JP5824263B2 - Expandable thermoplastic resin particles - Google Patents

Expandable thermoplastic resin particles Download PDF

Info

Publication number
JP5824263B2
JP5824263B2 JP2011152950A JP2011152950A JP5824263B2 JP 5824263 B2 JP5824263 B2 JP 5824263B2 JP 2011152950 A JP2011152950 A JP 2011152950A JP 2011152950 A JP2011152950 A JP 2011152950A JP 5824263 B2 JP5824263 B2 JP 5824263B2
Authority
JP
Japan
Prior art keywords
weight
thermoplastic resin
resin particles
less
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011152950A
Other languages
Japanese (ja)
Other versions
JP2012184393A (en
Inventor
充宏 田村
充宏 田村
武彦 柳生
武彦 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2011152950A priority Critical patent/JP5824263B2/en
Publication of JP2012184393A publication Critical patent/JP2012184393A/en
Application granted granted Critical
Publication of JP5824263B2 publication Critical patent/JP5824263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、低温での予備発泡及び型内成形適した発泡性熱可塑性樹脂粒子に関する。   The present invention relates to expandable thermoplastic resin particles suitable for pre-expansion and in-mold molding at low temperatures.

発泡性熱可塑性樹脂粒子は、比較的安価で、特殊な方法を用いずに蒸気等で発泡成形ができ、高い緩衝・断熱の効果が得られるため、社会的に有用な材料である。しかし、近年の環境問題への関心の高まりから、より省エネルギーへの要望が高まっており、予備発泡及び型内成形時の温度を低温にすることで、少ない蒸気使用量で発泡可能な樹脂が求められている。   Expandable thermoplastic resin particles are a relatively useful material, and can be foam-molded with steam or the like without using a special method, so that a high buffering and heat insulation effect can be obtained. However, due to increasing interest in environmental issues in recent years, there has been a growing demand for energy saving. By reducing the temperature during pre-foaming and in-mold molding, a resin that can be foamed with a small amount of steam is required. It has been.

上記発泡成形品は、発泡性熱可塑性樹脂粒子を蒸気等により加熱、所望の嵩密度まで予備発泡し、熟成工程を経た後、成形金型に充填され再度加熱発泡成形する方法により製造される。しかしながら、発泡時の温度を低温にすると所望の嵩密度まで予備発泡できないばかりか、得られる発泡成形品の見栄えが著しく悪化するという問題があった。特に、食品包装材料分野あるいは医療分野で使用される場合は、樹脂中に残留する単量体成分が0.3%未満であることが望まれるが、可塑性を有する単量体成分を低くすると、低温での発泡・成形性が悪化するという問題があった。   The foamed molded article is manufactured by a method in which foamable thermoplastic resin particles are heated with steam or the like, pre-foamed to a desired bulk density, subjected to an aging step, filled in a molding die, and heated and foamed again. However, when the temperature at the time of foaming is lowered, there is a problem that not only pre-foaming to a desired bulk density but also the appearance of the obtained foamed molded product is remarkably deteriorated. In particular, when used in the food packaging material field or the medical field, it is desired that the monomer component remaining in the resin is less than 0.3%, but if the monomer component having plasticity is lowered, There was a problem that foaming and moldability at low temperatures deteriorated.

かかる問題に対して、本発明とは別の目的で、特許文献1では、ブタン類を発泡剤とする発泡性スチレン系樹脂を製造するに当たって、スチレンをその17%以下量のそれに共重合する単量体とを重合して得られた樹脂であって、二次転移温度がスチレン樹脂より2〜14℃低く且単量体の残留量が0.3%以下であることを特徴とする発泡能に優れた発泡性スチレン系樹脂粒子が提案されている。   In order to solve this problem, in Patent Document 1, for the purpose of producing a foamable styrenic resin using butanes as a foaming agent for the purpose different from that of the present invention, a styrene is copolymerized in an amount of 17% or less. A resin obtained by polymerizing a monomer, having a secondary transition temperature lower by 2 to 14 ° C. than that of a styrene resin, and a residual monomer content of 0.3% or less. Expandable styrenic resin particles excellent in the above have been proposed.

また、特許文献2では、水性懸濁体中でスチレン系モノマーとアクリル酸エステルモノマーを共重合させるか若しくは、スチレン系モノマーとアクリル酸エステルモノマーをスチレン系ポリマー種粒子の存在下に共重合させてスチレン系ポリマー粒子の発泡性を改良する方法が提案されている。   In Patent Document 2, a styrene monomer and an acrylate monomer are copolymerized in an aqueous suspension, or a styrene monomer and an acrylate monomer are copolymerized in the presence of styrene polymer seed particles. A method for improving the foamability of styrenic polymer particles has been proposed.

ところが、特許文献1および2の方法では、二次転移温度を低くすることで発泡力は高くなるが、分子量に関する検討がなされておらず、低温での成形性では満足する効果が得られない。   However, in the methods of Patent Documents 1 and 2, the foaming force is increased by lowering the secondary transition temperature, but the molecular weight has not been studied, and a satisfactory effect cannot be obtained with low temperature moldability.

また、特許文献3では、スチレン系単量体に、アクリル酸ブチル重合体、メタクリル酸セチル重合体およびアクリル酸ブチル−メタクリル酸セチル共重合体からなる群から選ばれた少なくとも一種のアクリル系樹脂を、得られる発泡性スチレン系樹脂粒子の樹脂成分に対して0.1〜6.0重量%溶解させておくことを特徴とする発泡性スチレン系樹脂粒子の製造方法が提案されている。しかしながら、特許文献3では、初期にアクリル系樹脂をスチレン系単量体に溶解させるために、スチレン−アクリル酸エステルブロック共重合体となるが、スチレン−アクリル酸エステルブロック共重合体は熱的安定性に劣り、特に高発泡化させた際に成形体表面の溶融が起こりやすくなり、成形体の外観の見栄えの点で改善の余地があった。   Moreover, in patent document 3, at least 1 type of acrylic resin selected from the group which consists of a butyl acrylate polymer, a cetyl methacrylate polymer, and a butyl acrylate-methacrylic acid acrylate copolymer is used for a styrene-type monomer. There has been proposed a method for producing expandable styrene resin particles, wherein 0.1 to 6.0% by weight is dissolved in the resin component of the expandable styrene resin particles obtained. However, in Patent Document 3, in order to dissolve the acrylic resin in the styrene monomer in the initial stage, it becomes a styrene-acrylate block copolymer, but the styrene-acrylate block copolymer is thermally stable. In particular, the surface of the molded body is likely to melt when it is made highly foamed, and there is room for improvement in terms of the appearance of the molded body.

特許文献4では、スチレン系単量体、ジアリルフタレート並びにアクリル酸エステル若しくはメタクリル酸エステルを重合させて得られる熱可塑性樹脂の粒子に発泡剤を含浸させてなる発泡性熱可塑性樹脂粒子が提案されている。しかしながら、ジアリルフタレートのような架橋剤を添加し分子量を高くすると、成形性が悪化し成形体表面の見栄えが損なわれるという点で改善の余地があった。   Patent Document 4 proposes foamable thermoplastic resin particles obtained by impregnating a foaming agent into thermoplastic resin particles obtained by polymerizing a styrene monomer, diallyl phthalate, and acrylic acid ester or methacrylic acid ester. Yes. However, when a crosslinking agent such as diallyl phthalate is added to increase the molecular weight, there is room for improvement in that the moldability is deteriorated and the appearance of the surface of the molded article is impaired.

特許文献5では、本発明とは別の発泡方法ではあるが、重量平均分子量が15万〜50万であるスチレン系樹脂粒子を用いて、側鎖を有する炭素数が5以下の脂肪酸炭化水素を主成分とする発泡剤3〜10重量%を含有し、発泡開始温度が50〜70℃、最高発泡温度が80〜110℃である発泡性スチレン系樹脂粒子及びその製造方法が提案されている。ところが、低温での発泡性を改善するためにアクリル酸ブチルと共重合しているが、スチレン系単量体に対するアクリル酸ブチルの使用量が多いために、成形体表面の溶融が起こりやすくなり、成形体の外観の見栄えが著しく悪化する問題がある。   In patent document 5, although it is a foaming method different from the present invention, styrene resin particles having a weight average molecular weight of 150,000 to 500,000 are used, and a fatty acid hydrocarbon having 5 or less carbon atoms having a side chain is obtained. Expandable styrene resin particles containing 3 to 10% by weight of a foaming agent as a main component, having a foaming start temperature of 50 to 70 ° C. and a maximum foaming temperature of 80 to 110 ° C., and a method for producing the same are proposed. However, it is copolymerized with butyl acrylate in order to improve foamability at low temperature, but because the amount of butyl acrylate used relative to the styrenic monomer is large, melting of the molded body surface tends to occur, There is a problem that the appearance of the molded body is remarkably deteriorated.

特公昭46−42236号公報Japanese Examined Patent Publication No. 46-42236 特開平6−322038号公報Japanese Patent Laid-Open No. 6-322038 特許第1217232号公報Japanese Patent No. 1217232 特許第1340620号公報Japanese Patent No. 1340620 特開平11−228727号公報JP-A-11-228727

以上のような状況に鑑み、本発明の目的は、低温での予備発泡及び型内成形に適した発泡性熱可塑性樹脂粒子を提供することにある。   In view of the situation as described above, an object of the present invention is to provide expandable thermoplastic resin particles suitable for pre-expansion and in-mold molding at low temperatures.

上記の問題を解決すべく鋭意検討したところ、発明者らは、単量体組成が、スチレン95重量%超99重量%以下、アクリル酸エステル1重量%以上5重量%未満である(両者の合計量が100重量%である)熱可塑性樹脂を含んでなる発泡性熱可塑性樹脂粒子において、該発泡性熱可塑性樹脂粒子のゲルパーミェーションクロマトグラフィー(以降、「GPC」と略す。)測定チャートから得られるGPCカーブのトップピークの値が10万以上13万未満、前記トップピークよりも高分子量側でトップピークの1/2の高さのGPCカーブ上の点からトップピークに引いた線とGPCカーブに囲まれる面積比率が全体の面積の5.1%未満、重量平均分子量(Mw)が20万以上32万未満、重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnが2.7以上3.4未満であり、該発泡性熱可塑性樹脂100重量部に対して易揮発性発泡剤を4重量部以上10重量部未満、可塑剤を0.2重量部以上2.0重量部未満含有し、該発泡性熱可塑性樹脂粒子中に含有される単量体成分を0.3重量%未満とすることにより、上記特性を有する発泡性熱可塑性樹脂粒子を得られること見出し、本発明に至った。   As a result of diligent studies to solve the above problems, the inventors found that the monomer composition was more than 95% by weight of styrene and 99% by weight or less, and 1% by weight or more and less than 5% by weight of acrylate (total of both). In a foamable thermoplastic resin particle comprising a thermoplastic resin (the amount is 100% by weight), a gel permeation chromatography (hereinafter abbreviated as “GPC”) measurement chart of the foamable thermoplastic resin particle. The value of the top peak of the GPC curve obtained from the above is less than 100,000 and less than 130,000, a line drawn from the point on the GPC curve having a height of ½ of the top peak on the high molecular weight side to the top peak to the top peak The area ratio surrounded by the GPC curve is less than 5.1% of the total area, the weight average molecular weight (Mw) is 200,000 to less than 320,000, the weight average molecular weight (Mw) and the number average molecular weight (M ) Ratio Mw / Mn is 2.7 or more and less than 3.4, and 4 parts by weight or more and less than 10 parts by weight of a readily volatile foaming agent with respect to 100 parts by weight of the foamable thermoplastic resin. 2 parts by weight or more and less than 2.0 parts by weight, and by making the monomer component contained in the foamable thermoplastic resin particles less than 0.3% by weight, the foamable thermoplastic resin having the above characteristics The inventors have found that particles can be obtained and have reached the present invention.

すなわち、
本発明の第1は、単量体組成が、スチレン系単量体95重量%超99重量%以下、アクリル酸エステル系単量体1重量%以上5重量%未満(両者の合計量が100重量%である)である熱可塑性樹脂を含んでなる発泡性熱可塑性樹脂粒子において、該発泡性熱可塑性樹脂粒子のGPC測定チャートから得られるGPCカーブのトップピークの値が10万以上13万未満、前記トップピークよりも高分子量側でトップピークの1/2の高さのGPCカーブ上の点からトップピークに引いた線とGPCカーブに囲まれる面積比率が全体の面積の5.1%未満、重量平均分子量(Mw)が20万以上32万未満、重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnが2.7以上3.4未満であり、かつ、該発泡性熱可塑性樹脂100重量部に対して、易揮発性発泡剤を4重量部以上10重量部未満、可塑剤を0.2重量部以上2.0重量部未満含有し、該発泡性熱可塑性樹脂粒子中に含有される単量体成分が0.3重量%未満であることを特徴とする、発泡性熱可塑性樹脂粒子に関する。
本発明の第2は、アクリル酸エステルがアクリル酸ブチルであることを特徴とする、第1の発明記載の発泡性熱可塑性樹脂粒子に関する。
本発明の第3は、水性媒体中にて懸濁重合法により製造されることを特徴とする、第1または第2の発明記載の発泡性熱可塑性樹脂粒子に関する。
本発明の第4は、第1〜第3のいずれかの発明の発泡性熱可塑性樹脂粒子を発泡させてなることを特徴とする、熱可塑性樹脂予備発泡粒子に関する。
本発明の第5は、第4の発明の熱可塑性予備発泡粒子を型内成形してなることを特徴とする、熱可塑性樹脂発泡体に関する。
That is,
In the first aspect of the present invention, the monomer composition is more than 95% by weight of styrene monomer and 99% by weight or less, and 1% by weight or more and less than 5% by weight of acrylate monomer (the total amount of both is 100% by weight). %), The top peak value of the GPC curve obtained from the GPC measurement chart of the foamable thermoplastic resin particles is 100,000 or more and less than 130,000, The area ratio surrounded by a line drawn from the point on the GPC curve having a height of ½ of the top peak on the high molecular weight side to the top peak to the top peak and the GPC curve is less than 5.1% of the total area, The weight average molecular weight (Mw) is 200,000 to less than 320,000, the ratio Mw / Mn of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 2.7 to less than 3.4, and the foaming heat 100 weight plastic resin 4 parts by weight or more and less than 10 parts by weight of a readily volatile foaming agent and 0.2 part by weight or more and less than 2.0 parts by weight of a plasticizer, and contained in the foamable thermoplastic resin particles. The present invention relates to expandable thermoplastic resin particles, wherein the monomer component is less than 0.3% by weight.
A second aspect of the present invention relates to the expandable thermoplastic resin particles according to the first aspect, wherein the acrylate is butyl acrylate.
A third aspect of the present invention relates to the expandable thermoplastic resin particle according to the first or second aspect, which is produced by a suspension polymerization method in an aqueous medium.
4th of this invention is related with the thermoplastic resin pre-expanded particle characterized by making the foamable thermoplastic resin particle of any one of the 1st-3rd invention foam.
5th of this invention is related with the thermoplastic resin foam characterized by carrying out the shaping | molding of the thermoplastic pre-expanded particle of 4th invention.

本発明は、単量体組成が、スチレン系単量体95重量%超99重量%以下、アクリル酸エステル系単量体1重量%以上5重量%未満(両者の合計量が100重量%である)熱可塑性樹脂を含んでなる発泡性熱可塑性樹脂粒子において、該発泡性熱可塑性樹脂粒子のGPC測定チャートから得られるGPCカーブのトップピーク値が10万以上13万未満、前記トップピークよりも高分子量側でトップピークの1/2の高さのGPCカーブ上の点からトップピークに引いた線とGPCカーブに囲まれる面積比率が、全体の面積の5.1%未満、重量平均分子量(Mw)が20万以上32万未満、重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnが2.7以上3.4未満、該発泡性熱可塑性樹脂100重量部に対して、易揮発性発泡剤を4重量部以上10重量部未満、可塑剤0.2重量部以上2.0重量部未満含有し、該発泡性熱可塑性樹脂粒子中に含有される単量体成分が0.3重量%未満であることにより、低温での予備発泡および型内成形に適した発泡性熱可塑性樹脂粒子を得ることができる。   In the present invention, the monomer composition is 95% by weight to 99% by weight or less of the styrene monomer, 1% by weight or more and less than 5% by weight of the acrylate monomer (the total amount of both is 100% by weight). ) In the expandable thermoplastic resin particles comprising the thermoplastic resin, the top peak value of the GPC curve obtained from the GPC measurement chart of the expandable thermoplastic resin particles is 100,000 or more and less than 130,000, which is higher than the top peak. On the molecular weight side, the area ratio surrounded by a line drawn from the point on the GPC curve at half the height of the top peak to the top peak and the GPC curve is less than 5.1% of the total area, and the weight average molecular weight (Mw ) Is 200,000 or more and less than 320,000, the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 2.7 or more and less than 3.4, and 100 parts by weight of the foamable thermoplastic resin, Easily volatile 4 parts by weight or more and less than 10 parts by weight, plasticizer 0.2 parts by weight or more and less than 2.0 parts by weight, and 0.3% by weight of the monomer component contained in the foamable thermoplastic resin particles By being less than this, expandable thermoplastic resin particles suitable for pre-foaming at low temperature and in-mold molding can be obtained.

図1は、発泡性熱可塑性樹脂粒子のGPC測定チャートを示す。FIG. 1 shows a GPC measurement chart of expandable thermoplastic resin particles.

本発明の発泡性熱可塑性樹脂粒子は、単量体組成が、スチレン系単量体95重量%超99重量%以下、アクリル酸エステル系単量体1重量%以上5重量%未満(両者の合計量が100重量%である)である熱可塑性樹脂を含んでなる発泡性熱可塑性樹脂粒子において、該発泡性熱可塑性樹脂粒子のGPC測定チャートから得られるGPCカーブのトップピークの値が10万以上13万未満、前記トップピークよりも高分子量側でトップピークの1/2の高さのGPCカーブ上の点からトップピークに引いた線とGPCカーブに囲まれる面積比率が全体の面積の5.1%未満、重量平均分子量(Mw)が20万以上32万未満、重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnが2.7以上3.4未満であり、かつ、該発泡性熱可塑性樹脂100重量部に対して、易揮発性発泡剤を4重量部以上10重量部未満、可塑剤を0.2重量部以上2.0重量部未満含有し、該発泡性熱可塑性樹脂粒子中に含有される単量体成分が0.3重量%未満とするにより、低温での予備発泡および型内成形に適した発泡性熱可塑性樹脂粒子を得ることができる。   The foamable thermoplastic resin particles of the present invention have a monomer composition of more than 95% by weight of styrene monomer and 99% by weight or less of styrene monomer, 1% by weight or more and less than 5% by weight (total of both). The foamable thermoplastic resin particles comprising a thermoplastic resin in which the amount is 100% by weight), the top peak value of the GPC curve obtained from the GPC measurement chart of the foamable thermoplastic resin particles is 100,000 or more Less than 130,000, the ratio of the area surrounded by a line drawn from the point on the GPC curve having a height of ½ of the top peak on the high molecular weight side to the top peak to the top peak and the GPC curve is 5. Less than 1%, a weight average molecular weight (Mw) of 200,000 to less than 320,000, a ratio Mw / Mn of a weight average molecular weight (Mw) to a number average molecular weight (Mn) of 2.7 to less than 3.4, and Foaming heat 4 parts by weight or more and less than 10 parts by weight of a readily volatile foaming agent and 0.2 part by weight or more and less than 2.0 parts by weight of a plasticizer with respect to 100 parts by weight of the plastic resin, in the foamable thermoplastic resin particles By making the monomer component contained in less than 0.3% by weight, expandable thermoplastic resin particles suitable for pre-expansion at low temperature and in-mold molding can be obtained.

本発明の発泡性熱可塑性樹脂粒子を構成するスチレン系単量体としては、例えば、スチレン、α−メチルスチレン、パラメチルスチレン、t−ブチルスチレン、クロルスチレンなどのスチレン系誘導体が挙げられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。   Examples of the styrene monomer constituting the expandable thermoplastic resin particles of the present invention include styrene derivatives such as styrene, α-methyl styrene, paramethyl styrene, t-butyl styrene, and chlorostyrene. These may be used alone or in combination of two or more.

本発明の発泡性熱可塑性樹脂粒子を構成するアクリル酸エステル系単量体としては、例えば、アクリル酸メチル、アクリル酸ブチル、などのアクリル酸アルキルエステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸セチルなどのメタクリル酸アルキルエステルなどが挙げられる。これらの単量体は単独で用いてもよいし、2種以上を混合して用いてもよい。これらのうちでも、スチレン系単量体と共重合し易く、成形性が良い点から、アクリル酸ブチルが好ましい。   Examples of the acrylate monomer constituting the foamable thermoplastic resin particles of the present invention include, for example, alkyl acrylates such as methyl acrylate and butyl acrylate, methyl methacrylate, ethyl methacrylate, and cetyl methacrylate. And methacrylic acid alkyl esters. These monomers may be used independently and may be used in mixture of 2 or more types. Of these, butyl acrylate is preferred because it is easy to copolymerize with the styrene monomer and has good moldability.

本発明における発泡性熱可塑性樹脂粒子を構成する単量体組成は、仕込み単量体の全重量100重量%に対して単量体組成が、スチレン系単量体95重量%超99重量%以下、アクリル酸エステル系単量体1重量%以上5重量%未満であり、より好ましくは、スチレン系単量体97重量%以上99重量%以下、アクリル酸エステル1重量%以上3重量%以下である。
単量体組成において、アクリル酸エステル系単量体が5重量%以上となると、特に高発泡化させた際に、成形体の収縮が起こりやすくなり、成形体の外観の見栄えが悪化する傾向がある。また、アクリル酸エステル系単量体が1重量%未満となると、低温での発泡が困難となる(目的とする発泡倍率の予備発泡粒子を得るために必要な加熱温度や融着性に優れる成形体を得るのに必要な成形温度が高くなる)傾向がある。
The monomer composition constituting the expandable thermoplastic resin particles in the present invention is such that the monomer composition is more than 95% by weight and less than 99% by weight of the styrene monomer with respect to the total weight of 100% by weight of the charged monomers. The acrylate monomer is 1% by weight or more and less than 5% by weight, more preferably 97% by weight or more and 99% by weight or less of the styrene monomer, and 1% by weight or more and 3% by weight or less of the acrylate ester. .
In the monomer composition, when the acrylate monomer is 5% by weight or more, particularly when the foam is made highly foamed, the molded product tends to shrink, and the appearance of the molded product tends to deteriorate. is there. Moreover, when the amount of the acrylate monomer is less than 1% by weight, foaming at low temperature becomes difficult (molding with excellent heating temperature and fusing property necessary for obtaining pre-expanded particles having a desired expansion ratio. The molding temperature required to obtain the body tends to increase).

本発明における発泡性熱可塑性樹脂粒子は、ゲルパーミェーションクロマトグラフ測定(以下、「GPC測定」と略す)により得られる、トップピークでの分子量、面積比率、重量平均分子量Mwおよび、重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが特定の範囲にあることが必要である。   The foamable thermoplastic resin particles in the present invention are obtained by gel permeation chromatography (hereinafter abbreviated as “GPC measurement”), the molecular weight at the top peak, the area ratio, the weight average molecular weight Mw, and the weight average. The ratio Mw / Mn between the molecular weight Mw and the number average molecular weight Mn needs to be in a specific range.

ここで、GPC測定は、発泡性熱可塑性樹脂粒子0.02gを20mlのテトラヒドロフラン(THF)に溶解した測定用溶液10μlをGPCに注入し、流速0.35ml/分の条件にて測定を行い、GPC測定チャート、重量平均分子量(Mw)および数平均分子量(Mn)を得た。   Here, GPC measurement is performed by injecting 10 μl of a solution for measurement in which 0.02 g of expandable thermoplastic resin particles are dissolved in 20 ml of tetrahydrofuran (THF) into GPC, and measuring at a flow rate of 0.35 ml / min. A GPC measurement chart, a weight average molecular weight (Mw) and a number average molecular weight (Mn) were obtained.

なお、トップピークTとは、図1に示すように、得られたGPC測定チャート(分子量vs検出強度)のGPC曲線において、検出強度が最も高くなる点である。   In addition, the top peak T is a point with the highest detection intensity in the GPC curve of the obtained GPC measurement chart (molecular weight vs. detection intensity) as shown in FIG.

また、面積比率とは、得られたGPCチャートから、以下のようにして、算出した値である。
図1に示すように、GPC曲線上の、トップピークTよりも高分子量側で、トップピーク強度の1/2の検出強度である点Hと、トップピークTを結ぶ直線THを引く。直線THおよびGPC曲線で囲まれる領域の面積をAとする。他方、GPC曲線とベースラインに囲まれる領域の面積をBとする。
面積比率(%)=A/B×100の式により、面積比率を算出する。
The area ratio is a value calculated from the obtained GPC chart as follows.
As shown in FIG. 1, a straight line TH connecting the top peak T and a point H having a detection intensity of ½ of the top peak intensity on the high molecular weight side of the top peak T on the GPC curve is drawn. Let A be the area of a region surrounded by straight lines TH and GPC curves. On the other hand, let B be the area of the region surrounded by the GPC curve and the baseline.
The area ratio is calculated by the formula of area ratio (%) = A / B × 100.

本発明における発泡性熱可塑性樹脂粒子の、GPC曲線でのトップピークの分子量としては、10万以上13万未満が好ましい。
発泡性熱可塑性樹脂粒子のGPC曲線でのトップピークの分子量が10万未満では、発泡成形体とした際の底割強度が低くなる傾向があり、13万を越えると、発泡性が低くなり、成形性が悪化する(目的とする発泡倍率の予備発泡粒子を得るために必要な加熱温度や融着性に優れる成形体を得るのに必要な成形温度が高くなる)傾向がある。
The molecular weight of the top peak in the GPC curve of the expandable thermoplastic resin particles in the present invention is preferably 100,000 or more and less than 130,000.
If the molecular weight of the top peak in the GPC curve of the expandable thermoplastic resin particles is less than 100,000, the bottom split strength when foamed molded products tend to be low, and if it exceeds 130,000, the foamability is low, There is a tendency that the moldability is deteriorated (the heating temperature necessary for obtaining the pre-expanded particles having the desired expansion ratio and the molding temperature necessary for obtaining a molded article having excellent fusion property).

GPC曲線のトップピークの分子量は、熱可塑性樹脂粒子を重合する際の開始剤の使用量および重合温度の組み合わせにより制御することができる。例えば、開始剤の使用量を少なくする、および/または、重合温度を低くすることにより、分子量を大きくできる。   The molecular weight of the top peak of the GPC curve can be controlled by a combination of the amount of initiator used for polymerizing the thermoplastic resin particles and the polymerization temperature. For example, the molecular weight can be increased by reducing the amount of initiator used and / or lowering the polymerization temperature.

本発明における発泡性熱可塑性樹脂粒子のGPC曲線上での面積比率は、全体の面積の5.1%未満が好ましく、4.5%以下がより好ましい。
該面積比率が5.1%を超えると、発泡性が低くなり、成形性が悪化する傾向がある。
In the present invention, the area ratio of the expandable thermoplastic resin particles on the GPC curve is preferably less than 5.1% of the total area, and more preferably 4.5% or less.
When the area ratio exceeds 5.1%, foamability tends to be low, and moldability tends to deteriorate.

GPC曲線での面積比率は、熱可塑性樹脂粒子を重合する際の開始剤の使用量および重合温度の組み合わせにより制御することができる。例えば、開始剤の使用量を多くする、および/または、重合温度を高くすることで面積比率を下げることができる。   The area ratio on the GPC curve can be controlled by a combination of the amount of initiator used and the polymerization temperature when polymerizing the thermoplastic resin particles. For example, the area ratio can be lowered by increasing the amount of initiator used and / or increasing the polymerization temperature.

本発明における発泡性熱可塑性樹脂粒子の重量平均分子量(Mw)としては、20万以上32万未満が好ましく、22万以上28万未満がより好ましい。
発泡性スチレン系樹脂粒子の重量平均分子量Mwが20万未満では、発泡成形体とした際の底割強度が低くなる傾向があり、また、32万を越えると、発泡性が低くなり、成形性が悪化する(目的とする発泡倍率の予備発泡粒子を得るために必要な加熱温度や融着性に優れる成形体を得るのに必要な成形温度が高くなる)傾向がある。
As a weight average molecular weight (Mw) of the expandable thermoplastic resin particle in this invention, 200,000 or more and less than 320,000 are preferable, and 220,000 or more and less than 280,000 are more preferable.
If the weight average molecular weight Mw of the expandable styrene resin particles is less than 200,000, the bottom split strength tends to be low when it is formed into a foamed molded product, and if it exceeds 320,000, the foamability is low and the moldability is low. Tends to deteriorate (the heating temperature necessary for obtaining pre-expanded particles having the desired expansion ratio and the molding temperature necessary for obtaining a molded article having excellent fusing properties).

重量平均分子量Mwは、熱可塑性樹脂粒子を重合する際の開始剤の使用量と重合温度の組み合わせにより制御する。例えば、開始剤の使用量を多くする、および/または、重合温度を高くすることにより、Mwを低くできる。   The weight average molecular weight Mw is controlled by a combination of the amount of the initiator used for polymerizing the thermoplastic resin particles and the polymerization temperature. For example, Mw can be lowered by increasing the amount of initiator used and / or increasing the polymerization temperature.

本発明の発泡性スチレン系樹脂粒子では、重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnは、2.7以上3.4未満とすることが好ましく、2.8以上3.2未満とすることがより好ましい。
Mw/Mnが2.7未満であると、表面に溶融した粒子がなく、見栄えの良い成形体を得ることができる成形温度が低くなる傾向があり、3.4よりも大きくなると発泡性が低くなり、成形性が悪化する(目的とする発泡倍率の予備発泡粒子を得るために必要な加熱温度や融着性に優れる成形体を得るのに必要な成形温度が高くなる)傾向がある。
In the expandable styrene resin particles of the present invention, the ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 2.7 or more and less than 3.4. More preferably, it is less than 3.2.
When Mw / Mn is less than 2.7, there is no molten particle on the surface, and there is a tendency that the molding temperature at which a good-looking molded product can be obtained tends to be low. Therefore, the moldability tends to be deteriorated (the heating temperature necessary for obtaining the pre-expanded particles having the desired expansion ratio and the molding temperature necessary for obtaining a molded article having excellent fusing property).

Mw/Mn比は、熱可塑性樹脂粒子を重合する際の開始剤の使用量と重合温度の組み合わせにより制御する。例えば、開始剤の使用量を多くする、および/または、重合温度を高くすることにより、Mw/Mnを下げることができる。   The Mw / Mn ratio is controlled by a combination of the amount of initiator used when polymerizing thermoplastic resin particles and the polymerization temperature. For example, Mw / Mn can be lowered by increasing the amount of initiator used and / or increasing the polymerization temperature.

本発明において用いられる発泡剤としては、例えば、プロパン、ブタン、ペンタン、ヘキサン等の脂肪族炭化水素、シクロブタン、シクロペンタン、シクロヘキサン等の脂環族炭化水素、メチルクロライド、ジクロルジフルオロメタン、ジクロルテトラフルオロエタン等のハロゲン化炭化水素が挙げられる。これらの発泡剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。
これらのうちでも、ブタンが、発泡力が良好である点から、好ましい。
Examples of the blowing agent used in the present invention include aliphatic hydrocarbons such as propane, butane, pentane and hexane, alicyclic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane, methyl chloride, dichlorodifluoromethane, and dichloro. Halogenated hydrocarbons such as tetrafluoroethane are mentioned. These foaming agents may be used alone or in combination of two or more.
Among these, butane is preferable from the viewpoint of good foaming power.

本発明における発泡剤の使用量は、熱可塑性樹脂100重量部に対して、4重量部以上10重量部%未満が好ましく、5重量部以上9重量部未満がより好ましい。
発泡剤の使用量が4重量部未満では、予備発泡時間が長くなると共に、成形時の融着率が低下する傾向があり、製造コストが高くなり、経済的に不利である。発泡剤の使用量が10重量部以上では、成形体が収縮し易くなり、見栄えを損なう傾向がある。
The amount of the foaming agent used in the present invention is preferably 4 parts by weight or more and less than 10 parts by weight, and more preferably 5 parts by weight or more and less than 9 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
When the amount of the foaming agent used is less than 4 parts by weight, the pre-foaming time becomes long and the fusion rate at the time of molding tends to decrease, resulting in an increase in production cost and economical disadvantage. When the amount of the foaming agent used is 10 parts by weight or more, the molded product tends to shrink and the appearance tends to be impaired.

本発明において用いられる可塑剤としては、例えば、ジイソブチルアジペート、ジオクチルアジペート、ジブチルセバケート、グリセリントリステアレート、グリセリントリカプリレート、ヤシ油、パーム油、菜種油などが挙げられる。
これらのうちでも、医療分野あるいは直接食品に接触する包装材料分野向けに使用される場合には、食用油であるのが好ましく、さらには、やし油、パーム油、菜種油がより好ましい。
本発明においては、可塑剤は、熱可塑性樹脂粒子の重合工程、発泡剤を含浸させる工程、等にて添加してもよい。
Examples of the plasticizer used in the present invention include diisobutyl adipate, dioctyl adipate, dibutyl sebacate, glycerin tristearate, glycerin tricaprylate, coconut oil, palm oil, and rapeseed oil.
Among these, when used for the medical field or the packaging material field that comes into direct contact with food, edible oil is preferable, and palm oil, palm oil, and rapeseed oil are more preferable.
In the present invention, the plasticizer may be added in a step of polymerizing thermoplastic resin particles, a step of impregnating a foaming agent, or the like.

本発明における可塑剤の使用量は、熱可塑性樹脂100重量部に対して、0.2重量部以上2.0重量部未満が好ましく、0.4重量部以上1.6重量部未満がより好ましい。可塑剤の使用量が0.2重量部未満では、二次転移温度が低くならず、低温での予備発泡および成形に不利となる傾向があり、2.0重量部以上では、成形体が収縮し易くなり、見栄えを損なう傾向がある。   The amount of the plasticizer used in the present invention is preferably 0.2 parts by weight or more and less than 2.0 parts by weight, more preferably 0.4 parts by weight or more and less than 1.6 parts by weight with respect to 100 parts by weight of the thermoplastic resin. . If the amount of the plasticizer used is less than 0.2 parts by weight, the secondary transition temperature does not decrease, which tends to be disadvantageous for pre-foaming and molding at low temperatures. It tends to be easy to do and spoil the appearance.

本発明の発泡性熱可塑性樹脂粒子中に含有される単量体成分は、0.3重量%未満である。
含有される単量体成分は、発泡性熱可塑性樹脂粒子を発泡して得られる発泡成形体から揮発する傾向があり、特に含有される単量体成分が0.3重量%以上では、医療分野あるいは直接食品に接触する包装材料分野、もしくは自動車や建築の部材向けには、好ましくない。
The monomer component contained in the expandable thermoplastic resin particles of the present invention is less than 0.3% by weight.
The contained monomer component tends to volatilize from the foamed molded product obtained by foaming the expandable thermoplastic resin particles. Particularly, when the contained monomer component is 0.3% by weight or more, the medical field Or it is unpreferable for the field of the packaging material which contacts a foodstuff directly, or for members of a car or a building.

ここで、残存単量体成分量は、発泡性熱可塑性樹脂粒子1.0gをジクロロメタン20mlに溶解し、内部標準液(シクロペンタノール)0.005gを加えた後、ガスクロマトグラフィー(GC)を用いて、以下の条件にて測定した値である。
GC:島津製作所社製 GC−14B
カラム:PEG−20M 25%
Chromosorb W 60/80(3.0m×3.0mmI.D.)
カラム温度:110℃
検出器(FID)温度:170℃
Here, the amount of the remaining monomer component was determined by dissolving 1.0 g of expandable thermoplastic resin particles in 20 ml of dichloromethane, adding 0.005 g of an internal standard solution (cyclopentanol), and then performing gas chromatography (GC). It is a value measured under the following conditions.
GC: Shimadzu Corporation GC-14B
Column: PEG-20M 25%
Chromosorb W 60/80 (3.0 m × 3.0 mm ID)
Column temperature: 110 ° C
Detector (FID) temperature: 170 ° C

残存単量体成分量は、熱可塑性樹脂粒子を重合する際の開始剤の使用量と重合温度の組み合わせにより制御する。例えば、開始剤の使用量を多くする、および/または、重合温度を高くすることにより、残量単量体成分を下げることができる。   The amount of the residual monomer component is controlled by a combination of the amount of initiator used when polymerizing the thermoplastic resin particles and the polymerization temperature. For example, the residual monomer component can be lowered by increasing the amount of initiator used and / or increasing the polymerization temperature.

本発明の発泡性熱可塑性樹脂粒子の製造方法は、水性媒体中にて懸濁重合法により製造されることが好ましい。例えば、塊状重合により製造されたペレットに発泡剤を含浸することによっても得ることができるが、得られる発泡性ス熱可塑性樹脂粒子は、真球とすることが困難であり、予備発泡粒子とした際に金型内への充填性に影響を及ぼす傾向がある。
従って、真球状の樹脂粒子を得ることができ、さらに、重合工程と発泡剤含浸工程を一貫して行い発泡性熱可塑性樹脂粒子が得られるため、工業生産性も良い懸濁重合法により製造することが好ましい。
The method for producing expandable thermoplastic resin particles of the present invention is preferably produced by suspension polymerization in an aqueous medium. For example, it can also be obtained by impregnating a pellet produced by bulk polymerization with a foaming agent, but the resulting foamed thermoplastic resin particle is difficult to be a true sphere, and thus pre-expanded particles. There is a tendency to affect the filling property in the mold.
Accordingly, spherical resin particles can be obtained, and furthermore, the foaming thermoplastic resin particles can be obtained by consistently performing the polymerization step and the foaming agent impregnation step. It is preferable.

すなわち、発泡性熱可塑性樹脂粒子の製造方法としては、スチレン系単量体およびアクリル酸エステル系単量体を懸濁液、重合開始剤およびその他の添加剤の存在下で重合反応を開始し、懸濁重合中に発泡剤を添加するか、または重合後に発泡剤を含浸させる方法が好ましい。   That is, as a method for producing expandable thermoplastic resin particles, a styrene monomer and an acrylate monomer are suspended, a polymerization reaction is initiated in the presence of a polymerization initiator and other additives, A method of adding a foaming agent during suspension polymerization or impregnating the foaming agent after polymerization is preferred.

本発明における上記単量体の重合開始剤としては、一般に熱可塑性重合体の製造に用いられるラジカル発生型重合開始剤を用いることができる。重合開始剤の代表的なものとしては、例えば、アゾビスイソブチロニトリル等のアゾ系化合物、ベンゾイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ラウロイルパーオーキサイド−t−ブチルパーオキシイソプロピルカーボネート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシベンゾエートなどの過酸化物があげられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。   As the polymerization initiator of the monomer in the present invention, a radical generating polymerization initiator generally used for producing a thermoplastic polymer can be used. Typical polymerization initiators include, for example, azo compounds such as azobisisobutyronitrile, benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, lauroyl peroxide-t-butyl. Peroxyisopropyl carbonate, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butyl) Peroxy) -3,3,5-trimethylcyclohexane, t-butyl peroxybenzoate, and other peroxides. These may be used alone or in combination of two or more.

本発明における重合開始剤の使用量は,仕込み単量体の全重量100重量部に対して0.01重量部以上3重量部未満が好ましい。
重合開始剤の使用量が0.01重量部未満では重合速度が遅くなる傾向があり、逆に、3重量部を超えると、重合反応が早く制御が困難になる傾向がある。
The amount of the polymerization initiator used in the present invention is preferably 0.01 parts by weight or more and less than 3 parts by weight with respect to 100 parts by weight of the total weight of the charged monomers.
If the amount of the polymerization initiator used is less than 0.01 parts by weight, the polymerization rate tends to be slow, whereas if it exceeds 3 parts by weight, the polymerization reaction tends to be fast and difficult to control.

本発明において用いられる懸濁剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や第三燐酸カルシウム、ビロリン酸マグネシウム等の難溶性無機物質、等が挙げられる。難溶性無機物質を用いる場合は、ドデシルベンゼンスルホン酸ソーダ等のア二オン界面活性剤を併用することにより、懸濁安定効果は増大させることができる。また、水溶性高分子と難溶性無機物質の併用も効果的である。   Examples of the suspending agent used in the present invention include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly soluble inorganic substances such as tricalcium phosphate and magnesium pyrophosphate. When a hardly soluble inorganic substance is used, the suspension stabilizing effect can be increased by using an anion surfactant such as sodium dodecylbenzenesulfonate. Moreover, the combined use of a water-soluble polymer and a hardly soluble inorganic substance is also effective.

本発明においては、上記した原料物質以外に、造核剤、難燃剤等の発泡性熱可塑性重合体粒子の製造に一般的に使用されている物質を、本発明を阻害しない限りにおいては、併用してもよい。   In the present invention, in addition to the above-mentioned raw materials, materials generally used for the production of expandable thermoplastic polymer particles such as nucleating agents and flame retardants are used in combination unless the present invention is inhibited. May be.

本発明において用いられる造核剤としては、例えば、メタクリル酸メチル系共重合体、ポリエチレンワックス、タルク、脂肪酸ビスアマイド、エチレン−酢酸ビニル共重合体樹脂、等が挙げられる。脂肪酸ビスアマイドの具体的例としては、メチレンビスステアリルアマイド、エチレンビスステアリルアマイド(以下EBSと略する)、ヘキサメチレンビスパルミチン酸アマイド、エチレンビスオレイン酸アマイド等である。   Examples of the nucleating agent used in the present invention include methyl methacrylate copolymer, polyethylene wax, talc, fatty acid bisamide, ethylene-vinyl acetate copolymer resin, and the like. Specific examples of the fatty acid bisamide include methylene bisstearyl amide, ethylene bisstearyl amide (hereinafter abbreviated as EBS), hexamethylene bispalmitic acid amide, ethylene bisoleic acid amide and the like.

本発明において用いられる難燃剤および難燃助剤としては、公知慣用のものが使用できる。
難燃剤の具体例としては、例えば、ヘキサブロモシクロドデカン、テトラブロモブタン、ヘキサブロモシクロヘキサン等のハロゲン化脂肪族炭化水素系化合物、テトラブロモビスフェノールA、テトラブロモビスフェノールF、2,4,6−トリブロモフェノール等の臭素化フェノール類、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ジグリシジルエーテル、2,2−ビス[4'(2”,3”−ジブロモアルコキシ)−3',5'−ジブロモフェニル]−プロパン等の臭素化フェノール誘導体が挙げられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。
難燃助剤の具体例としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、2,3−ジメチルー2,3−ジフェニルブタン等の開始剤を使用してもよい。
As the flame retardant and flame retardant aid used in the present invention, known and conventional ones can be used.
Specific examples of the flame retardant include, for example, halogenated aliphatic hydrocarbon compounds such as hexabromocyclododecane, tetrabromobutane, hexabromocyclohexane, tetrabromobisphenol A, tetrabromobisphenol F, 2,4,6-tri Brominated phenols such as bromophenol, tetrabromobisphenol A-bis (2,3-dibromopropyl ether), tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A- Examples thereof include brominated phenol derivatives such as diglycidyl ether and 2,2-bis [4 ′ (2 ″, 3 ″ -dibromoalkoxy) -3 ′, 5′-dibromophenyl] -propane. These may be used alone or in combination of two or more.
Specific examples of flame retardant aids include initiators such as cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and the like. .

本発明の発泡性熱可塑性樹脂粒子は、これを予備発泡させ、その後、それを加熱発泡させ、発泡成形体とする。   The foamable thermoplastic resin particles of the present invention are pre-foamed and then heated and foamed to obtain a foamed molded product.

予備発泡方法としては、例えば、円筒形の予備発泡装置を用いて、蒸気等で加熱して発泡させる等の、通常の方法を採用することができる。   As the pre-foaming method, for example, an ordinary method such as foaming by heating with steam or the like using a cylindrical pre-foaming apparatus can be employed.

予備発泡時の加熱温度(缶内温度)は、吹き込み蒸気圧及びエアー量により適宜調整されるものであるが、通常101〜105℃程度であるが、本発明においては、97〜100℃程度の低温においても予備発泡が可能となる。   The heating temperature at the time of preliminary foaming (temperature in the can) is appropriately adjusted depending on the blowing vapor pressure and the air amount, and is usually about 101 to 105 ° C, but in the present invention, it is about 97 to 100 ° C. Pre-foaming is possible even at low temperatures.

予備発泡粒子を発泡成形させる方法としては、例えば、金型内に予備発泡粒子を充填し、蒸気等を吹き込んで加熱する方法により発泡成形体を得る等の、通常の方法を採用することができる。   As a method for foam-molding the pre-expanded particles, for example, a normal method such as filling the pre-expanded particles in a mold and blowing a vapor or the like to obtain a foam-molded body can be employed. .

型内成形時の吹き込み蒸気圧としては、通常0.6〜1.0kgf/cm程度であるが、本発明においては、0.3〜0.8kgf/cm程度においても成形が可能となる。 The blown vapor pressure at the time of molding in the mold is usually about 0.6 to 1.0 kgf / cm 2 , but in the present invention, molding is possible even at about 0.3 to 0.8 kgf / cm 2. .

型内成形時の金型温度としては、吹き込み蒸気圧により適宜調整されるものであるが、通常113〜115℃程度であるが、本発明においては、109〜115℃程度とより低温においても成形が可能となる。   The mold temperature at the time of in-mold molding is appropriately adjusted by the blown vapor pressure, but is usually about 113 to 115 ° C., but in the present invention, molding is also performed at a lower temperature of about 109 to 115 ° C. Is possible.

以上のように、本発明の発泡性熱可塑性樹脂粒子は、予備発泡時および型内発泡成形時のどちらにおいても、従来よりも低温で実施することが可能であり、より省エネルギーに適した樹脂である。   As described above, the foamable thermoplastic resin particles of the present invention can be carried out at a lower temperature than in the prior art both at the time of preliminary foaming and in-mold foam molding, and are more suitable for energy saving. is there.

以下に、実施例および比較例を挙げるが、これによって本発明は制限されるものではない。なお、測定評価法は以下の通りに実施した。   Examples and Comparative Examples are given below, but the present invention is not limited thereby. The measurement evaluation method was performed as follows.

<含有される単量体成分量の定量>
得られた発泡性熱可塑性樹脂粒子に含有される単量体成分量は、発泡性熱可塑性樹脂粒子1.0gをジクロロメタン20mlに溶解し、内部標準液(シクロペンタノール)0.005gを加えた後、ガスクロマトグラフィー(GC)を用いて、以下の条件にて測定した。
GC:島津製作所社製 GC−14B
カラム:PEG−20M 25%
Chromosorb W 60/80(3.0m×3.0mmI.D.)
カラム温度:110℃
検出器(FID)温度:170℃
<Quantification of the amount of monomer components contained>
The amount of the monomer component contained in the obtained expandable thermoplastic resin particles was obtained by dissolving 1.0 g of expandable thermoplastic resin particles in 20 ml of dichloromethane and adding 0.005 g of an internal standard solution (cyclopentanol). Then, it measured on condition of the following using gas chromatography (GC).
GC: Shimadzu Corporation GC-14B
Column: PEG-20M 25%
Chromosorb W 60/80 (3.0 m × 3.0 mm ID)
Column temperature: 110 ° C
Detector (FID) temperature: 170 ° C

<GPC測定>
得られた発泡性熱可塑性樹脂粒子に対して、発泡性熱可塑性樹脂粒子0.02gをテトラヒドロフラン(THF)20mlに溶解させた後、ゲルパーミェーションクロマトグラフ(GPC)を用いて、以下の条件にてGPC測定を行い、GPC測定チャートおよび、重量平均分子量(Mw)および数平均分子量(Mn)を得た。
測定装置:東ソー社製、高速GPC装置 HLC−8220
使用カラム:東ソー社製、SuperHZM−H×2本、SuperH−RC×2本
カラム温度:40℃、移動相:THF(テトラヒドロフラン)
流量:0.35ml/分、注入量:10μl
検出器:RI
トップピークでの分子量:図1に示すように、得られたGPC測定チャート(分子量vs検出強度)において、GPC曲線上における検出強度が最も高くなる点をトップピークとして、対応する分子量を導き出した。
面積比率計算:図1に示すように、前記トップピークTよりも高分子量側で、トップピーク強度の1/2の高さのGPC曲線上の点Hと、トップピークTとを結ぶ直線THと、GPC曲線とで囲まれる領域の面積Aと、GPC曲線とベースラインに囲まれる面積B(全体の面積)を求めた後、以下の式で算出した。
面積比率(%)=A/B×100
<GPC measurement>
After 0.02 g of expandable thermoplastic resin particles are dissolved in 20 ml of tetrahydrofuran (THF) with respect to the obtained expandable thermoplastic resin particles, using gel permeation chromatograph (GPC), the following GPC measurement was performed under the conditions, and a GPC measurement chart, a weight average molecular weight (Mw), and a number average molecular weight (Mn) were obtained.
Measuring device: manufactured by Tosoh Corporation, high-speed GPC device HLC-8220
Column used: Tosoh Corporation, SuperHZM-H x 2, SuperH-RC x 2
Column temperature: 40 ° C., mobile phase: THF (tetrahydrofuran)
Flow rate: 0.35 ml / min, injection volume: 10 μl
Detector: RI
Molecular Weight at Top Peak: As shown in FIG. 1, in the obtained GPC measurement chart (molecular weight vs. detected intensity), the point corresponding to the highest detected intensity on the GPC curve was taken as the top peak, and the corresponding molecular weight was derived.
Area ratio calculation: As shown in FIG. 1, on the high molecular weight side of the top peak T, a straight line TH connecting the point H on the GPC curve having a height of ½ of the top peak intensity and the top peak T The area A surrounded by the GPC curve and the area B (total area) surrounded by the GPC curve and the base line were calculated and calculated by the following equation.
Area ratio (%) = A / B × 100

<予備発泡時の缶内温度測定>
円筒形の予備発泡機の側面から温度計を挿入し、予備発泡時の缶内温度を測定した。
<In-can temperature measurement during pre-foaming>
A thermometer was inserted from the side of the cylindrical pre-foaming machine, and the temperature inside the can during pre-foaming was measured.

<成形性評価>
成形機[ダイセン製、KR−57]を用いて、厚み30mmで長さ550mm×幅350mm×高さ120mmサイズの箱形形状の金型内に充填し、吹き込み蒸気圧0.3〜0.8kgf/cmの範囲内で変化させた成型条件にて型内成形を行い、箱型の発泡成形品を得た。
得られた熱可塑性樹脂発泡体は、室温で24時間乾燥させた後、下記の発泡粒子間の表面性および融着性がどちらも合格になる、最低の吹き込み水蒸気圧吹き込み水蒸気圧を求めて、成形可能な蒸気圧範囲とした。また、最低の吹き込み水蒸気圧および最高の吹き込み水蒸気圧での金型温度を求めた。
(1)融着性評価
得られた熱可塑性樹脂発泡体を破断し、破断面を観察して、粒子界面ではなく、粒子が破断している割合を求めて、以下の基準にて、融着性を判定した。
合格: 粒子破断の割合が80%以上
不合格:粒子破断の割合が80%未満
(2)表面性評価
得られた熱可塑性樹脂発泡体の表面状態を目視観察し、以下の基準にて表面性を評価した。
合格: 表面の溶融、粒間少なく、美麗
不合格:表面の溶融、粒間があり外観不良<成形体の底割強度測定>
得られた箱状成形体の四辺を固定して、箱状成形体の底部中央を、100mmφの筒状の冶具を用いて押圧し、底部が破壊された際の最大荷重を測定した。
<Formability evaluation>
Using a molding machine [manufactured by Daisen, KR-57], a box-shaped mold having a thickness of 30 mm, a length of 550 mm, a width of 350 mm, and a height of 120 mm is filled, and the blowing vapor pressure is 0.3 to 0.8 kgf. In-mold molding was performed under molding conditions varied within the range of / cm 2 to obtain a box-shaped foam molded product.
After the obtained thermoplastic resin foam was dried at room temperature for 24 hours, the surface property and the fusing property between the foamed particles described below both passed, and the lowest water vapor pressure was determined. It was set as a vapor pressure range in which molding was possible. Further, the mold temperature at the lowest blowing water vapor pressure and the highest blowing water vapor pressure was determined.
(1) Evaluation of fusing property The obtained thermoplastic resin foam is broken, the fractured surface is observed, the ratio of the broken particles rather than the particle interface is obtained, and the fusion is performed according to the following criteria. Sex was judged.
Pass: The rate of particle breakage is 80% or more. Fail: The rate of particle breakage is less than 80%. (2) Surface property evaluation The surface state of the obtained thermoplastic resin foam is visually observed, and the surface property is determined according to the following criteria. Evaluated.
Pass: Melting of the surface, less intergranularity, and beautiful rejection: Poor appearance due to surface melting, intergranularity <Measurement of bottom split strength of molded product>
Four sides of the obtained box-shaped molded body were fixed, the center of the bottom of the box-shaped molded body was pressed using a 100 mmφ cylindrical jig, and the maximum load when the bottom was broken was measured.

(実施例1)
<発泡性スチレン系樹脂粒子の製造>
撹拌機付属の6リットルのオートクレーブに、純水100重量部、リン酸三カルシウム0.2重量部、ドデシルベンゼンスルホン酸ナトリウム0.01重量部および、開始剤としてベンゾイルパーオキサイド0.3重量部および1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.2重量部を仕込んだ。続いて、250回転/分で撹拌しながら、スチレンモノマー99重量部、アクリル酸ブチルモノマー1重量部およびヤシ油1重量%を仕込んだ後、98℃まで昇温させた。引き続き、98℃にて4時間保持して、熱可塑性樹脂粒子を得た。
次いで、発泡剤としてシクロヘキサン2重量部およびブタン6重量部をオートクレーブ中に圧入し、再び120℃まで昇温させた。その後、120℃にて2時間保温した後、室温まで冷却して、オートクレーブから重合スラリーを取り出した。取り出した重合スラリーを脱水、洗浄、乾燥することにより、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
得られた発泡性スチレン系樹脂粒子を篩分けして、粒子径0.6mm〜1.2mmとした。篩分けした発泡性スチレン系樹脂粒子を、加圧式予備発泡機[大開工業製、BHP]を用いて、吹き込み蒸気圧0.8kgf/cmの条件にて嵩倍率65倍に予備発泡を実施した。この際、吹き込み蒸気にはエアーを切り込ませて、吹き込み蒸気温度を調節したところ、加圧加熱時間は70秒、缶内温度は98℃であった。その後、常温下で1日放置して、養生乾燥を行った。
次いで、得られた熱可塑性樹脂予備発泡粒子を、成形機[ダイセン製、KR−57]を用いて、厚み30mmで長さ550mm×幅350mm×高さ120mmサイズの箱形形状の金型内に充填し、吹き込み蒸気圧0.3〜0.8kgf/cmの成型条件にて型内成形を行い、箱型の発泡成形品を得た。
成形可能な蒸気圧範囲は0.3〜0.8kgf/cmであり、その際の金型温度は109〜115℃であった。
得られた発泡性熱可塑性樹脂粒子および発泡成形体を用いて評価を行い、その結果を表1に示す。
Example 1
<Manufacture of expandable styrene resin particles>
In a 6 liter autoclave attached to a stirrer, 100 parts by weight of pure water, 0.2 part by weight of tricalcium phosphate, 0.01 part by weight of sodium dodecylbenzenesulfonate, 0.3 part by weight of benzoyl peroxide as an initiator, and 0.21 part by weight of 1,1-bis (t-butylperoxy) cyclohexane was charged. Subsequently, 99 parts by weight of styrene monomer, 1 part by weight of butyl acrylate monomer and 1% by weight of coconut oil were charged while stirring at 250 rpm, and the temperature was raised to 98 ° C. Then, it hold | maintained at 98 degreeC for 4 hours, and obtained the thermoplastic resin particle.
Next, 2 parts by weight of cyclohexane and 6 parts by weight of butane were injected into the autoclave as a blowing agent, and the temperature was raised to 120 ° C. again. Thereafter, the mixture was kept at 120 ° C. for 2 hours, then cooled to room temperature, and the polymerization slurry was taken out from the autoclave. The taken-out polymerization slurry was dehydrated, washed and dried to obtain expandable thermoplastic resin particles.
<Pre-foaming and manufacturing of molded products>
The obtained expandable styrene resin particles were sieved to a particle diameter of 0.6 mm to 1.2 mm. The foamable styrene-based resin particles thus screened were prefoamed at a bulk magnification of 65 times under the condition of a blowing vapor pressure of 0.8 kgf / cm 2 using a pressure prefoaming machine (manufactured by Daikai Kogyo Co., Ltd., BHP). . At this time, air was blown into the blown steam to adjust the blown steam temperature. As a result, the pressure heating time was 70 seconds, and the can internal temperature was 98 ° C. Then, it was left to stand at room temperature for 1 day, and curing drying was performed.
Next, the obtained thermoplastic resin pre-expanded particles are placed in a box-shaped mold having a thickness of 30 mm, a length of 550 mm, a width of 350 mm, and a height of 120 mm, using a molding machine [manufactured by Daisen, KR-57]. Filling and in-mold molding were performed under the molding conditions of a blowing vapor pressure of 0.3 to 0.8 kgf / cm 2 to obtain a box-shaped foam molded product.
The moldable vapor pressure range was 0.3 to 0.8 kgf / cm 2 , and the mold temperature at that time was 109 to 115 ° C.
Evaluation was performed using the obtained foamable thermoplastic resin particles and foamed molded article, and the results are shown in Table 1.

(実施例2)
<発泡性スチレン系樹脂粒子の製造>
重合開始時の単量体組成を、スチレンモノマー98重量部およびアクリル酸ブチルモノマー2重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は63秒、缶内温度は98℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.8kgf/cmであり、その際の金型温度は109〜115℃であった。その評価結果を、表1に示す。
(Example 2)
<Manufacture of expandable styrene resin particles>
Expandable thermoplastic resin particles were obtained in the same manner as in Example 1, except that the monomer composition at the start of polymerization was changed to 98 parts by weight of styrene monomer and 2 parts by weight of butyl acrylate monomer.
<Pre-foaming and manufacturing of molded products>
When obtaining pre-expanded particles having a bulk magnification of 65 times, the pressure heating time at the time of pre-expansion was 63 seconds, and the temperature in the can was 98 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.8 kgf / cm 2 , and the mold temperature at that time is 109 to 115 ° C. It was. The evaluation results are shown in Table 1.

(実施例3)
<発泡性スチレン系樹脂粒子の製造>
重合開始時の単量体組成を、スチレンモノマー97重量部およびアクリル酸ブチルモノマー3重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は55秒、缶内温度は98℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.8kgf/cmであり、その際の金型温度は109〜115℃であった。その評価結果を、表1に示す。
(Example 3)
<Manufacture of expandable styrene resin particles>
Expandable thermoplastic resin particles were obtained in the same manner as in Example 1, except that the monomer composition at the start of polymerization was changed to 97 parts by weight of styrene monomer and 3 parts by weight of butyl acrylate monomer.
<Pre-foaming and manufacturing of molded products>
When pre-expanded particles having a bulk magnification of 65 times were obtained, the pressure heating time at the time of pre-expansion was 55 seconds, and the temperature in the can was 98 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.8 kgf / cm 2 , and the mold temperature at that time is 109 to 115 ° C. It was. The evaluation results are shown in Table 1.

(実施例4)
<発泡性スチレン系樹脂粒子の製造>
発泡性熱可塑性樹脂粒子の製造において、発泡剤としてシクロヘキサン2重量部およびブタン3重量部とした以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は120秒、缶内温度は98℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.8kgf/cmであり、その際の金型温度は109〜115℃であった。その評価結果を、表1に示す。
Example 4
<Manufacture of expandable styrene resin particles>
In the production of expandable thermoplastic resin particles, expandable thermoplastic resin particles were obtained in the same manner as in Example 2, except that 2 parts by weight of cyclohexane and 3 parts by weight of butane were used as the foaming agent.
<Pre-foaming and manufacturing of molded products>
When pre-expanded particles having a bulk magnification of 65 times were obtained, the pressure heating time at the time of pre-expansion was 120 seconds, and the temperature in the can was 98 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.8 kgf / cm 2 , and the mold temperature at that time is 109 to 115 ° C. It was. The evaluation results are shown in Table 1.

(実施例5)
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時にヤシ油の使用量を1重量部から1.5重量部に変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は60秒、缶内温度は98℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.8kgf/cmであり、その際の金型温度は109〜115℃であった。その評価結果を、表1に示す。
(Example 5)
<Manufacture of expandable styrene resin particles>
In the polymerization of thermoplastic resin particles, expandable thermoplastic resin particles were obtained by the same operation as in Example 2 except that the amount of coconut oil used was changed from 1 part by weight to 1.5 parts by weight at the start of polymerization. .
<Pre-foaming and manufacturing of molded products>
When obtaining pre-expanded particles having a bulk magnification of 65 times, the pressure heating time at the time of pre-expansion was 60 seconds, and the temperature in the can was 98 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.8 kgf / cm 2 , and the mold temperature at that time is 109 to 115 ° C. It was. The evaluation results are shown in Table 1.

(実施例6)
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時にベンゾイルパーオキサイド0.3重量部を0.2重量部に変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は80秒、缶内温度は98℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.8kgf/cmであり、その際の金型温度は109〜115℃であった。その評価結果を、表1に示す。
(Example 6)
<Manufacture of expandable styrene resin particles>
In the polymerization of the thermoplastic resin particles, expandable thermoplastic resin particles were obtained in the same manner as in Example 2, except that 0.3 parts by weight of benzoyl peroxide was changed to 0.2 parts by weight at the start of polymerization.
<Pre-foaming and manufacturing of molded products>
When pre-expanded particles having a bulk magnification of 65 times were obtained, the pressure heating time during pre-expansion was 80 seconds, and the temperature in the can was 98 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.8 kgf / cm 2 , and the mold temperature at that time is 109 to 115 ° C. It was. The evaluation results are shown in Table 1.

(実施例7)
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時に1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.2重量部を0.25重量部に変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は75秒、缶内温度は98℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.8kgf/cmであり、その際の金型温度は109〜115℃であった。その評価結果を、表1に示す。
(Example 7)
<Manufacture of expandable styrene resin particles>
In the polymerization of the thermoplastic resin particles, except that 0.2 parts by weight of 1,1-bis (t-butylperoxy) cyclohexane was changed to 0.25 parts by weight at the start of polymerization, the same operation as in Example 2 was performed. Expandable thermoplastic resin particles were obtained.
<Pre-foaming and manufacturing of molded products>
When pre-foamed particles having a bulk magnification of 65 times were obtained, the pressure heating time at the time of pre-foaming was 75 seconds, and the temperature in the can was 98 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.8 kgf / cm 2 , and the mold temperature at that time is 109 to 115 ° C. It was. The evaluation results are shown in Table 1.

(比較例1)
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時に単量体組成を、アクリル酸ブチルモノマーを使用せず、スチレンモノマー100重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る為に、予備発泡時の吹き込み蒸気圧を0.8kgf/cmから1.0kgf/cmに変更した結果、加圧加熱時間は97秒、缶内温度は103℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.6〜0.8kgf/cmであり、その際の金型温度は113〜115℃であった。その評価結果を、表1に示す。
(Comparative Example 1)
<Manufacture of expandable styrene resin particles>
In the polymerization of the thermoplastic resin particles, the foaming thermoplasticity was changed by the same operation as in Example 1 except that the monomer composition was changed to 100 parts by weight of the styrene monomer without using the butyl acrylate monomer at the start of the polymerization. Resin particles were obtained.
<Pre-foaming and manufacturing of molded products>
To obtain a bulk magnification 65 times the pre-expanded particles, a result of changing the blowing vapor pressure during prefoaming from 0.8 kgf / cm 2 to 1.0 kgf / cm 2, pressurizing and heating time is 97 seconds, the temperature in the reactor Was 103 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding as in Example 1 is 0.6 to 0.8 kgf / cm 2 , and the mold temperature at that time is 113 to 115 ° C. It was. The evaluation results are shown in Table 1.

(比較例2)
<発泡性スチレン系樹脂粒子の製造>
重合開始時の単量体組成を、スチレンモノマー95重量部およびアクリル酸ブチルモノマー5重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は34秒、缶内温度は97℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.4kgf/cmであり、その際の金型温度は109〜110℃であった。その評価結果を、表1に示す。
(Comparative Example 2)
<Manufacture of expandable styrene resin particles>
Expandable thermoplastic resin particles were obtained in the same manner as in Example 1, except that the monomer composition at the start of polymerization was changed to 95 parts by weight of styrene monomer and 5 parts by weight of butyl acrylate monomer.
<Pre-foaming and manufacturing of molded products>
When obtaining pre-expanded particles having a bulk magnification of 65 times, the pressure heating time at the time of pre-expansion was 34 seconds, and the temperature in the can was 97 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.4 kgf / cm 2 , and the mold temperature at that time is 109 to 110 ° C. It was. The evaluation results are shown in Table 1.

(比較例3)
<発泡性スチレン系樹脂粒子の製造>
発泡性熱可塑性樹脂粒子の製造において、発泡剤としてシクロヘキサンを使用せず、ブタンを2重量部に変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
予備発泡時の吹き込み蒸気圧を0.8kgf/cmから1.0kgf/cmに変更したが、目標倍率まで発泡せず、評価不可能であった。
(Comparative Example 3)
<Manufacture of expandable styrene resin particles>
In the production of expandable thermoplastic resin particles, expandable thermoplastic resin particles were obtained in the same manner as in Example 2, except that cyclohexane was not used as the foaming agent and butane was changed to 2 parts by weight.
<Pre-foaming and manufacturing of molded products>
Although the blowing vapor pressure at the time of preliminary foaming was changed from 0.8 kgf / cm 2 to 1.0 kgf / cm 2 , it was not foamed to the target magnification and evaluation was impossible.

(比較例4)
<発泡性スチレン系樹脂粒子の製造>
発泡性熱可塑性樹脂粒子の製造において、発泡剤としてシクロヘキサン3重量部及びブタン9重量部に変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は42秒、缶内温度は97℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.4kgf/cmであり、その際の金型温度は109〜110℃であった。その評価結果を、表1に示す。
(Comparative Example 4)
<Manufacture of expandable styrene resin particles>
In the production of expandable thermoplastic resin particles, expandable thermoplastic resin particles were obtained in the same manner as in Example 2 except that the foaming agent was changed to 3 parts by weight of cyclohexane and 9 parts by weight of butane.
<Pre-foaming and manufacturing of molded products>
When pre-expanded particles having a bulk magnification of 65 times were obtained, the pressure heating time at the time of pre-expansion was 42 seconds, and the temperature in the can was 97 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.4 kgf / cm 2 , and the mold temperature at that time is 109 to 110 ° C. It was. The evaluation results are shown in Table 1.

(比較例5)
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時にヤシ油の使用量を1重量部から使用しないことに変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る為に、予備発泡時の吹き込み蒸気圧を0.8kgf/cmから1.0kgf/cmに変更した結果、加圧加熱時間は80秒、缶内温度は103℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.6〜0.8kgf/cmであり、その際の金型温度は113〜115℃であった。その評価結果を、表1に示す。
(Comparative Example 5)
<Manufacture of expandable styrene resin particles>
In the polymerization of thermoplastic resin particles, expandable thermoplastic resin particles were obtained by the same operation as in Example 2 except that the amount of coconut oil used was changed from 1 part by weight at the start of polymerization.
<Pre-foaming and manufacturing of molded products>
To obtain a bulk magnification 65 times the pre-expanded particles, a result of changing the blowing vapor pressure during prefoaming from 0.8 kgf / cm 2 to 1.0 kgf / cm 2, pressing and heating time is 80 seconds, the temperature in the reactor Was 103 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding as in Example 1 is 0.6 to 0.8 kgf / cm 2 , and the mold temperature at that time is 113 to 115 ° C. It was. The evaluation results are shown in Table 1.

(比較例6)
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時のヤシ油の使用量を1重量部から2.1重量部に変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は38秒、缶内温度は97℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.4kgf/cmであり、その際の金型温度は109〜110℃であった。その評価結果を、表1に示す。
(Comparative Example 6)
<Manufacture of expandable styrene resin particles>
In the polymerization of thermoplastic resin particles, expandable thermoplastic resin particles are obtained by the same operation as in Example 2 except that the amount of coconut oil used at the start of polymerization is changed from 1 part by weight to 2.1 parts by weight. It was.
<Pre-foaming and manufacturing of molded products>
When pre-expanded particles having a bulk magnification of 65 times were obtained, the pressure heating time at the time of pre-expansion was 38 seconds, and the temperature in the can was 97 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.4 kgf / cm 2 , and the mold temperature at that time is 109 to 110 ° C. It was. The evaluation results are shown in Table 1.

(比較例7)
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時にベンゾイルパーオキサイド0.30重量部を0.35重量部に変更し、98℃での保温時間を4時間から3時間に変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。得られた発泡性樹脂粒子のGPCチャート上でのトップピークの分子量は9万であった。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は33秒、缶内温度は97℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.6kgf/cmであり、その際の金型温度は109〜113℃であった。その評価結果を、表1に示す。
(Comparative Example 7)
<Manufacture of expandable styrene resin particles>
In polymerization of thermoplastic resin particles, Example 2 was changed except that 0.30 part by weight of benzoyl peroxide was changed to 0.35 part by weight at the start of polymerization and the heat retention time at 98 ° C. was changed from 4 hours to 3 hours. Expandable thermoplastic resin particles were obtained by the same operation as in. The molecular weight of the top peak on the GPC chart of the obtained expandable resin particles was 90,000.
<Pre-foaming and manufacturing of molded products>
When obtaining pre-expanded particles with a bulk magnification of 65 times, the pressure heating time at the time of pre-expansion was 33 seconds, and the temperature in the can was 97 ° C.
Next, the vapor pressure range in which molding is possible is 0.3 to 0.6 kgf / cm 2 in the same way as in Example 1, and the mold temperature at that time is 109 to 113 ° C. It was. The evaluation results are shown in Table 1.

(比較例8)
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時にベンゾイルパーオキサイド0.30重量部を0.15重量部、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.20重量部を0.25重量部に変更した。また、重合温度を98℃から102℃に変更し、更に102℃で3時間保温した後30分間かけて120℃まで昇温した。引き続き、120℃にて1時間保温して、スチレン系樹脂粒子を得た後、95℃まで冷却し発泡剤としてシクロヘキサン2重量%およびブタン6重量%をオートクレーブ中に圧入し、再び120℃まで昇温させた。その後、120℃にて1時間保温した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。得られた発泡性樹脂粒子のGPCチャート上でのトップピークでの分子量は13万であった。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る為に、予備発泡時の吹き込み蒸気圧を0.8kgf/cmから1.0kgf/cmに変更した結果、加圧加熱時間は68秒、缶内温度は103℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.6〜0.8kgf/cmであり、その際の金型温度は113〜115℃であった。その評価結果を、表1に示す。
(Comparative Example 8)
<Manufacture of expandable styrene resin particles>
In polymerization of thermoplastic resin particles, 0.30 part by weight of benzoyl peroxide is 0.15 part by weight and 0.20 part by weight of 1,1-bis (t-butylperoxy) cyclohexane is 0.25 part by weight at the start of polymerization. Changed to Further, the polymerization temperature was changed from 98 ° C. to 102 ° C., and further kept at 102 ° C. for 3 hours, and then heated to 120 ° C. over 30 minutes. Subsequently, the mixture was kept at 120 ° C. for 1 hour to obtain styrene resin particles, cooled to 95 ° C., and 2 wt% cyclohexane and 6 wt% butane were injected into the autoclave as a blowing agent, and the temperature was raised again to 120 ° C. Allowed to warm. Thereafter, expandable thermoplastic resin particles were obtained in the same manner as in Example 2 except that the temperature was kept at 120 ° C. for 1 hour. The molecular weight at the top peak of the obtained expandable resin particles on the GPC chart was 130,000.
<Pre-foaming and manufacturing of molded products>
To obtain a bulk magnification 65 times the pre-expanded particles, a result of changing the blowing vapor pressure during prefoaming from 0.8 kgf / cm 2 to 1.0 kgf / cm 2, pressurizing and heating time is 68 seconds, the temperature in the reactor Was 103 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding as in Example 1 is 0.6 to 0.8 kgf / cm 2 , and the mold temperature at that time is 113 to 115 ° C. It was. The evaluation results are shown in Table 1.

(比較例9)
<発泡性スチレン系樹脂粒子の製造>
重合開始時にベンゾイルパーオキサイド0.30重量部を0.20重量部に変更し、98℃で3時間30分保温した後30分間かけて120℃まで昇温させた。引き続き、120℃にて1時間保温して、スチレン系樹脂粒子を得た後、95℃まで冷却し発泡剤としてシクロヘキサン2重量部およびブタン6重量部をオートクレーブ中に圧入し、再び120℃まで昇温させた。その後、120℃にて1時間保温した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。得られた発泡性樹脂粒子のGPCチャートの面積比率は5.1%であった。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る為に、予備発泡時の吹き込み蒸気圧を0.8kgf/cmから1.0kgf/cmに変更した結果、加圧加熱時間は63秒、缶内温度は103℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.6〜0.8kgf/cmであり、その際の金型温度は113〜115℃であった。その評価結果を、表1に示す。
(Comparative Example 9)
<Manufacture of expandable styrene resin particles>
At the start of polymerization, 0.30 parts by weight of benzoyl peroxide was changed to 0.20 parts by weight, and the mixture was kept at 98 ° C. for 3 hours and 30 minutes, and then heated to 120 ° C. over 30 minutes. Subsequently, the mixture was kept at 120 ° C. for 1 hour to obtain styrene resin particles, then cooled to 95 ° C., and 2 parts by weight of cyclohexane and 6 parts by weight of butane as a foaming agent were pressed into the autoclave and again raised to 120 ° C. Allowed to warm. Thereafter, expandable thermoplastic resin particles were obtained in the same manner as in Example 2 except that the temperature was kept at 120 ° C. for 1 hour. The area ratio of the GPC chart of the obtained expandable resin particles was 5.1%.
<Pre-foaming and manufacturing of molded products>
To obtain a bulk magnification 65 times the pre-expanded particles, a result of changing the blowing vapor pressure during prefoaming from 0.8 kgf / cm 2 to 1.0 kgf / cm 2, pressurizing and heating time is 63 seconds, the temperature in the reactor Was 103 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding as in Example 1 is 0.6 to 0.8 kgf / cm 2 , and the mold temperature at that time is 113 to 115 ° C. It was. The evaluation results are shown in Table 1.

(比較例10)
<発泡性スチレン系樹脂粒子の製造>
重合開始時にベンゾイルパーオキサイド0.30重量部を0.35重量部に変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。得られた発泡性樹脂粒子の重量平均分子量が19万であった。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の加圧加熱時間は31秒、缶内温度は97℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.4kgf/cmであり、その際の金型温度は109〜110℃であった。その評価結果を、表1に示す。
(Comparative Example 10)
<Manufacture of expandable styrene resin particles>
Expandable thermoplastic resin particles were obtained in the same manner as in Example 2, except that 0.30 parts by weight of benzoyl peroxide was changed to 0.35 parts by weight at the start of polymerization. The resulting foamable resin particles had a weight average molecular weight of 190,000.
<Pre-foaming and manufacturing of molded products>
When pre-expanded particles having a bulk magnification of 65 times were obtained, the pressure heating time during pre-expansion was 31 seconds, and the temperature in the can was 97 ° C.
Next, the vapor pressure range that can be molded when performing in-mold molding in the same manner as in Example 1 is 0.3 to 0.4 kgf / cm 2 , and the mold temperature at that time is 109 to 110 ° C. It was. The evaluation results are shown in Table 1.

(比較例11
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時にベンゾイルパーオキサイド0.3重量部を0.32重量部に変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。得られた発泡性樹脂粒子のMw/Mnが2.5であった。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る為に、予備発泡時の吹き込み蒸気圧を0.8kgf/cm2から1.0kgf/cm2に変更した結果、加圧加熱時間は36秒、缶内温度は100℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な蒸気圧範囲は0.3〜0.6kgf/cm2であり、その際の金型温度は109〜113℃であった。その評価結果を、表1に示す。
(Comparative Example 11 )
<Manufacture of expandable styrene resin particles>
In the polymerization of the thermoplastic resin particles, expandable thermoplastic resin particles were obtained in the same manner as in Example 2 except that 0.3 parts by weight of benzoyl peroxide was changed to 0.32 parts by weight at the start of polymerization. Mw / Mn of the obtained expandable resin particles was 2.5.
<Pre-foaming and manufacturing of molded products>
To obtain a bulk magnification 65 times the pre-expanded particles, a result of changing the blowing vapor pressure during prefoaming from 0.8 kgf / cm 2 to 1.0 kgf / cm 2, pressurizing and heating time is 36 seconds, the temperature in the reactor Was 100 ° C.
Next, the vapor pressure range in which molding is possible is 0.3 to 0.6 kgf / cm 2 in the same way as in Example 1, and the mold temperature at that time is 109 to 113 ° C. It was. The evaluation results are shown in Table 1.

(比較例12
<発泡性スチレン系樹脂粒子の製造>
熱可塑性樹脂粒子の重合において、重合開始時にベンゾイルパーオキサイド0.3重量部を0.2重量部に変更し、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.20重量部を0.15重量部に変更した以外は、実施例2と同様の操作により、発泡性熱可塑性樹脂粒子を得た。得られた発泡性樹脂粒子のMw/Mnが3.5であった。
<予備発泡および成形品の製造>
嵩倍率65倍の予備発泡粒子を得る際の、予備発泡時の吹き込み蒸気圧を0.8kgf/cm2から1.0kgf/cm2に変更した結果、加圧加熱時間は112秒、缶内温度は105℃であった。
次いで、実施例1と同様に型内成形を行った際の、成形可能な最低蒸気圧は0.8kgf/cm2であり、その際の金型温度は115℃であった。その評価結果を、表1に示す。
(Comparative Example 12 )
<Manufacture of expandable styrene resin particles>
In the polymerization of the thermoplastic resin particles, 0.3 parts by weight of benzoyl peroxide was changed to 0.2 parts by weight at the start of polymerization, and 0.20 part by weight of 1,1-bis (t-butylperoxy) cyclohexane was changed to 0. Expandable thermoplastic resin particles were obtained by the same operation as in Example 2 except that the amount was changed to 15 parts by weight. Mw / Mn of the obtained expandable resin particles was 3.5.
<Pre-foaming and manufacturing of molded products>
In obtaining a bulk magnification 65 times the pre-expanded particles, a result of changing the blowing vapor pressure during prefoaming from 0.8 kgf / cm 2 to 1.0 kgf / cm 2, pressurizing and heating time is 112 seconds, the temperature in the reactor Was 105 ° C.
Next, the lowest vapor pressure that can be molded when performing in-mold molding as in Example 1 was 0.8 kgf / cm 2 , and the mold temperature at that time was 115 ° C. The evaluation results are shown in Table 1.

T GPC曲線上でのトップピーク
H GPC曲線上において、トップピークよりも高分子量側で、検出強度がトップピークの1/2である点
A TPとHPを結んだ直線、およびGPC曲線に囲まれる領域
The top peak on the T GPC curve H The point on the GPC curve where the detection intensity is 1/2 of the top peak on the higher molecular weight side than the top peak
A Area surrounded by straight line connecting TP and HP and GPC curve

Claims (5)

単量体組成が、スチレン系単量体95重量%超99重量%以下、アクリル酸エステル系単量体1重量%以上5重量%未満(両者の合計量が100重量%である)である熱可塑性樹脂を含んでなる発泡性熱可塑性樹脂粒子において、
該発泡性熱可塑性樹脂粒子のゲルパーミェーションクロマトグラフィー測定から得られる、
GPC曲線上のトップピークでの分子量が10万以上13万未満、
前記トップピークよりも高分子量側でトップピークの1/2の高さのGPCカーブ上の点からトップピークに引いた線とGPCカーブに囲まれる領域の面積比率が全体の面積の5.1%未満、
重量平均分子量(Mw)が20万以上32万未満、重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnが2.7以上3.4未満であり、
かつ、該発泡性熱可塑性樹脂100重量部に対して、易揮発性発泡剤を4重量部以上10重量部未満、可塑剤を0.2重量部以上2.0重量部未満含有し、該発泡性熱可塑性樹脂粒子中に含有される単量体成分が0.3重量%未満であることを特徴とする、発泡性熱可塑性樹脂粒子。
Heat having a monomer composition of more than 95% by weight of styrene monomer and 99% by weight or less, and 1% by weight or more and less than 5% by weight of acrylate monomer (the total amount of both is 100% by weight) In the foamable thermoplastic resin particles comprising a plastic resin,
Obtained from gel permeation chromatography measurement of the foamable thermoplastic resin particles,
The molecular weight at the top peak on the GPC curve is 100,000 or more and less than 130,000,
The area ratio of the line surrounded by the GPC curve from the point on the GPC curve at a higher molecular weight than the top peak and ½ the height of the top peak is 5.1% of the total area. Less than,
The weight average molecular weight (Mw) is 200,000 or more and less than 320,000, the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 2.7 or more and less than 3.4,
And it contains 4 parts by weight or more and less than 10 parts by weight of a volatile foaming agent and 0.2 parts by weight or more and less than 2.0 parts by weight of a plasticizer with respect to 100 parts by weight of the foamable thermoplastic resin. Expandable thermoplastic resin particles characterized in that the monomer component contained in the expandable thermoplastic resin particles is less than 0.3% by weight.
アクリル酸エステルがアクリル酸ブチルであることを特徴とする、請求項1記載の発泡性熱可塑性樹脂粒子。   2. The expandable thermoplastic resin particles according to claim 1, wherein the acrylate is butyl acrylate. 水性媒体中にて懸濁重合法により製造されることを特徴とする、請求項1または2記載の発泡性熱可塑性樹脂粒子。   The expandable thermoplastic resin particles according to claim 1 or 2, which are produced by a suspension polymerization method in an aqueous medium. 請求項1〜3のいずれかに記載の発泡性熱可塑性樹脂粒子を発泡させてなることを特徴とする、熱可塑性樹脂予備発泡粒子。   Thermoplastic resin pre-expanded particles obtained by foaming the expandable thermoplastic resin particles according to any one of claims 1 to 3. 請求項4に記載の熱可塑性予備発泡粒子を型内成形してなることを特徴とする、熱可塑性樹脂発泡体。   A thermoplastic resin foam obtained by molding the thermoplastic pre-expanded particles according to claim 4 in a mold.
JP2011152950A 2010-07-16 2011-07-11 Expandable thermoplastic resin particles Active JP5824263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152950A JP5824263B2 (en) 2010-07-16 2011-07-11 Expandable thermoplastic resin particles

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010161730 2010-07-16
JP2010161730 2010-07-16
JP2011032156 2011-02-17
JP2011032156 2011-02-17
JP2011152950A JP5824263B2 (en) 2010-07-16 2011-07-11 Expandable thermoplastic resin particles

Publications (2)

Publication Number Publication Date
JP2012184393A JP2012184393A (en) 2012-09-27
JP5824263B2 true JP5824263B2 (en) 2015-11-25

Family

ID=47014736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152950A Active JP5824263B2 (en) 2010-07-16 2011-07-11 Expandable thermoplastic resin particles

Country Status (1)

Country Link
JP (1) JP5824263B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048356A (en) * 2013-08-29 2015-03-16 積水化成品工業株式会社 Foamable styrenic resin particle, foamed particle, foam molded body and manufacturing method of foamed particle
JP6407078B2 (en) * 2014-03-31 2018-10-17 積水化成品工業株式会社 Foam molded body, expandable resin particles, pre-expanded particles
JP7078849B2 (en) * 2018-07-04 2022-06-01 株式会社ジェイエスピー Effervescent composite resin particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3234660C2 (en) * 1982-09-18 1984-07-19 Basf Ag, 6700 Ludwigshafen Process for the production of particulate, blowing agent-containing styrene polymers
JP2007002265A (en) * 2002-05-08 2007-01-11 Hitachi Chem Co Ltd Expandable styrene resin particles, expandable beads, and foamed article
JP5085855B2 (en) * 2005-06-29 2012-11-28 株式会社ジェイエスピー Method for producing expandable styrene resin particles
WO2008145599A1 (en) * 2007-05-30 2008-12-04 Ineos Nova International Sa Fire retardant polystyrene

Also Published As

Publication number Publication date
JP2012184393A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JPWO2016047490A1 (en) Expandable methyl methacrylate resin particles, pre-expanded particles, foamed molded product, and disappearance model
JP3732418B2 (en) Expandable styrene resin particles
JP5824263B2 (en) Expandable thermoplastic resin particles
JP5820165B2 (en) Expandable thermoplastic resin particles
JP3970191B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
JP6871991B2 (en) Effervescent thermoplastic resin particles, thermoplastic pre-foamed particles, thermoplastic foam molded products and methods for producing them.
JP6435113B2 (en) Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foam moldings
JP5487668B2 (en) Expandable styrene resin particles
JP6424037B2 (en) Expandable thermoplastic resin particles, pre-expanded particles thereof and foamed molded body
JP2004155870A (en) Expandable styrenic resin particle for building material and its expanded molded product
JP6216237B2 (en) Expandable thermoplastic resin particles
JP2011184516A (en) Styrenic polymer particle, method for producing the same, foamable styrenic polymer particle and foam-molded product
JP5820166B2 (en) Expandable thermoplastic resin particles
JP3805209B2 (en) Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them
JP6410616B2 (en) Expandable thermoplastic resin particles, pre-expanded particles and foam
JP6431683B2 (en) Expandable thermoplastic resin particles
JP6600541B2 (en) Method for producing expandable polystyrene resin particles
JP7299043B2 (en) Polystyrene expandable resin particles containing botanical fragrance, pre-expanded particles and foamed products thereof, and method for producing polystyrene expandable resin particles
JP2010222489A (en) Foamable styrenic resin particle
JP6697862B2 (en) Method for producing expandable styrenic resin particles having flame retardancy
JP7438748B2 (en) Polystyrene foamable resin particles containing vegetable fragrance, pre-expanded particles and foam molded products thereof, fruit and vegetable storage containers, and method for producing polystyrene foamable resin particles
JP7106302B2 (en) Expandable styrene resin particles, pre-expanded particles, and method for producing expanded molded product
JP6677974B2 (en) Method for producing expandable styrene resin particles
JP6679390B2 (en) Expandable styrene resin particles
JP2021152148A (en) Foamable polystyrene resin particle, pre-foamed particle of the same and foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R150 Certificate of patent or registration of utility model

Ref document number: 5824263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250