JP5820165B2 - Expandable thermoplastic resin particles - Google Patents

Expandable thermoplastic resin particles Download PDF

Info

Publication number
JP5820165B2
JP5820165B2 JP2011149531A JP2011149531A JP5820165B2 JP 5820165 B2 JP5820165 B2 JP 5820165B2 JP 2011149531 A JP2011149531 A JP 2011149531A JP 2011149531 A JP2011149531 A JP 2011149531A JP 5820165 B2 JP5820165 B2 JP 5820165B2
Authority
JP
Japan
Prior art keywords
weight
thermoplastic resin
resin particles
particles
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011149531A
Other languages
Japanese (ja)
Other versions
JP2012197405A (en
Inventor
充宏 田村
充宏 田村
武彦 柳生
武彦 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2011149531A priority Critical patent/JP5820165B2/en
Publication of JP2012197405A publication Critical patent/JP2012197405A/en
Application granted granted Critical
Publication of JP5820165B2 publication Critical patent/JP5820165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、低温での予備発泡及び型内成形適した発泡性熱可塑性樹脂粒子に関する。   The present invention relates to expandable thermoplastic resin particles suitable for pre-expansion and in-mold molding at low temperatures.

発泡性熱可塑性樹脂粒子は、比較的安価で、特殊な方法を用いずに蒸気等で発泡成形ができ、高い緩衝・断熱の効果が得られるため、社会的に有用な材料である。しかし、近年の環境問題への関心の高まりから、より省エネルギーへの要望が高まっており、予備発泡及び型内成形時の温度を低温にすることで、少ない蒸気使用量で発泡可能な樹脂が求められている。   Expandable thermoplastic resin particles are a relatively useful material, and can be foam-molded with steam or the like without using a special method, so that a high buffering and heat insulation effect can be obtained. However, due to increasing interest in environmental issues in recent years, there has been a growing demand for energy saving. By reducing the temperature during pre-foaming and in-mold molding, a resin that can be foamed with a small amount of steam is required. It has been.

上記発泡成形品は、発泡性熱可塑性樹脂粒子を蒸気等により加熱、所望の嵩密度まで予備発泡し、熟成工程を経た後、成形金型に充填され再度加熱発泡成形する方法により製造される。しかしながら、発泡時の温度を低温にすると所望の嵩密度まで予備発泡できないばかりか、得られる発泡成形品の見栄えが著しく悪化するという問題があった。特に、食品包装材料分野あるいは医療分野で使用される場合は、樹脂中に残留する単量体成分が0.3%未満であることが望まれるが、可塑性を有する単量体成分が少なくなると、低温での発泡・成形性が悪化するという問題があった。   The foamed molded article is manufactured by a method in which foamable thermoplastic resin particles are heated with steam or the like, pre-foamed to a desired bulk density, subjected to an aging step, filled in a molding die, and heated and foamed again. However, when the temperature at the time of foaming is lowered, there is a problem that not only pre-foaming to a desired bulk density but also the appearance of the obtained foamed molded product is remarkably deteriorated. In particular, when used in the food packaging material field or the medical field, it is desired that the monomer component remaining in the resin is less than 0.3%, but when the monomer component having plasticity decreases, There was a problem that foaming and moldability at low temperatures deteriorated.

かかる問題に対して、本発明とは別の目的で、特許文献1では、ブタン類を発泡剤とする発泡性スチレン系樹脂を製造するに当たって、スチレンおよび、スチレンと共重合可能な単量体をスチレンに対して17%以下用いて重合して得られた樹脂であって、二次転移温度がスチレン樹脂より2〜14℃低く且単量体の残留量が0.3%以下であることを特徴とする発泡能に優れた発泡性スチレン系樹脂粒子が提案されている。
また、特許文献2では、水性懸濁体中でスチレン系モノマーとアクリル酸エステルモノマーを共重合させるか若しくは、スチレン系モノマーとアクリル酸エステルモノマーをスチレン系ポリマー種粒子の存在下に共重合させてスチレン系ポリマー粒子の発泡性を改良する方法が提案されている。
In order to solve this problem, Patent Document 1 discloses a styrene and a monomer copolymerizable with styrene in the production of a foamable styrene resin using butanes as a foaming agent. A resin obtained by polymerization using 17% or less based on styrene, wherein the secondary transition temperature is 2 to 14 ° C. lower than that of the styrene resin, and the residual amount of monomer is 0.3% or less. Expandable styrenic resin particles having excellent foaming ability, which have been characterized, have been proposed.
In Patent Document 2, a styrene monomer and an acrylate monomer are copolymerized in an aqueous suspension, or a styrene monomer and an acrylate monomer are copolymerized in the presence of styrene polymer seed particles. A method for improving the foamability of styrenic polymer particles has been proposed.

ところが、特許文献1および2の方法では、二次転移温度を低くすることで発泡力は高くなるが、アクリル酸エステルの粒子表面と中心部の比率に関する検討がなされておらず、低温での成形性では満足する効果が得られない。   However, in the methods of Patent Documents 1 and 2, the foaming power is increased by lowering the secondary transition temperature, but the ratio of the acrylate ester particle surface to the central portion has not been studied, and molding at a low temperature is not performed. A satisfactory effect cannot be obtained with sex.

また、特許文献3では、スチレン系単量体に、アクリル酸ブチル重合体、メタクリル酸セチル重合体およびアクリル酸ブチル−メタクリル酸セチル共重合体からなる群から選ばれた少なくとも一種のアクリル系樹脂を、得られる発泡性スチレン系樹脂粒子の樹脂成分に対して0.1〜6.0重量%溶解させておくことを特徴とする発泡性スチレン系樹脂粒子の製造方法が提案されている。しかしながら、特許文献3では、初期にアクリル系樹脂をスチレン系単量体に溶解させるために、スチレン−アクリル酸エステルブロック共重合体となるが、スチレン−アクリル酸エステルブロック共重合体は熱的安定性に劣り、特に高発泡化させた際に成形体表面の溶融が起こりやすくなり、成形体の外観の見栄えの点で改善の余地があった。   Moreover, in patent document 3, at least 1 type of acrylic resin selected from the group which consists of a butyl acrylate polymer, a cetyl methacrylate polymer, and a butyl acrylate-methacrylic acid acrylate copolymer is used for a styrene-type monomer. There has been proposed a method for producing expandable styrene resin particles, wherein 0.1 to 6.0% by weight is dissolved in the resin component of the expandable styrene resin particles obtained. However, in Patent Document 3, in order to dissolve the acrylic resin in the styrene monomer in the initial stage, it becomes a styrene-acrylate block copolymer, but the styrene-acrylate block copolymer is thermally stable. In particular, the surface of the molded body is likely to melt when it is made highly foamed, and there is room for improvement in terms of the appearance of the molded body.

特許文献4では、スチレン系単量体、ジアリルフタレート並びにアクリル酸エステル若しくはメタクリル酸エステルを重合させて得られる熱可塑性樹脂の粒子に発泡剤を含浸させてなる発泡性熱可塑性樹脂粒子が提案されている。しかしながら、ジアリルフタレートのような架橋剤を添加し分子量を高くすると、成形性が悪化し成形体表面の見栄えが損なわれるという点で改善の余地があった。   Patent Document 4 proposes foamable thermoplastic resin particles obtained by impregnating a foaming agent into thermoplastic resin particles obtained by polymerizing a styrene monomer, diallyl phthalate, and acrylic acid ester or methacrylic acid ester. Yes. However, when a crosslinking agent such as diallyl phthalate is added to increase the molecular weight, there is room for improvement in that the moldability is deteriorated and the appearance of the surface of the molded article is impaired.

特許文献5では、本発明とは別の発泡方法ではあるが、重量平均分子量が15万〜50万であるスチレン系樹脂粒子を用いて、側鎖を有する炭素数が5以下の脂肪酸炭化水素を主成分とする発泡剤3〜10重量%を含有し、発泡開始温度が50〜70℃、最高発泡温度が80〜110℃である発泡性スチレン系樹脂粒子及びその製造方法が提案されている。ところが、低温での発泡性を改善するためにアクリル酸ブチルと共重合しているが、スチレン系単量体に対するアクリル酸ブチルの使用量が多いために、成形体表面の溶融が起こりやすくなり、成形体の外観の見栄えが著しく悪化する問題がある。   In patent document 5, although it is a foaming method different from the present invention, styrene resin particles having a weight average molecular weight of 150,000 to 500,000 are used, and a fatty acid hydrocarbon having 5 or less carbon atoms having a side chain is obtained. Expandable styrene resin particles containing 3 to 10% by weight of a foaming agent as a main component, having a foaming start temperature of 50 to 70 ° C. and a maximum foaming temperature of 80 to 110 ° C., and a method for producing the same are proposed. However, it is copolymerized with butyl acrylate in order to improve foamability at low temperature, but because the amount of butyl acrylate used relative to the styrenic monomer is large, melting of the molded body surface tends to occur, There is a problem that the appearance of the molded body is remarkably deteriorated.

特公昭46−42236号公報Japanese Examined Patent Publication No. 46-42236 特開平6−322038号公報Japanese Patent Laid-Open No. 6-322038 特許第1217232号公報Japanese Patent No. 1217232 特許第1340620号公報Japanese Patent No. 1340620 特開平11−228727号公報JP-A-11-228727

以上のような状況に鑑み、本発明の目的は、低温での予備発泡及び型内成形に適した発泡性熱可塑性樹脂粒子を提供することにある。   In view of the situation as described above, an object of the present invention is to provide expandable thermoplastic resin particles suitable for pre-expansion and in-mold molding at low temperatures.

発明者らは、上記の問題を解決すべく鋭意検討したところ、単量体組成が、スチレン95重量%超99重量%以下およびアクリル酸エステル1重量%以上5重量%未満である(両者の合計量が100重量%である)熱可塑性樹脂を含んでなる発泡性熱可塑性樹脂粒子であって、ATR−FTIRにより測定された熱可塑性樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる696cm−1及び1730cm−1での吸光度比(A1730/A696)が、熱可塑性樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比(A1730/A696)の1.0以上10倍以下とすることにより、上記特性を有する発泡性熱可塑性樹脂粒子を得られること見出し、本発明に至った。 The inventors of the present invention have intensively studied to solve the above-described problems, and as a result, the monomer composition is more than 95% by weight of styrene and 99% by weight or less of styrene and 1% by weight or more and less than 5% by weight of acrylate (total of both) Expandable thermoplastic resin particles comprising a thermoplastic resin (in a quantity of 100% by weight), 696 cm −1 obtained from an infrared absorption spectrum of the thermoplastic resin pre-expanded particle surface measured by ATR-FTIR, and The absorbance ratio (A 1730 / A 696 ) at 1730 cm −1 is 1.0 to 10 times the absorbance ratio (A 1730 / A 696 ) obtained from the infrared absorption spectrum of the thermoplastic resin pre-foamed particle center. As a result, it was found that expandable thermoplastic resin particles having the above characteristics could be obtained, and the present invention was achieved.

すなわち、
本発明の第1は、単量体組成が、スチレン系単量体95重量%超99重量%以下およびアクリル酸エステル系単量体1重量%以上5重量%未満(両者の合計量が100重量%である)である熱可塑性樹脂を含んでなる発泡性熱可塑性樹脂粒子であって、ATR−FTIRにより測定された熱可塑性樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる696cm−1及び1730cm−1での吸光度比(A1730/A696)が、熱可塑性樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比(A1730/A696)の1.0倍以上10倍以下である発泡性熱可塑性樹脂粒子に関する。
本発明の第2は、アクリル酸エステルがアクリル酸ブチルである、第1の発明記載の発泡性熱可塑性樹脂粒子に関する。
本発明の第3は、発泡性熱可塑性樹脂粒子中に含有される単量体成分が0.3重量%未満である、第1または2の発明記載の発泡性熱可塑性樹脂粒子に関する。
本発明の第4は、第1〜第3のいずれかの発明の発泡性熱可塑性樹脂粒子を発泡させてなることを特徴とする、熱可塑性樹脂予備発泡粒子に関する。
本発明の第5は、第4の発明の熱可塑性予備発泡粒子を型内成形してなることを特徴とする、熱可塑性樹脂発泡体に関する。
That is,
In the first aspect of the present invention, the monomer composition is more than 95% by weight of styrene monomer and 99% by weight or less, and 1% by weight or more and less than 5% by weight of acrylate monomer (the total amount of both is 100% by weight). %) And obtained from an infrared absorption spectrum of the surface of the thermoplastic resin pre-expanded particles measured by ATR-FTIR, 696 cm −1 and 1730 cm −. absorbance ratio at 1 (a 1730 / a 696) is not more than 10 times 1.0 times or more the absorbance ratio obtained from the infrared absorption spectrum of the thermoplastic resin pre-expanded particles center (a 1730 / a 696) foam Relates to a thermoplastic resin particle.
2nd of this invention is related with the foamable thermoplastic resin particle of 1st invention description whose acrylic ester is butyl acrylate.
A third aspect of the present invention relates to the expandable thermoplastic resin particles according to the first or second invention, wherein the monomer component contained in the expandable thermoplastic resin particles is less than 0.3% by weight.
4th of this invention is related with the thermoplastic resin pre-expanded particle characterized by making the foamable thermoplastic resin particle of any one of the 1st-3rd invention foam.
5th of this invention is related with the thermoplastic resin foam characterized by carrying out the shaping | molding of the thermoplastic pre-expanded particle of 4th invention.

本発明は、単量体組成が、スチレン95重量%超99重量%以下およびアクリル酸エステル1重量%以上5重量%未満である(両者の合計量が100重量%である)熱可塑性樹脂を含んでなる発泡性熱可塑性樹脂粒子であって、ATR−FTIRにより測定された熱可塑性樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる696cm−1及び1730cm−1での吸光度比(A1730/A696)が、熱可塑性樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比(A1730/A696)の1.0倍以上10倍以下であることにより、低温での予備発泡および型内成形に適した発泡性熱可塑性樹脂粒子を得ることができる。 The present invention includes a thermoplastic resin having a monomer composition of more than 95% by weight of styrene and 99% by weight or less of styrene and 1% by weight or more and less than 5% by weight of acrylate (the total amount of both is 100% by weight). a foamable thermoplastic resin particles made by the absorbance ratio at 696cm -1 and 1730 cm -1 obtained from an infrared absorption spectrum of the measured thermoplastic resin pre-expanded particle surface by ATR-FTIR (a 1730 / a 696 ) Is 1.0 to 10 times the absorbance ratio (A 1730 / A 696 ) obtained from the infrared absorption spectrum of the thermoplastic resin pre-foamed particle center, pre-foaming and in-mold molding at low temperature Expandable thermoplastic resin particles suitable for the above can be obtained.

本発明の発泡性熱可塑性樹脂粒子は、単量体組成が、スチレン95重量%超99重量%以下およびアクリル酸エステル1重量%以上5重量%未満である(両者の合計量が100重量%である)熱可塑性樹脂を含んでなる発泡性熱可塑性樹脂粒子であって、ATR−FTIRにより測定された熱可塑性樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる696cm−1及び1730cm−1での吸光度比(A1730/A696)が、熱可塑性樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比(A1730/A696)の1.0倍以上10倍以下とするにより、低温での予備発泡および型内成形に適した発泡性熱可塑性樹脂粒子を得ることができる。 The foamable thermoplastic resin particles of the present invention have a monomer composition of more than 95% by weight of styrene and 99% by weight or less of styrene and 1% by weight or more and less than 5% by weight of acrylate (the total amount of both is 100% by weight). there) a foamable thermoplastic resin particles comprising a thermoplastic resin, the absorbance at 696cm -1 and 1730 cm -1 obtained from an infrared absorption spectrum of the thermoplastic resin pre-expanded particle surface measured by ATR-FTIR When the ratio (A 1730 / A 696 ) is 1.0 to 10 times the absorbance ratio (A 1730 / A 696 ) obtained from the infrared absorption spectrum of the thermoplastic resin pre-foamed particle central portion, Expandable thermoplastic resin particles suitable for prefoaming and in-mold molding can be obtained.

本発明の発泡性熱可塑性樹脂粒子を構成するスチレン系単量体としては、例えば、スチレン、α−メチルスチレン、パラメチルスチレン、t−ブチルスチレン、クロルスチレンなどのスチレン系誘導体が挙げられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。   Examples of the styrene monomer constituting the expandable thermoplastic resin particles of the present invention include styrene derivatives such as styrene, α-methyl styrene, paramethyl styrene, t-butyl styrene, and chlorostyrene. These may be used alone or in combination of two or more.

本発明の発泡性熱可塑性樹脂粒子を構成するアクリル酸エステル系単量体としては、例えば、アクリル酸メチル、アクリル酸ブチル、などのアクリル酸アルキルエステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸セチルなどのメタクリル酸アルキルエステルなどが挙げられる。これらの単量体は単独で用いてもよいし、2種以上を混合して用いてもよい。これらのうちでも、スチレン系単量体と共重合し易く、成形性が良い点から、アクリル酸ブチルが好ましい。   Examples of the acrylate monomer constituting the foamable thermoplastic resin particles of the present invention include, for example, alkyl acrylates such as methyl acrylate and butyl acrylate, methyl methacrylate, ethyl methacrylate, and cetyl methacrylate. And methacrylic acid alkyl esters. These monomers may be used independently and may be used in mixture of 2 or more types. Of these, butyl acrylate is preferred because it is easy to copolymerize with the styrene monomer and has good moldability.

本発明における発泡性熱可塑性樹脂粒子を構成する単量体組成は、仕込み単量体の全重量100重量%に対して単量体組成が、スチレン系単量体95重量%超99重量%以下、アクリル酸エステル系単量体1重量%以上5重量%未満であり、より好ましくは、スチレン系単量体97重量%以上99重量%以下、アクリル酸エステル1重量%以上3重量%以下である。
単量体組成において、アクリル酸エステル系単量体が5重量%以上となると、特に高発泡化させた際に、成形体の収縮が起こりやすくなり、成形体の外観の見栄えが悪化する傾向がある。また、アクリル酸エステル系単量体が1重量%未満となると、低温での発泡が困難となる(目的とする発泡倍率の予備発泡粒子を得るために必要な加熱温度や融着性に優れる成形体を得るのに必要な成形温度が高くなる)傾向がある。
なお、単量体組成における仕込み単量体に関しては、重合法としてシード懸濁重合法を実施する場合には、シードとなる樹脂粒子中の単量体組成も仕込み単量体量に反映させる。
The monomer composition constituting the expandable thermoplastic resin particles in the present invention is such that the monomer composition is more than 95% by weight and less than 99% by weight of the styrene monomer with respect to the total weight of 100% by weight of the charged monomers. The acrylate monomer is 1% by weight or more and less than 5% by weight, more preferably 97% by weight or more and 99% by weight or less of the styrene monomer, and 1% by weight or more and 3% by weight or less of the acrylate ester. .
In the monomer composition, when the acrylate monomer is 5% by weight or more, particularly when the foam is made highly foamed, the molded product tends to shrink, and the appearance of the molded product tends to deteriorate. is there. Moreover, when the amount of the acrylate monomer is less than 1% by weight, foaming at low temperature becomes difficult (molding with excellent heating temperature and fusing property necessary for obtaining pre-expanded particles having a desired expansion ratio. The molding temperature required to obtain the body tends to increase).
Regarding the charged monomer in the monomer composition, when the seed suspension polymerization method is carried out as a polymerization method, the monomer composition in the resin particles serving as a seed is also reflected in the charged monomer amount.

本発明の発泡性熱可塑性樹脂粒子は、ATR−FTIRにより測定された熱可塑性樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる696cm−1及び1730cm−1での吸光度比α(A1730/A696)が、熱可塑性樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比β(A1730/A696)の1.0倍以上10倍以下であり、好ましくは1.0倍以上5.0倍以下である。
表面と中心部での吸光度比の割合α/βが10より高いと、粒子内部に比べて粒子表面のアクリル酸エステルの比率が高くなり、特に高い蒸気圧(高い金型温度)で成形する際に表面溶融を起こしやすくなり、表面外観を損なう傾向にある。吸光度比の割合α/βが1.0未満であると、粒子表面のアクリル酸エステルの比率が低くなり、低い蒸気圧(低い金型温度)での成形が困難になり、表面外観が悪化する傾向にある、また、予備発泡時の加熱温度も高温となる傾向がある。
Expandable thermoplastic resin particles of the present invention, the absorbance ratio at 696cm -1 and 1730 cm -1 obtained from an infrared absorption spectrum of the measured thermoplastic resin pre-expanded particle surface by ATR-FTIR α (A 1730 / A 696 ) Is 1.0 times or more and 10 times or less, preferably 1.0 times or more and 5.0 times the absorbance ratio β (A 1730 / A 696 ) obtained from the infrared absorption spectrum of the thermoplastic resin pre-foamed particle central part. Is less than double.
When the ratio α / β of the absorbance ratio between the surface and the central part is higher than 10, the ratio of the acrylate ester on the particle surface is higher than the inside of the particle, particularly when molding at a high vapor pressure (high mold temperature). Surface melting tends to occur, and the surface appearance tends to be impaired. When the ratio α / β of the absorbance ratio is less than 1.0, the ratio of the acrylate ester on the particle surface becomes low, it becomes difficult to mold at a low vapor pressure (low mold temperature), and the surface appearance is deteriorated. In addition, the heating temperature at the time of preliminary foaming tends to be high.

熱可塑性樹脂予備発泡粒子における表面と中心部での吸光度比は、重合時にアクリル酸エステルを添加するタイミングを変えることにより、調整することができる。   The absorbance ratio between the surface and the center of the thermoplastic resin pre-expanded particles can be adjusted by changing the timing of adding the acrylic ester during polymerization.

ここで、赤外線吸収スペクトルから得られる1730cm−1の吸光度とは、カルボニル基のC=O間伸縮振動よる吸収スペクトルであり、吸光度(A1730)とした。
赤外線吸収スペクトルから得られる696cm−1の吸光度とは、芳香族ベンゼン環面外変角の吸収スペクトルであり、吸光度(A696)とした。
Here, the absorbance at 1730 cm −1 obtained from the infrared absorption spectrum is an absorption spectrum due to stretching vibration between C═O of the carbonyl group, and is defined as absorbance (A 1730 ).
The absorbance at 696 cm −1 obtained from the infrared absorption spectrum is an absorption spectrum of the out-of-plane variation angle of the aromatic benzene ring, and is defined as absorbance (A 696 ).

本発明におけるATR−FTIRとは、ATR(Attenuated Total Reflection)法を利用したFTIRである。ATR法とは、屈折率の高い結晶を試料表面に圧着し、全反射条件を用いて試料表面を高感度に測定でき、透過法と類似のスペクトルを簡便に得ることができる手法であり、光を透過しない、高分子厚膜、樹脂、塗膜、紙、糸など一般的な工業材料の分析に広く用いられている。   ATR-FTIR in the present invention is FTIR using an ATR (Attenuated Total Reflection) method. The ATR method is a technique in which a crystal having a high refractive index is pressure-bonded to a sample surface, the sample surface can be measured with high sensitivity using total reflection conditions, and a spectrum similar to the transmission method can be obtained easily. It is widely used for the analysis of general industrial materials such as polymer thick film, resin, coating film, paper, thread, etc.

一般に、光は、試料と高屈折率結晶の界面で反射するのではなく、ある深さだけ試料側に入り込んでから全反射する。このとき、試料に吸収のない波数領域においては、光は全反射するが、吸収のある領域においては100%全反射するのではなく、吸収の強さに応じて全反射光の強度が落ちる。この反射エネルギーを測定することにより、全反射スペクトルが得られる。   In general, light is not reflected at the interface between the sample and the high refractive index crystal, but is totally reflected after entering the sample side by a certain depth. At this time, although the light is totally reflected in the wave number region where the sample does not absorb, it is not totally reflected in the region where the sample is absorbed, but the intensity of the totally reflected light decreases according to the intensity of absorption. By measuring this reflected energy, a total reflection spectrum is obtained.

ただし、光のもぐりこみ深さ(測定深度)は、使用する高屈折率結晶の屈折率、試料の屈折率、測定光の入射角、測定光の波数によって大きく変化するため、これらのパラメーターを特定しないと、測定結果は比較できない。ATR法における測定深度には波数依存性があり、低波数ほど測定深度が深く、吸収強度が大きくなる。したがって、透過スペクトルとの比較の場合には補正が必要となる。   However, the depth of the light penetration (measurement depth) varies greatly depending on the refractive index of the high refractive index crystal used, the refractive index of the sample, the incident angle of the measurement light, and the wave number of the measurement light, so these parameters are not specified. And the measurement results cannot be compared. The measurement depth in the ATR method is dependent on the wave number. The lower the wave number, the deeper the measurement depth and the greater the absorption intensity. Therefore, correction is required for comparison with the transmission spectrum.

本発明においては、以下の条件にて、ATR−FTIR測定を行った。
高屈折率結晶種:セレン化亜鉛(ZnSe)
入射角 :45°
測定領域 :4000cm−1〜600cm−1
検出器 :DLATGS
もぐり込み深さ:1.66
反射回数 :1回
分解能 :4cm−1
積算回数 :20回
その他 :試料と接触させずに測定した赤外線吸収スペクトルを、バックグラウンドとして測定スペクトルに関与しない処理を実施した。
In the present invention, ATR-FTIR measurement was performed under the following conditions.
High refractive index crystal species: zinc selenide (ZnSe)
Incident angle: 45 °
Measurement area: 4000 cm −1 to 600 cm −1
Detector: DLATGS
Depth of penetration: 1.66
Number of reflections: 1 time Resolution: 4 cm −1
Number of integrations: 20 times Others: An infrared absorption spectrum measured without contacting the sample was used as a background, and a process not involving the measurement spectrum was performed.

なお、ATR法では、試料と高屈折率結晶の密着度合いによって測定で得られる赤外線吸収スペクトルの強度が変化するため、696cm−1の吸光度(A696)が0.08〜0.12となるように、試料と高屈折率結晶の密着度合いを調節して測定する。 In the ATR method, the intensity of the infrared absorption spectrum obtained by measurement varies depending on the degree of adhesion between the sample and the high refractive index crystal, so that the absorbance at 696 cm −1 (A 696 ) is 0.08 to 0.12. In addition, the degree of adhesion between the sample and the high refractive index crystal is adjusted and measured.

ここで、予備発泡粒子の表面を測定する場合は、粒子表面をそのままATRプリズムに密着させて測定した。予備発泡粒子の中心部を測定する場合は、剃刀を用いて、予備発泡粒子の中心を通るように二分割し、二分割した切片の断面をATRプリズムに密着させて測定した。   Here, when measuring the surface of the pre-expanded particles, the surface of the particles was directly adhered to the ATR prism. When measuring the central part of the pre-expanded particles, the measurement was performed by using a razor to divide into two parts so as to pass through the center of the pre-expanded particles, and to make the cross section of the divided part in close contact with the ATR prism.

以上のようにして得られた赤外線吸収スペクトルから、698cm−1の吸光度(A698)と1730cm−1の吸光度(A1730)との吸光度比(A698/A1730)を求める。本発明では、任意の10個の予備発泡粒子の表面および中心部において、ATR−FTIR測定を行い、最小の吸光度比と最大の吸光度比を除外する。そして、残余8個の吸光度比の相加平均を、吸光度比(A696/A1730)とした。得られた表面の吸光度比α(A696/A1730)と中心部の吸光度比β(A696/A1730)から、以下の式にて表面と中心部との吸光度比を算出した。
表面と中心部との吸光度比=α(表面)/β(中心部)
From the infrared absorption spectrum obtained as described above, determine the absorbance of 698cm -1 (A 698) and absorbance at 1730 cm -1 absorbance ratio of (A 1730) (A 698 / A 1730). In the present invention, ATR-FTIR measurement is performed on the surface and center of any 10 pre-expanded particles, and the minimum absorbance ratio and the maximum absorbance ratio are excluded. The arithmetic average of the remaining 8 absorbance ratios was defined as the absorbance ratio (A 696 / A 1730 ). From the absorbance ratio α (A 696 / A 1730 ) of the obtained surface and the absorbance ratio β (A 696 / A 1730 ) of the central portion, the absorbance ratio between the surface and the central portion was calculated by the following formula.
Absorbance ratio between surface and center = α (surface) / β (center)

本発明における発泡性熱可塑性樹脂粒子の重量平均分子量(Mw)としては、20万以上32万未満が好ましく、22万以上28万未満がより好ましい。発泡性スチレン系樹脂粒子の重量平均分子量Mwが20万未満では、発泡成形体とした際の底割強度が低くなる傾向があり、また、32万を越えると、発泡性が低くなり、成形性が悪化する(目的とする発泡倍率の予備発泡粒子を得るために必要な加熱温度や融着性に優れる成形体を得るのに必要な成形温度が高くなる)傾向がある。   As a weight average molecular weight (Mw) of the expandable thermoplastic resin particle in this invention, 200,000 or more and less than 320,000 are preferable, and 220,000 or more and less than 280,000 are more preferable. If the weight average molecular weight Mw of the expandable styrene resin particles is less than 200,000, the bottom split strength tends to be low when it is formed into a foamed molded product, and if it exceeds 320,000, the foamability is low and the moldability is low. Tends to deteriorate (the heating temperature necessary for obtaining pre-expanded particles having the desired expansion ratio and the molding temperature necessary for obtaining a molded article having excellent fusing properties).

重量平均分子量Mwは、熱可塑性樹脂粒子を重合する際の開始剤の使用量と重合温度の組み合わせにより制御することができる。例えば、開始剤の使用量を多くする、および/または、重合温度を高くすることにより、Mwを低くできる。   The weight average molecular weight Mw can be controlled by a combination of the amount of the initiator used for polymerizing the thermoplastic resin particles and the polymerization temperature. For example, Mw can be lowered by increasing the amount of initiator used and / or increasing the polymerization temperature.

本発明の発泡性スチレン系樹脂粒子では、重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnは、2.7以上3.4未満とすることが好ましく、2.8以上3.2未満とすることがより好ましい。Mw/Mnが2.7未満であると、表面に溶融した粒子がなく、見栄えの良い成形体を得ることができる成形温度が低くなる傾向があり、3.4よりも大きくなると発泡性が低くなり、成形性が悪化する(目的とする発泡倍率の予備発泡粒子を得るために必要な加熱温度や融着性に優れる成形体を得るのに必要な成形温度が高くなる)傾向がある。   In the expandable styrene resin particles of the present invention, the ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 2.7 or more and less than 3.4. More preferably, it is less than 3.2. When Mw / Mn is less than 2.7, there is no molten particle on the surface, and there is a tendency that the molding temperature at which a good-looking molded product can be obtained tends to be low. Therefore, the moldability tends to be deteriorated (the heating temperature necessary for obtaining the pre-expanded particles having the desired expansion ratio and the molding temperature necessary for obtaining a molded article having excellent fusing property).

Mw/Mn比は、熱可塑性樹脂粒子を重合する際の開始剤の使用量と重合温度の組み合わせにより制御する。例えば、開始剤の使用量を多くする、および/または、重合温度を高くすることにより、Mw/Mnを下げることができる。   The Mw / Mn ratio is controlled by a combination of the amount of initiator used when polymerizing thermoplastic resin particles and the polymerization temperature. For example, Mw / Mn can be lowered by increasing the amount of initiator used and / or increasing the polymerization temperature.

本発明の発泡性熱可塑性樹脂粒子の製造方法は、水性媒体中にて懸濁重合法により得られる粒子に発泡剤を含浸する方法、水性媒体中にて塊状重合により製造されたペレットに発泡剤を含浸する方法、のいずれの方法によっても得ることができる。
これらの中でも、真球状の樹脂粒子を得ることができ、さらに、重合工程と発泡剤含浸工程を一貫して行い発泡性熱可塑性樹脂粒子が得られるため、工業生産性も良い懸濁重合法により製造することが好ましい。
すなわち、発泡性熱可塑性樹脂粒子の製造方法としては、スチレン系単量体およびアクリル酸エステル系単量体を懸濁液、重合開始剤およびその他の添加剤の存在下で重合反応を開始し、懸濁重合中に発泡剤を添加するか、または重合後に発泡剤を含浸させる方法が好ましい。
The method for producing expandable thermoplastic resin particles of the present invention includes a method of impregnating particles obtained by suspension polymerization in an aqueous medium with a foaming agent, and a foaming agent on pellets produced by bulk polymerization in an aqueous medium. It can be obtained by any of the methods of impregnating.
Among these, spherical resin particles can be obtained, and furthermore, the polymerization process and the foaming agent impregnation process can be performed consistently to obtain expandable thermoplastic resin particles. It is preferable to manufacture.
That is, as a method for producing expandable thermoplastic resin particles, a styrene monomer and an acrylate monomer are suspended, a polymerization reaction is initiated in the presence of a polymerization initiator and other additives, A method of adding a foaming agent during suspension polymerization or impregnating the foaming agent after polymerization is preferred.

本発明における上記単量体の重合開始剤としては、一般に熱可塑性重合体の製造に用いられるラジカル発生型重合開始剤を用いることができる。重合開始剤の代表的なものとしては、例えば、アゾビスイソブチロニトリル等のアゾ系化合物、ベンゾイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ラウロイルパーオーキサイド−t−ブチルパーオキシイソプロピルカーボネート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシベンゾエートなどの過酸化物があげられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。   As the polymerization initiator of the monomer in the present invention, a radical generating polymerization initiator generally used for producing a thermoplastic polymer can be used. Typical polymerization initiators include, for example, azo compounds such as azobisisobutyronitrile, benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, lauroyl peroxide-t-butyl. Peroxyisopropyl carbonate, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butyl) Peroxy) -3,3,5-trimethylcyclohexane, t-butyl peroxybenzoate, and other peroxides. These may be used alone or in combination of two or more.

本発明における重合開始剤の使用量は,仕込み単量体の全重量100重量部に対して0.01重量部以上3重量部未満が好ましい。重合開始剤の使用量が0.01重量部未満では重合速度が遅くなる傾向があり、逆に、3重量部を超えると、重合反応が早く制御が困難になる傾向がある。   The amount of the polymerization initiator used in the present invention is preferably 0.01 parts by weight or more and less than 3 parts by weight with respect to 100 parts by weight of the total weight of the charged monomers. If the amount of the polymerization initiator used is less than 0.01 parts by weight, the polymerization rate tends to be slow, whereas if it exceeds 3 parts by weight, the polymerization reaction tends to be fast and difficult to control.

本発明において用いられる発泡剤としては、例えば、プロパン、ブタン、ペンタン、ヘキサン等の脂肪族炭化水素、シクロブタン、シクロペンタン、シクロヘキサン等の脂環族炭化水素、メチルクロライド、ジクロルジフルオロメタン、ジクロルテトラフルオロエタン等のハロゲン化炭化水素が挙げられる。これらの発泡剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。これらのうちでも、ブタンが、発泡力が良好である点から、好ましい。   Examples of the blowing agent used in the present invention include aliphatic hydrocarbons such as propane, butane, pentane and hexane, alicyclic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane, methyl chloride, dichlorodifluoromethane, and dichloro. Halogenated hydrocarbons such as tetrafluoroethane are mentioned. These foaming agents may be used alone or in combination of two or more. Among these, butane is preferable from the viewpoint of good foaming power.

本発明における発泡剤の使用量は、熱可塑性樹脂100重量部に対して、4重量部以上10重量部%未満が好ましく、5重量部以上9重量部未満がより好ましい。発泡剤の使用量が4重量部未満では、予備発泡時間が長くなると共に、成形時の融着率が低下する傾向があり、製造コストが高くなり、経済的に不利である。発泡剤の使用量が10重量部以上では、成形体が収縮し易くなり、見栄えを損なう傾向がある。   The amount of the foaming agent used in the present invention is preferably 4 parts by weight or more and less than 10 parts by weight, and more preferably 5 parts by weight or more and less than 9 parts by weight with respect to 100 parts by weight of the thermoplastic resin. When the amount of the foaming agent used is less than 4 parts by weight, the pre-foaming time becomes long and the fusion rate at the time of molding tends to decrease, resulting in an increase in production cost and economical disadvantage. When the amount of the foaming agent used is 10 parts by weight or more, the molded product tends to shrink and the appearance tends to be impaired.

本発明において用いられる可塑剤としては、例えば、ジイソブチルアジペート、ジオクチルアジペート、ジブチルセバケート、グリセリントリステアレート、グリセリントリカプリレート、ヤシ油、パーム油、菜種油などが挙げられる。これらのうちでも、医療分野あるいは直接食品に接触する包装材料分野向けに使用する場合は、食用油であるのが好ましく、さらには、やし油、パーム油、菜種油がより好ましい。
本発明においては、可塑剤は、熱可塑性樹脂粒子の重合工程、発泡剤を含浸させる工程、等にて添加してもよい。
Examples of the plasticizer used in the present invention include diisobutyl adipate, dioctyl adipate, dibutyl sebacate, glycerin tristearate, glycerin tricaprylate, coconut oil, palm oil, and rapeseed oil. Among these, when used for the medical field or the packaging material field that is in direct contact with food, edible oil is preferable, and palm oil, palm oil, and rapeseed oil are more preferable.
In the present invention, the plasticizer may be added in a step of polymerizing thermoplastic resin particles, a step of impregnating a foaming agent, or the like.

本発明における可塑剤の使用量は、熱可塑性樹脂100重量部に対して、0.2重量部以上2.0重量部未満が好ましく、0.4重量部以上1.6重量部未満がより好ましい。可塑剤の使用量が0.2重量部未満では、二次転移温度が低くならず、低温での予備発泡および成形に不利となる傾向があり、2.0重量部以上では、成形体が収縮し易くなり、見栄えを損なう傾向がある。   The amount of the plasticizer used in the present invention is preferably 0.2 parts by weight or more and less than 2.0 parts by weight, more preferably 0.4 parts by weight or more and less than 1.6 parts by weight with respect to 100 parts by weight of the thermoplastic resin. . If the amount of the plasticizer used is less than 0.2 parts by weight, the secondary transition temperature does not decrease, which tends to be disadvantageous for pre-foaming and molding at low temperatures. It tends to be easy to do and spoil the appearance.

本発明の発泡性熱可塑性樹脂粒子中に含有される単量体成分は、0.3重量%未満である。含有される単量体成分は、発泡性熱可塑性樹脂粒子を発泡して得られる発泡成形体から揮発する傾向があり、特に含有される単量体成分が0.3重量%以上では、医療分野あるいは直接食品に接触する包装材料分野、もしくは自動車や建築の部材向けには、好ましくない。   The monomer component contained in the expandable thermoplastic resin particles of the present invention is less than 0.3% by weight. The contained monomer component tends to volatilize from the foamed molded product obtained by foaming the expandable thermoplastic resin particles. Particularly, when the contained monomer component is 0.3% by weight or more, the medical field Or it is unpreferable for the field of the packaging material which contacts a foodstuff directly, or for the components of a motor vehicle or a building.

残存単量体成分量は、熱可塑性樹脂粒子を重合する際の開始剤の使用量と重合温度の組み合わせにより制御する。例えば、開始剤の使用量を多くする、および/または、重合温度を高くすることにより、残量単量体成分を下げることができる。   The amount of the residual monomer component is controlled by a combination of the amount of initiator used when polymerizing the thermoplastic resin particles and the polymerization temperature. For example, the residual monomer component can be lowered by increasing the amount of initiator used and / or increasing the polymerization temperature.

本発明において用いられる懸濁剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や第三燐酸カルシウム、ビロリン酸マグネシウム等の難溶性無機物質、等が挙げられる。
懸濁剤として難溶性無機物質を用いる場合は、ドデシルベンゼンスルホン酸ソーダ等のア二オン界面活性剤を併用することにより、懸濁安定効果は増大させることができる。
また、水溶性高分子と難溶性無機物質の併用も効果的である。
Examples of the suspending agent used in the present invention include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly soluble inorganic substances such as tricalcium phosphate and magnesium pyrophosphate.
When a hardly soluble inorganic substance is used as the suspending agent, the suspension stabilizing effect can be increased by using an anion surfactant such as sodium dodecylbenzenesulfonate.
Moreover, the combined use of a water-soluble polymer and a hardly soluble inorganic substance is also effective.

本発明においては、上記した原料物質以外に、造核剤、難燃剤等の発泡性熱可塑性重合体粒子の製造に一般的に使用されている物質を、本発明を阻害しない限りにおいては、併用してもよい。   In the present invention, in addition to the above-mentioned raw materials, materials generally used for the production of expandable thermoplastic polymer particles such as nucleating agents and flame retardants are used in combination unless the present invention is inhibited. May be.

本発明において用いられる造核剤としては、例えば、メタクリル酸メチル系共重合体、ポリエチレンワックス、タルク、脂肪酸ビスアマイド、エチレン−酢酸ビニル共重合体樹脂、等が挙げられる。脂肪酸ビスアマイドの具体的例としては、メチレンビスステアリルアマイド、エチレンビスステアリルアマイド(以下EBSと略する)、ヘキサメチレンビスパルミチン酸アマイド、エチレンビスオレイン酸アマイド等である。   Examples of the nucleating agent used in the present invention include methyl methacrylate copolymer, polyethylene wax, talc, fatty acid bisamide, ethylene-vinyl acetate copolymer resin, and the like. Specific examples of the fatty acid bisamide include methylene bisstearyl amide, ethylene bisstearyl amide (hereinafter abbreviated as EBS), hexamethylene bispalmitic acid amide, ethylene bisoleic acid amide and the like.

本発明において用いられる難燃剤および難燃助剤としては、公知慣用のものが使用できる。
難燃剤の具体例としては、例えば、ヘキサブロモシクロドデカン、テトラブロモブタン、ヘキサブロモシクロヘキサン等のハロゲン化脂肪族炭化水素系化合物、テトラブロモビスフェノールA、テトラブロモビスフェノールF、2,4,6−トリブロモフェノール等の臭素化フェノール類、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ジグリシジルエーテル、2,2−ビス[4'(2”,3”−ジブロモアルコキシ)−3',5'−ジブロモフェニル]−プロパン等の臭素化フェノール誘導体が挙げられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。
難燃助剤の具体例としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、2,3−ジメチルー2,3−ジフェニルブタン等の開始剤を使用してもよい。
As the flame retardant and flame retardant aid used in the present invention, known and conventional ones can be used.
Specific examples of the flame retardant include, for example, halogenated aliphatic hydrocarbon compounds such as hexabromocyclododecane, tetrabromobutane, hexabromocyclohexane, tetrabromobisphenol A, tetrabromobisphenol F, 2,4,6-tri Brominated phenols such as bromophenol, tetrabromobisphenol A-bis (2,3-dibromopropyl ether), tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A- Examples thereof include brominated phenol derivatives such as diglycidyl ether and 2,2-bis [4 ′ (2 ″, 3 ″ -dibromoalkoxy) -3 ′, 5′-dibromophenyl] -propane. These may be used alone or in combination of two or more.
Specific examples of flame retardant aids include initiators such as cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and the like. .

本発明の発泡性熱可塑性樹脂粒子は、これを予備発泡させ、その後、それを加熱発泡させ、発泡成形体とする。   The foamable thermoplastic resin particles of the present invention are pre-foamed and then heated and foamed to obtain a foamed molded product.

予備発泡方法としては、例えば、円筒形の予備発泡装置を用いて、蒸気等で加熱して発泡させる等の、通常の方法を採用することができる。   As the pre-foaming method, for example, an ordinary method such as foaming by heating with steam or the like using a cylindrical pre-foaming apparatus can be employed.

予備発泡時の加熱温度(缶内温度)は、吹き込み蒸気圧及びエアー量により適宜調整されるものであるが、通常101〜105℃程度であるが、本発明においては、97〜100℃程度の低温においても予備発泡が可能となる。   The heating temperature at the time of preliminary foaming (temperature in the can) is appropriately adjusted depending on the blowing vapor pressure and the air amount, and is usually about 101 to 105 ° C, but in the present invention, it is about 97 to 100 ° C. Pre-foaming is possible even at low temperatures.

予備発泡粒子を発泡成形させる方法としては、例えば、金型内に予備発泡粒子を充填し、蒸気等を吹き込んで加熱する方法により発泡成形体を得る、いわゆる型内発泡成形法、等の、通常の方法を採用することができる。   As a method for foam-molding the pre-foamed particles, for example, the pre-foamed particles are filled in a mold, and a foam-molded product is obtained by a method of blowing and heating steam or the like. This method can be adopted.

型内成形時の吹き込み蒸気圧としては、通常0.6〜1.0kgf/cm程度であるが、本発明においては、0.3〜0.8kgf/cm程度においても成形が可能となる。 The blown vapor pressure at the time of molding in the mold is usually about 0.6 to 1.0 kgf / cm 2 , but in the present invention, molding is possible even at about 0.3 to 0.8 kgf / cm 2. .

型内成形時の金型温度としては、吹き込み蒸気圧により適宜調整されるものであるが、通常113〜115℃程度であるが、本発明においては、109〜115℃程度とより低温においても成形が可能となる。   The mold temperature at the time of in-mold molding is appropriately adjusted by the blown vapor pressure, but is usually about 113 to 115 ° C., but in the present invention, molding is also performed at a lower temperature of about 109 to 115 ° C. Is possible.

以上のように、本発明の発泡性熱可塑性樹脂粒子は、予備発泡時および型内発泡成形時のどちらにおいても、従来よりも低温で実施することが可能であり、より省エネルギーに適した樹脂である。   As described above, the foamable thermoplastic resin particles of the present invention can be carried out at a lower temperature than in the prior art both at the time of preliminary foaming and in-mold foam molding, and are more suitable for energy saving. is there.

以下に、実施例および比較例を挙げるが、これによって本発明は制限されるものではない。なお、測定評価法は以下の通りに実施した。   Examples and Comparative Examples are given below, but the present invention is not limited thereby. The measurement evaluation method was performed as follows.

<吸光度比(A1730/A696)の測定方法>
得られた発泡性熱可塑性樹脂粒子の吸光度比は、予備発泡粒子を任意に10個採取し、それぞれ予備発泡粒子の表面と中心部に対して、以下の条件にて、ATR法赤外分光分析を行って、赤外吸収スペクトルを得た。
装置 :FTIR[(株)島津製作所製、FTIR−8400S]に、1回反射型全反射(ATR)測定装置[PIKE社製、MIRacle]を接続
ATRプリズム(高屈折率結晶種):セレン化亜鉛(ZnSe)
入射角 :45°
測定領域 :4000cm−1〜600cm−1
検出器 :DLATGS
もぐり込み深さ:1.66
反射回数 :1回
分解能 :4cm−1
積算回数 :20回
その他 :試料と接触させずに測定した赤外線吸収スペクトルをバックグラウンドとして、測定スペクトルに関与しない処理を実施した。
なお、ATR法では、試料と高屈折率結晶の密着度合いによって測定で得られる赤外線吸収スペクトルの強度が変化するため、696cm−1の吸光度(A696)が0.08〜0.12となるように、試料と高屈折率結晶の密着度合いを調節して測定する。
ここで、予備発泡粒子の表面を測定する場合は、粒子表面をそのままATRプリズムに密着させて測定した。予備発泡粒子の中心部を測定する場合は、剃刀を用いて、予備発泡粒子の中心を通るように二分割し、二分割した切片の断面をATRプリズムに密着させて測定した。
以上のようにして得られた赤外線吸収スペクトルから、696cm−1の吸光度(A696)と1730cm−1の吸光度(A1730)との吸光度比(A1730/A696)を求める。本発明では、任意の10個の予備発泡粒子の表面および中心部において、ATR−FTIR測定を行い、最小の吸光度比と最大の吸光度比を除外する。そして、残余8個の吸光度比の相加平均を、吸光度比((A1730/A696)とした。得られた表面の吸光度比α(A1730/A696)と中心部の吸光度比β(A1730/A696)から、以下の式にて表面と中心部との吸光度比を算出した。
表面と中心部との吸光度比の割合=α(表面)/β(中心部)
<Measurement Method of Absorbance Ratio (A 1730 / A 696 )>
The absorbance ratio of the obtained expandable thermoplastic resin particles was obtained by arbitrarily collecting 10 pre-expanded particles and analyzing the surface and the center of each pre-expanded particle under the following conditions using the ATR infrared spectroscopic analysis. To obtain an infrared absorption spectrum.
Apparatus: FTIR [manufactured by Shimadzu Corporation, FTIR-8400S] is connected to a single reflection type total reflection (ATR) measuring apparatus [manufactured by PIKE, MIRacle] ATR prism (high refractive index crystal seed): zinc selenide (ZnSe)
Incident angle: 45 °
Measurement area: 4000 cm −1 to 600 cm −1
Detector: DLATGS
Depth of penetration: 1.66
Number of reflections: 1 time Resolution: 4 cm −1
Number of integrations: 20 times Others: A process not related to the measurement spectrum was performed using the infrared absorption spectrum measured without contacting the sample as the background.
In the ATR method, the intensity of the infrared absorption spectrum obtained by measurement varies depending on the degree of adhesion between the sample and the high refractive index crystal, so that the absorbance at 696 cm −1 (A 696 ) is 0.08 to 0.12. In addition, the degree of adhesion between the sample and the high refractive index crystal is adjusted and measured.
Here, when measuring the surface of the pre-expanded particles, the surface of the particles was directly adhered to the ATR prism. When measuring the central part of the pre-expanded particles, the measurement was performed by using a razor to divide into two parts so as to pass through the center of the pre-expanded particles, and to make the cross section of the divided part in close contact with the ATR prism.
From the infrared absorption spectrum obtained as described above, determine the absorbance of 696cm -1 (A 696) and absorbance at 1730 cm -1 absorbance ratio of (A 1730) (A 1730 / A 696). In the present invention, ATR-FTIR measurement is performed on the surface and center of any 10 pre-expanded particles, and the minimum absorbance ratio and the maximum absorbance ratio are excluded. Then, the arithmetic average of the remaining 8 absorbance ratios was defined as the absorbance ratio ((A 1730 / A 696 ). The obtained surface absorbance ratio α (A 1730 / A 696 ) and the central portion absorbance ratio β ( (A 1730 / A 696 ), the absorbance ratio between the surface and the central portion was calculated by the following formula.
Ratio of absorbance ratio between surface and center = α (surface) / β (center)

<単量体成分の含有量測定>
得られた発泡性熱可塑性樹脂粒子に含有される単量体成分量は、発泡性熱可塑性樹脂粒子1.0gをジクロロメタン20mlに溶解し、内部標準液(シクロペンタノール)0.005gを加えた後、ガスクロマトグラフィー(GC)を用いて、以下の条件にて測定した。
GC:島津製作所社製 GC−14B
カラム:PEG−20M 25%
Chromosorb W 60/80(3.0m×3.0mmI.D.)
カラム温度:110℃
検出器(FID)温度:170℃
<Measurement of monomer component content>
The amount of the monomer component contained in the obtained expandable thermoplastic resin particles was obtained by dissolving 1.0 g of expandable thermoplastic resin particles in 20 ml of dichloromethane and adding 0.005 g of an internal standard solution (cyclopentanol). Then, it measured on condition of the following using gas chromatography (GC).
GC: Shimadzu Corporation GC-14B
Column: PEG-20M 25%
Chromosorb W 60/80 (3.0 m × 3.0 mm ID)
Column temperature: 110 ° C
Detector (FID) temperature: 170 ° C

<予備発泡時の缶内温度測定>
円筒形の予備発泡機[大開工業製、BHP]の側面から温度計を挿入し、予備発泡時の缶内温度を測定した。
<In-can temperature measurement during pre-foaming>
A thermometer was inserted from the side of a cylindrical pre-foaming machine [Daikai Kogyo, BHP], and the temperature in the can during pre-foaming was measured.

<成形性評価>
成形機[ダイセン製、KR−57]を用いて、厚み30mmで長さ550mm×幅350mm×高さ120mmサイズの箱形形状の金型内に充填し、吹き込み蒸気圧0.3〜0.8kgf/cmの範囲内で変化させた成型条件にて型内成形を行い、箱型の発泡成形品を得た。
得られた熱可塑性樹脂発泡体は、室温で24時間乾燥させた後、下記の発泡粒子間の表面性および融着性がどちらも合格になる、最低の吹き込み水蒸気圧吹き込み水蒸気圧を求めて、成形可能な蒸気圧範囲とした。また、最低の吹き込み水蒸気圧および最高の吹き込み水蒸気圧での金型温度を求めた。
(1)融着性評価
得られた熱可塑性樹脂発泡体を破断し、破断面を観察して、粒子界面ではなく、粒子が破断している割合を求めて、以下の基準にて、融着性を判定した。
合格: 粒子破断の割合が80%以上。
不合格:粒子破断の割合が80%未満。
(2)表面性評価
得られた熱可塑性樹脂発泡体の表面状態を目視観察し、以下の基準にて表面性を評価した。
合格: 表面の溶融、粒間少なく、美麗。
不合格:表面の溶融、粒間があり外観不良。
<Formability evaluation>
Using a molding machine [manufactured by Daisen, KR-57], a box-shaped mold having a thickness of 30 mm, a length of 550 mm, a width of 350 mm, and a height of 120 mm is filled, and the blowing vapor pressure is 0.3 to 0.8 kgf. In-mold molding was performed under molding conditions varied within the range of / cm 2 to obtain a box-shaped foam molded product.
After the obtained thermoplastic resin foam was dried at room temperature for 24 hours, the surface property and the fusing property between the foamed particles described below both passed, and the lowest water vapor pressure was determined. It was set as a vapor pressure range in which molding was possible. Further, the mold temperature at the lowest blowing water vapor pressure and the highest blowing water vapor pressure was determined.
(1) Evaluation of fusing property The obtained thermoplastic resin foam was broken, the fracture surface was observed, and the ratio of the broken particles rather than the particle interface was determined. Sex was judged.
Pass: The rate of particle breakage is 80% or more.
Fail: The rate of particle breakage is less than 80%.
(2) Surface property evaluation The surface state of the obtained thermoplastic resin foam was visually observed, and the surface property was evaluated according to the following criteria.
Pass: Melt on the surface, little intergranularity, beautiful.
Fail: The surface is melted and there is a gap between the grains.

(実施例1)
<発泡性スチレン系樹脂粒子の製造>
撹拌機付属の6リットルのオートクレーブに、純水100重量部、リン酸三カルシウム0.2重量部、ドデシルベンゼンスルホン酸ナトリウム0.01重量部および、開始剤としてベンゾイルパーオキサイド0.3重量部および1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.2重量部を仕込んだ。続いて、250回転/分で撹拌しながら、スチレンモノマー99重量部、アクリル酸ブチルモノマー1重量部およびヤシ油1重量部を仕込んだ後、98℃まで昇温させた。引き続き、98℃にて4時間保持して、熱可塑性樹脂粒子を得た。
次いで、発泡剤としてシクロヘキサン2重量部およびブタン6重量部をオートクレーブ中に圧入し、再び120℃まで昇温させた。その後、120℃にて2時間保温した後、室温まで冷却して、オートクレーブから重合スラリーを取り出した。取り出した重合スラリーを脱水、洗浄、乾燥することにより、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
得られた発泡性スチレン系樹脂粒子を篩分けして、粒子径0.6mm〜1.2mmとした。篩分けした発泡性スチレン系樹脂粒子を、加圧式予備発泡機[大開工業製、BHP]を用いて、吹き込み蒸気圧0.8kgf/cmの条件にて嵩倍率65倍に予備発泡を実施した。この際、吹き込み蒸気にはエアーを切り込ませて、吹き込み蒸気温度を調節したところ、加圧加熱時間は70秒、缶内温度は99℃であった。その後、常温下で1日放置して、養生乾燥を行った。
次いで、得られた熱可塑性樹脂予備発泡粒子を、成形機[ダイセン製、KR−57]を用いて、厚み30mmで長さ550mm×幅350mm×高さ120mmサイズの箱形形状の金型内に充填し、吹き込み蒸気圧0.3〜0.8kgf/cmの成型条件にて型内成形を行い、箱型の発泡成形品を得た。
成形可能な蒸気圧範囲は0.3〜0.8kgf/cmであり、その際の金型温度は109〜115℃であった。
得られた発泡性熱可塑性樹脂粒子および発泡成形体を用いて評価を行い、その結果を表1に示す。
Example 1
<Manufacture of expandable styrene resin particles>
In a 6 liter autoclave attached to a stirrer, 100 parts by weight of pure water, 0.2 part by weight of tricalcium phosphate, 0.01 part by weight of sodium dodecylbenzenesulfonate, 0.3 part by weight of benzoyl peroxide as an initiator, and 0.21 part by weight of 1,1-bis (t-butylperoxy) cyclohexane was charged. Subsequently, 99 parts by weight of styrene monomer, 1 part by weight of butyl acrylate monomer and 1 part by weight of coconut oil were charged while stirring at 250 rpm, and the temperature was raised to 98 ° C. Then, it hold | maintained at 98 degreeC for 4 hours, and obtained the thermoplastic resin particle.
Next, 2 parts by weight of cyclohexane and 6 parts by weight of butane were injected into the autoclave as a blowing agent, and the temperature was raised to 120 ° C. again. Thereafter, the mixture was kept at 120 ° C. for 2 hours, then cooled to room temperature, and the polymerization slurry was taken out from the autoclave. The taken-out polymerization slurry was dehydrated, washed and dried to obtain expandable thermoplastic resin particles.
<Pre-foaming and manufacturing of molded products>
The obtained expandable styrene resin particles were sieved to a particle diameter of 0.6 mm to 1.2 mm. The foamable styrene-based resin particles thus screened were prefoamed at a bulk magnification of 65 times under the condition of a blowing vapor pressure of 0.8 kgf / cm 2 using a pressure prefoaming machine (manufactured by Daikai Kogyo Co., Ltd., BHP). . At this time, air was blown into the blown steam to adjust the blown steam temperature. As a result, the pressure heating time was 70 seconds, and the temperature inside the can was 99 ° C. Then, it was left to stand at room temperature for 1 day, and curing drying was performed.
Next, the obtained thermoplastic resin pre-expanded particles are placed in a box-shaped mold having a thickness of 30 mm, a length of 550 mm, a width of 350 mm, and a height of 120 mm, using a molding machine [manufactured by Daisen, KR-57]. Filling and in-mold molding were performed under the molding conditions of a blowing vapor pressure of 0.3 to 0.8 kgf / cm 2 to obtain a box-shaped foam molded product.
The moldable vapor pressure range was 0.3 to 0.8 kgf / cm 2 , and the mold temperature at that time was 109 to 115 ° C.
Evaluation was performed using the obtained foamable thermoplastic resin particles and foamed molded article, and the results are shown in Table 1.

(実施例2)
<発泡性スチレン系樹脂粒子の製造>
重合開始時の単量体組成をスチレンモノマー98重量部およびアクリル酸ブチルモノマー2重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は63秒、缶内温度は98℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.8kgf/cmであり、その際の金型温度は109〜115℃であった。その評価結果を、表1に示す。
(Example 2)
<Manufacture of expandable styrene resin particles>
Expandable thermoplastic resin particles were obtained in the same manner as in Example 1, except that the monomer composition at the start of polymerization was changed to 98 parts by weight of styrene monomer and 2 parts by weight of butyl acrylate monomer.
<Pre-foaming and manufacturing of molded products>
When obtaining pre-expanded particles having a bulk magnification of 65 times, the pressure heating time at the time of pre-expansion was 63 seconds, and the temperature in the can was 98 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.8 kgf / cm 2 , and the mold temperature at that time is 109 to 115 ° C. It was. The evaluation results are shown in Table 1.

(実施例3)
<発泡性スチレン系樹脂粒子の製造>
重合開始時の単量体組成をスチレンモノマー97重量部およびアクリル酸ブチルモノマー3重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は55秒、缶内温度は98℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.8kgf/cmであり、その際の金型温度は109〜115℃であった。その評価結果を、表1に示す。
(Example 3)
<Manufacture of expandable styrene resin particles>
Expandable thermoplastic resin particles were obtained in the same manner as in Example 1, except that the monomer composition at the start of polymerization was changed to 97 parts by weight of styrene monomer and 3 parts by weight of butyl acrylate monomer.
<Pre-foaming and manufacturing of molded products>
When pre-expanded particles having a bulk magnification of 65 times were obtained, the pressure heating time at the time of pre-expansion was 55 seconds, and the temperature in the can was 98 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.8 kgf / cm 2 , and the mold temperature at that time is 109 to 115 ° C. It was. The evaluation results are shown in Table 1.

比較例7
<ポリスチレン系樹脂種粒子の製造>
攪拌機を具備した反応器に、純水100重量部、第3リン酸カルシウム0.4重量部、ドデシルベンゼンスルフォン酸ナトリウム0.01重量部、塩化ナトリウム0.5重量部を入れて攪拌して水懸濁液とした後、スチレン100重量部に重合開始剤として,ベンゾイルパーオキサイド0.2重量部、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.2重量部を溶解し、反応器に加え、98℃に昇温してから4.5時間かけて重合した。次いで、110℃に昇温して1時間保持した後冷却して、その内容物を取り出し脱水・乾燥し、篩い分けして粒子径0.425〜0.500mmのポリスチレン系樹脂種粒子を得た。
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、6Lオートクレーブ中に水87重量部に、第3リン酸カルシウム0.6重量部、α−オレフィンスルフォン酸ソーダ0.01重量部、得られたポリスチレン系樹脂種粒子10重量部を懸濁させ、スチレン10重量部に重合開始剤としてベンゾイルパーオキサイド0.1重量部および1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.1重量部を溶解させた溶液を添加した。その後、水性懸濁液を90℃まで昇温し、30分間維持することでポリスチレン系樹脂粒子にスチレン溶液を含浸させた。
更に90℃を維持し撹拌しながら、スチレン単量体60重量部とベンゾイルパーオキサイド0.3重量部を5時間かけて反応系中に滴下して重合を行った後、スチレン単量体17重量部およびアクリル酸ブチル3重量部を2時間かけて反応系中に滴下して重合を行った後、90℃で1時間保持して熱可塑性樹脂粒子を得た。
次いで、発泡剤の含浸以降の操作は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は53秒、缶内温度は98℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.6kgf/cm2であり、その際の金型温度は109〜113℃であった。その評価結果を、表1に示す。
( Comparative Example 7 )
<Manufacture of polystyrene resin seed particles>
In a reactor equipped with a stirrer, 100 parts by weight of pure water, 0.4 parts by weight of tribasic calcium phosphate, 0.01 parts by weight of sodium dodecylbenzenesulfonate, and 0.5 parts by weight of sodium chloride were stirred and suspended in water. Then, 0.2 parts by weight of benzoyl peroxide and 0.2 parts by weight of 1,1-bis (t-butylperoxy) cyclohexane are dissolved in 100 parts by weight of styrene as a polymerization initiator and added to the reactor. The temperature was raised to 98 ° C., and polymerization was performed over 4.5 hours. Next, the temperature was raised to 110 ° C. and held for 1 hour, followed by cooling. The contents were taken out, dehydrated and dried, and sieved to obtain polystyrene resin seed particles having a particle size of 0.425 to 0.500 mm. .
<Manufacture of expandable styrene resin particles>
In polymerization of thermoplastic resin particles, 87 parts by weight of water in a 6 L autoclave, 0.6 parts by weight of tricalcium phosphate, 0.01 parts by weight of α-olefin sulfonate, 10 parts by weight of the resulting polystyrene resin seed particles And a solution in which 0.1 part by weight of benzoyl peroxide and 0.1 part by weight of 1,1-bis (t-butylperoxy) cyclohexane as a polymerization initiator were dissolved in 10 parts by weight of styrene was added. Thereafter, the aqueous suspension was heated to 90 ° C. and maintained for 30 minutes to impregnate the polystyrene resin particles with the styrene solution.
Further, while maintaining at 90 ° C. and stirring, 60 parts by weight of styrene monomer and 0.3 part by weight of benzoyl peroxide were added dropwise to the reaction system over 5 hours, followed by polymerization, and then 17 parts by weight of styrene monomer. And 3 parts by weight of butyl acrylate were dropped into the reaction system over 2 hours for polymerization, and then held at 90 ° C. for 1 hour to obtain thermoplastic resin particles.
Subsequently, the operations after the impregnation with the foaming agent were carried out in the same manner as in Example 1 to obtain expandable thermoplastic resin particles.
<Pre-foaming and manufacturing of molded products>
When obtaining pre-expanded particles having a bulk magnification of 65 times, the pressure heating time at the time of pre-expansion was 53 seconds, and the temperature in the can was 98 ° C.
Next, the vapor pressure range in which molding is possible is 0.3 to 0.6 kgf / cm 2 in the same way as in Example 1, and the mold temperature at that time is 109 to 113 ° C. It was. The evaluation results are shown in Table 1.

(比較例1)
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時に単量体組成をアクリル酸ブチルモノマーを使用せず、スチレンモノマー100重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る為に、予備発泡時の吹き込み蒸気圧を0.8kgf/cmから1.0kgf/cmに変更した結果、加圧加熱時間は97秒、缶内温度は103℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.6〜0.8kgf/cmであり、その際の金型温度は113〜115℃であった。その評価結果を、表1に示す。
(Comparative Example 1)
<Manufacture of expandable styrene resin particles>
In the polymerization of the thermoplastic resin particles, a foamable thermoplastic resin was obtained by the same operation as in Example 1 except that the monomer composition was changed to 100 parts by weight of styrene monomer without using a butyl acrylate monomer at the start of polymerization. Particles were obtained.
<Pre-foaming and manufacturing of molded products>
To obtain a bulk magnification 65 times the pre-expanded particles, a result of changing the blowing vapor pressure during prefoaming from 0.8 kgf / cm 2 to 1.0 kgf / cm 2, pressurizing and heating time is 97 seconds, the temperature in the reactor Was 103 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding as in Example 1 is 0.6 to 0.8 kgf / cm 2 , and the mold temperature at that time is 113 to 115 ° C. It was. The evaluation results are shown in Table 1.

(比較例2)
<発泡性スチレン系樹脂粒子の製造>
重合開始時の単量体組成をスチレンモノマー95重量部およびアクリル酸ブチルモノマー5重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は34秒、缶内温度は97℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.4kgf/cmであり、その際の金型温度は109〜110℃であった。その評価結果を、表1に示す。
(Comparative Example 2)
<Manufacture of expandable styrene resin particles>
Expandable thermoplastic resin particles were obtained in the same manner as in Example 1, except that the monomer composition at the start of polymerization was changed to 95 parts by weight of styrene monomer and 5 parts by weight of butyl acrylate monomer.
<Pre-foaming and manufacturing of molded products>
When obtaining pre-expanded particles having a bulk magnification of 65 times, the pressure heating time at the time of pre-expansion was 34 seconds, and the temperature in the can was 97 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.4 kgf / cm 2 , and the mold temperature at that time is 109 to 110 ° C. It was. The evaluation results are shown in Table 1.

(比較例3)
<ポリスチレン系樹脂種粒子の製造>
実施例4と同様の操作により、粒子径0.425〜0.500mmのポリスチレン系樹脂種粒子を得た。
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、6Lオートクレーブ中にて、水87重量部に、第3リン酸カルシウム0.6重量部、α−オレフィンスルフォン酸ソーダ0.01重量部、得られたポリスチレン系樹脂種粒子10重量部を懸濁させ、スチレン8重量部およびアクリル酸ブチル2重量部に重合開始剤としてベンゾイルパーオキサイド0.1重量部および1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.1重量部を溶解させた溶液を添加した。その後、得られた水性懸濁液を90℃まで昇温し、30分間維持することでポリスチレン系樹脂粒子にスチレン溶液を含浸させた。
更に90℃を維持して撹拌しながら、スチレン単量体80重量部およびベンゾイルパーオキサイド0.3重量部を7時間かけて反応系中に滴下して重合を行った後、90℃で1時間保持して熱可塑性樹脂粒子を得た。
次いで、発泡剤の含浸以降の操作は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る為に、予備発泡時の吹き込み蒸気圧を0.8kgf/cmから1.0kgf/cmに変更した結果、加圧加熱時間は68秒、缶内温度は101℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.4〜0.8kgf/cmであり、その際の金型温度は110〜115℃であった。その評価結果を、表1に示す。
(Comparative Example 3)
<Manufacture of polystyrene resin seed particles>
By the same operation as in Example 4, polystyrene resin seed particles having a particle size of 0.425 to 0.500 mm were obtained.
<Manufacture of expandable styrene resin particles>
In polymerization of thermoplastic resin particles, in a 6 L autoclave, 87 parts by weight of water, 0.6 parts by weight of tricalcium phosphate, 0.01 parts by weight of sodium α-olefin sulfonate, and the resulting polystyrene resin seed particles 10 Suspended parts by weight, 8 parts by weight of styrene and 2 parts by weight of butyl acrylate, 0.1 part by weight of benzoyl peroxide as a polymerization initiator and 0.1 part by weight of 1,1-bis (t-butylperoxy) cyclohexane A solution in which was dissolved was added. Thereafter, the obtained aqueous suspension was heated to 90 ° C. and maintained for 30 minutes, whereby polystyrene resin particles were impregnated with a styrene solution.
Furthermore, while maintaining at 90 ° C. and stirring, 80 parts by weight of styrene monomer and 0.3 part by weight of benzoyl peroxide were dropped into the reaction system over 7 hours, followed by polymerization, and then at 90 ° C. for 1 hour. This was retained to obtain thermoplastic resin particles.
Subsequently, the operations after the impregnation with the foaming agent were carried out in the same manner as in Example 1 to obtain expandable thermoplastic resin particles.
<Pre-foaming and manufacturing of molded products>
To obtain a bulk magnification 65 times the pre-expanded particles, a result of changing the blowing vapor pressure during prefoaming from 0.8 kgf / cm 2 to 1.0 kgf / cm 2, pressurizing and heating time is 68 seconds, the temperature in the reactor Was 101 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.4 to 0.8 kgf / cm 2 , and the mold temperature at that time is 110 to 115 ° C. It was. The evaluation results are shown in Table 1.

(比較例4)
<ポリスチレン系樹脂種粒子の製造>
実施例4と同様の操作により、粒子径0.425〜0.500mmのポリスチレン系樹脂種粒子を得た。
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、6Lオートクレーブ中にて、水87重量部に、第3リン酸カルシウム0.6重量部、α−オレフィンスルフォン酸ソーダ0.01重量部、得られたポリスチレン系樹脂種粒子10重量部を懸濁させ、スチレン10重量部に重合開始剤としてベンゾイルパーオキサイド0.1重量部および1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.1重量部を溶解させた溶液を添加した。その後、得られた水性懸濁液を90℃まで昇温し、30分間維持することでポリスチレン系樹脂粒子にスチレン溶液を含浸させた。
更に90℃を維持し撹拌しながら、スチレン単量体70重量部およびベンゾイルパーオキサイド0.3重量部を6時間かけて反応系中に滴下して重合を行った後、スチレン単量体7重量部とアクリル酸ブチル3重量部を1時間かけて反応系中に滴下し重合を行った後、90℃で1時間保持し熱可塑性樹脂粒子を得た。
次いで、発泡剤の含浸以降の操作は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は51秒、缶内温度は98℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.5kgf/cmであり、その際の金型温度は109〜111℃であった。その評価結果を、表1に示す。
(Comparative Example 4)
<Manufacture of polystyrene resin seed particles>
By the same operation as in Example 4, polystyrene resin seed particles having a particle size of 0.425 to 0.500 mm were obtained.
<Manufacture of expandable styrene resin particles>
In polymerization of thermoplastic resin particles, in a 6 L autoclave, 87 parts by weight of water, 0.6 parts by weight of tricalcium phosphate, 0.01 parts by weight of sodium α-olefin sulfonate, and the resulting polystyrene resin seed particles 10 Suspend parts by weight and add a solution of 0.1 part by weight of benzoyl peroxide and 0.1 part by weight of 1,1-bis (t-butylperoxy) cyclohexane as a polymerization initiator to 10 parts by weight of styrene did. Thereafter, the obtained aqueous suspension was heated to 90 ° C. and maintained for 30 minutes, whereby polystyrene resin particles were impregnated with a styrene solution.
Further, while maintaining the temperature at 90 ° C. and stirring, 70 parts by weight of styrene monomer and 0.3 part by weight of benzoyl peroxide were dropped into the reaction system over 6 hours, followed by polymerization, and then 7% by weight of styrene monomer. And 3 parts by weight of butyl acrylate were added dropwise to the reaction system over 1 hour for polymerization, and then held at 90 ° C. for 1 hour to obtain thermoplastic resin particles.
Subsequently, the operations after the impregnation with the foaming agent were carried out in the same manner as in Example 1 to obtain expandable thermoplastic resin particles.
<Pre-foaming and manufacturing of molded products>
When pre-expanded particles having a bulk magnification of 65 times were obtained, the pressure heating time at the time of pre-expansion was 51 seconds, and the temperature in the can was 98 ° C.
Next, the vapor pressure range in which molding is possible is 0.3 to 0.5 kgf / cm 2 in the same way as in Example 1, and the mold temperature at that time is 109 to 111 ° C. It was. The evaluation results are shown in Table 1.

(比較例5)
<ポリスチレン系樹脂種粒子の製造>
実施例4と同様の操作により、粒子径0.425〜0.500mmのポリスチレン系樹脂種粒子を得た。
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、6Lオートクレーブ中にて、水87重量部に、第3リン酸カルシウム0.6重量部、α−オレフィンスルフォン酸ソーダ0.01重量部、得られたポリスチレン系樹脂種粒子10重量部を懸濁させ、スチレン10重量部に重合開始剤としてベンゾイルパーオキサイド0.1重量部および1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.1重量部を溶解させた溶液を添加した。その後、得られた水性懸濁液を90℃まで昇温し、30分間維持することでポリスチレン系樹脂粒子にスチレン溶液を含浸させた。
更に90℃を維持し撹拌しながら、スチレン単量体79.6重量部、アクリル酸ブチル0.4重量部およびベンゾイルパーオキサイド0.3重量部を6時間かけて反応系中に滴下して重合を行った後、90℃で1時間保持し熱可塑性樹脂粒子を得た。
次いで、発泡剤の含浸以降の操作は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る為に、予備発泡時の吹き込み蒸気圧を0.8kgf/cmから1.0kgf/cmに変更した結果、加圧加熱時間は82秒、缶内温度は102℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.5〜0.8kgf/cmであり、その際の金型温度は112〜115℃であった。その評価結果を、表1に示す。
(Comparative Example 5)
<Manufacture of polystyrene resin seed particles>
By the same operation as in Example 4, polystyrene resin seed particles having a particle size of 0.425 to 0.500 mm were obtained.
<Manufacture of expandable styrene resin particles>
In polymerization of thermoplastic resin particles, in a 6 L autoclave, 87 parts by weight of water, 0.6 parts by weight of tricalcium phosphate, 0.01 parts by weight of sodium α-olefin sulfonate, and the resulting polystyrene resin seed particles 10 Suspend parts by weight and add a solution of 0.1 part by weight of benzoyl peroxide and 0.1 part by weight of 1,1-bis (t-butylperoxy) cyclohexane as a polymerization initiator to 10 parts by weight of styrene did. Thereafter, the obtained aqueous suspension was heated to 90 ° C. and maintained for 30 minutes, whereby polystyrene resin particles were impregnated with a styrene solution.
Further, while maintaining at 90 ° C., with stirring, 79.6 parts by weight of styrene monomer, 0.4 part by weight of butyl acrylate and 0.3 part by weight of benzoyl peroxide are dropped into the reaction system over 6 hours to polymerize. After that, it was kept at 90 ° C. for 1 hour to obtain thermoplastic resin particles.
Subsequently, the operations after the impregnation with the foaming agent were carried out in the same manner as in Example 1 to obtain expandable thermoplastic resin particles.
<Pre-foaming and manufacturing of molded products>
To obtain a bulk magnification 65 times the pre-expanded particles, a result of changing the blowing vapor pressure during prefoaming from 0.8 kgf / cm 2 to 1.0 kgf / cm 2, pressurizing and heating time is 82 seconds, the temperature in the reactor Was 102 ° C.
Next, the vapor pressure range that can be molded when in-mold molding was performed in the same manner as in Example 1 was 0.5 to 0.8 kgf / cm 2 , and the mold temperature at that time was 112 to 115 ° C. It was. The evaluation results are shown in Table 1.

(比較例6)
<ポリスチレン系樹脂種粒子の製造>
実施例4と同様の操作により、粒子径0.425〜0.500mmのポリスチレン系樹脂種粒子を得た。
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、6Lオートクレーブ中にて、水87重量部に、第3リン酸カルシウム0.6重量部、α−オレフィンスルフォン酸ソーダ0.01重量部、得られたポリスチレン系樹脂種粒子10重量部を懸濁させ、スチレン9重量部およびアクリル酸ブチル1重量部に重合開始剤としてベンゾイルパーオキサイド0.1重量部および1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.1重量部を溶解させた溶液を添加した。その後、得られた水性懸濁液を90℃まで昇温し、30分間維持することでポリスチレン系樹脂粒子にスチレン溶液を含浸させた。
更に90℃を維持して撹拌しながら、スチレン単量体80重量部およびベンゾイルパーオキサイド0.3重量部を7時間かけて反応系中に滴下して重合を行った後、90℃で1時間保持し熱可塑性樹脂粒子を得た。
次いで、発泡剤の含浸以降の操作は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る為に、予備発泡時の吹き込み蒸気圧を0.8kgf/cmから1.0kgf/cmに変更した結果、加圧加熱時間は75秒、缶内温度は101℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.4〜0.8kgf/cmであり、その際の金型温度は110〜115℃であった。その評価結果を、表1に示す。
(Comparative Example 6)
<Manufacture of polystyrene resin seed particles>
By the same operation as in Example 4, polystyrene resin seed particles having a particle size of 0.425 to 0.500 mm were obtained.
<Manufacture of expandable styrene resin particles>
In polymerization of thermoplastic resin particles, in a 6 L autoclave, 87 parts by weight of water, 0.6 parts by weight of tricalcium phosphate, 0.01 parts by weight of sodium α-olefin sulfonate, and the resulting polystyrene resin seed particles 10 Suspended parts by weight, 9 parts by weight of styrene and 1 part by weight of butyl acrylate 0.1 parts by weight of benzoyl peroxide and 0.1 part by weight of 1,1-bis (t-butylperoxy) cyclohexane as a polymerization initiator A solution in which was dissolved was added. Thereafter, the obtained aqueous suspension was heated to 90 ° C. and maintained for 30 minutes, whereby polystyrene resin particles were impregnated with a styrene solution.
Furthermore, while maintaining at 90 ° C. and stirring, 80 parts by weight of styrene monomer and 0.3 part by weight of benzoyl peroxide were dropped into the reaction system over 7 hours, followed by polymerization, and then at 90 ° C. for 1 hour. Retained thermoplastic resin particles were obtained.
Subsequently, the operations after the impregnation with the foaming agent were carried out in the same manner as in Example 1 to obtain expandable thermoplastic resin particles.
<Pre-foaming and manufacturing of molded products>
To obtain a bulk magnification 65 times the pre-expanded particles, a result of changing the blowing vapor pressure during prefoaming from 0.8 kgf / cm 2 to 1.0 kgf / cm 2, pressurizing and heating time is 75 seconds, the temperature in the reactor Was 101 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.4 to 0.8 kgf / cm 2 , and the mold temperature at that time is 110 to 115 ° C. It was. The evaluation results are shown in Table 1.

Figure 0005820165
Figure 0005820165

Claims (4)

単量体組成が、スチレン系単量体95重量%超99重量%以下およびアクリル酸エステル系単量体1重量%以上5重量%未満(両者の合計量が100重量%である)である熱可塑性樹脂を含んでなる発泡性熱可塑性樹脂粒子であって、
ATR−FTIRにより測定された熱可塑性樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる696cm-1及び1730cm-1での吸光度比α(A1730/A696)が、熱可塑性樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比β(A1730/A696)の1.0倍であり、かつ
発泡性熱可塑性樹脂粒子中に含有される単量体成分が0.3重量%未満であることを特徴とする、発泡性熱可塑性樹脂粒子。
Heat having a monomer composition of more than 95% by weight of styrene monomer and 99% by weight or less of styrene monomer and 1% by weight or more and less than 5% by weight of acrylate monomer (the total amount of both is 100% by weight) Expandable thermoplastic resin particles comprising a plastic resin,
Absorbance ratio at 696cm -1 and 1730 cm -1 obtained from an infrared absorption spectrum of the measured thermoplastic resin pre-expanded particle surface by ATR-FTIR α (A 1730 / A 696) is a thermoplastic resin pre-expanded particles center 1.0 Baidea absorbance ratio obtained from infrared absorption spectrum β (a 1730 / a 696) is, and
Monomer component contained in the expandable thermoplastic resin particles are characterized in der Rukoto less than 0.3 wt%, expandable thermoplastic resin particles.
アクリル酸エステルがアクリル酸ブチルであることを特徴とする、請求項1記載の発泡性熱可塑性樹脂粒子。   2. The expandable thermoplastic resin particles according to claim 1, wherein the acrylate is butyl acrylate. 請求項1または2に記載の発泡性熱可塑性樹脂粒子を、発泡させてなることを特徴とする、熱可塑性樹脂予備発泡粒子。 A thermoplastic resin pre-expanded particle obtained by foaming the expandable thermoplastic resin particle according to claim 1 or 2 . 請求項に記載の熱可塑性予備発泡粒子を、型内成形してなることを特徴とする、熱可塑性樹脂発泡体。 A thermoplastic resin foam obtained by in-mold molding of the thermoplastic pre-expanded particles according to claim 3 .
JP2011149531A 2011-03-10 2011-07-05 Expandable thermoplastic resin particles Active JP5820165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011149531A JP5820165B2 (en) 2011-03-10 2011-07-05 Expandable thermoplastic resin particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011053278 2011-03-10
JP2011053278 2011-03-10
JP2011149531A JP5820165B2 (en) 2011-03-10 2011-07-05 Expandable thermoplastic resin particles

Publications (2)

Publication Number Publication Date
JP2012197405A JP2012197405A (en) 2012-10-18
JP5820165B2 true JP5820165B2 (en) 2015-11-24

Family

ID=47179959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149531A Active JP5820165B2 (en) 2011-03-10 2011-07-05 Expandable thermoplastic resin particles

Country Status (1)

Country Link
JP (1) JP5820165B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6216237B2 (en) * 2013-12-03 2017-10-18 株式会社カネカ Expandable thermoplastic resin particles
JP6431683B2 (en) * 2014-04-08 2018-11-28 株式会社カネカ Expandable thermoplastic resin particles
JP6435113B2 (en) * 2014-04-11 2018-12-05 株式会社カネカ Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foam moldings
JP6424037B2 (en) * 2014-07-25 2018-11-14 株式会社カネカ Expandable thermoplastic resin particles, pre-expanded particles thereof and foamed molded body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330943A (en) * 1994-06-02 1995-12-19 Hitachi Chem Co Ltd Expandable resin particles and expansion-molded article
JP2007246566A (en) * 2006-03-13 2007-09-27 Kaneka Corp Foamable thermoplastic resin particle and foamed molded article obtained from the same
JP2008075051A (en) * 2006-09-25 2008-04-03 Sekisui Plastics Co Ltd Method for producing self fire-extinguishing foamable polystyrene-based resin particle
JP5080226B2 (en) * 2007-12-07 2012-11-21 積水化成品工業株式会社 Expandable resin particles, method for producing the same, and foam molded article
CN101925647B (en) * 2008-01-30 2013-01-23 积水化成品工业株式会社 Expandable polystyrene resin beads, process for production thereof, pre-expanded beads and expanded moldings
JP5410803B2 (en) * 2009-03-26 2014-02-05 積水化成品工業株式会社 Expandable thermoplastic resin particles and method for producing the same, pre-expanded particles and foamed molded body
JP5386262B2 (en) * 2009-07-28 2014-01-15 積水化成品工業株式会社 Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article

Also Published As

Publication number Publication date
JP2012197405A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5820165B2 (en) Expandable thermoplastic resin particles
JP6228883B2 (en) Polystyrene resin composition for extrusion foaming and use thereof
JP5641785B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP6435113B2 (en) Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foam moldings
JP2002284917A (en) Expandable styrene-based resin particle
JP6424037B2 (en) Expandable thermoplastic resin particles, pre-expanded particles thereof and foamed molded body
JP5824263B2 (en) Expandable thermoplastic resin particles
JP5820166B2 (en) Expandable thermoplastic resin particles
JP5576678B2 (en) Styrene polymer particles, process for producing the same, expandable styrene polymer particles, and foamed molded article
JP6216237B2 (en) Expandable thermoplastic resin particles
JP5487668B2 (en) Expandable styrene resin particles
JP2018039923A (en) Composite resin particle, composite resin foamed particle, and composite resin particle molding
JP2014189767A (en) Polystyrenic resin composition for foaming, polystyrenic resin foam sheet, and foam molding
JP6410616B2 (en) Expandable thermoplastic resin particles, pre-expanded particles and foam
JP6431683B2 (en) Expandable thermoplastic resin particles
JP5798950B2 (en) Building materials and manufacturing method thereof
JP2021152148A (en) Foamable polystyrene resin particle, pre-foamed particle of the same and foam molding
JP7299043B2 (en) Polystyrene expandable resin particles containing botanical fragrance, pre-expanded particles and foamed products thereof, and method for producing polystyrene expandable resin particles
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article
JP6709650B2 (en) Cross-linkable expandable polystyrene resin particles, pre-expanded particles thereof and foam
JP5219300B2 (en) Expandable styrene resin particles
JP7438748B2 (en) Polystyrene foamable resin particles containing vegetable fragrance, pre-expanded particles and foam molded products thereof, fruit and vegetable storage containers, and method for producing polystyrene foamable resin particles
JP2010270284A (en) Styrene-modified polyethylene resin foamed molded article
JP2010222489A (en) Foamable styrenic resin particle
JP2006036993A (en) Expandable styrene resin particle and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151002

R150 Certificate of patent or registration of utility model

Ref document number: 5820165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250