JP5386262B2 - Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article - Google Patents

Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article Download PDF

Info

Publication number
JP5386262B2
JP5386262B2 JP2009175600A JP2009175600A JP5386262B2 JP 5386262 B2 JP5386262 B2 JP 5386262B2 JP 2009175600 A JP2009175600 A JP 2009175600A JP 2009175600 A JP2009175600 A JP 2009175600A JP 5386262 B2 JP5386262 B2 JP 5386262B2
Authority
JP
Japan
Prior art keywords
polystyrene resin
particles
resin particles
expandable polystyrene
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009175600A
Other languages
Japanese (ja)
Other versions
JP2011026509A (en
Inventor
幸雄 新籾
雅之 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2009175600A priority Critical patent/JP5386262B2/en
Publication of JP2011026509A publication Critical patent/JP2011026509A/en
Application granted granted Critical
Publication of JP5386262B2 publication Critical patent/JP5386262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構造部材として有用な低発泡(高密度)のポリスチレン系樹脂発泡成形体、及びその製造方法に関する。さらに詳しくは、低発泡(高密度)の成形体を製造する場合、粒子間の結合が強く、強度、成形品外観に優れた発泡成形体を得るための発泡性ポリスチレン系樹脂粒子、及びその製造方法に関する。   The present invention relates to a low foaming (high density) polystyrene-based resin foam molded article useful as a structural member, and a method for producing the same. More specifically, in the case of producing a low-foamed (high-density) molded article, expandable polystyrene-based resin particles for producing a foamed molded article having strong bonding between particles, excellent strength and appearance of the molded product, and production thereof Regarding the method.

従来から代表的な低発泡樹脂組成物としては、PVC(ポリ塩化ビニル)樹脂、ポリスチレン樹脂、ABS(アクリロニトリル−ブタジエンゴム−スチレン共重合体)樹脂及びPVC/ABSブレンド樹脂等に熱分解型発泡剤を添加したものが知られている。その中でも発泡性ポリスチレン系樹脂粒子を使用する場合、所望の形状に成形できることから加工の手間が省け、生産性が優れるものであった。   Conventionally, typical low-foaming resin compositions include pyrolytic foaming agents such as PVC (polyvinyl chloride) resin, polystyrene resin, ABS (acrylonitrile-butadiene rubber-styrene copolymer) resin, and PVC / ABS blend resin. Is known. Among them, when expandable polystyrene resin particles are used, since they can be formed into a desired shape, processing work is saved and productivity is excellent.

しかし、一般に使用されている発泡性ポリスチレン系樹脂粒子は、発泡倍数が30〜60倍での使用が主であり、この発泡性ポリスチレン系樹脂粒子を20倍以下の比較的低い発泡倍数で使用した場合、冷却に時間がかかることで生産性が低下したり、成形品内部での粒子の結合が不十分となりやすいことから強度低下が起こるという問題があった。また、発泡剤、及び発泡助剤を極力少なくし、低発泡用途向けに調整された発泡性ポリスチレン系樹脂粒子があるが、この種の発泡成形体は、内部の粒子接着強度は十分ではなく強度面で問題点があった。   However, the commonly used expandable polystyrene resin particles are mainly used at an expansion ratio of 30 to 60 times, and the expandable polystyrene resin particles are used at a relatively low expansion ratio of 20 times or less. In this case, there is a problem that the productivity is lowered due to the time required for cooling, and the strength is lowered because the bonding of particles inside the molded product tends to be insufficient. In addition, there are expandable polystyrene resin particles adjusted for low foaming applications with the least amount of foaming agents and foaming aids, but this type of foamed molded product has insufficient internal particle adhesion strength and strength. There was a problem in terms.

一方、低発泡のポリスチレン系樹脂発泡成形体の製造方法として、発泡性ポリスチレン系樹脂粒子を予備発泡させることなく、直接成形する方法がある(以下、原粒成形と称する)。この原粒成形法は、一般に行われる発泡成形法、すなわち、いったん発泡性粒子を予備的に発泡した予備発泡粒子を使用して、発泡ポリスチレン系樹脂成形品を得る方法(以下、予備発泡法と称する)に対し、発泡性ポリスチレン系樹脂粒子を予備発泡することなくそのまま成形型内に充填することで、低発泡倍率の発泡成形品を提供できることが最大の特徴である。こうして得られた成形品は、表面の発泡粒子同士の間隙が極めて少ないため、意匠面を忠実に再現でき、光沢にも優れるという特徴を持っている。   On the other hand, as a method for producing a low-foam polystyrene-based resin foam molded article, there is a method of directly molding foamable polystyrene-based resin particles without pre-foaming (hereinafter referred to as primary particle molding). This primary particle molding method is a commonly used foam molding method, that is, a method of obtaining a foamed polystyrene-based resin molded article using pre-foamed particles obtained by pre-foaming expandable particles (hereinafter referred to as pre-foaming method). In contrast, the greatest feature is that a foamed molded article having a low expansion ratio can be provided by filling the expandable polystyrene resin particles as they are into the mold without pre-foaming. The molded product thus obtained has the characteristics that the design surface can be faithfully reproduced and the gloss is excellent because the gap between the foam particles on the surface is extremely small.

特公昭33−795号公報Japanese Patent Publication No.33-795

しかしながら、低発泡での成形や原粒成形に於ける最大の問題点は、発泡成形時に加熱のための蒸気を均一に行き渡らせることが困難であるため、得られる発泡成形品が、表層部のみ融着し、内部、特に中心部において全く融着していないものとなり易いことである。このため一般の発泡ポリスチレン系樹脂成形品と比べてより高圧の水蒸気による加熱や加熱時間の延長、加えて長時間の冷却が必要となり生産上好ましくない。   However, the biggest problem in molding with low foaming and raw grain molding is that it is difficult to uniformly distribute the steam for heating during foam molding, so the resulting foam molded product is only the surface layer part. It is easy to become fused and not fused at all inside, particularly in the central portion. For this reason, compared with general foamed polystyrene-based resin molded products, heating with higher-pressure steam, extending the heating time, and cooling for a long time are required, which is not preferable for production.

前記のような原粒成形においては、例えば特許文献1(特公昭33−795号公報)が知られているが、これもまた前記課題を解決できず、十分な品質の成形品を得ることはできないものである。   For example, Patent Document 1 (Japanese Patent Publication No. 33-795) is known in the above-described raw grain molding, but this also fails to solve the above-mentioned problem and obtains a molded product of sufficient quality. It is not possible.

本発明は、低発泡(高密度)の成形体を製造する場合、粒子間の結合が強く、強度、成形品外観に優れた発泡成形体を得るための発泡性ポリスチレン系樹脂粒子、及びその製造方法を提供することを課題としている。   In the present invention, when producing a low-foamed (high-density) molded article, expandable polystyrene resin particles for obtaining a foamed molded article having strong bonding between particles, excellent strength and appearance of the molded product, and production thereof The challenge is to provide a method.

前記課題を達成するため、本発明は、アクリル酸エステルとスチレン系単量体との共重合体を含有する発泡性ポリスチレン系樹脂粒子であって、ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)とATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、(B)<(A)であり、且つ(A)が0.20〜0.60の範囲内である関係を満たす発泡性ポリスチレン系樹脂粒子を提供する。 In order to achieve the above object, the present invention is an expandable polystyrene resin particle containing a copolymer of an acrylate ester and a styrene monomer, and the expandable polystyrene resin particle is analyzed by ATR infrared spectroscopy. from the infrared spectrum which is obtained by analyzing the surface of the resin particles, determined the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730 cm -1, the absorbance ratio calculated from the D1730 / D1600 (a) and ATR method from the infrared spectrum which is obtained by analyzing the central portion of the expandable polystyrene resin particles by infrared spectroscopic analysis, obtains a absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730 cm -1, from D1730 / D1600 The calculated absorbance ratio (B) is (B) <(A), and (A) is 0.20 to 0.60. It is possible to provide expandable polystyrene resin particles that satisfy a relationship within the range of.

本発明の発泡性ポリスチレン系樹脂粒子において、前記吸光度比(B)が0.15〜0.50の範囲内であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the absorbance ratio (B) is preferably in the range of 0.15 to 0.50.

また本発明は、前記発泡性ポリスチレン系樹脂粒子を予備発泡して得られたポリスチレン系樹脂予備発泡粒子を提供する。   The present invention also provides polystyrene resin pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles.

また本発明は、前記発泡性ポリスチレン系樹脂粒子を嵩密度が0.05〜0.50g/cmの範囲となるように予備発泡して得られたポリスチレン系樹脂予備発泡粒子を提供する。 The present invention also provides polystyrene resin pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles so that the bulk density is in the range of 0.05 to 0.50 g / cm 3 .

また本発明は、前記発泡性ポリスチレン系樹脂粒子を成形型のキャビティ内に充填して加熱、発泡させて得られたポリスチレン系樹脂発泡成形体を提供する。   The present invention also provides a polystyrene resin foam molded article obtained by filling the foamable polystyrene resin particles in a cavity of a mold and heating and foaming.

また本発明は、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られたポリスチレン系樹脂発泡成形体を提供する。   The present invention also provides a polystyrene resin foam molded article obtained by filling the polystyrene resin pre-expanded particles in a cavity of a molding die and heating and foaming.

また本発明は、
(1)ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0〜80.0質量部とアクリル酸エステル単量体2.0〜12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第1重合工程と、
(2)次いで、ポリスチレン系種粒子の重合転化率が96質量%以上となった時点で該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、
(3)第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させて請求項1又は2記載の発泡性ポリスチレン系樹脂粒子を得る工程とを有する発泡性ポリスチレン系樹脂粒子の製造方法を提供する。
The present invention also provides
(1) In a dispersion obtained by dispersing polystyrene resin seed particles in water, 7.0 to 80.0 parts by mass of a styrene monomer and an acrylate ester alone with respect to 100 parts by mass of polystyrene resin seed particles. A first polymerization step of supplying 2.0 to 12.0 parts by mass of a monomer and allowing these monomers to be absorbed and polymerized in seed particles to grow polystyrene resin particles;
(2) Next, when the polymerization conversion rate of the polystyrene seed particles reaches 96% by mass or more, only the styrene monomer is supplied into the dispersion, and this is absorbed into the seed particles and polymerized to be polystyrene-based. A second polymerization step for growing resin particles;
(3) A step of obtaining expandable polystyrene resin particles according to claim 1 or 2 by impregnating a foaming agent after the second polymerization step to produce polystyrene resin particles or during the growth of the polystyrene resin particles. A method for producing expandable polystyrene resin particles having

本発明によれば、発泡性ポリスチレン系樹脂粒子を使用した低発泡(高密度)の成形体を得る方法において、発泡成形体の中心部の融着率を大幅に向上でき、強度面で優れるばかりか、短い成形サイクルで成形品を容易に得ることができる。   According to the present invention, in a method for obtaining a low-foamed (high-density) molded body using expandable polystyrene resin particles, the fusion rate at the center of the foamed molded body can be greatly improved, and the strength is excellent. Alternatively, a molded product can be easily obtained in a short molding cycle.

ATR法赤外分光分析による発泡性ポリスチレン系樹脂粒子の吸光度比の測定において、発泡性ポリスチレン系樹脂粒子の表面の吸光度測定位置を示す概略図である。It is the schematic which shows the light absorbency measurement position of the surface of an expandable polystyrene resin particle in the measurement of the absorbance ratio of an expandable polystyrene resin particle by ATR method infrared spectroscopy. ATR法赤外分光分析による発泡性ポリスチレン系樹脂粒子の吸光度比の測定において、発泡性ポリスチレン系樹脂粒子の中心部の吸光度測定位置を示す概略図である。It is the schematic which shows the light absorbency measurement position of the center part of an expandable polystyrene resin particle in the measurement of the absorbance ratio of an expandable polystyrene resin particle by ATR method infrared spectroscopy.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法としては、ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0〜80.0質量部とアクリル酸エステル系単量体2.0〜12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第1重合工程と、次いで、該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させる工程とを行って発泡性ポリスチレン樹脂粒子を得ることを特徴としている。   As a method for producing the expandable polystyrene resin particles of the present invention, a styrene monomer is added to 100 parts by mass of polystyrene resin seed particles in a dispersion obtained by dispersing polystyrene resin seed particles in water. 0 to 80.0 parts by mass and 2.0 to 12.0 parts by mass of an acrylate monomer are supplied, and these monomers are absorbed and polymerized by seed particles to grow polystyrene resin particles. A first polymerization step; then, a second polymerization step in which only the styrene monomer is supplied into the dispersion, and this is absorbed and polymerized by seed particles to grow polystyrene resin particles; and a second polymerization step After the production of polystyrene resin particles, or the step of impregnating a foaming agent during the growth of the polystyrene resin particles, expandable polystyrene resin particles are obtained.

本発明の製造方法において、ポリスチレン系樹脂種粒子(以下、種粒子と略記する)の材料であるポリスチレン系樹脂としては、スチレン又はスチレン誘導体の単独または共重合体が挙げられる。ここで、スチレン誘導体としては、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。更に、前記ポリスチレン系樹脂としては、前記スチレン系モノマー成分を主成分とすれば、前記スチレン系モノマーと共重合可能なビニルモノマーを併用した共重合体であってもよく、このようなビニルモノマーとしては、例えば、o−ジビニルベンゼン、m−ジビニルベンゼン、p−ジビニルベンゼン等のジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート等の多官能性モノマー;α−メチルスチレン、(メタ)アクリロニトリル、メチル(メタ)アクリレート等が挙げられ、多官能性モノマーが好ましく、エチレングリコールジ(メタ)アクリレート、nが4〜16のポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼンがより好ましく、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレートが特に好ましい。なお、前記スチレンと共重合可能なモノマーは単独で用いられても併用されてもよい。   In the production method of the present invention, examples of the polystyrene resin that is a material of polystyrene resin seed particles (hereinafter abbreviated as seed particles) include styrene or a styrene derivative alone or a copolymer. Here, examples of the styrene derivative include α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, and bromostyrene. Further, the polystyrene resin may be a copolymer using a vinyl monomer copolymerizable with the styrene monomer as long as the styrene monomer component is a main component. Is, for example, divinylbenzene such as o-divinylbenzene, m-divinylbenzene, and p-divinylbenzene, and alkylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate. Functional monomer; α-methylstyrene, (meth) acrylonitrile, methyl (meth) acrylate, and the like can be mentioned, and polyfunctional monomers are preferable, ethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) having n of 4 to 16 ) Acrylate, di Nirubenzen more preferably, divinylbenzene, ethylene glycol di (meth) acrylate are particularly preferred. In addition, the monomer copolymerizable with the styrene may be used alone or in combination.

また、種粒子は一部、または全部にポリスチレン系樹脂回収品を用いることができる。更に種粒子の粒径は、作成する発泡性ポリスチレン系樹脂粒子の平均粒子径等に応じて適宜調整でき、例えば平均粒子径が1.0mmの発泡性ポリスチレン系樹脂粒子を作成する場合には平均粒子径が0.4〜0.7mm程度の種粒子を用いることが好ましい。更に種粒子の重量平均分子量は特に限定されないが15万〜70万が好ましく、更に好ましくは20万〜50万である。   In addition, a part of or all of the seed particles may be a polystyrene resin recovered product. Furthermore, the particle diameter of the seed particles can be adjusted as appropriate according to the average particle diameter of the expandable polystyrene resin particles to be prepared. For example, when preparing expandable polystyrene resin particles having an average particle diameter of 1.0 mm, It is preferable to use seed particles having a particle diameter of about 0.4 to 0.7 mm. Further, the weight average molecular weight of the seed particles is not particularly limited, but is preferably 150,000 to 700,000, more preferably 200,000 to 500,000.

本発明の製造方法に使用するスチレン系単量体としては、スチレン、またはスチレン誘導体が挙げられる。ここで、スチレン誘導体としては、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられるが、これらの中でもスチレンが好ましい。   Examples of the styrene monomer used in the production method of the present invention include styrene and styrene derivatives. Here, examples of the styrene derivative include α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and the like. Among these, styrene is preferable.

本発明の製造方法に使用するアクリル酸エステル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸エチルヘキシル、アクリル酸ヘキシル等が挙げられ、これらの中でもアクリル酸エチル、アクリル酸ブチル、アクリル酸エチルヘキシルが好ましい。   Examples of the acrylate monomer used in the production method of the present invention include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate, ethyl hexyl acrylate, hexyl acrylate, and the like. Among these, ethyl acrylate, butyl acrylate, and ethylhexyl acrylate are preferable.

第1重合工程に用いられるスチレン系単量体の量は、種粒子100質量部に対して、7.0〜80.0質量部の範囲とする。7.0質量部未満の場合は成形時の耐熱性が低下し、80.0質量部を超えると発泡性が低下する。   The amount of the styrene monomer used in the first polymerization step is in the range of 7.0 to 80.0 parts by mass with respect to 100 parts by mass of the seed particles. When the amount is less than 7.0 parts by mass, the heat resistance during molding decreases, and when the amount exceeds 80.0 parts by mass, the foamability decreases.

また、第1重合工程で使用するアクリル酸エステル系単量体の量は、種粒子100質量部に対して2.0〜12.0質量部とする。2.0質量部未満では発泡性に劣り、12.0質量部を超えると成形品の強度が低下する。   Moreover, the quantity of the acrylate-type monomer used at a 1st superposition | polymerization process shall be 2.0-12.0 mass parts with respect to 100 mass parts of seed particles. If it is less than 2.0 parts by mass, the foamability is poor, and if it exceeds 12.0 parts by mass, the strength of the molded product is lowered.

本発明の第2重合工程において使用するスチレン系単量体としては、第1重合工程で使用可能なスチレン系単量体を使用できる。   As the styrene monomer used in the second polymerization step of the present invention, a styrene monomer usable in the first polymerization step can be used.

また、本発明の第2重合工程においては、スチレン系単量体の添加時期を第1重合工程で生成する種粒子の重合転化率で制御する。詳しくは第1重合工程で生成した種粒子の重合転化率が96質量%以上となった時点で、第2重合工程で使用するスチレン系単量体を反応系に添加、種粒子に吸収、重合させることを特徴としている。重合転化率が96質量%未満では、発泡成形時に中心部の融着率が低下し、好ましくない。   Moreover, in the 2nd polymerization process of this invention, the addition time of a styrene-type monomer is controlled by the polymerization conversion rate of the seed particle produced | generated at a 1st polymerization process. Specifically, when the polymerization conversion rate of the seed particles produced in the first polymerization step reaches 96% by mass or more, the styrene monomer used in the second polymerization step is added to the reaction system, absorbed into the seed particles, and polymerized. It is characterized by letting. When the polymerization conversion rate is less than 96% by mass, the fusion rate at the center portion is reduced during foam molding, which is not preferable.

本発明において発泡性ポリスチレン系樹脂粒子中に含有させる発泡剤は、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されず、例えばイソブタン、n−ブタン、イソペンタン、ネオペンタン等の炭素数5以下の脂肪族炭化水素等の揮発性発泡剤(物理型発泡剤)が挙げられ、ブタン系発泡剤が好ましい。   In the present invention, the foaming agent to be contained in the expandable polystyrene resin particles is not particularly limited as long as it is conventionally used for foaming polystyrene resins. For example, isobutane, n-butane, isopentane, neopentane, etc. Volatile foaming agents (physical type foaming agents) such as aliphatic hydrocarbons having 5 or less carbon atoms, and butane-based foaming agents are preferred.

更に、前記発泡剤の発泡性ポリスチレン系樹脂粒子中における含有量は、少ないと、発泡性ポリスチレン系樹脂粒子から低密度のポリスチレン系樹脂発泡成形体を得ることができないと共に型内発泡成形時の二次発泡力を高める効果が得られないために、ポリスチレン系樹脂発泡成形体の外観性が低下し、又、多いと、発泡性ポリスチレン系樹脂粒子を用いたポリスチレン系樹脂発泡成形体の製造工程における冷却工程に要する時間が長くなって生産性が低下するので、2.5〜5.0質量%の範囲とされ、2.7〜4.8質量%の範囲が好ましい。   Furthermore, if the content of the foaming agent in the expandable polystyrene resin particles is small, a low-density polystyrene resin foam molded product cannot be obtained from the expandable polystyrene resin particles, and at the same time as in-mold foam molding. Since the effect of increasing the secondary foaming power cannot be obtained, the appearance of the polystyrene resin foam molded article is deteriorated, and when it is large, in the production process of the polystyrene resin foam molded article using the expandable polystyrene resin particles. Since the time required for the cooling step becomes long and the productivity is lowered, the range is 2.5 to 5.0% by mass, and the range of 2.7 to 4.8% by mass is preferable.

なお、前記発泡性ポリスチレン系樹脂粒子中における発泡剤の含有量は、発泡性ポリスチレン系樹脂粒子を150℃の熱分解炉に入れ、この熱分解炉で発生した炭化水素量をガスクロマトグラフにて測定することができる。   The content of the foaming agent in the expandable polystyrene resin particles is determined by placing the expandable polystyrene resin particles in a 150 ° C. pyrolysis furnace and measuring the amount of hydrocarbon generated in the pyrolysis furnace with a gas chromatograph. can do.

また、前記発泡性ポリスチレン系樹脂粒子には、発泡剤と共に発泡助剤を含有させることができる。この発泡助剤としては、従来から発泡性ポリスチレン系樹脂粒子に用いられている発泡助剤であれば、特に限定されずに使用でき、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等の一気圧下における沸点が200℃以下の溶剤が挙げられる。   The expandable polystyrene resin particles can contain a foaming aid together with a foaming agent. As the foaming aid, any foaming aid that has been conventionally used for expandable polystyrene resin particles can be used without particular limitation. For example, aromatic organic compounds such as styrene, toluene, ethylbenzene, and xylene. , Cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane, solvents having a boiling point of 200 ° C. or less under one atmospheric pressure, such as ethyl acetate and butyl acetate.

そして、前記低密度発泡成形用発泡助剤の発泡性ポリスチレン系樹脂粒子中における含有量は、少ないと、ポリスチレン系樹脂の可塑化効果が発現せず、又、多いと、発泡性ポリスチレン系樹脂粒子を発泡させて得られるポリスチレン系樹脂発泡成形体に収縮や溶けが発生して外観性が低下したり或いは発泡性ポリスチレン系樹脂粒子を用いたポリスチレン系樹脂発泡成形体の製造工程における冷却工程に要する時間が長くなるので、1.0〜2.5質量%に限定され、1.2〜2.2質量%が好ましい。   If the content of the foaming aid for low density foam molding in the expandable polystyrene resin particles is small, the plasticizing effect of the polystyrene resin does not appear, and if the content is large, the expandable polystyrene resin particles. The polystyrene resin foam molded product obtained by foaming the resin is shrunk or melted to reduce the appearance, or required for the cooling step in the production process of the polystyrene resin foam molded product using expandable polystyrene resin particles. Since time becomes long, it is limited to 1.0-2.5 mass%, and 1.2-2.2 mass% is preferable.

なお、前記発泡性ポリスチレン系樹脂粒子中における発泡助剤の含有量は、発泡性ポリスチレン系樹脂粒子をジメチルホルムアミドに溶解させると共に内部標準液としてシクロペンタノールを加えてガスクロマトグラフにて測定することができる。   The content of the foaming aid in the expandable polystyrene resin particles can be measured with a gas chromatograph by dissolving the expandable polystyrene resin particles in dimethylformamide and adding cyclopentanol as an internal standard solution. it can.

更に、発泡性ポリスチレン系樹脂粒子には、加熱発泡時に用いられる水蒸気の圧力が低くても良好な発泡成形性を維持させるために、一気圧下における沸点が200℃を超える可塑剤、例えば、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、グリセリンジアセトモノステアレート等のグリセリン脂肪酸エステル、ジイソブチルアジペート等のアジピン酸エステル、ヤシ油等の可塑剤が2.0質量%未満含有されていてもよい。   Furthermore, in order to maintain good foaming moldability even when the pressure of water vapor used at the time of heat foaming is low, a plasticizer having a boiling point exceeding 200 ° C. under atmospheric pressure, for example, phthalate is used for the expandable polystyrene resin particles. It contains less than 2.0% by mass of plasticizers such as acid esters, glycerin diacetomonolaurate, glycerin tristearate, glycerin fatty acid esters such as glycerin diacetomonostearate, adipic acid esters such as diisobutyl adipate, and coconut oil. Also good.

なお、前記発泡性ポリスチレン系樹脂粒子には、物性を損なわない範囲内において、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよく、又、ジンクステアレート等の粉末状金属石鹸類を前記発泡性スチレン樹脂粒子の表面に塗布しておけば、発泡性ポリスチレン系樹脂粒子の予備発泡工程においてポリスチレン系樹脂予備発泡粒子同士の結合を減少させることができて好ましい。
前記の難燃剤としては、ポリスチレン系樹脂粒子中に含浸させる条件下において他の媒体に溶解させない状態で存在した場合に粉末状であれば、特に限定されず、ヘキサブロモシクロドデカン、テトラブロモシクロオクタン、テトラブロモブタン、ヘキサブロモシクロヘキサンなどの臭素化脂肪族炭化水素系化合物、テトラブロモビスフェノールA、テトラブロモビスフェノールF、2,4,6−トリブロモフェノールなどの臭素化フェノール類、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ジグリシジルエーテルなどの臭素化フェノール誘導体などが挙げられ、臭素化脂肪族炭化水素系化合物が好ましく、テトラブロモシクロオクタン(以下、TBCOと記す。)がより好ましい。
The expandable polystyrene resin particles have additives such as a binding inhibitor, a bubble regulator, a crosslinking agent, a filler, a flame retardant, a flame retardant aid, a lubricant, and a colorant, as long as the physical properties are not impaired. In addition, if a powdered metal soap such as zinc stearate is applied to the surface of the expandable styrene resin particles, a polystyrene resin preliminary is added in the pre-expanding step of the expandable polystyrene resin particles. This is preferable because the bonding between the expanded particles can be reduced.
The flame retardant is not particularly limited as long as it is in a powder form when it is not dissolved in another medium under the conditions of impregnation in polystyrene resin particles, and hexabromocyclododecane, tetrabromocyclooctane. Brominated aliphatic hydrocarbon compounds such as tetrabromobutane and hexabromocyclohexane, brominated phenols such as tetrabromobisphenol A, tetrabromobisphenol F and 2,4,6-tribromophenol, tetrabromobisphenol A- Brominated phenol derivatives such as bis (2,3-dibromopropyl ether), tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-diglycidyl ether, etc. Brominated aliphatic charcoal Hydride compounds are preferable, tetrabromobisphenol cyclooctane (hereinafter, referred to as TbCo.) Is more preferred.

本発明の製造方法で使用する重合開始剤としては、従来からスチレン系単量体の重合に用いられているものであれば、特に限定されず、例えば、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサノエート、ラウリルパーオキサイド、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3、3、5−トリメチルヘキサノエート、ジーt−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物等が挙げられ、得られるポリスチレン系樹脂のZ平均分子量Mzや質量平均分子量Mwを調整して残存モノマーを低減させるために、10時間の半減期を得るための分解温度が80〜120℃にある異なった二種以上の重合開始剤を併用することが好ましい。なお、前記重合開始剤は単独で用いられても二種以上が併用されてもよい。   The polymerization initiator used in the production method of the present invention is not particularly limited as long as it is conventionally used for polymerization of styrene monomers, and examples thereof include benzoyl peroxide and t-butyl peroxybenzoate. , T-butyl peroxy-2-ethylhexanoate, lauryl peroxide, t-butyl peroxide, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2 -Organic peroxides such as t-butylperoxybutane, t-butylperoxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, azobisisobutyronitrile, azobis Polystyrene obtained by using azo compounds such as dimethylvaleronitrile In order to reduce the residual monomer by adjusting the Z-average molecular weight Mz and the mass-average molecular weight Mw of the resin, two or more different polymerizations having a decomposition temperature of 80 to 120 ° C. to obtain a half-life of 10 hours It is preferable to use an initiator in combination. In addition, the said polymerization initiator may be used independently or 2 or more types may be used together.

更に、本発明の製造方法において、スチレン系単量体の小滴及び種粒子を水性媒体中に分散させる為に用いられる懸濁安定剤としては、従来からスチレン系単量体の懸濁重合に用いられているものであれば、特に限定されず、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子、第三リン酸カルシウム、ピロリン酸マグネシウム等の難溶性無機化合物等が挙げられる。そして、前記懸濁安定剤として難溶性無機化合物を用いる場合には、アニオン界面活性剤を併用するのが好ましく、このようなアニオン界面活性剤としては、例えば、脂肪酸石鹸、N−アシルアミノ酸またはその塩、アルキルエーテルカルボン酸塩などのカルボン酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルフォン酸塩等のスルフォン酸塩;高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩等が挙げられる。   Furthermore, in the production method of the present invention, suspension stabilizers used for dispersing styrene monomer droplets and seed particles in an aqueous medium are conventionally used for suspension polymerization of styrene monomers. If it is used, it is not particularly limited, and examples thereof include water-soluble polymers such as polyvinyl alcohol, methylcellulose, polyacrylamide, and polyvinylpyrrolidone, and poorly soluble inorganic compounds such as tricalcium phosphate and magnesium pyrophosphate. . And when using a sparingly soluble inorganic compound as said suspension stabilizer, it is preferable to use an anionic surfactant together, and as such an anionic surfactant, for example, fatty acid soap, N-acylamino acid or its Salts, carboxylates such as alkyl ether carboxylates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, dialkyl sulfosuccinates, alkyl sulfoacetates, sulfonates such as α-olefin sulfonates; higher alcohol sulfuric acid Ester salts, secondary higher alcohol sulfates, sulfates such as alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, etc .; phosphates such as alkyl ether phosphates, alkyl phosphates, etc. Is mentioned.

前記ポリスチレン系樹脂粒子は球状であるのが好ましく、該樹脂粒子の粒径は、成形型内への充填性等を考慮すると、0.3〜2.0mmが好ましく、0.3〜1.4mmがより好ましい。   The polystyrene resin particles are preferably spherical, and the particle size of the resin particles is preferably 0.3 to 2.0 mm, considering the filling properties in the mold, etc., and 0.3 to 1.4 mm. Is more preferable.

なお、前記ポリスチレン系樹脂粒子に発泡剤及び発泡助剤を含浸させる際の温度は、低いと、ポリスチレン系樹脂粒子に発泡剤及び発泡助剤を含浸させるのに要する時間が長くなって生産効率が低下することがあり、又、高いと、ポリスチレン系樹脂粒子同士が融着して結合粒が発生することがあるので、60〜120℃が好ましく、70〜100℃がより好ましい。   In addition, if the temperature at which the polystyrene resin particles are impregnated with the foaming agent and the foaming aid is low, the time required for impregnating the polystyrene resin particles with the foaming agent and the foaming aid becomes long and the production efficiency is increased. When it is too high, polystyrene resin particles may be fused together to form a bonded particle. Therefore, 60 to 120 ° C. is preferable, and 70 to 100 ° C. is more preferable.

次に、前記製造方法で得られた本発明に係る発泡性ポリスチレン系樹脂粒子について説明する。
本発明の発泡性ポリスチレン系樹脂粒子は、スチレン系単量体とアクリル酸エステル単量体との共重合体を含有し、ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)とATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、(B)<(A)であり、且つ(A)が0.20〜0.60の範囲内である関係を満たすことを特徴としている。
Next, the expandable polystyrene resin particles according to the present invention obtained by the production method will be described.
The expandable polystyrene resin particles of the present invention contain a copolymer of a styrene monomer and an acrylate monomer, and analyze the surface of the expandable polystyrene resin particles by ATR infrared spectroscopy. of obtained was infrared spectrum, and obtains the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730 cm -1, wherein the ATR method infrared spectroscopy absorbance ratio (a) and calculated from D1730 / D1600 of were obtained by analyzing the heart of expandable polystyrene resin particles infrared spectrum, seeking and the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730 cm -1, the absorbance ratio calculated from the D1730 / D1600 ( B) satisfies (B) <(A) and (A) is in the range of 0.20 to 0.60. It is characterized by that.

ATR法赤外分光分析とは、全反射吸収を利用する1回反射型ATR法により赤外吸収スペクトルを測定する分析方法である。
この分析方法は、高い屈折率を持つATRプリズムを試料に密着させ、ATRプリズムを通して赤外線を試料に照射し、ATRプリズムからの出射光を分光分析する方法である。ATR法赤外分光分析は、試料とATRプリズムを密着させるだけでスペクトルを測定できるという簡便さ、深さ数μmまでの表面分析が可能である等の理由で高分子材料等の有機物をはじめ、種々の物質の表面分析に広く利用されている。
The ATR infrared spectroscopic analysis is an analysis method in which an infrared absorption spectrum is measured by a single reflection type ATR method using total reflection absorption.
This analysis method is a method in which an ATR prism having a high refractive index is brought into close contact with a sample, infrared light is irradiated to the sample through the ATR prism, and light emitted from the ATR prism is spectrally analyzed. ATR method infrared spectroscopic analysis includes organic substances such as polymer materials for the reason that the spectrum can be measured simply by bringing the sample and the ATR prism into close contact, and the surface analysis up to a depth of several μm is possible. It is widely used for surface analysis of various substances.

本発明では、ATR法赤外分光分析により、発泡性ポリスチレン系樹脂粒子の表面と中心部とを分析し、得られた赤外吸収スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求める。そして前記各吸光度の値から樹脂粒子の表面の吸光度比(A)と粒子の中心部の吸光度比(B)とを算出する。
なお、赤外吸収スペクトルから得られる1600cm−1での吸光度D1600は、ポリスチレン系樹脂に含まれるベンゼン環の面内振動に由来する1600cm−1付近に現れるピーク高さをいう。
また、赤外吸収スペクトルから得られる1730cm−1での吸光度D1730は、アクリル酸エステル系樹脂に含まれるエステル基C=0間の伸縮振動に由来する1730cm−1付近に現れるピーク高さをいう。
In the present invention, by ATR method infrared spectroscopy to analyze the surface and the center portion of the expandable polystyrene resin particles, of the obtained infrared absorption spectrum, absorbance D1730 and 1600 cm -1 in 1730 cm -1 The absorbance D1600 is determined. Then, the absorbance ratio (A) on the surface of the resin particle and the absorbance ratio (B) at the center of the particle are calculated from the respective absorbance values.
In addition, the light absorbency D1600 in 1600cm < -1 > obtained from an infrared absorption spectrum says the peak height which appears in the 1600cm < -1 > vicinity derived from the in-plane vibration of the benzene ring contained in a polystyrene-type resin.
Further, the absorbance D 1730 at 1730 cm −1 obtained from the infrared absorption spectrum refers to a peak height that appears in the vicinity of 1730 cm −1 derived from stretching vibration between ester groups C = 0 contained in the acrylate resin.

また表面の吸光度比は、図1に示すように発泡性ポリスチレン系樹脂粒子1の表面AについてATR法赤外分光分析により測定して求めた値であり、また中心部の吸光度比は、図2に示すように発泡性ポリスチレン系樹脂粒子1をその中心を通って切断した断面の中心部BについてATR法赤外分光分析により測定して求めた値である。   Further, the absorbance ratio of the surface is a value obtained by measuring the surface A of the expandable polystyrene resin particle 1 by ATR infrared spectroscopy as shown in FIG. 1, and the absorbance ratio at the center is shown in FIG. As shown in FIG. 4, the value is obtained by measuring the central part B of the cross section obtained by cutting the expandable polystyrene resin particles 1 through the center thereof by ATR infrared spectroscopy.

本発明の発泡性ポリスチレン系樹脂粒子は、前述したように算出された樹脂粒子の表面の吸光度比(A)と樹脂粒子の中心部の吸光度比(B)とが、
(B)<(A)であり、且つ(A)が0.20〜0.60の範囲内である、との関係を満たすことを特徴としている。
即ち、本発明の発泡性ポリスチレン系樹脂粒子は、粒子の直径方向において、含有されているスチレン−アクリル酸エステル共重合体成分の割合が、中心部で低濃度であり、表層側で高濃度となる。
In the expandable polystyrene resin particles of the present invention, the absorbance ratio (A) of the surface of the resin particles calculated as described above and the absorbance ratio (B) of the center part of the resin particles are as follows:
(B) <(A), and (A) is in the range of 0.20 to 0.60.
That is, in the expandable polystyrene resin particles of the present invention, the ratio of the styrene-acrylic acid ester copolymer component contained in the diameter direction of the particles is low at the center and high on the surface side. Become.

本発明の発泡性ポリスチレン系樹脂粒子は、前述したようにスチレン−アクリル酸エステル共重合体成分の分布構造を有していることから、型内発泡成形して得られた発泡成形体における発泡粒子同士の融着率が向上し、特に、低発泡(高密度)の成形体を製造する場合であっても発泡粒子間の結合が強く、強度、成形品外観に優れた発泡成形体を得ることができる。樹脂粒子の表面の吸光度比(A)と樹脂粒子の中心部の吸光度比(B)との関係((B)<(A))を満たさない場合は、発泡粒子同士の融着性が劣り、良好な低発泡(高密度)の成形体が得にくくなる。   Since the expandable polystyrene resin particles of the present invention have a distribution structure of styrene-acrylate copolymer components as described above, the expanded particles in the expanded molded body obtained by in-mold foam molding. The fusion rate between the two improves, and in particular, even when producing a low-foamed (high-density) molded article, the bond between the foamed particles is strong, and a foamed molded article excellent in strength and appearance of the molded product is obtained. Can do. When the relationship between the absorbance ratio (A) of the surface of the resin particles and the absorbance ratio (B) of the central portion of the resin particles ((B) <(A)) is not satisfied, the fusibility between the expanded particles is inferior, It becomes difficult to obtain a good low-foamed (high-density) molded article.

前記表面の吸光度比(A)は、0.20〜0.60の範囲内であり、0.30〜0.50の範囲内がより好ましい。表面の吸光度比(A)が0.20未満であると、成形時に粒子間の接着性が低下するので好ましくない。表面の吸光度比(A)が0.60を超えると、成形時に成形体表面に溶けが発生しやすく、外観を損なうので好ましくない。   The absorbance ratio (A) of the surface is in the range of 0.20 to 0.60, and more preferably in the range of 0.30 to 0.50. If the surface absorbance ratio (A) is less than 0.20, it is not preferable because the adhesion between the particles decreases during molding. When the absorbance ratio (A) on the surface exceeds 0.60, it is not preferable because melting is likely to occur on the surface of the molded body during molding and the appearance is impaired.

前記中心部の吸光度比(B)は0.15〜0.50の範囲内が好ましく、0.20〜0.40の範囲内がより好ましい。中心部の吸光度比(B)が0.15未満であると発泡性ポリスチレン系樹脂粒子の発泡性能が劣り、揮発成分を多く使用する必要がある。また中心部の吸光度比(B)が0.50を超えると成形時に収縮が大きくなりやすく、発泡成形体の強度が低下する。   The absorbance ratio (B) of the central portion is preferably in the range of 0.15 to 0.50, and more preferably in the range of 0.20 to 0.40. When the absorbance ratio (B) at the center is less than 0.15, the foaming performance of the expandable polystyrene resin particles is inferior, and it is necessary to use a large amount of volatile components. On the other hand, if the absorbance ratio (B) at the center exceeds 0.50, the shrinkage tends to increase during molding, and the strength of the foamed molded product decreases.

本発明の発泡性ポリスチレン系樹脂粒子は、前述した本発明に係る製造方法により効率良く製造することができるが、製造方法はそれに限定されない。   The expandable polystyrene resin particles of the present invention can be efficiently produced by the production method according to the present invention described above, but the production method is not limited thereto.

本発明の発泡性ポリスチレン系樹脂粒子は、発泡成形体の使用用途などに応じて、次の(1)の予備発泡法によってポリスチレン系樹脂予備発泡粒子とするか、又は(2)の原粒成形法によって直接低発泡(高密度)の発泡成形体を製造するために用いることができる。   The expandable polystyrene resin particles of the present invention are converted into polystyrene resin pre-expanded particles by the following pre-expansion method according to (1) depending on the use application of the expanded molded article, or (2) primary particle molding It can be used directly to produce a low-foamed (high-density) foamed molded article by the method.

(1)予備発泡法
従来の発泡性ポリスチレン系樹脂粒子の場合と同じく、発泡性ポリスチレン系樹脂粒子を加熱して、製造する発泡成形体の密度と等しい嵩密度となるように予備発泡してポリスチレン系樹脂予備発泡粒子とする。
(1−1)魚箱などの食品包装容器や家電製品の緩衝材などの一般用途の発泡成形体を製造する場合には、通常、嵩密度が0.010〜0.033g/cmの範囲の予備発泡粒子を製造することが好ましい。
(1−2)機械強度が高く、表面平滑性にも優れた低発泡(高密度)の成形体を製造する場合には、嵩密度が0.05〜0.50g/cmの範囲の予備発泡粒子を製造することが好ましい。
(1) Pre-foaming method As in the case of conventional expandable polystyrene resin particles, the expandable polystyrene resin particles are heated and pre-expanded to have a bulk density equal to the density of the foamed molded article to be produced. -Based resin pre-expanded particles.
(1-1) In the case of producing a general-purpose foamed molded article such as a food packaging container such as a fish box or a cushioning material for home appliances, the bulk density is usually in the range of 0.010 to 0.033 g / cm 3 . It is preferable to produce the pre-expanded particles.
(1-2) When producing a low-foamed (high-density) molded article having high mechanical strength and excellent surface smoothness, a reserve having a bulk density in the range of 0.05 to 0.50 g / cm 3. It is preferable to produce expanded particles.

なお、本発明においてポリスチレン系樹脂予備発泡粒子の嵩密度とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<予備発泡粒子の嵩密度>
先ず、ポリスチレン系樹脂予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積VcmをJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいてポリスチレン系樹脂予備発泡粒子の嵩密度を測定する。
嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
<嵩発泡倍数>
また、予備発泡粒子の「嵩発泡倍数」は、次式により算出される数値である。
嵩発泡倍数=1/嵩密度(g/cm
In the present invention, the bulk density of polystyrene-based resin pre-expanded particles refers to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
First, Wg was collected using polystyrene resin pre-expanded particles as a measurement sample, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was measured according to JIS K6911. The bulk density of the polystyrene resin pre-expanded particles is measured based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)
<Bulk foam multiple>
Further, the “bulk expansion ratio” of the pre-expanded particles is a numerical value calculated by the following equation.
Bulk foaming factor = 1 / bulk density (g / cm 3 )

(2)原粒発泡法
構造部材として有用な高強度発泡成形体を得る場合には、前記発泡性ポリスチレン系樹脂粒子を予備発泡することなく、成形型のキャビティ内に直接発泡性ポリスチレン系樹脂粒子を充填し、水蒸気等の熱媒体で加熱して原粒成形を行い、低発泡・高密度の成形体とする。
この原粒成形法の場合、得られる発泡成形体の密度は0.59〜0.67g/cmの範囲となる。
(2) Raw particle foaming method In order to obtain a high-strength foamed molded article useful as a structural member, the foamable polystyrene resin particles directly into the mold cavity without prefoaming the foamable polystyrene resin particles. And heated with a heat medium such as water vapor to form the original grains to obtain a low-foamed, high-density molded body.
In the case of this raw grain forming method, the density of the obtained foamed molded product is in the range of 0.59 to 0.67 g / cm 3 .

本発明のポリスチレン系樹脂発泡成形体は、前記(1)の予備発泡粒子、或いは前記(2)の発泡性ポリスチレン系樹脂粒子を予備発泡することなく、成形型のキャビティ内に直接発泡性ポリスチレン系樹脂粒子を充填し、水蒸気等の熱媒体で加熱して型内発泡成形を行って得られたものである。
本発明のポリスチレン系樹脂発泡成形体は、前記(1)の予備発泡粒子を用いた型内発泡成形法、或いは(2)の原粒成形法のいずれの方法でも機械強度と外観に優れた種々の密度の発泡成形体を製造することができるので、その密度は特に限定されない。
The polystyrene-based resin foam-molded article of the present invention can be directly expanded in the cavity of the mold without pre-expanding the pre-expanded particles of (1) or the expandable polystyrene-based resin particles of (2). It is obtained by filling resin particles and heating with a heat medium such as water vapor to perform in-mold foam molding.
The polystyrene-based resin foam-molded article of the present invention has various mechanical strengths and appearances that are excellent in both the in-mold foam-molding method using the pre-expanded particles of (1) and the raw-particle molding method of (2). Since a foamed molded product having a density of 5 mm can be produced, the density is not particularly limited.

なお、本発明においてポリスチレン系樹脂発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した密度のことである。
<発泡成形体の密度>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
<発泡倍数>
また、発泡成形体の「発泡倍数」は次式により算出される数値である。
発泡倍数=1/密度(g/cm
In the present invention, the density of the polystyrene-based resin foam molding is a density measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Density of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test specimen condition adjustment and measurement specimens were cut from a sample that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C ± 2 ° C x 50% ± 5% or 27 ° C ± 2 ° C x 65% ± 5%. It has been left for more than an hour.
<Foaming multiple>
Further, the “foaming multiple” of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )

本発明のポリスチレン系樹脂発泡成形体は、前記発泡性ポリスチレン系樹脂粒子を用いたことによって、低発泡(高密度)の成形体を製造する場合であっても、粒子間の結合が強く、強度、成形品外観に優れた発泡成形体を得ることができる。この点から本発明のポリスチレン系樹脂発泡成形体は、密度0.05〜0.50g/cmの範囲とすることが好ましい。このような密度範囲のポリスチレン系樹脂発泡成形体としては、例えば、強度が必要な構造部材やパッキン材などの用途に好適である。 The polystyrene-based resin foam molded article of the present invention has a strong bond between particles even when a low-foamed (high-density) molded article is produced by using the expandable polystyrene resin particles. A foamed molded article having an excellent appearance of the molded product can be obtained. From this point, it is preferable that the polystyrene-based resin foam molded article of the present invention has a density in the range of 0.05 to 0.50 g / cm 3 . As a polystyrene-type resin foam molding of such a density range, it is suitable for uses, such as a structural member and packing material which require intensity | strength, for example.

以下、実施例によって本発明の具体例を示すが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。また、以下の実施例、比較例において、発泡性ポリスチレン系樹脂粒子の吸光度比の結果は、発泡剤含浸前のポリスチレン系樹脂粒子の吸光度比の結果と同様であった。   Hereinafter, specific examples of the present invention will be described by way of examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited to the following examples. In the following examples and comparative examples, the results of the absorbance ratio of the expandable polystyrene resin particles were the same as the results of the absorbance ratio of the polystyrene resin particles before impregnation with the foaming agent.

以下の実施例、比較例において、ポリスチレン系樹脂粒子の吸光度比、発泡成形体の外観、発泡成形体中心の融着率及び総合評価は、次の測定方法及び評価基準により測定・評価した。   In the following Examples and Comparative Examples, the absorbance ratio of polystyrene resin particles, the appearance of the foamed molded product, the fusion rate at the center of the foamed molded product, and the overall evaluation were measured and evaluated by the following measurement methods and evaluation criteria.

<種粒子の重合転化率測定方法>
ポリスチレン系樹脂種粒子の重合転化率は下記の方法により求められる。
即ち、ポリスチレン系樹脂種粒子を分散液中から取り出し、該種粒子の表面に付着した水分をガーゼを用いて拭き取り除去する。
そして、該種粒子を0.08g採取し、トルエン24ミリリットル中に溶解させてトルエン溶液を作製する。次に、このトルエン溶液中に、ウイス試薬10ミリリットル、5質量%のヨウ化カリウム水溶液30ミリリットル及び1質量%のでんぷん水溶液30ミリリットルを供給し、N/40チオ硫酸ナトリウム溶液で滴定して試料の滴定数(ミリリットル)とする。なお、ウイス試薬は、氷酢酸2リットルにヨウ素8.7g及び三塩化ヨウ素7.9gを溶解してなるものである。
一方、ポリスチレン系樹脂種粒子を溶解させることなく、トルエン24ミリリットル中に、ウイス試薬10ミリリットル、5質量%のヨウ化カリウム水溶液30ミリリットル及び1質量%のでんぷん水溶液30ミリリットルを供給し、N/40チオ硫酸ナトリウム溶液で滴定してブランクの滴定数(ミリリットル)とする。
そして、ポリスチレン系樹脂種粒子中におけるスチレン系モノマー量を下記式に基づいて算出することができる。
ポリスチレン系樹脂種粒子中におけるスチレン系モノマー量A(質量%)=0.1322×(ブランクの滴定数−試料の滴定数)/試料の滴定数
重合転化率=100−A(%)
<Method of measuring polymerization conversion rate of seed particles>
The polymerization conversion rate of the polystyrene resin seed particles is obtained by the following method.
That is, the polystyrene-based resin seed particles are taken out from the dispersion, and the water adhering to the surface of the seed particles is wiped off using gauze.
Then, 0.08 g of the seed particles are collected and dissolved in 24 ml of toluene to prepare a toluene solution. Next, 10 ml of Wis reagent, 30 ml of 5% by weight potassium iodide aqueous solution and 30 ml of 1% by weight starch aqueous solution are supplied into this toluene solution, and titrated with an N / 40 sodium thiosulfate solution to prepare a sample solution. Set the drop constant (milliliter). The Wis reagent is obtained by dissolving 8.7 g of iodine and 7.9 g of iodine trichloride in 2 liters of glacial acetic acid.
On the other hand, without dissolving polystyrene resin seed particles, 10 ml of Wis reagent, 30 ml of 5% by weight potassium iodide aqueous solution and 30 ml of 1% by weight starch aqueous solution were supplied in 24 ml of toluene, and N / 40 Titrate with sodium thiosulfate solution to blank titration (in milliliters).
And the amount of styrene-type monomers in a polystyrene-type resin seed particle is computable based on a following formula.
Styrenic monomer amount A (mass%) in polystyrene resin seed particles = 0.1322 × (blank drop constant−sample drop constant) / sample drop constant Polymerization conversion rate = 100−A (%)

<吸光度比の測定>
吸光度比(D1730/D1600)は下記の要領で測定される。
即ち、無作為に選択した10個の各樹脂粒子の表面(図1中の符号A)、及び粒子を中心を通って切断した断面の中心部(図2中の符号B)について、ATR法赤外分光分析により粒子表面分析を行って赤外線吸収スペクトルを得る。
各赤外線吸収スペクトルから吸光度比(D1730/D1600)をそれぞれ算出し、表面Aに付いて算出した吸光度比の相加平均を吸光度比(A)とし、中心部Bについて算出した吸光度比の相加平均を吸光度比(B)とする。
吸光度D1730及び、D1600は、たとえばNicolet社から商品名「フーリエ変換赤外分光分析計 MAGMA560」で販売されている測定装置を用いて測定する。
尚、赤外吸収スペクトルから得られる1600cm−1での吸光度D1600は、ポリスチレン系樹脂に含まれるベンゼン環の面内振動に由来する1600cm−1付近に現れるピークの高さをいう。
また、赤外吸収スペクトルから得られる1730cm−1での吸光度D1730は、アクリル酸エステルに含まれるエステル基のC=0間の伸縮振動に由来する1730cm−1付近に現れるピークの高さをいう。
<Measurement of absorbance ratio>
The absorbance ratio (D1730 / D1600) is measured as follows.
That is, the ATR method red is used for the surface of each of 10 resin particles selected at random (reference A in FIG. 1) and the central portion (reference B in FIG. 2) of the cross section cut through the particle. An infrared absorption spectrum is obtained by particle surface analysis by external spectroscopic analysis.
The absorbance ratio (D1730 / D1600) was calculated from each infrared absorption spectrum, and the arithmetic average of the absorbance ratio calculated on the surface A was defined as the absorbance ratio (A). Is the absorbance ratio (B).
The absorbances D1730 and D1600 are measured using a measuring device sold by, for example, Nicolet Corporation under the trade name “Fourier Transform Infrared Spectrometer MAGMA 560”.
The absorbance D1600 at 1600 cm −1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 1600 cm −1 derived from the in-plane vibration of the benzene ring contained in the polystyrene resin.
Further, the absorbance D 1730 at 1730 cm −1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 1730 cm −1 derived from stretching vibration between C = 0 of the ester group contained in the acrylate ester.

<発泡成形体の外観>
発泡成形体の外観は、発泡成形体表面から任意の10cm角の正方形面にある発泡粒子間を調べ、1mm角以上の粒子間空隙を計算する。評価基準は1mm角以上の空隙が5個未満を良好(○)、5個以上を不良(×)とした。
<Appearance of foam molding>
As for the appearance of the foamed molded product, the space between the foamed particles on an arbitrary 10 cm square square surface from the surface of the foamed molded product is examined, and the inter-particle void of 1 mm square or more is calculated. The evaluation criteria were good (◯) for less than 5 voids of 1 mm square or more, and poor (x) for 5 or more.

<発泡成形体中心の融着率>
型内発泡成形体を折り曲げて厚み方向に破断させた後、破断面に存在する全ての予備発泡粒子の個数Aと、そのうち粒子自体が材料破壊した予備発泡粒子の個数Bとを計数した。 そして次式より粒子同士の融着性の基準となる融着率(%)を求めた。
融着率(%)=B/A×100
本発明において、発泡成形体中心の融着率が70%以上である場合を良好(○)とし、70%未満の場合を不良(×)として評価した。
<Fusion rate at the center of the foam molding>
After the in-mold foam molded body was bent and broken in the thickness direction, the number A of all pre-expanded particles present on the fractured surface and the number B of pre-expanded particles whose particles themselves were material-destructed were counted. And the fusion rate (%) used as the reference | standard of the fusion property of particle | grains was calculated | required from following Formula.
Fusing rate (%) = B / A × 100
In the present invention, the case where the fusion rate at the center of the foamed molded product was 70% or more was evaluated as good (◯), and the case where it was less than 70% was evaluated as defective (×).

<総合評価>
前記<発泡成形体の外観>及び<発泡成形体中心の融着率>の各試験・評価項目において、全ての評価が○(良好)であった場合を◎(良好)とし、一つでも×(不良)があった場合を×(不良)として総合評価した。
<Comprehensive evaluation>
In each test / evaluation item of <appearance of foamed molded product> and <fusion rate at the center of foamed molded product>, when all evaluations were ◯ (good), ◎ (good), and at least one × The case where there was (defect) was evaluated as x (defect).

[実施例1]
(種粒子の製造)
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤として第三リン酸カルシウム100質量部及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム2.0質量部を供給し攪拌しながらスチレンモノマー40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部を添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してポリスチレン系樹脂粒子(a)を得た。
前記ポリスチレン系樹脂粒子(a)を篩分けし、種粒子として粒子径0.5〜0.71mmのポリスチレン系樹脂粒子(b)を得た。
次に、内容量5リットルの攪拌機付き重合容器内に、水2000質量部、前記ポリスチレン系樹脂粒子(b)500質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム0.3質量部を供給して攪拌しながら72℃に昇温した。
[Example 1]
(Manufacture of seed particles)
A polymerization vessel equipped with a stirrer having an internal volume of 100 liters is supplied with 40000 parts by mass of water, 100 parts by mass of tricalcium phosphate as a suspension stabilizer, and 2.0 parts by mass of calcium dodecylbenzenesulfonate as an anionic surfactant, while stirring. After adding 40000 parts by mass of a monomer and 96.0 parts by mass of benzoyl peroxide and 28.0 parts by mass of t-butylperoxybenzoate as a polymerization initiator, the temperature was raised to 90 ° C. to polymerize. And it hold | maintained at this temperature for 6 hours, and also, after heating up to 125 degreeC, it cooled after 2 hours, and obtained the polystyrene-type resin particle (a).
The polystyrene resin particles (a) were sieved to obtain polystyrene resin particles (b) having a particle diameter of 0.5 to 0.71 mm as seed particles.
Next, in a polymerization vessel equipped with a stirrer having an internal volume of 5 liters, 2000 parts by mass of water, 500 parts by mass of the polystyrene resin particles (b), 6.0 parts by mass of magnesium pyrophosphate as a suspension stabilizer and an anionic surfactant As the above, 0.3 parts by mass of calcium dodecylbenzenesulfonate was supplied and heated to 72 ° C. while stirring.

(第1重合工程)
次に、重合開始剤としてベンゾイルパーオキサイド4.5質量部及びt−ブチルパーオキシベンゾエート1.1質量部をスチレンモノマー180質量部、アクリル酸ブチル30質量部の混合液に溶解させたものを前記5リットルの重合容器に供給してから、種粒子内に吸収させ、72℃で90分保持した。
この重合工程において、前記<種粒子の重合転化率測定方法>によって樹脂粒子の重合転化率を測定しながら重合反応を進めた。
(First polymerization step)
Next, a solution obtained by dissolving 4.5 parts by mass of benzoyl peroxide and 1.1 parts by mass of t-butylperoxybenzoate in a mixed solution of 180 parts by mass of styrene monomer and 30 parts by mass of butyl acrylate as a polymerization initiator After feeding into a 5 liter polymerization vessel, it was absorbed into the seed particles and held at 72 ° C. for 90 minutes.
In this polymerization step, the polymerization reaction was advanced while measuring the polymerization conversion rate of the resin particles according to the above <Method for measuring polymerization conversion rate of seed particles>.

(第2重合工程)
90分経過後(種粒子の重合転化率97%)に反応液を110℃まで150分で昇温しつつ、且つスチレンモノマー1290gを150分で重合容器内にポンプで一定量づつ供給した上で、120℃に昇温して2時間経過後に冷却し、ポリスチレン系樹脂粒子(c)を得た。
得られたポリスチレン系樹脂粒子(c)について、前記<吸光度比の測定>によって樹脂粒子の表面の吸光度比(A)と中心部の吸光度比(B)とを測定した。
その結果を表1に示す。また得られた発泡性ポリスチレン系樹脂粒子についても、前記<吸光度比の測定>により吸光度比を測定することができる。
(Second polymerization step)
After 90 minutes (seed particle polymerization conversion 97%), the reaction solution was heated to 110 ° C. over 150 minutes, and 1290 g of styrene monomer was fed into the polymerization vessel by a fixed amount in 150 minutes. The temperature was raised to 120 ° C. and the mixture was cooled after 2 hours to obtain polystyrene resin particles (c).
With respect to the obtained polystyrene resin particles (c), the absorbance ratio (A) on the surface of the resin particles and the absorbance ratio (B) at the center were measured by the above <Measurement of Absorbance Ratio>.
The results are shown in Table 1. Also, the absorbance ratio of the obtained expandable polystyrene resin particles can be measured by the above <Measurement of Absorbance Ratio>.

(発泡剤含浸)
続いて、別の内容量5リットルの攪拌機付き重合容器に、水2200質量部、ポリスチレン系樹脂粒子(c)1800質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びドデシルベンゼンスルフォン酸カルシウム0.4質量部を供給して攪拌しながら70℃に昇温した。次に、発泡助剤としてシクロヘキサン9.0質量部を重合容器内に入れて密閉し100℃に昇温した。 次に、発泡剤としてn−ブタン126質量部をポリスチレン系樹脂粒子(c)が入った重合容器内に圧入して3時間保持した後、30℃以下まで冷却した上で重合容器内から取り出し乾燥させた上で13℃の恒温室内に5日間放置して発泡性ポリスチレン系樹脂粒子を得た。
(Foaming agent impregnation)
Subsequently, in another polymerization vessel equipped with a stirrer having a capacity of 5 liters, 2200 parts by mass of water, 1800 parts by mass of polystyrene-based resin particles (c), 6.0 parts by mass of magnesium pyrophosphate as a suspension stabilizer and dodecylbenzenesulfonic acid 0.4 parts by mass of calcium was supplied and the temperature was raised to 70 ° C. while stirring. Next, 9.0 parts by mass of cyclohexane as a foaming aid was placed in a polymerization vessel, sealed and heated to 100 ° C. Next, 126 parts by mass of n-butane as a foaming agent is pressed into a polymerization vessel containing polystyrene resin particles (c) and held for 3 hours, and then cooled to 30 ° C. or lower, taken out from the polymerization vessel and dried. And allowed to stand in a thermostatic chamber at 13 ° C. for 5 days to obtain expandable polystyrene resin particles.

(予備発泡)
続いて、発泡性ポリスチレン系樹脂粒子の表面に表面処理剤としてジンクステアレート及びヒドロキシステアリン酸トリグリセリドを被覆処理した。
次いで予備発泡装置にて嵩密度0.10g/cmに予備発泡した後に20℃で24時間熟成してポリスチレン系樹脂予備発泡粒子を得た。
(Pre-foaming)
Subsequently, zinc stearate and hydroxystearic acid triglyceride were coated as surface treatment agents on the surface of the expandable polystyrene resin particles.
Subsequently, after pre-foaming to a bulk density of 0.10 g / cm 3 using a pre-foaming device, the resultant was aged at 20 ° C. for 24 hours to obtain polystyrene resin pre-foamed particles.

(発泡成形体の製造)
そして、内寸300mm×400mm×30mmの直方体形状のキャビティを有する成形型を備えた発泡ビーズ自動成形機(積水工機製作所社製 商品名「エース3型」)のキャビティ内に前記ポリスチレン系樹脂予備発泡粒子を充填し、ゲージ圧0.13Mpaの水蒸気で15秒間加熱成形を行った。次に、前記金型のキャビティ内の発泡体を5秒間水冷した後、減圧下にて放冷(冷却工程)して、密度0.10g/cmのポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体について、前記<発泡成形体の外観>、<発泡成形体中心の融着率>及び<総合評価>を測定・評価した。その結果を表2に示す。
本実施例で得られた発泡成形体は、粒子間の空隙も少なく外観の良好なものであり、発泡成形体内部の融着率は90%であった。
(Manufacture of foam moldings)
Then, the polystyrene-based resin preliminary is placed in the cavity of an automatic foam bead molding machine (trade name “ACE 3 type” manufactured by Sekisui Koki Co., Ltd.) having a mold having a rectangular parallelepiped cavity with an inner dimension of 300 mm × 400 mm × 30 mm. The foamed particles were filled and heat-molded with water vapor having a gauge pressure of 0.13 Mpa for 15 seconds. Next, the foam in the cavity of the mold was water-cooled for 5 seconds, and then allowed to cool under reduced pressure (cooling step) to obtain a polystyrene-based resin foam molded article having a density of 0.10 g / cm 3 .
With respect to the obtained foamed molded article, the above-mentioned <Appearance of the foamed molded article>, <Fusion rate at the center of the foamed molded article> and <Comprehensive evaluation> were measured and evaluated. The results are shown in Table 2.
The foamed molded product obtained in this example had good appearance with few voids between particles, and the fusion rate inside the foamed molded product was 90%.

[実施例2]
第1重合工程において使用するスチレンモノマーを40.0質量部、アクリル酸ブチル50.0質量部の混合液とし、更に第2重合工程で使用するスチレンモノマーを1410質量部としたこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は、粒子間の空隙も少なく外観の良好なものであり、発泡成形体内部の融着率は95%であった。
[Example 2]
Implementation was performed except that the styrene monomer used in the first polymerization step was mixed with 40.0 parts by mass and 50.0 parts by mass of butyl acrylate, and the styrene monomer used in the second polymerization step was 1410 parts by mass. In the same manner as in Example 1, a polystyrene resin foam molded article was obtained.
The obtained foamed molded article had a good appearance with few voids between particles, and the fusion rate inside the foamed molded article was 95%.

[実施例3]
第1重合工程において使用するスチレンモノマーを375質量部、アクリル酸ブチル12.5質量部の混合液とし、更に第2重合工程で使用するスチレンモノマーを1115質量部としたこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は、粒子間の空隙も少なく外観の良好なものであり、発泡成形体内部の融着率は90%であった。
[Example 3]
Example 1 except that the styrene monomer used in the first polymerization step was a mixed solution of 375 parts by mass and 12.5 parts by mass of butyl acrylate, and that the styrene monomer used in the second polymerization step was 1115 parts by mass. In the same manner, a polystyrene-based resin foam molded article was obtained.
The obtained foamed molded article had a good appearance with few voids between particles, and the fusion rate inside the foamed molded article was 90%.

[実施例4]
第2重合工程にスチレンモノマーを添加する際の種粒子の重合転化率を96%としたこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は、粒子間の空隙も少なく外観の良好なものであり、発泡成形体内部の融着率は90%であった。
[Example 4]
A polystyrene-based resin foam molded article was obtained in the same manner as in Example 1 except that the polymerization conversion rate of the seed particles when adding the styrene monomer to the second polymerization step was 96%.
The obtained foamed molded article had a good appearance with few voids between particles, and the fusion rate inside the foamed molded article was 90%.

[実施例5]
第2重合工程にスチレンモノマーを添加する際の種粒子の重合転化率を98%としたこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は、粒子間の空隙も少なく外観の良好なものであり、発泡成形体内部の融着率は95%であった。
[Example 5]
A polystyrene-based resin foam molded article was obtained in the same manner as in Example 1 except that the polymerization conversion rate of the seed particles when adding the styrene monomer to the second polymerization step was 98%.
The obtained foamed molded article had a good appearance with few voids between particles, and the fusion rate inside the foamed molded article was 95%.

[実施例6]
第1重合工程において使用するアクリル酸エステルをアクリル酸2エチルヘキシルとしたこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は、粒子間の空隙も少なく外観の良好なものであり、発泡成形体内部の融着率は90%であった。
[Example 6]
A polystyrene-based resin foam molded article was obtained in the same manner as in Example 1, except that the acrylic ester used in the first polymerization step was 2-ethylhexyl acrylate.
The obtained foamed molded article had a good appearance with few voids between particles, and the fusion rate inside the foamed molded article was 90%.

[実施例7]
実施例1において、予備発泡工程を経ることなしに、発泡性ポリスチレン系樹脂粒子を直方体形状のキャビティを有する成形型を備えた発泡ビーズ自動成形機(積水工機製作所社製 商品名「エース3型」)のキャビティ内に前記ポリスチレン系樹脂予備発泡粒子を充填し、ゲージ圧0.13Mpaの水蒸気で15秒間加熱成形を行った。次に、前記成形型のキャビティ内の発泡体を5秒間水冷した後、減圧下にて放冷(冷却工程)してポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は、密度が0.61g/cmであり、粒子間の空隙も少なく外観の良好なものであった。この発泡成形体内部の融着率は95%であった。
[Example 7]
In Example 1, without undergoing a preliminary foaming step, an expanded bead automatic molding machine (trade name “Ace 3 type” manufactured by Sekisui Koki Co., Ltd.) provided with a mold having expandable polystyrene resin particles having a rectangular parallelepiped cavity. )) Was filled with the polystyrene resin pre-expanded particles, and heat-molded with water vapor at a gauge pressure of 0.13 Mpa for 15 seconds. Next, the foam in the cavity of the mold was water-cooled for 5 seconds and then allowed to cool under reduced pressure (cooling step) to obtain a polystyrene-based resin foam molded body.
The obtained foamed molded article had a density of 0.61 g / cm 3 , had few voids between particles, and had a good appearance. The fusion rate inside the foamed molded product was 95%.

[比較例1]
第1重合工程でアクリル酸ブチルを使用せず、スチレンモノマーを210質量部のみ使用したこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
しかし、発泡成形体の外観、及び内部融着は劣るものであった。
[Comparative Example 1]
In the first polymerization step, expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that butyl acrylate was not used and only 210 parts by mass of the styrene monomer was used.
However, the appearance and internal fusion of the foamed molded product were inferior.

[比較例2]
第1重合工程において使用するスチレンモノマーを25.0質量部、アクリル酸ブチル70.0質量部の混合液とし、第2重合工程で使用するスチレンモノマー1405質量部としたこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
得られた発泡成形体の内部融着は90%と良好であったが、発泡成形体の外観は溶けが発生し、劣るものであった。
[Comparative Example 2]
Example 1 except that the styrene monomer used in the first polymerization step was a mixed solution of 25.0 parts by mass and 70.0 parts by mass of butyl acrylate, and 1405 parts by mass of the styrene monomer used in the second polymerization step. In the same manner, expandable polystyrene resin particles were obtained.
Although the internal fusion of the obtained foamed molded article was as good as 90%, the appearance of the foamed molded article was inferior due to melting.

[比較例3]
第1重合工程において使用するスチレンモノマーを425質量部、アクリル酸ブチル7.5質量部の混合液とし、加えて第2重合工程で使用するスチレンモノマーを1070質量部としたこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
しかし、得られた発泡成形体の外観、及び内部融着は劣るものであった。
[Comparative Example 3]
Example except that the styrene monomer used in the first polymerization step was a mixed solution of 425 parts by mass and 7.5 parts by mass of butyl acrylate, and that the styrene monomer used in the second polymerization step was 1070 parts by mass. In the same manner as in Example 1, expandable polystyrene resin particles were obtained.
However, the appearance and internal fusion of the obtained foamed molded product were inferior.

[比較例4]
実施例3において、第2重合工程にスチレン系単量体を添加する際の種粒子の重合転化率を94%としたこと以外は、実施例3と同様にしてポリスチレン系樹脂発泡成形体を得た。しかし、得られた発泡成形体の外観、及び内部融着は劣るものであった。
[Comparative Example 4]
In Example 3, a polystyrene resin foam molded article was obtained in the same manner as in Example 3 except that the polymerization conversion rate of the seed particles when adding the styrene monomer to the second polymerization step was 94%. It was. However, the appearance and internal fusion of the obtained foamed molded product were inferior.

前記実施例1〜7、比較例1〜4の製造条件の概要と、各試験・評価結果を表1,2にまとめて記す。   Tables 1 and 2 summarize the outline of the manufacturing conditions of Examples 1 to 7 and Comparative Examples 1 to 4 and the results of each test and evaluation.

Figure 0005386262
Figure 0005386262

Figure 0005386262
Figure 0005386262

表1,2の結果より、本発明に係る実施例1〜7の発泡性ポリスチレン系樹脂粒子は、吸光度比(A)と(B)とが、(B)<(A)、且つ(A)が0.020〜0.60の範囲内である関係を満たしたものなので、密度0.10g/cmの低発泡(高密度)の発泡成形体を製造した場合(実施例1〜6)、及び原粒成形した場合(実施例7)であっても、外観に優れ、内部の発泡粒同士の融着性に優れた発泡成形体を得ることができた。 From the results of Tables 1 and 2, the expandable polystyrene resin particles of Examples 1 to 7 according to the present invention had an absorbance ratio (A) and (B) of (B) <(A) and (A). Satisfying the relationship in the range of 0.020 to 0.60, when producing a low foaming (high density) foamed molded article having a density of 0.10 g / cm 3 (Examples 1 to 6), And even when it was formed into the original grains (Example 7), it was possible to obtain a foamed molded article that was excellent in appearance and excellent in fusion properties between the foamed inner parts.

本発明によれば、発泡性ポリスチレン系樹脂粒子を使用した低発泡(高密度)の成形体を得る方法において、発泡成形体の中心部の融着率を大幅に向上でき、強度面で優れるばかりか、短い成形サイクルで成形品を容易に得ることができる。   According to the present invention, in a method for obtaining a low-foamed (high-density) molded body using expandable polystyrene resin particles, the fusion rate at the center of the foamed molded body can be greatly improved, and the strength is excellent. Alternatively, a molded product can be easily obtained in a short molding cycle.

1…発泡性ポリスチレン系樹脂粒子、A…表面、B…中心部。   DESCRIPTION OF SYMBOLS 1 ... Expandable polystyrene resin particle, A ... Surface, B ... Center part.

Claims (6)

アクリル酸エステルとスチレン系単量体との共重合体を含有する発泡性ポリスチレン系樹脂粒子であって、ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)とATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、(B)<(A)であり、且つ(A)が0.20〜0.60の範囲内、(B)が0.15〜0.50の範囲内である関係を満たす発泡性ポリスチレン系樹脂粒子。 An expandable polystyrene resin particle containing a copolymer of an acrylate ester and a styrene monomer, and obtained by analyzing the surface of the expandable polystyrene resin particle by ATR infrared spectroscopy of outer spectrum, seeking and the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730cm -1, D1730 / absorbance ratio calculated from D1600 (a) and ATR method infrared spectroscopy the expandable polystyrene resin analysis of central infrared spectra were obtained by analyzing the particle, determined the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730 cm -1, the absorbance ratio calculated from the D1730 / D1600 and (B) but, (B) <(A), and (A) is in the range of 0.20 to 0.60, and (B) is 0.15 to 0.5. Expandable polystyrene resin particles that satisfy a relationship in the range of 0 . 請求項記載の発泡性ポリスチレン系樹脂粒子を予備発泡して得られたポリスチレン系樹脂予備発泡粒子。 Polystyrene resin pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles according to claim 1 . 請求項に記載の発泡性ポリスチレン系樹脂粒子を嵩密度が0.05〜0.50g/cmの範囲となるように予備発泡して得られたポリスチレン系樹脂予備発泡粒子。 Polystyrene resin pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles according to claim 1 so that the bulk density is in the range of 0.05 to 0.50 g / cm 3 . 請求項に記載の発泡性ポリスチレン系樹脂粒子を成形型のキャビティ内に充填して加熱、発泡させて得られたポリスチレン系樹脂発泡成形体。 A polystyrene resin foam molded article obtained by filling the expandable polystyrene resin particles according to claim 1 into a cavity of a mold, heating and foaming. 請求項2又は3に記載のポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られたポリスチレン系樹脂発泡成形体。 A polystyrene-based resin foam molded article obtained by filling the polystyrene-based pre-expanded particles according to claim 2 or 3 into a cavity of a molding die and heating and foaming. (1)ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0〜80.0質量部とアクリル酸エステル単量体2.0〜12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第1重合工程と、
(2)次いで、ポリスチレン系種粒子の重合転化率が96質量%以上となった時点で該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、
(3)第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させて請求項記載の発泡性ポリスチレン系樹脂粒子を得る工程とを有する発泡性ポリスチレン系樹脂粒子の製造方法。
(1) In a dispersion obtained by dispersing polystyrene resin seed particles in water, 7.0 to 80.0 parts by mass of a styrene monomer and an acrylate ester alone with respect to 100 parts by mass of polystyrene resin seed particles. A first polymerization step of supplying 2.0 to 12.0 parts by mass of a monomer and allowing these monomers to be absorbed and polymerized in seed particles to grow polystyrene resin particles;
(2) Next, when the polymerization conversion rate of the polystyrene seed particles reaches 96% by mass or more, only the styrene monomer is supplied into the dispersion, and this is absorbed into the seed particles and polymerized to be polystyrene-based. A second polymerization step for growing resin particles;
(3) after producing a polystyrene resin particles by performing a second polymerization step, or growth developing a polystyrene resin particles impregnated with a blowing agent and obtaining the expandable polystyrene resin particles according to claim 1, wherein A method for producing expandable polystyrene resin particles.
JP2009175600A 2009-07-28 2009-07-28 Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article Active JP5386262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175600A JP5386262B2 (en) 2009-07-28 2009-07-28 Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175600A JP5386262B2 (en) 2009-07-28 2009-07-28 Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article

Publications (2)

Publication Number Publication Date
JP2011026509A JP2011026509A (en) 2011-02-10
JP5386262B2 true JP5386262B2 (en) 2014-01-15

Family

ID=43635623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175600A Active JP5386262B2 (en) 2009-07-28 2009-07-28 Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article

Country Status (1)

Country Link
JP (1) JP5386262B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415559B (en) * 2011-03-04 2016-03-23 积水化成品工业株式会社 Composite polystyrene resin foam particle and foam molding thereof
JP5820165B2 (en) * 2011-03-10 2015-11-24 株式会社カネカ Expandable thermoplastic resin particles
JP5689011B2 (en) * 2011-03-31 2015-03-25 積水化成品工業株式会社 Resin particle, method for producing the same, expandable resin particle, expanded particle
JP5820166B2 (en) * 2011-07-05 2015-11-24 株式会社カネカ Expandable thermoplastic resin particles
JP6031378B2 (en) * 2013-02-21 2016-11-24 積水化成品工業株式会社 Expandable styrene resin particles, expanded particles and lightweight concrete
JP6082637B2 (en) * 2013-03-28 2017-02-15 積水化成品工業株式会社 Expandable styrenic resin particles, expanded particles and expanded molded articles
JP6216237B2 (en) * 2013-12-03 2017-10-18 株式会社カネカ Expandable thermoplastic resin particles
JP6431683B2 (en) * 2014-04-08 2018-11-28 株式会社カネカ Expandable thermoplastic resin particles
JP6435113B2 (en) * 2014-04-11 2018-12-05 株式会社カネカ Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foam moldings
JP6410616B2 (en) * 2015-01-13 2018-10-24 株式会社カネカ Expandable thermoplastic resin particles, pre-expanded particles and foam
CN115279823A (en) * 2020-03-18 2022-11-01 株式会社钟化 Expandable resin particles, expandable particles, expanded molded article, and process for producing expandable resin particles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156736A (en) * 1984-01-26 1985-08-16 Hitachi Chem Co Ltd Primarily expanded particle of styrene based resin and production of expansion molded article
JP3732418B2 (en) * 2001-03-26 2006-01-05 積水化成品工業株式会社 Expandable styrene resin particles

Also Published As

Publication number Publication date
JP2011026509A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5386262B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article
JP5373524B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP2012214691A (en) Polyethylene-based resin particle for seed polymerization, composite resin particle, method for producing these, foamable composite resin particle, and preliminary foaming particle, and foamed article
JP5478140B2 (en) Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article
JP6055685B2 (en) Method for producing flame-retardant styrene resin particles, method for producing foamable particles, method for producing foamed particles, and method for producing foamed molded article
JP6612634B2 (en) Styrenic resin foamable particles, foamed particles and foamed molded article
JP2011026506A (en) Low volatile expandable polystyrene-based resin particle, manufacturing method therefor, low volatile polystyrene-based resin pre-expanded particle, and low volatile polystyrene-based resin expansion molded article
JP2011026511A (en) Flame-retardant foamable polystyrene-based resin particle, method for producing the same, preliminarily-foamed particle of flame-retardant polystyrene-based resin and expansion molding of flame-retardant polystyrene-based resin
JP5447573B2 (en) Modified resin foam particles and method for producing the same
JP5492616B2 (en) Expandable polystyrene resin particles, pre-expanded particles, and expanded molded articles
JP2009263639A (en) Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body
JP6407077B2 (en) Polystyrene foamed molded product, expandable particles, pre-expanded particles
JP2013117037A (en) Foam molding body
JP5798950B2 (en) Building materials and manufacturing method thereof
JP5410874B2 (en) Method for producing expandable polystyrene resin particles
JP2011026508A (en) Expandable polystyrene-based resin particle, pre-expanded particle, expansion molded article, and manufacturing method therefor
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP6227955B2 (en) Foam molding
JP6407078B2 (en) Foam molded body, expandable resin particles, pre-expanded particles
JP5592678B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP5992349B2 (en) Expandable styrenic resin particles, method for producing the same, expanded particles, and expanded molded body
JP5965853B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP5731368B2 (en) Seed particles, composite resin particles, methods for producing the same, composite resin particles, expandable particles, pre-expanded particles, and foam molded article
JP2011026507A (en) Surface smooth polystyrene-based resin expansion molded article, and manufacturing method therefor
JP5713726B2 (en) Expandable polystyrene resin particles, expanded particles and expanded molded articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5386262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150