JP3970191B2 - Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products - Google Patents

Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products Download PDF

Info

Publication number
JP3970191B2
JP3970191B2 JP2003029716A JP2003029716A JP3970191B2 JP 3970191 B2 JP3970191 B2 JP 3970191B2 JP 2003029716 A JP2003029716 A JP 2003029716A JP 2003029716 A JP2003029716 A JP 2003029716A JP 3970191 B2 JP3970191 B2 JP 3970191B2
Authority
JP
Japan
Prior art keywords
flame retardant
resin particles
self
particles
extinguishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003029716A
Other languages
Japanese (ja)
Other versions
JP2004211042A (en
Inventor
克典 西嶋
一己 山田
修邦 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2003029716A priority Critical patent/JP3970191B2/en
Publication of JP2004211042A publication Critical patent/JP2004211042A/en
Application granted granted Critical
Publication of JP3970191B2 publication Critical patent/JP3970191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特定の難燃剤と難燃助剤とからなる複合難燃剤を含む自己消火型発泡性スチレン系樹脂粒子、予備発泡粒子及び発泡成形体に関する。更に詳しくは、本発明は、リサイクル可能な自己消火型発泡性スチレン系樹脂粒子、予備発泡粒子及び発泡成形体に関する。本発明の自己消火型発泡性スチレン系樹脂粒子、予備発泡粒子及び発泡成形体は、壁材、床材、天井材等の建築用断熱材の原料、EPS土木工法の原料、包装材の原料として好適に使用できる。
【0002】
【従来の技術】
スチレン系樹脂に自己消火性を付与するために、難燃剤又は、難燃剤と難燃助剤とを組合せた複合難燃剤を使用することが知られている。一般的な難燃剤として、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、テトラブロモビスフェノールAジアリルエーテル、トリス(2,3−ジブロモプロピル)イソシアヌレート等のハロゲン系難燃剤が挙げられ、難燃助剤として、ジクミルパーオキサイド、クメンヒドロパーオキサイドや2,3−ジメチル−2,3−ジフェニルブタン等が挙げられる。
【0003】
具体的には、特開昭60−206845号公報(特許文献1)には、難燃剤としてヘキサブロモシクロドデカンを、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタンを使用した発泡性スチレン系樹脂粒子が記載されている。
【0004】
また、特開平9−255879号公報(特許文献2)には、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレートを使用したスチレン系難燃性樹脂組成物が記載されている。
【0005】
更に、特開平11−130898号公報(特許文献3)には、難燃剤としてテトラブロモビスフェノールAジアリルエーテルを、難燃助剤としてジクミルパーオキサイドやクメンヒドロパーオキサイドを使用した発泡ポリスチレン樹脂粒子が記載されている。
【0006】
【特許文献1】
特開昭60−206845号公報
【特許文献2】
特開平9−255879号公報
【特許文献3】
特開平11−130898号公報
【0007】
【発明が解決しようとする課題】
発泡性スチレン系樹脂粒子、それから得られた予備発泡粒子及び発泡成形体に自己消火性を付与するために難燃剤は、それら粒子や成形体中に均一に分散していることが望まれる。
【0008】
上記観点から見ると、ヘキサブロモシクロドデカンのような比較的高融点で分子量の大きい難燃剤であっても、懸濁重合時に添加するとスチレン系モノマーの重合を阻害するためスチレン系樹脂の高分子量化が難しくなり、樹脂の強度低下をまねく。一方、重合後に粒子に含浸させる方法が考えられるが、この方法では上記難燃剤は融点が高いためにスチレン系樹脂粒子にほとんど含浸させることができず、この方法では自己消火性を付与することが困難となる。従って、押出法のように溶融させた樹脂と難燃剤とを混合して分散させる方法に限定され、その結果製造工程が複雑となる。
【0009】
また、トリス(2,3−ジブロモプロピル)イソシアヌレートは、融点が低く含浸法でも発泡性スチレン系樹脂粒子に比較的均一に含浸させることができるが、これ単独では上記テトラブロモシクロオクタン等に比べて自己消火性が低く、更なる自己消火性の向上が望まれている。
【0010】
そのために難燃助剤としてジクミルパーオキサイドやクメンヒドロパーオキサイドのような有機過酸化物を添加することが行われる。その作用として、燃焼時にラジカルを発生させることで、より少量で効率よく自己消火性を発泡成形体に付与していると考えられる。しかし、このような有機過酸化物は、リサイクル時に溶融混練されると、ラジカルが発生し、そのラジカルがスチレン系樹脂を分解して分子量の低下をまねき、リサイクルされた樹脂の強度等の品質を悪化させるという課題がある。
【0011】
【課題を解決するための手段】
本発明の発明者等は、種々の難燃剤と難燃助剤の組合せを検討した結果、下記種類の難燃剤と難燃助剤とを特定の比率で含む複合難燃剤が、発泡性スチレン系樹脂粒子用の難燃剤として、リサイクル時に分子量低下を起こしにくく、かつ優れた自己消火性を発揮できると共に樹脂粒子への分散方法が限定されないことを意外にも見い出し本発明に至った。
【0012】
かくして本発明によれば、スチレン系樹脂粒子、易揮発性発泡剤及び、難燃剤と難燃助剤とからなる複合難燃剤を少なくとも含み、複合難燃剤が、トリス(2,3−ジブロモプロピル)イソシアヌレートからなる難燃剤90〜40重量%と、下記一般式
【0013】
【化2】

Figure 0003970191
【0014】
(式中、R1〜R4は同一又は異なってメチル又はエチル基である)で表される難燃助剤10〜60重量%とからなり、スチレン系樹脂粒子100重量部に対して、1〜7重量部含まれることを特徴とする自己消火型発泡性スチレン系樹脂粒子が提供される。
【0015】
更に、本発明によれば、上記自己消火型発泡性スチレン系樹脂粒子を予備発泡させて得られた予備発泡粒子が提供される。
【0016】
また、本発明によれば、上記自己消火型スチレン系予備発泡樹脂粒子を発泡成形して得られた発泡成形体が提供される。
【0017】
【発明の実施の形態】
本発明で使用される複合難燃剤は、トリス(2,3−ジブロモプロピル)イソシアヌレート(以下、TDICとも称する。融点115℃、分解温度285℃)からなる難燃剤と、下記一般式
【0018】
【化3】
Figure 0003970191
【0019】
(式中、R1〜R4は同一又は異なってメチル又はエチル基である)で表される難燃助剤とからなる。
【0020】
難燃助剤の具体例としては、R1〜R4がメチル基である2,3−ジメチル−2,3−ジフェニルブタン(ビスクミルと呼ばれることから、以下BCとも称する。融点113℃、分解温度205℃)、R1とR2がメチル基、R3とR4がエチル基である3,4−ジメチル−3,4−ジフェニルヘキサン(融点142℃、分解温度230℃)等が挙げられる。
【0021】
上記難燃剤と難燃助剤は、融点が比較的近いため、それらを混合した複合難燃剤は、融点がほぼ一つのピークを形成する(この温度を融点ピーク温度と称する)。また、複合難燃剤の融点ピーク温度は、融点降下により、難燃剤及び難燃助剤単独の融点より低いことを発明者等は見い出している。例えば、横軸が複合難燃剤中の難燃助剤BCの割合を、縦軸が複合難燃剤の融点ピーク温度を表す図1に示すように、TDIC70重量%とBC30重量%とからなる複合難燃剤の場合、示差熱分析(DTA)にて測定した融点ピーク温度は約101℃であり、TDICとBC単独の融点より15℃程度低くなっている。複合難燃剤の融点ピーク温度は、含浸温度又は混練温度をより低くすることができるので好ましい。
【0022】
なお、融点ピーク温度は、80〜140℃の範囲にあることが好ましい。融点ピーク温度が80℃より低いと、含浸時に樹脂粒子同士の合着や、混練時に難燃剤がブリードし、予備発泡時に発泡粒子同士の合着を起こすため好ましくない。一方、140℃を超えると含浸効率や混練時の分散性が劣る場合があるので好ましくない。より好ましい融点ピーク温度は90〜130℃である。
【0023】
本発明において難燃剤と難燃助剤は、90〜40重量%と10〜60重量%の割合で使用される。難燃助剤の割合が10重量%未満の場合、自己消火性の発現には複合難燃剤を多量に使用する必要が生じ、その結果リサイクル性が阻害される。また、融点ピーク温度があまり低下せず、含浸温度又は混練温度を高くしなければならない。一方、60重量%を超える場合、難燃剤の割合が減るため、自己消火性が劣ることとなる。また、融点ピーク温度があまり低下せず、含浸温度又は混練温度を高くしなければならない。より好ましい難燃剤と難燃助剤の割合は、90〜60重量%と10〜40重量%である。
【0024】
なお、本発明において、より好ましい難燃剤と難燃助剤の組合せは、TDICとBCの組合せである。
【0025】
複合難燃剤の含有割合は、スチレン系樹脂粒子100重量部に対して、1〜7重量部である。1重量部未満では、十分な自己消火性が得られない。一方、7重量部を超える場合、自己消火性効果は飽和し、経済的でない。より好ましい含有割合は、1〜5重量部である。
【0026】
本発明に使用できるスチレン系樹脂粒子としては、スチレン系であれば特に限定されない。例えば、スチレン単独重合体であっても、スチレンとそれと共重合可能な他のモノマーとの共重合体であってもよい。他のモノマーとしては、α−メチルスチレン、ビニルトルエン、アクリロニトリル、メチルメタクリレート、グリシジルメタクリレート、ブチルアクリレート、メタクリル酸、ジビニルベンゼン、アルキレングリコールジメタクリレート等が挙げられる。なお、本明細書では、スチレン及びスチレンと共重合可能なモノマーもスチレン系モノマーと称している。更に、スチレン系樹脂は、他樹脂との混合樹脂であってもよい。他樹脂の例としては、ポリエチレン、ポリプロピレン、ポリフェニレンエーテル及びゴム変性スチレン系樹脂が挙げられる。混合の方法としては、押出機での押出ブレンドの他、重合ブレンド(水性媒体中でポリエチレン樹脂粒子等のスチレン系樹脂以外の樹脂粒子にスチレンモノマーを含浸させて重合させる方法)が挙げられる。
【0027】
自己消火型発泡性スチレン系樹脂粒子に含まれる易揮発性発泡剤としては、プロパン、ブタン、ペンタン、ヘキサン、それらの異性体等の脂肪族炭化水素、シクロブタン、シクロペンタン等の脂環式炭化水素、ジフルオロエタン、テトラフルオロエタン等のフッ化炭化水素等が挙げられる。特に好ましい易揮発性発泡剤は、ノルマルブタンとイソブタンの混合物である。易揮発性発泡剤は、スチレン系樹脂100重量部に対して、2〜10重量部含まれていることが好ましい。易揮発性発泡剤の含有量が2重量部未満の場合、成形体の低密度化が困難であるばかりでなく、成形時に二次発泡力を高める効果が得られず成形体の外観が劣る場合があるため好ましくない。10重量部を超える場合、成形体中に残存する発泡剤量が多くなり、自己消火性が劣る場合があるだけでなく、成形サイクルが長くなる場合があり、生産性の観点からも好ましくない。より好ましい含有量は、3〜8重量部である。
【0028】
自己消火型発泡性スチレン系樹脂粒子の平均粒径は、用途に応じて適宜選択でき、例えば、0.3〜3mmの平均粒径のものを使用することができる。
より好ましい平均粒径は、0.5〜2mmである。
【0029】
自己消火型発泡性スチレン系樹脂粒子には、更に添加剤が含まれていてもよい。添加剤としては、高級脂肪酸アマイド、芳香族ビスアマイド、エチレンビスステアリルアマイド、高級脂肪酸、パラフィン、ワックス、動植物硬化油等の滑剤、トルエン、シクロヘキサン、ジイソブチルアジペート等の発泡助剤、可塑剤、気泡調整剤、気泡安定剤、充填剤、着色剤、酸化防止剤、紫外線吸収剤等が挙げられる。これら添加剤は、粒子の製造時や、複合難燃剤の含浸又は混練時に粒子に含ませることができる。
【0030】
自己消火型発泡性スチレン系樹脂粒子の製造方法としては、懸濁重合法や、押出機でスチレン系樹脂と複合難燃剤とを溶融混練した後、押し出したストランドをペレタイズする方法が挙げられる。この内、生産効率の観点から懸濁重合法が好ましい。
【0031】
また、発泡剤の含浸方法としては、懸濁重合時又は懸濁重合とは別に含浸させる方法が挙げられる。含浸に用いられる水性媒体には、含浸時のスチレン系樹脂粒子同士の結合を防止するために、懸濁安定剤を添加することが好ましい。懸濁安定剤としては、従来から懸濁重合において一般に使用されている公知のポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、第三リン酸カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウム等の難水溶性無機化合物等が挙げられる。難水溶性無機化合物を用いる場合には、通常アニオン界面活性剤が併用される。アニオン界面活性剤としては、例えば脂肪酸石鹸、N−アシルアミノ酸又はその塩、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩等が挙げられる。
【0032】
懸濁重合法において、複合難燃剤を樹脂粒子に含浸させる方法としては、重合転化率が99.8%以上の段階又は、重合完了後の水性媒体中に添加して含浸させる方法が挙げられる。重合転化率が99.8%以上のときに含浸させることで、所定の分子量のスチレン系樹脂粒子を簡便に得ることができるので好ましい。
【0033】
複合難燃剤の添加方法は、例えば、水性媒体中に難燃剤と難燃助剤を別々に又は同時に投入する方法、難燃剤と難燃助剤をスーパーミキサー等で混合してから粉体状態のままで水性媒体中に投入する方法、撹拌装置を備えた予備分散槽内で均一に分散させた懸濁液を水性媒体に投入する方法が挙げられる。更に、易揮発性発泡剤及び/又は上記添加剤と同時に含浸させることが好ましい。
【0034】
含浸をより円滑に行うために、水性媒体を加温することが好ましい。具体的には、70〜120℃の温度で、1〜6時間加温することが好ましい。
【0035】
複合難燃剤及び易揮発性発泡剤が含浸された自己消火型発泡性スチレン系樹脂粒子は、必要に応じて水性媒体から取り出される。取り出した粒子は、洗浄及び脱水乾燥させてもよい。
【0036】
本発明では、上記自己消火型発泡性スチレン系樹脂粒子を予備発泡させた予備発泡粒子も提供される。予備発泡方法は、公知の方法をいずれも使用することができる。例えば、発泡ポリスチレンビーズ用予備発泡機を用いて、通常の条件で、製造することができる。また、発泡性樹脂粒子には適当な表面処理剤による処理がなされていてもよい。表面処理剤には、結合防止剤、帯電防止剤、滑剤、融着促進剤、ハイサイクル剤、離型剤等の公知のものを用いることができる。この他にも紫外線吸収剤、防錆剤、木材用防腐剤、防蟻剤、防黴剤、抗菌剤、香料、着色剤等の公知の添加剤を表面処理剤と併用してもよい。表面処理の方法は、タンブラーミキサー、ナウターミキサー、レディゲミキサー、プロシェアミキサーリボンブレンダー等の混合機を用いた公知の方法を用いることができる。なお、予備発泡粒子の嵩密度は、0.008〜0.2g/cm3の範囲であることが好ましい。
【0037】
更に、本発明では、上記予備発泡粒子を成形した発泡成形体も提供される。成形方法は、公知の方法をいずれも使用することができる。具体的には、予備発泡粒子を成形用金型内に充填し、金型内へ蒸気を吹き込んで予備発泡粒子を加熱する。蒸気との接触によって予備発泡粒子が加熱されると、予備発泡粒子は膨張するが、成形用金型によって発泡できる空間が限定されているので、互いに密着すると共に融着一体化して所望の発泡成形体が得られる。
【0038】
本発明の発泡成形体は、壁材、床材、天井材等の建築用断熱材の原料、EPS土木工法の原料、包装材の原料として好適に使用できる。
【0039】
上記発泡成形体は、難燃剤の含まれていない一般のポリスチレン発泡成形体と同様に押出機で減容や溶融混練してリサイクルしても、従来の自己消火型発泡性スチレン系樹脂粒子から得られる発泡成形体をリサイクルするよりも樹脂の劣化が少なく、リサイクル性の高い成形体である。
【0040】
【実施例】
以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
【0041】
まず、スチレン系樹脂粒子、発泡粒子及び発泡成形体の評価方法を以下に示す。
【0042】
[重合転化率の定量]
重合転化率は以下の式で算出した。
【0043】
重合転化率(%)=100×(A−B)/A
但し、Aは未反応のスチレン系単量体を含むスチレン系樹脂粒子の重量(g)であり、Bは上記未反応のスチレン系単量体を含む樹脂粒子中の未反応単量体の重量(g)である。Bは例えば、ガスクロマトグラフィー(GC)等により定量される。GCによるスチレン単量体の定量は、スチレン系樹脂粒子をN,N−ジメチルホルムアミドに溶解し、内部標準液(シクロペンタノール)を加えて以下の条件で測定した。
【0044】
GC:島津製作所社製 GC−14A
カラム:PEG−20M PT25% 60/80(2.5m)
カラム温度:105℃
検出器(FID)温度:220℃
【0045】
[重量平均分子量]
スチレン樹脂粒子の重量平均分子量(Mw)は、GPC(ゲルパーミエイションクロマトグラフィー)によって、以下の条件で測定した。なお、重量平均分子量の測定に際して、測定試料の有する分子量分布が、数種の単分散ポリスチレン標準試料により作成された検量線の分子量の対数とカウント数が直線となる範囲内に包含される測定条件を選択した。また、検量線は、重量平均分子量が2.74×103、1.91×104、1.02×105、3.55×105、2.89×106、4.48×106である東ソー社製の6個のポリスチレン標準試料(TSKスタンダードポリスチレン)を用いて以下の条件で作成した。
【0046】
GPC:東ソー社製 高速GPC装置 HLC−8020
カラム:積水ファインケミカル社製 HSG−60S×2本、HSG−40H×1本、HSG−20H×1本
カラム温度:40℃
移動相:THF(テトラヒドロフラン)
流量:1.0ml/分
注入量:500ml
検出器:東ソー社製 RID−6A
【0047】
[平均気泡径]
無作為に取り出した発泡粒子をカッターで略二分割し、一方の切断面を走査型電子顕微鏡にて40倍に拡大して写真撮影した。その写真上に発泡粒子の直径となるように直線を引き、この直線上に掛かる全ての気泡の最大径を測定する。この測定を10個の発泡粒子に対して行い、求められた該最大径の相加平均値を発泡粒子の平均気泡径とした。
【0048】
[融着率]
長さ400mm、幅300mm、厚み30mmの平板形状の発泡成形体の表面に、一対の長辺の中心同士を結ぶ直線に沿ってカッターナイフで深さ約5mmの切り込み線を入れた後、この切り込み線に沿って発泡成形体を手で二分割し、その破断面における発泡粒子について、粒子内で破断している粒子の数(a)と粒子どうしの界面で破断している粒子の数(b)とを数え、式[(a)/((a)+(b))]×100に代入して得られた値を融着率(%)とした。
【0049】
[燃焼性]
JIS A−9511に基づき、自己消火性を測定した。JIS規格から、自己消火時間が3.0秒以内であることが望まれ、2.0秒以内が好ましい。なお、成形後に50℃で24時間養生した発泡成形体を測定試料とした。
【0050】
実施例1
撹拌機を具備した内容積100リットルの反応器に、脱イオン水36リットル、ピロリン酸マグネシウム75g、ドデシルベンゼンスルホン酸ナトリウム6gを入れた後に、重合開始剤としてベンゾイルパーオキサイド120gとt−ブチルパーオキシベンゾエート29gを溶解したスチレン46kgを反応器に入れ撹拌し、90℃に昇温してから6時間保持した後、125℃に昇温し3時間保持して重合を行った。重合終了時における重合転化率は99.98%であった。その後、冷却して内容物を取り出し、洗浄及び脱水乾燥した後に、篩い機に掛け粒子径0.9〜1.2mmのポリスチレン樹脂粒子を得た。このポリスチレン樹脂粒子の重量平均分子量は280000であった。
【0051】
内容積5リットルの撹拌機付き圧力容器に、水2リットルにドデシルベンゼンスルホン酸ナトリウム0.5gと、ピロリン酸マグネシウム6gと、トルエン20gを懸濁させた懸濁液を入れ、撹拌しながら上記ポリスチレン樹脂粒子2kgと、トリス(2,3−ジブロモプロピル)イソシアヌレート(難燃剤:TDIC)1.5重量%及び2,3−ジメチル−2,3−ジフェニルブタン(難燃助剤:BC)0.3重量%からなる複合難燃剤を入れて容器を密閉し、引き続き撹拌しながら100℃まで昇温した後に、100℃の含浸温度でノルマルブタン98gとイソブタン42gを圧入し3時間保持した。次いで、25℃まで冷却し、圧力容器から樹脂粒子を取り出した後、樹脂粒子の洗浄及び脱水乾燥を行うことで、自己消火型発泡性ポリスチレン樹脂粒子を得た。
【0052】
また、上記複合難燃剤(BC割合16.7%)の融点をDTAにて測定したところ、融点ピーク温度は一つであり103℃であった。なお、複合難燃剤の融点ピーク温度は、JIS K7121に準拠し、以下の条件でDTA測定することで求めた。
熱分析装置:セイコーインスツルメンツ社製TG/DTA6200R
測定試料質量:10mg
昇温速度:10℃/分
【0053】
この発泡性樹脂粒子を20℃の恒温室で5日間保持した後に、予備発泡機で発泡し、予備発泡粒子を得た。得られた予備発泡粒子を常温常圧下で1日放置し乾燥した後の平均気泡径と嵩発泡倍率を表1に示す。また、予備発泡粒子500g中、互に結合した粒子の量を測定し、予備発泡時結合量として表1に示す。
【0054】
この予備発泡粒子を成形型内に充填し、水蒸気にて加熱発泡成形し、発泡成形体を得た(平板形状:長さ400mm、幅300mm、厚み30mm)。得られた発泡成形体の融着率、外観及びJIS A9511の燃焼試験A法にて燃焼性を測定した結果を表1に示す。
【0055】
実施例2
トリス(2,3−ジブロモプロピル)イソシアヌレートを2.0重量%及び2,3−ジメチル−2,3−ジフェニルブタンを0.4重量%使用すること以外は実施例1と同様にして、自己消火性発泡性ポリスチレン樹脂粒子を得た。また、複合難燃剤(BC割合16.7%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり103℃であった。
【0056】
また、実施例1と同様にして予備発泡粒子を得、平均気泡径、嵩発泡倍率及び予備発泡時結合量として表1に示す。
【0057】
更に、実施例1と同様にして発泡成形体を得、融着率、外観及び燃焼性を測定した結果を表1に示す。
【0058】
実施例3
トリス(2,3−ジブロモプロピル)イソシアヌレートを3.0重量%及び2,3−ジメチル−2,3−ジフェニルブタンを0.4重量%使用すること以外は実施例1と同様にして、自己消火性発泡性ポリスチレン樹脂粒子を得た。また、複合難燃剤(BC割合11.8%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり104℃であった。
【0059】
また、実施例1と同様にして予備発泡粒子を得、平均気泡径、嵩発泡倍率及び予備発泡時結合量として表1に示す。
【0060】
更に、実施例1と同様にして発泡成形体を得、融着率、外観及び燃焼性を測定した結果を表1に示す。
【0061】
実施例4
難燃助剤を3,4−ジメチル−3,4−ジフェニルヘキサン(DDPH)に代えること以外は実施例1と同様にして、自己消火性発泡性ポリスチレン樹脂粒子を得た。また、複合難燃剤(DDPH割合16.7%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり131℃であった。
【0062】
また、実施例1と同様にして予備発泡粒子を得、平均気泡径、嵩発泡倍率及び予備発泡時結合量として表1に示す。
【0063】
更に、実施例1と同様にして発泡成形体を得、融着率、外観及び燃焼性を測定した結果を表1に示す。
【0064】
比較例1
難燃剤及び難燃助剤を使用しないこと以外は実施例1と同様にして、発泡性ポリスチレン樹脂粒子を得た。
【0065】
また、実施例1と同様にして予備発泡粒子を得、平均気泡径、嵩発泡倍率及び予備発泡時結合量として表1に示す。
【0066】
更に、実施例1と同様にして発泡成形体を得、融着率、外観及び燃焼性を測定した結果を表1に示す。
【0067】
比較例2
トリス(2,3−ジブロモプロピル)イソシアヌレートを3.0重量%使用し、難燃助剤を使用しないこと以外は実施例1と同様にして、発泡性ポリスチレン樹脂粒子を得た。また、難燃剤(BC割合0%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり115℃であった。
【0068】
また、実施例1と同様にして予備発泡粒子を得、平均気泡径、嵩発泡倍率及び予備発泡時結合量として表1に示す。
【0069】
更に、実施例1と同様にして発泡成形体を得、融着率、外観及び燃焼性を測定した結果を表1に示す。
【0070】
比較例3
難燃助剤としてジクミルパーオキサイド(DCP)を使用したこと以外は実施例1と同様にして、発泡性ポリスチレン樹脂粒子を得た。また、複合難燃剤(DCP割合16.7%)の融点をDTAにて実施例1と同様に測定したところ、測定途中でDCPが分解してしまい測定できなかった。
【0071】
また、実施例1と同様にして予備発泡粒子を得、平均気泡径、嵩発泡倍率及び予備発泡時結合量として表1に示す。
【0072】
更に、実施例1と同様にして発泡成形体を得、融着率、外観及び燃焼性を測定した結果を表1に示す。
【0073】
比較例4
難燃剤としてテトラブロモシクロオクタン(TBCO)を使用したこと以外は実施例1と同様にして、発泡性ポリスチレン樹脂粒子を得た。また、複合難燃剤(BC割合16.7%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり88℃であった。
【0074】
また、実施例1と同様にして予備発泡粒子を得、平均気泡径、嵩発泡倍率及び予備発泡時結合量として表1に示す。
【0075】
更に、実施例1と同様にして発泡成形体を得、融着率、外観及び燃焼性を測定した結果を表1に示す。
【0076】
比較例5
難燃剤としてヘキサブロモシクロドデカン(HBCD)を使用したこと以外は実施例1と同様にして、発泡性ポリスチレン樹脂粒子を得た。ただし、圧力容器内には、ヘキサブロモシクロドデカンが樹脂粒子に吸収されずに残っていた。また、複合難燃剤(BC割合16.7%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は二つであり、BCに由来する融点は106℃、HBCDに由来する融点は190℃であった。
【0077】
また、実施例1と同様にして予備発泡粒子を得、平均気泡径、嵩発泡倍率及び予備発泡時結合量として表1に示す。
【0078】
更に、実施例1と同様にして発泡成形体を得、融着率、外観及び燃焼性を測定した結果を表1に示す。
【0079】
比較例6
難燃剤の添加量を3.0重量%、難燃助剤の添加量を0.6重量%としたこと以外は比較例5と同様にして、発泡性ポリスチレン樹脂粒子を得た。圧力容器内には、比較例5と同様に、ヘキサブロモシクロドデカンが樹脂粒子に吸収されずに残っていた。また、複合難燃剤(BC割合16.7%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は二つであり、BCに由来する融点は106℃、HBCDに由来する融点は190℃であった。
【0080】
また、実施例1と同様にして予備発泡粒子を得、平均気泡径、嵩発泡倍率及び予備発泡時結合量として表1に示す。
【0081】
更に、実施例1と同様にして発泡成形体を得、融着率、外観及び燃焼性を測定した結果を表1に示す。
【0082】
表1中、TDICはトリス(2,3−ジブロモプロピル)イソシアヌレート、TBCOはテトラブロモシクロオクタン、HBCDはヘキサブロモシクロドデカン、BCは2,3−ジメチル−2,3−ジフェニルブタン、DDPHは3,4−ジメチル−3,4−ジフェニルヘキサン、DCPはジクミルパーオキサイドを意味する。
【0083】
【表1】
Figure 0003970191
【0084】
表1から、実施例1〜4の予備発泡粒子は、予備発泡時の結合が少なく、取り扱いが良好であった。更に、この予備発泡粒子から得られた発泡成形体は、融着率及び外観共に良好であり、加えて燃焼試験も3秒以下と優れた自己消火性を示した。
【0085】
比較例1の予備発泡粒子及び発泡成形体は、予備発泡時結合量は少なく、また融着率及び外観は良好であるが、難燃剤及び難燃助剤を含まないため自己消火性が極めて劣っていた。
【0086】
比較例2の予備発泡粒子は、難燃助剤を含まないため、得られた発泡成形体の自己消火性が極めて劣っていた。
【0087】
比較例3の予備発泡粒子は、予備発泡時結合量が比較例2より多く、得られた発泡成形体の融着率は悪く、外観は表面が融け、かつ全体が収縮していた。自己消火性も実施例1〜4より劣っていた。
【0088】
比較例4の予備発泡粒子は、予備発泡時結合量が比較例3より多く、得られた発泡成形体の融着率は悪く、外観は表面が融け、かつ全体が収縮していた。自己消火性も実施例1〜4より劣っていた。
【0089】
比較例5と6の予備発泡粒子は、予備発泡時結合量、融着率及び外観は良好であるが、難燃剤を実質的に含まないため自己消火性が極めて劣っていた。
【0090】
実施例5
この実施例は、懸濁重合によりスチレン樹脂粒子の形成後、懸濁液中に難燃剤及び難燃助剤を添加した例である。
【0091】
撹拌機を具備した内容積100リットルの反応器に、脱イオン水30リットル、ピロリン酸マグネシウム100g、ドデシルベンゼンスルホン酸ナトリウム15gを入れ、更に粒子径が0.63〜0.71mmで重量平均分子量が280000のポリスチレン樹脂粒子(スチレンをピロリン酸マグネシウム、ドデシルベンゼンスルホン酸ナトリウムを使用した水性媒体中で、公知の懸濁重合を行って得た粒子)11kgを加えて撹拌することで懸濁させた。
【0092】
次いで、脱イオン水6リットル、ピロリン酸マグネシウム10g、ドデシルベンゼンスルホン酸ナトリウム2gからなる懸濁液を予め用意し、この懸濁液に重合開始剤としてベンゾイルパーオキサイド90gとt−ブチルパーオキシベンゾエート8gを溶解したスチレン5kgを加え、ホモミキサーで撹拌して懸濁液とし、これを70℃に保持した上記反応器に添加した。
【0093】
添加後、ポリスチレン樹脂粒子にスチレンと重合開始剤が十分に吸収されるように1時間保持した後、スチレンを連続的に10kg/時の速度で3時間供給した。また、スチレン供給終了時に、反応器内の温度が105℃になるように徐々に昇温した。引き続き120℃に昇温して2時間保持することで、重合転化率を99.98%とした。
【0094】
次いで、水2リットルにドデシルベンゼンスルホン酸ナトリウム2gと、ピロリン酸マグネシウム16gと、トルエン460gと、トリス(2,3−ジブロモプロピル)イソシアヌレート(難燃剤:TDIC)690g(1.5重量%)及び2,3−ジメチル−2,3−ジフェニルブタン(難燃助剤:BC)138g(0.3重量%)を懸濁させた懸濁液を予め用意し、この懸濁液を反応器に圧入した後に100℃に冷却した。次いで、100℃の含浸温度でノルマルブタン2.25kgとイソブタン0.95kgを圧入し3時間保持した。次いで、常温(約25℃)まで冷却し、圧力容器から樹脂粒子を取り出した後、樹脂粒子の洗浄及び脱水乾燥を行うことで、粒子径が0.9〜1.2mmの自己消火型発泡性ポリスチレン樹脂粒子を得た。このポリスチレン樹脂粒子の重量平均分子量は300000であった。また、複合難燃剤(BC割合16.7%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり103℃であった。
【0095】
この発泡性樹脂粒子を20℃の恒温室で5日間保持した後に、予備発泡機で発泡し、予備発泡粒子を得た。得られた発泡粒子を常温常圧下で1日放置し乾燥した後の平均気泡径と嵩発泡倍率を表2に示す。また、予備発泡時結合量も表2に示す。
【0096】
この予備発泡粒子を成形型内に充填し、水蒸気にて加熱発泡成形し、発泡成形体を得た。得られた発泡成形体の融着率、外観及びJIS A9511の燃焼試験A法にて燃焼性を測定した結果を表2に示す。
【0097】
【表2】
Figure 0003970191
【0098】
表2から、実施例5の予備発泡粒子は、難燃剤及び難燃助剤を重合後の懸濁液に添加して得られた発泡性スチレン樹脂粒子から得られていても、予備発泡時の結合が少なく、取り扱いが良好であった。更に、この予備発泡粒子から得られた発泡成形体は、融着率及び外観共に良好であり、加えて燃焼試験も3秒以下と優れた自己消火性を示した。
【0099】
実施例6
この実施例は、上記実施例及び比較例の発泡成形体のリサイクル性を評価する例である。
【0100】
実施例1と2及び比較例1、3と4で得られた発泡性ポリスチレン樹脂粒子のメルトフローレート(MFR)を以下の条件で測定した。また、MFR測定前後の樹脂粒子の重量平均分子量も測定した。MFR及び重量平均分子量を表3に示す。
【0101】
[MFRの測定]
MFRの測定は、JIS K7210に基づき下記の条件で行った。まず、測定試料は、実施例及び比較例にて得られた発泡性ポリスチレン樹脂粒子を、50℃のオーブン中で到達圧力10Paで真空吸引しながら24時間保持し、樹脂粒子中の揮発性有機化合物を除去したものを用いた。
【0102】
測定装置:東洋精機製作所社製メルトインデクサー
測定温度:200℃
測定荷重:5.0kgf
オリフィス径:2.09mm
【0103】
【表3】
Figure 0003970191
【0104】
まず、押出機で溶融混練し、ストレンド化することでリサイクルが可能なポリスチレン樹脂のMFRは、20g/10分以下、好ましくは15g/10分以下、特に難燃剤未添加の場合(比較例1)のMFRに近いことが好ましい。この観点から表3を見ると、実施例1と2の樹脂粒子はいずれも15g/10分以下であり、十分リサイクル可能である。これに対して、比較例3と4の樹脂粒子は、MFRが測定限界の200g/10分を超えており、リサイクル困難である。
【0105】
更に、重量平均分子量は、熱処理(MFR測定処理)の前後においてできるだけ変化しないことがリサイクルの観点から望まれる。大きく低下すると、押出機で溶融混練した後にストランドとして押し出せない又はストランドの切断が頻繁に起こり、リサイクルが困難である。この観点から表3を見ると、実施例1と2の樹脂粒子は、難燃剤未添加の場合に比べて重量平均分子量の低下は小さく、十分リサイクル可能である。これに対して、比較例3と4の樹脂粒子は、重量平均分子量が大きく低下しており、リサイクルしても強度低下が著しく再利用できない。
【0106】
【発明の効果】
本発明の自己消火型発泡性スチレン系樹脂粒子によれば、スチレン系樹脂粒子へ含浸しやすい難燃剤及び難燃助剤を使用しているため、少量の難燃剤及び難燃助剤で所定の自己消火性を発泡成形品に与えることができる。
【0107】
また、本発明の自己消火型発泡成形体は、それを熱処理しても重量平均分子量低下が小さいため、一般のスチレン系樹脂発泡成形体と共にリサイクル可能であり、環境にやさしい発泡成形体である。
【図面の簡単な説明】
【図1】複合難燃剤の融点を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a self-extinguishing foamable styrene resin particle, a pre-foamed particle and a foamed molded article containing a composite flame retardant comprising a specific flame retardant and a flame retardant aid. More specifically, the present invention relates to recyclable self-extinguishing foamable styrene resin particles, pre-foamed particles, and foamed molded articles. The self-extinguishing foamable styrene resin particles, pre-expanded particles and foamed molded products of the present invention are used as raw materials for building insulation materials such as wall materials, flooring materials and ceiling materials, as raw materials for EPS civil engineering methods, and as raw materials for packaging materials. It can be used suitably.
[0002]
[Prior art]
In order to impart self-extinguishing properties to styrene-based resins, it is known to use a flame retardant or a composite flame retardant in which a flame retardant and a flame retardant aid are combined. Common flame retardants include halogen-based flame retardants such as tetrabromocyclooctane, hexabromocyclododecane, tetrabromobisphenol A diallyl ether, tris (2,3-dibromopropyl) isocyanurate, and flame retardant aids , Dicumyl peroxide, cumene hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and the like.
[0003]
Specifically, JP-A-60-206845 (Patent Document 1) uses hexabromocyclododecane as a flame retardant and 2,3-dimethyl-2,3-diphenylbutane as a flame retardant aid. Expandable styrenic resin particles are described.
[0004]
JP-A-9-255879 (Patent Document 2) describes a styrene-based flame retardant resin composition using tris (2,3-dibromopropyl) isocyanurate as a flame retardant.
[0005]
Further, JP-A-11-130898 (Patent Document 3) discloses expanded polystyrene resin particles using tetrabromobisphenol A diallyl ether as a flame retardant and dicumyl peroxide or cumene hydroperoxide as a flame retardant aid. Are listed.
[0006]
[Patent Document 1]
JP 60-206845 A
[Patent Document 2]
JP-A-9-255879
[Patent Document 3]
JP-A-11-130898
[0007]
[Problems to be solved by the invention]
In order to impart self-extinguishing properties to the expandable styrenic resin particles, the pre-expanded particles obtained therefrom, and the foamed molded product, it is desirable that the flame retardant is uniformly dispersed in the particles and the molded product.
[0008]
From the above point of view, even if the flame retardant has a relatively high melting point and a large molecular weight such as hexabromocyclododecane, it will increase the molecular weight of the styrene resin because it will inhibit the polymerization of the styrene monomer when added during suspension polymerization. Is difficult, and the strength of the resin is reduced. On the other hand, a method of impregnating the particles after polymerization is conceivable. However, in this method, the flame retardant has a high melting point, so the styrene resin particles can hardly be impregnated, and this method can provide self-extinguishing properties. It becomes difficult. Therefore, it is limited to the method of mixing and dispersing the molten resin and the flame retardant as in the extrusion method, and as a result, the manufacturing process becomes complicated.
[0009]
Tris (2,3-dibromopropyl) isocyanurate has a low melting point and can be impregnated into the expandable styrene resin particles relatively uniformly even by the impregnation method. Therefore, self-extinguishing properties are low, and further improvement of self-extinguishing properties is desired.
[0010]
For this purpose, an organic peroxide such as dicumyl peroxide or cumene hydroperoxide is added as a flame retardant aid. As an effect, it is considered that the self-extinguishing property is efficiently imparted to the foamed molded body in a smaller amount by generating radicals during combustion. However, when such organic peroxides are melted and kneaded at the time of recycling, radicals are generated, the radicals decompose the styrene-based resin, leading to a decrease in molecular weight, and the quality such as strength of the recycled resin is improved. There is a problem of making it worse.
[0011]
[Means for Solving the Problems]
The inventors of the present invention have studied combinations of various flame retardants and flame retardant aids. As a result, a composite flame retardant containing a specific ratio of the following types of flame retardants and flame retardant aids is an expandable styrene type. As a flame retardant for resin particles, the present inventors have surprisingly found that the molecular weight is not easily lowered during recycling, can exhibit excellent self-extinguishing properties, and the method for dispersing the resin particles is not limited.
[0012]
Thus, according to the present invention, at least the composite flame retardant comprising the styrene resin particles, the readily volatile foaming agent, and the flame retardant and the flame retardant aid is included, and the composite flame retardant is tris (2,3-dibromopropyl). 90-40% by weight of a flame retardant composed of isocyanurate and the following general formula
[0013]
[Chemical 2]
Figure 0003970191
[0014]
(Wherein, R1 to R4 are the same or different and are methyl or ethyl groups) and represented by 10 to 60% by weight of a flame retardant aid, and 1 to 7 with respect to 100 parts by weight of styrene resin particles. Self-extinguishing foamable styrenic resin particles characterized in that they are contained in parts by weight are provided.
[0015]
Furthermore, according to the present invention, pre-expanded particles obtained by pre-expanding the self-extinguishing foamable styrene resin particles are provided.
[0016]
Moreover, according to this invention, the foaming molding obtained by foam-molding the said self-extinguishing styrene-type pre-expanded resin particle is provided.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The composite flame retardant used in the present invention includes a flame retardant comprising tris (2,3-dibromopropyl) isocyanurate (hereinafter also referred to as TDIC, melting point 115 ° C., decomposition temperature 285 ° C.), and the following general formula:
[0018]
[Chemical 3]
Figure 0003970191
[0019]
(Wherein, R1 to R4 are the same or different and are methyl or ethyl groups).
[0020]
Specific examples of flame retardant aids include 2,3-dimethyl-2,3-diphenylbutane (hereinafter referred to as biscumyl, in which R1 to R4 are methyl groups, hereinafter also referred to as BC. Melting point 113 ° C., decomposition temperature 205 ° C. ), 3,4-dimethyl-3,4-diphenylhexane (melting point 142 ° C., decomposition temperature 230 ° C.) in which R 1 and R 2 are methyl groups and R 3 and R 4 are ethyl groups.
[0021]
Since the flame retardant and the flame retardant aid have a relatively close melting point, the composite flame retardant mixed with them forms a peak having almost one melting point (this temperature is referred to as a melting point peak temperature). Further, the inventors have found that the melting point peak temperature of the composite flame retardant is lower than the melting point of the flame retardant and the flame retardant aid alone due to the melting point drop. For example, as shown in FIG. 1 where the horizontal axis represents the ratio of the flame retardant aid BC in the composite flame retardant and the vertical axis represents the melting point peak temperature of the composite flame retardant, the composite flame composed of 70% by weight of TDIC and 30% by weight of BC. In the case of a flame retardant, the melting point peak temperature measured by differential thermal analysis (DTA) is about 101 ° C., which is about 15 ° C. lower than the melting points of TDIC and BC alone. The melting point peak temperature of the composite flame retardant is preferable because the impregnation temperature or the kneading temperature can be further lowered.
[0022]
In addition, it is preferable that melting | fusing point peak temperature exists in the range of 80-140 degreeC. When the melting point peak temperature is lower than 80 ° C., it is not preferable because the resin particles coalesce at the time of impregnation or the flame retardant bleeds at the time of kneading, and the foamed particles coalesce at the time of preliminary foaming. On the other hand, if it exceeds 140 ° C., the impregnation efficiency and the dispersibility during kneading may be inferior. A more preferable melting point peak temperature is 90 to 130 ° C.
[0023]
In the present invention, the flame retardant and the flame retardant aid are used in a ratio of 90 to 40% by weight and 10 to 60% by weight. When the ratio of the flame retardant aid is less than 10% by weight, it is necessary to use a large amount of the composite flame retardant for the self-extinguishing property, and as a result, the recyclability is hindered. In addition, the melting point peak temperature does not decrease so much and the impregnation temperature or kneading temperature must be increased. On the other hand, when it exceeds 60% by weight, the ratio of the flame retardant is reduced, so that the self-extinguishing property is inferior. In addition, the melting point peak temperature does not decrease so much and the impregnation temperature or kneading temperature must be increased. The ratio of a more preferable flame retardant and a flame retardant adjuvant is 90 to 60 weight% and 10 to 40 weight%.
[0024]
In the present invention, a more preferable combination of the flame retardant and the flame retardant aid is a combination of TDIC and BC.
[0025]
The content rate of a composite flame retardant is 1-7 weight part with respect to 100 weight part of styrene resin particles. If it is less than 1 part by weight, sufficient self-extinguishing properties cannot be obtained. On the other hand, when it exceeds 7 parts by weight, the self-extinguishing effect is saturated and is not economical. A more preferable content ratio is 1 to 5 parts by weight.
[0026]
The styrene resin particles that can be used in the present invention are not particularly limited as long as they are styrene. For example, it may be a styrene homopolymer or a copolymer of styrene and another monomer copolymerizable therewith. Examples of other monomers include α-methylstyrene, vinyltoluene, acrylonitrile, methyl methacrylate, glycidyl methacrylate, butyl acrylate, methacrylic acid, divinylbenzene, and alkylene glycol dimethacrylate. In the present specification, styrene and monomers copolymerizable with styrene are also referred to as styrene monomers. Furthermore, the styrene resin may be a mixed resin with other resins. Examples of other resins include polyethylene, polypropylene, polyphenylene ether, and rubber-modified styrene resin. As a mixing method, in addition to extrusion blending in an extruder, polymerization blending (a method in which resin particles other than styrenic resins such as polyethylene resin particles are impregnated with a styrene monomer in an aqueous medium and polymerized) is exemplified.
[0027]
The volatile foaming agents contained in the self-extinguishing foamable styrene resin particles include aliphatic hydrocarbons such as propane, butane, pentane, hexane and isomers thereof, and alicyclic hydrocarbons such as cyclobutane and cyclopentane. Fluorinated hydrocarbons such as difluoroethane and tetrafluoroethane. A particularly preferred readily volatile blowing agent is a mixture of normal butane and isobutane. The readily volatile foaming agent is preferably contained in an amount of 2 to 10 parts by weight with respect to 100 parts by weight of the styrene resin. When the content of the easily volatile foaming agent is less than 2 parts by weight, it is difficult not only to lower the density of the molded body, but also the appearance of the molded body is inferior because the effect of increasing the secondary foaming power cannot be obtained during molding. This is not preferable. When the amount exceeds 10 parts by weight, not only the amount of the foaming agent remaining in the molded product is increased and the self-extinguishing property may be inferior, but the molding cycle may be prolonged, which is not preferable from the viewpoint of productivity. A more preferable content is 3 to 8 parts by weight.
[0028]
The average particle diameter of the self-extinguishing foamable styrene resin particles can be appropriately selected according to the application, and for example, an average particle diameter of 0.3 to 3 mm can be used.
A more preferable average particle diameter is 0.5 to 2 mm.
[0029]
The self-extinguishing foamable styrene resin particles may further contain an additive. Examples of additives include higher fatty acid amides, aromatic bisamides, ethylene bisstearyl amides, higher fatty acids, paraffins, waxes, hardened animal and vegetable oils, foaming aids such as toluene, cyclohexane, diisobutyl adipate, plasticizers, and bubble regulators. , Bubble stabilizers, fillers, colorants, antioxidants, ultraviolet absorbers and the like. These additives can be included in the particles during the production of the particles or during the impregnation or kneading of the composite flame retardant.
[0030]
Examples of the method for producing self-extinguishing foamable styrene resin particles include a suspension polymerization method and a method of pelletizing extruded strands after melt-kneading a styrene resin and a composite flame retardant with an extruder. Among these, the suspension polymerization method is preferable from the viewpoint of production efficiency.
[0031]
Examples of the impregnation method of the foaming agent include a method of impregnation at the time of suspension polymerization or separately from suspension polymerization. It is preferable to add a suspension stabilizer to the aqueous medium used for impregnation in order to prevent bonding of styrene resin particles during impregnation. Examples of the suspension stabilizer include water-soluble polymers such as known polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone that are conventionally used in suspension polymerization, and tricalcium phosphate, hydroxyapatite, magnesium pyrophosphate, and the like. Examples include hardly water-soluble inorganic compounds. When using a poorly water-soluble inorganic compound, an anionic surfactant is usually used in combination. Examples of anionic surfactants include fatty acid soaps, N-acyl amino acids or salts thereof, carboxylates such as alkyl ether carboxylates, alkylbenzene sulfonates, alkyl naphthalene sulfonates, dialkyl sulfosuccinate esters, alkyl sulfoacetic acids. Salts, sulfonates such as α-olefin sulfonates; sulfates such as higher alcohol sulfates, alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates; alkyl ether phosphates, alkyl phosphates Examples thereof include phosphate ester salts such as salts.
[0032]
Examples of the method of impregnating the resin particles with the composite flame retardant in the suspension polymerization method include a step where the polymerization conversion rate is 99.8% or more, or a method of adding and impregnating the resin particles in an aqueous medium after the completion of polymerization. It is preferable to impregnate when the polymerization conversion rate is 99.8% or more because styrene resin particles having a predetermined molecular weight can be easily obtained.
[0033]
The method of adding the composite flame retardant is, for example, a method in which the flame retardant and the flame retardant aid are added separately or simultaneously in an aqueous medium, and the powdered state after mixing the flame retardant and the flame retardant aid with a super mixer or the like. Examples thereof include a method of charging into an aqueous medium as it is, and a method of charging a suspension dispersed uniformly in a pre-dispersion tank equipped with a stirring device into the aqueous medium. Furthermore, it is preferable to impregnate simultaneously with a volatile foaming agent and / or the said additive.
[0034]
In order to perform the impregnation more smoothly, it is preferable to warm the aqueous medium. Specifically, it is preferable to heat at a temperature of 70 to 120 ° C. for 1 to 6 hours.
[0035]
The self-extinguishing foamable styrene resin particles impregnated with the composite flame retardant and the readily volatile foaming agent are taken out from the aqueous medium as necessary. The removed particles may be washed and dehydrated and dried.
[0036]
The present invention also provides pre-expanded particles obtained by pre-expanding the self-extinguishing foamable styrene resin particles. Any known method can be used as the pre-foaming method. For example, it can be produced under normal conditions using a pre-foaming machine for expanded polystyrene beads. Further, the foamable resin particles may be treated with a suitable surface treatment agent. As the surface treatment agent, known ones such as a binding inhibitor, an antistatic agent, a lubricant, a fusion accelerator, a high cycle agent, and a release agent can be used. In addition, known additives such as ultraviolet absorbers, rust preventives, wood preservatives, antifungal agents, antifungal agents, antibacterial agents, fragrances, and colorants may be used in combination with the surface treatment agent. As a surface treatment method, a known method using a mixer such as a tumbler mixer, a Nauter mixer, a Redige mixer, a Proshear mixer ribbon blender, or the like can be used. The bulk density of the pre-expanded particles is 0.008 to 0.2 g / cm. Three It is preferable that it is the range of these.
[0037]
Furthermore, the present invention also provides a foamed molded product obtained by molding the above pre-expanded particles. As the molding method, any known method can be used. Specifically, the pre-expanded particles are filled into a molding die, and steam is blown into the mold to heat the pre-expanded particles. When pre-expanded particles are heated by contact with steam, the pre-expanded particles expand, but the space that can be expanded by the molding die is limited. The body is obtained.
[0038]
The foamed molded product of the present invention can be suitably used as a raw material for building heat insulating materials such as wall materials, floor materials, ceiling materials, raw materials for EPS civil engineering methods, and raw materials for packaging materials.
[0039]
The above foamed molded product can be obtained from conventional self-extinguishing foamable styrene resin particles even if it is recycled by volume reduction, melting and kneading with an extruder, in the same way as general polystyrene foam molded products not containing a flame retardant. It is a molded product with less resin degradation and higher recyclability than recycling the foamed molded product.
[0040]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these.
[0041]
First, evaluation methods for styrene resin particles, expanded particles, and expanded molded articles are shown below.
[0042]
[Quantification of polymerization conversion rate]
The polymerization conversion rate was calculated by the following formula.
[0043]
Polymerization conversion rate (%) = 100 × (AB) / A
However, A is the weight (g) of the styrene resin particle containing an unreacted styrene monomer, and B is the weight of the unreacted monomer in the resin particle containing the unreacted styrene monomer. (G). B is quantified by, for example, gas chromatography (GC). The styrene monomer was quantified by GC by measuring styrene resin particles in N, N-dimethylformamide and adding an internal standard solution (cyclopentanol) under the following conditions.
[0044]
GC: Shimadzu Corporation GC-14A
Column: PEG-20M PT25% 60/80 (2.5 m)
Column temperature: 105 ° C
Detector (FID) temperature: 220 ° C
[0045]
[Weight average molecular weight]
The weight average molecular weight (Mw) of the styrene resin particles was measured by GPC (gel permeation chromatography) under the following conditions. In the measurement of the weight average molecular weight, the molecular weight distribution of the measurement sample is included in a range in which the logarithm of the molecular weight and the count number of the calibration curve prepared by several monodisperse polystyrene standard samples are linear. Selected. The calibration curve has a weight average molecular weight of 2.74 × 10. Three 1.91 × 10 Four 1.02 × 10 Five 3.55 × 10 Five 2.89 × 10 6 4.48 × 10 6 It was created under the following conditions using 6 polystyrene standard samples (TSK standard polystyrene) manufactured by Tosoh Corporation.
[0046]
GPC: Tosoh Corporation high-speed GPC device HLC-8020
Column: manufactured by Sekisui Fine Chemical Co., Ltd. HSG-60S × 2, HSG-40H × 1, HSG-20H × 1
Column temperature: 40 ° C
Mobile phase: THF (tetrahydrofuran)
Flow rate: 1.0 ml / min
Injection volume: 500ml
Detector: RID-6A manufactured by Tosoh Corporation
[0047]
[Average bubble diameter]
Randomly removed foam particles were roughly divided into two by a cutter, and one of the cut surfaces was magnified 40 times with a scanning electron microscope and photographed. A straight line is drawn on the photograph so as to have the diameter of the expanded particles, and the maximum diameter of all the bubbles on the straight line is measured. This measurement was performed on 10 foamed particles, and the arithmetic average value of the maximum diameter thus obtained was defined as the average cell diameter of the foamed particles.
[0048]
[Fusion rate]
After making a cut line with a depth of about 5 mm with a cutter knife along the straight line connecting the centers of a pair of long sides on the surface of a flat foam molded body having a length of 400 mm, a width of 300 mm, and a thickness of 30 mm, this cut The foamed molded body is manually divided into two along the line, and for the foamed particles in the fracture surface, the number of particles broken in the particles (a) and the number of particles broken at the interface between the particles (b ) And the value obtained by substituting it into the formula [(a) / ((a) + (b))] × 100 was defined as the fusion rate (%).
[0049]
[Combustion quality]
Self-extinguishing properties were measured based on JIS A-9511. From the JIS standard, it is desired that the self-extinguishing time is within 3.0 seconds, and preferably within 2.0 seconds. A foamed molded article cured at 50 ° C. for 24 hours after molding was used as a measurement sample.
[0050]
Example 1
A reactor having an internal volume of 100 liters equipped with a stirrer was charged with 36 liters of deionized water, 75 g of magnesium pyrophosphate and 6 g of sodium dodecylbenzenesulfonate, and then 120 g of benzoyl peroxide and t-butylperoxy as a polymerization initiator. 46 kg of styrene in which 29 g of benzoate was dissolved was placed in a reactor and stirred. After the temperature was raised to 90 ° C. and held for 6 hours, the temperature was raised to 125 ° C. and held for 3 hours for polymerization. The polymerization conversion rate at the end of the polymerization was 99.98%. Thereafter, the content was taken out by cooling, washed and dehydrated and dried, and then passed through a sieve to obtain polystyrene resin particles having a particle diameter of 0.9 to 1.2 mm. The polystyrene resin particles had a weight average molecular weight of 280000.
[0051]
In a pressure vessel equipped with a stirrer with an internal volume of 5 liters, a suspension obtained by suspending 0.5 g of sodium dodecylbenzenesulfonate, 6 g of magnesium pyrophosphate and 20 g of toluene in 2 liters of water is stirred and the polystyrene is stirred. 2 kg of resin particles, 1.5% by weight of tris (2,3-dibromopropyl) isocyanurate (flame retardant: TDIC) and 2,3-dimethyl-2,3-diphenylbutane (flame retardant aid: BC) A composite flame retardant consisting of 3% by weight was added, the container was sealed, and the temperature was raised to 100 ° C. with stirring. Then, 98 g of normal butane and 42 g of isobutane were injected at 100 ° C. and held for 3 hours. Subsequently, after cooling to 25 degreeC and taking out the resin particle from a pressure vessel, the self-extinguishing type | mold foaming polystyrene resin particle was obtained by performing washing | cleaning and dehydration drying of the resin particle.
[0052]
Moreover, when the melting point of the said composite flame retardant (BC ratio 16.7%) was measured by DTA, the melting | fusing point peak temperature was one and was 103 degreeC. In addition, melting | fusing point peak temperature of the composite flame retardant was calculated | required by measuring DTA on the following conditions based on JISK7121.
Thermal analyzer: Seiko Instruments TG / DTA6200R
Measurement sample mass: 10 mg
Temperature increase rate: 10 ° C / min
[0053]
The expandable resin particles were held in a thermostatic chamber at 20 ° C. for 5 days, and then expanded with a pre-foaming machine to obtain pre-expanded particles. Table 1 shows the average cell diameter and bulk expansion ratio after the pre-expanded particles obtained were allowed to stand at room temperature and normal pressure for 1 day and dried. In addition, the amount of particles bonded to each other in 500 g of the pre-expanded particles was measured and is shown in Table 1 as the amount of pre-expanded bonds.
[0054]
The pre-expanded particles were filled in a mold and heat-foamed with water vapor to obtain a foamed molded product (flat plate shape: length 400 mm, width 300 mm, thickness 30 mm). Table 1 shows the fusion rate, appearance, and results of measurement of flammability by the combustion test A method of JIS A9511.
[0055]
Example 2
The same procedure as in Example 1 except that 2.0% by weight of tris (2,3-dibromopropyl) isocyanurate and 0.4% by weight of 2,3-dimethyl-2,3-diphenylbutane were used. Fire extinguishing expandable polystyrene resin particles were obtained. Moreover, when the melting point of the composite flame retardant (BC ratio 16.7%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was one and was 103 ° C.
[0056]
Further, pre-expanded particles were obtained in the same manner as in Example 1, and are shown in Table 1 as the average cell diameter, bulk expansion ratio, and pre-expanded binding amount.
[0057]
Furthermore, the foamed molded body was obtained in the same manner as in Example 1, and the results of measuring the fusion rate, appearance, and combustibility are shown in Table 1.
[0058]
Example 3
The same procedure as in Example 1 was conducted except that 3.0% by weight of tris (2,3-dibromopropyl) isocyanurate and 0.4% by weight of 2,3-dimethyl-2,3-diphenylbutane were used. Fire extinguishing expandable polystyrene resin particles were obtained. Further, the melting point of the composite flame retardant (BC ratio 11.8%) was measured by DTA in the same manner as in Example 1. As a result, the melting point peak temperature was 1, which was 104 ° C.
[0059]
Further, pre-expanded particles were obtained in the same manner as in Example 1, and are shown in Table 1 as the average cell diameter, bulk expansion ratio, and pre-expanded binding amount.
[0060]
Furthermore, the foamed molded body was obtained in the same manner as in Example 1, and the results of measuring the fusion rate, appearance, and combustibility are shown in Table 1.
[0061]
Example 4
Self-extinguishing expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the flame retardant aid was replaced with 3,4-dimethyl-3,4-diphenylhexane (DDPH). Moreover, when the melting point of the composite flame retardant (DDPH ratio 16.7%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was 1, which was 131 ° C.
[0062]
Further, pre-expanded particles were obtained in the same manner as in Example 1, and are shown in Table 1 as the average cell diameter, bulk expansion ratio, and pre-expanded binding amount.
[0063]
Furthermore, the foamed molded body was obtained in the same manner as in Example 1, and the results of measuring the fusion rate, appearance, and combustibility are shown in Table 1.
[0064]
Comparative Example 1
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that no flame retardant and flame retardant aid were used.
[0065]
Further, pre-expanded particles were obtained in the same manner as in Example 1, and are shown in Table 1 as the average cell diameter, bulk expansion ratio, and pre-expanded binding amount.
[0066]
Furthermore, the foamed molded body was obtained in the same manner as in Example 1, and the results of measuring the fusion rate, appearance, and combustibility are shown in Table 1.
[0067]
Comparative Example 2
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that 3.0% by weight of tris (2,3-dibromopropyl) isocyanurate was used and no flame retardant aid was used. Further, when the melting point of the flame retardant (BC ratio 0%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was 1, which was 115 ° C.
[0068]
Further, pre-expanded particles were obtained in the same manner as in Example 1, and are shown in Table 1 as the average cell diameter, bulk expansion ratio, and pre-expanded binding amount.
[0069]
Furthermore, the foamed molded body was obtained in the same manner as in Example 1, and the results of measuring the fusion rate, appearance, and combustibility are shown in Table 1.
[0070]
Comparative Example 3
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that dicumyl peroxide (DCP) was used as a flame retardant aid. Further, when the melting point of the composite flame retardant (DCP ratio 16.7%) was measured with DTA in the same manner as in Example 1, DCP was decomposed during the measurement and could not be measured.
[0071]
Further, pre-expanded particles were obtained in the same manner as in Example 1, and are shown in Table 1 as the average cell diameter, bulk expansion ratio, and pre-expanded binding amount.
[0072]
Furthermore, the foamed molded body was obtained in the same manner as in Example 1, and the results of measuring the fusion rate, appearance, and combustibility are shown in Table 1.
[0073]
Comparative Example 4
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that tetrabromocyclooctane (TBCO) was used as a flame retardant. Moreover, when the melting point of the composite flame retardant (BC ratio 16.7%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was one and was 88 ° C.
[0074]
Further, pre-expanded particles were obtained in the same manner as in Example 1, and are shown in Table 1 as the average cell diameter, bulk expansion ratio, and pre-expanded binding amount.
[0075]
Furthermore, the foamed molded body was obtained in the same manner as in Example 1, and the results of measuring the fusion rate, appearance, and combustibility are shown in Table 1.
[0076]
Comparative Example 5
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that hexabromocyclododecane (HBCD) was used as a flame retardant. However, hexabromocyclododecane remained in the pressure vessel without being absorbed by the resin particles. Further, when the melting point of the composite flame retardant (BC ratio 16.7%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was two, the melting point derived from BC was 106 ° C., and derived from HBCD. The melting point was 190 ° C.
[0077]
Further, pre-expanded particles were obtained in the same manner as in Example 1, and are shown in Table 1 as the average cell diameter, bulk expansion ratio, and pre-expanded binding amount.
[0078]
Furthermore, the foamed molded body was obtained in the same manner as in Example 1, and the results of measuring the fusion rate, appearance, and combustibility are shown in Table 1.
[0079]
Comparative Example 6
Expandable polystyrene resin particles were obtained in the same manner as in Comparative Example 5, except that the addition amount of the flame retardant was 3.0 wt% and the addition amount of the flame retardant aid was 0.6 wt%. As in Comparative Example 5, hexabromocyclododecane remained in the pressure vessel without being absorbed by the resin particles. Further, when the melting point of the composite flame retardant (BC ratio 16.7%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was two, the melting point derived from BC was 106 ° C., and derived from HBCD. The melting point was 190 ° C.
[0080]
Further, pre-expanded particles were obtained in the same manner as in Example 1, and are shown in Table 1 as the average cell diameter, bulk expansion ratio, and pre-expanded binding amount.
[0081]
Furthermore, the foamed molded body was obtained in the same manner as in Example 1, and the results of measuring the fusion rate, appearance, and combustibility are shown in Table 1.
[0082]
In Table 1, TDIC is tris (2,3-dibromopropyl) isocyanurate, TBCO is tetrabromocyclooctane, HBCD is hexabromocyclododecane, BC is 2,3-dimethyl-2,3-diphenylbutane, DDPH is 3 , 4-Dimethyl-3,4-diphenylhexane, DCP means dicumyl peroxide.
[0083]
[Table 1]
Figure 0003970191
[0084]
From Table 1, the pre-expanded particles of Examples 1 to 4 had few bonds during pre-expansion and were easy to handle. Furthermore, the foamed molded product obtained from the pre-expanded particles had good fusion rate and appearance, and in addition, the combustion test showed excellent self-extinguishing properties of 3 seconds or less.
[0085]
The pre-expanded particles and the foamed molded product of Comparative Example 1 have a low amount of bonding at the time of pre-expansion and good fusion rate and appearance. It was.
[0086]
Since the pre-expanded particles of Comparative Example 2 did not contain a flame retardant aid, the self-extinguishing property of the obtained foamed molded article was extremely inferior.
[0087]
The pre-expanded particles of Comparative Example 3 had a larger amount of pre-expanded bonds than Comparative Example 2, and the resulting foamed molded article had a poor fusion rate, the appearance was melted on the surface, and the whole was contracted. The self-extinguishing property was also inferior to Examples 1-4.
[0088]
The pre-expanded particles of Comparative Example 4 had a larger amount of bonding at the time of pre-expansion than Comparative Example 3, and the obtained foamed molded article had a poor fusion rate, the appearance was melted on the surface, and the whole was contracted. The self-extinguishing property was also inferior to Examples 1-4.
[0089]
The pre-expanded particles of Comparative Examples 5 and 6 had good pre-expanded bonding amount, fusion rate, and appearance, but were substantially inferior in self-extinguishing properties because they contained substantially no flame retardant.
[0090]
Example 5
In this example, after formation of styrene resin particles by suspension polymerization, a flame retardant and a flame retardant aid were added to the suspension.
[0091]
A reactor having a volume of 100 liters equipped with a stirrer is charged with 30 liters of deionized water, 100 g of magnesium pyrophosphate, and 15 g of sodium dodecylbenzenesulfonate, and further has a particle diameter of 0.63 to 0.71 mm and a weight average molecular weight. 118,000 kg of polystyrene resin particles of 280000 (particles obtained by performing known suspension polymerization in an aqueous medium using magnesium pyrophosphate and sodium dodecylbenzenesulfonate) were added and suspended by stirring.
[0092]
Next, a suspension composed of 6 liters of deionized water, 10 g of magnesium pyrophosphate and 2 g of sodium dodecylbenzenesulfonate was prepared in advance, and 90 g of benzoyl peroxide and 8 g of t-butylperoxybenzoate were used as polymerization initiators in this suspension. 5 kg of styrene dissolved was added and stirred with a homomixer to form a suspension, which was added to the reactor maintained at 70 ° C.
[0093]
After the addition, the polystyrene resin particles were held for 1 hour so that the styrene and the polymerization initiator were sufficiently absorbed, and then styrene was continuously supplied at a rate of 10 kg / hour for 3 hours. Further, at the end of the styrene supply, the temperature in the reactor was gradually raised so as to be 105 ° C. Subsequently, the temperature was raised to 120 ° C. and held for 2 hours, so that the polymerization conversion rate was 99.98%.
[0094]
Subsequently, 2 g of water, 2 g of sodium dodecylbenzenesulfonate, 16 g of magnesium pyrophosphate, 460 g of toluene, 690 g (1.5% by weight) of tris (2,3-dibromopropyl) isocyanurate (flame retardant: TDIC) and A suspension in which 138 g (0.3% by weight) of 2,3-dimethyl-2,3-diphenylbutane (flame retardant: BC) is suspended is prepared in advance, and this suspension is press-fitted into the reactor. And then cooled to 100 ° C. Next, 2.25 kg of normal butane and 0.95 kg of isobutane were injected at a temperature of 100 ° C. and maintained for 3 hours. Next, after cooling to room temperature (about 25 ° C.) and taking out the resin particles from the pressure vessel, the resin particles are washed and dehydrated to dry, and self-extinguishing foaming with a particle size of 0.9 to 1.2 mm. Polystyrene resin particles were obtained. The polystyrene resin particles had a weight average molecular weight of 300,000. Moreover, when the melting point of the composite flame retardant (BC ratio 16.7%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was one and was 103 ° C.
[0095]
The expandable resin particles were held in a thermostatic chamber at 20 ° C. for 5 days, and then expanded with a pre-foaming machine to obtain pre-expanded particles. Table 2 shows the average cell diameter and bulk expansion ratio after the obtained expanded particles were allowed to stand at room temperature and normal pressure for 1 day and dried. Table 2 also shows the amount of bonds during preliminary foaming.
[0096]
The pre-expanded particles were filled in a mold and subjected to foaming by heating with water vapor to obtain a foamed molded product. Table 2 shows the fusion rate, appearance, and results of measurement of combustibility by the combustion test A method of JIS A9511.
[0097]
[Table 2]
Figure 0003970191
[0098]
From Table 2, even if the pre-expanded particles of Example 5 were obtained from expandable styrene resin particles obtained by adding a flame retardant and a flame retardant aid to the suspension after polymerization, There were few bonds and the handling was good. Furthermore, the foamed molded product obtained from the pre-expanded particles had good fusion rate and appearance, and in addition, the combustion test showed excellent self-extinguishing properties of 3 seconds or less.
[0099]
Example 6
This example is an example for evaluating the recyclability of the foamed molded products of the above examples and comparative examples.
[0100]
The melt flow rate (MFR) of the expandable polystyrene resin particles obtained in Examples 1 and 2 and Comparative Examples 1, 3 and 4 was measured under the following conditions. Further, the weight average molecular weight of the resin particles before and after the MFR measurement was also measured. Table 3 shows the MFR and the weight average molecular weight.
[0101]
[Measurement of MFR]
The measurement of MFR was performed under the following conditions based on JIS K7210. First, the measurement sample was obtained by holding the expandable polystyrene resin particles obtained in Examples and Comparative Examples for 24 hours in an oven at 50 ° C. under vacuum at an ultimate pressure of 10 Pa for 24 hours. The product from which was removed was used.
[0102]
Measuring device: Melt indexer manufactured by Toyo Seiki Seisakusho
Measurement temperature: 200 ° C
Measurement load: 5.0kgf
Orifice diameter: 2.09 mm
[0103]
[Table 3]
Figure 0003970191
[0104]
First, the MFR of polystyrene resin that can be recycled by melt kneading with an extruder and trending is 20 g / 10 min or less, preferably 15 g / 10 min or less, particularly when no flame retardant is added (Comparative Example 1). It is preferable that it is close to MFR. Looking at Table 3 from this point of view, the resin particles of Examples 1 and 2 are both 15 g / 10 min or less and can be sufficiently recycled. On the other hand, the resin particles of Comparative Examples 3 and 4 have an MFR exceeding the measurement limit of 200 g / 10 min, and are difficult to recycle.
[0105]
Furthermore, it is desirable from the viewpoint of recycling that the weight average molecular weight does not change as much as possible before and after the heat treatment (MFR measurement process). If greatly reduced, it cannot be extruded as a strand after being melt-kneaded by an extruder, or the strand is frequently cut and recycling is difficult. Looking at Table 3 from this point of view, the resin particles of Examples 1 and 2 have a small decrease in weight average molecular weight as compared with the case where no flame retardant is added, and are sufficiently recyclable. On the other hand, the resin particles of Comparative Examples 3 and 4 have a greatly reduced weight average molecular weight, and even after recycling, the strength is not significantly reduced and cannot be reused.
[0106]
【The invention's effect】
According to the self-extinguishing foamable styrene resin particles of the present invention, since a flame retardant and a flame retardant aid that are easily impregnated into the styrene resin particles are used, a small amount of flame retardant and flame retardant aid are used. Self-extinguishing properties can be imparted to foamed molded articles.
[0107]
In addition, the self-extinguishing foam molded article of the present invention is an environment-friendly foam molded article that can be recycled together with a general styrene resin foam molded article because the decrease in weight average molecular weight is small even when heat-treated.
[Brief description of the drawings]
FIG. 1 is a graph showing the melting point of a composite flame retardant.

Claims (5)

スチレン系樹脂粒子、易揮発性発泡剤及び、難燃剤と難燃助剤とからなる複合難燃剤を少なくとも含み、複合難燃剤が、トリス(2,3−ジブロモプロピル)イソシアヌレートからなる難燃剤90〜40重量%と、下記一般式
Figure 0003970191
(式中、R1〜R4は同一又は異なってメチル又はエチル基である)で表される難燃助剤10〜60重量%とからなり、スチレン系樹脂粒子100重量部に対して、1〜7重量部含まれることを特徴とする自己消火型発泡性スチレン系樹脂粒子。
A flame retardant 90 comprising at least a styrene resin particle, a readily volatile foaming agent, and a composite flame retardant comprising a flame retardant and a flame retardant aid, wherein the composite flame retardant comprises tris (2,3-dibromopropyl) isocyanurate. ~ 40 wt% and the following general formula
Figure 0003970191
(Wherein, R1 to R4 are the same or different and are methyl or ethyl groups) and represented by 10 to 60% by weight of a flame retardant aid, and 1 to 7 with respect to 100 parts by weight of styrene resin particles. Self-extinguishing foamable styrenic resin particles characterized by containing parts by weight.
難燃助剤が、2,3−ジメチル−2,3−ジフェニルブタン又は3,4−ジメチル−3,4−ジフェニルヘキサンである請求項1に記載の自己消火型発泡性スチレン系樹脂粒子。The self-extinguishing foamable styrene-based resin particle according to claim 1, wherein the flame retardant aid is 2,3-dimethyl-2,3-diphenylbutane or 3,4-dimethyl-3,4-diphenylhexane. スチレン系樹脂粒子が、懸濁重合法により得られた粒子である請求項1又は2に記載の自己消火型発泡性スチレン系樹脂粒子。The self-extinguishing foamable styrene resin particles according to claim 1 or 2, wherein the styrene resin particles are particles obtained by a suspension polymerization method. 請求項1〜3のいずれか1つに記載の自己消火型発泡性スチレン系樹脂粒子を予備発泡させて得られた予備発泡粒子。Pre-expanded particles obtained by pre-expanding the self-extinguishing foamable styrene resin particles according to any one of claims 1 to 3. 請求項4に記載の予備発泡樹脂粒子を発泡成形して得られた自己消火型発泡性スチレン系樹脂発泡成形体。A self-extinguishing foamable styrene resin foam molded article obtained by foam molding of the pre-foamed resin particles according to claim 4.
JP2003029716A 2002-11-12 2003-02-06 Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products Expired - Fee Related JP3970191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029716A JP3970191B2 (en) 2002-11-12 2003-02-06 Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002328623 2002-11-12
JP2003029716A JP3970191B2 (en) 2002-11-12 2003-02-06 Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products

Publications (2)

Publication Number Publication Date
JP2004211042A JP2004211042A (en) 2004-07-29
JP3970191B2 true JP3970191B2 (en) 2007-09-05

Family

ID=32828414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029716A Expired - Fee Related JP3970191B2 (en) 2002-11-12 2003-02-06 Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products

Country Status (1)

Country Link
JP (1) JP3970191B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036398A (en) * 2005-04-27 2012-02-23 Hitachi Chem Co Ltd Flame retardancy-imparting agent and flame-retardant resin composition
JP2008075076A (en) * 2006-08-25 2008-04-03 Sekisui Plastics Co Ltd Styrene-modified polypropylenic resin particle and its foamable resin particle, their production method, pre-foamed particle and foam-molded article
JP2008163118A (en) * 2006-12-27 2008-07-17 Sekisui Plastics Co Ltd Method for producing flame-retardant foamable polystyrene-based resin particle
JP2008163119A (en) * 2006-12-27 2008-07-17 Sekisui Plastics Co Ltd Method for producing flame-retardant foamable polystyrene-based resin particle
JP5188083B2 (en) * 2007-03-26 2013-04-24 積水化成品工業株式会社 Method for producing flame retardant expandable polystyrene resin particles
EP2133372B1 (en) 2007-03-27 2019-07-31 Sekisui Plastics Co., Ltd. Particle of carbon-containing modified polystyrene resin, expandable particle of carbon-containing modified polystyrene resin, expanded particle of carbon-containing modified polystyrene resin, molded foam of carbon-containing modified polystyrene resin, and processes for producing these
JP5138254B2 (en) * 2007-03-27 2013-02-06 積水化成品工業株式会社 Modified polystyrene resin particles containing self-extinguishing carbon, Modified polystyrene resin particles containing foam, self-extinguishing carbon, Modified polystyrene resin foam particles containing self-extinguishing carbon, Modified polystyrene resin foam containing self-extinguishing carbon Molded body and method for producing the same
JP5044375B2 (en) * 2007-11-28 2012-10-10 積水化成品工業株式会社 Method for producing flame retardant expandable polystyrene resin particles
JP5377917B2 (en) * 2008-09-30 2013-12-25 積水化成品工業株式会社 Flame retardant expandable polystyrene resin particles
JP5337442B2 (en) * 2008-09-30 2013-11-06 積水化成品工業株式会社 Foam molded body and method for producing the same
JP5545972B2 (en) * 2010-03-26 2014-07-09 積水化成品工業株式会社 Method for producing foam molded article
JP6185872B2 (en) 2014-03-28 2017-08-23 積水化成品工業株式会社 High density polyethylene resin particles, composite resin particles, expanded particles and expanded molded articles

Also Published As

Publication number Publication date
JP2004211042A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP5080226B2 (en) Expandable resin particles, method for producing the same, and foam molded article
JP3970191B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
JP2002284917A (en) Expandable styrene-based resin particle
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP6055687B2 (en) Flame-retardant styrenic resin particles, expandable particles, expanded particles and expanded molded articles
JP4035979B2 (en) Expandable polystyrene resin particles and method for producing the same
JP2003335891A (en) Expandable polystyrene resin particle, polystyrene expansion molded product and its preparation process
JP2004155870A (en) Expandable styrenic resin particle for building material and its expanded molded product
KR100622807B1 (en) Process for the production of expandable polystyrene
JP3987444B2 (en) Decorative interior and exterior materials made of styrene resin foam
JP5338364B2 (en) Styrene resin particle foam molding
JP3935849B2 (en) Self-extinguishing styrene resin foam particles and self-extinguishing foam
JP7175642B2 (en) Method for producing expandable styrene resin particles
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP6971743B2 (en) Method for manufacturing foamable styrene resin particles
KR20180019361A (en) Expandable polystyrene beads having excellent flame retardancy and preparing method therof
JP6697862B2 (en) Method for producing expandable styrenic resin particles having flame retardancy
JP6343485B2 (en) Polystyrene foamed molded product and method for producing the same
JP5809508B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP6677974B2 (en) Method for producing expandable styrene resin particles
JP5377917B2 (en) Flame retardant expandable polystyrene resin particles
JP2012201827A (en) Polystyrene resin particle, method for producing the same, foamable particle, foam particle and foam molded body
KR101577103B1 (en) Expandable polystyrene resin bead, method for preparing the same and foamed molded article
JP2002012692A (en) Foaming rubber-modified styrene-based resin particle, method for producing the same and foamed molded material
JPH10330526A (en) Heat-resistant expanded resin particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3970191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees