JP6709650B2 - Cross-linkable expandable polystyrene resin particles, pre-expanded particles thereof and foam - Google Patents

Cross-linkable expandable polystyrene resin particles, pre-expanded particles thereof and foam Download PDF

Info

Publication number
JP6709650B2
JP6709650B2 JP2016059339A JP2016059339A JP6709650B2 JP 6709650 B2 JP6709650 B2 JP 6709650B2 JP 2016059339 A JP2016059339 A JP 2016059339A JP 2016059339 A JP2016059339 A JP 2016059339A JP 6709650 B2 JP6709650 B2 JP 6709650B2
Authority
JP
Japan
Prior art keywords
weight
resin particles
parts
expandable polystyrene
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016059339A
Other languages
Japanese (ja)
Other versions
JP2017171780A (en
Inventor
賢明 南田
賢明 南田
充宏 田村
充宏 田村
龍哉 逸見
龍哉 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2016059339A priority Critical patent/JP6709650B2/en
Publication of JP2017171780A publication Critical patent/JP2017171780A/en
Application granted granted Critical
Publication of JP6709650B2 publication Critical patent/JP6709650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、架橋させた発泡性ポリスチレン系樹脂粒子、その予備発泡粒子及び発泡体に関するものである。 TECHNICAL FIELD The present invention relates to crosslinkable expandable polystyrene resin particles, pre-expanded particles thereof and a foam.

発泡性ポリスチレン系樹脂粒子は、比較的安価で、特殊な方法を用いずに蒸気等で発泡成形ができ、高い緩衝・断熱の効果が得られる為、社会的に有用な材料である。 The expandable polystyrene-based resin particles are relatively inexpensive, can be foam-molded with steam without using a special method, and have high buffering/insulating effects, and are therefore socially useful materials.

発泡性ポリスチレン系樹脂粒子は、例えば、ポリスチレン系樹脂粒子に発泡剤(すなわち該粒子を僅かに膨潤せしめるにとどまる易揮発性の脂肪族炭化水素、例えばブタン、ペンタン等)を水性懸濁液中で含浸せしめる方法により製造される。このようにして製造された発泡性ポリスチレン系樹脂粒子は、発泡ポリスチレン系樹脂成形体を製造するための原料として用いられる。 The expandable polystyrene-based resin particles are obtained by, for example, adding a foaming agent to polystyrene-based resin particles (that is, an easily volatile aliphatic hydrocarbon that only swells the particles slightly, such as butane and pentane) in an aqueous suspension. It is manufactured by the method of impregnation. The expandable polystyrene-based resin particles produced in this manner are used as a raw material for producing a foamed polystyrene-based resin molded body.

発泡ポリスチレン系樹脂成形体を工業的及び経済的に製造する方法としては、発泡性ポリスチレン系樹脂粒子を水蒸気等により予備発泡粒子とし、該予備発泡粒子を所望の形状を有する壁面に多数の小孔が穿設された閉鎖型の金型内に充填し、金型小孔より水蒸気等の加熱媒体を噴出せしめて予備発泡粒子の軟化点以上の温度に加熱し、互いに融着せしめた後に、冷却工程を経て、金型内より取り出して所望の形状の発泡ポリスチレン系樹脂成形体を製造する方法がある。 As a method for industrially and economically producing a foamed polystyrene resin molded article, expandable polystyrene resin particles are made into pre-expanded particles by steam or the like, and the pre-expanded particles are provided with a large number of small holes on a wall having a desired shape. Is filled in a closed mold, and a heating medium such as water vapor is jetted through a small hole in the mold to heat it to a temperature equal to or higher than the softening point of the pre-expanded particles, and after they are fused, they are cooled. There is a method of producing a foamed polystyrene resin molded body having a desired shape by taking it out from the mold through steps.

従って、発泡性ポリスチレン系樹脂粒子を成形体にする為には、多くの蒸気を必要とするが、近年の環境問題への関心の高まりから、より省エネルギーへの要望が高まっており、予備発泡および型内成形時の温度を低温にすることにより、少ない蒸気使用量で発泡可能な樹脂が求められている。また、同時に生産性を高めるために、成形時間の約5割を占める冷却時間を短縮することが求められている。 Therefore, in order to form the expandable polystyrene-based resin particles into a molded body, a large amount of steam is required, but due to the growing concern about environmental problems in recent years, there is an increasing demand for energy saving, and pre-foaming and There is a demand for a resin that can be foamed with a small amount of steam by reducing the temperature during in-mold molding. At the same time, in order to improve productivity, it is required to shorten the cooling time which accounts for about 50% of the molding time.

従来、放冷時間を短縮させる方法として発泡性ポリスチレン系樹脂粒子の表面にクラックを発生させる薬品(高級脂肪酸の脂肪族アルコールエステル、特に常温で固体の牛脂硬化油、ヒマシ硬化油といった高級脂肪酸のトリグリセリンエステル)を被覆させ、樹脂粒子中に含有されるガス分の散逸を促進させることで成形後の発泡力を低下させる方法がとられていた(特許文献1、特許文献2、及び特許文献3)。 Conventionally, as a method of shortening the cooling time, a chemical that causes cracks on the surface of expandable polystyrene resin particles (aliphatic alcohol ester of higher fatty acid, particularly fatty acid triester such as hardened beef tallow oil or castor hardened oil at room temperature). Glycerin ester) was coated on the resin particles to accelerate the dissipation of the gas component contained in the resin particles to reduce the foaming power after molding (Patent Document 1, Patent Document 2, and Patent Document 3). ).

しかしながら、粒子表面にクラックを発生させる薬品を添加することによって樹脂内部のガス成分の散逸を促進させる方法では、発泡剤の散逸をより効率的に促進させるためにクラックを発生させる薬品の添加量を多くすることで成形体表面にピンホールが生じやすく、粒子間の融着も低下するといった問題があった。 However, in the method of promoting the dissipation of gas components inside the resin by adding a chemical that causes a crack on the particle surface, the amount of the chemical that causes a crack to be more efficiently promoted to promote the dissipation of the blowing agent is added. When the amount is increased, there is a problem that pinholes are likely to occur on the surface of the molded body and fusion between particles is reduced.

また、特許文献4、及び特許文献5では、スチレン系単量体に架橋剤を添加し、架橋成分が表面、もしくは内部に多く存在させることで曲げ強度を向上させる発泡性ポリスチレン系樹脂粒子が提案されている。 Further, in Patent Document 4 and Patent Document 5, expandable polystyrene-based resin particles are proposed in which a cross-linking agent is added to a styrene-based monomer and a large amount of the cross-linking component is present on the surface or inside thereof to improve bending strength. Has been done.

しかしながら、この手法においては、架橋成分が表面に多く、アクリル酸エステルを含んでいないため、低温で成形した成形体では成形体表面の見栄えが損なわれるという点で改善の余地があった。または、架橋成分が内部に多く、アクリル酸エステルを含んでいないため、高発泡化させた際に成形体表面の溶融が起こりやすくなり、成形体の外観の見栄えの点で改善の余地があった。 However, this method has room for improvement in that the appearance of the surface of the molded product is impaired in the molded product molded at a low temperature because the surface has many crosslinking components and does not contain acrylic acid ester. Alternatively, since the cross-linking component is large inside and does not contain an acrylate ester, melting of the surface of the molded body tends to occur when highly foamed, and there was room for improvement in terms of appearance of the molded body. ..

また、特許文献6では、樹脂組成としてスチレン系単量体、及びアクリル酸エステル単量体が含まれており、アクリル酸エステル単量体を含有することにより帯電防止性能の向上するための、発泡性ポリスチレン系樹脂粒子が提案されている。 Further, in Patent Document 6, a styrene-based monomer and an acrylic acid ester monomer are contained as a resin composition, and by containing the acrylic acid ester monomer, antistatic performance is improved by foaming. Polystyrene particles have been proposed.

しかしながら、この手法においては、架橋剤を含んでいないため放冷時間の短縮には至っていなかった。 However, in this method, since the crosslinking agent was not included, the cooling time was not shortened.

特開昭57−16037号公報JP, 57-16037, A 特公昭58−56568号公報JP-B-58-56568 特公平4−7341号公報Japanese Patent Publication No. 4-7341 特開2012−201825号公報JP2012-201825A 特開2012−193242号公報JP2012-193242A 特開2014−193937号公報JP, 2014-193937, A

以上のような状況に鑑み、本発明の目的は、良好な融着性、表面性を有した成形体を得つつ、かつ成形時の冷却時間を短縮することで生産性を向上することに適した発泡性ポリスチレン系樹脂粒子を提供することにある。 In view of the situation as described above, the object of the present invention is suitable for improving productivity by obtaining a molded product having good fusion properties and surface properties, and shortening the cooling time during molding. Another object is to provide expandable polystyrene resin particles.

本発明者らは、上記の問題を解決すべく鋭意検討したところ、単量体組成が、スチレン系単量体、アクリル酸エステル系単量体に、ビニル基を2個以上有する多官能性ビニル系単量体を含有させることで、樹脂全体に弾性力を持たせ、成形時金型から取り出す際の三次発泡を抑制することにより上記特性を有する発泡性ポリスチレン系樹脂粒子を得ることを見出し、本発明を完成するに至った。 The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and found that the monomer composition is a polyfunctional vinyl having two or more vinyl groups in a styrene-based monomer or an acrylate-based monomer. By containing a system monomer, to give an elastic force to the entire resin, found to obtain expandable polystyrene resin particles having the above characteristics by suppressing the tertiary foaming when taken out from the mold during molding, The present invention has been completed.

すなわち、本発明の第1は、単量体組成が、スチレン系単量体90重量部以上99重量部以下、アクリル酸エステル系単量体1重量部以上10重量部以下(スチレン系単量体とアクリル酸エステル系単量体の合計量が100重量部である)であり、前記重合性単量体組成物100重量部に対しビニル基を2個以上有する多官能性ビニル系単量体を0.005重量部以上5.000重量部以下含有し、ゲルパーミネーションクロマトグラフィーにより測定される内部の重量平均分子量Mw1と全体の重量平均分子量Mw2の比(Mw1/Mw2)が0.85以上1.05以下であり、かつ前記発泡性ポリスチレン系樹脂粒子内部の重量平均分子量(Mw1)が17万以上60万以下であり、ATR−FTIRにより測定されたポリスチレン系樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる1600cm−1及び1730cm−1での吸光度比α(A1730/A1600)が、ポリスチレン系樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比β(A1730/A1600)の1.0倍以上10倍以下であることを特徴とする、発泡性ポリスチレン系樹脂粒子に関する。 That is, the first aspect of the present invention is that the monomer composition is 90 parts by weight or more and 99 parts by weight or less of the styrene-based monomer, 1 part by weight or more and 10 parts by weight or less of the acrylate monomer (styrene-based monomer). And the total amount of acrylic acid ester-based monomer is 100 parts by weight), and a polyfunctional vinyl-based monomer having two or more vinyl groups is added to 100 parts by weight of the polymerizable monomer composition. The content of 0.005 parts by weight or more and 5.000 parts by weight or less, and the ratio (Mw1/Mw2) of the internal weight average molecular weight Mw1 and the overall weight average molecular weight Mw2 measured by gel permeation chromatography is 0.85 or more 1. Infrared absorption spectrum of polystyrene resin pre-expanded particle surface measured by ATR-FTIR, in which the weight average molecular weight (Mw1) inside the expandable polystyrene resin particles is 170,000 or more and 600,000 or less. from the absorbance ratio at 1600 cm -1 and 1730 cm -1 obtained α (a 1730 / a 1600) is the absorbance ratio obtained from the infrared absorption spectrum of the polystyrene-based resin pre-expanded particles center β of (a 1730 / a 1600) The present invention relates to expandable polystyrene-based resin particles, which are 1.0 times or more and 10 times or less.

本発明の第2は、ビニル基を2個以上有する多官能性ビニル系単量体がジビニルベンゼンであることを特徴とする、第1の発明に記載の発泡性ポリスチレン系樹脂粒子に関する。 A second aspect of the present invention relates to the expandable polystyrene resin particle according to the first aspect, wherein the polyfunctional vinyl monomer having two or more vinyl groups is divinylbenzene.

本発明の第3は、発泡性ポリスチレン系樹脂粒子のゲルパーミネーションクロマトグラフィー測定から得られる内部のZ平均分子量Mz1と前記全体のZ平均分子量Mz2の比(Mz1/Mz2)が0.85以上1.05以下であり、かつ前記発泡性ポリスチレン系樹脂粒子内部のZ平均分子量(Mz1)が70万以上200万以下であることを特徴とする、第1または第2の発明のいずれかに記載の発泡性ポリスチレン系樹脂粒子に関する。 A third aspect of the present invention is that the ratio (Mz1/Mz2) of the internal Z-average molecular weight Mz1 and the overall Z-average molecular weight Mz2 obtained from the gel permeation chromatography measurement of the expandable polystyrene resin particles is 0.85 or more 1 0.05 or less, and Z average molecular weight (Mz1) inside the expandable polystyrene resin particles is 700,000 or more and 2,000,000 or less, according to any one of the first or second inventions. It relates to expandable polystyrene resin particles.

本発明の第4は、アクリル酸エステル系単量体がアクリル酸ブチルであることを特徴とする、第1〜3の発明のいずれかに記載の発泡性ポリスチレン系樹脂粒子に関する。 A fourth aspect of the present invention relates to the expandable polystyrene resin particles according to any one of the first to third aspects, wherein the acrylic acid ester-based monomer is butyl acrylate.

本発明の第5は、発泡性ポリスチレン系樹脂粒子100重量部に対し発泡剤量が3.0重量部以上8.0重量部以下含まれることを特徴とする、第1〜4の発明のいずれかに記載の発泡性ポリスチレン系樹脂粒子に関する。 A fifth aspect of the present invention is characterized in that the amount of the foaming agent is contained in an amount of 3.0 parts by weight or more and 8.0 parts by weight or less with respect to 100 parts by weight of the expandable polystyrene resin particles, any one of the first to fourth inventions. The expandable polystyrene-based resin particles according to claim 1.

本発明の第6は、第1〜第5の発明のいずれかに記載の発泡性ポリスチレン系樹脂粒子が発泡したものであることを特徴とする、ポリスチレン系樹脂予備発泡粒子に関する。 A sixth aspect of the present invention relates to polystyrene resin pre-expanded particles, which is obtained by expanding the expandable polystyrene resin particles according to any one of the first to fifth aspects.

本発明の第7は、第6の発明に記載のポリスチレン系樹脂予備発泡粒子を型内成形されたものであることを特徴とする、ポリスチレン系樹脂発泡体に関する。 A seventh aspect of the present invention relates to a polystyrene resin foam, which is obtained by in-mold molding of the polystyrene resin pre-expanded particles according to the sixth aspect.

本発明の第8は、ビニル系架橋剤を重合初期から重合転化率85wt%未満の範囲で添加することによって得られる、第1〜5の発明のいずれかに記載のポリスチレン系樹脂を基材樹脂とする発泡性ポリスチレン系樹脂粒子の製造方法に関する。 An eighth aspect of the present invention is a substrate resin comprising the polystyrene-based resin according to any one of the first to fifth aspects of the invention, which is obtained by adding a vinyl-based cross-linking agent in a range of a polymerization conversion rate of less than 85 wt% from the initial stage of polymerization. And a method for producing expandable polystyrene resin particles.

本発明の第9は、第1〜5の発明のいずれかに記載の発泡性ポリスチレン系樹脂粒子を、発泡させてなることを特徴とする、ポリスチレン系樹脂予備発泡粒子の製造方法に関する。 A ninth aspect of the present invention relates to a method for producing pre-expanded polystyrene-based resin particles, which is obtained by expanding the expandable polystyrene-based resin particles according to any one of the first to fifth inventions.

本発明の第10は、第6の発明に記載のポリスチレン系樹脂予備発泡粒子を型内成形してなることを特徴とする、ポリスチレン系樹脂発泡体の製造方法に関する。 A tenth aspect of the present invention relates to a method for producing a polystyrene-based resin foam, which is characterized in that the polystyrene-based resin pre-expanded particles according to the sixth aspect are molded in a mold.

本発明により、良好な融着性、表面性を有した成形体を得つつ、成形時の冷却時間が従来よりも短縮することに適した発泡性ポリスチレン系樹脂粒子を得ることができる。 According to the present invention, it is possible to obtain expandable polystyrene resin particles suitable for shortening the cooling time at the time of molding as compared with the conventional one, while obtaining a molded product having good fusion property and surface property.

本発明の発泡性ポリスチレン系樹脂粒子を構成する基材樹脂は、スチレン系単量体90重量部以上99重量部以下、アクリル酸エステル系単量体1重量部以上10重量部以下(スチレン系単量体とアクリル酸エステル系単量体の合計量が100重量部である)であり、前記重合性単量体組成物100重量部に対しビニル基を2個以上有する多官能性ビニル系単量体を0.005重量部以上5.000重量部以下含有し、ゲルパーミネーションクロマトグラフィーにより測定される内部の重量平均分子量Mw1と全体の重量平均分子量Mw2の比(Mw1/Mw2)が0.85以上1.05以下であり、かつ前記発泡性ポリスチレン系樹脂粒子内部の重量平均分子量(Mw1)が17万以上60万未満であり、ATR−FTIRにより測定されたポリスチレン系樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる1600cm−1及び1730cm−1での吸光度比α(A1730/A1600)が、ポリスチレン系樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比β(A1730/A1600)の1.0倍以上10倍以下であることを特徴とする、発泡性ポリスチレン系樹脂粒子である。 The base resin constituting the expandable polystyrene-based resin particles of the present invention includes 90 parts by weight or more and 99 parts by weight or less of styrene-based monomer, 1 part by weight or more and 10 parts by weight or less (styrene-based monomer). The total amount of the monomer and the acrylic acid ester-based monomer is 100 parts by weight), and the polyfunctional vinyl-based single amount having two or more vinyl groups per 100 parts by weight of the polymerizable monomer composition. The body contains 0.005 parts by weight or more and 5.000 parts by weight or less, and the ratio (Mw1/Mw2) of the internal weight average molecular weight Mw1 to the entire weight average molecular weight Mw2 measured by gel permeation chromatography is 0.85. 1 or more and 1.05 or less, and the weight average molecular weight (Mw1) inside the expandable polystyrene-based resin particles is 170,000 or more and less than 600,000, and infrared rays on the surface of the polystyrene-based resin pre-expanded particles measured by ATR-FTIR absorbance ratio at 1600 cm -1 and 1730 cm -1 obtained from the absorption spectrum α (a 1730 / a 1600) is the absorbance ratio obtained from the infrared absorption spectrum of the polystyrene-based resin pre-expanded particles center β (a 1730 / a 1600 ) 1.0 times or more and 10 times or less.

本発明の発泡性ポリスチレン系樹脂粒子を構成するスチレン系単量体としては、例えば、スチレン、α−メチルスチレン、ジメチルスチレン、パラメチルスチレン、エチルスチレン、イソプロピルスチレン、t−ブチルスチレン、クロルスチレン、ブロモスチレンなどのスチレン系誘導体が挙げられる。これらスチレン系単量体は、単独で用いてもよいし、2種以上を混合して用いてもよい。 Examples of the styrene-based monomer constituting the expandable polystyrene-based resin particles of the present invention include styrene, α-methylstyrene, dimethylstyrene, paramethylstyrene, ethylstyrene, isopropylstyrene, t-butylstyrene, chlorostyrene, Examples include styrene-based derivatives such as bromostyrene. These styrene-based monomers may be used alone or in combination of two or more.

本発明の発泡性ポリスチレン系樹脂粒子を構成するアクリル酸エステル系単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸2-ジメチルアミノエチル、アクリル酸2-ヒドロキシエチル、などのアクリル酸アルキルエステルが挙げられる。これらアクリル酸エステル系単量体は、単独で用いてもよいし、2種以上を混合して用いてもよい。 Examples of the acrylic acid ester-based monomer constituting the expandable polystyrene-based resin particles of the present invention include, for example, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-dimethylaminoethyl acrylate, Examples thereof include alkyl acrylates such as 2-hydroxyethyl acrylate. These acrylic acid ester-based monomers may be used alone or in combination of two or more.

これらのうちでも、スチレン系単量体と共重合し易く、成形性が良い点から、アクリル酸ブチルが好ましい。 Of these, butyl acrylate is preferable because it is easily copolymerized with the styrene-based monomer and has good moldability.

本発明における発泡性ポリスチレン系樹脂粒子を構成する基材樹脂の単量体組成は、スチレン系単量体90重量部以上99重量部以下、アクリル酸エステル系単量体1重量部以上10重量部以下(スチレン系単量体とアクリル酸エステル系単量体の合計量が100重量部)である。より好ましくは、スチレン系単量体94重量部以上96重量部以下、アクリル酸エステル4重量部以上6重量部以下である。 The monomer composition of the base resin constituting the expandable polystyrene resin particles in the present invention is 90 parts by weight or more and 99 parts by weight or less of styrene monomer, 1 part by weight or more and 10 parts by weight of acrylate monomer. Below (total amount of styrene-based monomer and acrylic ester-based monomer is 100 parts by weight). More preferably, the amount of the styrene-based monomer is 94 parts by weight or more and 96 parts by weight or less, and the acrylate ester is 4 parts by weight or more and 6 parts by weight or less.

基材樹脂における単量体組成において、アクリル酸エステル系単量体が10重量部超となると、特に高発泡化させた際に、成形体の収縮が起こりやすくなり、成形体の外観の見栄えが悪化する傾向がある。また、アクリル酸エステル系単量体が1重量部未満となると、低温での発泡が困難となる(目的とする発泡倍率の予備発泡粒子を得る為に必要な加熱温度や表面性、融着性に優れる成形体を得るのに必要な成形温度が高くなる)傾向がある。 In the monomer composition of the base resin, when the amount of the acrylic acid ester-based monomer exceeds 10 parts by weight, the molded product is likely to contract, especially when it is highly foamed, and the appearance of the molded product looks good. Tends to get worse. Further, if the amount of the acrylic acid ester-based monomer is less than 1 part by weight, it becomes difficult to foam at a low temperature (the heating temperature, surface property, and fusion property required for obtaining pre-expanded particles having an intended expansion ratio). The molding temperature required to obtain a molded article having excellent heat resistance tends to increase.

本発明の発泡性ポリスチレン系樹脂粒子を構成するビニル基を2個以上有する多官能性ビニル系単量体としては、例えば、ジビニルベンゼン、ヘキサメチレンジアクリレート、エチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、及びジペンタエリスリトールヘキサアクリレート、などのビニル基を2個以上有する多官能性ビニル系単量体が挙げられる。これらアクリル酸エステル系単量体は、単独で用いてもよいし、2種以上を混合して用いてもよい。 Examples of the polyfunctional vinyl-based monomer having two or more vinyl groups constituting the expandable polystyrene-based resin particles of the present invention include divinylbenzene, hexamethylene diacrylate, ethylene glycol diacrylate, polyethylene glycol diacrylate, Examples thereof include polyfunctional vinyl-based monomers having two or more vinyl groups such as trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, ditrimethylolpropane tetraacrylate, and dipentaerythritol hexaacrylate. These acrylic acid ester-based monomers may be used alone or in combination of two or more.

これらのうちでも、スチレン系単量体と共重合し易い点から、ジビニルベンゼンが好ましい。 Of these, divinylbenzene is preferable because it is easily copolymerized with the styrene-based monomer.

本発明における発泡性ポリスチレン系樹脂粒子を構成する基材樹脂は、ビニル基を2個以上有する多官能性ビニル系単量体を0.005重量部以上5.000重量部以下含有している。より好ましくは、ビニル基を2個以上有する多官能性ビニル系単量体0.010重量部以上1.000重量部以下である。 The base resin that constitutes the expandable polystyrene resin particles in the present invention contains 0.005 parts by weight or more and 5.000 parts by weight or less of a polyfunctional vinyl-based monomer having two or more vinyl groups. More preferably, it is 0.010 parts by weight or more and 1.000 parts by weight or less of a polyfunctional vinyl-based monomer having two or more vinyl groups.

基材樹脂における単量体組成において、ビニル基を2個以上有する多官能性ビニル系単量体が5.000重量部超となると、特に成形する際に、樹脂が発泡しにくくなり、表面性、及び融着性に優れる成形体を得ることが困難となる傾向がある。また、ビニル基を2個以上有する多官能性ビニル系単量体が0.005重量部未満となると、放冷時間の短縮が困難となる傾向がある。
なお、基材樹脂における単量体組成に関しては、重合法としてシード懸濁重合法を実施する場合には、シードとなる樹脂粒子中の単量体組成も単量体組成に反映させる。
In the monomer composition of the base resin, if the multifunctional vinyl-based monomer having two or more vinyl groups is more than 5.000 parts by weight, the resin is less likely to foam, especially during molding, and the surface property is improved. , And it tends to be difficult to obtain a molded product having excellent fusion bondability. Further, when the amount of the polyfunctional vinyl-based monomer having two or more vinyl groups is less than 0.005 part by weight, it tends to be difficult to shorten the cooling time.
Regarding the monomer composition in the base resin, when the seed suspension polymerization method is carried out as the polymerization method, the monomer composition in the resin particles to be the seed is also reflected in the monomer composition.

本発明における発泡性ポリスチレン系樹脂粒子内部の重量平均分子量Mw1と全体の重量平均分子量Mw2の比(Mw1/Mw2)は0.85以上1.05以下が好ましい。より好ましくは0.90以上1.05以下である。Mw1/Mw2が0.85未満であると表面の架橋成分が多くなるため、発泡性が低くなり、表面性が悪化する。また、Mw1/Mw2が1.05超であると内部の架橋成分が多くなるため、成形時に成形体を十分に冷却する必要があり放冷時間の短縮が困難になる傾向がある。 The ratio (Mw1/Mw2) of the weight average molecular weight Mw1 inside the expandable polystyrene-based resin particles to the entire weight average molecular weight Mw2 in the present invention is preferably 0.85 or more and 1.05 or less. It is more preferably 0.90 or more and 1.05 or less. When Mw1/Mw2 is less than 0.85, the amount of cross-linking components on the surface increases, so that the foamability decreases and the surface property deteriorates. Further, when Mw1/Mw2 is more than 1.05, the internal cross-linking component increases, so that the molded body needs to be sufficiently cooled during molding, and it tends to be difficult to shorten the cooling time.

本発明における発泡性ポリスチレン系樹脂粒子内部の重量平均分子量Mw1は、17万以上60万以下である。好ましくは30万以上60万以下である。発泡性ポリスチレン系樹脂粒子内部の重量平均分子量Mw1が17万未満では、発泡成形体とした際の強度が低くなるばかりか、成形体表面が溶融しやすく、外観を損なう傾向があり、また、60万超では、発泡性が低くなり、成形性が悪化する(目的とする発泡倍率の予備発泡粒子を得る為に必要な加熱温度、融着性に優れる成形体を得る為に必要な成形温度が高くなる)傾向がある。 The weight average molecular weight Mw1 inside the expandable polystyrene resin particles in the present invention is 170,000 or more and 600,000 or less. It is preferably 300,000 or more and 600,000 or less. When the weight average molecular weight Mw1 inside the expandable polystyrene-based resin particles is less than 170,000, not only the strength of the foamed molded product becomes low, but also the surface of the molded product tends to melt and the appearance tends to be impaired. If it exceeds 10,000, the foamability will be low and the moldability will deteriorate (the heating temperature required to obtain pre-expanded particles having the target expansion ratio, and the molding temperature required to obtain a molded article with excellent fusion properties are Tend to be higher).

重量平均分子量Mwは、ポリスチレン系樹脂粒子を重合する際の開始剤の使用量と重合温度の組み合わせ、またはビニル基を2個以上有する多官能性ビニル系単量体の添加量、及び添加のタイミングにより、制御することができる。例えば、開始剤の使用量を多くする、および/または、架橋剤の使用量を少なくする、および/または、重合温度を高くすることにより、Mwを低くすることができる。 The weight average molecular weight Mw is a combination of the amount of the initiator used for polymerizing the polystyrene resin particles and the polymerization temperature, or the amount of the polyfunctional vinyl monomer having two or more vinyl groups, and the timing of the addition. Can be controlled by. For example, the Mw can be lowered by increasing the amount of the initiator used and/or decreasing the amount of the crosslinking agent used and/or increasing the polymerization temperature.

本発明における発泡性ポリスチレン系樹脂粒子内部のZ平均分子量Mz1と全体のZ平均分子量Mz2の比(Mz1/Mz2)は0.85以上1.05以下が好ましい。より好ましくは0.90以上1.05以下である。Mz1/Mz2が0.85未満であると表面の架橋成分が多くなるため、発泡性が低くなり、表面性が悪化する。また、Mz1/Mz2が1.05超であると内部の架橋成分が多くなるため、成形時に成形体を十分に冷却する必要があり放冷時間の短縮が困難になる傾向がある。 The ratio (Mz1/Mz2) of the Z average molecular weight Mz1 inside the expandable polystyrene-based resin particles and the total Z average molecular weight Mz2 in the present invention is preferably 0.85 or more and 1.05 or less. It is more preferably 0.90 or more and 1.05 or less. If Mz1/Mz2 is less than 0.85, the amount of cross-linking components on the surface increases, so that the foamability decreases and the surface property deteriorates. Further, when Mz1/Mz2 is more than 1.05, the internal cross-linking component increases, so that the molded body needs to be sufficiently cooled during molding, and it tends to be difficult to shorten the cooling time.

本発明における発泡性ポリスチレン系樹脂粒子内部のZ平均分子量Mz1としては、70万以上200万以下が好ましい。より好ましくは90万以上190万以下である。発泡性ポリスチレン系樹脂粒子内部のZ平均分子量Mz1が70万未満では、発泡成形体とした際の強度が低くなるばかりか、成形体表面が溶融しやすく、外観を損なう傾向があり、また、200万超では、発泡性が低くなり、成形性が悪化する(目的とする発泡倍率の予備発泡粒子を得る為に必要な加熱温度、融着性に優れる成形体を得る為に必要な成形温度が高くなる)傾向がある。 The Z average molecular weight Mz1 inside the expandable polystyrene resin particles in the present invention is preferably 700,000 or more and 2,000,000 or less. More preferably, it is 900,000 or more and 1.9 million or less. When the Z average molecular weight Mz1 inside the expandable polystyrene-based resin particles is less than 700,000, not only the strength of the foamed molded product becomes low, but also the surface of the molded product tends to melt and the appearance tends to be impaired. If it exceeds 10,000, the foamability will be low and the moldability will deteriorate (the heating temperature required to obtain pre-expanded particles having the target expansion ratio, and the molding temperature required to obtain a molded article with excellent fusion properties are Tend to be higher).

Z平均分子量Mzは、ポリスチレン系樹脂粒子を重合する際の開始剤の使用量と重合温度の組み合わせ、またはビニル基を2個以上有する多官能性ビニル系単量体の添加量、及び添加のタイミングにより、制御することができる。例えば、開始剤の使用量を多くする、および/または、架橋剤の使用量を少なくする、および/または、重合温度を高くすることにより、Mzを低くすることができる。 The Z-average molecular weight Mz is a combination of the amount of the initiator used for polymerizing the polystyrene resin particles and the polymerization temperature, or the amount of the polyfunctional vinyl monomer having two or more vinyl groups, and the timing of the addition. Can be controlled by. For example, Mz can be decreased by increasing the amount of the initiator used and/or decreasing the amount of the crosslinking agent used and/or increasing the polymerization temperature.

ここで、本発明における発泡性ポリスチレン系樹脂粒子の重量平均分子量Mw、及びZ平均分子量Mzは、ゲルパーミネーションクロマトグラフ(以下、「GPC」と略す場合がある)を用いて、後述する条件にて測定した値である。尚、発泡性ポリスチレン系樹脂粒子の内部の分子量を粒子自体から測定することは難しいため、本明細書では、粒子から得た予備発泡粒子の表面を1mm切り出し、残った内側の部分を発泡性ポリスチレン系樹脂粒子の内部の平均分子量とする。平均分子量の測定法は、実施例の欄で説明しているが、この測定法によれば粒子の表面から半径の約50%の領域の表層を取り除いた平均分子量が測定されていることになる。 Here, the weight average molecular weight Mw and the Z average molecular weight Mz of the expandable polystyrene resin particles in the present invention are determined by using a gel permeation chromatograph (hereinafter, sometimes abbreviated as “GPC”) under the conditions described below. It is the value measured by Since it is difficult to measure the molecular weight inside the expandable polystyrene-based resin particles from the particles themselves, in the present specification, the surface of the pre-expanded particles obtained from the particles is cut out by 1 mm, and the remaining inner portion is expanded polystyrene. The average molecular weight inside the resin particles. The measuring method of the average molecular weight is described in the section of Examples. According to this measuring method, the average molecular weight obtained by removing the surface layer in the region of about 50% of the radius from the surface of the particle is measured. ..

本発明の発泡性ポリスチレン系樹脂粒子は、ATR−FTIRにより測定されたポリスチレン系樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる1600cm−1及び1730cm−1での吸光度比α(A1730/A1600)が、ポリスチレン系樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比β(A1730/A1600)の1.0倍以上10倍以下であり、好ましくは1.0倍以上5.0倍以下である。 Expandable polystyrene resin particles of the present invention, the absorbance ratio at 1600 cm -1 and 1730 cm -1 obtained from an infrared absorption spectrum of the measured polystyrene resin pre-expanded particle surface by ATR-FTIR α (A 1730 / A 1600 ) Is 1.0 times or more and 10 times or less, preferably 1.0 times or more and 5.0 times the absorbance ratio β(A 1730 /A 1600 ) obtained from the infrared absorption spectrum of the polystyrene resin pre-expanded particles. It is less than twice.

表面と中心部での吸光度比の割合α/βが10より高いと、粒子内部に比べて粒子表面のアクリル酸エステルの比率が高くなり、特に高い蒸気圧(高い金型温度)で成形する際に表面溶融を起こしやすくなり、表面外観を損なう傾向にある。吸光度比の割合α/βが1.0未満であると、粒子表面のアクリル酸エステルの比率が低くなり、低い蒸気圧(低い金型温度)での成形が困難になり、表面外観が悪化する傾向にある、また、予備発泡時の加熱温度も高温となる傾向がある。 When the ratio α/β of the absorbance ratio between the surface and the central portion is higher than 10, the ratio of acrylic acid ester on the surface of the particle becomes higher than that inside the particle, especially when molding at a high vapor pressure (high mold temperature). Surface melting tends to occur and the surface appearance tends to be impaired. When the ratio α/β of the absorbance ratio is less than 1.0, the ratio of acrylic acid ester on the particle surface becomes low, making molding at low vapor pressure (low mold temperature) difficult and deteriorating the surface appearance. In addition, the heating temperature at the time of pre-foaming tends to be high.

本発明にて用いられる発泡剤としては、例えば、プロパン、ブタン、ペンタン等の脂肪族炭化水素、シクロブタン、シクロペンタン等の脂環族炭化水素、メチルクロライド、ジクロルジフルオロメタン、ジクロルテトラフルオロエタン等のハロゲン化炭化水素が挙げられる。これら発泡剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。これら発泡剤のうちでも、ブタンが、発泡力が良好である点から、好ましい。 Examples of the foaming agent used in the present invention include aliphatic hydrocarbons such as propane, butane, and pentane, cyclobutane, alicyclic hydrocarbons such as cyclopentane, methyl chloride, dichlorodifluoromethane, and dichlorotetrafluoroethane. And other halogenated hydrocarbons. These foaming agents may be used alone or in combination of two or more. Of these foaming agents, butane is preferable because it has a good foaming power.

本発明における発泡性ポリスチレン系樹脂粒子に含有される発泡剤は、発泡性ポリスチレン系樹脂粒子を100重量部とした場合、3.0重量部以上8.0重量部以下が好ましく、4.0重量部以上6.0重量部以下がより好ましい。発泡剤の含有量が3.0重量部未満では、予備発泡時間が長くなると共に、成形時の融着率が低下する傾向がある。発泡剤の含有量が8.0重量部超では、成形体が収縮し、成形体の外観を損なう傾向がある。 The foaming agent contained in the expandable polystyrene resin particles in the present invention is preferably 3.0 parts by weight or more and 8.0 parts by weight or less, preferably 4.0 parts by weight, when the expandable polystyrene resin particles are 100 parts by weight. More preferably, it is not less than 6.0 parts by weight and not more than 6.0 parts by weight. When the content of the foaming agent is less than 3.0 parts by weight, the prefoaming time tends to be long and the fusion rate at the time of molding tends to be low. If the content of the foaming agent exceeds 8.0 parts by weight, the molded product tends to shrink and the appearance of the molded product tends to be impaired.

本発明においてビニル基を2個以上有する多官能性ビニル系単量体を添加するタイミングとして重合初期から重合転化率85wt%未満の範囲であることが好ましい。より好ましくは、重合初期から転化率50wt%の範囲である。 In the present invention, the timing of adding the polyfunctional vinyl-based monomer having two or more vinyl groups is preferably within the range of the polymerization conversion rate of less than 85 wt% from the initial stage of the polymerization. More preferably, the conversion rate is in the range of 50 wt% from the initial stage of polymerization.

ビニル基を2個以上有する多官能性ビニル系単量体を添加するタイミングにおいて、重合転化率が85wt%未満であると、樹脂全体にビニル基を2個以上有する多官能性ビニル系単量体を存在させることが出来るため、良好な融着性、表面性を有した成形体を得つつ、かつ成形時の冷却時間を短縮することができる。 When the polymerization conversion rate is less than 85 wt% at the timing of adding the polyfunctional vinyl-based monomer having two or more vinyl groups, the polyfunctional vinyl-based monomer having two or more vinyl groups in the entire resin is used. Therefore, it is possible to obtain a molded product having good fusion-bonding property and surface property and to shorten the cooling time at the time of molding.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法としては、水性媒体中にて懸濁重合法により得られる粒子に発泡剤を含浸する方法、水性媒体中にて塊状重合等により製造されたペレットに発泡剤を含浸する方法、のいずれの方法によっても得ることができる。 The method for producing expandable polystyrene-based resin particles of the present invention includes a method of impregnating a foaming agent into particles obtained by a suspension polymerization method in an aqueous medium, and a pellet produced by bulk polymerization or the like in an aqueous medium. It can be obtained by any method of impregnating with a foaming agent.

これらの中でも、真球状の樹脂粒子を得ることができ、さらに、重合工程と発泡剤含浸工程を一貫して行って発泡性ポリスチレン系樹脂粒子が得られる点から、工業生産性も良い懸濁重合法により製造することが好ましい。より好ましくは、種粒子に単量体混合物を吸収させ、吸収させた後または吸収させつつ単量体混合物の重合を行うことにより樹脂粒子を得るシード重合法ではなく、単量体混合物を重合開始剤の存在下にて懸濁重合させて樹脂粒子を得る懸濁重合法である。 すなわち、発泡性ポリスチレン系樹脂粒子の製造方法としては、スチレン系単量体およびアクリル酸エステル系単量体、ビニル基を2個以上有する多官能性ビニル系単量体を懸濁剤、重合開始剤および、必要に応じて、その他の添加剤の存在下で重合反応を開始し、懸濁重合中に発泡剤を添加する、または、重合後に発泡剤を含浸させる方法が好ましい。 Among these, since spherical resin particles can be obtained, and further, the expandable polystyrene resin particles can be obtained by consistently performing the polymerization step and the foaming agent impregnation step, the suspension weight with good industrial productivity is also obtained. It is preferably manufactured by a legal method. More preferably, the seed particles are used to absorb the monomer mixture, and the polymerization of the monomer mixture is carried out after or while being absorbed to obtain resin particles. It is a suspension polymerization method in which resin particles are obtained by suspension polymerization in the presence of an agent. That is, as a method for producing expandable polystyrene-based resin particles, a styrene-based monomer, an acrylic ester-based monomer, and a polyfunctional vinyl-based monomer having two or more vinyl groups are used as a suspending agent and polymerization is initiated. A method in which the polymerization reaction is started in the presence of an agent and, if necessary, other additives, and a foaming agent is added during suspension polymerization, or a foaming agent is impregnated after the polymerization is preferable.

本発明の発泡性ポリスチレン系樹脂粒子中に含有される溶剤及び可塑剤の合計は、基材樹脂を100重量部とした場合に含有される溶剤及び可塑剤の合計が0.1重量部未満であることが好ましい。なお、本発明でいう溶剤は発泡剤と区別するため、沸点50℃以上のものをいう。 The total amount of the solvent and the plasticizer contained in the expandable polystyrene resin particles of the present invention is less than 0.1 part by weight when the total amount of the solvent and the plasticizer contained in the base resin is 100 parts by weight. Preferably. The solvent used in the present invention has a boiling point of 50° C. or higher in order to distinguish it from the foaming agent.

本発明において溶剤とは、例えば、へキサン、ヘプタン等のC6以上の脂肪族炭化水素、シクロヘキサン、シクロオクタン等のC6以上の脂環族炭化水素、などが挙げられる。本発明において可塑剤とは、例えば、ジイソブチルアジペート、ジオクチルアジペート、ジブチルセバケート、グリセリントリステアレート、グリセリントリカプリレート、ヤシ油、パーム油、菜種油、などが挙げられる。 Examples of the solvent in the present invention include C6 or more aliphatic hydrocarbons such as hexane and heptane, and C6 or more alicyclic hydrocarbons such as cyclohexane and cyclooctane. Examples of the plasticizer in the present invention include diisobutyl adipate, dioctyl adipate, dibutyl sebacate, glycerin tristearate, glycerin tricaprylate, coconut oil, palm oil, and rapeseed oil.

これら溶剤及び可塑剤は、型内成形の加熱工程では可塑効果により樹脂を軟化させ、更に気化膨張することで発泡成形に必要な内圧を保持する役目となる。しかしながら、分子が大きく加熱工程終了後にも発泡体内に残留していることから、冷却工程でも内圧を保持し、長い冷却時間を余儀なくされる。仮に、内圧が保持した状態で冷却を終了し発泡体を金型から離型すると、内圧により成形体が所望の形状を維持できず不良品となってしまう。従って、これら溶剤及び可塑剤は冷却時間の短縮を阻害しているため、使用量を0.1重量部未満とすることが生産性を高めていくためには、好ましい。 These solvents and plasticizers serve to retain the internal pressure required for foam molding by softening the resin by the plasticizing effect and further evaporating and expanding in the heating step of in-mold molding. However, since the molecules are large and remain in the foam body even after the heating process is completed, the internal pressure is maintained even in the cooling process, and a long cooling time is inevitable. If the cooling is terminated while the internal pressure is maintained and the foam is released from the mold, the internal pressure cannot maintain the desired shape, resulting in a defective product. Therefore, these solvents and plasticizers hinder the shortening of the cooling time, so that it is preferable to use less than 0.1 parts by weight in order to improve the productivity.

また、予備発泡工程及び型内成形の加熱工程で気化しない可塑剤についても、成形体の強度を低下させるか若しくは、樹脂を軟化させ収縮の原因となるため、使用量を0.1重量部未満とすることが、好ましい。 Also, with regard to a plasticizer that does not vaporize in the pre-foaming step and the heating step of in-mold molding, the amount used is less than 0.1 parts by weight because it reduces the strength of the molded body or softens the resin and causes shrinkage. It is preferable that

本発明の発泡性ポリスチレン系樹脂粒子中に含有される未反応の単量体成分は、0.3重量部未満であることが好ましい。含有される未反応の単量体成分は、発泡性ポリスチレン系樹脂粒子を発泡して得られる発泡成形体から揮発する傾向があり、特に含有される単量体成分が0.3重量部以上では、医療分野あるいは直接食品に接触する包装材料分野、もしくは自動車や建築の部材向けには好ましくないばかりか、冷却工程において冷却時間の短縮を阻害する傾向がある。 The unreacted monomer component contained in the expandable polystyrene resin particles of the present invention is preferably less than 0.3 parts by weight. The unreacted monomer component contained tends to volatilize from the foamed molded product obtained by foaming the expandable polystyrene-based resin particles, and particularly when the contained monomer component is 0.3 parts by weight or more. It is not preferable in the medical field or in the field of packaging materials that come into direct contact with foods, or in automobiles and construction materials, and it tends to hinder the shortening of the cooling time in the cooling process.

含有される未反応の単量体成分量は、ポリスチレン系樹脂粒子を重合する際の開始剤の使用量と重合温度の組み合わせにより、制御することができる。例えば、開始剤の使用量を多くする、重合温度を高くすることにより、未反応の単量体成分を下げることができる。 The amount of unreacted monomer component contained can be controlled by the combination of the amount of the initiator used for polymerizing the polystyrene resin particles and the polymerization temperature. For example, the unreacted monomer component can be reduced by increasing the amount of the initiator used and increasing the polymerization temperature.

本発明における懸濁重合法において用いられる懸濁剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や第三燐酸カルシウム、ビロリン酸マグネシウム等の難溶性無機物質、等が挙げられる。難溶性無機物質を用いる場合は、ドデシルベンゼンスルホン酸ソーダ、ドデシルジフェニルエーテルジスルホン酸ナトリウム等のア二オン界面活性剤を併用することにより、懸濁安定効果は増大させることができる。また、水溶性高分子と難溶性無機物質の併用も効果的である。 Examples of the suspending agent used in the suspension polymerization method of the present invention include polyvinyl alcohol, methyl cellulose, polyacrylamide, water-soluble polymers such as polyvinylpyrrolidone and tricalcium phosphate, and sparingly soluble inorganic substances such as magnesium borophosphate, Etc. When a sparingly soluble inorganic substance is used, the suspension stabilizing effect can be increased by using an anion surfactant such as sodium dodecylbenzene sulfonate or sodium dodecyl diphenyl ether disulfonate together. Further, the combined use of a water-soluble polymer and a poorly soluble inorganic substance is also effective.

本発明における懸濁重合法において用いられる重合開始剤としては、一般に熱可塑性重合体の製造に用いられるラジカル発生型重合開始剤を用いることができる。重合開始剤の代表的なものとしては、例えば、アゾビスイソブチロニトリル等のアゾ系化合物、ベンゾイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ラウロイルパーオーキサイド−t−ブチルパーオキシイソプロピルカーボネート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルへキシルカーボネートなどの過酸化物があげられる。これら重合開始剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。 As the polymerization initiator used in the suspension polymerization method of the present invention, a radical-generating type polymerization initiator generally used for producing a thermoplastic polymer can be used. Typical examples of the polymerization initiator include azo compounds such as azobisisobutyronitrile, benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, lauroyl peroxide-t-butyl. Peroxyisopropyl carbonate, 1,1-bis(t-butylperoxy)cyclohexane, 1,1-bis(t-amylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-butyl) Peroxy)-3,3,5-trimethylcyclohexane, t-butylperoxybenzoate, t-butylperoxy-2-ethylhexyl carbonate and the like peroxides. These polymerization initiators may be used alone or in combination of two or more.

本発明の懸濁重合時に添加可能な添加物として外添剤、難燃剤、難燃助剤等を、本発明の効果を阻害しない範囲で使用してもよい。 As an additive that can be added during the suspension polymerization of the present invention, an external additive, a flame retardant, a flame retardant aid, etc. may be used within a range that does not impair the effects of the present invention.

本発明において用いられる難燃剤および難燃助剤としては、公知慣用のものが使用できる。
難燃剤の具体例としては、例えば、ヘキサブロモシクロドデカン、テトラブロモブタン、ヘキサブロモシクロヘキサン等のハロゲン化脂肪族炭化水素系化合物、テトラブロモビスフェノールA、テトラブロモビスフェノールF、2,4,6−トリブロモフェノール等の臭素化フェノール類、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ジグリシジルエーテル、2,2−ビス[4'(2”,3”−ジブロモアルコキシ)−3',5'−ジブロモフェニル]−プロパン等の臭素化フェノール誘導体が挙げられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。
As the flame retardant and flame retardant aid used in the present invention, known and conventional ones can be used.
Specific examples of the flame retardant include halogenated aliphatic hydrocarbon compounds such as hexabromocyclododecane, tetrabromobutane, hexabromocyclohexane, tetrabromobisphenol A, tetrabromobisphenol F, 2,4,6-triene. Brominated phenols such as bromophenol, tetrabromobisphenol A-bis(2,3-dibromopropyl ether), tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A- Examples thereof include brominated phenol derivatives such as diglycidyl ether and 2,2-bis[4′(2″,3″-dibromoalkoxy)-3′,5′-dibromophenyl]-propane. These may be used alone or in combination of two or more.

難燃助剤の具体例としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキ
サイド、t−ブチルハイドロパーオキサイド、2,3−ジメチルー2,3−ジフェニルブタン等の開始剤を使用してもよい。
As a specific example of the flame retardant aid, for example, an initiator such as cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane may be used. ..

本発明において用いられる外添剤及び添付剤としては、公知慣用のものが使用できる。 As the external additives and adjuncts used in the present invention, known and conventional ones can be used.

外添剤及び添付剤の具体例としては、例えば、ラウリン酸トリグリセライド、ステアリン酸トリグリセライド、リノール酸トリグリセライドなどの脂肪酸トリグリセライド、ラウリン酸ジグリセライド、ステアリン酸ジグリセライド、リノール酸ジグリセライドなどの脂肪酸ジグリセライド、ラウリン酸モノグリセライド、ステアリン酸モノグリセライド、リノール酸モノグリセライドなどの脂肪酸モノグリセライド、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ラウリン酸亜鉛、ラウリン酸カルシウムなどの脂肪酸金属塩、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンラウレート、ポリオキシエチレンパルミテート、ポリオキシエチレンステアレート、ポリオキシエチレンオレエート等の非イオン界面活性剤、ポリジメチルシロキサン、ポリメチルフェニルシロキサン等のポリシロキサンなどが挙げられる。これら外添剤及び添付剤は単独で用いても良いし、2種以上を混合しても良い。また、これら外添剤及び添付剤は発泡剤含浸時に水系に添加してもよいし、脱水後に若しくは乾燥後に添加し被覆してもよく、被覆方法によらない。好ましい被覆方法は、乾燥後に添付し、混合撹拌することにより被覆する方法である。 Specific examples of external additives and adjuncts include, for example, lauric acid triglyceride, stearic acid triglyceride, fatty acid triglycerides such as linoleic acid triglyceride, lauric acid diglyceride, stearic acid diglyceride, fatty acid diglycerides such as linoleic acid diglyceride, lauric acid monoglyceride, Fatty acid monoglycerides such as stearic acid monoglyceride and linoleic acid monoglyceride, zinc stearate, calcium stearate, magnesium stearate, aluminum stearate, zinc laurate, fatty acid metal salts such as calcium laurate, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether , Nonionic surfactants such as polyoxyethylene stearyl ether, polyoxyethylene laurate, polyoxyethylene palmitate, polyoxyethylene stearate, polyoxyethylene oleate, polysiloxanes such as polydimethylsiloxane, polymethylphenylsiloxane And so on. These external additives and adjuncts may be used alone or in combination of two or more. Further, these external additives and adjuncts may be added to the water system at the time of impregnating the foaming agent, or may be added after dehydration or after drying and coated, regardless of the coating method. A preferred coating method is a method of coating after drying and mixing and stirring.

本発明の発泡性ポリスチレン系樹脂粒子は、これを予備発泡させ、その後、それを加熱発泡させ、発泡成形体とする。 The expandable polystyrene-based resin particles of the present invention are pre-expanded and then heat-expanded to obtain an expanded molded article.

予備発泡方法としては、例えば、円筒形の予備発泡装置を用いて、蒸気等で加熱して発泡させる等の、通常の方法を採用することができる。 As the pre-foaming method, for example, a normal method such as using a cylindrical pre-foaming apparatus to heat with steam or the like to foam can be employed.

本発明の発泡性ポリスチレン系樹脂粒子から得られる予備発泡粒子の発泡倍率としては、特に制限されないが、一般的に建材・土木分野で使用される嵩倍率10倍以上90倍以下が好ましい。 The expansion ratio of the pre-expanded particles obtained from the expandable polystyrene-based resin particles of the present invention is not particularly limited, but a bulk ratio generally used in the field of construction materials/civil engineering is preferably 10 times or more and 90 times or less.

予備発泡粒子を発泡成形させる方法としては、例えば、金型内に予備発泡粒子を充填し、蒸気等を吹き込んで加熱する方法により発泡成形体を得る、いわゆる型内発泡成形法、等の通常の方法を採用することができる。 As a method for foam-molding the pre-expanded particles, for example, a so-called in-mold foam molding method, which is a so-called in-mold foam molding method, in which a pre-expanded particle is filled in a mold, and a method of heating by blowing steam or the like is used. The method can be adopted.

型内成形時の吹き込み蒸気圧としては、通常0.07〜0.09MPa程度であるが、本発明においては、0.03〜0.08MPa程度においても成形が可能となる。 The blowing vapor pressure at the time of in-mold molding is usually about 0.07 to 0.09 MPa, but in the present invention, molding is possible even at about 0.03 to 0.08 MPa.

以下に、実施例および比較例を挙げるが、本発明は、これらによって制限されるものではない。 Examples and comparative examples will be given below, but the present invention is not limited thereto.

なお、測定評価法は、以下の通りに実施した。 The measurement evaluation method was carried out as follows.

<転化率算出方法>
重合転化率の計算方法は下記計算式で算出した。
<Conversion rate calculation method>
The calculation method of the polymerization conversion rate was calculated by the following calculation formula.

重合転化率[wt%]=揮発成分を除いた樹脂重量/揮発成分を含む樹脂重量*100
揮発分を除いた樹脂はサンプリングした樹脂に重合禁止剤を添加し、150℃のオーブンに30分間入れることで調整した。
Polymerization conversion rate [wt%]=resin weight excluding volatile components/resin weight containing volatile components*100
The volatile component-free resin was prepared by adding a polymerization inhibitor to the sampled resin and placing it in an oven at 150° C. for 30 minutes.

<GPC測定>
得られた発泡性ポリスチレン系樹脂粒子に対して、発泡性ポリスチレン系樹脂粒子0.02gをテトラヒドロフラン(以下、「THF」と略す場合がある)20mlに溶解させた後、ゲルパーミェーションクロマトグラフ(GPC)を用いて、以下の条件にてGPC測定を行い、GPC測定チャートおよび、重量平均分子量(Mw)およびZ平均分子量(Mz)を得た。尚、得られた値はポリスチレン換算の相対値である。
測定装置:東ソー社製、高速GPC装置 HLC−8220
使用カラム:東ソー社製、SuperHZM−H×2本、SuperH−RC×2本
カラム温度:40℃、移動相:THF(テトラヒドロフラン)
流量:0.35ml/分、注入量:10μl
検出器:RI。
<GPC measurement>
After dissolving 0.02 g of the expandable polystyrene-based resin particles in 20 ml of tetrahydrofuran (hereinafter, sometimes abbreviated as "THF") with respect to the obtained expandable polystyrene-based resin particles, gel permeation chromatography GPC was measured using (GPC) under the following conditions to obtain a GPC measurement chart, and a weight average molecular weight (Mw) and a Z average molecular weight (Mz). The obtained value is a polystyrene-converted relative value.
Measuring device: Tosoh Corporation, high-speed GPC device HLC-8220
Column used: Tosoh Corporation, SuperHZM-H x 2, SuperH-RC x 2
Column temperature: 40°C, mobile phase: THF (tetrahydrofuran)
Flow rate: 0.35 ml/min, injection volume: 10 μl
Detector: RI.

ここで、発泡性ポリスチレン系樹脂粒子の内部の重量平均分子量(Mw)、およびZ平均分子量(Mz)とは、4mm程度に予備発泡したポリスチレン系予備発泡粒子の表層を1mm切り出し、残った内側の部分のことをいう。 Here, the weight average molecular weight (Mw) and the Z average molecular weight (Mz) inside the expandable polystyrene-based resin particles means that the surface layer of the polystyrene-based pre-expanded particles pre-expanded to about 4 mm is cut out by 1 mm and the remaining inside Refers to the part.

<吸光度比(A1730/A1600)の測定>
得られた発泡性ポリスチレン系樹脂粒子の吸光度比は、予備発泡粒子を任意に10個採取し、それぞれ予備発泡粒子の表面と中心部に対して、以下の条件にて、ATR法赤外分光分析を行って、赤外吸収スペクトルを得た。
装置 :FTIR[(株)島津製作所製、FTIR−8400S]に、1回反射型全反射(ATR)測定装置[PIKE社製、MIRacle]を接続
ATRプリズム(高屈折率結晶種):セレン化亜鉛(ZnSe)
入射角 :45°
測定領域 :4000cm−1〜600cm−1
検出器 :DLATGS
もぐり込み深さ:1.66
反射回数 :1回
分解能 :4cm−1
積算回数 :20回
その他 :試料と接触させずに測定した赤外線吸収スペクトルをバックグラウンドとして、測定スペクトルに関与しない処理を実施した。
<Measurement of absorbance ratio (A 1730 /A 1600 )>
Regarding the absorbance ratio of the obtained expandable polystyrene resin particles, 10 pre-expanded particles were sampled arbitrarily, and the surface and center of the pre-expanded particles were subjected to the ATR infrared spectroscopic analysis under the following conditions. Then, the infrared absorption spectrum was obtained.
Device: FTIR [Shimadzu Corporation, FTIR-8400S] connected to a single reflection type total reflection (ATR) measuring device [PIKE, MIRacle] ATR prism (high refractive index crystal species): zinc selenide (ZnSe)
Incident angle: 45°
Measurement area: 4000 cm −1 to 600 cm −1
Detector: DLATGS
Crawl depth: 1.66
Number of reflections: 1 time Resolution: 4 cm -1
Number of times of integration: 20 times Others: The infrared absorption spectrum measured without being brought into contact with the sample was used as a background, and a treatment not related to the measurement spectrum was performed.

なお、ATR法では、試料と高屈折率結晶の密着度合いによって測定で得られる赤外線吸収スペクトルの強度が変化するため、696cm−1の吸光度(A696)が0.08〜0.12となるように、試料と高屈折率結晶の密着度合いを調節して測定する。 In the ATR method, since the intensity of the infrared absorption spectrum obtained by the measurement changes depending on the degree of adhesion between the sample and the high refractive index crystal, the absorbance at 696 cm −1 (A 696 ) is 0.08 to 0.12. In addition, the degree of adhesion between the sample and the high refractive index crystal is adjusted and measured.

ここで、予備発泡粒子の表面を測定する場合は、粒子表面をそのままATRプリズムに密着させて測定した。予備発泡粒子の中心部を測定する場合は、剃刀を用いて、予備発泡粒子の中心を通るように二分割し、二分割した切片の断面をATRプリズムに密着させて測定した。 Here, when measuring the surface of the pre-expanded particles, the particle surface was directly adhered to the ATR prism for measurement. When measuring the center of the pre-expanded particles, a razor was used to divide the pre-expanded particles into two parts so as to pass through the center of the pre-expanded particles.

ここで、中心部とは、ポリスチレン系樹脂予備発泡粒子の中心を通るように二分割した際の断面の中心部から200μm以内の領域を意味する。 Here, the central portion means an area within 200 μm from the central portion of the cross section when the polystyrene resin pre-expanded particles are divided into two so as to pass through the center thereof.

以上のようにして得られた赤外線吸収スペクトルから、1600cm−1の吸光度(A1600)と1730cm−1の吸光度(A1730)との吸光度比(A1730/A1600)を求める。本発明では、任意の10個の予備発泡粒子の表面および中心部において、ATR−FTIR測定を行い、最小の吸光度比と最大の吸光度比を除外する。そして、残余8個の吸光度比の相加平均を、吸光度比((A1730/A1600)とした。得られた表面の吸光度比α(A1730/A1600)と中心部の吸光度比β(A1730/A1600)から、以下の式にて表面と中心部との吸光度比を算出した。
表面と中心部との吸光度比の割合=α(表面)/β(中心部)。
From the infrared absorption spectrum obtained as described above, determine the absorbance of 1600cm -1 (A 1600) and the absorbance of the 1730 cm -1 absorbance ratio of (A 1730) (A 1730 / A 1600). In the present invention, the ATR-FTIR measurement is performed on the surface and the central portion of any 10 pre-expanded particles, and the minimum absorbance ratio and the maximum absorbance ratio are excluded. Then, the arithmetic average of the absorbance ratios of the eight remaining residues was defined as the absorbance ratio ((A 1730 /A 1600 ). The obtained surface absorbance ratio α (A 1730 /A 1600 ) and the central absorbance ratio β( A 1730 /A 1600 ), the absorbance ratio between the surface and the central portion was calculated by the following formula.
The ratio of the absorbance ratio between the surface and the central part=α (surface)/β (central part).

なお、赤外線吸収スペクトルから得られる1730cm−1の吸光度とは、カルボニル基のC=O間伸縮振動よる吸収スペクトルであり、吸光度(A1730)とした。赤外線吸収スペクトルから得られる1600cm−1の吸光度とは、芳香族ベンゼン環面内振動の吸収スペクトルであり、吸光度(A1600)とした。 Note that the absorbance at 1730 cm −1 obtained from the infrared absorption spectrum is an absorption spectrum due to stretching vibration between C═O of a carbonyl group, which was defined as absorbance (A 1730 ). The absorbance at 1600 cm −1 obtained from the infrared absorption spectrum is the absorption spectrum of in-plane vibration of the aromatic benzene ring, and was defined as the absorbance (A 1600 ).

ポリスチレン系樹脂予備発泡粒子における表面と中心部での吸光度比の割合α/βは、ポリスチレン系樹脂粒子の重合時にアクリル酸エステルを添加するタイミングを変えることにより、調整することができる。 The ratio α/β of the absorbance ratio between the surface and the central portion of the polystyrene resin pre-expanded particles can be adjusted by changing the timing of adding the acrylate ester during the polymerization of the polystyrene resin particles.

ここで、中心部とは、ポリスチレン系樹脂予備発泡粒子の中心を通るように二分割した際の断面の中心部及び中心部から200μm以内の領域を含む。 Here, the central portion includes the central portion of the cross section when the two parts are divided so as to pass through the center of the polystyrene-based resin pre-expanded particles, and a region within 200 μm from the central portion.

本発明におけるATR−FTIRとは、ATR(Attenuated Total Reflection)法を利用したFTIRである。ATR法とは、屈折率の高い結晶を試料表面に圧着し、全反射条件を用いて試料表面を高感度に測定でき、透過法と類似のスペクトルを簡便に得ることができる手法であり、光を透過しない、高分子厚膜、樹脂、塗膜、紙、糸など一般的な工業材料の分析に広く用いられている。 The ATR-FTIR in the present invention is an FTIR that uses an ATR (Attenuated Total Reflection) method. The ATR method is a method in which a crystal with a high refractive index is pressure-bonded to the sample surface, the sample surface can be measured with high sensitivity using total internal reflection conditions, and a spectrum similar to the transmission method can be easily obtained. It is widely used for analysis of general industrial materials such as polymer thick film, resin, coating film, paper, thread, etc.

一般に、光は、試料と高屈折率結晶の界面で反射するのではなく、ある深さだけ試料側に入り込んでから全反射する。このとき、試料に吸収のない波数領域においては、光は全反射するが、吸収のある領域においては100部全反射するのではなく、吸収の強さに応じて全反射光の強度が落ちる。この反射エネルギーを測定することにより、全反射スペクトルが得られる。 Generally, light is not reflected at the interface between the sample and the high-refractive-index crystal, but is totally reflected after entering a certain depth into the sample. At this time, the light is totally reflected in the wave number region where the sample is not absorbed, but 100 parts is not totally reflected in the region where the sample is absorbed, but the intensity of the totally reflected light is reduced depending on the intensity of the absorption. A total reflection spectrum is obtained by measuring this reflected energy.

ただし、光のもぐりこみ深さ(測定深度)は、使用する高屈折率結晶の屈折率、試料の屈折率、測定光の入射角、測定光の波数によって大きく変化するため、これらのパラメーターを特定しないと、測定結果は比較できない。ATR法における測定深度には波数依存性があり、低波数ほど測定深度が深く、吸収強度が大きくなる。したがって、透過スペクトルとの比較の場合には補正が必要となる。 However, the depth of light entrapment (measurement depth) varies greatly depending on the refractive index of the high-refractive-index crystal used, the refractive index of the sample, the incident angle of the measurement light, and the wave number of the measurement light, so these parameters are not specified. , The measurement results cannot be compared. The measurement depth in the ATR method has wave number dependence, and the lower the wave number, the deeper the measurement depth and the larger the absorption intensity. Therefore, correction is required in the case of comparison with the transmission spectrum.

<予備発泡及び成形評価>
乾燥・脱水後に得られた発泡性ポリスチレン系樹脂粒子を篩分けして、粒子径0.6mm〜1.2mmの発泡性ポリスチレン系樹脂粒子を分取し、ポリエチレン袋に入れ袋を閉じた状態で蓋付のステンレス缶に入れた状態で20℃以下で3日間保管した後、予備発泡を実施した。また、予備発泡後は常温で1日放置して養生乾燥した後、成形評価を実施した。
<Pre-expansion and molding evaluation>
The expandable polystyrene resin particles obtained after drying and dehydration are sieved to collect the expandable polystyrene resin particles having a particle diameter of 0.6 mm to 1.2 mm, put them in a polyethylene bag and close the bag. After being stored in a stainless steel can with a lid at 20° C. or lower for 3 days, pre-foaming was performed. After pre-foaming, the composition was left standing at room temperature for 1 day to be cured and dried, and then subjected to molding evaluation.

ビーズライフを評価する場合は、粒子径0.6mm〜1.2mmで篩った発泡性ポリスチレン系樹脂粒子を袋に入れ、袋の口を開けた状態で35℃に設定した乾燥機に1週間保管した後、予備発泡を実施し、常温で1日放置して養生乾燥した後、成形評価を実施した。 When the bead life is evaluated, expandable polystyrene resin particles sieved with a particle size of 0.6 mm to 1.2 mm are put in a bag, and the bag mouth is opened for 1 week in a dryer set at 35°C. After the storage, pre-foaming was performed, and the mixture was allowed to stand at room temperature for 1 day to be cured and dried, and then a molding evaluation was performed.

<成形性評価>
成形機[ダイセン製、KR−57]を用いて、底面厚み30mm、側面厚み25mmで長さ550mm×幅350mm×高さ120mmサイズの箱形形状の金型内に充填し、吹き込み蒸気圧0.03〜0.08MPaの範囲内で変化させた成型条件にて型内成形を行い、箱型の発泡成形品を得た。
<Moldability evaluation>
Using a molding machine [manufactured by Daisen, KR-57], the mixture was filled in a box-shaped mold having a bottom thickness of 30 mm and a side thickness of 25 mm, a length of 550 mm×a width of 350 mm×a height of 120 mm, and a blowing vapor pressure of 0. In-mold molding was performed under molding conditions changed within the range of 03 to 0.08 MPa to obtain a box-shaped foam-molded article.

得られたポリスチレン系樹脂発泡体は、室温で24時間乾燥させた後、下記の評価を実施した。また、放冷時間は成形可能な蒸気圧範囲で最も低い蒸気圧での放冷時間を測定し、49秒以下を生産性の観点から合格とした。 尚、表1には吹き込み蒸気圧0.045MPaでの融着性、および表面性の評価結果を示す。 The polystyrene-based resin foam thus obtained was dried at room temperature for 24 hours and then evaluated as follows. As for the cooling time, the cooling time was measured at the lowest vapor pressure in the vapor pressure range in which molding was possible, and 49 seconds or less was passed from the viewpoint of productivity. In addition, Table 1 shows the evaluation results of the fusion property and the surface property at a blowing vapor pressure of 0.045 MPa.

(1)融着性評価
得られたポリスチレン系樹脂発泡体を破断し、破断面を観察して、粒子界面ではなく、粒子が破断している割合を求めて、以下の基準にて、融着性を判定した。
◎:粒子破断の割合が90部以上。
○:粒子破断の割合が80部以上、90部未満。
△:粒子破断の割合が70部以上、80部未満。
×:粒子破断の割合が70部未満。
(1) Fusing property evaluation The obtained polystyrene-based resin foam was ruptured, the fracture surface was observed, and the ratio at which the particles were fractured, not at the particle interface, was determined, and fusion was performed according to the following criteria. The sex was judged.
A: The rate of particle breakage is 90 parts or more.
◯: The rate of particle breakage is 80 parts or more and less than 90 parts.
Δ: The rate of particle breakage is 70 parts or more and less than 80 parts.
X: The rate of particle breakage is less than 70 parts.

(2)表面性評価
得られたポリスチレン系樹脂発泡体の表面状態を目視観察し、以下の基準にて表面性を評価した。
◎:表面の溶融、粒間が無く、非常に美麗。
○:表面の溶融、粒間が少なく、美麗。
△:表面の溶融、粒間があり、外観やや不良。
×:表面の溶融、粒間が多く、外観不良。
(2) Surface property evaluation The surface condition of the obtained polystyrene resin foam was visually observed, and the surface property was evaluated according to the following criteria.
⊚: Very beautiful with no surface melting and no intergranularity.
◯: Beautiful with little surface melting and intergranularity.
Δ: The surface is melted and there are particles, and the appearance is slightly poor.
X: The surface is melted, there are many intergranular particles, and the appearance is poor.

(実施例1) <発泡性ポリスチレン系樹脂粒子の製造>
撹拌機付属の6リットルのオートクレーブに、純水100重量部、リン酸三カルシウム0.15重量部、ドデシルベンゼンスルホン酸ナトリウム0.01重量部、ポリエチレンワックス0.04重量部、および開始剤としてベンゾイルパーオキサイド0.17重量部および1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.2重量部を仕込んだ。続いて、250回転/分で撹拌しながら、スチレンモノマー98重量部、アクリル酸ブチルモノマー2重量部、ジビニルベンゼンモノマー0.01重量部を仕込んだ後、98℃まで昇温させた。1時間30分後、リン酸三カルシウム0.05重量部を追加した。引き続き、98℃にて2時間30分保持して、ポリスチレン系樹脂粒子を得た。
(Example 1) <Production of expandable polystyrene resin particles>
In a 6-liter autoclave attached to the stirrer, 100 parts by weight of pure water, 0.15 parts by weight of tricalcium phosphate, 0.01 part by weight of sodium dodecylbenzenesulfonate, 0.04 part by weight of polyethylene wax, and benzoyl as an initiator. 0.17 parts by weight of peroxide and 0.2 parts by weight of 1,1-bis(t-butylperoxy)cyclohexane were charged. Subsequently, 98 parts by weight of styrene monomer, 2 parts by weight of butyl acrylate monomer, and 0.01 parts by weight of divinylbenzene monomer were charged with stirring at 250 rpm, and the temperature was raised to 98°C. After 1 hour and 30 minutes, 0.05 part by weight of tricalcium phosphate was added. Subsequently, it was held at 98° C. for 2 hours and 30 minutes to obtain polystyrene resin particles.

次いで、発泡剤としてノルマルリッチブタンを合計7重量部をオートクレーブ中に圧入し、再び120℃まで昇温させた。その後、120℃にて2時間保温した後、室温まで冷却して、オートクレーブから重合スラリーを取り出した。取り出した重合スラリーを脱水、洗浄、乾燥することにより、発泡性ポリスチレン系樹脂粒子を得た。 Then, a total of 7 parts by weight of normal rich butane as a foaming agent was pressed into the autoclave, and the temperature was raised to 120°C again. Then, after keeping the temperature at 120° C. for 2 hours, it was cooled to room temperature and the polymerized slurry was taken out from the autoclave. The polymerized slurry taken out was dehydrated, washed and dried to obtain expandable polystyrene resin particles.

<予備発泡粒子の製造> 得られた発泡性ポリスチレン系樹脂粒子を篩分けして、粒子径0.6mm〜1.2mmの発泡性ポリスチレン系樹脂粒子を分取した。 <Production of pre-expanded particles> The obtained expandable polystyrene resin particles were sieved to collect expandable polystyrene resin particles having a particle diameter of 0.6 mm to 1.2 mm.

得られた発泡性ポリスチレン系樹脂粒子を、加圧式予備発泡機[大開工業製、BHP]を用いて、吹き込み蒸気圧0.08MPaの条件にて嵩倍率65倍に予備発泡を実施した。この際、吹き込み蒸気にはエアーを切り込ませて、吹き込み蒸気温度を調節した。その後、常温下で1日放置して、養生乾燥を行った。 The expandable polystyrene resin particles thus obtained were pre-expanded at a bulk ratio of 65 times using a pressure type pre-expanding machine [BHP, manufactured by Daikai Industry Co., Ltd.] under the condition of a steam pressure of 0.08 MPa. At this time, air was blown into the blown steam to adjust the blown steam temperature. Then, it was left at room temperature for 1 day to be cured and dried.

<型内発泡成形体の製造>
得られたポリスチレン系樹脂予備発泡粒子を、成形機[ダイセン製、KR−57]を用いて、底面厚み30mm、側面厚み25mmで長さ550mm×幅350mm×高さ120mmサイズの箱形形状の金型内に充填し、吹き込み蒸気圧0.045MPaの成型条件にて型内成形を行い、箱型の発泡成形体を得た。
<Manufacture of in-mold foam molding>
Using the molding machine [Daisen, KR-57], the obtained polystyrene-based resin pre-expanded particles were box-shaped gold having a bottom thickness of 30 mm and a side thickness of 25 mm and a length of 550 mm×width of 350 mm×height of 120 mm. It was filled in a mold and was molded in the mold under a molding condition of a blowing vapor pressure of 0.045 MPa to obtain a box-shaped foam molded body.

得られた発泡性ポリスチレン系樹脂粒子および発泡成形体を用いて評価を行い、その結果を表1に示す。 (実施例2) The expandable polystyrene resin particles and the foamed molded product thus obtained were evaluated, and the results are shown in Table 1. (Example 2)

<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を95重量部、アクリル酸ブチルモノマーの添加部数を5重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。 In <Production of expandable polystyrene-based resin particles>, the expandability was the same as in Example 1 except that the addition number of styrene monomer was changed to 95 parts by weight and the addition number of butyl acrylate monomer was changed to 5 parts by weight. Polystyrene-based resin particles, pre-expanded particles, and in-mold expanded molded article were obtained. The evaluation results are shown in Table 1.

(実施例3)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を95重量部、アクリル酸ブチルモノマーの添加部数を5重量部、ジビニルベンゼンモノマーの添加部数を0.05重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 3)
In <Production of expandable polystyrene resin particles>, except that the addition number of styrene monomer is changed to 95 parts by weight, the addition number of butyl acrylate monomer is changed to 5 parts by weight, and the addition number of divinylbenzene monomer is changed to 0.05 part by weight. In the same manner as in Example 1, expandable polystyrene-based resin particles, pre-expanded particles, and in-mold expanded molded article were obtained. The evaluation results are shown in Table 1.

(実施例4)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を95重量部、アクリル酸ブチルモノマーの添加部数を5重量部、ジビニルベンゼンモノマーの添加部数を0.05重量部に変更し、ジビニルベンゼンモノマーの添加のタイミングをスチレンとアクリル酸ブチルの重合転化率60wt%の時に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 4)
In <Production of expandable polystyrene resin particles>, the addition number of styrene monomer was changed to 95 parts by weight, the addition number of butyl acrylate monomer was changed to 5 parts by weight, and the addition number of divinylbenzene monomer was changed to 0.05 part by weight. Expandable polystyrene resin particles, pre-expanded particles, in-mold expansion molding were performed in the same manner as in Example 1 except that the timing of addition of the divinylbenzene monomer was changed to a polymerization conversion rate of styrene and butyl acrylate of 60 wt %. Got the body The evaluation results are shown in Table 1.

(実施例5)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を92重量部、アクリル酸ブチルモノマーの添加部数を8重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 5)
In <Production of expandable polystyrene-based resin particles>, the expandability was the same as in Example 1 except that the addition number of styrene monomer was changed to 92 parts by weight and the addition number of butyl acrylate monomer was changed to 8 parts by weight. Polystyrene-based resin particles, pre-expanded particles, and in-mold expanded molded article were obtained. The evaluation results are shown in Table 1.

(実施例6)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を92重量部、アクリル酸ブチルモノマーの添加部数を8重量部、ジビニルベンゼンモノマーの添加部数を0.05重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 6)
In <Production of expandable polystyrene-based resin particles>, the addition number of styrene monomer was changed to 92 parts by weight, the addition number of butyl acrylate monomer was changed to 8 parts by weight, and the addition number of divinylbenzene monomer was changed to 0.05 part by weight. In the same manner as in Example 1, expandable polystyrene-based resin particles, pre-expanded particles, and in-mold expanded molded article were obtained. The evaluation results are shown in Table 1.

(実施例7)
<発泡性ポリスチレン系樹脂粒子の製造>において、リン酸三カルシウムの添加部数を0.20重量部、スチレンモノマーの添加部数を92重量部、アクリル酸ブチルモノマーの添加部数を8重量部、ジビニルベンゼンモノマーの添加部数を3.00重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 7)
In <Production of expandable polystyrene-based resin particles>, 0.20 parts by weight of tricalcium phosphate is added, 92 parts by weight of styrene monomer is added, 8 parts by weight of butyl acrylate monomer is added, and divinylbenzene is added. Expandable polystyrene resin particles, pre-expanded particles, and in-mold expanded molded article were obtained in the same manner as in Example 1 except that the added amount of the monomer was changed to 3.00 parts by weight. The evaluation results are shown in Table 1.

(実施例8)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を95重量部、アクリル酸ブチルモノマーの添加部数を5重量部、ビニル基を2個以上有する多官能性ビニル系単量体であるジビニルベンゼンモノマーをヘキサメチレンジアクリレートモノマーに変更し、添加部数を0.05重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 8)
In <Production of expandable polystyrene-based resin particles>, a polyfunctional vinyl-based monomer having 95 parts by weight of a styrene monomer, 5 parts by weight of a butyl acrylate monomer, and 2 or more vinyl groups is used. In the same manner as in Example 1 except that a certain divinylbenzene monomer was changed to a hexamethylene diacrylate monomer and the addition amount was changed to 0.05 parts by weight, expandable polystyrene resin particles, pre-expanded particles, and in-mold A foamed molded product was obtained. The evaluation results are shown in Table 1.

(実施例9)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を95重量部、アクリル酸エステル単量体であるアクリル酸ブチルモノマーをアクリル酸メチルモノマーに変更し、添加部数を5重量部とし、ジビニルベンゼンモノマーの添加部数を0.05重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 9)
In <Production of expandable polystyrene-based resin particles>, the addition number of styrene monomer was changed to 95 parts by weight, and the butyl acrylate monomer that was an acrylate ester monomer was changed to methyl acrylate monomer, and the addition number was changed to 5 parts by weight. The expandable polystyrene resin particles, the pre-expanded particles, and the in-mold expanded molded article were obtained in the same manner as in Example 1 except that the addition number of the divinylbenzene monomer was changed to 0.05 part by weight. The evaluation results are shown in Table 1.

(比較例1)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を100重量部、アクリル酸ブチルモノマーの添加部数を0重量部、ジビニルベンゼンモノマーの添加部数を0重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Comparative Example 1)
In <Production of expandable polystyrene-based resin particles>, the addition number of styrene monomer was changed to 100 parts by weight, the addition number of butyl acrylate monomer was changed to 0 part by weight, and the addition number of divinylbenzene monomer was changed to 0 part by weight. By the same operation as in Example 1, expandable polystyrene resin particles, pre-expanded particles, and in-mold expanded molded article were obtained. The evaluation results are shown in Table 1.

(比較例2)
<発泡性ポリスチレン系樹脂粒子の製造>において、ジビニルベンゼンモノマーの添加部数を0重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Comparative example 2)
In <Production of expandable polystyrene-based resin particles>, the expandable polystyrene-based resin particles, pre-expanded particles, and in-mold were prepared in the same manner as in Example 1, except that the addition number of the divinylbenzene monomer was changed to 0 part by weight. A foamed molded product was obtained. The evaluation results are shown in Table 1.

(比較例3)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を95重量部、アクリル酸ブチルモノマーの添加部数を5重量部、ジビニルベンゼンモノマーの添加部数を0重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Comparative example 3)
In <Production of expandable polystyrene-based resin particles>, the addition number of styrene monomer was changed to 95 parts by weight, the addition number of butyl acrylate monomer was changed to 5 parts by weight, and the addition number of divinylbenzene monomer was changed to 0 part by weight. By the same operation as in Example 1, expandable polystyrene resin particles, pre-expanded particles, and in-mold expanded molded article were obtained. The evaluation results are shown in Table 1.

(比較例4)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を100重量部、アクリル酸ブチルモノマーの添加部数を0重量部、ジビニルベンゼンモノマーの添加部数を0.05重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Comparative example 4)
In <Production of expandable polystyrene-based resin particles>, the addition number of styrene monomer was changed to 100 parts by weight, the addition number of butyl acrylate monomer was changed to 0 part by weight, and the addition number of divinylbenzene monomer was changed to 0.05 part by weight. In the same manner as in Example 1, expandable polystyrene-based resin particles, pre-expanded particles, and in-mold expanded molded article were obtained. The evaluation results are shown in Table 1.

(比較例5)
<発泡性ポリスチレン系樹脂粒子の製造>において、リン酸三カルシウムの添加部数を0.25重量部、スチレンモノマーの添加部数を95重量部、アクリル酸ブチルモノマーの添加部数を5重量部、ジビニルベンゼンモノマーの添加部数を10.00重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子の製造を実施したが、重合1時間の段階で異常重合したため、評価するに至らなかった。
(Comparative example 5)
<Production of expandable polystyrene-based resin particles> In 0.25 part by weight of tricalcium phosphate added, 95 parts by weight of styrene monomer added, 5 parts by weight of butyl acrylate monomer added, divinylbenzene Expandable polystyrene resin particles were produced by the same operation as in Example 1 except that the addition amount of the monomer was changed to 10.00 parts by weight. However, evaluation was made because abnormal polymerization occurred at the stage of 1 hour of polymerization. Did not reach

(比較例6)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を95重量部、アクリル酸ブチルモノマーの添加部数を5重量部、ジビニルベンゼンモノマーの添加部数を0.05重量部に変更し、ジビニルベンゼンモノマーの添加のタイミングをスチレンとアクリル酸ブチルの重合転化率90wt%の時とし、保持した時間を5時間に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Comparative example 6)
In <Production of expandable polystyrene resin particles>, the addition number of styrene monomer was changed to 95 parts by weight, the addition number of butyl acrylate monomer was changed to 5 parts by weight, and the addition number of divinylbenzene monomer was changed to 0.05 part by weight. Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the timing of addition of the divinylbenzene monomer was 90% by weight of the conversion of styrene and butyl acrylate and the holding time was changed to 5 hours. Thus, pre-expanded particles and an in-mold expanded molded article were obtained. The evaluation results are shown in Table 1.

(比較例7)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を85重量部、アクリル酸ブチルモノマーの添加部数を15重量部、ジビニルベンゼンモノマーの添加部数を0.05重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Comparative Example 7)
In <Production of expandable polystyrene-based resin particles>, the addition number of styrene monomer was changed to 85 parts by weight, the addition number of butyl acrylate monomer was changed to 15 parts by weight, and the addition number of divinylbenzene monomer was changed to 0.05 part by weight. In the same manner as in Example 1, expandable polystyrene-based resin particles, pre-expanded particles, and in-mold expanded molded article were obtained. The evaluation results are shown in Table 1.

(比較例8)
<発泡性ポリスチレン系樹脂粒子の製造>において、スチレンモノマーの添加部数を100重量部、アクリル酸ブチルモノマーの添加部数を0重量部に変更し、ビニル基を2個以上有する多官能性ビニル系単量体であるジビニルベンゼンモノマーをヘキサメチレンジアクリレートモノマーに変更し、ヘキサメチレンジアクリレートを0.05重量部に変更した以外は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Comparative Example 8)
In <Production of expandable polystyrene-based resin particles>, the number of parts of styrene monomer added was changed to 100 parts by weight, the number of parts of butyl acrylate monomer added was changed to 0 part by weight, and a multifunctional vinyl-based single unit having two or more vinyl groups was used. The procedure of Example 1 was repeated except that the divinylbenzene monomer, which is a monomer, was changed to hexamethylene diacrylate monomer, and the amount of hexamethylene diacrylate was changed to 0.05 part by weight. Foamed particles and an in-mold foam molding were obtained. The evaluation results are shown in Table 1.

(比較例9)
<発泡性ポリスチレン系樹脂粒子の製造>
撹拌機付属の6リットルのオートクレーブ中に、純水100重量部、リン酸三カルシウム0.15重量部、ドデシルベンゼンスルホン酸ナトリウム0.01重量部、ポリエチレンワックス0.04重量部、および開始剤としてベンゾイルパーオキサイド0.16重量部および1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.2重量部を仕込んだ。続いて、250回転/分で撹拌しながら、スチレンモノマー90重量部、ジビニルベンゼンモノマー0.045重量部を仕込んだ後、98℃まで昇温させた。引き続き、98℃にて4時間保持した。更に、98℃を維持し撹拌しながら、スチレン単量体5重量部とアクリル酸ブチル5重量部、ジビニルベンゼンモノマー0.005重量部、ベンゾイルパーオキサイド0.02重量部を1時間かけて反応系中に滴下し重合を行った後、98℃で1時間保持しポリスチレン系樹脂粒子を得た。
次いで、発泡剤の含浸以降の操作は、実施例1と同様の操作により、発泡性ポリスチレン系樹脂粒子を得た。
(Comparative Example 9)
<Production of expandable polystyrene resin particles>
In a 6-liter autoclave attached to a stirrer, 100 parts by weight of pure water, 0.15 parts by weight of tricalcium phosphate, 0.01 parts by weight of sodium dodecylbenzenesulfonate, 0.04 parts by weight of polyethylene wax, and as an initiator 0.16 parts by weight of benzoyl peroxide and 0.2 part by weight of 1,1-bis(t-butylperoxy)cyclohexane were charged. Subsequently, with stirring at 250 rpm, 90 parts by weight of styrene monomer and 0.045 parts by weight of divinylbenzene monomer were charged, and then the temperature was raised to 98°C. Then, it hold|maintained at 98 degreeC for 4 hours. Furthermore, while maintaining 98° C. and stirring, 5 parts by weight of a styrene monomer, 5 parts by weight of butyl acrylate, 0.005 parts by weight of a divinylbenzene monomer, and 0.02 parts by weight of benzoyl peroxide were added to the reaction system over 1 hour. After dropping and polymerizing, it was kept at 98° C. for 1 hour to obtain polystyrene resin particles.
Then, the operations after impregnation with the foaming agent were the same as in Example 1 to obtain expandable polystyrene resin particles.

Figure 0006709650
Figure 0006709650

Claims (11)

単量体組成が、スチレン系単量体90重量部以上99重量部以下、アクリル酸エステル系単量体1重量部以上10重量部以下(スチレン系単量体とアクリル酸エステル系単量体の合計量が100重量部である)であり、
前記重合性単量体組成物100重量部に対しビニル基を2個以上有する多官能性ビニル系単量体を0.005重量部以上5.000重量部以下含有し、
ゲルパーミネーションクロマトグラフィーにより測定される内部の重量平均分子量Mw1と全体の重量平均分子量Mw2の比(Mw1/Mw2)が0.85以上1.05以下であり、かつ前記発泡性ポリスチレン系樹脂粒子内部の重量平均分子量(Mw1)が17万以上60万以下であり、
ATR−FTIRにより測定されたポリスチレン系樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる1600cm−1及び1730cm−1での吸光度比α(A1730/A1600)が、ポリスチレン系樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比β(A1730/A1600)の1.0倍以上10倍以下であり、
発泡性ポリスチレン系樹脂粒子のゲルパーミネーションクロマトグラフィー測定から得られる全体のZ平均分子量Mz2が80万以上であることを特徴とする、発泡性ポリスチレン系樹脂粒子。
The monomer composition is 90 parts by weight or more and 99 parts by weight or less of styrene-based monomer, 1 part by weight or more and 10 parts by weight or less of acrylate-based monomer (of styrene-based monomer and acrylate-based monomer). The total amount is 100 parts by weight),
0.005 parts by weight or more and 5.000 parts by weight or less of a polyfunctional vinyl-based monomer having two or more vinyl groups per 100 parts by weight of the polymerizable monomer composition,
The ratio (Mw1/Mw2) of the internal weight average molecular weight Mw1 to the entire weight average molecular weight Mw2 measured by gel permeation chromatography is 0.85 or more and 1.05 or less, and the inside of the expandable polystyrene resin particles Has a weight average molecular weight (Mw1) of 170,000 or more and 600,000 or less,
Absorbance ratio at 1600 cm -1 and 1730 cm -1 obtained from an infrared absorption spectrum of the measured polystyrene resin pre-expanded particle surface by ATR-FTIR α (A 1730 / A 1600) is a polystyrene-based resin pre-expanded particles center 1.0 times more than 10 times der following infrared absorption spectrum absorbance ratio obtained from β (a 1730 / a 1600) of is,
Expandable polystyrene resin particles of gel permeation chromatography of the entire obtained from the measurement Z average molecular weight Mz2 is characterized der Rukoto 800,000 or more, expandable polystyrene resin particles.
単量体組成が、スチレン系単量体90重量部以上99重量部以下、アクリル酸エステル系単量体1重量部以上10重量部以下(スチレン系単量体とアクリル酸エステル系単量体の合計量が100重量部である)であり、The monomer composition is 90 parts by weight or more and 99 parts by weight or less of styrene-based monomer, 1 part by weight or more and 10 parts by weight or less of acrylate-based monomer (of styrene-based monomer and acrylate-based monomer). The total amount is 100 parts by weight),
前記重合性単量体組成物100重量部に対しビニル基を2個以上有する多官能性ビニル系単量体を0.005重量部以上5.000重量部以下含有し、0.005 parts by weight or more and 5.000 parts by weight or less of a polyfunctional vinyl-based monomer having two or more vinyl groups per 100 parts by weight of the polymerizable monomer composition,
ゲルパーミネーションクロマトグラフィーにより測定される内部の重量平均分子量Mw1と全体の重量平均分子量Mw2の比(Mw1/Mw2)が0.85以上1.05以下であり、かつ前記発泡性ポリスチレン系樹脂粒子内部の重量平均分子量(Mw1)が17万以上60万以下であり、The ratio (Mw1/Mw2) of the internal weight average molecular weight Mw1 to the entire weight average molecular weight Mw2 measured by gel permeation chromatography is 0.85 or more and 1.05 or less, and the inside of the expandable polystyrene resin particles Has a weight average molecular weight (Mw1) of 170,000 or more and 600,000 or less,
ATR−FTIRにより測定されたポリスチレン系樹脂予備発泡粒子表面の赤外線吸収スペクトルから得られる1600cm1600 cm obtained from the infrared absorption spectrum of the surface of pre-expanded polystyrene resin particles measured by ATR-FTIR −1-1 及び1730cmAnd 1730 cm −1-1 での吸光度比α(AAbsorbance ratio at α(A 17301730 /A/A 16001600 )が、ポリスチレン系樹脂予備発泡粒子中心部の赤外線吸収スペクトルから得られる吸光度比β(A) Is the absorbance ratio β(A 17301730 /A/A 16001600 )の1.0倍以上10倍以下であり、) Is 1.0 times or more and 10 times or less,
発泡性ポリスチレン系樹脂粒子のゲルパーミネーションクロマトグラフィー測定から得られる内部のZ平均分子量Mz1と前記全体のZ平均分子量Mz2の比(Mz1/Mz2)が0.85以上1.05以下であり、かつ前記発泡性ポリスチレン系樹脂粒子内部のZ平均分子量(Mz1)が70万以上200万以下であることを特徴とする、発泡性ポリスチレン系樹脂粒子。The ratio (Mz1/Mz2) of the internal Z-average molecular weight Mz1 and the overall Z-average molecular weight Mz2 obtained from the gel permeation chromatography measurement of the expandable polystyrene resin particles is 0.85 or more and 1.05 or less, and The expandable polystyrene resin particles have a Z-average molecular weight (Mz1) of 700,000 or more and 2,000,000 or less inside the expandable polystyrene resin particles.
ビニル基を2個以上有する多官能性ビニル系単量体がジビニルベンゼンであることを特徴とする、請求項1または2記載の発泡性ポリスチレン系樹脂粒子。 The expandable polystyrene resin particles according to claim 1 or 2 , wherein the polyfunctional vinyl monomer having two or more vinyl groups is divinylbenzene. 発泡性ポリスチレン系樹脂粒子のゲルパーミネーションクロマトグラフィー測定から得られる内部のZ平均分子量Mz1と前記全体のZ平均分子量Mz2の比(Mz1/Mz2)が0.85以上1.05以下であり、かつ前記発泡性ポリスチレン系樹脂粒子内部のZ平均分子量(Mz1)が70万以上200万以下であることを特徴とする、請求項1または記載の発泡性ポリスチレン系樹脂粒子。 The ratio (Mz1/Mz2) of the internal Z-average molecular weight Mz1 and the overall Z-average molecular weight Mz2 obtained from the gel permeation chromatography measurement of the expandable polystyrene resin particles is 0.85 or more and 1.05 or less, and The expandable polystyrene resin particles according to claim 1 or 3 , wherein a Z average molecular weight (Mz1) inside the expandable polystyrene resin particles is 700,000 or more and 2,000,000 or less. アクリル酸エステル系単量体がアクリル酸ブチルであることを特徴とする、請求項1〜いずれかに記載の発泡性ポリスチレン系樹脂粒子。 Wherein the acrylic acid ester monomer is butyl acrylate, expandable polystyrene resin particles according to any one of claims 1-4. 発泡性ポリスチレン系樹脂粒子100重量部に対し発泡剤量が3.0重量部以上8.0重量部以下含まれることを特徴とする、請求項1〜いずれかに記載の発泡性ポリスチレン系樹脂粒子。 To expandable polystyrene resin particles 100 parts by weight and wherein the amount blowing agent is included less 8.0 parts by weight or more 3.0 parts by weight, expandable polystyrene resin according to any one of claims 1 to 5 particle. 請求項1〜のいずれかに記載の発泡性ポリスチレン系樹脂粒子が発泡したものであることを特徴とする、ポリスチレン系樹脂予備発泡粒子。 Pre-expanded polystyrene resin particles, wherein the expandable polystyrene resin particle according to any one of claims 1 to 7 is expanded. 請求項に記載のポリスチレン系樹脂予備発泡粒子を型内成形されたものであることを特徴とする、ポリスチレン系樹脂発泡体。 A polystyrene-based resin foam, which is obtained by in-mold molding of the polystyrene-based resin pre-expanded particles according to claim 7 . ビニル系架橋剤を重合初期から重合転化率85wt%未満の範囲で添加することによって得られる、請求項1〜いずれかに記載のポリスチレン系樹脂を基材樹脂とする発泡性ポリスチレン系樹脂粒子の製造方法。 Obtained by adding a range of vinyl crosslinking agent from the polymerization initial under polymerization conversion 85 wt%, a polystyrene-based resin according to any one of claims 1 to 6 in the expandable polystyrene resin particles to the base resin Production method. 請求項1〜のいずれかに記載の発泡性ポリスチレン系樹脂粒子を、発泡させてなることを特徴とする、ポリスチレン系樹脂予備発泡粒子の製造方法。 A method for producing pre-expanded polystyrene-based resin particles, which comprises expanding the expandable polystyrene-based resin particles according to any one of claims 1 to 7 . 請求項に記載のポリスチレン系樹脂予備発泡粒子を型内成形してなることを特徴とする、ポリスチレン系樹脂発泡体の製造方法。
A method for producing a polystyrene-based resin foam, which comprises molding the pre-expanded polystyrene-based resin particles according to claim 7 in a mold.
JP2016059339A 2016-03-24 2016-03-24 Cross-linkable expandable polystyrene resin particles, pre-expanded particles thereof and foam Active JP6709650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016059339A JP6709650B2 (en) 2016-03-24 2016-03-24 Cross-linkable expandable polystyrene resin particles, pre-expanded particles thereof and foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016059339A JP6709650B2 (en) 2016-03-24 2016-03-24 Cross-linkable expandable polystyrene resin particles, pre-expanded particles thereof and foam

Publications (2)

Publication Number Publication Date
JP2017171780A JP2017171780A (en) 2017-09-28
JP6709650B2 true JP6709650B2 (en) 2020-06-17

Family

ID=59973043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016059339A Active JP6709650B2 (en) 2016-03-24 2016-03-24 Cross-linkable expandable polystyrene resin particles, pre-expanded particles thereof and foam

Country Status (1)

Country Link
JP (1) JP6709650B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226421B2 (en) * 2002-09-20 2009-02-18 積水化成品工業株式会社 Expandable styrene resin particles and styrene resin foam molded article
JP6353803B2 (en) * 2014-03-31 2018-07-04 積水化成品工業株式会社 Polystyrene resin foam molding
RU2682609C2 (en) * 2015-01-30 2019-03-19 ВЕРСАЛИС С.п.А. Foamed compositions of vinyl aromatic polymers

Also Published As

Publication number Publication date
JP2017171780A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6670245B2 (en) Expandable methyl methacrylate resin particles, pre-expanded particles, expanded molded article, and disappearance model
JP6082637B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP2008150410A (en) Expandable polystyrene resin particle and manufacturing method of polystyrene resin foam-molded item
JP5820165B2 (en) Expandable thermoplastic resin particles
JP6424037B2 (en) Expandable thermoplastic resin particles, pre-expanded particles thereof and foamed molded body
JP6759895B2 (en) Composite resin particles, composite resin foam particles, composite resin foam particle molded products
JP6435113B2 (en) Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foam moldings
JP2014189767A (en) Polystyrenic resin composition for foaming, polystyrenic resin foam sheet, and foam molding
JP6816656B2 (en) Composite resin particles, composite resin foam particles, composite resin foam particle molded products
JP6709650B2 (en) Cross-linkable expandable polystyrene resin particles, pre-expanded particles thereof and foam
JP2020094186A (en) Foamable thermoplastic resin particle, thermoplastic pre-foamed particle, thermoplastic foamed molded body and production methods thereof
JP5824263B2 (en) Expandable thermoplastic resin particles
WO2019026972A1 (en) Expandable polystyrene resin particles, polystyrene pre-expanded particles, and foam molded body
JP6216237B2 (en) Expandable thermoplastic resin particles
JP6410616B2 (en) Expandable thermoplastic resin particles, pre-expanded particles and foam
JP5487668B2 (en) Expandable styrene resin particles
JP5820166B2 (en) Expandable thermoplastic resin particles
JP6431683B2 (en) Expandable thermoplastic resin particles
JP6600541B2 (en) Method for producing expandable polystyrene resin particles
JP6697862B2 (en) Method for producing expandable styrenic resin particles having flame retardancy
JP2021152148A (en) Foamable polystyrene resin particle, pre-foamed particle of the same and foam molding
JP2014196423A (en) Foam molded body
JP7299043B2 (en) Polystyrene expandable resin particles containing botanical fragrance, pre-expanded particles and foamed products thereof, and method for producing polystyrene expandable resin particles
JP2018193460A (en) Manufacturing method of expandable polystyrene resin particle, manufacturing method of polystyrene pre-expanded particle, and manufacturing method of foam molded body
JP5592678B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R150 Certificate of patent or registration of utility model

Ref document number: 6709650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250