JP2005307075A - Expandable styrenic resin particle - Google Patents

Expandable styrenic resin particle Download PDF

Info

Publication number
JP2005307075A
JP2005307075A JP2004128164A JP2004128164A JP2005307075A JP 2005307075 A JP2005307075 A JP 2005307075A JP 2004128164 A JP2004128164 A JP 2004128164A JP 2004128164 A JP2004128164 A JP 2004128164A JP 2005307075 A JP2005307075 A JP 2005307075A
Authority
JP
Japan
Prior art keywords
resin particles
styrene resin
expandable
foaming
expandable styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004128164A
Other languages
Japanese (ja)
Inventor
Masaya Sato
雅也 佐藤
Ryosuke Chiumi
良輔 地海
Shigehiko Tokyo
成彦 都郷
Yasuhiro Sakota
康宏 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2004128164A priority Critical patent/JP2005307075A/en
Publication of JP2005307075A publication Critical patent/JP2005307075A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expandable styrenic resin particle capable of almost preventing the break of an upper end opening part by smoothly absorbing the stress for deforming the upper end opening part to a flat state. <P>SOLUTION: This expandable styrenic resin particle usable for forming a cylindrical foamed container having a bottom by being foamed is regulated so that the total weight of organic compounds comprising one or more kinds of aromatic compounds selected from a styrenic monomer, ethylbenzene, toluene, n-propylbenzene, i-propylbenzene and xylene may be 0-500 ppm based on the whole amount of the expandable styrenic resin particle, and the variation coefficient of Cv value of a size distribution and the average particle diameter may be 0-0.1 and 0.3-0.6 mm, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、インスタントのカップ麺などの包装用及び調理用の有底円筒状の発泡容器を製造するための発泡性スチレン系樹脂粒子に関する。   The present invention relates to an expandable styrene resin particle for producing a bottomed cylindrical foam container for packaging and cooking such as instant cup noodles.

従来からインスタントのカップ麺の包装用及び調理用容器として有底筒状の発泡容器が用いられている。この発泡容器は、発泡性スチレン系樹脂粒子を予備発泡させて得られた予備発泡粒子を金型内に充填して加熱、発泡させて製造されている。   Conventionally, a bottomed cylindrical foam container is used as a container for instant cup noodle packaging and cooking. This foaming container is manufactured by filling pre-expanded particles obtained by pre-expanding expandable styrene resin particles in a mold, and heating and foaming.

このような発泡性スチレン系樹脂粒子としては、特許文献1に、発泡剤の必須成分として発泡性スチレン系樹脂粒子100重量%に対しペンタンを3〜6重量%、プロパンを0.01〜1重量%含有していることを特徴とする発泡性スチレン系樹脂粒子が提案されており、この発泡性スチレン系樹脂粒子を発泡させることによって天地圧縮強度に優れたカップ状発泡成形体を得ることができることが開示されている。   As such expandable styrene resin particles, Patent Document 1 discloses that 3 to 6% by weight of pentane and 0.01 to 1% by weight of propane with respect to 100% by weight of expandable styrene resin particles as an essential component of the foaming agent. %. Expandable styrenic resin particles characterized in that it is contained, and a cup-shaped foamed molded article excellent in top and bottom compression strength can be obtained by foaming the expandable styrene resin particles. Is disclosed.

一方、近年、環境衛生に対する社会的な関心の高まりと共に、各種化学物質の人体に対する影響について大きな関心が集まっている。そして、上述したカップ麺の容器についても同様であって、この容器の原材料となる発泡性スチレン系樹脂粒子中のスチレン系モノマー、トルエン、キシレン、エチルベンゼン、プロピルベンゼンなどの芳香族化合物の含有量を低減化させることが要望されている。   On the other hand, in recent years, with increasing social interest in environmental health, there has been a great interest in the effects of various chemical substances on the human body. The same applies to the cup noodle container described above, and the content of aromatic compounds such as styrene monomer, toluene, xylene, ethylbenzene, and propylbenzene in the expandable styrene resin particles that are the raw material of the container. There is a demand for reduction.

ところが、上記芳香族化合物はスチレン系樹脂を可塑化する作用を有していることから、特許文献1の発泡性スチレン系樹脂粒子に含有されている芳香族化合物の低減化のみを試みると、スチレン系樹脂の柔軟性が低下する結果、上記発泡性スチレン系樹脂粒子を発泡させて得られる発泡粒子の伸長性が低下し、更に、発泡容器の肉厚は1.5〜3.0mm程度と非常に薄いことも相まって、発泡容器の上端開口部に該上端開口部を偏平な状態に変形させる応力が加わると、発泡容器の上端開口部に亀裂が容易に発生するといった別の問題を生じた。   However, since the aromatic compound has the effect of plasticizing the styrene resin, when only reducing the aromatic compound contained in the expandable styrene resin particles of Patent Document 1, styrene is used. As a result of the reduced flexibility of the resin, the extensibility of the foamed particles obtained by foaming the expandable styrene resin particles is reduced, and the thickness of the foamed container is very low, about 1.5 to 3.0 mm. When the stress which deform | transforms this upper end opening part into a flat state is added to the upper end opening part of a foaming container, another problem that a crack generate | occur | produces easily in the upper end opening part of a foaming container occurred.

そこで、発泡容器の発泡倍率を低下させることも考えられるが、発泡容器の発泡倍率を低下させると、発泡容器の軽量性が損なわれてしまうといった問題を生じた。   Therefore, it is conceivable to reduce the expansion ratio of the foam container, but if the expansion ratio of the foam container is decreased, there arises a problem that the light weight of the foam container is impaired.

特開2003−82149号公報JP 2003-82149 A

本発明は、上端開口部を偏平な状態に変形させる応力を円滑に吸収して上端開口部が破損するのを略防止することができ且つ軽量性に優れた有底筒状の発泡容器を製造することができる発泡性スチレン系樹脂粒子を提供する。   The present invention manufactures a bottomed cylindrical foam container that can smoothly absorb the stress that deforms the upper end opening into a flat state and substantially prevents the upper end opening from being damaged and that is excellent in light weight. Expandable styrenic resin particles that can be provided are provided.

本発明の発泡性スチレン系樹脂粒子は、予備発泡させた上で金型内に充填して発泡させて有底円筒状の発泡容器を成形するための発泡性スチレン系樹脂粒子であって、スチレン系モノマー、エチルベンゼン、トルエン、n−プロピルベンゼン、i−プロピルベンゼン及びキシレンからなる群より選ばれた一種又は二種以上の芳香族化合物からなる有機化合物の総量が発泡性スチレン系樹脂粒子の全重量に対して0〜500ppmであると共に、粒度分布の変動係数Cv値が0〜0.1で且つ平均粒子径が0.3〜0.6mmであることを特徴とする。   The expandable styrenic resin particles of the present invention are expandable styrene resin particles for pre-expanding, filling into a mold and foaming to form a bottomed cylindrical foam container, The total weight of the expandable styrenic resin particles is the total amount of the organic compound composed of one or two or more aromatic compounds selected from the group consisting of a series monomer, ethylbenzene, toluene, n-propylbenzene, i-propylbenzene and xylene It is 0 to 500 ppm with respect to the particle size, the coefficient of variation Cv of the particle size distribution is 0 to 0.1, and the average particle size is 0.3 to 0.6 mm.

上記発泡性スチレン系樹脂粒子を構成するスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、エチルスチレン、i−プロピルスチレン、t−ブチルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレンなどのスチレン系モノマーの単独重合体又はこれらの共重合体などが挙げられる。  The styrene resin constituting the expandable styrene resin particles is not particularly limited. For example, styrene, α-methyl styrene, vinyl toluene, ethyl styrene, i-propyl styrene, t-butyl styrene, dimethyl styrene, bromo Examples thereof include homopolymers of styrene monomers such as styrene and chlorostyrene or copolymers thereof.

又、上記スチレン系樹脂としては、上記スチレン系モノマーを主成分とする、上記スチレン系モノマーと、このスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレート、ポリエチレングリコールジ(メタ)アクリレートなどの二官能性モノマーなどが挙げられる。なお、上記スチレン系樹脂のGPC(ゲルパーミエイションクロマトグラフィ)法による重量平均分子量は、20万〜40万が好ましく、25万〜35万がより好ましい。   The styrenic resin may be a copolymer of the styrenic monomer having the styrenic monomer as a main component and a vinyl monomer copolymerizable with the styrenic monomer. Examples of vinyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, alkyl (meth) acrylate such as cetyl (meth) acrylate, and (meth) acrylonitrile. In addition to dimethyl maleate, dimethyl fumarate, diethyl fumarate, and ethyl fumarate, bifunctional monomers such as divinylbenzene, alkylene glycol dimethacrylate, and polyethylene glycol di (meth) acrylate are exemplified. In addition, 200,000-400,000 are preferable and, as for the weight average molecular weight by GPC (gel permeation chromatography) method of the said styrene resin, 250,000-350,000 are more preferable.

ここで、発泡性スチレン系樹脂粒子の製造方法としては、汎用の製造方法が用いられ、スチレン系樹脂の懸濁重合時に水性懸濁液中に発泡剤を含有させ、スチレン系樹脂粒子中に発泡剤を含浸させて発泡性スチレン系樹脂粒子を製造する方法、スチレン系樹脂粒子を汎用の方法で製造し、このスチレン系樹脂粒子に発泡剤を含浸させて発泡性スチレン系樹脂粒子を製造する方法などが挙げられる。なお、スチレン系樹脂の懸濁重合時に発泡剤を含浸させる場合には、モノマーの重合転化率が85%以上の時に発泡剤を水性懸濁液中に含有させることが好ましい。   Here, as a method for producing the expandable styrene resin particles, a general-purpose production method is used. During the suspension polymerization of the styrene resin, a foaming agent is contained in the aqueous suspension, and foaming is performed in the styrene resin particles. For producing expandable styrene resin particles by impregnating with an agent, and for producing styrene resin particles by producing styrene resin particles by a general-purpose method and impregnating the styrene resin particles with a foaming agent Etc. In addition, when impregnating a foaming agent at the time of suspension polymerization of a styrene-type resin, it is preferable to contain a foaming agent in aqueous suspension, when the polymerization conversion rate of a monomer is 85% or more.

なお、上記スチレン系樹脂の懸濁重合時には重合開始剤が用いられるが、この重合開始剤としては、汎用のものが用いられ、例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、オクタノイルパーオキサイド、オルソクロロベンゾイルパーオキサイド、オルソメトキシベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t−ブチルハイドロパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシビバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、ジイソプロピルベンゼンハイドロパーオキサイドなどの過酸化物系重合開始剤、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス( 2,4−ジメチルバレロニトリル) 、2,2’−アゾビス( 2,3−ジメチルブチロニトリル) 、2,2’−アゾビス( 2−メチルブチロニトリル) 、2,2’−アゾビス( 2,3,3−トリメチルブチロニトリル) 、2,2’−アゾビス( 2−イソプロピルブチロニトリル) 、1,1’−アゾビス( シクロヘキサン−1−カルボニトリル) 、2,2’−アゾビス( 4−メトキシ−2,4−ジメチルバレロニトリル) 、2−( カルバモイルアゾ) イソブチロニトリル、4,4’−アゾビス( 4−シアノバレリン酸) 、ジメチル−2,2’−アゾビスイソブチレートなどが挙げられる。   In addition, a polymerization initiator is used at the time of suspension polymerization of the styrene resin. As the polymerization initiator, a general-purpose one is used, for example, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochloro. Benzoyl peroxide, orthomethoxybenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl hydroperoxide, t-butyl peroxybenzoate, t-butyl peroxybivalate , T-butylperoxyisopropyl carbonate, t-butylperoxyacetate, 2,2-t-butylperoxybutane, diisopropylbenzene hydroperio Peroxide-based polymerization initiators such as side, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2,3- Dimethylbutyronitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,3,3-trimethylbutyronitrile), 2,2'-azobis (2-isopropyl) Butyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile 4,4′-azobis (4-cyanovaleric acid), dimethyl-2,2′-azobisisobutyrate and the like.

そして、上記スチレン系モノマー、エチルベンゼン、トルエン、n−プロピルベンゼン、i−プロピルベンゼン及びキシレンからなる群より選ばれた一種又は二種以上の芳香族 化合物からなる有機化合物の発泡性スチレン系樹脂粒子中における総含有量(総重量)は、発泡性スチレン系樹脂粒子の全重量に対して0〜500ppmに限定され、0〜400ppmが好ましい。   In the foamable styrene resin particles of an organic compound composed of one or two or more aromatic compounds selected from the group consisting of the styrene monomer, ethylbenzene, toluene, n-propylbenzene, i-propylbenzene and xylene The total content (total weight) in is limited to 0 to 500 ppm, preferably 0 to 400 ppm, based on the total weight of the expandable styrenic resin particles.

即ち、上記芳香族化合物が発泡性スチレン系樹脂粒子中に含有されていないか、或いは 、 スチレン系モノマー、エチルベンゼン、トルエン、n−プロピルベンゼン、i−プロピルベンゼン及びキシレンからなる群より選ばれた一種又は二種以上の芳香族化合物からなる有機化合物を発泡性スチレン系樹脂粒子中に含有し、この有機化合物の総量が該発泡性スチレン系樹脂粒子の全重量に対して500ppm以下に限定され、400ppm以下が好ましい。   That is, the aromatic compound is not contained in the expandable styrene resin particles, or one kind selected from the group consisting of styrene monomers, ethylbenzene, toluene, n-propylbenzene, i-propylbenzene and xylene Or the organic compound which consists of 2 or more types of aromatic compounds is contained in an expandable styrene resin particle, The total amount of this organic compound is limited to 500 ppm or less with respect to the total weight of this expandable styrene resin particle, 400 ppm The following is preferred.

このように発泡性スチレン系樹脂粒子中における有機化合物の総含有量を発泡性スチレン系樹脂粒子の全重量に対して0〜500ppm以下とすることによって、発泡性スチレン系樹脂粒子を発泡させて得られる発泡容器は、揮発成分の発生が少なく、環境衛生に優れていると共に、熱湯を用いて調理が必要なインスタントのカップ麺などの食品用途にも好適に用いることができる。   Thus, by making the total content of the organic compound in the expandable styrene resin particles 0 to 500 ppm or less with respect to the total weight of the expandable styrene resin particles, the expandable styrene resin particles are obtained by foaming. The foamed container is less likely to generate volatile components, is excellent in environmental hygiene, and can be suitably used for food applications such as instant cup noodles that require cooking using hot water.

そして、発泡性スチレン系樹脂粒子中における有機化合物の総含有量を発泡性スチレン系樹脂粒子の全重量に対して0〜500ppmとするために、上述した発泡性スチレン系樹脂粒子の製造時に上記有機化合物を可塑剤として別途、添加しないようにすることが好ましい。   And in order to make the total content of the organic compound in the expandable styrene resin particles 0-500 ppm with respect to the total weight of the expandable styrene resin particles, the above-mentioned organic is produced during the production of the expandable styrene resin particles. It is preferable not to add the compound separately as a plasticizer.

ところが、発泡性スチレン系樹脂粒子の製造に際して可塑剤を別途、添加していないにもかかわらず、発泡性スチレン系樹脂粒子の原料として用いられるスチレン系モノマー中に不純物として、エチルベンゼン、トルエン、i−プロピルベンゼン、n−プロピルベンゼン及びキシレンが多量に含有されていたり或いは発泡性スチレン系樹脂粒子中に未反応のスチレン系モノマーが多量に残存していたりすることによって、発泡性スチレン系樹脂粒子に可塑化成分が上記範囲を越えて含有される虞れがある。   However, in the production of expandable styrenic resin particles, a plasticizer is not separately added, but as an impurity in the styrene monomer used as a raw material for expandable styrene resin particles, ethylbenzene, toluene, i- The foamable styrene resin particles are plasticized by containing a large amount of propylbenzene, n-propylbenzene and xylene or by leaving a large amount of unreacted styrene monomer in the foamable styrene resin particles. There is a possibility that the chemical component is contained outside the above range.

従って、発泡性スチレン系樹脂粒子中の有機化合物の総含有量が発泡性スチレン系樹脂粒子の全重量に対して0〜500ppmとなるように、不純物の少ないスチレン系モノマーを選択すると共に、発泡性スチレン系樹脂粒子の製造条件を調整する必要がある。この有機化合物の含有量を所定範囲内に抑制するための、発泡性スチレン系樹脂粒子の製造条件の調整方法としては、例えば、スチレン系樹脂の懸濁重合に用いられる重合開始剤として分解温度の異なる二種類の重合開始剤を用い、先ず、分解温度の低い重合開始剤を用いてスチレン系樹脂の懸濁重合を行なった後、分解温度の高い重合開始剤を用いてスチレン系樹脂の懸濁重合を継続して行なう方法などが挙げられる。なお、上記方法において、分解温度の異なる二種類の重合開始剤のうち、分解温度の高い重合開始剤としては、半減期が10時間となる温度が90〜120℃である重合開始剤が好ましく、このような重合開始剤としては、例えば、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシビバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタンなどが挙げられる。   Accordingly, a styrene monomer having a small amount of impurities is selected so that the total content of the organic compound in the expandable styrene resin particles is 0 to 500 ppm with respect to the total weight of the expandable styrene resin particles. It is necessary to adjust the production conditions of the styrene resin particles. As a method for adjusting the production conditions of the expandable styrene resin particles in order to suppress the content of the organic compound within a predetermined range, for example, the decomposition temperature of the polymerization initiator used for suspension polymerization of the styrene resin Two different types of polymerization initiators are used. First, suspension polymerization of the styrene resin is performed using a polymerization initiator having a low decomposition temperature, and then the suspension of the styrene resin is performed using a polymerization initiator having a high decomposition temperature. Examples thereof include a method of continuously performing polymerization. In the above method, among the two types of polymerization initiators having different decomposition temperatures, the polymerization initiator having a high decomposition temperature is preferably a polymerization initiator having a half-life of 10 hours at a temperature of 90 to 120 ° C. Examples of such a polymerization initiator include t-butyl peroxybenzoate, t-butyl peroxybivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t-butyl peroxy Examples include butane.

なお、発泡性スチレン系樹脂粒子中における有機化合物の含有量は下記の要領で測定される。即ち、発泡性スチレン系樹脂粒子1gを精秤し、この精秤した発泡性スチレン系樹脂粒子に、0.1体積%のシクロペンタノールを含有するジメチルホルムアミド溶液1ミリリットルを内部標準液として加えた後、更に、ジメチルホルムアミド溶液にジメチルホルムアミドを加えて25ミリリットルとして測定溶液を作製し、この測定溶液1.8マイクロリットルを230℃の試料気化室に供給してガスクロマトグラフから測定対象となる有機化合物のチャートを得、予め測定しておいた、測定対象となる有機化合物の検量線に基づいて、上記チャートから有機化合物量を算出する。   In addition, content of the organic compound in an expandable styrene-type resin particle is measured in the following way. That is, 1 g of expandable styrene resin particles was precisely weighed, and 1 ml of a dimethylformamide solution containing 0.1% by volume of cyclopentanol was added as an internal standard solution to the precisely weighed expandable styrene resin particles. Thereafter, dimethylformamide solution is further added to dimethylformamide solution to prepare a measurement solution of 25 ml, and 1.8 μl of this measurement solution is supplied to a sample vaporization chamber at 230 ° C., and an organic compound to be measured from a gas chromatograph The amount of the organic compound is calculated from the above chart based on the calibration curve of the organic compound to be measured that has been measured in advance.

なお、発泡性スチレン系樹脂粒子中における有機化合物の含有量は、ガスクロマトグラフ(島津製作所社製 商品名「GC−14A」)を用いて下記測定条件にて測定することができる。
検出器:FID
カラム:ジーエルサイエンス社製(3mm径×2.5m)
液相:PEG−20M PT 25重量%
担体:Chromosorb W AW−DMCS
メッシュ:60/80
カラム温度:100℃
検出器温度:230℃
注入口温度:230℃
キャリア−ガス:窒素
キャリアーガス流量:40ミリリットル/分
In addition, content of the organic compound in an expandable styrene-type resin particle can be measured on the following measurement conditions using a gas chromatograph (Shimadzu Corporation brand name "GC-14A").
Detector: FID
Column: GL Sciences Co., Ltd. (3mm diameter x 2.5m)
Liquid phase: PEG-20M PT 25% by weight
Carrier: Chromosorb W AW-DMCS
Mesh: 60/80
Column temperature: 100 ° C
Detector temperature: 230 ° C
Inlet temperature: 230 ° C
Carrier gas: Nitrogen Carrier gas flow rate: 40 ml / min

そして、本発明で用いられる発泡剤としては、従来から発泡性スチレン系樹脂粒子の製造に用いられているものであれば、特に限定されず、例えば、プロパン、ブタン、ペンタンなどの脂肪族炭化水素;1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、1−クロロ−1,1−ジフルオロエタン(HCFC−142b)、2−クロロ−1,1,1,2−テトラフルオロエタン(HCFC−124)、1,1,1,2−テトラフルオロエタン(HFC−134a)、1,1−ジフルオロエタン(HFC−152a)などのフロン系発泡剤が挙げられ、脂肪族炭化水素が好ましい。なお、発泡剤は単独で使用されても併用されてもよい。   And as a foaming agent used by this invention, if it is conventionally used for manufacture of an expandable styrene-type resin particle, it will not specifically limit, For example, aliphatic hydrocarbons, such as propane, butane, and pentane 1,1-dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,1-difluoroethane (HCFC-142b), 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-); 124), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1-difluoroethane (HFC-152a) and the like, and aliphatic hydrocarbons are preferable. In addition, a foaming agent may be used independently or may be used together.

発泡性スチレン系樹脂粒子中における発泡剤の含有量は、少ないと、発泡容器を構成している発泡粒子同士の融着が不充分となって発泡容器の機械的強度が低下することがある一方、多いと、発泡性スチレン系樹脂粒子を発泡させて得られる発泡粒子の大きさが大きくなり過ぎて、発泡容器表面にあらわれる、発泡粒子同士の熱融着界面に生じる凹部の深さが大きくなり、発泡容器表面の平滑性が損なわれ、発泡容器の外観や発泡容器表面に印刷を施した際の見栄えが低下することがあるので、2〜6重量%が好ましく、4〜5重量%がより好ましい。   If the content of the foaming agent in the expandable styrenic resin particles is small, the mechanical strength of the foam container may be lowered due to insufficient fusion between the foam particles constituting the foam container. If the amount is too large, the size of the foamed particles obtained by foaming the expandable styrene resin particles becomes too large, and the depth of the recesses appearing on the surface of the foamed container and occurring at the heat fusion interface between the foamed particles becomes large. Since the smoothness of the surface of the foam container is impaired and the appearance of the foam container and the appearance when printing is performed on the surface of the foam container may be reduced, 2 to 6% by weight is preferable, and 4 to 5% by weight is more preferable. preferable.

ここで、発泡性スチレン系樹脂粒子中における発泡剤の含有量は下記の要領で測定されたものをいう。即ち、発泡性スチレン系樹脂粒子を180℃の加熱炉に供給してガスクロマトグラフから測定対象となる発泡剤のチャートを得、予め測定しておいた、測定対象となる発泡剤の検量線に基づいて、上記チャートから発泡性スチレン系樹脂粒子中の発泡剤量を算出する。   Here, the content of the foaming agent in the expandable styrene-based resin particles refers to that measured in the following manner. That is, the foamable styrene resin particles are supplied to a heating furnace at 180 ° C. to obtain a chart of the foaming agent to be measured from the gas chromatograph, and based on the calibration curve of the foaming agent to be measured that has been measured in advance. Then, the amount of the foaming agent in the expandable styrene resin particles is calculated from the chart.

なお、発泡性スチレン系樹脂粒子中における発泡剤の含有量は、ガスクロマトグラフ(島津製作所社製 商品名「GC−14B」)を用いて下記条件にて測定することができる。
検出器:FID
加熱炉:島津製作所社製 商品名「PYR−1A」
カラム:信和化工社製(3mm径×3m)
液相:Squalane 25重量%
担体:Shimalite 60〜80 NAW
加熱炉温度:180℃
カラム温度: 70℃
検出器温度:110℃
注入口温度:110℃
キャリア−ガス:窒素
キャリアーガス流量:60ミリリットル/分
In addition, content of the foaming agent in an expandable styrene-type resin particle can be measured on condition of the following using a gas chromatograph (Shimadzu Corporation brand name "GC-14B").
Detector: FID
Heating furnace: Product name “PYR-1A” manufactured by Shimadzu Corporation
Column: Shinwa Kako Co., Ltd. (3mm diameter x 3m)
Liquid phase: Squalane 25% by weight
Carrier: Shimalite 60-80 NAW
Heating furnace temperature: 180 ° C
Column temperature: 70 ° C
Detector temperature: 110 ° C
Inlet temperature: 110 ° C
Carrier gas: Nitrogen Carrier gas flow rate: 60 ml / min

上述のように、スチレン系樹脂の可塑化作用を奏する上記有機化合物の発泡性スチレン系樹脂粒子中における含有量を所定量以下に制限し、或いは、発泡性スチレン系樹脂粒子中に上記有機化合物を含有させないようにしていることから、スチレン系樹脂の柔軟性が低下している。そこで、本発明の発泡性スチレン系樹脂粒子では、スチレン系樹脂の柔軟性の低下を補うために、粒度分布の変動係数Cv値を0〜0.1に、平均粒子径を0.3〜0.6mmに限定しており、粒度分布の変動係数Cv値を好ましくは0〜0.05としている。   As described above, the content of the organic compound that exhibits the plasticizing action of the styrene resin is limited to a predetermined amount or less, or the organic compound is added to the expandable styrene resin particles. Since it is made not to contain, the softness | flexibility of a styrene resin is falling. Therefore, in the expandable styrene resin particles of the present invention, in order to compensate for the decrease in flexibility of the styrene resin, the variation coefficient Cv value of the particle size distribution is set to 0 to 0.1, and the average particle diameter is set to 0.3 to 0. The variation coefficient Cv value of the particle size distribution is preferably 0 to 0.05.

なお、発泡性スチレン系樹脂粒子における粒度分布の変動係数Cv値は、発泡性スチレン系樹脂粒子の粒子径の標準偏差を発泡性スチレン系樹脂粒子の平均粒子径で除したものであり、下記式により算出される。
発泡性スチレン系樹脂粒子における粒度分布の変動係数Cv値
=標準偏差/平均粒子径
The variation coefficient Cv value of the particle size distribution in the expandable styrene resin particles is obtained by dividing the standard deviation of the particle diameter of the expandable styrene resin particles by the average particle diameter of the expandable styrene resin particles. Is calculated by
Variation coefficient Cv value of particle size distribution in expandable styrene resin particles = standard deviation / average particle diameter

即ち、発泡性スチレン系樹脂粒子における粒度分布の変動係数Cv値及び平均粒子径を限定することによって、発泡性スチレン系樹脂粒子を発泡させて得られる発泡粒子の大きさを全体的に略等しいものとし、金型内に充填された予備発泡粒子同士の発泡圧に偏りが生じないようにして、発泡粒子同士がそれらの熱融着界面の全体において略均一に且つ強固に一体化していると共に、発泡性スチレン系樹脂粒子の平均粒子径を所定範囲内として、発泡性スチレン系樹脂粒子を発泡させて得られる発泡粒子の大きさを適切なものとし、発泡粒子が応力に対して優れた順応力を発揮し得るように調整されている。   That is, by restricting the coefficient of variation Cv value of the particle size distribution and the average particle size in the expandable styrene resin particles, the size of the expanded particles obtained by expanding the expandable styrene resin particles is substantially equal overall. In addition, the foaming particles are integrated substantially uniformly and firmly in the entire heat-sealing interface so that the foaming pressure between the pre-foamed particles filled in the mold is not biased. The average particle diameter of the expandable styrenic resin particles is within a predetermined range, the size of the expanded particles obtained by foaming the expandable styrene resin particles is appropriate, and the forward stress that the expanded particles are superior to the stress It is adjusted to be able to demonstrate.

従って、例えば、発泡性スチレン系樹脂粒子を用いて得られる発泡容器の上端開口部に該開口部を偏平な状態に変形させる応力(以下「偏平応力」という)が加わり、図1に示したように、発泡容器Cの上端開口部が偏平な楕円形状に変形させられた場合にあっても、発泡容器を構成している発泡粒子は、該発泡粒子に加えられた偏平応力を一部に集中させることなく効果的に吸収し、破壊したり熱融着界面にて互いに分離するようなことは殆どない。   Therefore, for example, a stress (hereinafter referred to as “flat stress”) that deforms the opening into a flat state is applied to the upper end opening of the foamed container obtained using the expandable styrene resin particles, as shown in FIG. Even if the upper end opening of the foam container C is deformed into a flat oval shape, the foam particles constituting the foam container concentrate the flat stress applied to the foam particles in part. It absorbs effectively without causing breakage and is hardly broken or separated from each other at the heat fusion interface.

よって、発泡性スチレン系樹脂粒子を用いて得られる発泡容器は、その上端開口部に加えられる偏平応力に対して優れた順応性を示し、発泡容器の上端開口部に加えられる偏平応力によって上端開口部に亀裂などの破壊が発生するのを概ね防止することができる。   Therefore, the foam container obtained using the expandable styrenic resin particles exhibits excellent adaptability to the flat stress applied to the upper end opening thereof, and the upper end opening due to the flat stress applied to the upper end opening of the foam container. It is possible to generally prevent the occurrence of breakage such as cracks in the part.

そして、粒径分布の変動係数Cv値が0〜0.1にある発泡性スチレン系樹脂粒子を得る方法としては、上述の要領で製造された発泡性スチレン系樹脂粒子を、異なる大きさの目開きを有する二つの篩を用いて分級する方法や、発泡剤を含浸させる前のスチレン系樹脂粒子を、異なる大きさの目開きを有する二つの篩を用いて分級し、この分級されたスチレン系樹脂粒子に発泡剤を含浸させる方法が挙げられる。   And as a method of obtaining expandable styrene resin particles having a coefficient of variation Cv value of particle size distribution of 0 to 0.1, expandable styrene resin particles produced in the above-described manner are obtained with different sizes. A method of classifying using two sieves having an opening, and classifying styrene resin particles before impregnating with a foaming agent using two sieves having openings of different sizes, and this classified styrene system A method of impregnating resin particles with a foaming agent can be mentioned.

上述のようにして二つの篩を用いて分級されたスチレン系樹脂粒子における粒径分布の変動係数Cv値は下記の要領で測定される。ここで、粒径分布の変動係数Cv値は、上述のように、分級後の樹脂粒子の平均粒子径と標準偏差とから算出され、先ず、樹脂粒子の平均粒子径の測定方法としては、始めに、JISに規定された異なる目開きを有する複数種類の篩(目開き3.35mm、目開き2.80mm、目開き2.36mm、目開き2.00mm、目開き1.70mm、目開き1.40mm、目開き1.18mm、目開き1.00mm、目開き0.850mm、目開き、0.710mm、目開き0.600mm、目開き0.500mm、目開き0.425mm、目開き0.355mm、目開き0.300mm、目開き0.250mm、目開き0.212mm、目開き0.180mm)を用意し、上述の要領で分級された発泡性スチレン系樹脂粒子又はスチレン系樹脂粒子(以下、総称して「樹脂粒子」という)25gを、目開きが大きな篩から小さな篩となるように篩でふるう。すると、樹脂粒子は、各粒子の粒径に応じて、目開きが所定大きさである篩上で通過することができなくなり、各篩上に残った状態となる。   The coefficient of variation Cv of the particle size distribution in the styrene resin particles classified using two sieves as described above is measured in the following manner. Here, the variation coefficient Cv value of the particle size distribution is calculated from the average particle size and standard deviation of the classified resin particles as described above. First, as a method for measuring the average particle size of the resin particles, first, In addition, a plurality of types of sieves having different openings defined in JIS (aperture 3.35 mm, opening 2.80 mm, opening 2.36 mm, opening 2.00 mm, opening 1.70 mm, opening 1) .40 mm, Aperture 1.18 mm, Aperture 1.00 mm, Aperture 0.850 mm, Aperture, 0.710 mm, Aperture 0.600 mm, Aperture 0.500 mm, Aperture 0.425 mm, Aperture 0. 355 mm, opening 0.300 mm, opening 0.250 mm, opening 0.212 mm, opening 0.180 mm), and the expanded styrene resin particles or styrene resin classified as described above Child (hereinafter, collectively referred to as "resin particles") 25 g, sieved with a sieve so mesh becomes smaller sieve from a large sieve. Then, the resin particles cannot pass through a sieve having a predetermined opening according to the particle size of each particle, and remain on each sieve.

そして、各篩上に残った樹脂粒子の平均粒子径を、その篩の目開きの大きさをもとにして表1に示した通りとし、例えば、目開きが0.355mmの篩上に残った樹脂粒子の平均粒子径を0.390mmとする。   Then, the average particle diameter of the resin particles remaining on each sieve is as shown in Table 1 based on the size of the openings of the sieves. For example, the openings remain on the sieve having an opening of 0.355 mm. The average particle diameter of the obtained resin particles is 0.390 mm.

Figure 2005307075
Figure 2005307075

なお、各篩上に残った樹脂粒子の平均粒子径は、この篩の目開きと該篩の次に大きな目開きを有する篩の目開きとの相加平均値とした。目開きが3.35mmの篩の場合には、この篩の次に大きな目開きを有するJISで規定されている篩の目開きが4.00mmであるので、この篩の目開き4.00mmとの相加平均値を採用した。   The average particle size of the resin particles remaining on each sieve was the arithmetic average value of the sieve openings and the sieve openings having the next largest openings. In the case of a sieve having an opening of 3.35 mm, the opening of the sieve defined by JIS having the next largest opening is 4.00 mm, so that the opening of the sieve is 4.00 mm. The arithmetic average value of was adopted.

次に、篩上に残った樹脂粒子の重量Wを各篩ごとに測定し、篩上に残った樹脂粒子の、総樹脂粒子に対する重量比率R(重量%)を篩ごとに算出し、各篩毎に、樹脂粒子の平均粒子径Dに樹脂粒子の重量比率Rを乗じた値を算出し、その値の総和を樹脂粒子の平均粒子径とする。
樹脂粒子の平均粒子径
=Σ(各篩上の樹脂粒子の平均粒子径D×樹脂粒子の重量比率R)
Next, the weight W of the resin particles remaining on the sieve is measured for each sieve, and the weight ratio R (% by weight) of the resin particles remaining on the sieve to the total resin particles is calculated for each sieve. Every time, a value obtained by multiplying the average particle diameter D of the resin particles by the weight ratio R of the resin particles is calculated, and the sum of the values is defined as the average particle diameter of the resin particles.
Average particle diameter of resin particles = Σ (average particle diameter D of resin particles on each sieve × weight ratio R of resin particles)

又、樹脂粒子の標準偏差は、上述した樹脂粒子の平均粒子径の測定要領において得られた各篩毎の樹脂粒子の平均粒子径Dと、この篩上に残った樹脂粒子の総樹脂粒子に対する重量比率R(重量%)をもとにして算出されたものをいう。   The standard deviation of the resin particles is the average particle diameter D of the resin particles for each sieve obtained in the above-described measurement procedure of the average particle diameter of the resin particles, and the total resin particles of the resin particles remaining on the sieve. It is calculated based on the weight ratio R (% by weight).

なお、スチレン系樹脂粒子を分級した場合、この分級後のスチレン系樹脂粒子に発泡剤を含浸させて発泡性スチレン系樹脂粒子を得るが、スチレン系樹脂粒子に発泡剤を含浸させる前後において、樹脂粒子の粒径分布の変動係数Cv値は殆ど変化しないので、本発明においては、スチレン系樹脂粒子の粒径分布の変動係数Cv値を、発泡性スチレン系樹脂粒子の粒径分布の変動係数Cv値としてよい。   When the styrene resin particles are classified, the styrene resin particles after classification are impregnated with a foaming agent to obtain expandable styrene resin particles. Before and after impregnating the styrene resin particles with the foaming agent, the resin Since the variation coefficient Cv value of the particle size distribution of the particles hardly changes, in the present invention, the variation coefficient Cv value of the particle size distribution of the styrene resin particles is used as the variation coefficient Cv of the particle size distribution of the expandable styrene resin particles. It may be a value.

次に、上記発泡性スチレン系樹脂粒子を用いて有底円筒状の発泡容器を成形する要領について説明する。先ず、発泡性スチレン系樹脂粒子を予備発泡機にて予備発泡させてスチレン系樹脂予備発泡粒子とし、得られた予備発泡粒子を発泡成形機の金型内に充填した上で加熱蒸気などの加熱媒体により加熱、発泡させ、発泡圧によって互いに熱融着一体化させて有底円筒状の発泡容器を製造することができる。   Next, a procedure for forming a bottomed cylindrical foam container using the above expandable styrene resin particles will be described. First, expandable styrene resin particles are pre-expanded in a pre-foaming machine to form styrene resin pre-expanded particles, and the obtained pre-expanded particles are filled in a mold of a foam molding machine and then heated with heating steam or the like. A bottomed cylindrical foam container can be manufactured by heating and foaming with a medium, and heat-sealing with each other by foaming pressure.

本発明の発泡性スチレン系樹脂粒子を発泡させて得られる発泡容器の発泡倍率は、特に限定されるものではないが、5〜15倍が好ましく、8〜12倍がより好ましい。なお、発泡容器の発泡倍率とは、発泡容器を構成するスチレン系樹脂の比重を発泡容器の比重で除したものをいう。   The expansion ratio of the foamed container obtained by foaming the expandable styrene resin particles of the present invention is not particularly limited, but is preferably 5 to 15 times, more preferably 8 to 12 times. In addition, the foaming ratio of a foaming container means what remove | divided the specific gravity of the styrene resin which comprises a foaming container by the specific gravity of a foaming container.

そして、有底円筒状の発泡容器の厚みは、薄いと、発泡容器の機械的強度が低下することがある一方、厚いと、発泡容器の軽量性が低下したり或いは発泡容器の上端開口部を偏平な状態に変形させる、上記偏平応力が加わった場合における順応性が低下して発泡容器の上端開口部に容易に亀裂を生じる虞れがあるので、1.5〜3.5mmが好ましく、1.7〜2.5mmがより好ましい。   If the thickness of the bottomed cylindrical foam container is thin, the mechanical strength of the foam container may be reduced. On the other hand, if the thickness is thick, the lightweight property of the foam container may be reduced or the upper end opening of the foam container may be reduced. Since the adaptability when the above-described flat stress is applied, which is deformed into a flat state, may be reduced and the upper end opening of the foamed container may easily crack, 1.5 to 3.5 mm is preferable. More preferably, it is 7 to 2.5 mm.

しかも、発泡性スチレン系樹脂粒子は、有機化合物の含有量が0〜500ppmと極めて少量であることから、発泡容器を食品用途に好適に用いることができ、種々の用途に展開することも可能である。   Moreover, since the expandable styrene resin particles have a very small content of the organic compound of 0 to 500 ppm, the foam container can be suitably used for food applications, and can be developed for various applications. is there.

本発明の発泡性スチレン系樹脂粒子は、予備発泡させた上で金型内に充填して発泡させて有底円筒状の発泡容器を成形するための発泡性スチレン系樹脂粒子であって、スチレン系モノマー、エチルベンゼン、トルエン、n−プロピルベンゼン、i−プロピルベンゼン及びキシレンからなる群より選ばれた一種又は二種以上の芳香族化合物からなる有機化合物の総量が発泡性スチレン系樹脂粒子の全重量に対して0〜500ppmであると共に、粒度分布の変動係数Cv値が0〜0.1で且つ平均粒子径が0.3〜0.6mmであることを特徴とするので、有機化合物の含有量を抑制しているにもかかわらず、粒度分布の変動係数Cv値及び平均粒子径を所定範囲内に限定していることから、この発泡性スチレン系樹脂粒子を発泡させて得られる発泡容器は、その上端開口部を偏平な状態に圧縮させる偏平応力に対して優れた順応力を示し、上端開口部に偏平応力が加えられた場合にあっても、上端開口部に亀裂が生じるのを概ね防止することができる。   The expandable styrenic resin particles of the present invention are expandable styrene resin particles for pre-expanding, filling into a mold and foaming to form a bottomed cylindrical foam container, The total weight of the expandable styrene resin particles is the total amount of the organic compound composed of one or two or more aromatic compounds selected from the group consisting of a series monomer, ethylbenzene, toluene, n-propylbenzene, i-propylbenzene and xylene The content of the organic compound is characterized by being 0 to 500 ppm based on the particle size distribution coefficient Cv value of 0 to 0.1 and an average particle size of 0.3 to 0.6 mm. The particle size distribution coefficient of variation Cv value and the average particle diameter are limited within a predetermined range in spite of being suppressed, and thus obtained by foaming the expandable styrene resin particles. The foam container exhibits excellent forward stress against the flat stress that compresses the upper end opening into a flat state, and even when a flat stress is applied to the upper end opening, the upper end opening cracks. Can be generally prevented.

しかも、本発明の発泡性スチレン系樹脂粒子は、有機化合物の含有量を抑制していることから、食品用途にも好適に用いることができる一方、有機化合物の含有量を抑制することによって生じる樹脂粒子の柔軟性の低下を粒度分布の変動係数Cv値及び平均粒子径を限定することによって効果的に補完しており、よって、本発明の発泡性スチレン系樹脂粒子によれば、有機化合物の含有量を抑制しつつ軽量性及び偏平応力に対する順応性に優れた発泡容器を確実に得ることができる。   Moreover, since the expandable styrenic resin particles of the present invention suppress the organic compound content, the resin can be suitably used for food applications, while the resin produced by suppressing the organic compound content. The reduction in the flexibility of the particles is effectively complemented by limiting the coefficient of variation Cv value of the particle size distribution and the average particle size. Therefore, according to the expandable styrenic resin particles of the present invention, the inclusion of organic compounds A foamed container excellent in lightness and adaptability to flat stress can be reliably obtained while suppressing the amount.

(実施例1〜3,比較例1)
撹拌装置を備えた100リットルのオートクレーブ内にイオン交換水40kgを供給し、このイオン交換水に該イオン交換水を撹拌しつつ、スチレンモノマー40kg、第三リン酸カルシウム40g、過硫酸カリウム0.5g、過酸化ベンゾイル105g及びt−ブチルパーオキシベンゾエート30gを供給して懸濁液を作製した。
(Examples 1 to 3, Comparative Example 1)
40 kg of ion exchange water is supplied into a 100 liter autoclave equipped with a stirrer, and 40 kg of styrene monomer, 40 g of calcium triphosphate, 0.5 g of potassium persulfate, A suspension was prepared by supplying 105 g of benzoyl oxide and 30 g of t-butyl peroxybenzoate.

次に、懸濁液を200rpmの攪拌速度にて攪拌しつつ1時間かけて90℃まで昇温し、更に、90℃にて6時間に亘って保持して懸濁重合を行った。そして、懸濁液中に第三リン酸カルシウム40g及びα−オレフィンスルホネート(ライオン社製 商品名「リポランPJ−400」)0.4gを添加した後、n−ペンタン1600g及びi−ペンタン400gを圧入した上で、懸濁液を130℃まで40分かけて昇温し、続いて、130℃で3時間に亘って放置した。   Next, the suspension was heated to 90 ° C. over 1 hour while being stirred at a stirring speed of 200 rpm, and was further maintained at 90 ° C. for 6 hours for suspension polymerization. After adding 40 g of tribasic calcium phosphate and 0.4 g of α-olefin sulfonate (product name “Lipolane PJ-400” manufactured by Lion Corporation) to the suspension, 1600 g of n-pentane and 400 g of i-pentane were injected. The suspension was heated to 130 ° C. over 40 minutes and then left at 130 ° C. for 3 hours.

しかる後、上記懸濁液を冷却した後、懸濁液中に塩酸をpHが2となるまで添加して第三リン酸カルシウムを分解した。そして、懸濁液を脱水機に供給して10分間、注水しながら洗浄、脱水して気流乾燥し、発泡性スチレン樹脂粒子を得た。   Thereafter, the suspension was cooled, and hydrochloric acid was added to the suspension until the pH was 2, to decompose tricalcium phosphate. Then, the suspension was supplied to a dehydrator, washed with water for 10 minutes, dehydrated and air-dried to obtain expandable styrene resin particles.

次に、表2に示した目開きa、線径b、ピッチc及び開口率dを有する篩A(阪倉金網社製)を篩い機(徳寿工作所社製 商品名「ジャイロシフターGS−AIH」)に取付け、上記発泡性スチレン系樹脂粒子を篩Aでふるい、篩Aを通過した発泡性スチレン系樹脂粒子のみを採取した。   Next, a sieve A (manufactured by Sakakura Wire Mesh Co., Ltd.) having an opening a, a wire diameter b, a pitch c, and an aperture ratio d shown in Table 2 is used as a sieve machine (trade name “Gyroshifter GS-AIH” manufactured by Tokuju Kogakusha Co., Ltd.). The foamable styrene resin particles were sieved with a sieve A, and only the foamable styrene resin particles that passed through the sieve A were collected.

続いて、表2に示した目開きa、線径b、ピッチc及び開口率dを有する篩Bを篩い機(徳寿工作所社製 商品名「ジャイロシフターGS−AIH」)に取付け、上記篩Aを通過した発泡性スチレン系樹脂粒子を篩Bで篩い、篩B上に残った発泡性スチレン系樹脂粒子のみを採取した。なお、篩A,Bの開口部は平面正方形状であって、表2に示した篩の目開きa及びピッチcは図2に示した部分の寸法であり、篩の線径bは、篩を構成している線材の直径である。   Subsequently, a sieve B having an opening a, a wire diameter b, a pitch c, and an opening ratio d shown in Table 2 was attached to a sieve machine (trade name “Gyroshifter GS-AIH” manufactured by Tokuju Kogakusha Co., Ltd.). The expandable styrene resin particles that passed through A were sieved with sieve B, and only the expandable styrene resin particles remaining on sieve B were collected. Note that the openings of the sieves A and B are in the form of a square plane, the sieve openings a and pitch c shown in Table 2 are the dimensions of the parts shown in FIG. It is the diameter of the wire which comprises.

なお、篩B上から採取した発泡性スチレン系樹脂粒子のうちの20gを測定試料として取出し、この測定試料の粒度分布の変動係数Cv値を測定したところ、表3の通りであった。ここで、測定試料の粒度分布を見ると、篩Bの目開きよりも小さな粒径を有する樹脂粒子が混じっている場合があるが、これは、篩Bを用いて発泡性スチレン系樹脂粒子をふるっても、篩Bの目開きよりも小さな粒径を有する発泡性スチレン系樹脂粒子を完全に除去することができなかったためである。   In addition, 20 g of the expandable styrene resin particles collected from the sieve B was taken out as a measurement sample, and the variation coefficient Cv value of the particle size distribution of this measurement sample was measured. Here, looking at the particle size distribution of the measurement sample, resin particles having a particle size smaller than the opening of the sieve B may be mixed. This is because the foamable styrenic resin particles having a particle size smaller than the opening of the sieve B could not be completely removed even if they were sieved.

このようにして得られた発泡性スチレン系樹脂粒子100重量部の表面に、パーム油から直接法で得られたステアリン酸亜鉛4重量部、重量平均分子量300のポリエチレングリコール0.8重量部を被覆した。この発泡性スチレン系樹脂粒子を回転撹拌式予備発泡機を用いて予備発泡させて嵩倍率が9倍の予備発泡粒子を得た。   The surface of 100 parts by weight of the foamable styrene resin particles thus obtained is coated with 4 parts by weight of zinc stearate obtained from palm oil by a direct method and 0.8 parts by weight of polyethylene glycol having a weight average molecular weight of 300. did. The foamable styrene resin particles were pre-foamed using a rotary stirring pre-foaming machine to obtain pre-foamed particles having a bulk ratio of 9 times.

得られた予備発泡粒子を室温にて24時間に亘って放置した後、この予備発泡粒子を金型のキャビティー内に充填してゲージ圧0.2MPaの水蒸気で7秒間に亘って加熱成形した。   The obtained pre-expanded particles were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled in a mold cavity and heat-molded with water vapor at a gauge pressure of 0.2 MPa for 7 seconds. .

次に、金型のキャビティー内を冷却した後、金型内から図3に示した断面形状を有する有底円筒状の発泡容器Cを得た。なお、発泡容器Cは、直径が68mmで且つ厚みが2.8mmの平面円形状の底面部1と、この底面部1の外周縁から斜め上方に向かって徐々に拡径する円筒状周壁部2(開口端内径:178mm、高さ:100mm、厚み2mm)とから成形されていた。なお、周壁部2の上端部には、厚みが3mmの平面円環状の鍔部21が水平方向に突設されており、上記鍔部21を含めた円筒状周壁部2の上端部外径は192mmであった。   Next, after the inside of the mold cavity was cooled, a bottomed cylindrical foam container C having the cross-sectional shape shown in FIG. 3 was obtained from the inside of the mold. The foam container C has a flat circular bottom surface portion 1 having a diameter of 68 mm and a thickness of 2.8 mm, and a cylindrical peripheral wall portion 2 that gradually increases in diameter from the outer peripheral edge of the bottom surface portion 1 obliquely upward. (Open end inner diameter: 178 mm, height: 100 mm, thickness 2 mm). In addition, a planar annular flange 21 having a thickness of 3 mm is projected in the horizontal direction at the upper end of the peripheral wall 2, and the outer diameter of the upper end of the cylindrical peripheral wall 2 including the flange 21 is as follows. It was 192 mm.

又、発泡性スチレン系樹脂粒子を嵩倍率9倍の代わりに嵩倍率10倍に予備発泡させて予備発泡粒子を製造し、この予備発泡粒子を用いて上記と同様の要領で発泡容器Cを得た。   Further, pre-expanded particles are produced by pre-expanding expandable styrene resin particles at a bulk magnification of 10 times instead of a bulk magnification of 9 times, and a foam container C is obtained in the same manner as described above using the pre-expanded particles. It was.

得られた発泡性スチレン系樹脂粒子の粒度分布、平均粒子径、標準偏差、有機化合物の含有量(表4では「有機化合物量」と表記した)及び発泡剤の含有量(表4では「発泡剤量」と表記した)を上述の要領で測定すると共に、上記発泡容器のリップ強度を下記に示した要領で測定し、その結果を表3,4に示した。   Particle size distribution, average particle size, standard deviation, organic compound content (indicated as “organic compound amount” in Table 4) and foaming agent content (in Table 4, “foaming”) The amount of lip) was measured as described above, and the lip strength of the foamed container was measured as shown below. The results are shown in Tables 3 and 4.

(リップ強度)
平坦な下端面に、幅が4mm、深さが4mm、長さが60mmで且つ両端が開口してなる溝部31を形成した押圧具3を用意した(図4参照)。そして、発泡容器Cをその底面部1が垂直方向を向いた状態に支持板上に横置きした。しかる後、横置状態の発泡容器Cにおける鍔部21の最上部に、押圧具3の溝部31における長さ方向の中央部を被嵌させた上で、上記押圧具3を50mm/分の速度で垂直下方に向かって移動させて発泡容器の開口部に偏平応力を上下方向に加え、発泡容器の開口部を偏平な状態に変形させた。
(Lip strength)
A pressing tool 3 was prepared in which a groove portion 31 having a width of 4 mm, a depth of 4 mm, a length of 60 mm and an opening at both ends was formed on a flat lower end surface (see FIG. 4). Then, the foam container C was placed on the support plate in a state where the bottom surface portion 1 faced the vertical direction. Thereafter, the uppermost portion of the flange portion 21 in the horizontally placed foam container C is fitted with the central portion in the length direction of the groove portion 31 of the pressing tool 3, and then the pressing tool 3 is moved at a speed of 50 mm / min. Then, the flat plate was moved vertically downward to apply a flat stress to the opening of the foaming container in the vertical direction, thereby deforming the opening of the foaming container into a flat state.

そして、発泡容器Cの開口端に、その内外方向に貫通する亀裂が発生するまで押圧具を垂直下方に向かって移動させ、この時の最大押圧強度をリップ強度とした。なお、発泡容器Cを10個用意し、この10個の発泡容器Cのリップ強度のうち、最大値と最小値を除いたリップ強度の相加平均値を発泡容器Cのリップ強度とした。   The pressing tool was moved vertically downward until a crack penetrating inward and outward at the opening end of the foam container C, and the maximum pressing strength at this time was defined as the lip strength. Ten foaming containers C were prepared, and among the lip strengths of the ten foaming containers C, the arithmetic average value of the lip strengths excluding the maximum value and the minimum value was defined as the lip strength of the foaming container C.

Figure 2005307075
Figure 2005307075

Figure 2005307075
Figure 2005307075

Figure 2005307075
Figure 2005307075

発泡容器の上端開口部を偏平な状態に変形させた状態を示した平面図である。It is the top view which showed the state which deform | transformed the upper end opening part of the foaming container into the flat state. 篩の開口部を示した模式平面図である。It is the model top view which showed the opening part of the sieve. 実施例で得られた発泡容器を示した断面図である。It is sectional drawing which showed the foam container obtained in the Example. (a)押圧具を示した底面図である。(b)押圧具を示した縦断面図である。(A) It is the bottom view which showed the pressing tool. (B) It is the longitudinal cross-sectional view which showed the pressing tool.

符号の説明Explanation of symbols

A,B 篩
C 発泡容器
A, B Sieve C Foaming container

Claims (1)

予備発泡させた上で金型内に充填して発泡させて有底円筒状の発泡容器を成形するための発泡性スチレン系樹脂粒子であって、スチレン系モノマー、エチルベンゼン、トルエン、n−プロピルベンゼン、i−プロピルベンゼン及びキシレンからなる群より選ばれた一種又は二種以上の芳香族化合物からなる有機化合物の総量が発泡性スチレン系樹脂粒子の全重量に対して0〜500ppmであると共に、粒度分布の変動係数Cv値が0〜0.1で且つ平均粒子径が0.3〜0.6mmであることを特徴とする発泡性スチレン系樹脂粒子。 Expandable styrene resin particles for pre-foaming, filling into a mold and foaming to form a bottomed cylindrical foam container, which is a styrene monomer, ethylbenzene, toluene, n-propylbenzene The total amount of the organic compound consisting of one or two or more aromatic compounds selected from the group consisting of i-propylbenzene and xylene is 0 to 500 ppm with respect to the total weight of the expandable styrene resin particles, Expandable styrene resin particles having a distribution coefficient of variation Cv of 0 to 0.1 and an average particle size of 0.3 to 0.6 mm.
JP2004128164A 2004-04-23 2004-04-23 Expandable styrenic resin particle Pending JP2005307075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128164A JP2005307075A (en) 2004-04-23 2004-04-23 Expandable styrenic resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128164A JP2005307075A (en) 2004-04-23 2004-04-23 Expandable styrenic resin particle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010006833A Division JP5235914B2 (en) 2010-01-15 2010-01-15 Expandable styrene resin particles

Publications (1)

Publication Number Publication Date
JP2005307075A true JP2005307075A (en) 2005-11-04

Family

ID=35436204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128164A Pending JP2005307075A (en) 2004-04-23 2004-04-23 Expandable styrenic resin particle

Country Status (1)

Country Link
JP (1) JP2005307075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254940A (en) * 2009-03-30 2010-11-11 Sekisui Plastics Co Ltd Expandable polystyrene resin particle for heat insulating material to be used in hot water storage tank of heat pump system water heater, and heat insulating material for hot water tank of heat pump system water heater
JP2011016934A (en) * 2009-07-09 2011-01-27 Sekisui Plastics Co Ltd Member for soil-banking
JP2014189743A (en) * 2013-03-28 2014-10-06 Sekisui Plastics Co Ltd Foamable thermoplastic resin particle, thermoplastic resin foamed particle, and foamed molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254940A (en) * 2009-03-30 2010-11-11 Sekisui Plastics Co Ltd Expandable polystyrene resin particle for heat insulating material to be used in hot water storage tank of heat pump system water heater, and heat insulating material for hot water tank of heat pump system water heater
JP2011016934A (en) * 2009-07-09 2011-01-27 Sekisui Plastics Co Ltd Member for soil-banking
JP2014189743A (en) * 2013-03-28 2014-10-06 Sekisui Plastics Co Ltd Foamable thermoplastic resin particle, thermoplastic resin foamed particle, and foamed molding

Similar Documents

Publication Publication Date Title
TWI396707B (en) Expandable polystyrene type resin particle , pre-expanded particle and molded form
JP5386262B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article
JP4653507B2 (en) Expandable styrene resin particles
JP2008201989A (en) Expandable particle of polystyrene-based resin and method for producing the same, expanded particle of polystyrene-based resin and expansion-molded product of polystyrene-based resin
JP5016906B2 (en) Expandable polystyrene resin particles and method for producing polystyrene resin foam molding
JP4912583B2 (en) Method for producing expandable styrene resin particles
JP5235914B2 (en) Expandable styrene resin particles
JP2005307075A (en) Expandable styrenic resin particle
WO2019026966A1 (en) Foamable polystyrene resin particles, polystyrene prefoamed particles, foam-molded article, and methods for producing these
JP2013032449A (en) Foamable polystyrene-based resin particle, foamed particle, and foamed molding
JP4494113B2 (en) Method for producing expandable styrene resin particles
JP4925620B2 (en) Polystyrene resin in-mold foam molded product and food packaging
JP5219300B2 (en) Expandable styrene resin particles
JP5487668B2 (en) Expandable styrene resin particles
JP5338364B2 (en) Styrene resin particle foam molding
JP2007031641A (en) Expandable polystyrene resin particle, method for producing the same, expanded molding, and packaged food
JP4342980B2 (en) Expandable styrene resin particles, pre-expanded styrene resin particles, and foam molded products
JP2008274168A (en) Styrenic resin composition, extruded foam sheet and container, and flat extruded foam
JP2004315806A (en) Expandable styrene-based resin particle, preexpanded particle using the same, and expansion-molded body
JP2011046790A (en) Expandable styrenic resin particle and expansion molded article thereof
JP2014070150A (en) Polystyrene-based foamed molding, production method thereof, and foamed resin-made container
JP4832716B2 (en) Small particle size styrenic expandable resin particles, expanded beads and molded products
JP2006131777A (en) Styrenic foamable resin particle, foamed bead and molded article
JP7299043B2 (en) Polystyrene expandable resin particles containing botanical fragrance, pre-expanded particles and foamed products thereof, and method for producing polystyrene expandable resin particles
JP2003118047A (en) Polystyrenic resin laminated foamed sheet and foamed container reduced in post-deformation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Effective date: 20090819

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090825

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Effective date: 20100115

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209