be obtained, which is preferable. The content of the cell nucleating agent may be appropriately adjusted according to the intended cell diameter and the type of cell nucleating agent to be used.
  • inorganic nucleating agents such as talc, calcium stearate, calcium carbonate, silica, kaolin, titanium oxide, bentonite, and barium sulfate. Generally used. These may be used alone or in combination of two or more. Among these cell nucleating agents, a cell having uniform talc can be obtained, which is preferable.
  • the content of the cell nucleating agent may be appropriately adjusted according to the intended
  • content of a cell nucleating agent 0.001 weight part or more and 2 weight part or less are preferable with respect to 100 weight part of polypropylene-type resin (Z), for example, More preferably, 0.01 part or more and 1 weight part are preferable. It is as follows. When the content of the cell nucleating agent is within the range, cells having a uniform size suitable for expanded particles can be easily obtained. Here, the “cell” may be referred to as “bubble”.
  • a hydrophilic compound is used as necessary.
  • water contained in the aqueous dispersion medium also acts as a foaming agent, and this water is preferable because it contributes to an improvement in the expansion ratio.
  • the hydrophilic compound used in one embodiment of the present invention include, but are not limited to, glycerin, polyethylene glycol, polypropylene glycol, and melamine. Particularly preferred are glycerin and polyethylene glycol.
  • the weight per polypropylene resin particle (hereinafter also referred to as “grain weight”) is preferably 0.2 mg or more and 10 mg or less, and more preferably 0.5 mg or more and 6.0 mg or less. .
  • the weight per one polypropylene-based resin particle is in the range, the dimensions and filling properties of the obtained in-mold foam molded product are likely to be good.
  • the weight per one polypropylene resin particle is an average resin particle weight obtained from 100 particles of randomly selected polypropylene resin particles.
  • the composition and particle weight of the polypropylene resin particles are hardly changed even after the foaming process and the in-mold foam molding process, and the same properties are exhibited even when the foam particles and the in-mold foam molding are remelted. Therefore, by analyzing the foamed particles and the in-mold foamed molded product, the composition and particle weight of the used polypropylene resin particles can be determined.
  • polypropylene-based resin expanded particles can be produced using the polypropylene-based resin particles thus obtained.
  • Polypropylene resin foamed particles can also be produced using polypropylene resin particles produced by methods other than the production methods described above or commercially available polypropylene resin particles.
  • foaming agent in one embodiment of the present invention examples include “inorganic gas-based foaming agent” such as water, carbon dioxide, nitrogen, air (that is, a mixture of oxygen, nitrogen and carbon dioxide).
  • inorganic gas-based foaming agent carbon dioxide is preferably used. By using carbon dioxide among inorganic gas-based foaming agents having a small environmental load, a polypropylene resin in-mold foam-molded article having a good appearance can be obtained.
  • the “inorganic gas-based foaming agent” may be simply referred to as “foaming agent”.
  • an inorganic gas such as air, nitrogen, oxygen or the like may be used in combination with carbon dioxide as long as the quality of the obtained foamed polypropylene resin mold is not impaired.
  • air remaining in a sealed container used for foaming has little influence on the quality of the obtained polypropylene-based resin-molded foam-molded product, and may be used together with carbon dioxide.
  • the method for producing the expanded polypropylene resin particles in one embodiment of the present invention may be the following method. That is, (1) a step of dispersing polypropylene resin particles and an inorganic dispersant silicate in an aqueous dispersion medium in an airtight container to obtain a dispersion; (2) carbon dioxide as a foaming agent in the airtight container.
  • “above the softening temperature of polypropylene resin particles” means that the melting point of the polypropylene resin particles according to one embodiment of the present invention is ⁇ 10 ° C. or more.
  • the heating temperature in the closed container is not particularly limited, and may be any temperature above the softening temperature of the polypropylene resin particles.
  • the melting point of the polypropylene resin (Z) used is ⁇ 10 ° C. or more.
  • the melting point is preferably 10 ° C. or lower.
  • the melting point of the polypropylene resin particles is obtained by measuring by the same method (DSC) as the melting point of the polypropylene resin (X) except that polypropylene resin particles are used instead of the polypropylene resin. Value.
  • the melting point of the polypropylene resin (Z) is a value obtained by measurement by the same method (DSC) as the melting point of the polypropylene resin (X).
  • the pressure for impregnating the foaming agent in the closed container in one embodiment of the present invention is preferably about 1.5 MPa (gauge pressure) or more and 5.0 MPa (gauge pressure) or less, More preferably, the pressure is 1.5 MPa (gauge pressure) or more and 3.5 MPa (gauge pressure) or less.
  • foaming pressure exists in the said range, what has the favorable external appearance of the in-mold foaming molding obtained is easy to be obtained.
  • the dispersion liquid containing expanded polypropylene resin particles heated and pressurized in a sealed container is released into a cylindrical container, piping, a sealed tank or the like, preferably released into the cylindrical container. Is done.
  • the cylindrical container may be referred to as a “foamed cylinder”.
  • the temperature of the atmosphere of the foam cylinder from which the dispersion is discharged may be adjusted to about room temperature to about 110 ° C.
  • blocking in the foamed cylinder is more likely to occur as the temperature of the atmosphere of the foamed cylinder from which the dispersion is discharged is higher.
  • there is an advantage that blocking does not occur in the foam cylinder even when the temperature of the atmosphere of the foam cylinder that discharges the dispersion is high.
  • one-stage foaming step which is an example of a method for producing polypropylene-based resin foam particles in one embodiment of the present invention, include the following methods.
  • the amount of carbon dioxide as a blowing agent is adjusted so as to increase from 5 MPa (gauge pressure) to 5 MPa (gauge pressure); (v) if necessary, (vi) after heating the sealed container, (V-ii) Carbon dioxide as a foaming agent may be added to the sealed container to adjust the inside of the sealed container to a desired foaming pressure; (vi) Then, the sealed container is maintained so as to maintain the foaming temperature. Adjust the temperature of However, the foaming pressure and foaming temperature are maintained for more than 0 minutes and not more than 120 minutes; (vii) Next, the pressure is adjusted to 80 ° C. or more and 110 ° C. or less with water vapor or the like and lower than the internal pressure of the sealed container The dispersion is discharged into a foamed cylinder having a region (usually atmospheric pressure) to obtain polypropylene-based resin foamed particles.
  • a foaming agent is prepared by charging polypropylene resin particles, an aqueous dispersion medium, a silicate which is an inorganic dispersant, etc. into a sealed container, and simultaneously charging solid carbon dioxide as dry ice into the sealed container. In a closed container.
  • a method of increasing the expansion ratio of the polypropylene resin expanded particles for example, a method of increasing the internal pressure in the sealed container, a method of increasing the pressure release speed, a method of increasing the temperature in the sealed container before discharge, As described above, there is a method of increasing the temperature of the atmosphere of the foamed cylinder from which the dispersion is discharged.
  • aqueous dispersion medium used in one embodiment of the present invention it is preferable to use only water, but a dispersion medium in which methanol, ethanol, ethylene glycol, glycerin or the like is added to water can also be used.
  • the sealed container used in one embodiment of the present invention is not particularly limited as long as it can withstand the pressure in the container and the temperature in the container in the production process of the expanded particles.
  • Examples of the sealed container include an autoclave-type pressure-resistant container that can be sealed.
  • the fusion of the polypropylene-based resin particles in the sealed container and in the expanded cylinder after discharging the dispersion liquid from the sealed container (pressure container) to the foamed cylinder In order to prevent (blocking), it is preferable to use a silicate which is an inorganic dispersant in an aqueous dispersion medium.
  • fusion is sometimes referred to as “fusion”.
  • silicates that are inorganic dispersants according to an embodiment of the present invention include clay minerals such as kaolin, montmorillonite, talc, and sericite. These inorganic dispersants may be used alone or in combination of two or more. Of these inorganic dispersants, it is more preferable to use at least kaolin.
  • the amount (content) of the silicate that is an inorganic dispersant in the dispersion is 0.05 parts by weight or more and 0.4 parts by weight with respect to 100 parts by weight of the polypropylene resin particles. Parts by weight or less, more preferably 0.1 parts by weight or more and 0.2 parts by weight or less.
  • the amount of the silicate that is an inorganic dispersant is less than 0.05 parts by weight, the effect of preventing blocking in the foamed cylinder is sufficient even if the polypropylene resin particles according to one embodiment of the present invention are used. If it exceeds 0.4 parts by weight, blocking in the foamed cylinder can be suppressed, but the fusing property at the time of in-mold foam molding deteriorates.
  • Examples of the “dispersion aid” used in one embodiment of the present invention include an anionic surfactant.
  • Specific examples of the anionic surfactant include sodium dodecylbenzene sulfonate, sodium alkane sulfonate, sodium alkyl sulfonate, sodium alkyl diphenyl ether disulfonate, sodium ⁇ -olefin sulfonate, and the like. It is not limited.
  • dispersion aids may be used alone or in combination of two or more. In one embodiment of the present invention, it is more preferable to use at least sodium dodecylbenzenesulfonate.
  • the inorganic dispersant and the dispersion aid are used in combination, it is preferable to use kaolin as the inorganic dispersant and sodium dodecylbenzenesulfonate as the dispersion aid.
  • the amount (content) of the dispersion aid used in the dispersion is 0.002 to 0.2 parts by weight of the dispersion aid with respect to 100 parts by weight of the polypropylene resin particles. preferable.
  • the weight ratio between the polypropylene-based resin particles and the aqueous dispersion medium is close. There are some.
  • the weight ratio between the polypropylene resin particles and the aqueous dispersion medium is directly related to the production amount of the polypropylene resin foam particles obtained per batch.
  • the dispersion according to an embodiment of the present invention is 100 parts by weight or more and 250 parts by weight or less of an aqueous dispersion medium, preferably 100 parts by weight or more and 200 parts by weight or less of an aqueous dispersion medium, with respect to 100 parts by weight of polypropylene resin particles, More preferably, it contains 130 parts by weight or more and 200 parts by weight or less of an aqueous dispersion medium.
  • the dispersion according to an embodiment of the present invention contains 230 parts by weight or less, 190 parts by weight or less, 150 parts by weight or less, or 130 parts by weight or less of an aqueous dispersion medium with respect to 100 parts by weight of the polypropylene resin particles. Also good.
  • the dispersion according to an embodiment of the present invention may contain 150 parts by weight or more, 180 parts by weight or more, or 200 parts by weight or more of an aqueous dispersion medium with respect to 100 parts by weight of the polypropylene resin particles.
  • the amount of the aqueous dispersion medium used in the dispersion is from 100 parts by weight to 250 parts by weight with respect to 100 parts by weight of the polypropylene resin particles.
  • the amount of the aqueous dispersion medium used is less than 100 parts by weight, even if 0.4 part by weight of the silicate that is the dispersant is added, the dispersion stability of the polypropylene resin particles in the pressure vessel tends to deteriorate, When the amount exceeds 250 parts by weight, which tends to cause blocking in the foamed cylinder, the productivity of the polypropylene resin foamed particles per batch is lowered, which is not preferable.
  • the single-stage expanded particles are impregnated with an inorganic gas-based foaming agent (for example, air, nitrogen, carbon dioxide, etc.), an internal pressure is applied to the single-stage expanded particles,
  • an inorganic gas-based foaming agent for example, air, nitrogen, carbon dioxide, etc.
  • an internal pressure is applied to the single-stage expanded particles.
  • the foaming process in which the polypropylene resin foamed particles (single-stage foamed particles) are further foamed to obtain polypropylene-based resin foamed particles having a higher expansion ratio may be referred to as a “two-stage foaming process”.
  • Polypropylene resin foam particles obtained through such a two-stage foaming process may be referred to as “two-stage foam particles”.
  • the internal pressure of the inorganic gas-based foaming agent impregnated in the first-stage expanded particles is desirably changed as appropriate in consideration of the expansion ratio of the second-stage expanded particles, but is 0.12 MPa (absolute pressure) or more.
  • the pressure is preferably 6 MPa (absolute pressure) or less.
  • the pressure of water vapor brought into contact with the first-stage foamed particles is appropriately changed in consideration of the expansion ratio of the second-stage foamed particles.
  • the water vapor pressure is preferably adjusted to 0.02 MPa (gauge pressure) or more and 0.25 MPa (gauge pressure) or less, and can be adjusted to 0.03 MPa (gauge pressure) or more and 0.15 MPa (gauge pressure) or less. More preferred.
  • the higher the water vapor pressure the more easily the polypropylene resin foam particles are blocked.
  • the expansion ratio of the expanded polypropylene resin particles of the present invention obtained by the method for producing expanded polypropylene particles according to an embodiment of the present invention is not particularly limited, and may be adjusted as necessary. From the viewpoint of mechanical strength, it is preferably 3 to 50 times, more preferably 5 to 45 times.
  • the expansion ratio of the polypropylene resin expanded particles is a value calculated by the method described in the examples.
  • the surface of the polypropylene resin foam particles obtained by the method for producing polypropylene foam particles according to one embodiment of the present invention is always attached with silicate, and even if washed, it is difficult to remove completely. It is.
  • the amount of silicate (that is, adhering silicate) present on the surface of the expanded polypropylene resin particle is more than 0 parts by weight with respect to 100 parts by weight of the polypropylene resin, and 0.20. It is preferable that it is below the weight part. Furthermore, the amount of silicate present on the surface of the expanded particles with respect to 100 parts by weight of the polypropylene resin is more preferably 0.020 parts by weight or more and 0.20 parts by weight or less, and 0.03 parts by weight or more and 0 or less. Most preferably, it is 10 parts by weight or less.
  • the amount of silicate adhering to the surface of the expanded particles is 0 part by weight, that is, when no silicate is used, blocking occurs when the dispersion containing the expanded particles is discharged into the expanded cylinder. Therefore, it is not preferable.
  • 0.020 part by weight or more blocking in the two-stage foaming step can be sufficiently prevented, and in the case of 0.20 part by weight or less, there is an advantage that fusion at the time of in-mold foam molding is difficult to deteriorate.
  • the amount of silicate present on the surface of the polypropylene resin expanded particles can be adjusted by the amount of silicate used as the inorganic dispersant in the one-stage foaming step.
  • the average cell diameter of the expanded polypropylene resin particles obtained by the method for producing expanded polypropylene resin particles according to an embodiment of the present invention is preferably 100 ⁇ m or more and 500 ⁇ m or less, and more preferably 120 ⁇ m or more and 400 ⁇ m or less. preferable.
  • the average cell diameter of the obtained polypropylene resin foamed particles is within this range, the appearance of the polypropylene resin in-mold foam molded product obtained using the polypropylene resin foamed particles tends to be good.
  • the average cell diameter of the expanded polypropylene resin particles is a value measured by the method described in Examples.
  • the content, melting point, or MFR value of the component derived from the comomer obtained by analyzing the expanded polypropylene resin particles or the expanded foam in the polypropylene resin mold, respectively, is the polypropylene resin that is the raw material thereof.
  • the polypropylene resin (X) in the polypropylene resin (Z) contained in the polypropylene resin particles that are the raw materials thereof, and The mixing ratio with the polyethylene resin (Y) can be obtained when the types of the polypropylene resin (X) and the polyethylene resin (Y) contained in the polypropylene resin (Z) are known. it can.
  • the content, melting point, or MFR value of the component derived from the comomer of the polypropylene resin particles is the content, melting point, or component of the comomer derived component of the polypropylene resin (Z) contained in the polypropylene resin particle, respectively. It can also be said to be the value of MFR.
  • the melting point of the polypropylene resin expanded particles or the polypropylene resin molded in-mold molded product is that the polypropylene resin expanded particles or the polypropylene resin molded in-mold molded product are used in place of the polypropylene resin, respectively.
  • the MFR of the polypropylene resin expanded particles can be measured as follows: (A1) The polypropylene resin expanded particles are left in an oven that can be decompressed so that the polypropylene resin expanded particles do not contact each other; (A2) Next, the polypropylene resin foam is treated by treatment for 30 minutes under a pressure of -0.05 to -0.10 MPa ⁇ G and a melting point of the polypropylene resin foamed particles + 20 to 35 ° C. While removing the air inside the particles, the expanded polypropylene resin particles are returned to the polypropylene resin; (A3) Then, the polypropylene resin is taken out from the oven and the polypropylene resin is sufficiently cooled; (A4) The polypropylene resin is then cooled. MFR of the polypropylene resin is measured by the same method as that for the resin (X).
  • the MFR of the polypropylene resin in-mold foam molding can be measured as follows: (B1) The polypropylene resin in-mold foam molding is pulverized using a mixer or the like; (B2) Next, the polypropylene series Except for using a pulverized polypropylene resin mold foam molded body instead of the resin foam particles, the same processing ((A1) and (A2)) as the above polypropylene resin foam particles is performed, and the polypropylene resin mold foam is performed. (B3) Then, the polypropylene resin is removed from the oven and the polypropylene resin is sufficiently cooled. (B4) Thereafter, the polypropylene is recovered by the same method as the polypropylene resin (X). The MFR of the resin is measured.
  • the expanded polypropylene resin particles according to an embodiment of the present invention are expanded polypropylene resin particles and include a polypropylene resin.
  • the polypropylene resin includes 85 to 99% by weight of the polypropylene resin (X) and a density of 0.
  • Polypropylene resin (Z) consisting of 1 to 15% by weight of polyethylene resin (Y) of 945 g / cm 3 or more [total of (X) and (Y) is 100% by weight], and the above polypropylene resin ( Z) 0.01 part by weight or more and 1 part by weight or less of an amine compound with respect to 100 parts by weight, and silicic acid present on the surface of the polypropylene resin expanded particles with respect to 100 parts by weight of the polypropylene resin
  • the amount of salt is more than 0 parts by weight and not more than 0.20 parts by weight.
  • Each component for example, polypropylene resin (X), polyethylene resin (Y), polypropylene resin (Z), amine compound, and silicate) contained in the expanded polypropylene resin particles according to an embodiment of the present invention Etc.
  • the aspect of the polypropylene-based resin expanded particles include a preferable aspect, and [2. It may be the same as each component described in the section of [Production method of polypropylene resin expanded particles] and the aspect of the obtained polypropylene resin expanded particles.
  • the amount of silicate present on the surface of the polypropylene resin foam particles is 0.020 parts by weight or more and 0.20 weights per 100 parts by weight of the polypropylene resin. Part or less.
  • the foamed molded product according to one embodiment of the present invention is the above [3. This is a foamed molded article using polypropylene-based resin expanded particles].
  • the foamed molded product according to an embodiment of the present invention is not particularly limited, but may be, for example, an in-mold foamed molded product manufactured using a mold.
  • the method for producing an in-mold foam molded article from polypropylene resin foam particles includes, for example, (1) filling foam particles in a mold that can be closed but cannot be sealed; (2) Next, the foamed particles are heated and fused with each other in the mold, and molded according to the mold, and the mold and the molded body are cooled with a coolant such as water; (3) Thereafter, the molded product is taken out from the mold to obtain an in-mold foam molded product.
  • the polypropylene-based resin expanded particles are given a pressure higher than atmospheric pressure inside the expanded particles before in-mold foam molding.
  • in-mold foam molding is performed using foam particles having a pressure higher than atmospheric pressure inside the foam particles, a polypropylene resin in-mold foam molded body with good surface appearance and little deformation is easily obtained.
  • pressure can be applied to the inside of the expanded particles by a conventionally known method such as an internal pressure applying method and a compression filling method. .
  • the pressure applied to the inside of the expanded particles is preferably 0.12 MPa (absolute pressure) or more and 0.40 MPa (absolute pressure) or less, 0.14 MPa (absolute pressure) or more and 0.30 MPa (absolute Pressure) or less is more preferable.
  • the internal pressure of the polypropylene resin expanded particles is within the above range, it tends to be easy to obtain an in-mold expanded molded article having a beautiful appearance.
  • the inorganic gas used for applying the internal pressure air, nitrogen, helium, neon, argon, carbon dioxide or the like can be used. These inorganic gases may be used alone or in combination of two or more. Among these, highly versatile air and nitrogen are preferable.
  • An embodiment of the present invention may have the following configuration.
  • Resin (Z) [total of (X) and (Y) is 100% by weight] and 0.01 part by weight or more and 1 part by weight with respect to 100 parts by weight of the polypropylene resin (Z). And the following dispersion (i) 0.05 parts by weight or more and 0.4 parts by weight or less of the silicate with respect to 100 parts by weight of the polypropylene resin particles, and (ii) A method for producing polypropylene resin expanded particles, comprising 100 parts by weight or more and 250 parts by weight or less of the aqueous dispersion medium.
  • the dispersion liquid contains 100 parts by weight or more and 200 parts by weight or less of the aqueous dispersion medium with respect to 100 parts by weight of the polypropylene resin particles. Production method.
  • Polypropylene resin expanded particles containing a polypropylene resin and the polypropylene resin is a polyethylene resin (Y) having a polypropylene resin (X) of 85 to 99% by weight and a density of 0.945 g / cm 3 or more. 1) to 15% by weight of a polypropylene resin (Z) [the sum of (X) and (Y) is 100% by weight] and 0.01% by weight with respect to 100 parts by weight of the polypropylene resin (Z). 1 part by weight or more and 1 part by weight or less of an amine compound, and the amount of silicate present on the surface of the polypropylene resin expanded particles exceeds 0 part by weight relative to 100 parts by weight of the polypropylene resin. Polypropylene-based resin foamed particles characterized by being 20 parts by weight or less.
  • the amount of the silicate present on the surface of the expanded polypropylene resin particles is 0.020 part by weight or more and 0.20 part by weight or less with respect to 100 parts by weight of the polypropylene resin.
  • An embodiment of the present invention may have the following configuration.
  • Polypropylene resin particles, an inorganic gas-based foaming agent, and an inorganic dispersant silicate are dispersed in an aqueous dispersion medium in a sealed container to obtain a dispersion, up to the softening temperature of the polypropylene resin particles or higher
  • the polypropylene resin particles are polypropylene resin (X).
  • Polypropylene resin (Z) consisting of 85 to 99% by weight and polyethylene resin (Y) of 1 to 15% by weight with a density of 0.945 g / cm 3 or more.
  • the total of (X) and (Y) is 100% by weight.
  • 100 parts by weight of the polypropylene resin (Z) and 0.01 parts by weight or more and 1 part by weight or less of an amine compound, and the dispersion is 100 weights of polypropylene resin particles.
  • Parts to 0.05 part by weight to 0.4 parts by weight of the silicate, the production method of the polypropylene resin foamed beads which comprises an aqueous dispersion medium of 100 parts by weight to 250 parts by weight or less.
  • Polypropylene resin expanded particles wherein the polypropylene resin is from 85 to 99% by weight of polypropylene resin (X) and 1 to 15% by weight of polyethylene resin (Y) having a density of 0.945 g / cm 3 or more.
  • the amine resin of 0.01 to 1 part by weight relative to 100 parts by weight of the polypropylene resin (Z) [total of (X) and (Y) is 100% by weight] and polypropylene resin (Z)
  • a polypropylene resin foamed particle comprising a compound, wherein the amount of silicate present on the surface of the foamed particle exceeds 0 part by weight and is 0.20 part by weight or less based on 100 parts by weight of the polypropylene resin.
  • ⁇ Dispersion stability during production of expanded particles was evaluated based on the following criteria. ⁇ : Resin particles are not fused (fused) in an autoclave (pressure vessel), and foamed particles can be produced. X: Resin particles are coalesced and agglomerated in the autoclave, and foamed particles cannot be produced.
  • the amount of attached kaolin (silicate present on the surface of expanded particles) is measured by combusting the polypropylene resin expanded particles obtained by the one-stage expansion process and the polypropylene resin particles as raw materials, respectively, and remaining after the combustion. It calculated
  • the method for measuring the amount of ash was performed as follows. First, a measurement sample (polypropylene resin particles, polypropylene resin expanded particles, or kaolin (silicate)) was dried in an oven at 60 ° C. for 12 hours, and then allowed to cool in a desiccator for 1 hour together with silica gel. Next, in a room adjusted to an air temperature of 20 ° C. and a relative humidity of 50%, the weight (g) of the dried crucible was measured to the fourth decimal place (the fifth decimal place was rounded off).
  • a measurement sample polypropylene resin particles, polypropylene resin expanded particles, or kaolin (silicate)
  • the measurement sample was weighed into a crucible so as to be about 3 g, and the weight (g) of the combined crucible and measurement sample was measured to the fourth decimal place (the fifth decimal place was rounded off).
  • the weight of the crucible at this time was W0, and the combined weight of the measurement sample and the crucible was W1.
  • the crucible containing the measurement sample was heated at 750 ° C. for 1 hour using an electric furnace to burn the measurement sample.
  • the combined weight (g) of the crucible and the ash content of the measurement sample was measured to the fourth decimal place (the fifth decimal place was rounded off).
  • Ash content of measurement sample (W2 (g) ⁇ W0 (g)) / (W1 (g) ⁇ W0 (g))
  • the amount of attached kaolin (silicate present on the surface of the expanded particles) in the two-stage foaming process according to one embodiment of the present invention was not changed from the amount of attached kaolin in the one-stage foaming process. Therefore, the amount of attached kaolin (silicate present on the surface of the expanded particles) of the two-stage expanded particles is the value of the amount of attached kaolin of the first-stage expanded particles.
  • “Foaming ratio” is a value calculated by the following calculation.
  • the expansion ratio was calculated as the ratio ( ⁇ r / ⁇ b) between the true specific gravity of the polypropylene resin expanded particles and the density ⁇ r of the polypropylene resin particles before expansion.
  • Example 1 [Production of polypropylene resin particles]
  • the amine compound A is added to 100 parts by weight of the polypropylene resin (X) and the polyethylene resin (Y) in Table 1 (that is, the total of (X) and (Y) is 100% by weight).
  • the type and amount shown in Table 1 and 0.25 part by weight of glycerin were added, and these were dry blended.
  • the mixture obtained by dry blending was melt kneaded at a resin temperature of 220 ° C. using a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd., TEM26-SX), and the melt-kneaded product was extruded from the extruder.
  • the extruded strand (melt kneaded product) was cooled with water in a 2 m long water tank and then cut to produce polypropylene resin particles (1.0 mg / particle).
  • the autoclave contents (in the sealed container) were heated and heated to a foaming temperature of 146.0 ° C. Thereafter, carbon dioxide as a foaming agent was additionally injected into the autoclave, and the autoclave internal pressure was increased to a foaming pressure of 2.9 MPa. The inside of the autoclave was held for 30 minutes at the foaming temperature and foaming pressure. Then, the valve
  • Examples 1 to 10, Comparative Examples 1 to 13 In Examples 2 to 10 and Comparative Examples 1 to 13, in the above-mentioned [Production of Polypropylene Resin Particles], the types of additives and resin formulations were changed as shown in Tables 1 and 2, and the above-mentioned [Polypropylene Resin In the production of single-stage expanded particles], the polypropylene-based resin particles, the polypropylene-based resin single-stage expanded particles, the polypropylene-based resin two-stage expanded particles, and A polypropylene resin molded in-mold foam was produced.
  • Tables 1 and 2 show the evaluation results of the obtained polypropylene resin single-stage expanded particles, polypropylene resin double-stage expanded particles, and polypropylene resin in-mold foam-molded articles.
  • Example 10 and Comparative Examples 12 and 13 which were described as "not implemented" in the two-stage foaming section of Tables 1 and 2, using the single-stage foamed particles instead of the two-stage foamed particles, the same as the above method
  • An in-mold foam-molded article was produced by the method described above, and the evaluation of the obtained in-mold foam-molded article is described.
  • the polypropylene resin single-stage expanded particles obtained by the production method according to one embodiment of the present invention are close in weight ratio between the polypropylene resin and the aqueous dispersion medium, and are expanded (dispersed). Blocking did not occur even under conditions where the foam particles were likely to be fused (blocked) when the liquid was released. Further, the in-mold foam molded article made of the polypropylene resin foam particles obtained by the production method according to one embodiment of the present invention was excellent in surface appearance and fusion property.
  • Tables 1 and 2 also show the following.
  • Comparative Example 2 when the polyethylene resin particles are not mixed and the weight ratio between the polypropylene resin and the aqueous dispersion medium is close, it can be seen that blocking occurs during the production of the single-stage expanded particles.
  • Comparative Example 9 the polyethylene resin particles are not mixed, and the weight ratio of the polypropylene resin and the aqueous dispersion medium is closer than that of Comparative Example 2.
  • Comparative Example 9 since a larger amount of kaolin (silicate) than the range of the present invention was added, blocking did not occur in the production process of the single-stage expanded particles.
  • Example 1 in which a polyethylene resin (Y) having a density of 0.945 g / cm 3 or more is mixed is a condition in which the weight ratio of the polypropylene resin and the aqueous dispersion medium is closer than that of Comparative Example 2.
  • Y polyethylene resin
  • Example 2 the same amount of kaolin (silicate) as in Comparative Example 2 was added, but it was found that no blocking occurred in the production process of the single-stage expanded particles.
  • polypropylene resin expanded particles for in-mold foam molding can be obtained with high productivity. Therefore, one Embodiment of this invention can be utilized suitably in various fields, such as a packaging material, a shock absorbing material, a heat insulating material, and a building member.

Abstract

Provided is a method of producing polypropylene resin foamed particles for in-mold foamed molding that has high productivity and in which blocking does not occur outside a pressure resistant vessel when using silicate as a dispersant even if the weight ratios of a polypropylene resin and an aqueous dispersion medium are similar. The polypropylene resin foamed particles without blocking can be obtained by using a polypropylene resin into which a specific polyethylene resin and an amine compound are mixed.

Description

ポリプロピレン系樹脂発泡粒子およびその製造方法Polypropylene-based resin expanded particles and method for producing the same
 本発明は、ポリプロピレン系樹脂発泡粒子およびその製造方法に関する。 The present invention relates to a polypropylene resin expanded particle and a method for producing the same.
 ポリプロピレン系樹脂発泡粒子(以下、「樹脂発泡粒子」、「発泡粒子」または「ビーズ」とも称する。)からなるポリプロピレン系樹脂発泡成形体(以下、単に「型内発泡成形体」とも称する。)は、緩衝性、断熱性等の物性に優れる。そのため、ポリプロピレン系樹脂発泡成形体は、包装材、緩衝材、断熱材、建築部材など様々な分野で使用されている。特にポリプロピレン系樹脂発泡粒子を金型に充填し、水蒸気などで加熱して発泡粒子同士を融着させて所定形状の型内発泡成形体を得る型内発泡成形法は、種々の形状の製品を比較的容易に得ることができるため、多くの用途に用いられている。 A polypropylene resin foam molded body (hereinafter also simply referred to as “in-mold foam molded body”) composed of polypropylene resin foam particles (hereinafter also referred to as “resin foam particles”, “foam particles” or “beads”). Excellent physical properties such as buffering property and heat insulating property. For this reason, polypropylene resin foam moldings are used in various fields such as packaging materials, cushioning materials, heat insulating materials, and building materials. In particular, the in-mold foam molding method for filling a mold with polypropylene resin foam particles and heating them with water vapor or the like to fuse the foam particles together to obtain an in-mold foam molded product of a predetermined shape is a product of various shapes. Since it can be obtained relatively easily, it is used in many applications.
 ポリプロピレン系樹脂発泡粒子は、主に、ポリプロピレン系樹脂粒子と分散媒である水と無機ガス系発泡剤と分散剤と分散助剤とを共に耐圧容器中に収容し、攪拌にて分散させると共に、容器内を加温、加圧した後、容器内の圧力よりも低い圧力域に耐圧容器中の分散液を放出してポリプロピレン系樹脂粒子を発泡させることで得られる。分散剤は耐圧容器内での樹脂粒子同士の、または耐圧容器外へ放出直後の樹脂発泡粒子同士の融着(ブロッキング)を防ぐために添加される。 The polypropylene resin expanded particles mainly contain polypropylene resin particles, water as a dispersion medium, an inorganic gas based foaming agent, a dispersing agent and a dispersion aid together in a pressure resistant container, and are dispersed by stirring. After heating and pressurizing the inside of the container, the dispersion liquid in the pressure-resistant container is discharged into a pressure region lower than the pressure in the container to foam the polypropylene resin particles. The dispersant is added to prevent fusion (blocking) between the resin particles in the pressure vessel or between the resin foam particles immediately after being released to the outside of the pressure vessel.
 分散剤としては第三リン酸カルシウムが好適に利用される(例えば特許文献1および2)。 As the dispersing agent, tricalcium phosphate is preferably used (for example, Patent Documents 1 and 2).
 また、特許文献2では、型内発泡成形時の融着性および表面性などの物性および品質を失うことなく、基材樹脂本来の強度を活かした型内発泡成形体を提供するポリプロピレン系樹脂発泡粒子の製造方法を提供することを目的とし、ポリプロピレン系樹脂に、特定のポリエチレン系樹脂を混合したポリプロピレン系樹脂組成物からなるポリプロピレン系樹脂粒子を用いる方法が開示されている。 Further, in Patent Document 2, a polypropylene resin foam that provides an in-mold foam molded article that takes advantage of the original strength of the base resin without losing physical properties and quality such as fusion and surface properties during in-mold foam molding. For the purpose of providing a method for producing particles, a method of using polypropylene resin particles comprising a polypropylene resin composition in which a specific polyethylene resin is mixed with a polypropylene resin is disclosed.
 発泡粒子表面から脱離しにくいケイ酸塩などの粘度鉱物を分散剤として利用する方法がある(例えば、特許文献3)。粘土鉱物のなかでもカオリンが好適に利用される。 There is a method of using a viscosity mineral such as silicate that is difficult to be detached from the surface of the expanded particles as a dispersant (for example, Patent Document 3). Of the clay minerals, kaolin is preferably used.
 特許文献3には、また、NH型のヒンダードアミン系化合物を含有したポリプロピレン系樹脂発泡粒子の製造方法が開示されている。この文献では、NH型のヒンダードアミン系化合物を特定量含有させることによって、無機系分散剤による発泡時におけるブロッキングの防止効果の向上が記載されている。 Patent Document 3 discloses a method for producing expanded polypropylene resin particles containing an NH type hindered amine compound. This document describes an improvement in the blocking prevention effect at the time of foaming by an inorganic dispersant by containing a specific amount of an NH type hindered amine compound.
特開2017-179281号JP 2017-179281 A 国際公開番号WO2017/090432International Publication Number WO2017 / 090432 特開平11-147972号JP-A-11-147972
 本発明の一実施形態の目的は、ケイ酸塩を分散剤として使用する場合に、ポリプロピレン系樹脂粒子と水系分散媒との重量比が近しくても、耐圧容器外でのブロッキングが起こらず、すなわち生産性の高い、型内発泡成形用ポリプロピレン系樹脂発泡粒子の製造方法を提供することにある。 The object of one embodiment of the present invention is that when silicate is used as a dispersant, blocking outside the pressure vessel does not occur even if the weight ratio between the polypropylene resin particles and the aqueous dispersion medium is close, That is, an object of the present invention is to provide a method for producing polypropylene resin expanded particles for in-mold foam molding with high productivity.
 本発明者は鋭意検討の結果、ポリプロピレン系樹脂に対し、特定のポリエチレン系樹脂とアミン系化合物とを混合したポリプロピレン系樹脂を用いることで、ポリプロピレン系樹脂粒子と水系分散媒との重量比が近しく、少量のケイ酸塩を分散剤に用いる条件、すなわち耐圧容器外での発泡粒子相互のブロッキングが起きやすい条件においても、ブロッキングのないポリプロピレン系樹脂発泡粒子が得られることを見出した。すなわち、本発明の一実施形態は、以下の構成よりなる。 As a result of intensive studies, the present inventors have used a polypropylene resin in which a specific polyethylene resin and an amine compound are mixed with the polypropylene resin, so that the weight ratio of the polypropylene resin particles to the aqueous dispersion medium is close. In addition, the present inventors have found that polypropylene-based resin expanded particles having no blocking can be obtained even under conditions in which a small amount of silicate is used as a dispersant, that is, conditions in which expanded particles are likely to be blocked outside the pressure vessel. That is, one embodiment of the present invention has the following configuration.
 本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、ポリプロピレン系樹脂粒子と、無機ガス系発泡剤と、無機系分散剤であるケイ酸塩とを、密閉容器内で水系分散媒中に分散させ、分散液とする工程、上記ポリプロピレン系樹脂粒子の軟化温度以上まで上記密閉容器内を加熱し、かつ、上記密閉容器内を加圧する工程、および上記密閉容器の内圧よりも低い圧力域に上記分散液を放出することでポリプロピレン系樹脂発泡粒子を得る工程、を有し、上記ポリプロピレン系樹脂粒子は、ポリプロピレン系樹脂(X)85~99重量%および密度0.945g/cm以上のポリエチレン系樹脂(Y)1~15重量%から成るポリプロピレン系樹脂(Z)[(X)と(Y)の合計は100重量%である]と、上記ポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下のアミン系化合物と、を含み、上記分散液は上記ポリプロピレン系樹脂粒子100重量部に対し、(i)0.05重量部以上0.4重量部以下の上記ケイ酸塩、および(ii)100重量部以上250重量部以下の上記水系分散媒、を含む。 A method for producing polypropylene resin foam particles according to an embodiment of the present invention includes a polypropylene resin particle, an inorganic gas foaming agent, and an inorganic dispersant silicate in an aqueous dispersion medium in a sealed container. A step of dispersing in, forming a dispersion, heating the inside of the closed container to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, and pressurizing the inside of the closed container, and a pressure lower than the internal pressure of the closed container A step of obtaining polypropylene-based resin expanded particles by releasing the dispersion into the region, wherein the polypropylene-based resin particles have a polypropylene-based resin (X) of 85 to 99% by weight and a density of 0.945 g / cm 3 or more. Polypropylene resin (Z) consisting of 1 to 15% by weight of polyethylene resin (Y) of the above (the total of (X) and (Y) is 100% by weight); 0.01 parts by weight or more and 1 part by weight or less of an amine compound with respect to 100 parts by weight of the resin (Z), and the dispersion is (i) 0 with respect to 100 parts by weight of the polypropylene resin particles. .05 parts by weight or more and 0.4 parts by weight or less of the silicate, and (ii) 100 parts by weight or more and 250 parts by weight or less of the aqueous dispersion medium.
 さらに、本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子において、ポリプロピレン系樹脂発泡粒子であって、ポリプロピレン系樹脂を含み、上記ポリプロピレン系樹脂は、ポリプロピレン系樹脂(X)85~99重量%および密度0.945g/cm以上のポリエチレン系樹脂(Y)1~15重量%から成るポリプロピレン系樹脂(Z)[(X)と(Y)の合計は100重量%である]と、上記ポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下のアミン系化合物と、を含み、上記ポリプロピレン系樹脂100重量部に対し、上記ポリプロピレン系樹脂発泡粒子の表面に存在するケイ酸塩の量が0重量部を超え、0.20重量部以下である。 Furthermore, in the polypropylene resin expanded particles according to an embodiment of the present invention, the polypropylene resin expanded particles include a polypropylene resin, and the polypropylene resin includes 85 to 99% by weight of the polypropylene resin (X) and Polypropylene resin (Z) consisting of 1 to 15% by weight of a polyethylene resin (Y) having a density of 0.945 g / cm 3 or more [the total of (X) and (Y) is 100% by weight], and the polypropylene resin 0.01 parts by weight or more and 1 part by weight or less of an amine compound with respect to 100 parts by weight of the resin (Z), and present on the surface of the expanded polypropylene resin particles with respect to 100 parts by weight of the polypropylene resin. The amount of silicate is more than 0 parts by weight and not more than 0.20 parts by weight.
 本発明の一実施形態は、生産性の高い型内発泡成形用ポリプロピレン系樹脂発泡粒子の製造方法を提供することができるという効果を奏する。 One embodiment of the present invention has an effect that it is possible to provide a highly productive method for producing expanded polypropylene resin particles for in-mold foam molding.
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。 One embodiment of the present invention will be described below, but the present invention is not limited to this. The present invention is not limited to each configuration described below, and various modifications can be made within the scope shown in the claims. Further, embodiments or examples obtained by appropriately combining technical means disclosed in different embodiments or examples are also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment. In addition, all the academic literatures and patent literatures described in this specification are used as references in this specification.
 また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。 Unless otherwise specified in this specification, “A to B” representing a numerical range is intended to be “A or more (including A and greater than A) and B or less (including B and less than B)”.
 さらに、本明細書において特記しない限り、構成単位として、X単量体に由来する構成単位と、X単量体に由来する構成単位と、・・・およびX単量体(nは2以上の整数)とを含む共重合体を、「X/X/・・・/X共重合体」とも称する。X/X/・・・/X共重合体としては、明示されている場合を除き、重合様式は特に限定されず、ランダム共重合体であってもよく、ブロック共重合体であってもよく、グラフト共重合体であってもよい。 Additionally, unless otherwise stated herein, as constituent units, a constituent unit derived from X 1 monomer, a constitutional unit derived from the X 2 monomer, ..., and X n monomer (n is And an integer of 2 or more) is also referred to as “X 1 / X 2 /... / X n copolymer”. The X 1 / X 2 /... / X n copolymer is not particularly limited unless otherwise specified, and may be a random copolymer or a block copolymer. It may be a graft copolymer.
 〔1.本発明の一実施形態の技術的思想〕
 本発明者が鋭意検討した結果、上述した特許文献1~3には、以下に示すような改善の余地または問題点があることを見出した。
[1. Technical idea of one embodiment of the present invention]
As a result of intensive studies by the present inventors, it has been found that Patent Documents 1 to 3 described above have room for improvement or problems as described below.
 特許文献1および2に記載の技術では、分散剤として第三リン酸カルシウムを使用している。第三リン酸カルシウムを利用して得られた樹脂発泡粒子は、当該樹脂発泡粒子を用いる型内発泡成形のときに、樹脂発泡粒子表面に付着している第三リン酸カルシウムが、樹脂発泡粒子から脱離し、金型に堆積してしまうということを、本発明者は独自に見出した。 In the techniques described in Patent Documents 1 and 2, tricalcium phosphate is used as a dispersant. The resin foam particles obtained by using tricalcium phosphate are separated from the resin foam particles by the tricalcium phosphate adhering to the surface of the resin foam particles during in-mold foam molding using the resin foam particles. The inventor has uniquely found that the metal deposits on the mold.
 特許文献3に記載の技術では、ケイ酸塩を使用している。ケイ酸塩を分散剤として使用する場合について説明する。この場合、ポリプロピレン系樹脂粒子と水系分散媒との重量比が近しい条件において、良好な生産性を確保するためには、多量にケイ酸塩を添加しなければ、耐圧容器外へ放出直後のブロッキングを防ぐことができない。また、多量のケイ酸塩を使用して得られたポリプロピレン系樹脂発泡粒子は、当該発泡粒子を用いる型内発泡成形のときに、金型にケイ酸塩が堆積することはないものの、得られる型内発泡成形体の融着性が悪化する傾向が見られるという課題があった。また、多量のケイ酸塩を使用する場合、多量のケイ酸塩を含む排水の処理にもコストが掛かり生産性に課題があった。 In the technique described in Patent Document 3, silicate is used. The case where silicate is used as a dispersant will be described. In this case, in order to ensure good productivity under conditions where the weight ratio between the polypropylene resin particles and the aqueous dispersion medium is close, if a large amount of silicate is not added, blocking immediately after release outside the pressure vessel Can not prevent. Also, polypropylene resin expanded particles obtained by using a large amount of silicate can be obtained although no silicate is deposited on the mold during in-mold expansion molding using the expanded particles. There existed a subject that the tendency for the melt | fusion property of an in-mold foam molding to deteriorate was seen. In addition, when a large amount of silicate is used, the treatment of waste water containing a large amount of silicate is costly and there is a problem in productivity.
 また、特許文献3に記載の技術では、ポリプロピレン系樹脂と水系分散媒との重量比が近しく、ブロッキングが起きやすい条件において、ブロッキングを防止する効果が不十分であった。すなわち、特許文献3に記載の技術では、ポリプロピレン系樹脂と水系分散媒との重量比が近しい場合、一段発泡粒子の製造工程におけるブロッキングを防ぐために、多量の無機系分散剤であるカオリン(ケイ酸塩)を添加する必要があった。しかしながら、ポリプロピレン系樹脂発泡粒子表面に付着したカオリン(ケイ酸塩)量が増加し、その結果、型内発泡成形時の融着性が悪化することを本発明者は独自に見出した。 In the technique described in Patent Document 3, the effect of preventing blocking was insufficient under conditions where the weight ratio between the polypropylene resin and the aqueous dispersion medium was close and blocking was likely to occur. That is, in the technique described in Patent Document 3, when the weight ratio between the polypropylene resin and the aqueous dispersion medium is close, a large amount of kaolin (silicic acid), which is an inorganic dispersant, is used to prevent blocking in the production process of the single-stage expanded particles. Salt) had to be added. However, the present inventors have uniquely found that the amount of kaolin (silicate) adhering to the surface of the expanded polypropylene resin particles increases, and as a result, the fusion property at the time of in-mold foam molding deteriorates.
 ポリプロピレン系樹脂粒子の製造において、ポリプロピレン系樹脂粒子に対する分散媒(例えば、水系分散媒)の量が多い場合について説明する。この場合、一定の容積を有する容器(例えば、密閉容器および耐圧容器など)内に供給できるポリプロピレン系樹脂粒子(原料)が少なくなるため、1バッチサイクルあたり(1回の生産あたり)に生産できるポリプロピレン系樹脂発泡粒子が少なくなる。そのため、ポリプロピレン系樹脂粒子に対する分散媒の量が多い程、生産性に劣る製造方法といえる。 In the production of polypropylene resin particles, a case where the amount of a dispersion medium (for example, an aqueous dispersion medium) is large relative to the polypropylene resin particles will be described. In this case, polypropylene resin particles (raw materials) that can be supplied into containers having a certain volume (for example, sealed containers and pressure-resistant containers) are reduced, so that polypropylene can be produced per batch cycle (per production). Resin-based foamed particles are reduced. Therefore, it can be said that the production method is inferior in productivity as the amount of the dispersion medium with respect to the polypropylene resin particles is larger.
 ここで、ポリプロピレン系樹脂粒子に対する水系分散媒の量が少ないほど、密閉容器外でのブロッキングが起こり易い。具体的には、ポリプロピレン系樹脂粒子の製造において、ポリプロピレン系樹脂粒子と水系分散媒との重量比が近しい場合には、容器(密閉容器および耐圧容器など)の外でのブロッキングが起こり易い。 Here, the smaller the amount of the aqueous dispersion medium with respect to the polypropylene resin particles, the easier the blocking outside the sealed container occurs. Specifically, in the production of polypropylene resin particles, if the weight ratio between the polypropylene resin particles and the aqueous dispersion medium is close, blocking outside the container (such as a sealed container and a pressure-resistant container) tends to occur.
 本発明の一実施形態の目的は、(1)ポリプロピレン系樹脂粒子に対する水系分散媒の量を少なくすることにより、高い生産性を有するとともに、(2)ポリプロピレン系樹脂粒子と水系分散媒との重量比が近しい場合であっても、容器外でのブロッキングが防止された、型内発泡成形用ポリプロピレン系樹脂発泡粒子の製造方法を提供することにある。 The object of one embodiment of the present invention is to (1) have high productivity by reducing the amount of aqueous dispersion medium relative to polypropylene resin particles, and (2) the weight of polypropylene resin particles and aqueous dispersion medium. An object of the present invention is to provide a method for producing polypropylene resin foamed particles for in-mold foam molding, in which blocking outside the container is prevented even when the ratio is close.
 〔2.ポリプロピレン系樹脂発泡粒子の製造方法〕
 本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、ポリプロピレン系樹脂粒子と、無機ガス系発泡剤と、無機系分散剤であるケイ酸塩とを、密閉容器内で水系分散媒中に分散させ、分散液とする工程、上記ポリプロピレン系樹脂粒子の軟化温度以上まで上記密閉容器内を加熱し、かつ、上記密閉容器内を加圧する工程、および上記密閉容器の内圧よりも低い圧力域に上記分散液を放出することでポリプロピレン系樹脂発泡粒子を得る工程、を有し、上記ポリプロピレン系樹脂粒子は、ポリプロピレン系樹脂(X)85~99重量%および密度0.945g/cm以上のポリエチレン系樹脂(Y)1~15重量%から成るポリプロピレン系樹脂(Z)[(X)と(Y)の合計は100重量%である]と、上記ポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下のアミン系化合物と、を含み、上記分散液は上記ポリプロピレン系樹脂粒子100重量部に対し、(i)0.05重量部以上0.4重量部以下の上記ケイ酸塩、および(ii)100重量部以上250重量部以下の上記水系分散媒、を含む。
[2. Production method of expanded polypropylene resin particles]
A method for producing polypropylene resin foam particles according to an embodiment of the present invention includes a polypropylene resin particle, an inorganic gas foaming agent, and an inorganic dispersant silicate in an aqueous dispersion medium in a sealed container. A step of dispersing in, forming a dispersion, heating the inside of the closed container to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, and pressurizing the inside of the closed container, and a pressure lower than the internal pressure of the closed container A step of obtaining polypropylene-based resin expanded particles by releasing the dispersion into the region, wherein the polypropylene-based resin particles have a polypropylene-based resin (X) of 85 to 99% by weight and a density of 0.945 g / cm 3 or more. Polypropylene resin (Z) consisting of 1 to 15% by weight of polyethylene resin (Y) of the above (the total of (X) and (Y) is 100% by weight); 0.01 parts by weight or more and 1 part by weight or less of an amine compound with respect to 100 parts by weight of the resin (Z), and the dispersion is (i) 0 with respect to 100 parts by weight of the polypropylene resin particles. .05 parts by weight or more and 0.4 parts by weight or less of the silicate, and (ii) 100 parts by weight or more and 250 parts by weight or less of the aqueous dispersion medium.
 本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、上記構成を有するため、無機系分散剤としてケイ酸塩を用いる従来技術と比較して、ポリプロピレン系樹脂粒子に対する水系分散媒の量が少ない場合であっても、密閉容器外でのブロッキングを防止することができる。すなわち、本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、生産性の高い型内発泡成形用ポリプロピレン系樹脂発泡粒子の製造方法を提供することができる。 Since the method for producing expanded polypropylene resin particles according to an embodiment of the present invention has the above-described configuration, the aqueous dispersion medium for the polypropylene resin particles is compared with the conventional technique using silicate as an inorganic dispersant. Even when the amount is small, blocking outside the sealed container can be prevented. In other words, the method for producing expanded polypropylene resin particles according to an embodiment of the present invention can provide a method for producing expanded polypropylene resin particles for in-mold foam molding with high productivity.
 (2-1.ポリプロピレン系樹脂粒子)
 (ポリプロピレン系樹脂(X))
 本発明の一実施形態で用いられる「ポリプロピレン系樹脂(X)」としては、プロピレン由来の成分を主たる共重合成分としているものであり、ポリプロピレンホモポリマー、エチレン/プロピレンランダム共重合体、ブテン-1/プロピレンランダム共重合体、エチレン/ブテン-1/プロピレンランダム共重合体、エチレン/プロピレンブロック共重合体、ブテン-1/プロピレンブロック共重体、プロピレン/塩素化ビニル共重合体、プロピレン/無水マレイン酸共重合体およびこれらのブレンド物等が挙げられる。これらのなかでも、エチレン/プロピレンランダム共重合体、ブテン-1/プロピレンランダム共重合体またはエチレン/ブテン-1/プロピレンランダム共重合体が良好な発泡性を有し、良好な成形性を有する点から好適である。本明細書において、「ブテン-1」は「1-ブテン」とも表記され得る。ここで、上記「プロピレン由来の成分を主たる共重合成分としている」とは、共重合体における全共重合成分(構成成分とも称する)のうち50%以上がプロピレン由来の成分であることを意図する。
(2-1. Polypropylene resin particles)
(Polypropylene resin (X))
The “polypropylene-based resin (X)” used in one embodiment of the present invention has a propylene-derived component as a main copolymer component, and includes a polypropylene homopolymer, an ethylene / propylene random copolymer, butene-1 / Propylene random copolymer, ethylene / butene-1 / propylene random copolymer, ethylene / propylene block copolymer, butene-1 / propylene block copolymer, propylene / chlorinated vinyl copolymer, propylene / maleic anhydride Examples thereof include copolymers and blends thereof. Among these, ethylene / propylene random copolymer, butene-1 / propylene random copolymer or ethylene / butene-1 / propylene random copolymer has good foamability and good moldability. To preferred. In this specification, “butene-1” may also be expressed as “1-butene”. Here, “the component derived from propylene is the main copolymer component” means that 50% or more of all copolymer components (also referred to as constituent components) in the copolymer are components derived from propylene. .
 ポリプロピレン系樹脂(X)としては、さらにプロピレン由来の成分以外の共重合成分である、コモノマー由来の成分の含有率が、各共重合体100重量%中、0.2重量%以上10重量%以下のものが好適に用いられる。ポリプロピレン系樹脂(X)としては、1種のみを用いてもよく、2種以上を併用してもよい。 As the polypropylene resin (X), the content of the comonomer-derived component, which is a copolymer component other than the propylene-derived component, is 0.2 wt% to 10 wt% in 100 wt% of each copolymer. Are preferably used. As a polypropylene resin (X), only 1 type may be used and 2 or more types may be used together.
 本発明の一実施形態で用いられるポリプロピレン系樹脂(X)を合成するときの重合触媒としては特に制限は無く、チーグラー系触媒、メタロセン系触媒などを用いることができる。 The polymerization catalyst for synthesizing the polypropylene resin (X) used in one embodiment of the present invention is not particularly limited, and a Ziegler catalyst, a metallocene catalyst, or the like can be used.
 本発明の一実施形態に用いられるポリプロピレン系樹脂(X)の融点は、特に限定されないが、130℃以上160℃以下であることが好ましく、より好ましくは140℃以上155℃以下である。ポリプロピレン系樹脂(X)の融点が上述した範囲にあると、機械的強度と表面外観とのバランスに優れた型内発泡成形体が得られやすい傾向がある。本明細書において、ポリプロピレン系樹脂(X)の融点は、示差走査熱量計を用いて行う示差走査熱量測定(Differential Scanning Calorimetry;DSC)の結果得られた値とする。具体的な操作手順は以下の通りである:(1)ポリプロピレン系樹脂5~6mgを10℃/分の昇温速度で40℃から220℃まで昇温して融解させた後;(2)10℃/分の降温速度で220℃から40℃まで降温して結晶化させた後;(3)さらに10℃/分の昇温速度で40℃から220℃まで昇温する。2回目の昇温時(すなわち(3)のとき)に得られるDSC曲線のピーク(融解ピーク)の温度を融点として求めることができる。 The melting point of the polypropylene resin (X) used in one embodiment of the present invention is not particularly limited, but is preferably 130 ° C. or higher and 160 ° C. or lower, more preferably 140 ° C. or higher and 155 ° C. or lower. When the melting point of the polypropylene resin (X) is in the above-described range, there is a tendency that an in-mold foam molded article having an excellent balance between mechanical strength and surface appearance tends to be obtained. In this specification, the melting point of the polypropylene resin (X) is a value obtained as a result of differential scanning calorimetry (DSC) performed using a differential scanning calorimeter. The specific operation procedure is as follows: (1) After 5-6 mg of polypropylene resin is melted by raising the temperature from 40 ° C. to 220 ° C. at a temperature raising rate of 10 ° C./min; (2) 10 After crystallizing by lowering the temperature from 220 ° C. to 40 ° C. at a temperature lowering rate of 3 ° C./min; The temperature of the peak (melting peak) of the DSC curve obtained at the second temperature increase (that is, (3)) can be determined as the melting point.
 本発明の一実施形態に用いられるポリプロピレン系樹脂(X)のメルトフローレート(以下、MFRと称する場合がある。)は3.0g/10分以上12g/10分以下であることが好ましく、より好ましくは5.0g/10分以上9.0g/10分以下である。ポリプロピレン系樹脂のメルトフローレートが上述した範囲にある場合、変形が少なく、表面美麗性に優れた型内発泡成形体が得られやすい傾向がある。本発明の一実施形態におけるMFRの測定は、JIS K7210記載のMFR測定器を用い、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、荷重2160g、230±0.2℃の条件下で測定した際の値である。 The melt flow rate (hereinafter sometimes referred to as MFR) of the polypropylene resin (X) used in one embodiment of the present invention is preferably 3.0 g / 10 min or more and 12 g / 10 min or less, more Preferably they are 5.0 g / 10min or more and 9.0 g / 10min or less. When the melt flow rate of the polypropylene-based resin is in the above-described range, there is a tendency that an in-mold foam-molded article with little deformation and excellent surface beauty is easily obtained. The MFR measurement in one embodiment of the present invention uses an MFR measuring instrument described in JIS K7210, with an orifice of 2.0959 ± 0.005 mmφ, an orifice length of 8.000 ± 0.025 mm, a load of 2160 g, and 230 ± 0.2. It is a value when measured under the condition of ° C.
 (ポリエチレン系樹脂(Y))
 本発明の一実施形態におけるポリエチレン系樹脂(Y)の密度は、0.945g/cm以上であり、好ましくは0.960g/cm以上である。ポリエチレン系樹脂(Y)の密度が0.945g/cm未満の場合、ポリプロピレン系樹脂発泡粒子のブロッキングを抑制する効果が十分に発揮されない。またポリエチレン系樹脂(Y)の密度に上限はないが、ポリエチレン系樹脂の密度は結晶化度に依存しており、一般的には結晶化度を高くしても0.970g/cm程度が限度となる。
(Polyethylene resin (Y))
The density of the polyethylene resin (Y) in one embodiment of the present invention is 0.945 g / cm 3 or more, preferably 0.960 g / cm 3 or more. When the density of the polyethylene resin (Y) is less than 0.945 g / cm 3, the effect of suppressing the blocking of the polypropylene resin foamed particles is not sufficiently exhibited. There is no upper limit to the density of the polyethylene resin (Y), but the density of the polyethylene resin depends on the crystallinity, and generally it is about 0.970 g / cm 3 even if the crystallinity is increased. Limit.
 本発明の一実施形態で用いられるポリエチレン系樹脂(Y)は所定の密度であれば、エチレン由来の成分以外に、エチレンと共重合可能なコモノマー由来の成分を含んでいてもよい。 The polyethylene resin (Y) used in one embodiment of the present invention may contain a component derived from a comonomer copolymerizable with ethylene in addition to the component derived from ethylene as long as it has a predetermined density.
 上記エチレンと共重合可能なコモノマーとしては、炭素数3以上18以下のα-オレフィンを用いることができる。当該炭素数3以上18以下のα-オレフィンとしては、例えば、プロペン、1-ブテン、1-ペンテン、1-ヘキセン、3,3-ジメチル/1-ブテン、4-メチル/1-ペンテン、4,4-ジメチル/1-ペンテン、および1-オクテンなどが挙げられ、これらは1種を単独で使用してもよく、2種以上を併用しても良い。 As the comonomer copolymerizable with ethylene, an α-olefin having 3 to 18 carbon atoms can be used. Examples of the α-olefin having 3 to 18 carbon atoms include propene, 1-butene, 1-pentene, 1-hexene, 3,3-dimethyl / 1-butene, 4-methyl / 1-pentene, 4, Examples thereof include 4-dimethyl / 1-pentene and 1-octene, and these may be used alone or in combination of two or more.
 本発明の一実施形態で用いられるポリエチレン系樹脂(Y)の融点は特に制限はないが、125℃以上140℃以下のものが好適に用いられる。本明細書において、ポリエチレン系樹脂(Y)の融点は、ポリプロピレン系樹脂に代えて、ポリエチレン系樹脂を使用する以外は、ポリプロピレン系樹脂(X)の融点と同様の方法(DSC)で測定して得られた値とする。 The melting point of the polyethylene resin (Y) used in one embodiment of the present invention is not particularly limited, but those having a temperature of 125 ° C. or higher and 140 ° C. or lower are preferably used. In this specification, the melting point of the polyethylene resin (Y) is measured by the same method (DSC) as the melting point of the polypropylene resin (X) except that a polyethylene resin is used instead of the polypropylene resin. The obtained value.
 本発明の一実施形態で用いられるポリエチレン系樹脂(Y)のMFRは特に制限されないが、ポリプロピレン系樹脂(X)と同程度のものが好ましい。本明細書において、ポリエチレン系樹脂(Y)のMFRは、ポリプロピレン系樹脂(X)のMFRと同じ方法により測定して得られた値とする。 The MFR of the polyethylene resin (Y) used in one embodiment of the present invention is not particularly limited, but is preferably the same as that of the polypropylene resin (X). In the present specification, the MFR of the polyethylene resin (Y) is a value obtained by measurement by the same method as the MFR of the polypropylene resin (X).
 (ポリプロピレン系樹脂(Z))
 本発明の一実施形態で用いられるポリプロピレン系樹脂(Z)における、ポリプロピレン系樹脂(X)とポリエチレン系樹脂(Y)との混合比は、ポリプロピレン系樹脂(Z)100重量%[換言すれば、(X)と(Y)の合計は100重量%]に対して、ポリエチレン系樹脂(X)85重量%以上99重量%以下、およびポリエチレン系樹脂(Y)1重量%以上15重量%以下である。さらに、ポリプロピレン系樹脂(X)90重量%以上95重量%以下、およびポリエチレン系樹脂(Y)5重量%以上10重量%以下が好ましい。上記「混合比」は「含有量比」ともいえる。
(Polypropylene resin (Z))
In the polypropylene resin (Z) used in an embodiment of the present invention, the mixing ratio of the polypropylene resin (X) and the polyethylene resin (Y) is 100% by weight of the polypropylene resin (Z) [in other words, The total of (X) and (Y) is 100 wt%], and the polyethylene resin (X) is 85 wt% or more and 99 wt% or less, and the polyethylene resin (Y) is 1 wt% or more and 15 wt% or less. . Furthermore, 90 to 95 weight% of polypropylene resin (X) and 5 to 10 weight% of polyethylene resin (Y) are preferable. The “mixing ratio” can be said to be a “content ratio”.
 ポリプロピレン系樹脂(X)とポリエチレン系樹脂(Y)との上記混合比がポリプロピレン系樹脂(Z)100重量%に対して、ポリプロピレン系樹脂(X)99重量%超、およびポリエチレン系樹脂(Y)1重量%未満では、ポリプロピレン系樹脂発泡粒子の製造において、ブロッキングを抑制する効果が十分に発揮されない。一方、ポリプロピレン系樹脂(X)とポリエチレン系樹脂(Y)との上記混合比がポリプロピレン系樹脂(Z)100重量%に対して、ポリプロピレン系樹脂(X)85重量%未満、およびポリエチレン系樹脂(Y)15重量%超である場合、型内成形時のポリプロピレン系樹脂発泡粒子の伸びが低下し、表面外観が悪化する場合がある。 The mixing ratio of the polypropylene resin (X) and the polyethylene resin (Y) is more than 99% by weight of the polypropylene resin (X) with respect to 100% by weight of the polypropylene resin (Z), and the polyethylene resin (Y). If it is less than 1% by weight, the effect of inhibiting blocking is not sufficiently exhibited in the production of polypropylene resin expanded particles. On the other hand, the mixing ratio of the polypropylene resin (X) and the polyethylene resin (Y) is less than 85% by weight of the polypropylene resin (X) with respect to 100% by weight of the polypropylene resin (Z), and the polyethylene resin ( Y) If it exceeds 15% by weight, the elongation of the polypropylene resin foamed particles during in-mold molding may be reduced, and the surface appearance may be deteriorated.
 本発明の一実施形態で用いられるポリプロピレン系樹脂(Z)のMFRは3.0g/10分以上12g/10分以下であることが好ましく、より好ましくは5.0g/10分以上9.0g/10分以下である。ポリプロピレン系樹脂(Z)のメルトフローレートが上述した範囲にある場合、変形が少なく、表面美麗性に優れた型内発泡成形体が得られやすい傾向がある。本明細書において、ポリプロピレン系樹脂(Z)のMFRは、ポリプロピレン系樹脂(X)のMFRと同じ方法により測定して得られた値とする。 The MFR of the polypropylene resin (Z) used in one embodiment of the present invention is preferably 3.0 g / 10 min or more and 12 g / 10 min or less, more preferably 5.0 g / 10 min or more and 9.0 g / min. 10 minutes or less. When the melt flow rate of the polypropylene-based resin (Z) is in the above-described range, there is a tendency that an in-mold foam-molded product with little deformation and excellent surface beauty is easily obtained. In the present specification, the MFR of the polypropylene resin (Z) is a value obtained by measurement by the same method as the MFR of the polypropylene resin (X).
 (アミン系化合物)
 本発明の一実施形態で用いられる「アミン系化合物」は、入手可能なものであれば特に限定されず、例えば、第一級アミン、第二級アミン、第三級アミン、第四級アンモニウム塩、ヒンダードアミン等が挙げられ、これらは1種を単独で用いてもよく、2種類以上を併用してもよい。特にヒンダードアミンは発泡樹脂粒子および型内発泡成形体の耐光性を高める紫外線吸収剤としての効果があるため好ましい。具体的には、セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)、コハク酸ジメチルおよび4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの縮合物、ステアリルジエタノールアミンモノステアリン酸エステルおよびステアリルジエタノールアミンの混合物、および塩化アルキル(C16~C18)トリメチルアンモニウム等が挙げられる。なお、「アルキル(C16~C18)」とは、炭素数16~18のアルキルであることを意図する。
(Amine compounds)
The “amine compound” used in one embodiment of the present invention is not particularly limited as long as it is available. For example, a primary amine, a secondary amine, a tertiary amine, a quaternary ammonium salt. Hindered amines, and the like. These may be used alone or in combination of two or more. In particular, hindered amine is preferable because it has an effect as an ultraviolet absorber that enhances the light resistance of the foamed resin particles and the in-mold foam molded article. Specifically, condensation of bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol Products, a mixture of stearyl diethanolamine monostearate and stearyl diethanolamine, and alkyl (C 16 -C 18 ) trimethylammonium chloride. “Alkyl (C 16 -C 18 )” is intended to be alkyl having 16 to 18 carbon atoms.
 本発明の一実施形態に係るアミン系化合物の含有量としては、ポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下である。より好ましくは0.1重量部以上0.5重量部以下である。当該アミン系化合物の含有量がポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部未満の場合、ポリプロピレン系樹脂発泡粒子作製時の分散安定性が悪化し、発泡粒子が得られない。当該アミン系化合物の含有量がポリプロピレン系樹脂(Z)100重量部に対し、1重量部を超える量を添加しても耐圧容器(密閉容器)外でのブロッキングを抑制する効果に差は生じず、生産コスト面において不利益となる。 The content of the amine compound according to one embodiment of the present invention is 0.01 part by weight or more and 1 part by weight or less with respect to 100 parts by weight of the polypropylene resin (Z). More preferably, it is 0.1 parts by weight or more and 0.5 parts by weight or less. When the content of the amine compound is less than 0.01 parts by weight with respect to 100 parts by weight of the polypropylene resin (Z), the dispersion stability during the production of the expanded polypropylene resin particles is deteriorated, and the expanded particles cannot be obtained. . Even if the amount of the amine compound is more than 1 part by weight with respect to 100 parts by weight of the polypropylene resin (Z), there is no difference in the effect of suppressing blocking outside the pressure vessel (sealed container). This is disadvantageous in terms of production cost.
 (2-2.ポリプロピレン系樹脂粒子の製造方法)
 本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法は、ポリプロピレン系樹脂粒子を製造する工程をさらに有してもよい。
(2-2. Method for producing polypropylene resin particles)
The method for producing expanded polypropylene resin particles according to an embodiment of the present invention may further include a step of producing polypropylene resin particles.
 本発明の一実施形態に係るポリプロピレン系樹脂粒子を製造する方法としては、例えば、次のような方法が挙げられる。 Examples of the method for producing polypropylene resin particles according to an embodiment of the present invention include the following methods.
 まず、ポリプロピレン系樹脂(X)、ポリエチレン系樹脂(Y)、およびアミン系化合物、さらに必要に応じてその他の添加剤の混合物を、ドライブレンド法、マスターバッチ法等の混合方法により混合する。 First, a mixture of a polypropylene resin (X), a polyethylene resin (Y), an amine compound, and, if necessary, other additives is mixed by a mixing method such as a dry blend method or a master batch method.
 次いで、得られた混合物を、押出機、ニーダー、バンバリーミキサー(登録商標)、およびロール等を用いて溶融混練した後に、得られた溶融混練物をカッター、およびペレタイザー等を用いて細断し、粒子形状とすることにより、ポリプロピレン系樹脂粒子が得られる。 Next, after the obtained mixture is melt-kneaded using an extruder, kneader, Banbury mixer (registered trademark), and a roll, the obtained melt-kneaded product is shredded using a cutter, a pelletizer, and the like. By setting the particle shape, polypropylene resin particles can be obtained.
 (2-3.その他の添加剤)
 本発明の一実施形態に係るポリプロピレン系樹脂粒子には、必要に応じてその他の添加剤として、セル造核剤、親水性化合物、酸化防止剤、帯電防止剤、および難燃剤などを含有させることができる。このようなその他の添加剤は、あらかじめその他の樹脂に該添加剤を高濃度で含有させてマスターバッチ化しておき、このマスターバッチ樹脂をポリプロピレン系樹脂(Z)に添加しても良い。このようなマスターバッチ樹脂に使用される樹脂としては、ポリオレフィン系樹脂が好ましく、ポリプロピレン系樹脂を使用してマスターバッチ化することがより好ましい。
(2-3. Other additives)
The polypropylene resin particles according to an embodiment of the present invention may contain a cell nucleating agent, a hydrophilic compound, an antioxidant, an antistatic agent, a flame retardant, and the like as other additives as necessary. Can do. Such other additives may be added to other resins in a high concentration in advance to form a master batch, and this master batch resin may be added to the polypropylene resin (Z). The resin used for such a masterbatch resin is preferably a polyolefin resin, and more preferably a masterbatch using a polypropylene resin.
 本発明の一実施形態で必要に応じて用いられるセル造核剤としては、例えば、タルク、ステアリン酸カルシウム、炭酸カルシウム、シリカ、カオリン、酸化チタン、ベントナイト、および硫酸バリウム等の無機系造核剤が一般に使用される。これらは、1種を単独で用いても良いし、2種以上を併用しても良い。これらセル造核剤の中でも、タルクが均一なセルが得られる為、好ましい。セル造核剤の含有量としては、目的とするセル径および使用するセル造核剤の種類により適宜調整すれば良い。セル造核剤の含有量としては、例えば、ポリプロピレン系樹脂(Z)100重量部に対し、0.001重量部以上、2重量部以下が好ましく、より好ましくは0.01部以上、1重量部以下である。セル造核剤の含有量が当該範囲にあると、均一で発泡粒子に適した大きさのセルが得られやすい。ここで、「セル」は「気泡」と称する場合もある。 Examples of the cell nucleating agent used as needed in one embodiment of the present invention include inorganic nucleating agents such as talc, calcium stearate, calcium carbonate, silica, kaolin, titanium oxide, bentonite, and barium sulfate. Generally used. These may be used alone or in combination of two or more. Among these cell nucleating agents, a cell having uniform talc can be obtained, which is preferable. The content of the cell nucleating agent may be appropriately adjusted according to the intended cell diameter and the type of cell nucleating agent to be used. As content of a cell nucleating agent, 0.001 weight part or more and 2 weight part or less are preferable with respect to 100 weight part of polypropylene-type resin (Z), for example, More preferably, 0.01 part or more and 1 weight part are preferable. It is as follows. When the content of the cell nucleating agent is within the range, cells having a uniform size suitable for expanded particles can be easily obtained. Here, the “cell” may be referred to as “bubble”.
 本発明の一実施形態では必要に応じて親水性化合物が用いられる。ポリプロピレン系樹脂粒子に親水性化合物を含有させる場合、水系分散媒中に含まれる水も発泡剤として作用し、当該水が発泡倍率向上に寄与するため好ましい。本発明の一実施形態で用いられる親水性化合物の具体例としては、例えばグリセリン、ポリエチレングリコール、ポリプロピレングリコール、およびメラミンなどが挙げられるが、これらに限定されるものではない。特に好ましくは、グリセリン、およびポリエチレングリコールが挙げられる。 In one embodiment of the present invention, a hydrophilic compound is used as necessary. When the polypropylene resin particles contain a hydrophilic compound, water contained in the aqueous dispersion medium also acts as a foaming agent, and this water is preferable because it contributes to an improvement in the expansion ratio. Specific examples of the hydrophilic compound used in one embodiment of the present invention include, but are not limited to, glycerin, polyethylene glycol, polypropylene glycol, and melamine. Particularly preferred are glycerin and polyethylene glycol.
 本発明の一実施形態におけるポリプロピレン系樹脂粒子の一粒あたりの重量(以下、「粒重量」とも称する。)は、0.2mg以上10mg以下が好ましく、0.5mg以上6.0mg以下がより好ましい。ポリプロピレン系樹脂粒子の一粒あたりの重量が当該範囲にある場合、得られる型内発泡成形体の寸法および充填性が良好になりやすい。本明細書において、ポリプロピレン系樹脂粒子の一粒あたりの重量は、ポリプロピレン系樹脂粒子をランダムに選んだ100粒から得られる平均樹脂粒子重量である。 In one embodiment of the present invention, the weight per polypropylene resin particle (hereinafter also referred to as “grain weight”) is preferably 0.2 mg or more and 10 mg or less, and more preferably 0.5 mg or more and 6.0 mg or less. . When the weight per one polypropylene-based resin particle is in the range, the dimensions and filling properties of the obtained in-mold foam molded product are likely to be good. In this specification, the weight per one polypropylene resin particle is an average resin particle weight obtained from 100 particles of randomly selected polypropylene resin particles.
 通常、ポリプロピレン系樹脂粒子の組成および粒重量などは、発泡工程、および型内発泡成形工程を経てもほとんど変化は無く、発泡粒子および型内発泡成形体を再溶融させても同じ性質を示す。従って、発泡粒子および型内発泡成形体を解析することにより、使用されたポリプロピレン系樹脂粒子の組成および粒重量などを求めることができる。 Usually, the composition and particle weight of the polypropylene resin particles are hardly changed even after the foaming process and the in-mold foam molding process, and the same properties are exhibited even when the foam particles and the in-mold foam molding are remelted. Therefore, by analyzing the foamed particles and the in-mold foamed molded product, the composition and particle weight of the used polypropylene resin particles can be determined.
 (2-4.ポリプロピレン系樹脂発泡粒子の製造方法)
 本発明の一実施形態では、このようにして得られたポリプロピレン系樹脂粒子を用いて、ポリプロピレン系樹脂発泡粒子を製造することができる。上述の製造方法以外の方法によって製造されたポリプロピレン系樹脂粒子または市販のポリプロピレン系樹脂粒子を用いても、ポリプロピレン系樹脂発泡粒子を製造することができる。
(2-4. Production method of expanded polypropylene resin particles)
In one embodiment of the present invention, polypropylene-based resin expanded particles can be produced using the polypropylene-based resin particles thus obtained. Polypropylene resin foamed particles can also be produced using polypropylene resin particles produced by methods other than the production methods described above or commercially available polypropylene resin particles.
 本発明の一実施形態における発泡剤としては、「無機ガス系発泡剤」である、水、二酸化炭素、窒素、空気(すなわち、酸素、窒素、二酸化炭素の混合物)等が挙げられる。無機ガス系発泡剤としては、好ましくは二酸化炭素を使用する。環境負荷が小さい無機ガス系発泡剤の中でも二酸化炭素を用いることにより、外観の良好なポリプロピレン系樹脂型内発泡成形体が得られる。以下、「無機ガス系発泡剤」を、単に「発泡剤」と称する場合もある。 Examples of the foaming agent in one embodiment of the present invention include “inorganic gas-based foaming agent” such as water, carbon dioxide, nitrogen, air (that is, a mixture of oxygen, nitrogen and carbon dioxide). As the inorganic gas-based foaming agent, carbon dioxide is preferably used. By using carbon dioxide among inorganic gas-based foaming agents having a small environmental load, a polypropylene resin in-mold foam-molded article having a good appearance can be obtained. Hereinafter, the “inorganic gas-based foaming agent” may be simply referred to as “foaming agent”.
 本発明の一実施形態で用いられる発泡剤として、得られるポリプロピレン系樹脂型内発泡成形体の品質が損なわれない範囲で、空気、窒素、酸素等の無機ガスを二酸化炭素とともに併用しても良い。例えば、発泡に用いる密閉容器内に残留している空気等は、得られるポリプロピレン系樹脂型内発泡成形体の品質にほとんど影響しないことから、二酸化炭素とともに併用しても良い。 As a foaming agent used in an embodiment of the present invention, an inorganic gas such as air, nitrogen, oxygen or the like may be used in combination with carbon dioxide as long as the quality of the obtained foamed polypropylene resin mold is not impaired. . For example, air remaining in a sealed container used for foaming has little influence on the quality of the obtained polypropylene-based resin-molded foam-molded product, and may be used together with carbon dioxide.
 本発明の一実施形態におけるポリプロピレン系樹脂発泡粒子の製造方法は、次のような方法であってもよい。すなわち、(1)ポリプロピレン系樹脂粒子および無機系分散剤であるケイ酸塩を密閉容器内にて水系分散媒に分散させ分散液とする工程;(2)発泡剤として二酸化炭素を密閉容器内に添加することにより、密閉容器内を加圧するとともに、ポリプロピレン系樹脂粒子に当該二酸化炭素を含浸する工程;(3)ポリプロピレン系樹脂粒子の軟化温度以上の温度まで密閉容器内を加熱する工程;および(4)ポリプロピレン系樹脂粒子を含む分散液を、密閉容器の内圧よりも低い圧力域に放出することでポリプロピレン系樹脂発泡粒子を得る工程から成る方法である。このような(1)~(4)の工程をまとめて、「一段発泡工程」と呼ぶ場合があり、「一段発泡工程」で得たポリプロピレン系樹脂発泡粒子を「一段発泡粒子」と呼ぶ場合がある。 The method for producing the expanded polypropylene resin particles in one embodiment of the present invention may be the following method. That is, (1) a step of dispersing polypropylene resin particles and an inorganic dispersant silicate in an aqueous dispersion medium in an airtight container to obtain a dispersion; (2) carbon dioxide as a foaming agent in the airtight container. (2) a step of impregnating polypropylene resin particles with the carbon dioxide while adding pressure to the inside of the sealed container by adding; (3) a step of heating the inside of the sealed container to a temperature equal to or higher than the softening temperature of the polypropylene resin particles; 4) A method comprising a step of obtaining polypropylene-based resin expanded particles by releasing a dispersion containing polypropylene-based resin particles into a pressure region lower than the internal pressure of the sealed container. Such processes (1) to (4) may be collectively referred to as a “single-stage foaming process”, and the polypropylene resin foam particles obtained in the “single-stage foaming process” may be referred to as “single-stage foam particles”. is there.
 本発明の一実施形態に係る製造方法において、「ポリプロピレン系樹脂粒子の軟化温度以上」とは、本発明の一実施形態に係るポリプロピレン系樹脂粒子の融点-10℃以上であることを意味する。 In the production method according to one embodiment of the present invention, “above the softening temperature of polypropylene resin particles” means that the melting point of the polypropylene resin particles according to one embodiment of the present invention is −10 ° C. or more.
 また、密閉容器内の加熱温度(言い換えると発泡温度)は、特に限定されないが、ポリプロピレン系樹脂粒子の軟化温度以上であればよく、例えば、用いられるポリプロピレン系樹脂(Z)の融点-10℃以上、融点+10℃以下であることが好ましい。 The heating temperature in the closed container (in other words, the foaming temperature) is not particularly limited, and may be any temperature above the softening temperature of the polypropylene resin particles. For example, the melting point of the polypropylene resin (Z) used is −10 ° C. or more. The melting point is preferably 10 ° C. or lower.
 本明細書において、ポリプロピレン系樹脂粒子の融点は、ポリプロピレン系樹脂に代えて、ポリプロピレン系樹脂粒子を使用する以外は、ポリプロピレン系樹脂(X)の融点と同様の方法(DSC)で測定して得られた値とする。 In this specification, the melting point of the polypropylene resin particles is obtained by measuring by the same method (DSC) as the melting point of the polypropylene resin (X) except that polypropylene resin particles are used instead of the polypropylene resin. Value.
 本明細書において、ポリプロピレン系樹脂(Z)の融点は、ポリプロピレン系樹脂(X)の融点と同様の方法(DSC)で測定して得られた値とする。 In the present specification, the melting point of the polypropylene resin (Z) is a value obtained by measurement by the same method (DSC) as the melting point of the polypropylene resin (X).
 本発明の一実施形態における上記密閉容器内で発泡剤を含浸させる圧力(言い換えると発泡圧力)は、約1.5MPa(ゲージ圧)以上5.0MPa(ゲージ圧)以下であることが好ましく、約1.5MPa(ゲージ圧)以上3.5MPa(ゲージ圧)以下であることがより好ましい。当該発泡圧力が当該範囲にある場合、得られる型内発泡成形体の外観が良好なものが得られやすい。 The pressure for impregnating the foaming agent in the closed container in one embodiment of the present invention (in other words, foaming pressure) is preferably about 1.5 MPa (gauge pressure) or more and 5.0 MPa (gauge pressure) or less, More preferably, the pressure is 1.5 MPa (gauge pressure) or more and 3.5 MPa (gauge pressure) or less. When the said foaming pressure exists in the said range, what has the favorable external appearance of the in-mold foaming molding obtained is easy to be obtained.
 本発明の一実施形態において、密閉容器内で加温および加圧したポリプロピレン系樹脂発泡粒子を含む分散液は、筒状容器、配管、または密閉タンク等に放出され、好ましくは筒状容器に放出される。当該筒状容器を「発泡筒」と呼ぶ場合がある。 In one embodiment of the present invention, the dispersion liquid containing expanded polypropylene resin particles heated and pressurized in a sealed container is released into a cylindrical container, piping, a sealed tank or the like, preferably released into the cylindrical container. Is done. The cylindrical container may be referred to as a “foamed cylinder”.
 本発明の一実施形態においては、発泡倍率を調節する目的で、分散液を放出する発泡筒の雰囲気の温度を、室温~110℃程度に調節してもよい。特に高い発泡倍率の発泡粒子を得る為には、分散液を放出する発泡筒の雰囲気の温度を蒸気等で100℃程度にすることが望ましい。またこのとき、本発明の一実施形態に係る製造方法を用いない場合、分散液を放出する発泡筒の雰囲気の温度が高いほど、発泡筒内でのブロッキングが発生しやすい。しかしながら、本発明の一実施形態に係る製造方法を用いる場合、分散液を放出する発泡筒の雰囲気の温度が高い場合であっても、発泡筒内でブロッキングが発生しないという利点を有する。 In one embodiment of the present invention, for the purpose of adjusting the expansion ratio, the temperature of the atmosphere of the foam cylinder from which the dispersion is discharged may be adjusted to about room temperature to about 110 ° C. In particular, in order to obtain expanded particles with a high expansion ratio, it is desirable to set the temperature of the atmosphere of the expanded cylinder from which the dispersion is discharged to about 100 ° C. with steam or the like. Further, at this time, when the manufacturing method according to the embodiment of the present invention is not used, blocking in the foamed cylinder is more likely to occur as the temperature of the atmosphere of the foamed cylinder from which the dispersion is discharged is higher. However, when the manufacturing method according to an embodiment of the present invention is used, there is an advantage that blocking does not occur in the foam cylinder even when the temperature of the atmosphere of the foam cylinder that discharges the dispersion is high.
 本発明の一実施形態におけるポリプロピレン系樹脂発泡粒子の製造方法の一例である「一段発泡工程」は、具体的には、以下の方法が挙げられる。 Specific examples of the “one-stage foaming step”, which is an example of a method for producing polypropylene-based resin foam particles in one embodiment of the present invention, include the following methods.
 (i)密閉容器にポリプロピレン系樹脂粒子、水系分散媒、無機系分散剤であるケイ酸塩等を仕込んだ後、必要に応じて密閉容器内を真空引きする;(ii)次いで、密閉容器内へ発泡剤として二酸化炭素を導入し、分散液とする;(iii)その後ポリプロピレン系樹脂の軟化温度以上まで密閉容器内を加熱する;(iv)上記加熱によって密閉容器内の圧力が、約1.5MPa(ゲージ圧)以上5MPa(ゲージ圧)以下まで上がるように発泡剤である二酸化炭素の添加量を調整する;(v)必要に応じて、(v-i)密閉容器内を加熱後、さらに(v-ii)発泡剤である二酸化炭素を密閉容器内に追加して、密閉容器内を所望の発泡圧力に調整してもよい;(vi)次いで、発泡温度を保持するように密閉容器内の温度微調整を行いつつ、0分を超えて120分以下の間、発泡圧力および発泡温度を保持する;(vii)次いで、水蒸気等で80℃以上110℃以下に調節され、かつ、密閉容器の内圧よりも低い圧力域(通常は大気圧)である発泡筒に分散液を放出してポリプロピレン系樹脂発泡粒子を得る。 (I) After the polypropylene resin particles, the aqueous dispersion medium, the silicate which is an inorganic dispersant, etc. are charged into the sealed container, the inside of the sealed container is evacuated as necessary; (ii) Next, the inside of the sealed container Carbon dioxide is introduced as a foaming agent into a dispersion; (iii) The inside of the sealed container is then heated to a temperature higher than the softening temperature of the polypropylene resin; (iv) The pressure in the sealed container is about 1. The amount of carbon dioxide as a blowing agent is adjusted so as to increase from 5 MPa (gauge pressure) to 5 MPa (gauge pressure); (v) if necessary, (vi) after heating the sealed container, (V-ii) Carbon dioxide as a foaming agent may be added to the sealed container to adjust the inside of the sealed container to a desired foaming pressure; (vi) Then, the sealed container is maintained so as to maintain the foaming temperature. Adjust the temperature of However, the foaming pressure and foaming temperature are maintained for more than 0 minutes and not more than 120 minutes; (vii) Next, the pressure is adjusted to 80 ° C. or more and 110 ° C. or less with water vapor or the like and lower than the internal pressure of the sealed container The dispersion is discharged into a foamed cylinder having a region (usually atmospheric pressure) to obtain polypropylene-based resin foamed particles.
 本発明の一実施形態における発泡剤の上記とは別の導入方法としては、以下の(1)~(3)の方法が挙げられる。 As a method of introducing the foaming agent different from the above in one embodiment of the present invention, the following methods (1) to (3) may be mentioned.
 (1)密閉容器内に、ポリプロピレン系樹脂粒子、水系分散媒、無機系分散剤であるケイ酸塩等を仕込むと同時に、ドライアイスとして固体の二酸化炭素を密閉容器内に仕込むことにより、発泡剤を密閉容器内に導入する方法。 (1) A foaming agent is prepared by charging polypropylene resin particles, an aqueous dispersion medium, a silicate which is an inorganic dispersant, etc. into a sealed container, and simultaneously charging solid carbon dioxide as dry ice into the sealed container. In a closed container.
 (2)密閉容器内に、ポリプロピレン系樹脂粒子、水系分散媒、無機系分散剤であるケイ酸塩等を仕込んだ後、必要に応じて、密閉容器内を真空引きした後、ポリプロピレン系樹脂の軟化温度以上の温度まで密閉容器内を加熱しながら、発泡剤を密閉容器内に導入する方法。 (2) After charging polypropylene resin particles, aqueous dispersion medium, inorganic dispersant silicate, etc. in a sealed container, and vacuuming the sealed container as needed, the polypropylene resin A method of introducing a foaming agent into a sealed container while heating the sealed container to a temperature equal to or higher than the softening temperature.
 (3)密閉容器内に、ポリプロピレン系樹脂粒子、水系分散媒、無機系分散剤であるケイ酸塩等を仕込んだ後、必要に応じて、密閉容器内を真空引きした後、発泡温度付近まで密閉容器内を加熱し、この時点で発泡剤を密閉容器内に導入する方法。 (3) After charging polypropylene resin particles, aqueous dispersion medium, silicate which is an inorganic dispersant, etc. into the sealed container, after evacuating the inside of the sealed container, if necessary, to near the foaming temperature A method in which the inside of the sealed container is heated and the foaming agent is introduced into the sealed container at this point.
 なお、ポリプロピレン系樹脂発泡粒子の発泡倍率を高くする方法としては、例えば、密閉容器内の内圧を高くする方法、圧力開放速度を速くする方法、放出前の密閉容器内温度を高くする方法、前述したように分散液を放出する発泡筒の雰囲気の温度を高くする方法等がある。 In addition, as a method of increasing the expansion ratio of the polypropylene resin expanded particles, for example, a method of increasing the internal pressure in the sealed container, a method of increasing the pressure release speed, a method of increasing the temperature in the sealed container before discharge, As described above, there is a method of increasing the temperature of the atmosphere of the foamed cylinder from which the dispersion is discharged.
 本発明の一実施形態で用いられる水系分散媒としては、水のみを用いることが好ましいが、メタノール、エタノール、エチレングリコール、およびグリセリン等を水に添加した分散媒も使用できる。 As the aqueous dispersion medium used in one embodiment of the present invention, it is preferable to use only water, but a dispersion medium in which methanol, ethanol, ethylene glycol, glycerin or the like is added to water can also be used.
 本発明の一実施形態で用いられる密閉容器には、特に制限はなく、発泡粒子の製造工程における容器内圧力、および容器内温度に耐えられるものであれば良い。密閉容器としては、例えば、密閉可能なオートクレーブ型の耐圧容器があげられる。 The sealed container used in one embodiment of the present invention is not particularly limited as long as it can withstand the pressure in the container and the temperature in the container in the production process of the expanded particles. Examples of the sealed container include an autoclave-type pressure-resistant container that can be sealed.
 本発明の一実施形態でのポリプロピレン系発泡粒子の製造方法においては、ポリプロピレン系樹脂粒子同士の密閉容器内および、密閉容器(耐圧容器)から発泡筒に分散液を放出後の発泡筒における融着(ブロッキング)を防止する為に、水系分散媒中にて無機系分散剤であるケイ酸塩を使用することが好ましい。上記「融着」は「合着」と称する場合もある。 In the method for producing polypropylene-based expanded particles according to an embodiment of the present invention, the fusion of the polypropylene-based resin particles in the sealed container and in the expanded cylinder after discharging the dispersion liquid from the sealed container (pressure container) to the foamed cylinder In order to prevent (blocking), it is preferable to use a silicate which is an inorganic dispersant in an aqueous dispersion medium. The “fusion” is sometimes referred to as “fusion”.
 本発明の一実施形態に係る無機系分散剤である「ケイ酸塩」としては、具体的に、カオリン、モンモリロナイト、タルク、およびセリサイト等の粘土鉱物が例示できる。これら無機系分散剤は、1種を単独で使用しても良いし、2種以上を併用しても良い。これらの無機系分散剤のうち、少なくともカオリンを用いることがより好ましい。 Specific examples of “silicates” that are inorganic dispersants according to an embodiment of the present invention include clay minerals such as kaolin, montmorillonite, talc, and sericite. These inorganic dispersants may be used alone or in combination of two or more. Of these inorganic dispersants, it is more preferable to use at least kaolin.
 本発明の一実施形態において、分散液における、無機系分散剤であるケイ酸塩の使用量(含有量)は、ポリプロピレン系樹脂粒子100重量部に対して、0.05重量部以上0.4重量部以下であり、より好ましくは0.1重量部以上0.2重量部以下である。無機系分散剤であるケイ酸塩の使用量が0.05重量部未満の場合、本発明の一実施形態に係るポリプロピレン系樹脂粒子を用いても発泡筒内でのブロッキングを防止する効果が十分でなく、0.4重量部を超える場合、発泡筒内でのブロッキングを抑制することはできるが型内発泡成形時の融着性が悪化する。 In one embodiment of the present invention, the amount (content) of the silicate that is an inorganic dispersant in the dispersion is 0.05 parts by weight or more and 0.4 parts by weight with respect to 100 parts by weight of the polypropylene resin particles. Parts by weight or less, more preferably 0.1 parts by weight or more and 0.2 parts by weight or less. When the amount of the silicate that is an inorganic dispersant is less than 0.05 parts by weight, the effect of preventing blocking in the foamed cylinder is sufficient even if the polypropylene resin particles according to one embodiment of the present invention are used. If it exceeds 0.4 parts by weight, blocking in the foamed cylinder can be suppressed, but the fusing property at the time of in-mold foam molding deteriorates.
 本発明の一実施形態でのポリプロピレン系発泡粒子の製造方法においては、上述した無機系分散剤と共に、分散助剤を使用することが好ましい。 In the method for producing polypropylene-based expanded particles in one embodiment of the present invention, it is preferable to use a dispersion aid together with the inorganic dispersant described above.
 本発明の一実施形態で用いられる「分散助剤」としては、例えばアニオン系界面活性剤が挙げられる。当該アニオン系界面活性剤としては、具体的にはドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウムおよびα-オレフィンスルホン酸ナトリウム等が例示されるが、これらに限定されるものではない。 Examples of the “dispersion aid” used in one embodiment of the present invention include an anionic surfactant. Specific examples of the anionic surfactant include sodium dodecylbenzene sulfonate, sodium alkane sulfonate, sodium alkyl sulfonate, sodium alkyl diphenyl ether disulfonate, sodium α-olefin sulfonate, and the like. It is not limited.
 これらの分散助剤は、1種を単独で使用しても良いし、2種以上を併用しても良い。本発明の一実施形態において、少なくともドデシルベンゼンスルホン酸ナトリウムを用いることがより好ましい。 These dispersion aids may be used alone or in combination of two or more. In one embodiment of the present invention, it is more preferable to use at least sodium dodecylbenzenesulfonate.
 無機系分散剤と分散助剤とを併用する場合、無機系分散剤としてカオリン、および分散助剤としてドデシルベンゼンスルホン酸ナトリウムを併用することが好ましい。 When the inorganic dispersant and the dispersion aid are used in combination, it is preferable to use kaolin as the inorganic dispersant and sodium dodecylbenzenesulfonate as the dispersion aid.
 本発明の一実施形態において、分散液における分散助剤の使用量(含有量)は、ポリプロピレン系樹脂粒子100重量部に対して、分散助剤0.002重量部以上0.2重量部以下が好ましい。 In one embodiment of the present invention, the amount (content) of the dispersion aid used in the dispersion is 0.002 to 0.2 parts by weight of the dispersion aid with respect to 100 parts by weight of the polypropylene resin particles. preferable.
 本発明の一実施形態におけるポリプロピレン系発泡粒子の製造方法の好ましい態様として、ポリプロピレン系樹脂発泡粒子の高い生産性を確保するために、ポリプロピレン系樹脂粒子と水系分散媒との重量比が近しい条件であることが挙げられる。ポリプロピレン系樹脂粒子と水系分散媒との重量比は1バッチあたりに得られるポリプロピレン系樹脂発泡粒子の生産量に直結する。 As a preferable aspect of the method for producing polypropylene-based expanded particles in one embodiment of the present invention, in order to ensure high productivity of the polypropylene-based expanded resin particles, the weight ratio between the polypropylene-based resin particles and the aqueous dispersion medium is close. There are some. The weight ratio between the polypropylene resin particles and the aqueous dispersion medium is directly related to the production amount of the polypropylene resin foam particles obtained per batch.
 本発明の一実施形態に係る分散液は、ポリプロピレン系樹脂粒子100重量部に対し、100重量部以上250重量部以下の水系分散媒、好ましくは100重量部以上200重量部以下の水系分散媒、さらに好ましくは130重量部以上200重量部以下の水系分散媒を含む。本発明の一実施形態に係る分散液は、ポリプロピレン系樹脂粒子100重量部に対し、230重量部以下、190重量部以下、150重量部以下、または130重量部以下の水系分散媒を含んでいてもよい。本発明の一実施形態に係る分散液は、ポリプロピレン系樹脂粒子100重量部に対し、150重量部以上、180重量部以上、または200重量部以上の水系分散媒を含んでいてもよい。本発明の一実施形態において、分散液における水系分散媒の使用量は、ポリプロピレン系樹脂粒子100重量部に対し、100重量部以上250重量部以下である、ともいえる。水系分散媒の使用量が100重量部未満の場合、分散剤であるケイ酸塩を0.4重量部添加しても、耐圧容器内でのポリプロピレン系樹脂粒子の分散安定性が悪化しやすく、発泡筒内でのブロッキングが発生しやすい傾向がある、250重量部を超える場合、1バッチあたりのポリプロピレン系樹脂発泡粒子の生産性が低下するため好ましくない。 The dispersion according to an embodiment of the present invention is 100 parts by weight or more and 250 parts by weight or less of an aqueous dispersion medium, preferably 100 parts by weight or more and 200 parts by weight or less of an aqueous dispersion medium, with respect to 100 parts by weight of polypropylene resin particles, More preferably, it contains 130 parts by weight or more and 200 parts by weight or less of an aqueous dispersion medium. The dispersion according to an embodiment of the present invention contains 230 parts by weight or less, 190 parts by weight or less, 150 parts by weight or less, or 130 parts by weight or less of an aqueous dispersion medium with respect to 100 parts by weight of the polypropylene resin particles. Also good. The dispersion according to an embodiment of the present invention may contain 150 parts by weight or more, 180 parts by weight or more, or 200 parts by weight or more of an aqueous dispersion medium with respect to 100 parts by weight of the polypropylene resin particles. In one embodiment of the present invention, it can be said that the amount of the aqueous dispersion medium used in the dispersion is from 100 parts by weight to 250 parts by weight with respect to 100 parts by weight of the polypropylene resin particles. When the amount of the aqueous dispersion medium used is less than 100 parts by weight, even if 0.4 part by weight of the silicate that is the dispersant is added, the dispersion stability of the polypropylene resin particles in the pressure vessel tends to deteriorate, When the amount exceeds 250 parts by weight, which tends to cause blocking in the foamed cylinder, the productivity of the polypropylene resin foamed particles per batch is lowered, which is not preferable.
 本発明の一実施形態において、一段発泡粒子に対して無機ガス系発泡剤(例えば、空気、窒素、および二酸化炭素等)を含浸して、一段発泡粒子に内圧を付与した後、特定の圧力の水蒸気と一段発泡粒子とを接触させることにより、一段発泡粒子よりも発泡倍率を向上させた、ポリプロピレン系樹脂発泡粒子を得ることができる。このように、ポリプロピレン系樹脂発泡粒子(一段発泡粒子)をさらに発泡させて、より高い発泡倍率を有するポリプロピレン系樹脂発泡粒子とする発泡工程を、「二段発泡工程」と称す場合があり、このような二段発泡工程を経て得られるポリプロピレン系樹脂発泡粒子を「二段発泡粒子」と呼ぶ場合がある。 In one embodiment of the present invention, the single-stage expanded particles are impregnated with an inorganic gas-based foaming agent (for example, air, nitrogen, carbon dioxide, etc.), an internal pressure is applied to the single-stage expanded particles, By bringing the water vapor and the first-stage expanded particles into contact with each other, it is possible to obtain polypropylene-based resin expanded particles having an expansion ratio improved compared to the first-stage expanded particles. In this way, the foaming process in which the polypropylene resin foamed particles (single-stage foamed particles) are further foamed to obtain polypropylene-based resin foamed particles having a higher expansion ratio may be referred to as a “two-stage foaming process”. Polypropylene resin foam particles obtained through such a two-stage foaming process may be referred to as “two-stage foam particles”.
 一段発泡粒子に含浸する無機ガス系発泡剤の、一段発泡粒子における内圧は、二段発泡粒子の発泡倍率等を考慮して適宜変化させることが望ましいが、0.12MPa(絶対圧)以上0.6MPa(絶対圧)以下であることが好ましい。 The internal pressure of the inorganic gas-based foaming agent impregnated in the first-stage expanded particles is desirably changed as appropriate in consideration of the expansion ratio of the second-stage expanded particles, but is 0.12 MPa (absolute pressure) or more. The pressure is preferably 6 MPa (absolute pressure) or less.
 また、二段発泡工程における、一段発泡粒子と接触させる水蒸気の圧力は、二段発泡粒子の発泡倍率を考慮した上で適宜変化させることが望ましい。上記水蒸気の圧力は、0.02MPa(ゲージ圧)以上0.25MPa(ゲージ圧)以下で調整することが好ましく、0.03MPa(ゲージ圧)以上0.15MPa(ゲージ圧)以下で調整することがより好ましい。二段発泡工程において、水蒸気の圧力が高いほど、ポリプロピレン系樹脂発泡粒子同士のブロッキングが起きやすい。 In the two-stage foaming process, it is desirable that the pressure of water vapor brought into contact with the first-stage foamed particles is appropriately changed in consideration of the expansion ratio of the second-stage foamed particles. The water vapor pressure is preferably adjusted to 0.02 MPa (gauge pressure) or more and 0.25 MPa (gauge pressure) or less, and can be adjusted to 0.03 MPa (gauge pressure) or more and 0.15 MPa (gauge pressure) or less. More preferred. In the two-stage foaming process, the higher the water vapor pressure, the more easily the polypropylene resin foam particles are blocked.
 本発明の一実施形態に係るポリプロピレン系発泡粒子の製造方法により得られる、本発明のポリプロピレン系樹脂発泡粒子の発泡倍率は、特に制限は無く、必要に応じて調整すれば良い。機械的強度の観点から3倍以上50倍以下であることが好ましく、5倍以上45倍以下であることがより好ましい。ここで、ポリプロピレン系樹脂発泡粒子の発泡倍率とは、実施例に記載した方法により算出した値である。 The expansion ratio of the expanded polypropylene resin particles of the present invention obtained by the method for producing expanded polypropylene particles according to an embodiment of the present invention is not particularly limited, and may be adjusted as necessary. From the viewpoint of mechanical strength, it is preferably 3 to 50 times, more preferably 5 to 45 times. Here, the expansion ratio of the polypropylene resin expanded particles is a value calculated by the method described in the examples.
 本発明の一実施形態に係るポリプロピレン系発泡粒子の製造方法により得られた、ポリプロピレン系樹脂発泡粒子の表面には必ずケイ酸塩が付着していて、洗浄したとしても完全に除去することは困難である。 The surface of the polypropylene resin foam particles obtained by the method for producing polypropylene foam particles according to one embodiment of the present invention is always attached with silicate, and even if washed, it is difficult to remove completely. It is.
 本発明の一実施形態において、ポリプロピレン系樹脂発泡粒子表面に存在するケイ酸塩(すなわち付着したケイ酸塩)の量は、ポリプロピレン系樹脂100重量部に対し、0重量部を超え、0.20重量部以下であることが好ましい。さらに、ポリプロピレン系樹脂100重量部に対する、当該発泡粒子表面に存在するケイ酸塩の量は、0.020重量部以上0.20重量部以下であることがより好ましく、0.03重量部以上0.10重量部以下であることが最も好ましい。当該発泡粒子表面に付着したケイ酸塩の量が、0重量部の場合、つまりケイ酸塩を使用していない場合は、発泡筒に当該発泡粒子を含む分散液を放出するときにブロッキングが発生するため好ましくない。0.020重量部以上の場合、二段発泡工程におけるブロッキングを十分防止することができ、0.20重量部以下の場合、型内発泡成形時の融着が悪化しにくいという利点を有する。ポリプロピレン系樹脂発泡粒子表面に存在するケイ酸塩の量は、一段発泡工程で無機系分散剤として使用するケイ酸塩の量により調整することができる。 In one embodiment of the present invention, the amount of silicate (that is, adhering silicate) present on the surface of the expanded polypropylene resin particle is more than 0 parts by weight with respect to 100 parts by weight of the polypropylene resin, and 0.20. It is preferable that it is below the weight part. Furthermore, the amount of silicate present on the surface of the expanded particles with respect to 100 parts by weight of the polypropylene resin is more preferably 0.020 parts by weight or more and 0.20 parts by weight or less, and 0.03 parts by weight or more and 0 or less. Most preferably, it is 10 parts by weight or less. When the amount of silicate adhering to the surface of the expanded particles is 0 part by weight, that is, when no silicate is used, blocking occurs when the dispersion containing the expanded particles is discharged into the expanded cylinder. Therefore, it is not preferable. In the case of 0.020 part by weight or more, blocking in the two-stage foaming step can be sufficiently prevented, and in the case of 0.20 part by weight or less, there is an advantage that fusion at the time of in-mold foam molding is difficult to deteriorate. The amount of silicate present on the surface of the polypropylene resin expanded particles can be adjusted by the amount of silicate used as the inorganic dispersant in the one-stage foaming step.
 本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法により得られる、ポリプロピレン系樹脂発泡粒子の平均気泡径は、100μm以上500μm以下であることが好ましく、120μm以上400μm以下であることがより好ましい。得られるポリプロピレン系樹脂発泡粒子の平均気泡径が当該範囲にあると、当該ポリプロピレン系樹脂発泡粒子を用いて得られるポリプロピレン系樹脂型内発泡成形体の外観が良好になりやすい。 The average cell diameter of the expanded polypropylene resin particles obtained by the method for producing expanded polypropylene resin particles according to an embodiment of the present invention is preferably 100 μm or more and 500 μm or less, and more preferably 120 μm or more and 400 μm or less. preferable. When the average cell diameter of the obtained polypropylene resin foamed particles is within this range, the appearance of the polypropylene resin in-mold foam molded product obtained using the polypropylene resin foamed particles tends to be good.
 ここでいうポリプロピレン系樹脂発泡粒子の平均気泡径は、実施例に記載した方法で測定した値である。 Here, the average cell diameter of the expanded polypropylene resin particles is a value measured by the method described in Examples.
 ポリプロピレン系樹脂粒子を用いて製造されたポリプロピレン系樹脂発泡粒子において、当該ポリプロピレン系樹脂粒子の構造は変化するが、ポリプロピレン系樹脂粒子の組成は変化しない。また、ポリプロピレン系樹脂粒子を用いて製造されたポリプロピレン系樹脂発泡粒子を用いて製造されたポリプロピレン系樹脂型内発泡成形体において、当該ポリプロピレン系樹脂発泡粒子の構造は変化するが、ポリプロピレン系樹脂発泡粒子の組成は変化しない。したがって、
 (i)ポリプロピレン系樹脂発泡粒子またはポリプロピレン系樹脂型内発泡成形体を解析して得られたコモマー由来の成分の含有率、融点、またはMFRの値は、それぞれ、それらの原料であるポリプロピレン系樹脂粒子のコモマー由来の成分の含有率、融点、またはMFRの値であるとみなすことができ、
 (ii)ポリプロピレン系樹脂発泡粒子またはポリプロピレン系樹脂型内発泡成形体を解析することにより、それらの原料であるポリプロピレン系樹脂粒子に含まれるポリプロピレン系樹脂(Z)における、ポリプロピレン系樹脂(X)とポリエチレン系樹脂(Y)との混合比を、ポリプロピレン系樹脂(Z)に含まれているポリプロピレン系樹脂(X)およびポリエチレン系樹脂(Y)の種類が判明している場合には、求めることができる。
In the polypropylene resin expanded particles produced using the polypropylene resin particles, the structure of the polypropylene resin particles changes, but the composition of the polypropylene resin particles does not change. In addition, in a polypropylene resin-in-mold foam-molded article produced using polypropylene resin foam particles produced using polypropylene resin particles, the structure of the polypropylene resin foam particles changes, but the polypropylene resin foam The composition of the particles does not change. Therefore,
(I) The content, melting point, or MFR value of the component derived from the comomer obtained by analyzing the expanded polypropylene resin particles or the expanded foam in the polypropylene resin mold, respectively, is the polypropylene resin that is the raw material thereof. It can be regarded as the content, melting point, or MFR value of the comomer-derived component of the particle,
(Ii) By analyzing the polypropylene resin foamed particles or the polypropylene resin in-mold foam molded product, the polypropylene resin (X) in the polypropylene resin (Z) contained in the polypropylene resin particles that are the raw materials thereof, and The mixing ratio with the polyethylene resin (Y) can be obtained when the types of the polypropylene resin (X) and the polyethylene resin (Y) contained in the polypropylene resin (Z) are known. it can.
 また、ポリプロピレン系樹脂粒子のコモマー由来の成分の含有率、融点、またはMFRの値は、それぞれ、ポリプロピレン系樹脂粒子に含まれるポリプロピレン系樹脂(Z)のコモマー由来の成分の含有率、融点、またはMFRの値ともいえる。 Further, the content, melting point, or MFR value of the component derived from the comomer of the polypropylene resin particles is the content, melting point, or component of the comomer derived component of the polypropylene resin (Z) contained in the polypropylene resin particle, respectively. It can also be said to be the value of MFR.
 本明細書において、ポリプロピレン系樹脂発泡粒子またはポリプロピレン系樹脂型内発泡成形体の融点は、ポリプロピレン系樹脂に代えて、ポリプロピレン系樹脂発泡粒子またはポリプロピレン系樹脂型内発泡成形体をそれぞれ使用する以外は、ポリプロピレン系樹脂(X)の融点と同様の方法(DSC)で測定して得られた値とする。 In the present specification, the melting point of the polypropylene resin expanded particles or the polypropylene resin molded in-mold molded product is that the polypropylene resin expanded particles or the polypropylene resin molded in-mold molded product are used in place of the polypropylene resin, respectively. The value obtained by measurement by the same method (DSC) as the melting point of the polypropylene resin (X).
 ポリプロピレン系樹脂発泡粒子のMFRは、次のように測定することができる:(A1)ポリプロピレン系樹脂発泡粒子同士が接触しないように減圧可能なオーブンの中にポリプロピレン系樹脂発泡粒子を静置する;(A2)次に、-0.05~-0.10MPa・Gの圧力下で、かつ、ポリプロピレン系樹脂発泡粒子の融点+20~35℃の温度下で30分間処理することにより、ポリプロピレン系樹脂発泡粒子の内部の空気を除きながら、ポリプロピレン系樹脂発泡粒子をポリプロピレン系樹脂に戻す;(A3)そして、オーブンから上記ポリプロピレン系樹脂を取り出し、ポリプロピレン系樹脂を十分に冷却する;(A4)その後、ポリプロピレン系樹脂(X)と同じ方法により、上記ポリプロピレン系樹脂のMFRを測定する。 The MFR of the polypropylene resin expanded particles can be measured as follows: (A1) The polypropylene resin expanded particles are left in an oven that can be decompressed so that the polypropylene resin expanded particles do not contact each other; (A2) Next, the polypropylene resin foam is treated by treatment for 30 minutes under a pressure of -0.05 to -0.10 MPa · G and a melting point of the polypropylene resin foamed particles + 20 to 35 ° C. While removing the air inside the particles, the expanded polypropylene resin particles are returned to the polypropylene resin; (A3) Then, the polypropylene resin is taken out from the oven and the polypropylene resin is sufficiently cooled; (A4) The polypropylene resin is then cooled. MFR of the polypropylene resin is measured by the same method as that for the resin (X).
 ポリプロピレン系樹脂型内発泡成形体のMFRは、次のように測定することができる:(B1)ミキサーなどを用いてポリプロピレン系樹脂型内発泡成形体を粉砕する;(B2)次に、ポリプロピレン系樹脂発泡粒子の代わりに粉砕されたポリプロピレン系樹脂型内発泡成形体を用いる以外は、上述したポリプロピレン系樹脂発泡粒子と同じ処理((A1)および(A2))を行い、ポリプロピレン系樹脂型内発泡成形体をポリプロピレン系樹脂に戻す;(B3)そして、オーブンから上記ポリプロピレン系樹脂を取り出し、ポリプロピレン系樹脂を十分に冷却する;(B4)その後、ポリプロピレン系樹脂(X)と同じ方法により、上記ポリプロピレン系樹脂のMFRを測定する。 The MFR of the polypropylene resin in-mold foam molding can be measured as follows: (B1) The polypropylene resin in-mold foam molding is pulverized using a mixer or the like; (B2) Next, the polypropylene series Except for using a pulverized polypropylene resin mold foam molded body instead of the resin foam particles, the same processing ((A1) and (A2)) as the above polypropylene resin foam particles is performed, and the polypropylene resin mold foam is performed. (B3) Then, the polypropylene resin is removed from the oven and the polypropylene resin is sufficiently cooled. (B4) Thereafter, the polypropylene is recovered by the same method as the polypropylene resin (X). The MFR of the resin is measured.
 〔3.ポリプロピレン系樹脂発泡粒子〕
 本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子は、ポリプロピレン系樹脂発泡粒子であって、ポリプロピレン系樹脂を含み、上記ポリプロピレン系樹脂は、ポリプロピレン系樹脂(X)85~99重量%および密度0.945g/cm以上のポリエチレン系樹脂(Y)1~15重量%から成るポリプロピレン系樹脂(Z)[(X)と(Y)の合計は100重量%である]と、上記ポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下のアミン系化合物と、を含み、上記ポリプロピレン系樹脂100重量部に対し、上記ポリプロピレン系樹脂発泡粒子の表面に存在するケイ酸塩の量が0重量部を超え、0.20重量部以下である。
[3. Polypropylene resin foam particles)
The expanded polypropylene resin particles according to an embodiment of the present invention are expanded polypropylene resin particles and include a polypropylene resin. The polypropylene resin includes 85 to 99% by weight of the polypropylene resin (X) and a density of 0. Polypropylene resin (Z) consisting of 1 to 15% by weight of polyethylene resin (Y) of 945 g / cm 3 or more [total of (X) and (Y) is 100% by weight], and the above polypropylene resin ( Z) 0.01 part by weight or more and 1 part by weight or less of an amine compound with respect to 100 parts by weight, and silicic acid present on the surface of the polypropylene resin expanded particles with respect to 100 parts by weight of the polypropylene resin The amount of salt is more than 0 parts by weight and not more than 0.20 parts by weight.
 本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子、の製造方法としては、上記〔2.ポリプロピレン系樹脂発泡粒子の製造方法〕に記載の、本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子の製造方法であることが好ましい。 As a method for producing the expanded polypropylene resin particles according to an embodiment of the present invention, [2. It is preferable that it is a manufacturing method of the polypropylene resin expanded particle which concerns on one Embodiment of this invention as described in the manufacturing method of a polypropylene resin expanded particle].
 本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子に含まれる各成分(例えば、ポリプロピレン系樹脂(X)、ポリエチレン系樹脂(Y)、ポリプロピレン系樹脂(Z)、アミン系化合物、およびケイ酸塩など)、およびポリプロピレン系樹脂発泡粒子の態様としては、好ましい態様も含み、上記〔2.ポリプロピレン系樹脂発泡粒子の製造方法〕の項に記載の各成分および得られるポリプロピレン系樹脂発泡粒子の態様と同じであってもよい。 Each component (for example, polypropylene resin (X), polyethylene resin (Y), polypropylene resin (Z), amine compound, and silicate) contained in the expanded polypropylene resin particles according to an embodiment of the present invention Etc.) and the aspect of the polypropylene-based resin expanded particles include a preferable aspect, and [2. It may be the same as each component described in the section of [Production method of polypropylene resin expanded particles] and the aspect of the obtained polypropylene resin expanded particles.
 本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子は、ポリプロピレン系樹脂100重量部に対し、ポリプロピレン系樹脂発泡粒子の表面に存在するケイ酸塩の量が0.020重量部以上0.20重量部以下であることが好ましい。 In the polypropylene resin foam particles according to an embodiment of the present invention, the amount of silicate present on the surface of the polypropylene resin foam particles is 0.020 parts by weight or more and 0.20 weights per 100 parts by weight of the polypropylene resin. Part or less.
 〔4.発泡成形体〕
 本発明の一実施形態に係る発泡成形体は、上記〔3.ポリプロピレン系樹脂発泡粒子〕を用いてなる発泡成形体である。
[4. Foam molded body)
The foamed molded product according to one embodiment of the present invention is the above [3. This is a foamed molded article using polypropylene-based resin expanded particles].
 本発明の一実施形態に係る発泡成形体としては、特に限定されないが、例えば、金型を用いて製造される型内発泡成形体であってもよい。 The foamed molded product according to an embodiment of the present invention is not particularly limited, but may be, for example, an in-mold foamed molded product manufactured using a mold.
 本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子から型内発泡成形体を製造する方法は、例えば、(1)まず、閉鎖しうるが密閉しえない金型内に発泡粒子を充填し、水蒸気等で金型内を加熱する;(2)次いで、金型内にて発泡粒子を相互に加熱融着させて型通りに成形し、水等の冷媒により金型および成形体を冷却する;(3)その後、金型から成形体取り出し、型内発泡成形体を得る方法である。 The method for producing an in-mold foam molded article from polypropylene resin foam particles according to an embodiment of the present invention includes, for example, (1) filling foam particles in a mold that can be closed but cannot be sealed; (2) Next, the foamed particles are heated and fused with each other in the mold, and molded according to the mold, and the mold and the molded body are cooled with a coolant such as water; (3) Thereafter, the molded product is taken out from the mold to obtain an in-mold foam molded product.
 ポリプロピレン系樹脂発泡粒子は、型内発泡成形前に発泡粒子内部に大気圧以上の圧力を付与されることが好ましい。発泡粒子内部に大気圧以上の圧力を付与された発泡粒子を用い型内発泡成形する場合、表面外観がよく、変形の少ないポリプロピレン系樹脂型内発泡成形体が得られ易い。発泡粒子内部に大気圧以上の圧力を付与する方法は特に制限は無いが、例えば、従来から知られている内圧付与法および圧縮充填法などの方法により発泡粒子内部に圧力を付与することができる。 It is preferable that the polypropylene-based resin expanded particles are given a pressure higher than atmospheric pressure inside the expanded particles before in-mold foam molding. When in-mold foam molding is performed using foam particles having a pressure higher than atmospheric pressure inside the foam particles, a polypropylene resin in-mold foam molded body with good surface appearance and little deformation is easily obtained. There is no particular limitation on the method for applying a pressure higher than atmospheric pressure to the inside of the expanded particles, but for example, pressure can be applied to the inside of the expanded particles by a conventionally known method such as an internal pressure applying method and a compression filling method. .
 発泡粒子内部に付与される圧力、換言すれば発泡粒子の内圧は、0.12MPa(絶対圧)以上0.40MPa(絶対圧)以下が好ましく、0.14MPa(絶対圧)以上0.30MPa(絶対圧)以下がより好ましい。ポリプロピレン系樹脂発泡粒子の内圧が当該範囲にある場合、外観が美麗な型内発泡成形体を得やすい傾向にある。上記内圧付与に用いられる無機ガスとしては、空気、窒素、ヘリウム、ネオン、アルゴン、二酸化炭素等が使用できる。これらの無機ガスは1種を単独で用いても、また2種以上混合して用いても良い。これらのうちでも、汎用性の高い空気、窒素が好ましい。 The pressure applied to the inside of the expanded particles, in other words, the internal pressure of the expanded particles is preferably 0.12 MPa (absolute pressure) or more and 0.40 MPa (absolute pressure) or less, 0.14 MPa (absolute pressure) or more and 0.30 MPa (absolute Pressure) or less is more preferable. When the internal pressure of the polypropylene resin expanded particles is within the above range, it tends to be easy to obtain an in-mold expanded molded article having a beautiful appearance. As the inorganic gas used for applying the internal pressure, air, nitrogen, helium, neon, argon, carbon dioxide or the like can be used. These inorganic gases may be used alone or in combination of two or more. Among these, highly versatile air and nitrogen are preferable.
 上記方法により、(1)ポリプロピレン系樹脂発泡粒子を金型等の中へ充填した後、水蒸気などを加熱媒体として、0.15~0.4MPa(ゲージ圧)程度の加熱水蒸気圧にて3~50秒程度の加熱時間で成形し、(2)ポリプロピレン系樹脂発泡粒子同士を融着させた後、金型および成形体を水冷により冷却した後、(3)金型を開き、ポリプロピレン系樹脂型内発泡成形体を得ることができる。なお、水蒸気を用いて金型および成形体を加熱する場合には、目標とする加熱水蒸気圧に到達するまでに、5~30秒程度の時間をかけて昇圧させることが好ましい。 According to the above method, (1) after filling polypropylene resin foamed particles into a mold or the like, using steam or the like as a heating medium at a heating steam pressure of about 0.15 to 0.4 MPa (gauge pressure) After molding with heating time of about 50 seconds, (2) after fusing the polypropylene resin foam particles together, after cooling the mold and the molded body by water cooling, (3) opening the mold, polypropylene resin mold An inner foam molded article can be obtained. When heating the mold and the molded body using water vapor, it is preferable to increase the pressure over a period of about 5 to 30 seconds until the target heating water vapor pressure is reached.
 本発明の一実施形態は、以下の様な構成であってもよい。 An embodiment of the present invention may have the following configuration.
 〔1〕ポリプロピレン系樹脂粒子と、無機ガス系発泡剤と、無機系分散剤であるケイ酸塩とを、密閉容器内で水系分散媒中に分散させ、分散液とする工程、上記ポリプロピレン系樹脂粒子の軟化温度以上まで上記密閉容器内を加熱し、かつ、上記密閉容器内を加圧する工程、および上記密閉容器の内圧よりも低い圧力域に上記分散液を放出することでポリプロピレン系樹脂発泡粒子を得る工程、を有し、上記ポリプロピレン系樹脂粒子は、ポリプロピレン系樹脂(X)85~99重量%および密度0.945g/cm以上のポリエチレン系樹脂(Y)1~15重量%から成るポリプロピレン系樹脂(Z)[(X)と(Y)の合計は100重量%である]と、上記ポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下のアミン系化合物と、を含み、上記分散液は上記ポリプロピレン系樹脂粒子100重量部に対し、(i)0.05重量部以上0.4重量部以下の上記ケイ酸塩、および(ii)100重量部以上250重量部以下の上記水系分散媒、を含むことを特徴とする、ポリプロピレン系樹脂発泡粒子の製造方法。 [1] A step of dispersing a polypropylene resin particle, an inorganic gas foaming agent, and an inorganic dispersant silicate in an aqueous dispersion medium in a sealed container to obtain a dispersion, the polypropylene resin Polypropylene resin foamed particles by heating the inside of the closed container up to the softening temperature of the particles and pressurizing the inside of the closed container, and releasing the dispersion into a pressure region lower than the internal pressure of the closed container And the polypropylene resin particles comprise a polypropylene resin (X) 85 to 99 wt% and a polyethylene resin (Y) 1 to 15 wt% having a density of 0.945 g / cm 3 or more. Resin (Z) [total of (X) and (Y) is 100% by weight] and 0.01 part by weight or more and 1 part by weight with respect to 100 parts by weight of the polypropylene resin (Z). And the following dispersion (i) 0.05 parts by weight or more and 0.4 parts by weight or less of the silicate with respect to 100 parts by weight of the polypropylene resin particles, and (ii) A method for producing polypropylene resin expanded particles, comprising 100 parts by weight or more and 250 parts by weight or less of the aqueous dispersion medium.
 〔2〕上記分散液はポリプロピレン系樹脂粒子100重量部に対し、100重量部以上200重量部以下の上記水系分散媒を含むことを特徴とする、〔1〕に記載のポリプロピレン系樹脂発泡粒子の製造方法。 [2] The dispersion liquid contains 100 parts by weight or more and 200 parts by weight or less of the aqueous dispersion medium with respect to 100 parts by weight of the polypropylene resin particles. Production method.
 〔3〕ポリプロピレン系樹脂発泡粒子であって、ポリプロピレン系樹脂を含み、上記ポリプロピレン系樹脂は、ポリプロピレン系樹脂(X)85~99重量%および密度0.945g/cm以上のポリエチレン系樹脂(Y)1~15重量%から成るポリプロピレン系樹脂(Z)[(X)と(Y)の合計は100重量%である]と、上記ポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下のアミン系化合物と、を含み、上記ポリプロピレン系樹脂100重量部に対し、上記ポリプロピレン系樹脂発泡粒子の表面に存在するケイ酸塩の量が0重量部を超え、0.20重量部以下であることを特徴とする、ポリプロピレン系樹脂発泡粒子。   [3] Polypropylene resin expanded particles containing a polypropylene resin, and the polypropylene resin is a polyethylene resin (Y) having a polypropylene resin (X) of 85 to 99% by weight and a density of 0.945 g / cm 3 or more. 1) to 15% by weight of a polypropylene resin (Z) [the sum of (X) and (Y) is 100% by weight] and 0.01% by weight with respect to 100 parts by weight of the polypropylene resin (Z). 1 part by weight or more and 1 part by weight or less of an amine compound, and the amount of silicate present on the surface of the polypropylene resin expanded particles exceeds 0 part by weight relative to 100 parts by weight of the polypropylene resin. Polypropylene-based resin foamed particles characterized by being 20 parts by weight or less.
 〔4〕上記ポリプロピレン系樹脂100重量部に対し、上記ポリプロピレン系樹脂発泡粒子の上記表面に存在する上記ケイ酸塩の量が0.020重量部以上0.20重量部以下であることを特徴とする、〔3〕に記載のポリプロピレン系樹脂発泡粒子。 [4] The amount of the silicate present on the surface of the expanded polypropylene resin particles is 0.020 part by weight or more and 0.20 part by weight or less with respect to 100 parts by weight of the polypropylene resin. The expanded polypropylene resin particles according to [3].
 〔5〕〔3〕または〔4〕に記載のポリプロピレン系樹脂発泡粒子を用いてなる発泡成形体。 [5] A foamed molded article using the expanded polypropylene resin particles according to [3] or [4].
 本発明の一実施形態は、以下の様な構成であってもよい。 An embodiment of the present invention may have the following configuration.
 〔A1〕ポリプロピレン系樹脂粒子と、無機ガス系発泡剤と、無機系分散剤であるケイ酸塩を、密閉容器内で水系分散媒に分散させ分散液とし、ポリプロピレン系樹脂粒子の軟化温度以上まで密閉容器内を加熱、加圧した後、密閉容器の内圧よりも低い圧力域に分散液を放出することでポリプロピレン系樹脂発泡粒子を得る製造方法において、ポリプロピレン系樹脂粒子はポリプロピレン系樹脂(X)85~99重量%と密度0.945g/cm以上のポリエチレン系樹脂(Y)1~15重量%から成るポリプロピレン系樹脂(Z)[(X)と(Y)の合計は100重量%である]とポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下のアミン系化合物を含み、分散液はポリプロピレン系樹脂粒子100重量部に対し、0.05重量部以上0.4重量部以下のケイ酸塩、100重量部以上250重量部以下の水系分散媒を含むことを特徴とするポリプロピレン系樹脂発泡粒子の製造方法。 [A1] Polypropylene resin particles, an inorganic gas-based foaming agent, and an inorganic dispersant silicate are dispersed in an aqueous dispersion medium in a sealed container to obtain a dispersion, up to the softening temperature of the polypropylene resin particles or higher In the production method of obtaining polypropylene resin foamed particles by heating and pressurizing the inside of the sealed container and then releasing the dispersion into a pressure range lower than the internal pressure of the sealed container, the polypropylene resin particles are polypropylene resin (X). Polypropylene resin (Z) consisting of 85 to 99% by weight and polyethylene resin (Y) of 1 to 15% by weight with a density of 0.945 g / cm 3 or more. The total of (X) and (Y) is 100% by weight. ] And 100 parts by weight of the polypropylene resin (Z) and 0.01 parts by weight or more and 1 part by weight or less of an amine compound, and the dispersion is 100 weights of polypropylene resin particles. Parts to 0.05 part by weight to 0.4 parts by weight of the silicate, the production method of the polypropylene resin foamed beads which comprises an aqueous dispersion medium of 100 parts by weight to 250 parts by weight or less.
 〔A2〕ポリプロピレン系樹脂発泡粒子であって、ポリプロピレン系樹脂は、ポリプロピレン系樹脂(X)85~99重量%と密度0.945g/cm以上のポリエチレン系樹脂(Y)1~15重量%から成るポリプロピレン系樹脂(Z)[(X)と(Y)の合計は100重量%である]とポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下のアミン系化合物を含み、ポリプロピレン系樹脂100重量部に対し、発泡粒子表面に存在するケイ酸塩の量が0重量部を超え、0.20重量部以下であることを特徴とするポリプロピレン系樹脂発泡粒子。 [A2] Polypropylene resin expanded particles, wherein the polypropylene resin is from 85 to 99% by weight of polypropylene resin (X) and 1 to 15% by weight of polyethylene resin (Y) having a density of 0.945 g / cm 3 or more. The amine resin of 0.01 to 1 part by weight relative to 100 parts by weight of the polypropylene resin (Z) [total of (X) and (Y) is 100% by weight] and polypropylene resin (Z) A polypropylene resin foamed particle comprising a compound, wherein the amount of silicate present on the surface of the foamed particle exceeds 0 part by weight and is 0.20 part by weight or less based on 100 parts by weight of the polypropylene resin.
 〔A3〕ポリプロピレン系樹脂100重量部に対し、発泡粒子表面に存在するケイ酸塩の量が0.020重量部以上0.20重量部以下であることを特徴とする〔A2〕記載のポリプロピレン系樹脂発泡粒子。 [A3] The polypropylene system according to [A2], wherein the amount of silicate present on the surface of the expanded particles is 0.020 part by weight or more and 0.20 part by weight or less with respect to 100 parts by weight of the polypropylene resin Resin foam particles.
 〔A4〕〔A2〕および/または〔A3〕記載のポリプロピレン系樹脂発泡粒子を用いた発泡成形体。 [A4] [A4] and / or a foamed molded article using the polypropylene resin expanded particles described in [A3].
 次に、本発明の一実施形態に係るポリプロピレン系樹脂発泡粒子およびその製造方法を、実施例および比較例を挙げて、詳細に説明するが、これらに限定されるものではない。 Next, the expanded polypropylene resin particles and the method for producing the same according to an embodiment of the present invention will be described in detail with reference to examples and comparative examples, but are not limited thereto.
 実施例および比較例において、使用した物質は、以下のとおりであるが、特に精製等は行わずに使用した。
・ポリプロピレン系樹脂(X)(市販品)
  ポリプロピレン系樹脂:エチレン/ブテン-1/プロピレンランダム共重合体[MFR=7.5g/10分、融点142℃]
・ポリエチレン系樹脂(Y)(市販品)
  ポリエチレン系樹脂A:[密度0.964g/cm、融点135℃]
  ポリエチレン系樹脂B:[密度0.923g/cm、融点121℃]
・アミン系化合物
  アミン系化合物A:セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)[(株)ADEKA製、アデカスタブLA-77G]
  アミン系化合物B:コハク酸ジメチルおよび4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの縮合物[BASF製、TINUVIN 622 SF]
  アミン系化合物C:ステアリルジエタノールアミンモノステアリン酸エステルおよびステアリルジエタノールアミンの混合物[花王(株)製、エレクトロストリッパーTS-15B]
  アミン系化合物D:塩化アルキル(C16~C18)トリメチルアンモニウム[ライオン・スペシャリティ・ケミカルズ(株)製、リポカード T-28]
・その他の添加剤
  グリセリン[ライオン(株)製]
  タルク[林化成(株)製、タルカンパウダーPK-S]。
In the examples and comparative examples, the substances used were as follows, but were used without any particular purification.
・ Polypropylene resin (X) (commercially available)
Polypropylene resin: ethylene / butene-1 / propylene random copolymer [MFR = 7.5 g / 10 min, melting point 142 ° C.]
・ Polyethylene resin (Y) (commercially available)
Polyethylene resin A: [density 0.964 g / cm 3 , melting point 135 ° C.]
Polyethylene resin B: [density 0.923 g / cm 3 , melting point 121 ° C.]
Amine compound Amine compound A: bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate [manufactured by ADEKA, Adeka Stub LA-77G]
Amine compound B: Condensation product of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol [manufactured by BASF, TINUVIN 622 SF]
Amine compound C: a mixture of stearyl diethanolamine monostearate and stearyl diethanolamine [manufactured by Kao Corporation, Electro Stripper TS-15B]
Amine compound D: alkyl chloride (C 16 -C 18 ) trimethylammonium [manufactured by Lion Specialty Chemicals, Lipocard T-28]
・ Other additives Glycerin [manufactured by Lion Corporation]
Talc [manufactured by Hayashi Kasei Co., Ltd., Talcan powder PK-S].
 以下、実施例および比較例において実施した評価方法に関して、説明する。 Hereinafter, the evaluation methods implemented in the examples and comparative examples will be described.
 <発泡粒子製造時における分散安定性>
 ポリプロピレン系樹脂発泡粒子製造時における分散安定性を下記の基準に基づき評価した。
○:オートクレーブ(耐圧容器)内で樹脂粒子同士が合着(融着)せず、発泡粒子を製造できる。
×:オートクレーブ内で樹脂粒子同士が合着、塊化し、発泡粒子を製造できない。
<Dispersion stability during production of expanded particles>
The dispersion stability during the production of polypropylene resin expanded particles was evaluated based on the following criteria.
○: Resin particles are not fused (fused) in an autoclave (pressure vessel), and foamed particles can be produced.
X: Resin particles are coalesced and agglomerated in the autoclave, and foamed particles cannot be produced.
 <一段発泡粒子および/または二段発泡粒子のブロッキング>
 得られたポリプロピレン系樹脂発泡粒子を下記の基準に基づき評価した。
○:発泡粒子全量において、ブロッキングがみられない。
×:発泡粒子全量において、ブロッキングがみられる。
<Blocking of single-stage expanded particles and / or double-stage expanded particles>
The obtained polypropylene resin expanded particles were evaluated based on the following criteria.
○: No blocking is observed in the total amount of the expanded particles.
X: Blocking is observed in the total amount of expanded particles.
 <付着カオリン(発泡粒子表面に存在するケイ酸塩)の量の測定>
 付着カオリン(発泡粒子表面に存在するケイ酸塩)の量の測定は、一段発泡工程により得たポリプロピレン系樹脂発泡粒子と原料であるポリプロピレン系樹脂粒子とをそれぞれ燃焼させ、燃焼後に残存したポリプロピレン系樹脂発泡粒子の灰分とポリプロピレン系樹脂粒子の灰分との重量差から求めた。即ち算出した式は、式1および式2である。
式1:付着カオリン(発泡粒子表面に存在するケイ酸塩)量(重量部)=(ポリプロピレン系樹脂発泡粒子の灰分量(重量部)-ポリプロピレン系樹脂粒子灰分量(重量部))/カオリン(ケイ酸塩)の非揮発分率の比率
式2:カオリン(ケイ酸塩)の非揮発分率の比率=カオリン(ケイ酸塩)灰分量(g)/燃焼前のカオリン(ケイ酸塩)量(g)。
<Measurement of amount of attached kaolin (silicate present on the surface of expanded particles)>
The amount of attached kaolin (silicate present on the surface of the expanded particles) is measured by combusting the polypropylene resin expanded particles obtained by the one-stage expansion process and the polypropylene resin particles as raw materials, respectively, and remaining after the combustion. It calculated | required from the weight difference of the ash content of the resin foam particle, and the ash content of a polypropylene resin particle. That is, the calculated formulas are Formula 1 and Formula 2.
Formula 1: Adhesive kaolin (silicate present on the surface of expanded particles) amount (part by weight) = (Amount of ash content of polypropylene resin expanded particles (part by weight) −Amount of ash content of polypropylene resin particles (part by weight)) / Kaolin ( Ratio of non-volatile content ratio of silicate) 2: Ratio of non-volatile content of kaolin (silicate) = Kaolin (silicate) ash content (g) / Kaolin (silicate) content before combustion (G).
 当該灰分量の測定方法は、以下のように実施した。まず、測定試料(ポリプロピレン系樹脂粒子、ポリプロピレン系樹脂発泡粒子、またはカオリン(ケイ酸塩))を60℃のオーブンで12時間乾燥させた後に、シリカゲルと合わせてデシケータ内で1時間放冷した。次に気温20℃、相対湿度50%に調整された室内において、乾燥したるつぼの重量(g)を小数点4桁(小数点5桁目を四捨五入)まで測定した。次に測定試料を約3gになるようにるつぼの中に計りとり、るつぼと測定試料を合わせた重量(g)を小数点4桁(小数点5桁目を四捨五入)まで測定した。このときのるつぼの重量をW0、測定試料およびるつぼを合わせた重量をW1とした。そして、測定試料を入れたるつぼを、電気炉を用いて750℃にて1時間加熱し、測定試料を燃焼させた。次いで、測定試料を室温にて1時間冷却した後に、るつぼおよび測定試料の灰分を合わせた重量(g)を小数点4桁(小数点5桁目を四捨五入)まで測定した。このときのるつぼおよび測定試料の灰分を合わせた重量をW2とした。そして、灰分量を以下の式3より算出した。
式3:測定試料の灰分量(重量部)=(W2(g)-W0(g))/(W1(g)-W0(g))
 なお、本発明の一実施形態に係る二段発泡工程における付着カオリン(発泡粒子表面に存在するケイ酸塩)量は、一段発泡工程における付着カオリン量から変化はなかった。そのため、二段発泡粒子の付着カオリン(発泡粒子表面に存在するケイ酸塩)量は、一段発泡粒子の付着カオリン量の値を用いた。
The method for measuring the amount of ash was performed as follows. First, a measurement sample (polypropylene resin particles, polypropylene resin expanded particles, or kaolin (silicate)) was dried in an oven at 60 ° C. for 12 hours, and then allowed to cool in a desiccator for 1 hour together with silica gel. Next, in a room adjusted to an air temperature of 20 ° C. and a relative humidity of 50%, the weight (g) of the dried crucible was measured to the fourth decimal place (the fifth decimal place was rounded off). Next, the measurement sample was weighed into a crucible so as to be about 3 g, and the weight (g) of the combined crucible and measurement sample was measured to the fourth decimal place (the fifth decimal place was rounded off). The weight of the crucible at this time was W0, and the combined weight of the measurement sample and the crucible was W1. The crucible containing the measurement sample was heated at 750 ° C. for 1 hour using an electric furnace to burn the measurement sample. Next, after the measurement sample was cooled at room temperature for 1 hour, the combined weight (g) of the crucible and the ash content of the measurement sample was measured to the fourth decimal place (the fifth decimal place was rounded off). The combined weight of the crucible and the ash content of the measurement sample was W2. And the amount of ash was computed from the following formula 3.
Formula 3: Ash content of measurement sample (parts by weight) = (W2 (g) −W0 (g)) / (W1 (g) −W0 (g))
The amount of attached kaolin (silicate present on the surface of the expanded particles) in the two-stage foaming process according to one embodiment of the present invention was not changed from the amount of attached kaolin in the one-stage foaming process. Therefore, the amount of attached kaolin (silicate present on the surface of the expanded particles) of the two-stage expanded particles is the value of the amount of attached kaolin of the first-stage expanded particles.
 <発泡倍率>
 「発泡倍率」とは、次の計算により算出した値である。ポリプロピレン系樹脂発泡粒子の重量(g)(wとする)を測定した。その後、ポリプロピレン系樹脂発泡粒子をエタノールが入ったメスシリンダー中に沈め、メスシリンダーの液面の位置の上昇分(水没法とも称する。)に基づきポリプロピレン系樹脂発泡粒子の体積(cm)(vとする)を測定した。そして、ポリプロピレン系樹脂発泡粒子の真比重(ρb=w/v)を算出した。さらに、ポリプロピレン系樹脂発泡粒子の真比重と発泡前のポリプロピレン系樹脂粒子の密度ρrとの比(ρr/ρb)として、発泡倍率を算出した。
<Foaming ratio>
“Foaming ratio” is a value calculated by the following calculation. The weight (g) (referred to as w) of the polypropylene resin expanded particles was measured. Thereafter, the polypropylene resin expanded particles are submerged in a graduated cylinder containing ethanol, and the volume (cm 3 ) of the expanded polypropylene resin particles (v 3 ) (v Measured). And the true specific gravity ((rho) b = w / v) of the polypropylene resin expanded particle was computed. Furthermore, the expansion ratio was calculated as the ratio (ρr / ρb) between the true specific gravity of the polypropylene resin expanded particles and the density ρr of the polypropylene resin particles before expansion.
 <発泡粒子の平均気泡径の測定>
 ポリプロピレン系樹脂発泡粒子を、両刃カミソリ[フェザー製、ハイステンレス両刃]を用いて、発泡粒子の中央で切断した。該切断面を、光学顕微鏡[キーエンス社製、VHX-100]を用いて、倍率50倍にて観察して得られた画像において、発泡粒子のほぼ中心を通る直線を引き、該直線が貫通している気泡数(nとする)、および、該直線と発泡粒子表面との交点から定まる発泡粒子径(μm)(Lとする)を読み取った。そして発泡粒子の平均気泡径を、次式4より算出した。
式4:平均気泡径(μm)=L/n
上記式4による、平均気泡径の算出を、ポリプロピレン系樹脂発泡粒子10粒について実施し、平均値を求めた。
<Measurement of average cell diameter of expanded particles>
Polypropylene resin foam particles were cut at the center of the foam particles using a double-edged razor (Feather, high stainless steel double-edged). In the image obtained by observing the cut surface with an optical microscope [manufactured by Keyence, VHX-100] at a magnification of 50 times, a straight line passing through almost the center of the expanded particle is drawn, and the straight line penetrates. The number of bubbles (assumed to be n) and the diameter of foamed particles (μm) (referred to as L) determined from the intersection of the straight line and the surface of the foamed particles were read. The average cell diameter of the expanded particles was calculated from the following formula 4.
Formula 4: Average bubble diameter (μm) = L / n
Calculation of the average cell diameter by the above formula 4 was carried out for 10 polypropylene resin foamed particles, and the average value was obtained.
 <型内発泡成形体の表面外観>
 得られた型内発泡成形体を目視で観察し、下記の基準で評価した。
○:型内発泡成形体表面に凹凸がなく、皺が見られない。
×:型内発泡成形体表面に凹凸があり、皺が見られる。
<Surface appearance of in-mold foam molding>
The obtained in-mold foam molded article was visually observed and evaluated according to the following criteria.
○: There is no unevenness on the surface of the in-mold foamed product, and no wrinkles are observed.
X: There are irregularities on the surface of the in-mold foam molded product, and wrinkles are seen.
 <型内発泡成形体の融着性>
 得られた型内発泡成形体の1つの頂点から縦軸方向に100mmの点Aと、当該頂点から横軸方向に100mmの点Bとを結んだライン上に、アートナイフで深さ10mm程度の切り込みを入れて割り、その破断面の観察を行った。破断面の15mm×15mmの面積内に存在する発泡粒子のうち、全粒子数(個)(Nとする)に占める粒子界面で割れた粒子の数(個)(Nsとする)を次式5により計数し、得られた値を型内発泡成形体の融着率(%)とした。
式5:型内発泡成形体の融着率(%)=100×(1-Ns/N)
 また、型内発泡成形体の融着性は以下の基準により評価した。
○:型内発泡成形体の融着率が80%以上である。
×:型内発泡成形体の融着率が80%未満である。
<Fusibility of in-mold foam molding>
On the line connecting the point A of 100 mm in the vertical axis direction from one apex of the obtained in-mold foam molded article and the point B of 100 mm in the horizontal axis direction from the apex, the depth of about 10 mm is obtained with an art knife. The cut surface was cut and the fracture surface was observed. Of the expanded particles existing within the 15 mm × 15 mm area of the fracture surface, the number (number) of particles (number Ns) broken at the particle interface in the total number of particles (number N) is expressed by the following equation 5 The value obtained was taken as the fusion rate (%) of the in-mold foam molded product.
Formula 5: Fusion rate of in-mold foam molding (%) = 100 × (1−Ns / N)
Moreover, the fusing property of the in-mold foam molded product was evaluated according to the following criteria.
A: The fusion rate of the in-mold foam molded product is 80% or more.
X: The fusion rate of the in-mold foam molding is less than 80%.
 (実施例1)
 [ポリプロピレン系樹脂粒子の製造]
 表1のポリプロピレン系樹脂(X)とポリエチレン系樹脂(Y)を合わせた100重量部(すなわち、(X)と(Y)の合計は100重量%である)に対して、アミン系化合物Aを表1に示す種類および量、並びにグリセリンを0.25重量部添加し、これらをドライブレンドした。ドライブレンドして得られた混合物を、二軸押出機[東芝機械(株)製、TEM26-SX]を用いて、樹脂温度220℃にて溶融混練し、溶融混練物を押出機から押し出した。押出されたストランド(溶融混練物)を長さ2mの水槽で水冷後、切断して、ポリプロピレン系樹脂粒子(1.0mg/粒)を製造した。
Example 1
[Production of polypropylene resin particles]
The amine compound A is added to 100 parts by weight of the polypropylene resin (X) and the polyethylene resin (Y) in Table 1 (that is, the total of (X) and (Y) is 100% by weight). The type and amount shown in Table 1 and 0.25 part by weight of glycerin were added, and these were dry blended. The mixture obtained by dry blending was melt kneaded at a resin temperature of 220 ° C. using a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd., TEM26-SX), and the melt-kneaded product was extruded from the extruder. The extruded strand (melt kneaded product) was cooled with water in a 2 m long water tank and then cut to produce polypropylene resin particles (1.0 mg / particle).
 [ポリプロピレン系樹脂一段発泡粒子の製造]
 容量10Lの耐圧オートクレーブ(密閉容器)中に、上述のようにして得られたポリプロピレン系樹脂粒子100重量部(2.4kg)、水200重量部、無機系分散剤としてケイ酸塩であるカオリン[BASF製、ASP-170]0.2重量部、界面活性剤としてのドデシルベンゼンスルホン酸ナトリウム[花王株式会社製、ネオペレックスG-15]0.006重量部を仕込んだ後、仕込んだ原料を攪拌し、原料の攪拌下、発泡剤として二酸化炭素を4.8重量部、オートクレーブに添加し、分散液とした。
[Production of single-stage expanded polypropylene resin particles]
In a pressure-resistant autoclave (sealed container) having a capacity of 10 L, 100 parts by weight (2.4 kg) of the polypropylene-based resin particles obtained as described above, 200 parts by weight of water, kaolin which is a silicate as an inorganic dispersant [ After 0.2 part by weight of ASP-170 manufactured by BASF and 0.006 part by weight of sodium dodecylbenzenesulfonate [manufactured by Kao Corporation, Neopelex G-15] as a surfactant, the charged raw materials were stirred. Then, 4.8 parts by weight of carbon dioxide as a foaming agent was added to the autoclave while stirring the raw materials to prepare a dispersion.
 オートクレーブ内容物(密閉容器内)を昇温し、発泡温度146.0℃まで加熱した。その後、発泡剤である二酸化炭素をオートクレーブ内に追加圧入して、オートクレーブ内圧を発泡圧力2.9MPaまで昇圧した。当該発泡温度、および発泡圧力で、オートクレーブ内を30分間保持した。その後、オートクレーブ下部のバルブを開き、直径3.6mmの開口オリフィスを通して、95℃雰囲気下の大気中に、分散液を放出し、発泡倍率約15倍のポリプロピレン系樹脂一段発泡粒子を得た。このとき、分散液の放出中は容器内の圧力が低下しないように、二酸化炭素を追加することにより、容器内の圧力を保持した。ポリプロピレン系樹脂発泡粒子製造時におけるにおける分散安定性を評価した。また、得られたポリプロピレン系樹脂発泡粒子について、ブロッキングの評価、付着カオリン(発泡粒子表面に存在するケイ酸塩)量、および平均気泡径を測定した。これらの結果を表1に示す。 The autoclave contents (in the sealed container) were heated and heated to a foaming temperature of 146.0 ° C. Thereafter, carbon dioxide as a foaming agent was additionally injected into the autoclave, and the autoclave internal pressure was increased to a foaming pressure of 2.9 MPa. The inside of the autoclave was held for 30 minutes at the foaming temperature and foaming pressure. Then, the valve | bulb of the autoclave lower part was opened, the dispersion liquid was discharge | released in the air | atmosphere of 95 degreeC atmosphere through the opening orifice with a diameter of 3.6 mm, and the polypropylene-type resin single-stage expanded particle of expansion ratio about 15 time was obtained. At this time, the pressure in the container was maintained by adding carbon dioxide so that the pressure in the container did not decrease during the discharge of the dispersion. The dispersion stability during the production of polypropylene resin expanded particles was evaluated. Moreover, about the obtained polypropylene resin expanded particle, evaluation of blocking, the amount of adhesion kaolin (silicate which exists in the expanded particle surface), and the average bubble diameter were measured. These results are shown in Table 1.
 [ポリプロピレン系樹脂二段発泡粒子の製造]
 得られた一段発泡粒子を75℃で乾燥し、水分を除去した後、さらに、耐圧容器内に入れ、加圧することにより一段発泡粒子に空気を含浸させた。そして当該一段発泡粒子の内圧を0.35MPa(絶対圧)に調節した後、水蒸気(水蒸気圧0.060MPa-G(ゲージ圧))により加熱して二段発泡工程を実施し、発泡倍率約30倍のポリプロピレン系樹脂二段発泡粒子を得た。得られた二段発泡粒子についてブロッキングの評価、および平均気泡径を測定した。これらの結果を表1に示す。
[Production of two-stage expanded polypropylene resin particles]
The obtained single-stage expanded particles were dried at 75 ° C. to remove moisture, and then placed in a pressure-resistant container and pressurized to impregnate the single-stage expanded particles with air. Then, after adjusting the internal pressure of the one-stage expanded particles to 0.35 MPa (absolute pressure), the two-stage expansion process is performed by heating with water vapor (water vapor pressure 0.060 MPa-G (gauge pressure)), and the expansion ratio is about 30 Double polypropylene resin two-stage expanded particles were obtained. The obtained two-stage expanded particles were evaluated for blocking and average cell diameter. These results are shown in Table 1.
 [ポリプロピレン系樹脂型内発泡成形体の製造]
 得られた二段発泡粒子(ポリプロピレン系樹脂発泡粒子)を耐圧容器内に投入し、加圧することにより二段発泡粒子に空気を含浸させ、あらかじめ0.20MPa(絶対圧)の発泡粒子内圧になるように調整した。内圧を調整したポリプロピレン系樹脂発泡粒子を、縦300mm×横400mm×厚み50mmの金型内に充填した。金型チャンバー内を水蒸気にて10秒間加熱し、発泡粒子同士を融着させた。金型内および成形体表面を水冷した後、成形体を取り出して、ポリプロピレン系樹脂型内発泡成形体を得た。得られた型内発泡成形体は、23℃で2時間静置し、次に75℃で16時間養生した。そして、23℃の室内に4時間静置した後、融着性および表面外観について評価を実施した。これらの結果を表1に示す。
[Manufacture of expanded foam in polypropylene resin mold]
The obtained two-stage expanded particles (polypropylene-based resin expanded particles) are put into a pressure-resistant container and pressurized to impregnate the two-stage expanded particles with air, so that the internal pressure of the expanded particles is 0.20 MPa (absolute pressure) in advance. Adjusted as follows. The expanded polypropylene resin particles with the adjusted internal pressure were filled into a mold having a length of 300 mm, a width of 400 mm, and a thickness of 50 mm. The inside of the mold chamber was heated with water vapor for 10 seconds to fuse the expanded particles. After water-cooling the inside of the mold and the surface of the molded body, the molded body was taken out to obtain a foamed molded body in a polypropylene resin mold. The obtained in-mold foam molding was allowed to stand at 23 ° C. for 2 hours, and then cured at 75 ° C. for 16 hours. And after leaving still in a 23 degreeC room | chamber interior for 4 hours, evaluation was implemented about the meltability and surface appearance. These results are shown in Table 1.
 (実施例1~10、比較例1~13)
 実施例2~10、比較例1~13は、上述した[ポリプロピレン系樹脂粒子の製造]において、添加剤の種類および樹脂処方を表1、2に示すように変更し、上述した[ポリプロピレン系樹脂一段発泡粒子の製造]において、発泡処方を表1、2に示すように変更した以外は、上述の方法により、ポリプロピレン系樹脂粒子、ポリプロピレン系樹脂一段発泡粒子、ポリプロピレン系樹脂二段発泡粒子、およびポリプロピレン系樹脂型内発泡成形体を製造した。なお一段発泡粒子製造時に、ブロッキングが発生、あるいは分散安定性が不良である(×である)比較例1~5、7~8、および11については、二段発泡粒子の製造、および型内発泡成形体の製造は行わなかった。
(Examples 1 to 10, Comparative Examples 1 to 13)
In Examples 2 to 10 and Comparative Examples 1 to 13, in the above-mentioned [Production of Polypropylene Resin Particles], the types of additives and resin formulations were changed as shown in Tables 1 and 2, and the above-mentioned [Polypropylene Resin In the production of single-stage expanded particles], the polypropylene-based resin particles, the polypropylene-based resin single-stage expanded particles, the polypropylene-based resin two-stage expanded particles, and A polypropylene resin molded in-mold foam was produced. In Comparative Examples 1 to 5, 7 to 8, and 11 in which blocking is generated or dispersion stability is poor (×) during the production of the first-stage expanded particles, the production of the second-stage expanded particles and the in-mold expansion are performed. The molded body was not manufactured.
 得られたポリプロピレン系樹脂一段発泡粒子、ポリプロピレン系樹脂二段発泡粒子、ポリプロピレン系樹脂型内発泡成形体における評価結果を表1、2に示す。なお表1、2の二段発泡の項で「未実施」と記載した実施例10、比較例12、および13については、二段発泡粒子の代わりに一段発泡粒子を用いて、上記方法と同様の方法により型内発泡成形体を製造し、得られた型内発泡成形体の評価を記載している。
Figure JPOXMLDOC01-appb-T000001
Tables 1 and 2 show the evaluation results of the obtained polypropylene resin single-stage expanded particles, polypropylene resin double-stage expanded particles, and polypropylene resin in-mold foam-molded articles. In addition, about Example 10 and Comparative Examples 12 and 13 which were described as "not implemented" in the two-stage foaming section of Tables 1 and 2, using the single-stage foamed particles instead of the two-stage foamed particles, the same as the above method An in-mold foam-molded article was produced by the method described above, and the evaluation of the obtained in-mold foam-molded article is described.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~10から判るように、本発明の一実施形態に係る製造方法により得られるポリプロピレン系樹脂一段発泡粒子は、ポリプロピレン系樹脂と水系分散媒との重量比が近しく、発泡時(分散液の放出時)に発泡粒子相互の融着(ブロッキング)が起きやすい条件においても、ブロッキングが起こらなかった。また本発明の一実施形態に係る製造方法により得られるポリプロピレン系樹脂発泡粒子からなる型内発泡成形体は、表面外観、および融着性に優れていた。
Figure JPOXMLDOC01-appb-T000002
As can be seen from Examples 1 to 10, the polypropylene resin single-stage expanded particles obtained by the production method according to one embodiment of the present invention are close in weight ratio between the polypropylene resin and the aqueous dispersion medium, and are expanded (dispersed). Blocking did not occur even under conditions where the foam particles were likely to be fused (blocked) when the liquid was released. Further, the in-mold foam molded article made of the polypropylene resin foam particles obtained by the production method according to one embodiment of the present invention was excellent in surface appearance and fusion property.
 比較例1および7のように、アミン系化合物を添加しない場合、またはアミン系化合物の添加量が本発明の範囲より少量の場合、一段発泡粒子の製造時における分散安定性が悪化し、発泡粒子が得られないことが判る。 As in Comparative Examples 1 and 7, when the amine compound is not added, or when the addition amount of the amine compound is less than the range of the present invention, the dispersion stability during the production of the single-stage expanded particles deteriorates, and the expanded particles It is understood that cannot be obtained.
 比較例2、3、4、5のように、ポリエチレン系樹脂を混合しない場合、ポリエチレン系樹脂の混合量が本発明の範囲より少量の場合、あるいは本発明の範囲より低い密度のポリエチレン系樹脂を用いる場合、一段発泡粒子の製造時に、ブロッキングが生じることが判る。 As in Comparative Examples 2, 3, 4, and 5, when a polyethylene resin is not mixed, when the amount of the polyethylene resin is less than the range of the present invention, or a polyethylene resin having a density lower than the range of the present invention is used. When used, it can be seen that blocking occurs during the production of single-stage expanded particles.
 比較例6、12のように、ポリエチレン系樹脂の混合量が本発明の範囲を超えると、得られた発泡粒子を用いる型内発泡成形時のポリプロピレン系樹脂発泡粒子の伸びが低下し、得られる型内発泡成形体の表面外観が悪化することが判る。 When the mixing amount of the polyethylene resin exceeds the range of the present invention as in Comparative Examples 6 and 12, the elongation of the polypropylene resin foamed particles at the time of in-mold foam molding using the obtained foamed particles is reduced, and thus obtained. It can be seen that the surface appearance of the in-mold foam molded article deteriorates.
 比較例8のように、無機系分散剤であるカオリン(ケイ酸塩)の添加量が本発明の範囲より少量の場合、一段発泡粒子の製造工程時にブロッキングが生じることが判る。 As in Comparative Example 8, when the amount of kaolin (silicate), which is an inorganic dispersant, is less than the range of the present invention, it can be seen that blocking occurs during the production process of the single-stage expanded particles.
 比較例9、10、13のように、無機系分散剤であるカオリン(ケイ酸塩)の添加量が本発明の範囲より多量の場合、一段発泡粒子の製造時に、樹脂発泡粒子に付着するカオリン(発泡粒子表面に存在するケイ酸塩)量が多くなる。その結果、得られた発泡粒子を用いて製造された型内発泡成形体の融着性が低下することが判る。 When the amount of kaolin (silicate), which is an inorganic dispersant, is larger than the range of the present invention as in Comparative Examples 9, 10, and 13, kaolin adhering to the resin foam particles during the production of the single-stage foam particles The amount of (silicate present on the surface of the expanded particles) increases. As a result, it can be seen that the fusion property of the in-mold foam-molded article produced using the obtained foamed particles is lowered.
 比較例11のように、ポリプロピレン系樹脂粒子に対して分散媒である水の添加量が本発明の範囲より少量の場合、一段発泡粒子の製造工程時に、耐圧容器内でのポリプロピレン系樹脂粒子の分散安定性が悪化し、発泡粒子が得られないことが判る。 As in Comparative Example 11, when the amount of water, which is a dispersion medium, is less than the range of the present invention relative to the polypropylene resin particles, the polypropylene resin particles in the pressure-resistant container are produced during the production process of the single-stage expanded particles. It can be seen that the dispersion stability deteriorates and the expanded particles cannot be obtained.
 表1および2から、以下のこともわかる。比較例2のように、ポリエチレン系樹脂粒子を混合せず、かつ、ポリプロピレン系樹脂と水系分散媒との重量比が近しい場合、一段発泡粒子の製造時に、ブロッキングが生じることが判る。比較例9では、ポリエチレン系樹脂粒子を混合せず、ポリプロピレン系樹脂と水系分散媒との重量比が、比較例2よりも近しい。比較例9では、本発明の範囲より多量のカオリン(ケイ酸塩)を添加しているため、一段発泡粒子の製造工程においてブロッキングは生じなかった。しかしながら、比較例9では、ポリプロピレン系樹脂発泡粒子表面に付着したカオリン(ケイ酸塩)量が増加し、その結果、型内発泡成形時の融着性が悪化したことが判る。一方、密度0.945g/cm以上のポリエチレン系樹脂(Y)を混合している実施例1は、ポリプロピレン系樹脂と水系分散媒との重量比が比較例2よりも近しい条件である。実施例1では、比較例2と同量のカオリン(ケイ酸塩)を添加しているが、一段発泡粒子の製造工程においてブロッキングが生じなかったことが分かる。 Tables 1 and 2 also show the following. As in Comparative Example 2, when the polyethylene resin particles are not mixed and the weight ratio between the polypropylene resin and the aqueous dispersion medium is close, it can be seen that blocking occurs during the production of the single-stage expanded particles. In Comparative Example 9, the polyethylene resin particles are not mixed, and the weight ratio of the polypropylene resin and the aqueous dispersion medium is closer than that of Comparative Example 2. In Comparative Example 9, since a larger amount of kaolin (silicate) than the range of the present invention was added, blocking did not occur in the production process of the single-stage expanded particles. However, in Comparative Example 9, it can be seen that the amount of kaolin (silicate) adhering to the surface of the expanded polypropylene resin particles increased, and as a result, the fusion property during in-mold foam molding deteriorated. On the other hand, Example 1 in which a polyethylene resin (Y) having a density of 0.945 g / cm 3 or more is mixed is a condition in which the weight ratio of the polypropylene resin and the aqueous dispersion medium is closer than that of Comparative Example 2. In Example 1, the same amount of kaolin (silicate) as in Comparative Example 2 was added, but it was found that no blocking occurred in the production process of the single-stage expanded particles.
 本発明の一実施形態によると、高い生産性にて、型内発泡成形用のポリプロピレン系樹脂発泡粒子を得ることができる。そのため、本発明の一実施形態は、包装材、緩衝材、断熱材、建築部材など様々な分野で好適に利用できる。 According to one embodiment of the present invention, polypropylene resin expanded particles for in-mold foam molding can be obtained with high productivity. Therefore, one Embodiment of this invention can be utilized suitably in various fields, such as a packaging material, a shock absorbing material, a heat insulating material, and a building member.

Claims (5)

  1.  ポリプロピレン系樹脂粒子と、無機ガス系発泡剤と、無機系分散剤であるケイ酸塩とを、密閉容器内で水系分散媒中に分散させ、分散液とする工程、
     上記ポリプロピレン系樹脂粒子の軟化温度以上まで上記密閉容器内を加熱し、かつ、上記密閉容器内を加圧する工程、および
     上記密閉容器の内圧よりも低い圧力域に上記分散液を放出することでポリプロピレン系樹脂発泡粒子を得る工程、を有し、
     上記ポリプロピレン系樹脂粒子は、ポリプロピレン系樹脂(X)85~99重量%および密度0.945g/cm以上のポリエチレン系樹脂(Y)1~15重量%から成るポリプロピレン系樹脂(Z)[(X)と(Y)の合計は100重量%である]と、
     上記ポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下のアミン系化合物と、を含み、
     上記分散液は上記ポリプロピレン系樹脂粒子100重量部に対し、(i)0.05重量部以上0.4重量部以下の上記ケイ酸塩、および(ii)100重量部以上250重量部以下の上記水系分散媒、を含むことを特徴とする、ポリプロピレン系樹脂発泡粒子の製造方法。
    A step of dispersing a polypropylene resin particle, an inorganic gas-based foaming agent, and a silicate which is an inorganic dispersant in an aqueous dispersion medium in a sealed container to obtain a dispersion;
    A step of heating the inside of the closed container up to a softening temperature of the polypropylene resin particles or higher and pressurizing the inside of the closed container, and releasing the dispersion into a pressure region lower than the internal pressure of the closed container. Obtaining resin-based resin expanded particles,
    The polypropylene resin particles are composed of a polypropylene resin (Z) [(X) consisting of 85 to 99% by weight of a polypropylene resin (X) and 1 to 15% by weight of a polyethylene resin (Y) having a density of 0.945 g / cm 3 or more. ) And (Y) is 100% by weight]
    0.01 parts by weight or more and 1 part by weight or less of an amine compound with respect to 100 parts by weight of the polypropylene resin (Z),
    The dispersion is based on 100 parts by weight of the polypropylene resin particles (i) 0.05 to 0.4 parts by weight of the silicate, and (ii) 100 to 250 parts by weight of the silicate. A method for producing expanded polypropylene resin particles, comprising an aqueous dispersion medium.
  2.  上記分散液はポリプロピレン系樹脂粒子100重量部に対し、100重量部以上200重量部以下の上記水系分散媒を含むことを特徴とする、請求項1に記載のポリプロピレン系樹脂発泡粒子の製造方法。 2. The method for producing expanded polypropylene resin particles according to claim 1, wherein the dispersion contains 100 to 200 parts by weight of the aqueous dispersion medium with respect to 100 parts by weight of the polypropylene resin particles.
  3.  ポリプロピレン系樹脂発泡粒子であって、
     ポリプロピレン系樹脂を含み、
     上記ポリプロピレン系樹脂は、
     ポリプロピレン系樹脂(X)85~99重量%および密度0.945g/cm以上のポリエチレン系樹脂(Y)1~15重量%から成るポリプロピレン系樹脂(Z)[(X)と(Y)の合計は100重量%である]と、
     上記ポリプロピレン系樹脂(Z)100重量部に対し、0.01重量部以上1重量部以下のアミン系化合物と、を含み、
     上記ポリプロピレン系樹脂100重量部に対し、上記ポリプロピレン系樹脂発泡粒子の表面に存在するケイ酸塩の量が0重量部を超え、0.20重量部以下であることを特徴とする、ポリプロピレン系樹脂発泡粒子。
    Polypropylene-based resin expanded particles,
    Including polypropylene resin,
    The polypropylene resin is
    Polypropylene resin (Z) consisting of 85 to 99% by weight of polypropylene resin (X) and 1 to 15% by weight of polyethylene resin (Y) having a density of 0.945 g / cm 3 or more [total of (X) and (Y) Is 100% by weight]
    0.01 parts by weight or more and 1 part by weight or less of an amine compound with respect to 100 parts by weight of the polypropylene resin (Z),
    A polypropylene resin characterized in that the amount of silicate present on the surface of the expanded polypropylene resin particles is more than 0 parts by weight and less than 0.20 parts by weight with respect to 100 parts by weight of the polypropylene resin. Expanded particles.
  4.  上記ポリプロピレン系樹脂100重量部に対し、上記ポリプロピレン系樹脂発泡粒子の上記表面に存在する上記ケイ酸塩の量が0.020重量部以上0.20重量部以下であることを特徴とする、請求項3に記載のポリプロピレン系樹脂発泡粒子。 The amount of the silicate present on the surface of the expanded polypropylene resin particles is 0.020 part by weight or more and 0.20 part by weight or less with respect to 100 parts by weight of the polypropylene resin. Item 4. The expanded polypropylene resin particles according to Item 3.
  5.  請求項3または4に記載のポリプロピレン系樹脂発泡粒子を用いてなる発泡成形体。 A foam molded article using the polypropylene resin foamed particles according to claim 3 or 4.
PCT/JP2019/008472 2018-03-08 2019-03-04 Polypropylene resin foamed particle and method of producing same WO2019172204A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020505026A JP7269220B2 (en) 2018-03-08 2019-03-04 Expanded polypropylene resin particles and method for producing the same
CN201980008984.9A CN111615532A (en) 2018-03-08 2019-03-04 Polypropylene resin foamed particles and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-041866 2018-03-08
JP2018041866 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019172204A1 true WO2019172204A1 (en) 2019-09-12

Family

ID=67847208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008472 WO2019172204A1 (en) 2018-03-08 2019-03-04 Polypropylene resin foamed particle and method of producing same

Country Status (3)

Country Link
JP (1) JP7269220B2 (en)
CN (1) CN111615532A (en)
WO (1) WO2019172204A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147972A (en) * 1997-11-17 1999-06-02 Jsp Corp Production of foamed polypropylene resin particle, foamed polypropylene resin particle, and molded item thereof
JP2003321567A (en) * 2002-02-28 2003-11-14 Jsp Corp Foamed particle of polypropylene-based resin, molded product of the foamed particle of polypropylene-based resin, and method for producing the foamed particle of polypropylene-based resin
JP2010037432A (en) * 2008-08-05 2010-02-18 Kaneka Corp Polypropylene resin pre-expanded particle
WO2015098619A1 (en) * 2013-12-27 2015-07-02 株式会社カネカ Polyolefin resin foam particles, and polyolefin resin in-mold expansion molded article
WO2017003012A1 (en) * 2015-06-29 2017-01-05 경희대학교 산학협력단 Resource provision system and method, and resource usage fee determination method therefor
WO2017090432A1 (en) * 2015-11-26 2017-06-01 株式会社カネカ Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107849285B (en) * 2015-08-20 2020-11-17 株式会社钟化 Polypropylene resin foamed particle and method for producing same, polypropylene resin in-mold foamed molded article and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147972A (en) * 1997-11-17 1999-06-02 Jsp Corp Production of foamed polypropylene resin particle, foamed polypropylene resin particle, and molded item thereof
JP2003321567A (en) * 2002-02-28 2003-11-14 Jsp Corp Foamed particle of polypropylene-based resin, molded product of the foamed particle of polypropylene-based resin, and method for producing the foamed particle of polypropylene-based resin
JP2010037432A (en) * 2008-08-05 2010-02-18 Kaneka Corp Polypropylene resin pre-expanded particle
WO2015098619A1 (en) * 2013-12-27 2015-07-02 株式会社カネカ Polyolefin resin foam particles, and polyolefin resin in-mold expansion molded article
WO2017003012A1 (en) * 2015-06-29 2017-01-05 경희대학교 산학협력단 Resource provision system and method, and resource usage fee determination method therefor
WO2017090432A1 (en) * 2015-11-26 2017-06-01 株式会社カネカ Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article

Also Published As

Publication number Publication date
CN111615532A (en) 2020-09-01
JPWO2019172204A1 (en) 2021-02-18
JP7269220B2 (en) 2023-05-08

Similar Documents

Publication Publication Date Title
EP1829919B1 (en) Pre-expanded polypropylene resin particle and molded object obtained by in-mold expansion
JP5553476B2 (en) Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles
JP5976098B2 (en) In-mold foam molded article comprising polypropylene resin expanded particles, polypropylene resin expanded particles, and methods for producing the same
JP4953891B2 (en) Black polypropylene resin pre-expanded particles
US8507608B2 (en) Propylene polymer resin composition
WO2019189564A1 (en) Polyolefin resin foamable particles, method for producing same, and foam molded article of polyolefin resin
JP5188144B2 (en) Polypropylene resin pre-expanded particles without friction noise
JP2019163426A (en) Process for producing polypropylene-based resin expanded particle
JP3909617B2 (en) Method for producing polypropylene resin expanded particles, polypropylene resin expanded particles and molded article thereof
JP5175221B2 (en) Non-crosslinked polypropylene resin pre-expanded particles and in-mold expanded molding
KR20080042046A (en) Constructional heat-insulating foam board and process for production thereof
JP2009161738A (en) Method for producing thermoplastic resin foamed particles
WO2018190353A1 (en) Method for producing polypropylene resin foam particles, polypropylene resin foam particles, and polypropylene resin in-mold foaming molded body
JP7269220B2 (en) Expanded polypropylene resin particles and method for producing the same
JP6670850B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles and in-mold expanded molded article
JP5064745B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP6609559B2 (en) Conductive polypropylene resin expanded particles having excellent antifouling property and moldability, method for producing polypropylene resin expanded particles, and polypropylene resin expanded foam
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JP6847584B2 (en) Polyethylene resin foam particles and polyethylene resin foam molded products with antistatic performance and their manufacturing methods
JP2009221258A (en) Pre-expanded polypropylene resin particle
JP7162051B2 (en) Method for producing expanded polypropylene resin particles
JP6012315B2 (en) Polypropylene resin pre-expanded particles
JP2010265424A (en) Method of production of polypropylene-based resin preliminary foaming particle
JP5410080B2 (en) Method for reducing poorly water-soluble inorganic compounds adhering to the surface of polyolefin resin foam particles
JP2004082481A (en) Manufacturing method for polyethylenic foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764665

Country of ref document: EP

Kind code of ref document: A1