JP5044375B2 - Method for producing flame retardant expandable polystyrene resin particles - Google Patents

Method for producing flame retardant expandable polystyrene resin particles Download PDF

Info

Publication number
JP5044375B2
JP5044375B2 JP2007307095A JP2007307095A JP5044375B2 JP 5044375 B2 JP5044375 B2 JP 5044375B2 JP 2007307095 A JP2007307095 A JP 2007307095A JP 2007307095 A JP2007307095 A JP 2007307095A JP 5044375 B2 JP5044375 B2 JP 5044375B2
Authority
JP
Japan
Prior art keywords
flame retardant
dispersion
polystyrene
flame
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007307095A
Other languages
Japanese (ja)
Other versions
JP2009127032A (en
Inventor
雅之 高野
良輔 地海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2007307095A priority Critical patent/JP5044375B2/en
Publication of JP2009127032A publication Critical patent/JP2009127032A/en
Application granted granted Critical
Publication of JP5044375B2 publication Critical patent/JP5044375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、難燃性が要求される建材分野などにおいて好適に用いられる難燃性ポリスチレン系樹脂発泡成形体を製造することができる難燃性発泡性ポリスチレン系樹脂粒子の製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing flame retardant expandable polystyrene resin particles capable of producing a flame retardant polystyrene resin foam molded article suitably used in the field of building materials requiring flame retardancy.

一般に、直方体形状などの所望形状のポリスチレン系樹脂発泡成形体を製造する方法として、発泡性ポリスチレン系樹脂粒子を加熱して予備発泡し、得られた予備発泡粒子を金型のキャビティ内に充填し、予備発泡粒子を二次発泡させて予備発泡粒子同士を熱融着一体化してポリスチレン系樹脂発泡成形体を成形する、所謂、型内発泡成形が採用されている。   In general, as a method for producing a polystyrene resin foam molded article having a desired shape such as a rectangular parallelepiped shape, the expandable polystyrene resin particles are heated and pre-foamed, and the obtained pre-foamed particles are filled into a mold cavity. In other words, so-called in-mold foam molding is employed in which the pre-foamed particles are secondarily foamed and the pre-foamed particles are thermally fused and integrated to form a polystyrene resin foam molded article.

又、ポリスチレン系樹脂発泡成形体が建材用途に用いられる場合には、ポリスチレン系樹脂発泡成形体は、目的とする寸法や形状に合致させるために、通電加熱したニクロム線を用いて切断されることがある。   In addition, when a polystyrene resin foam molding is used for building materials, the polystyrene resin foam molding must be cut using a nichrome wire that is energized and heated in order to match the intended dimensions and shape. There is.

そして、上述のようにニクロム線を用いて切断(以下「ニクロムカット」という)してなるポリスチレン系樹脂発泡成形体を建材用パネルに用いることが近年、多くなってきており、それに伴って、ニクロム切断面に対する要求品質が高まっている。   In recent years, the use of polystyrene-based resin foam molded bodies cut with nichrome wires as described above (hereinafter referred to as “nichrome cuts”) for building material panels has increased, and accordingly, nichrome. The required quality for cut surfaces is increasing.

一方、建材用途に用いられるポリスチレン系樹脂発泡成形体は、一定の基準の難燃性が要求されており、この基準をクリアするために、発泡性ポリスチレン系樹脂粒子として難燃剤が含有されたものが用いられる。   On the other hand, polystyrene-based resin foam moldings used for building materials are required to have a certain standard of flame retardancy, and in order to clear this standard, a flame retardant is contained as expandable polystyrene-based resin particles. Is used.

この発泡性ポリスチレン系樹脂粒子に難燃剤を含有させる方法として、粉末状の難燃剤を反応釜(オートクレーブ)へ直接添加する方法があるが、この方法では粉末状の難燃剤が懸濁液中で二次凝集を起こすことによって難燃剤の懸濁液中における分散が不均一となり、その結果、粉末状の難燃剤の樹脂粒子への吸収が不均一となってしまい、一部の樹脂粒子が難燃剤を多く吸収してしまうといった問題を生じた。   As a method of adding a flame retardant to the expandable polystyrene resin particles, there is a method of directly adding a powdered flame retardant to a reaction kettle (autoclave). In this method, the powdered flame retardant is suspended in a suspension. Due to secondary aggregation, the dispersion of the flame retardant in the suspension becomes non-uniform, resulting in non-uniform absorption of the powdered flame retardant into the resin particles, making some resin particles difficult. The problem of absorbing much of the flame retardant occurred.

このような難燃剤を多く含有する発泡性ポリスチレン系樹脂粒子は、耐熱性に劣ることから、発泡成形時の加熱に耐えきれずに破泡し収縮して硬化粒となり、ポリスチレン系樹脂発泡成形体をニクロムカットする際に、硬化粒部分においてニクロム線が跳ねてしまって、ポリスチレン系樹脂発泡成形体のニクロム切断面に凹凸状のスジが発生して製品の価値が著しく低下すると共に、パネルに対する充分な接着強度が得られないといった問題点があった。   Expandable polystyrene resin particles containing a large amount of such flame retardants are inferior in heat resistance, so they cannot withstand the heating during foam molding and break up and shrink to form hardened granules. When Nichrome is cut, the Nichrome wire bounces off at the hardened grains, resulting in uneven streaks on the Nichrome cut surface of the polystyrene-based resin foam molding, significantly reducing the value of the product, and sufficient for the panel. There was a problem that a sufficient adhesive strength could not be obtained.

このような問題点を解決するために、特許文献1には、(a)100重量部のビニル芳香族ポリマー粒子、約50〜500重量部の水、有効量の懸濁剤、平均粒径が100ミクロン以下の約0.1〜2.5重量部のヘキサブロモシクロドデカン、約3〜20重量部のC4〜C6の脂肪族炭化水素発泡剤の水性懸濁液を形成し、(b)この懸濁液を約40〜140℃の温度で約0.5〜15時間加熱してヘキサブロモシクロドデカンと発泡剤をポリマー粒子中に取込んで、耐火性で膨張性の熱可塑性ビーズを形成し、(c)このビーズを水から分離することから成る耐火性で膨脹性の熱可塑性ビーズの製造方法が開示されている。   In order to solve such problems, Patent Document 1 includes (a) 100 parts by weight of vinyl aromatic polymer particles, about 50 to 500 parts by weight of water, an effective amount of suspending agent, and an average particle size. Forming an aqueous suspension of about 0.1 to 2.5 parts by weight of hexabromocyclododecane of 100 microns or less, about 3 to 20 parts by weight of a C4 to C6 aliphatic hydrocarbon blowing agent; (b) The suspension is heated at a temperature of about 40-140 ° C. for about 0.5-15 hours to incorporate hexabromocyclododecane and blowing agent into the polymer particles to form refractory, expandable thermoplastic beads. (C) A method for producing a fire-resistant and expandable thermoplastic bead comprising separating the bead from water is disclosed.

しかしながら、上記熱可塑性ビーズの製造方法は、難燃剤の投入形態が明示されておらず、その記載内容から難燃剤を粉体のまま投入すると考えられ、このように難燃剤を粉体のまま投入すると、ビーズへの吸収が不均一となると共に、難燃剤を微細化することにより、難燃剤が液中で二次凝集し易くなるといった問題点の他に、得られる熱可塑性ビーズの表面付近に多くの難燃剤が存在しがちになり、この難燃剤によって予備発泡時に二次発泡粒子同士が融着し結合してしまう、所謂、ブロッキングが発生し易いといった問題点を有していた。   However, in the above thermoplastic bead manufacturing method, the flame retardant charging mode is not clearly described, and it is considered that the flame retardant is charged as powder from the description, and thus the flame retardant is charged as powder. Then, the absorption to the beads becomes non-uniform, and by making the flame retardant finer, the flame retardant becomes easy to secondary agglomerate in the liquid, in addition to the vicinity of the surface of the obtained thermoplastic beads. Many flame retardants tend to be present, and the secondary foam particles are fused and bonded to each other at the time of pre-foaming by this flame retardant, so-called blocking is likely to occur.

又、特許文献2には、スチレン系樹脂粒子本体に発泡剤を含有させてなる発泡性スチレン系樹脂粒子において、平均粒子径が120μm以下のテトラブロムビスフェノールAジアリルエーテルを、スチレン系樹脂粒子本体とテトラブロムビスフェノールAジアリルエーテルとの合計量に対して、1.0〜5.0重量%の範囲内で含浸させてなる難燃性を有する発泡性スチレン系樹脂粒子が開示されている。   Patent Document 2 discloses tetrafluorobisphenol A diallyl ether having an average particle size of 120 μm or less in a foamable styrene resin particle containing a foaming agent in a styrene resin particle body, and a styrene resin particle body. There is disclosed an expandable styrene resin particle having flame retardancy, which is impregnated within a range of 1.0 to 5.0% by weight with respect to the total amount of tetrabromobisphenol A diallyl ether.

しかしながら、難燃剤は、界面活性剤の存在下にて撹拌下で水中に分散可能であるが、難燃剤を分散させた分散液をタンクから反応釜(オートクレーブ)へ送る時には分散液は攪拌されておらず、その結果、タンクの下部や配管ラインに難燃剤が沈降し、配管ラインが閉塞する危険性があるといった問題点の他に、得られる発泡性スチレン系樹脂粒子の表面付近に多くの難燃剤が存在しがちになり、この難燃剤によって予備発泡時に二次発泡粒子同士が融着し結合してしまう、所謂、ブロッキングが発生し易いといった問題点を有していた。   However, the flame retardant can be dispersed in water with stirring in the presence of a surfactant. However, when the dispersion liquid in which the flame retardant is dispersed is sent from the tank to the reaction kettle (autoclave), the dispersion liquid is stirred. As a result, in addition to the problem that the flame retardant settles in the lower part of the tank and the piping line and there is a risk that the piping line may be blocked, there are many difficulties near the surface of the resulting expandable styrene resin particles. A flame retardant tends to exist, and this flame retardant has a problem that secondary foam particles are fused and bonded during pre-foaming, so-called blocking is likely to occur.

更に、特許文献3には、段落番号〔0062〕に、オートクレーブ内に難燃剤を供給しているが、特許文献1と同様に難燃剤の供給要領が明示されておらず、その記載内容から難燃剤を粉体のまま投入すると考えられ、このように難燃剤を粉体のまま投入すると、特許文献1と同様に、発泡性スチレン系樹脂粒子への吸収が不均一となったり、難燃剤が二次凝集したり、或いは、ブロッキングの発生などの問題を生じやすいものであった。   Furthermore, in Patent Document 3, flame retardant is supplied into the autoclave in paragraph [0062], but the supply point of the flame retardant is not clearly described as in Patent Document 1, and it is difficult from the description. It is considered that the flame retardant is charged as powder. When the flame retardant is charged as powder in this way, the absorption to the expandable styrenic resin particles becomes non-uniform as in Patent Document 1, or the flame retardant is added. Problems such as secondary agglomeration or occurrence of blocking were likely to occur.

特開平4−132746号公報JP-A-4-132746 特開平11−255946号公報JP 11-255946 A 特開2006−213850号公報JP 2006-213850 A

本発明は、樹脂粒子中に粉末状の難燃剤を均一に含浸させることができ、そして、ニクロムカットした際に良好な切断面が得られる難燃性ポリスチレン系樹脂発泡成形体を型内発泡成形によって得ることができる難燃性発泡性ポリスチレン系樹脂粒子の製造方法を提供する。   The present invention is capable of uniformly impregnating resin particles with a powdered flame retardant, and in-mold foam molding of a flame retardant polystyrene resin foam molded article that provides a good cut surface when Nichrome is cut. The manufacturing method of the flame-retardant foaming polystyrene-type resin particle which can be obtained by this is provided.

本発明の難燃性発泡性ポリスチレン系樹脂粒子の製造方法は、水性懸濁液中に分散させたポリスチレン系樹脂粒子に発泡剤を含浸させる前又は含浸中に、可塑剤100重量部に粉末状の難燃剤14〜200重量部を加熱して溶解させた後に冷却して難燃剤を析出させてなる難燃剤分散液を上記水性懸濁液中に供給して、上記ポリスチレン系樹脂粒子中に上記難燃剤を含浸させることを特徴とする。   The method for producing flame retardant expandable polystyrene resin particles of the present invention is as follows. Before or during impregnation of the polystyrene resin particles dispersed in an aqueous suspension with a foaming agent, 100 parts by weight of a plasticizer is powdered. 14 to 200 parts by weight of the above flame retardant is heated and dissolved, and then cooled to precipitate a flame retardant, and the flame retardant dispersion is supplied into the aqueous suspension. It is characterized by impregnating with a flame retardant.

上記ポリスチレン系樹脂粒子は、公知の方法で製造されたものを用いることができ、例えば、(1)水性媒体、スチレン系単量体及び重合開始剤をオートクレーブ内に供給し、オートクレーブ内において加熱、攪拌しながらスチレン系単量体を懸濁重合させてポリスチレン系樹脂粒子を製造する懸濁重合法、(2)水性媒体及びポリスチレン系樹脂種粒子をオートクレーブ内に供給し、ポリスチレン系樹脂種粒子を水性媒体中に分散させた後、オートクレーブ内を加熱、攪拌しながらスチレン系単量体を連続的に或いは断続的に供給して、ポリスチレン系樹脂種粒子にスチレン系単量体を吸収させつつ重合開始剤の存在下にて重合させてポリスチレン系樹脂粒子を製造するシード重合法などが挙げられる。なお、ポリスチレン系樹脂種粒子は、上記(1)の懸濁重合法により製造し分級すればよい。   As the polystyrene resin particles, those produced by a known method can be used. For example, (1) an aqueous medium, a styrene monomer and a polymerization initiator are supplied into an autoclave and heated in the autoclave. Suspension polymerization method for producing polystyrene resin particles by suspension polymerization of styrene monomer while stirring, (2) supplying aqueous medium and polystyrene resin seed particles into the autoclave, After being dispersed in an aqueous medium, the inside of the autoclave is heated and stirred to continuously or intermittently supply the styrene monomer, and the polystyrene resin seed particles absorb the styrene monomer and polymerize it. Examples include a seed polymerization method in which polystyrene resin particles are produced by polymerization in the presence of an initiator. The polystyrene-based resin seed particles may be produced and classified by the suspension polymerization method of (1) above.

本発明の製造方法において、ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレンなどのスチレン系単量体の単独重合体又はこれらの共重合体などが挙げられ、スチレンを50重量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。   In the production method of the present invention, the polystyrene-based resin is not particularly limited. For example, a styrene-based monomer such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, isopropylstyrene, dimethylstyrene, or bromostyrene. Homopolymers of these bodies or copolymers thereof, and polystyrene resins containing 50% by weight or more of styrene are preferable, and polystyrene is more preferable.

又、上記ポリスチレン系樹脂としては、上記スチレン系単量体を主成分とする、上記スチレン系単量体と、このスチレン系単量体と共重合可能なビニル単量体との共重合体であってもよく、このようなビニル単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレートなどのアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性単量体などが挙げられる。   In addition, the polystyrene resin is a copolymer of the styrene monomer having the styrene monomer as a main component and a vinyl monomer copolymerizable with the styrene monomer. Such vinyl monomers may include, for example, alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth ) In addition to acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl fumarate, and ethyl fumarate, difunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.

そして、ポリスチレン系樹脂粒子の平均粒子径は、難燃性発泡性ポリスチレン系樹脂粒子を用いて型内発泡成形を行う場合に、難燃性発泡性ポリスチレン系樹脂粒子を予備発泡させて得られる予備発泡粒子のキャビティ内への充填性の観点から、0.3〜2.0mmが好ましく、0.6〜1.4mmがより好ましい。   The average particle diameter of the polystyrene resin particles is a preliminary value obtained by pre-expanding the flame retardant expandable polystyrene resin particles when performing in-mold foam molding using the flame retardant expandable polystyrene resin particles. From the viewpoint of filling properties of the expanded particles into the cavity, 0.3 to 2.0 mm is preferable, and 0.6 to 1.4 mm is more preferable.

更に、ポリスチレン系樹脂粒子を構成するポリスチレン系樹脂のスチレン換算重量平均分子量は、小さいと、難燃性発泡性ポリスチレン系樹脂粒子を発泡させて得られる難燃性ポリスチレン系樹脂発泡成形体の機械的強度が低下することがある一方、大きいと、難燃性発泡性ポリスチレン系樹脂粒子の発泡性が低下し、高発泡倍率の難燃性ポリスチレン系樹脂発泡成形体を得ることができない虞れがあるので、20万〜50万が好ましく、24万〜40万がより好ましい。   Furthermore, if the polystyrene-based resin constituting the polystyrene-based resin particles has a small weight average molecular weight in terms of styrene, the mechanical properties of the flame-retardant polystyrene-based resin foam molded product obtained by foaming the flame-retardant expandable polystyrene-based resin particles. On the other hand, if the strength is lowered, the foamability of the flame-retardant expandable polystyrene resin particles is lowered, and there is a possibility that a flame-retardant polystyrene-based resin foam molded article having a high expansion ratio cannot be obtained. Therefore, 200,000 to 500,000 are preferable, and 240,000 to 400,000 are more preferable.

なお、上記懸濁重合法及びシード重合法において用いられる重合開始剤としては、特に限定されず、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、イソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−ビス(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシ−3、3、5トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレートなどの有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物などが挙げられ、これらは単独で用いられても二種以上が併用されてもよい。   In addition, it does not specifically limit as a polymerization initiator used in the said suspension polymerization method and seed polymerization method, For example, benzoyl peroxide, lauryl peroxide, t-butyl peroxybenzoate, t-butyl peroxide, t- Butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, isopropyl carbonate, t-butyl peroxyacetate, 2,2-bis (t-butylperoxy) butane, Organic peroxides such as t-butylperoxy-3, 3,5 trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, azo compounds such as azobisisobutyronitrile, azobisdimethylvaleronitrile, etc. Are mentioned, These may be also alone, or two or more are used alone.

そして、水性媒体中にポリスチレン系樹脂粒子を分散させてなる水性懸濁液は、上記懸濁重合法又はシード重合法による重合後の反応液を水性懸濁液として用いても、或いは、上記懸濁重合法又はシード重合法によって得られたポリスチレン系樹脂粒子を反応液から分離し、このポリスチレン系樹脂粒子を別途用意した水性媒体に懸濁させて水性懸濁液を形成してもよい。なお、水性媒体としては、特に限定されず、例えば、水、アルコールなどが挙げられ、水が好ましい。   The aqueous suspension in which polystyrene resin particles are dispersed in an aqueous medium may be obtained by using the reaction liquid after polymerization by the suspension polymerization method or the seed polymerization method as an aqueous suspension, or the suspension described above. The polystyrene resin particles obtained by the turbid polymerization method or the seed polymerization method may be separated from the reaction solution, and the polystyrene resin particles may be suspended in a separately prepared aqueous medium to form an aqueous suspension. In addition, it does not specifically limit as an aqueous medium, For example, water, alcohol, etc. are mentioned, Water is preferable.

又、上記懸濁重合法又はシード重合法において、スチレン系単量体を重合させる際に、スチレン系単量体の液滴又はポリスチレン系樹脂種粒子の分散性を安定させるために懸濁安定剤を用いてもよく、このような懸濁安定剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウムなどの難水溶性無機塩などが挙げられ、難水溶性無機塩を用いる場合には、アニオン界面活性剤が通常、併用される。   In the suspension polymerization method or seed polymerization method, a suspension stabilizer is used to stabilize the dispersibility of the styrene monomer droplets or polystyrene resin seed particles when the styrene monomer is polymerized. Examples of such a suspension stabilizer include water-soluble polymers such as polyvinyl alcohol, methylcellulose, polyacrylamide, and polyvinylpyrrolidone, and poorly water-soluble inorganic salts such as calcium triphosphate and magnesium pyrophosphate. In the case of using a poorly water-soluble inorganic salt, an anionic surfactant is usually used in combination.

上記アニオン界面活性剤としては、例えば、ラウリル硫酸ナトリウムなどのアルキル硫酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、オレイン酸ナトリウムなどの高級脂肪酸塩、β−テトラヒドロキシナフタレンスルホン酸塩などが挙げられ、アルキルベンゼンスルホン酸塩が好ましい。   Examples of the anionic surfactant include alkyl sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, higher fatty acid salts such as sodium oleate, and β-tetrahydroxynaphthalene sulfonate. And alkylbenzene sulfonates are preferred.

又、懸濁重合法又はシード重合法によって得られたポリスチレン系樹脂粒子を別途用意した水性媒体に懸濁させて水性懸濁液を形成する場合にも、ポリスチレン系樹脂粒子の分散性を安定させるために、上述の懸濁安定剤やアニオン界面活性剤を水性媒体中に添加してもよい。   In addition, when the aqueous suspension is formed by suspending the polystyrene resin particles obtained by the suspension polymerization method or the seed polymerization method in a separately prepared aqueous medium, the dispersibility of the polystyrene resin particles is stabilized. Therefore, the above suspension stabilizer and anionic surfactant may be added to the aqueous medium.

この際、難水溶性無機塩の水性媒体中への添加量は、少ないと、水性媒体中におけるポリスチレン系樹脂粒子の分散性が低下し、或いは、難燃剤分散液中における難燃剤の分散が不安定となり、難燃剤が沈降するなどの問題を生じ、ポリスチレン系樹脂粒子中に難燃剤を均一に吸収させることができないことがある一方、多いと、ポリスチレン系樹脂粒子を分散させてなる水性媒体の粘性が上昇して、ポリスチレン系樹脂粒子を水性媒体中に均一に分散させることができないことがあるので、水性媒体100重量部に対して0.5〜2重量部が好ましい。   At this time, if the amount of the hardly water-soluble inorganic salt added to the aqueous medium is small, the dispersibility of the polystyrene resin particles in the aqueous medium is lowered, or the dispersion of the flame retardant in the flame retardant dispersion is not good. This may cause problems such as settling of the flame retardant and settling of the flame retardant into the polystyrene resin particles, while the polystyrene resin particles may not be able to uniformly absorb the flame retardant. Since the viscosity increases and the polystyrene-based resin particles may not be uniformly dispersed in the aqueous medium, 0.5 to 2 parts by weight is preferable with respect to 100 parts by weight of the aqueous medium.

そして、本発明の難燃性発泡性ポリスチレン系樹脂粒子の製造方法では、上記水性懸濁液中に分散させたポリスチレン系樹脂粒子中に発泡剤を公知の要領で含浸させる。このような発泡剤としては、沸点がポリスチレン系樹脂の軟化点以下であって、常圧でガス状もしくは液状の有機化合物が適しており、例えば、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン、n−ヘキサン、石油エーテルなどの炭化水素、アセトン、メチルエチルケトンなどのケトン類、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテルなどの低沸点のエーテル化合物、炭酸ガス、窒素、アンモニアなどの無機ガスなどが挙げられ、沸点が−45〜40℃の炭化水素が好ましく、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタンがより好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。   And in the manufacturing method of the flame-retardant foaming polystyrene-type resin particle of this invention, a foaming agent is impregnated in the well-known way in the polystyrene-type resin particle disperse | distributed in the said aqueous suspension. As such a foaming agent, a boiling point is not higher than the softening point of the polystyrene-based resin, and a gaseous or liquid organic compound at normal pressure is suitable. For example, propane, n-butane, isobutane, n-pentane, Hydrocarbons such as isopentane, neopentane, cyclopentane, cyclopentadiene, n-hexane, petroleum ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, isopropyl alcohol, dimethyl ether, diethyl ether, dipropyl ether, methyl Examples thereof include low boiling point ether compounds such as ethyl ether, inorganic gases such as carbon dioxide, nitrogen and ammonia, and hydrocarbons having a boiling point of −45 to 40 ° C. are preferred, propane, n-butane, isobutane, n-pentane, Isopentane is more preferred Arbitrariness. In addition, a foaming agent may be used independently or 2 or more types may be used together.

更に、本発明の難燃性発泡性ポリスチレン系樹脂粒子の製造方法では、水性懸濁液中に分散させたポリスチレン系樹脂粒子に発泡剤を含浸させる前に或いは含浸中に、可塑剤に粉末状の難燃剤を加熱して溶解させた後に冷却して難燃剤を析出させてなる難燃剤分散液を上記水性懸濁液中に供給して、ポリスチレン系樹脂粒子に難燃剤を加圧下にて含浸させる。   Furthermore, in the method for producing flame-retardant foamable polystyrene resin particles of the present invention, the plasticizer is powdered before or during impregnation with the polystyrene resin particles dispersed in the aqueous suspension. The flame retardant dispersion obtained by heating and dissolving the flame retardant and cooling to precipitate the flame retardant is supplied into the aqueous suspension, and the polystyrene resin particles are impregnated with the flame retardant under pressure. Let

上記難燃剤分散液は、可塑剤に粉末状の難燃剤を加熱して溶解させた後に冷却して難燃剤を析出させてなる。このような可塑剤としては、粉末状の難燃剤を加熱することによって溶解させることができれば、特に限定されず、例えば、アジピン酸ジイソブチル、アジピン酸ジイソノニル、セバシン酸ジブチル、トルエン、エチルベンゼン、シクロヘキサンなどが挙げられ、アジピン酸ジイソブチル、トルエンが好ましい。   The flame retardant dispersion is prepared by heating and dissolving a powdered flame retardant in a plasticizer and then cooling to deposit the flame retardant. Such a plasticizer is not particularly limited as long as the powdered flame retardant can be dissolved by heating, and examples thereof include diisobutyl adipate, diisononyl adipate, dibutyl sebacate, toluene, ethylbenzene, and cyclohexane. And diisobutyl adipate and toluene are preferable.

そして、上記粉末状の難燃剤としては、ポリスチレン系樹脂粒子中に含浸させる条件下において他の媒体に溶解させない状態で存在した場合に粉末状であれば、特に限定されず、ヘキサブロモシクロドデカン、テトラブロモシクロオクタン、テトラブロモブタン、ヘキサブロモシクロヘキサンなどの臭素化脂肪族炭化水素系化合物、テトラブロモビスフェノールA、テトラブロモビスフェノールF、2,4,6−トリブロモフェノールなどの臭素化フェノール類、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ジグリシジルエーテルなどの臭素化フェノール誘導体などが挙げられ、臭素化脂肪族炭化水素系化合物が好ましく、テトラブロモシクロオクタンがより好ましい。   The powdery flame retardant is not particularly limited as long as it is powdery when it is present in a state where it is not dissolved in another medium under the conditions of impregnation in polystyrene resin particles, hexabromocyclododecane, Brominated aliphatic hydrocarbon compounds such as tetrabromocyclooctane, tetrabromobutane, hexabromocyclohexane, brominated phenols such as tetrabromobisphenol A, tetrabromobisphenol F, 2,4,6-tribromophenol, tetra Brominated phenol derivatives such as bromobisphenol A-bis (2,3-dibromopropyl ether), tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-diglycidyl ether, etc. Are mentioned, Preferably fluorinated aliphatic hydrocarbon compound, tetrabromobisphenol cyclooctane are preferred.

上述の難燃剤分散液は次のようにして製造されたものである。先ず、可塑剤中に粉末状の難燃剤を加熱して難燃剤の全量を溶解させて難燃剤溶解液を作製する。この際、可塑剤中に粉末状の難燃剤を添加した後に可塑剤を加熱して攪拌しながら難燃剤を可塑剤中に溶解させても、或いは、可塑剤を予め加熱した上で可塑剤中に粉末状の難燃剤を添加して攪拌しながら溶解させてもよい。   The flame retardant dispersion described above is manufactured as follows. First, a powdered flame retardant is heated in a plasticizer to dissolve the entire amount of the flame retardant, thereby preparing a flame retardant solution. At this time, even if the powdered flame retardant is added to the plasticizer and then the plasticizer is heated and stirred, the flame retardant is dissolved in the plasticizer, or the plasticizer is preheated and then added to the plasticizer. A powdery flame retardant may be added to and dissolved with stirring.

なお、可塑剤中に粉末状難燃剤が全量、溶解されたか否かについては、可塑剤中に難燃剤粉末の浮遊又は沈殿が存在せず、透明な溶液であることが目視にて確認できた場合には、可塑剤中に粉末状の難燃剤が全量、溶解されたものと判断し、そうでない場合には、可塑剤中に粉末状の難燃剤が全量、溶解されていないものと判断する。   As for whether or not the powdered flame retardant was completely dissolved in the plasticizer, it was confirmed by visual observation that there was no floating or precipitation of the flame retardant powder in the plasticizer, and it was a transparent solution. In this case, it is determined that the entire amount of the powdered flame retardant is dissolved in the plasticizer. Otherwise, it is determined that the entire amount of the powdered flame retardant is not dissolved in the plasticizer. .

次に、上記難燃剤溶解液を冷却して可塑剤中に溶解している難燃剤を可塑剤中に析出、分散させる。難燃剤溶解液の冷却方法としては特に限定されず、難燃剤溶解液中に溶解した難燃剤を析出させることができればよい。このように、難燃剤の全量を可塑剤中に一旦、溶解させた上で可塑剤を冷却し析出させており、この析出した難燃剤は可塑剤中において微分散し、可塑剤中において微細に分散した状態を安定的に維持することができる。   Next, the flame retardant solution is cooled, and the flame retardant dissolved in the plasticizer is precipitated and dispersed in the plasticizer. The method for cooling the flame retardant solution is not particularly limited as long as the flame retardant dissolved in the flame retardant solution can be precipitated. In this way, the entire amount of the flame retardant is once dissolved in the plasticizer, and then the plasticizer is cooled and precipitated. The deposited flame retardant is finely dispersed in the plasticizer and finely dispersed in the plasticizer. The dispersed state can be stably maintained.

可塑剤中にこの可塑剤の加熱状態にて溶解させる難燃剤の量は、少ないと、使用しなければならない難燃剤分散液の量が多くなり、ポリスチレン系樹脂粒子中への難燃剤の含浸効率が低下する一方、多いと、得られる難燃性発泡性ポリスチレン系樹脂粒子の耐熱性が低下し或いは難燃性発泡性ポリスチレン系樹脂粒子の予備発泡時にブロッキングを生じるので、可塑剤100重量部に対して14〜200重量部に限定され、50〜190重量部が好ましく、70〜190重量部がより好ましい。   If the amount of the flame retardant dissolved in the plasticizer in the heated state of the plasticizer is small, the amount of the flame retardant dispersion that must be used increases, and the impregnation efficiency of the flame retardant into the polystyrene resin particles On the other hand, if the amount is too large, the heat resistance of the resulting flame-retardant expandable polystyrene resin particles is reduced, or blocking occurs during the pre-expansion of the flame-retardant expandable polystyrene resin particles. On the other hand, it is limited to 14 to 200 parts by weight, preferably 50 to 190 parts by weight, and more preferably 70 to 190 parts by weight.

そして、難燃剤溶解液を冷却して可塑剤中に難燃剤を析出させて難燃剤分散液を作製するにあたり、可塑剤中に析出させる難燃剤の割合(以下「難燃剤析出率」という)は、低いと、ポリスチレン系樹脂粒子への難燃剤の吸収が不均一となることがある一方、高いと、難燃剤の吸収に時間がかかり難燃性発泡性ポリスチレン系樹脂粒子の生産効率が低下することがあるので、可塑剤中に溶解させた難燃剤全量の40〜85重量%が好ましく、40〜80重量%がより好ましく、42〜76重量%が特に好ましい。   The ratio of the flame retardant deposited in the plasticizer (hereinafter referred to as “flame retardant deposition rate”) in cooling the flame retardant solution and precipitating the flame retardant in the plasticizer to produce a flame retardant dispersion is: If it is low, the absorption of the flame retardant into the polystyrene resin particles may be uneven. On the other hand, if it is high, it takes time to absorb the flame retardant and the production efficiency of the flame retardant expandable polystyrene resin particles decreases. Therefore, 40 to 85% by weight of the total amount of the flame retardant dissolved in the plasticizer is preferable, 40 to 80% by weight is more preferable, and 42 to 76% by weight is particularly preferable.

ここで、難燃剤析出率は下記の要領で算出される。先ず、難燃剤分散液又は後述する難燃剤分散液の分散体を遠心機にセットして2000rpmの回転速度にて20分間に亘って遠心分離し、液相と、析出した難燃剤とを分離し、この分離した難燃剤を70℃にて24時間に亘って真空乾燥して難燃剤の重量Cを測定する。そして、下記式に基づいて難燃剤析出率を算出することができる。なお、難燃剤分散液又は難燃剤分散液の分散体中に含まれる難燃剤の総重量をDとする。
難燃剤析出率(重量%)=100×重量C/重量D
Here, the flame retardant deposition rate is calculated as follows. First, a flame retardant dispersion or a dispersion of a flame retardant dispersion described later is set in a centrifuge and centrifuged at a rotational speed of 2000 rpm for 20 minutes to separate the liquid phase and the deposited flame retardant. The separated flame retardant is vacuum dried at 70 ° C. for 24 hours, and the weight C of the flame retardant is measured. And a flame retardant precipitation rate is computable based on a following formula. In addition, let D be the total weight of the flame retardant contained in the flame retardant dispersion or the dispersion of the flame retardant dispersion.
Flame retardant deposition rate (% by weight) = 100 × weight C / weight D

そして、難燃剤分散液中における析出した難燃剤の平均粒子径は、大きいと、難燃剤分散液中における難燃剤の分散が不均一となり、ポリスチレン系樹脂粒子への吸収が不均一となって、得られるポリスチレン系樹脂発泡成形体をニクロムカットした際にニクロム切断面に凹凸状のスジが発生することがあるので、30μm未満が好ましく、0.1〜25μmがより好ましく、12〜24μmが特に好ましい。   And, if the average particle diameter of the flame retardant deposited in the flame retardant dispersion is large, the dispersion of the flame retardant in the flame retardant dispersion becomes non-uniform, and the absorption to the polystyrene resin particles becomes non-uniform, When the resulting polystyrene-based resin foam molded article is Nichrome cut, uneven stripes may occur on the Nichrome cut surface, so that it is preferably less than 30 μm, more preferably 0.1 to 25 μm, and particularly preferably 12 to 24 μm. .

なお、難燃剤分散液中における難燃剤の平均粒子径は下記の要領で測定される。難燃剤分散液中の難燃剤の平均粒子径は拡大鏡を用いて目視により測定する。具体的には、拡大鏡に500倍のレンズを取り付け、難燃剤分散液を観察し、投影された難燃剤粒子の影を包囲し得る最小径の真円の直径を難燃剤粒子の粒子径とする。そして、無作為に抽出した20個の難燃剤粒子の粒子径を上述の要領で測定し、各難燃剤粒子の粒子径の相加平均値を難燃剤の平均粒子径とする。なお、難水溶性無機塩を使用している場合には、塩酸にて難溶性無機塩を分解した上で行なう。又、難燃剤の平均粒子径は、ニコン社から商品名「V−12A」にて市販されている測定装置を用いて測定することができる。   In addition, the average particle diameter of the flame retardant in the flame retardant dispersion is measured as follows. The average particle diameter of the flame retardant in the flame retardant dispersion is measured visually using a magnifying glass. Specifically, a 500 × lens is attached to the magnifying glass, the flame retardant dispersion is observed, and the diameter of the smallest perfect circle that can surround the shadow of the projected flame retardant particles is defined as the particle diameter of the flame retardant particles. To do. And the particle diameter of 20 flame retardant particle | grains extracted at random is measured in the above-mentioned way, and let the arithmetic mean value of the particle diameter of each flame retardant particle | grain be an average particle diameter of a flame retardant. In the case where a hardly water-soluble inorganic salt is used, it is carried out after decomposing the hardly soluble inorganic salt with hydrochloric acid. Moreover, the average particle diameter of a flame retardant can be measured using the measuring apparatus marketed with the brand name "V-12A" from Nikon Corporation.

更に、水性懸濁液中に難燃剤分散液を供給するにあたって、得られる難燃性発泡性ポリスチレン系樹脂粒子中における難燃剤の含有量が、難燃剤を含浸させるポリスチレン系樹脂粒子100重量部に対して、好ましくは0.3〜2.0重量部となるように、より好ましくは0.5〜1.5重量部となるように、特に好ましくは0.7〜1.0重量部となるように調整することが好ましい。これは、難燃性発泡性ポリスチレン系樹脂粒子における難燃剤の含有量が少ないと、得られる難燃性ポリスチレン系樹脂発泡成形体の難燃性が低下することがある一方、多いと、得られる難燃性発泡性ポリスチレン系樹脂粒子の熱融着性や発泡成形性が低下して、得られる難燃性ポリスチレン系樹脂発泡成形体の外観が低下することがあると共に、難燃性発泡性ポリスチレン系樹脂粒子の予備発泡時における予備発泡粒子同士の結合や、得られる難燃性ポリスチレン系樹脂発泡成形体のニクロムカット時のスジの原因となるからである。   Furthermore, when supplying the flame retardant dispersion in the aqueous suspension, the content of the flame retardant in the obtained flame retardant expandable polystyrene resin particles is 100 parts by weight of polystyrene resin particles impregnated with the flame retardant. On the other hand, it is preferably 0.3 to 2.0 parts by weight, more preferably 0.5 to 1.5 parts by weight, and particularly preferably 0.7 to 1.0 parts by weight. It is preferable to adjust so that. This is obtained when the content of the flame retardant in the flame retardant expandable polystyrene resin particles is small, while the flame retardancy of the resulting flame retardant polystyrene resin foam molded article may be lowered, while it is large. While the heat-fusable and foam-molding properties of the flame-retardant foamable polystyrene resin particles are reduced, the appearance of the resulting flame-retardant polystyrene-based resin foam molding may be lowered, and the flame-retardant foamable polystyrene This is because it causes bonding between pre-expanded particles at the time of pre-expansion of the resin-based resin particles and streaks at the time of nichrome cutting of the flame-retardant polystyrene-based resin foam molded article to be obtained.

このように、粉末状の難燃剤を一旦、可塑剤に溶解させた後に析出させ、難燃剤は可塑剤中に極めて微細に安定的に均一に分散しており、可塑剤は液体状であって水性懸濁液中に均一に且つ安定的に分散することから、この可塑剤中に分散している粉末状の難燃剤も水性懸濁液中に均一に且つ安定的に分散させることができ、よって、水性懸濁液中に分散させた各ポリスチレン系樹脂粒子中に難燃剤を均一に且つ優れた含浸効率にて含浸させることができる。   In this way, the powdered flame retardant is once dissolved in the plasticizer and then precipitated, and the flame retardant is dispersed in a very fine and stable manner in the plasticizer, and the plasticizer is liquid. Since it is uniformly and stably dispersed in the aqueous suspension, the powdery flame retardant dispersed in the plasticizer can also be uniformly and stably dispersed in the aqueous suspension, Therefore, the flame retardant can be impregnated uniformly and with excellent impregnation efficiency in each polystyrene resin particle dispersed in the aqueous suspension.

更に、上記難燃剤分散液は水性媒体中に分散させて分散体としてもよく、このように難燃剤分散液を水性媒体中に分散させることによって、難燃剤分散液を水性媒体中にて更に微分散化させて微細な液滴状とすることができ、ポリスチレン系樹脂粒子を分散させた水性懸濁液中に、難燃剤分散液をより微細化した状態にして分散化させることができ、難燃剤をポリスチレン系樹脂粒子中により均一に含浸させることができる。   Further, the flame retardant dispersion may be dispersed in an aqueous medium to form a dispersion. By thus dispersing the flame retardant dispersion in the aqueous medium, the flame retardant dispersion is further finely dispersed in the aqueous medium. It can be dispersed into fine droplets, and the flame retardant dispersion can be dispersed in an aqueous suspension in which polystyrene resin particles are dispersed. The flame retardant can be more uniformly impregnated in the polystyrene resin particles.

なお、水性媒体は、ポリスチレン系樹脂粒子を分散させている水性懸濁液と相溶性を有するものであれば、特に限定されず、例えば、水、アルコールなどが挙げられるが、ポリスチレン系樹脂粒子を分散させてなる水性懸濁液の水性媒体と同一のものが好ましい。   The aqueous medium is not particularly limited as long as it is compatible with the aqueous suspension in which the polystyrene resin particles are dispersed, and examples thereof include water, alcohol, and the like. The same aqueous medium as the aqueous suspension to be dispersed is preferable.

そして、難燃剤分散液を分散させる水性媒体の量は、少ないと、難燃剤分散液を水性媒体中に安定的に分散させることができないことがある一方、多いと、ポリスチレン系樹脂中への難燃剤の含浸効率が低下することがあるので、難燃剤分散液中の可塑剤100重量部に対して100〜5000重量部が好ましく、300〜1000重量部がより好ましい。   If the amount of the aqueous medium in which the flame retardant dispersion is dispersed is small, the flame retardant dispersion may not be stably dispersed in the aqueous medium. On the other hand, if the amount is large, the dispersion in the polystyrene resin may be difficult. Since the impregnation efficiency of the flame retardant may decrease, the amount is preferably 100 to 5000 parts by weight and more preferably 300 to 1000 parts by weight with respect to 100 parts by weight of the plasticizer in the flame retardant dispersion.

又、難燃剤分散液を水性媒体中に分散させる場合、水性媒体中に、難燃剤分散液と水性媒体との間における界面エネルギーを低下させて、難燃剤分散液を水性媒体中により安定的に分散させるために界面活性剤を含有させてもよい。   In addition, when the flame retardant dispersion is dispersed in an aqueous medium, the interfacial energy between the flame retardant dispersion and the aqueous medium is reduced in the aqueous medium, so that the flame retardant dispersion is more stable in the aqueous medium. In order to disperse, a surfactant may be contained.

このような界面活性剤としては、特に限定されないが、例えば、ラウリル硫酸ナトリウムなどのアルキル硫酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、オレイン酸ナトリウムなどの高級脂肪酸塩、β−テトラヒドロキシナフタレンスルホン酸塩などのアニオン界面活性剤;アルキルアンモニウム酢酸塩類、アルキルジメチルベンジルアンモニウム塩類、アルキルトリメチルアンモニウム塩類、ジアルキルジメチルアンモニウム塩類、アルキルピリジニウム塩類、オキシアルキレンアルキルアミン類、ポリオキシアルキレンアルキルアミン類などのカチオン界面活性剤;脂肪酸ジエタノールアミド類、シリコーン系界面活性剤、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレン・ポリオキシプロピレングリコール類、ポリエーテル変性シリコーン類などのノニオン界面活性剤などが挙げられ、アニオン界面活性剤が好ましく、アルキルベンゼンスルホン酸塩がより好ましい。なお、界面活性剤は、単独で用いられても二種以上が併用されてもよい。   Examples of such surfactants include, but are not limited to, alkyl sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, higher fatty acid salts such as sodium oleate, β-tetrahydroxy Anionic surfactants such as naphthalene sulfonates; alkyl ammonium acetates, alkyl dimethyl benzyl ammonium salts, alkyl trimethyl ammonium salts, dialkyl dimethyl ammonium salts, alkyl pyridinium salts, oxyalkylene alkyl amines, polyoxyalkylene alkyl amines, etc. Cationic surfactants; fatty acid diethanolamides, silicone surfactants, polyoxyethylene alkyl ethers, polyoxyethylene alkyl alkyls Vinyl ether, and polyoxyethylene-polyoxypropylene glycol, include such nonionic surfactants such as polyether-modified silicones, preferably anionic surfactants, alkylbenzenesulfonate is preferable. In addition, surfactant may be used independently or 2 or more types may be used together.

そして、界面活性剤の使用量は、少ないと、水性媒体中における難燃剤分散液の分散性が向上しない一方、多いと、界面活性剤に起因した泡立ちが過剰になり、生産上のトラブルが発生する虞れがあるので、難燃剤分散液中の可塑剤100重量部に対して0.004〜4重量部が好ましく、0.01〜0.5重量部がより好ましい。   When the amount of the surfactant used is small, the dispersibility of the flame retardant dispersion in the aqueous medium is not improved. On the other hand, when the amount is large, foaming due to the surfactant becomes excessive, causing production trouble. Therefore, 0.004 to 4 parts by weight is preferable with respect to 100 parts by weight of the plasticizer in the flame retardant dispersion, and 0.01 to 0.5 parts by weight is more preferable.

又、難燃剤分散液を水性媒体中に分散させる場合、水性媒体中に難水溶性無機塩を含有させることが好ましく、このような難水溶性無機塩としては、例えば、第三リン酸カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、リン酸マグネシウム、炭酸マグネシウムなどが挙げられ、ピロリン酸マグネシウムが好ましい。   Further, when the flame retardant dispersion is dispersed in an aqueous medium, it is preferable to contain a hardly water-soluble inorganic salt in the aqueous medium. Examples of such hardly water-soluble inorganic salts include tricalcium phosphate, hydroxyapatite, and the like. , Magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, magnesium phosphate, magnesium carbonate and the like, and magnesium pyrophosphate is preferred.

そして、難水溶性無機塩の使用量は、少ないと、水性媒体中における難燃剤分散液の分散性が低下することがある一方、多いと、難燃剤分散液を分散させてなる分散液の粘性が上昇して、難燃剤分散液を水性媒体中に均一に分散させることができないことがあるので、難燃剤分散液中の可塑剤100重量部に対して0.2〜10重量部が好ましい。   If the amount of the hardly water-soluble inorganic salt used is small, the dispersibility of the flame retardant dispersion in the aqueous medium may be reduced. On the other hand, if the amount used is large, the viscosity of the dispersion obtained by dispersing the flame retardant dispersion may be reduced. And the flame retardant dispersion may not be uniformly dispersed in the aqueous medium, so 0.2 to 10 parts by weight is preferable with respect to 100 parts by weight of the plasticizer in the flame retardant dispersion.

難燃剤分散液を水性媒体中に分散させる要領としては、難燃剤が全て可塑剤に含まれた状態で、可塑剤が水性媒体中に分散しておればよく、例えば、(1)水性媒体中に必要に応じて界面活性剤や難水溶性無機塩を添加して所定温度に加熱する一方、粉末状の難燃剤を可塑剤に該可塑剤を加熱することによって全量、溶解させた後に冷却して難燃剤を析出させ難燃剤分散液を作製し、この難燃剤分散液を上記水性媒体中に供給して攪拌して分散させる方法、(2)粉末状の難燃剤を可塑剤に該可塑剤を加熱することによって全量、溶解させて難燃剤溶解液を作製する一方、水性媒体中に必要に応じて界面活性剤や難水溶性無機塩を添加して加熱し、難燃剤溶解液を水性媒体中に添加して攪拌、分散させた後に水性媒体を冷却して、難燃剤溶解液中の難燃剤を析出させて難燃剤分散液を作製する方法、(3)水性媒体中に必要に応じて界面活性剤や難水溶性無機塩を添加した上で可塑剤及び難燃剤を添加した後、水性媒体を加熱して可塑剤中に難燃剤を吸収させると共に全量を溶解させて、水性媒体中に可塑剤溶解液が分散した状態とし、次に、水性媒体を冷却して難燃剤溶解液中の難燃剤を析出させて難燃剤分散液を作製する方法などが挙げられる。なお、(2)の方法では、難燃剤溶解液の温度と水性媒体の温度とが等しいか或いは水性媒体の温度の方が0〜10℃だけ高い方が好ましい。   As a procedure for dispersing the flame retardant dispersion in the aqueous medium, the plasticizer may be dispersed in the aqueous medium in a state where all the flame retardant is contained in the plasticizer. For example, (1) in the aqueous medium If necessary, add a surfactant or a sparingly water-soluble inorganic salt and heat it to a predetermined temperature. On the other hand, heat the plasticizer with a powdered flame retardant, and then cool it after dissolving it. To prepare a flame retardant dispersion by precipitating the flame retardant, and to supply the flame retardant dispersion into the aqueous medium and disperse it by stirring; (2) a powdery flame retardant into the plasticizer; The whole amount is dissolved by heating to prepare a flame retardant solution, while adding a surfactant or a hardly water-soluble inorganic salt to the aqueous medium as necessary, and heating, the flame retardant solution is then added to the aqueous medium. Add to the mixture, stir and disperse, then cool the aqueous medium to dissolve the flame retardant (3) A surfactant and a hardly water-soluble inorganic salt are added to an aqueous medium as needed, and then a plasticizer and a flame retardant are added. After that, the aqueous medium is heated so that the flame retardant is absorbed in the plasticizer and the entire amount is dissolved so that the plasticizer solution is dispersed in the aqueous medium, and then the aqueous medium is cooled to dissolve the flame retardant. Examples thereof include a method for preparing a flame retardant dispersion by precipitating a flame retardant in the liquid. In the method (2), it is preferable that the temperature of the flame retardant solution is equal to the temperature of the aqueous medium, or the temperature of the aqueous medium is higher by 0 to 10 ° C.

上記難燃剤分散液、又は、上記難燃剤分散液を水性媒体に分散させてなる難燃剤分散液の分散体(以下、単に「難燃剤分散液の分散体」という)を、ポリスチレン系樹脂粒子を分散させている水性懸濁液中に添加する時期は、発泡剤の含浸前あるいは含浸途中のいずれであってもよく、又、難燃剤分散液、若しくは、難燃剤分散液の分散体の水性懸濁液への添加は、難燃剤分散液、又は、難燃剤分散液の分散体を全量、一度に添加してもよいし、難燃剤分散液、又は、難燃剤分散液の分散体を複数回に分けて添加してもよいし、或いは、難燃剤分散液、又は、難燃剤分散液の分散体を少量づつ連続的に添加してもよい。   The flame retardant dispersion or a dispersion of a flame retardant dispersion obtained by dispersing the flame retardant dispersion in an aqueous medium (hereinafter simply referred to as “dispersion of a flame retardant dispersion”), polystyrene resin particles The timing of addition to the dispersed aqueous suspension may be before or during the impregnation of the foaming agent, and the aqueous suspension of the flame retardant dispersion or the dispersion of the flame retardant dispersion may be used. Addition to the suspension may be done by adding the flame retardant dispersion or the dispersion of the flame retardant dispersion all at once, or adding the flame retardant dispersion or the dispersion of the flame retardant dispersion a plurality of times. The flame retardant dispersion or the dispersion of the flame retardant dispersion may be added in small portions continuously.

又、難燃剤分散液、又は、難燃剤分散液の分散体を、ポリスチレン系樹脂粒子を分散させている水性懸濁液に添加する際において、水性懸濁液の温度は、低すぎても高すぎても、ポリスチレン系樹脂粒子への難燃剤の吸収が不均一となることがあるので、40〜60℃が好ましい。   In addition, when the flame retardant dispersion or the dispersion of the flame retardant dispersion is added to the aqueous suspension in which the polystyrene resin particles are dispersed, the temperature of the aqueous suspension is too high even if it is too low. Even if it is too much, absorption of the flame retardant into the polystyrene-based resin particles may be non-uniform, so 40 to 60 ° C. is preferable.

更に、ポリスチレン系樹脂粒子を分散させている水性懸濁液の温度は、難燃剤分散液、又は、難燃剤分散液の分散体の温度よりも低いことが好ましく、更に、ポリスチレン系樹脂粒子を分散させている水性懸濁液の温度と、難燃剤分散液、又は、難燃剤分散液の分散体の温度との差が20℃以下であることがより好ましく、ポリスチレン系樹脂粒子を分散させている水性懸濁液の温度と、難燃剤分散液、又は、難燃剤分散液の分散体の温度とが同一温度であることが特に好ましい。   Furthermore, the temperature of the aqueous suspension in which the polystyrene resin particles are dispersed is preferably lower than the temperature of the flame retardant dispersion or the dispersion of the flame retardant dispersion, and further the polystyrene resin particles are dispersed. The difference between the temperature of the aqueous suspension and the temperature of the flame retardant dispersion or the dispersion of the flame retardant dispersion is more preferably 20 ° C. or less, and polystyrene resin particles are dispersed. It is particularly preferable that the temperature of the aqueous suspension and the temperature of the flame retardant dispersion or the dispersion of the flame retardant dispersion are the same.

これは、水性懸濁液の温度が、難燃剤分散液、又は、難燃剤分散液の分散体の温度よりも高いと、難燃剤分散液中の難燃剤が可塑剤中に再度、溶解し、ポリスチレン系樹脂粒子への難燃剤の吸収が不均一となる虞れがあるからである。   This is because when the temperature of the aqueous suspension is higher than the temperature of the flame retardant dispersion or the dispersion of the flame retardant dispersion, the flame retardant in the flame retardant dispersion is dissolved again in the plasticizer, This is because there is a possibility that the absorption of the flame retardant into the polystyrene resin particles may be uneven.

そして、水性懸濁液中に分散させたポリスチレン系樹脂粒子中に発泡剤及び難燃剤を含浸させて難燃性発泡性ポリスチレン系樹脂粒子を製造した後、この難燃性発泡性ポリスチレン系樹脂粒子を水性懸濁液中から取り出して、必要に応じて、難燃性発泡性ポリスチレン系樹脂粒子に洗浄処理、乾燥処理を施せばよい。   And after impregnating a polystyrene-type resin particle disperse | distributed in aqueous suspension with a foaming agent and a flame retardant, a flame-retardant foaming polystyrene-type resin particle is manufactured, Then, this flame-retardant foaming polystyrene-type resin particle Is taken out from the aqueous suspension, and the flame-retardant foamable polystyrene resin particles may be washed and dried as necessary.

そして、難燃性発泡性ポリスチレン系樹脂粒子の平均粒子径は、型内発泡成形を行う場合に、難燃性発泡性ポリスチレン系樹脂粒子を予備発泡させて得られる予備発泡粒子のキャビティ内への充填性の観点から、0.3〜2.0mmが好ましく、0.6〜1.4mmがより好ましい。   And the average particle diameter of the flame retardant expandable polystyrene resin particles is the same as that of the pre-expanded particles obtained by pre-expanding the flame retardant expandable polystyrene resin particles when performing in-mold foam molding. From the viewpoint of filling properties, 0.3 to 2.0 mm is preferable, and 0.6 to 1.4 mm is more preferable.

なお、難燃性発泡性ポリスチレン系樹脂粒子には、難燃剤以外に、物性を損なわない範囲内において、気泡調整剤、充填剤、難燃助剤、滑剤、着色剤、溶剤などの添加剤を必要に応じて添加することができ、これら添加剤を難燃性発泡性ポリスチレン系樹脂粒子に添加する場合には、ポリスチレン系樹脂粒子を分散させた水性懸濁液中に添加剤を添加するか、又は、難燃剤分散液、若しくは、難燃剤分散液の分散体中に添加剤を添加すればよい。   In addition to the flame retardant, the flame retardant expandable polystyrene resin particles contain additives such as a bubble regulator, a filler, a flame retardant aid, a lubricant, a colorant, and a solvent, as long as the physical properties are not impaired. When these additives are added to the flame-retardant foamable polystyrene resin particles, are the additives added to the aqueous suspension in which the polystyrene resin particles are dispersed? Alternatively, an additive may be added to the flame retardant dispersion or the dispersion of the flame retardant dispersion.

次に、上記難燃性発泡性ポリスチレン系樹脂粒子を用いて難燃性ポリスチレン系樹脂発泡成形体の製造要領について説明する。難燃性発泡性ポリスチレン系樹脂粒子を用いて難燃性ポリスチレン系樹脂発泡成形体を製造する要領としては、公知の方法を採用することができ、具体的には、難燃性発泡性ポリスチレン系樹脂粒子を加熱して予備発泡させて、嵩密度0.01〜0.05g/cm3程度のポリスチレン系樹脂予備発泡粒子とし、このポリスチレン系樹脂予備発泡粒子を金型のキャビティ内に充填して加熱、発泡させることによって難燃性ポリスチレン系樹脂発泡成形体を得ることができる。 Next, the manufacturing point of a flame-retardant polystyrene-type resin foam molding is demonstrated using the said flame-retardant foaming polystyrene-type resin particle. As a procedure for producing a flame-retardant polystyrene resin foam molded article using the flame-retardant foam polystyrene resin particles, a known method can be adopted, specifically, a flame-retardant foam polystyrene resin The resin particles are heated and pre-expanded to form polystyrene-based resin pre-expanded particles having a bulk density of about 0.01 to 0.05 g / cm 3 , and the polystyrene-based resin pre-expanded particles are filled into the mold cavity. A flame-retardant polystyrene-based resin foam molded article can be obtained by heating and foaming.

上記難燃性ポリスチレン系樹脂発泡成形体の密度は、低いと、難燃性ポリスチレン系樹脂発泡成形体の独立気泡率が低下して、難燃性ポリスチレン系樹脂発泡成形体の断熱性や機械的強度が低下することがある一方、高いと、型内発泡成形における一サイクルに要する時間が長くなり、難燃性ポリスチレン系樹脂発泡成形体の生産効率が低下することがあるので、0.01〜0.05g/cm3が好ましい。 If the density of the flame retardant polystyrene resin foam molded product is low, the closed cell ratio of the flame retardant polystyrene resin foam molded product is lowered, and the heat insulation and mechanical properties of the flame retardant polystyrene resin foam molded product are reduced. On the other hand, when the strength is lowered, if it is high, the time required for one cycle in the in-mold foam molding becomes long, and the production efficiency of the flame-retardant polystyrene resin foam molded article may be lowered. 0.05 g / cm 3 is preferred.

本発明の難燃性発泡性ポリスチレン系樹脂粒子の製造方法は、粉末状の難燃剤を全量、可塑剤中に加熱して溶解させた後に冷却して難燃剤を析出させてなる難燃剤分散液を、ポリスチレン系樹脂粒子を分散させてなる水性懸濁液中に供給しているが、難燃剤分散液中において難燃剤は微細に且つ均一にして安定的に分散しており、しかも、可塑剤は液体状であって水性懸濁液中に均一に分散することから、可塑剤中の難燃剤も水性懸濁液中に均一に分散し、その結果、水性懸濁液中に分散している各ポリスチレン系樹脂粒子に均一に且つ中心部にまで充分に効率良く含浸させることができ、発泡性及び熱融着性に優れた難燃性発泡性ポリスチレン系樹脂粒子を製造することができる。   The method for producing flame retardant expandable polystyrene resin particles according to the present invention comprises a flame retardant dispersion in which a powdered flame retardant is entirely heated and dissolved in a plasticizer and then cooled to precipitate a flame retardant. Is supplied in an aqueous suspension in which polystyrene resin particles are dispersed, and the flame retardant is finely and uniformly dispersed stably in the flame retardant dispersion, and the plasticizer Is a liquid and uniformly dispersed in an aqueous suspension, the flame retardant in the plasticizer is also uniformly dispersed in the aqueous suspension, and as a result, is dispersed in the aqueous suspension. Each polystyrene resin particle can be impregnated uniformly and sufficiently efficiently into the center, and flame-retardant expandable polystyrene resin particles having excellent foamability and heat-fusibility can be produced.

そして、本発明の難燃性発泡性ポリスチレン系樹脂粒子の製造方法は、各難燃性発泡性ポリスチレン系樹脂粒子に難燃剤を良好に含浸させることができ、得られる難燃性発泡性ポリスチレン系樹脂粒子は発泡成形性に優れていることから、難燃性発泡性ポリスチレン系樹脂粒子を発泡成形させて得られた難燃性ポリスチレン系樹脂発泡成形体には硬化粒が存在せず、難燃性ポリスチレン系樹脂発泡成形体をニクロムカットした場合にも良好な切断面を得ることができる。   And the manufacturing method of the flame-retardant foaming polystyrene-type resin particle of this invention can make each flame-retardant foaming polystyrene-type resin particle impregnate a flame retardant favorably, and the flame-retardant foaming polystyrene-type obtained Since the resin particles are excellent in foam moldability, the flame retardant polystyrene resin foam molded product obtained by foam molding of the flame retardant foam polystyrene resin particles has no hardened particles and is flame retardant. A good cut surface can also be obtained when the niobium-cut polystyrene foam resin molded product is cut.

又、粉末状の難燃剤は可塑剤中に一旦、溶解された後に可塑剤中に析出させられており、難燃剤は可塑剤中に微細な状態に分散しているので、難燃性発泡性ポリスチレン系樹脂粒子の製造工程中において粉末状の難燃剤が二次凝集や沈降を生じるようなことはなく、粉末状の難燃剤によって配管ラインが閉塞するなどの問題は発生しない。   In addition, the powdered flame retardant is once dissolved in the plasticizer and then precipitated in the plasticizer. Since the flame retardant is finely dispersed in the plasticizer, the flame retardant foaming property During the production process of the polystyrene resin particles, the powdered flame retardant does not cause secondary aggregation or sedimentation, and there is no problem that the piping line is blocked by the powdered flame retardant.

そして、難燃剤分散液を水性媒体中に分散させている場合には、難燃剤分散液を水性媒体中に更に微分散させることができ、よって、難燃剤分散液を、ポリスチレン系樹脂粒子を分散させてなる水性懸濁液中に更に微細化させた状態にして供給することができ、ポリスチレン系樹脂粒子中に難燃剤をより均一に且つ効率良く含浸させることができる。   When the flame retardant dispersion is dispersed in an aqueous medium, the flame retardant dispersion can be further finely dispersed in the aqueous medium, and thus the flame retardant dispersion is dispersed in polystyrene resin particles. The aqueous suspension can be supplied in a further refined state, and the flame retardant can be more uniformly and efficiently impregnated into the polystyrene resin particles.

更に、難燃剤分散液を水性媒体中に分散させている場合において水性媒体中に界面活性剤を含有させている場合には、難燃剤分散液と水性媒体との間における界面エネルギーを低下させて難燃剤分散液を水性媒体中に更に微細に分散させることができ、よって、ポリスチレン系樹脂粒子中に難燃剤をより均一に含浸させることができる。   Further, in the case where the flame retardant dispersion is dispersed in the aqueous medium and the surfactant is contained in the aqueous medium, the interfacial energy between the flame retardant dispersion and the aqueous medium is reduced. The flame retardant dispersion can be further finely dispersed in the aqueous medium, so that the flame retardant can be more uniformly impregnated in the polystyrene resin particles.

(実施例1)
内容積6350リットルの攪拌機付オートクレーブ内に、第三リン酸カルシウム(大平化学社製)7.62kg、ドデシルベンゼンスルホン酸ナトリウム0.254kg、ベンゾイルパーオキサイド(純度75重量%)8.89kg、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート1.91kg、イオン交換水2540kg及びスチレン単量体2540kgを供給した後、攪拌羽を40rpmの回転速度にて回転させて攪拌して水性懸濁液を形成した。
Example 1
In an autoclave with a stirrer having an internal volume of 6350 liters, tribasic calcium phosphate (Ohira Chemical Co., Ltd.) 7.62 kg, sodium dodecylbenzenesulfonate 0.254 kg, benzoyl peroxide (purity 75% by weight) 8.89 kg, t-butyl per After supplying 1.91 kg of oxy-2-ethylhexyl monocarbonate, 2540 kg of ion exchange water and 2540 kg of styrene monomer, the stirring blade was rotated at a rotational speed of 40 rpm and stirred to form an aqueous suspension.

次に、攪拌羽を40rpmで撹拌しながらオートクレーブ内の温度を90℃まで昇温して90℃にて6時間に亘って保持し、さらにオートクレーブ内の温度を120℃まで昇温し、120℃で2時間に亘って保持することによって、スチレン単量体を懸濁重合した。   Next, while stirring the stirring blade at 40 rpm, the temperature in the autoclave was raised to 90 ° C. and held at 90 ° C. for 6 hours, and further the temperature in the autoclave was raised to 120 ° C. The styrene monomer was subjected to suspension polymerization by holding for 2 hours.

しかる後、オートクレーブ内の温度を25℃まで冷却してオートクレーブ内からポリスチレン粒子を取り出して洗浄、脱水を複数回に亘って繰り返し行い、乾燥工程を経た後、ポリスチレン粒子を分級して、粒子径が0.6〜0.85mmで且つ重量平均分子量が30万のポリスチレン粒子を得た。   Thereafter, the temperature in the autoclave is cooled to 25 ° C., the polystyrene particles are taken out from the autoclave, washed and dehydrated repeatedly, and after passing through a drying step, the polystyrene particles are classified, and the particle size is reduced. Polystyrene particles having 0.6 to 0.85 mm and a weight average molecular weight of 300,000 were obtained.

次いで、別の6350リットルの攪拌機付オートクレーブ内に、イオン交換水1900kg、ドデシルベンゼンスルホン酸ナトリウム0.254kg及びピロリン酸マグネシウム6.35kgを供給した後に、上記ポリスチレン粒子698.5kgを種粒子として供給し、攪拌して水中に均一に分散させた。   Next, after supplying 1900 kg of ion exchange water, 0.254 kg of sodium dodecylbenzenesulfonate and 6.35 kg of magnesium pyrophosphate into another 6350 liter autoclave with a stirrer, 698.5 kg of the polystyrene particles were supplied as seed particles. , And uniformly dispersed in water.

又、イオン交換水381kgにドデシルベンゼンスルホン酸ナトリウム0.127kg及びピロリン酸マグネシウム1.27kgを分散させてなる分散液を作製する一方、スチレン単量体318kgに重合開始剤のベンゾイルパーオキサイド(純度75%)5.59kg及びt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート3.18kgを溶解させてなるスチレン単量体溶液を作製し、このスチレン単量体溶液を上記分散液に添加してホモミキサーを用いて攪拌して乳濁化させ乳濁液を得た。   In addition, a dispersion was prepared by dispersing 0.127 kg of sodium dodecylbenzenesulfonate and 1.27 kg of magnesium pyrophosphate in 381 kg of ion-exchanged water, while the polymerization initiator benzoyl peroxide (purity 75) was added to 318 kg of styrene monomer. %) 5.59 kg and 3.18 kg of t-butylperoxy-2-ethylhexyl monocarbonate were dissolved to prepare a styrene monomer solution, and this styrene monomer solution was added to the dispersion to obtain a homomixer. The mixture was stirred and emulsified to obtain an emulsion.

そして、オートクレーブ内を75℃に加熱、保持した上でオートクレーブ内に上記乳濁液を添加し、ポリスチレン種粒子中にスチレン単量体、ベンゾイルパーオキサイド及びt−ブチルパーオキシ−2−エチルヘキシルモノカーボネートが円滑に吸収されるように30分に亘って保持し、しかる後、オートクレーブ内を75℃から108℃まで0.2℃/分の昇温速度で昇温させながら、オートクレーブ内にスチレン単量体1778kgを160分かけて連続的に滴下し、次に、スチレン単量体の滴下が終了してから20分後に、1℃/分の割合で120℃まで昇温し、90分間に亘って保持してシード重合によりポリスチレン粒子を得た。又、スチレン単量体は全て重合に用いられていた。   And after heating and holding the autoclave at 75 ° C., the above emulsion is added to the autoclave, and styrene monomer, benzoyl peroxide and t-butylperoxy-2-ethylhexyl monocarbonate are added to the polystyrene seed particles. Is maintained for 30 minutes so that it can be absorbed smoothly, and then the styrene unit in the autoclave is heated from 75 ° C. to 108 ° C. at a rate of 0.2 ° C./min. 1778 kg of body was continuously dripped over 160 minutes, and then 20 minutes after the completion of the dropwise addition of the styrene monomer, the temperature was raised to 120 ° C. at a rate of 1 ° C./minute, over 90 minutes. Retained to obtain polystyrene particles by seed polymerization. All styrene monomers were used for polymerization.

又、可塑剤であるアジピン酸ジイソブチル(田岡化学工業株式会社製 商品名「DI4A」)19.6kgを90℃に加熱し、アジピン酸ジイソブチルを攪拌しながら、難燃剤としてテトラブロモシクロオクタン(第一工業製薬社製 商品名「ピロガードFR−200」)21.0kgをアジピン酸ジイソブチルに加えて90℃で30分間に亘って攪拌して、テトラブロモシクロオクタンを全量、アジピン酸ジイソブチルに溶解させて難燃剤溶解液を作製し、この難燃剤溶解液を90℃に維持した。   In addition, 19.6 kg of diisobutyl adipate (trade name “DI4A” manufactured by Taoka Chemical Industry Co., Ltd.), which is a plasticizer, is heated to 90 ° C. and stirred with diisobutyl adipate. Kogyo Seiyaku Co., Ltd., trade name “Pyroguard FR-200”) 21.0 kg was added to diisobutyl adipate and stirred at 90 ° C. for 30 minutes to completely dissolve tetrabromocyclooctane in diisobutyl adipate. A flame retardant solution was prepared, and this flame retardant solution was maintained at 90 ° C.

次に、90℃に保持したイオン交換水127kgにドデシルベンゼンスルホン酸ナトリウム0.05kg、複分解法で作成したピロリン酸マグネシウム1.27kgを供給した後に難燃剤溶解液を全て供給して攪拌して分散させて難燃剤溶解液の分散体を形成した。   Next, 127 kg of ion-exchanged water maintained at 90 ° C. and 0.05 kg of sodium dodecylbenzenesulfonate and 1.27 kg of magnesium pyrophosphate prepared by the metathesis method are added, and then all the flame retardant solution is supplied and stirred to disperse. To form a dispersion of the flame retardant solution.

しかる後、難燃剤溶解液の分散体を攪拌下で50℃まで冷却し、可塑剤中に溶解していた難燃剤を一部、析出させて、可塑剤中に難燃剤が分散した状態として難燃剤分散液を作製し、この難燃剤分散液がイオン交換水中に分散してなる難燃剤分散液の分散体を作製した。この難燃剤分散液の分散体に、難燃助剤としてジクミルパーオキサイド8.38kgを供給して攪拌した。   After that, the dispersion of the flame retardant solution is cooled to 50 ° C. with stirring, and a part of the flame retardant dissolved in the plasticizer is precipitated to make it difficult to disperse the flame retardant in the plasticizer. A flame retardant dispersion was prepared, and a flame retardant dispersion was prepared by dispersing the flame retardant dispersion in ion-exchanged water. To this dispersion of the flame retardant dispersion, 8.38 kg of dicumyl peroxide as a flame retardant aid was supplied and stirred.

次に、オートクレーブ内の水性懸濁液を1℃/分の降温速度で50℃まで冷却した上で、50℃に保持しておいた難燃剤分散液の分散体をオートクレーブ内に供給した。この難燃剤分散液の分散体を添加してから60分後に反応釜を密閉し、90℃に昇温した。   Next, after the aqueous suspension in the autoclave was cooled to 50 ° C. at a rate of temperature decrease of 1 ° C./min, the dispersion of the flame retardant dispersion kept at 50 ° C. was supplied into the autoclave. Sixty minutes after adding the flame retardant dispersion, the reaction kettle was sealed and heated to 90 ° C.

しかる後、発泡剤としてブタン(イソブタン/ノルマルブタン(重量比)=30/70)167.6kgとペンタン(イソペンタン/ノルマルペンタン(重量比)=20/80) 70.5kgとを窒素加圧してオートクレーブ内に30分間かけて圧入し、その状態で3時間に亘って保持した。   Thereafter, as a blowing agent, butane (isobutane / normal butane (weight ratio) = 30/70) 167.6 kg and pentane (isopentane / normal pentane (weight ratio) = 20/80) 70.5 kg were pressurized with nitrogen and autoclave. It was press-fitted into the inside over 30 minutes and held in that state for 3 hours.

続いて、オートクレーブ内の温度を25℃まで冷却し、オートクレーブ内から難燃性発泡性ポリスチレン粒子を取り出して洗浄、脱水を複数回に亘って繰り返し行い、乾燥行程を経た後、難燃性発泡性ポリスチレン粒子を分級して粒子径が0.85〜1.2mm、平均粒子径が1.1mmで且つ重量平均分子量が30万の難燃性発泡性スチレン粒子を得た。なお、全てのテトラブロモシクロオクタンはポリスチレン粒子に含浸されていた。   Subsequently, the temperature inside the autoclave is cooled to 25 ° C., the flame-retardant foaming polystyrene particles are taken out from the autoclave, washed and dehydrated repeatedly, and after undergoing a drying process, the flame-retardant foaming property is obtained. The polystyrene particles were classified to obtain flame-retardant expandable styrene particles having a particle diameter of 0.85 to 1.2 mm, an average particle diameter of 1.1 mm, and a weight average molecular weight of 300,000. All tetrabromocyclooctane was impregnated in polystyrene particles.

(実施例2)
イオン交換水127kgに、ドデシルベンゼンスルホン酸ナトリウム0.05kg及び複分解法で作成したピロリン酸マグネシウム1.27kgを供給した後、25℃にて、アジピン酸ジイソブチル(田岡化学工業株式会社製 商品名「DI4A」)19.6kg及びテトラブロモシクロオクタン(第一工業製薬社製 商品名「ピロガードFR−200」)21.0kgを加えて90℃に昇温して60分間に亘って攪拌して、アジピン酸ジイソブチル中にテトラブロモシクロオクタンを全て、溶解させて、難燃剤溶解液の分散体を作製した。
(Example 2)
After supplying 0.05 kg of sodium dodecylbenzenesulfonate and 1.27 kg of magnesium pyrophosphate prepared by the metathesis method to 127 kg of ion-exchanged water, at 25 ° C., diisobutyl adipate (trade name “DI4A manufactured by Taoka Chemical Industries, Ltd.”) ) 19.6 kg and 21.0 kg of tetrabromocyclooctane (trade name “Pyroguard FR-200” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were added, the temperature was raised to 90 ° C., and the mixture was stirred for 60 minutes to obtain adipic acid. All of tetrabromocyclooctane was dissolved in diisobutyl to prepare a dispersion of a flame retardant solution.

しかる後、難燃剤溶解液の分散体を50℃に冷却して、アジピン酸ジイソブチル中に溶解しているテトラブロモシクロオクタンを析出させて難燃剤分散液を作製し、難燃剤分散液の分散体とした後、ジクミルパーオキサイド8.38kgを分散体に供給した。   Thereafter, the dispersion of the flame retardant solution is cooled to 50 ° C., and tetrabromocyclooctane dissolved in diisobutyl adipate is precipitated to prepare a flame retardant dispersion. After that, 8.38 kg of dicumyl peroxide was supplied to the dispersion.

この難燃剤分散液の分散体を用いたこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径が1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。   Except that this dispersion of the flame retardant dispersion was used, it was the same as in Example 1 and had a particle diameter of 0.85 to 1.2 mm, an average particle diameter of 1.1 mm, and a weight average molecular weight of 300,000. Flammable expandable polystyrene particles were obtained.

(実施例3)
テトラブロモシクロオクタンの量を21.0kgの代わりに42.0kgとし、アジピン酸ジイソブチルの量を19.6kgの代わりに42.0kgとしたこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径が1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
(Example 3)
The particle size was 0 as in Example 1, except that the amount of tetrabromocyclooctane was 42.0 kg instead of 21.0 kg and the amount of diisobutyl adipate was 42.0 kg instead of 19.6 kg. Flame-retardant expandable polystyrene particles having an average particle size of 1.1 mm and a weight average molecular weight of 300,000 were obtained.

(実施例4)
テトラブロモシクロオクタンの量を21.0kgの代わりに14.0kgとしたこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径が1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
Example 4
Except that the amount of tetrabromocyclooctane was 14.0 kg instead of 21.0 kg, the particle size was 0.85 to 1.2 mm, the average particle size was 1.1 mm and the weight was the same as in Example 1. Flame retardant expandable polystyrene particles having an average molecular weight of 300,000 were obtained.

(実施例5)
アジピン酸ジイソブチル19.6kgの代わりにトルエン11.2kgを用いたこと、難燃剤溶解液を作製する際に、トルエンの温度を65℃とし、難燃剤溶解液を供給するイオン交換水の温度を65℃としたこと以外は、実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
(Example 5)
The use of 11.2 kg of toluene instead of 19.6 kg of diisobutyl adipate, and the temperature of the ion-exchanged water for supplying the flame retardant solution to 65 ° C. when the flame retardant solution was prepared were 65 ° C. Except that the temperature was set to 0 ° C., flame retardant expandable polystyrene particles having a particle diameter of 0.85 to 1.2 mm, an average particle diameter of 1.1 mm, and a weight average molecular weight of 300,000 were obtained in the same manner as in Example 1. It was.

(実施例6)
テトラブロモシクロオクタンの代わりにテトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)を用いたこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径が1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
(Example 6)
The particle diameter was 0.85 to 1.2 mm in the same manner as in Example 1 except that tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether) was used instead of tetrabromocyclooctane. In addition, flame-retardant expandable polystyrene particles having an average particle diameter of 1.1 mm and a weight average molecular weight of 300,000 were obtained.

(実施例7)
シード重合時及び難燃剤分散液の分散体の作製時にピロリン酸マグネシウムを用いなかったこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径が1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
(Example 7)
The particle size was 0.85 to 1.2 mm and the average particle size was 1.1 mm, except that magnesium pyrophosphate was not used during seed polymerization and preparation of the flame retardant dispersion. In addition, flame retardant expandable polystyrene particles having a weight average molecular weight of 300,000 were obtained.

(実施例8)
難燃剤溶解液の分散体を50℃の代わりに60℃まで冷却し保持したこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径が1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
(Example 8)
In the same manner as in Example 1 except that the dispersion of the flame retardant solution was cooled to 60 ° C. and held instead of 50 ° C., the particle size was 0.85 to 1.2 mm, and the average particle size was 1.1 mm. In addition, flame-retardant expandable polystyrene particles having a weight average molecular weight of 300,000 were obtained.

(実施例9)
難燃剤溶解液の分散体を50℃の代わりに70℃まで冷却し保持したこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径が1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
Example 9
In the same manner as in Example 1 except that the dispersion of the flame retardant solution was cooled to 70 ° C. and held instead of 50 ° C., the particle size was 0.85 to 1.2 mm, and the average particle size was 1.1 mm. In addition, flame-retardant expandable polystyrene particles having a weight average molecular weight of 300,000 were obtained.

(比較例1)
難燃剤分散液の分散体の代わりに、アジピン酸ジイソブチル19.6kg及び粉末状のテトラブロモシクロオクタン21.0kgを直接、オートクレーブ内に供給したこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径が1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
(Comparative Example 1)
The particle size was the same as in Example 1 except that 19.6 kg of diisobutyl adipate and 21.0 kg of powdered tetrabromocyclooctane were directly fed into the autoclave instead of the dispersion of the flame retardant dispersion. Flame retardant expandable polystyrene particles having 0.85 to 1.2 mm, an average particle diameter of 1.1 mm and a weight average molecular weight of 300,000 were obtained.

(比較例2)
難燃剤溶解液の分散体を50℃に冷却することなく90℃に維持し、オートクレーブ内の水性懸濁液を90℃に維持した状態で水性懸濁液中に難燃剤溶解液を供給した後に発泡剤をオートクレーブ内に圧入したこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
(Comparative Example 2)
After supplying the flame retardant solution to the aqueous suspension while maintaining the dispersion of the flame retardant solution at 90 ° C. without cooling to 50 ° C., and maintaining the aqueous suspension in the autoclave at 90 ° C. A flame retardant foaming property having a particle diameter of 0.85 to 1.2 mm, an average particle diameter of 1.1 mm, and a weight average molecular weight of 300,000 in the same manner as in Example 1 except that the foaming agent was pressed into the autoclave. Polystyrene particles were obtained.

(比較例3)
テトラブロモシクロオクタンの量を21.0kgの代わりに5.6kgとし、アジピン酸ジイソブチルの量を19.6kgの代わりに56.0kgとしたこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
(Comparative Example 3)
The particle size was 0 as in Example 1 except that the amount of tetrabromocyclooctane was 5.6 kg instead of 21.0 kg and the amount of diisobutyl adipate was 56.0 kg instead of 19.6 kg. Flame retardant expandable polystyrene particles having an average particle diameter of 1.1 mm and a weight average molecular weight of 300,000 to 1.2 mm were obtained.

(比較例4)
テトラブロモシクロオクタンの量を21.0kgの代わりに70.0kgとし、アジピン酸ジイソブチルの量を19.6kgの代わりに28.0kgとしたこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。
(Comparative Example 4)
The particle size was 0 as in Example 1 except that the amount of tetrabromocyclooctane was 70.0 kg instead of 21.0 kg and the amount of diisobutyl adipate was 28.0 kg instead of 19.6 kg. Flame retardant expandable polystyrene particles having an average particle diameter of 1.1 mm and a weight average molecular weight of 300,000 to 1.2 mm were obtained.

(比較例5)
アジピン酸ジイソブチルの量を19.6kgの代わりに8.4kgとしたこと以外は実施例1と同様にして、粒子径が0.85〜1.2mm、平均粒子径1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。なお、アジピン酸ジイソブチルを90℃に加熱してもテトラブロモシクロオクタンを全量、溶解させることができなかった。
(Comparative Example 5)
The particle size was 0.85 to 1.2 mm, the average particle size was 1.1 mm, and the weight average molecular weight was the same as in Example 1 except that the amount of diisobutyl adipate was 8.4 kg instead of 19.6 kg. Obtained 300,000 flame-retardant expandable polystyrene particles. Even when diisobutyl adipate was heated to 90 ° C., the entire amount of tetrabromocyclooctane could not be dissolved.

(比較例6)
アジピン酸ジイソブチルの量を19.6kgの代わりに112.0kgとしたこと以外は実施例4と同様にして、粒子径が0.85〜1.2mm、平均粒子径1.1mmで且つ重量平均分子量が30万の難燃性発泡性ポリスチレン粒子を得た。なお、難燃剤溶解液の分散体を50℃まで冷却したが、難燃剤は析出せず、難燃剤分散液の分散体は得られなかったので、難燃剤分散液の分散体の代わりに、難燃剤溶解液の分散体をそのまま用いた。
(Comparative Example 6)
The particle size was 0.85 to 1.2 mm, the average particle size was 1.1 mm, and the weight average molecular weight was the same as in Example 4 except that the amount of diisobutyl adipate was 112.0 kg instead of 19.6 kg. Obtained 300,000 flame-retardant expandable polystyrene particles. Although the dispersion of the flame retardant solution was cooled to 50 ° C., the flame retardant did not precipitate and a dispersion of the flame retardant dispersion was not obtained. The dispersion of the fuel solution was used as it was.

実施例1〜9及び比較例1〜6において、難燃剤溶解液をそれぞれ同様の要領で別途、作成した。そして、可塑剤中に難燃剤粉末の浮遊又は沈殿が存在せず、透明な溶液であるかを目視にて確認したところ、実施例1〜9及び比較例1〜3、6については、可塑剤中に難燃剤粉末の浮遊又は沈殿が存在せず、透明な溶液であり、難燃剤は全量、可塑剤に溶解していたが、比較例4、5については、可塑剤中に難燃剤粉末の浮遊又は沈殿が存在し、難燃剤の一部が可塑剤に溶解していなかった。   In Examples 1-9 and Comparative Examples 1-6, the flame retardant solution was separately prepared in the same manner. And when floating or precipitation of a flame retardant powder did not exist in a plasticizer and it was confirmed visually whether it was a transparent solution, about Examples 1-9 and Comparative Examples 1-3, 6, plasticizer There was no floating or precipitation of the flame retardant powder in the inside, and it was a transparent solution. The flame retardant was completely dissolved in the plasticizer, but for Comparative Examples 4 and 5, the flame retardant powder was not contained in the plasticizer. Floating or sediment was present and some of the flame retardant was not dissolved in the plasticizer.

又、実施例1〜9及び比較例2〜4、6において、難燃剤分散液の分散体をそれぞれ同様の要領で別途、作製し、この難燃剤分散液の分散体に基づいて難燃剤析出率を算出した。なお、比較例4、5については、テトラブロモシクロオクタンがアジピン酸ジイソブチルに全量、溶解していなかったので、難燃剤析出率は算出しなかった。   In Examples 1 to 9 and Comparative Examples 2 to 4 and 6, a dispersion of the flame retardant dispersion was separately prepared in the same manner, and the flame retardant deposition rate was based on the dispersion of the flame retardant dispersion. Was calculated. In Comparative Examples 4 and 5, since the total amount of tetrabromocyclooctane was not dissolved in diisobutyl adipate, the flame retardant deposition rate was not calculated.

更に、難燃剤析出率の測定において、難燃剤分散液の分散体を作製してから30分間に亘って静置した後、容器の底に難燃剤の沈降が存在するか否かを目視観察した。   Furthermore, in the measurement of the flame retardant precipitation rate, after preparing the dispersion of the flame retardant dispersion, the mixture was allowed to stand for 30 minutes, and then visually observed whether or not the flame retardant settled on the bottom of the container. .

なお、難燃剤分散液の分散体中において、可塑剤を100重量部とした時の難燃剤、水性媒体、界面活性剤及び難水溶性無機塩のそれぞれの含有量、並びに、難燃性発泡性ポリスチレン系樹脂粒子において、ポリスチレン樹脂粒子100重量部当りの難燃剤量及び可塑剤量を表1、2に示した。   In addition, in the dispersion of the flame retardant dispersion, each content of the flame retardant, the aqueous medium, the surfactant and the hardly water-soluble inorganic salt when the plasticizer is 100 parts by weight, and the flame retardant foaming property Tables 1 and 2 show the amounts of flame retardant and plasticizer per 100 parts by weight of polystyrene resin particles in polystyrene resin particles.

〔ポリスチレン発泡成形体の成形〕
難燃性発泡性ポリスチレン粒子40kg、並びに、表面処理剤としてポリエチレングリコール20g、ステアリン酸亜鉛60g、脂肪酸トリグリセライド(理研ビタミン社製 商品名「リケマールVT−50」)40g及び脂肪酸モノグリセライド(理研ビタミン社製 商品名「リケマールS−100P」)20gをタンブラーミキサーに供給し、30分間に亘って撹拌して難燃性発泡性ポリスチレン粒子の表面に表面処理剤を被覆した。
[Molding of polystyrene foam molding]
Flame retardant expandable polystyrene particles 40kg, surface treatment agent 20g of polyethylene glycol, 60g of zinc stearate, fatty acid triglyceride (trade name "Riquemar VT-50" manufactured by Riken Vitamin) and fatty acid monoglyceride (product of Riken Vitamin) 20 g of the name “Riquemar S-100P”) was supplied to a tumbler mixer and stirred for 30 minutes to coat the surface treatment agent on the surface of the flame retardant expandable polystyrene particles.

次に、難燃性発泡性ポリスチレン粒子を15℃の保冷庫にて48時間に亘って保管後、特許庁公報 57(1982)−133〔3347〕周知・慣用技術集(発泡成形)第39頁に記載の発泡層上面検出器までの容積量が350リットルである円筒型バッチ式加圧予備発泡機に1ショット当たり難燃性発泡性ポリスチレン粒子5.8kgを供給して水蒸気により2分間加熱しポリスチレン予備発泡粒子を得た。   Next, after storing the flame-retardant expandable polystyrene particles for 48 hours in a 15 ° C. cool box, the Japanese Patent Office Gazette 57 (1982) -133 [3347], Known and Conventional Techniques (Foam Molding), page 39 5.8 kg of flame retardant expandable polystyrene particles per shot are supplied to a cylindrical batch type pressure pre-foaming machine with a volume of 350 liters up to the foam layer upper surface detector described in 1. and heated with steam for 2 minutes. Polystyrene pre-expanded particles were obtained.

しかる後、上記ポリスチレン予備発泡粒子を室温雰囲気下で24時間に亘って放置する一方、縦1840×横930mm×高さ530mmの直方体形状のキャビティを有する金型を備えたブロック成形機(笠原工業株式会社製 商品名「PEONY‐205DS」)を用意し、この金型のキャビティ内にポリスチレン予備発泡粒子を充填して0.07MPa(ゲージ圧)の水蒸気を金型のキャビティ内に20秒間に亘って圧入することによってポリスチレン予備発泡粒子を二次発泡させ、次に、金型内圧力が−0.01MPaとなるまで金型を冷却して直方体形状の難燃性ポリスチレン発泡成形体を得た。その後、難燃性ポリスチレン発泡成形体を70℃の乾燥室にて3日間に亘って保管した。但し、比較例6については、アジピン酸ジイソブチル量が多いために成形時に収縮し、良好な難燃性ポリスチレン発泡成形体が得られなかった。   Thereafter, the polystyrene pre-expanded particles are allowed to stand for 24 hours in a room temperature atmosphere, while a block molding machine (Kasahara Kogyo Co., Ltd.) having a mold having a rectangular parallelepiped shape of 1840 x 930 mm x 530 mm in height. Company name "PEONY-205DS") is prepared, polystyrene pre-expanded particles are filled into the mold cavity, and 0.07 MPa (gauge pressure) of water vapor is filled into the mold cavity for 20 seconds. The polystyrene pre-expanded particles were secondarily expanded by press-fitting, and then the mold was cooled until the pressure inside the mold became −0.01 MPa to obtain a rectangular parallelepiped flame-retardant polystyrene foam molded article. Thereafter, the flame-retardant polystyrene foam molded article was stored in a drying room at 70 ° C. for 3 days. However, in Comparative Example 6, since the amount of diisobutyl adipate was large, it shrunk during molding, and a good flame-retardant polystyrene foam molded article could not be obtained.

〔予備発泡粒子の結合〕
上述の要領で得られたポリスチレン予備発泡粒子をW1g用意し、このポリスチレン予備発泡粒子を目開きが1cmの篩でふるい、篩上に残ったポリスチレン予備発泡粒子の重量W2を測定して、下記式に基づいて予備発泡粒子の結合度を算出し、その結果を表1、2に示した。なお、1重量%以下を「○」、1重量%を超えるものを「×」と評価した。
予備発泡粒子の結合度(重量%)=100×W2/W1
[Combination of pre-expanded particles]
W 1 g of polystyrene pre-expanded particles obtained as described above was prepared, and the polystyrene pre-expanded particles were sieved with a sieve having an opening of 1 cm, and the weight W 2 of the polystyrene pre-expanded particles remaining on the sieve was measured. The degree of bonding of the pre-expanded particles was calculated based on the following formula, and the results are shown in Tables 1 and 2. In addition, 1 weight% or less evaluated as "(circle)" and 1 weight% or more was evaluated as "*".
Bond degree of pre-expanded particles (% by weight) = 100 × W 2 / W 1

〔ポリスチレン発泡成形体のニクロムカット〕
上述の要領で得られた難燃性ポリスチレン発泡成形体を長辺1840mmで且つ短辺930mmの面が下となるようにしてニクロムカット機の台上に載置し、直径が0.4mmのニクロム線を高さ方向に50mm間隔で互いに平行に10本、張設し、ブロック送り速度600mm/分、電流3A/本の条件下にて難燃性ポリスチレン発泡成形体をその高さ方向に50mm間隔毎にニクロムカットして平板形状のスライス品を得た。
[Nichrome cut of polystyrene foam molding]
The flame-retardant polystyrene foam molded product obtained as described above was placed on the base of a nichrome cutting machine with the long side of 1840 mm and the short side of 930 mm facing down, and nichrome having a diameter of 0.4 mm. Ten lines are stretched parallel to each other at intervals of 50 mm in the height direction, and the flame-retardant polystyrene foam molded product is spaced at intervals of 50 mm in the height direction under conditions of a block feed speed of 600 mm / min and a current of 3 A / line. Each plate was cut with nichrome to obtain a flat slice.

得られたスライス品の切断面に発生した凹凸状のスジを目視にて数え、1m2当りのスジの本数を算出し、その結果を表1、2に示した。なお、0.5本/m2以下を「◎」、0.5本/m2を超え且つ1本/m2以下を「○」、1本/m2を超えるものを「×」と評価した。 The uneven streaks generated on the cut surface of the obtained sliced product were visually counted, and the number of streaks per 1 m 2 was calculated. The results are shown in Tables 1 and 2. In addition, 0.5 / m 2 or less is evaluated as “◎”, 0.5 / m 2 and 1 / m 2 or less are evaluated as “◯”, and 1 / m 2 is evaluated as “×”. did.

〔燃焼性試験〕
得られた難燃性ポリスチレン発泡成形体から縦200mm×横25mm×高さ10mmの直方体形状の試験片5個をバーチカルカッターにて切り出し、60℃オーブンで1日間養生後、JIS A9511−2006の測定方法Aに準じて測定を行い、5個の試験片の平均値を求め、消炎時間とし、下記基準に基づいて総合的に評価し、その結果を表1、2に示した。なお、上記JIS規格では消炎時間が3秒以内である必要があり、2秒以内であれば好ましく、1秒以内であればより好ましい。
×・・・消炎時間が3秒を超えているか、又は、試験片の1個でも残じんがあるか若し
くは燃焼限界指示線を超えて燃焼する。
○・・・消炎時間が3秒以内であり、5個のサンプル全てにおいて、残じんがなく燃焼
限界指示線を超えて燃焼しない。
◎・・・消炎時間が1秒以内であり、5個のサンプル全てにおいて、残じんがなく燃焼
限界指示線を超えて燃焼しない。
[Flammability test]
Cut resulting flame-retardant polystyrene foamed molded test pieces five rectangular parallelepiped vertical 200 mm × horizontal 25 mm × height 10mm from at vertical cutter, after 1 day aging at 60 ° C. oven, the measurement of JIS A9511 -2006 Measurement was carried out according to method A, the average value of five test pieces was obtained, and the flame extinction time was determined as a comprehensive evaluation based on the following criteria. The results are shown in Tables 1 and 2. In the JIS standard, the flame extinguishing time needs to be within 3 seconds, preferably within 2 seconds, and more preferably within 1 second.
× ・ ・ ・ Extinguishing time exceeds 3 seconds, or even one of the specimens has residual matter
Or burn beyond the limit line.
○ ... Extinguishing time is within 3 seconds, and all 5 samples burn without residue
Does not burn beyond the limit indicator line.
◎ ・ ・ ・ Extinguishing time is less than 1 second, and all 5 samples burn without residue
Does not burn beyond the limit indicator line.

〔融着率〕
ニクロムカットにより得られた下から6枚目のスライス品(縦1840mm×横930mm×厚み50mm)の上面における長辺方向の中央部分に、短辺方向に沿ってカッターナイフで深さ5mmの切り込み線を入れた後、この切り込み線に沿ってスライス品を手で二分割して縦920mm×横930mm×厚み50mmの分割片を得た。
[Fusion rate]
A cutting line with a depth of 5 mm with a cutter knife along the short side direction at the center of the long side direction on the top surface of the sixth slice (vertical length 1840 mm × width 930 mm × thickness 50 mm) obtained by nichrome cutting Then, the sliced product was manually divided into two along the cut line to obtain a divided piece of 920 mm long × 930 mm wide × 50 mm thick.

得られた分割片の破断面において、発泡粒子内で破断している粒子数(a)と、発泡粒子同士の界面で破断している粒子数(b)とを数え、下記式に基づいて融着率を算出し、その結果を表1、2に示した。なお、70%以上を「○」、70%未満を「×」と評価した。
融着率(%)=100×粒子数(a)/(粒子数(a)+粒子数(b))
In the fracture surface of the obtained segmented piece, the number of particles broken within the foamed particles (a) and the number of particles broken at the interface between the foamed particles (b) were counted and melted based on the following formula. The dressing rate was calculated, and the results are shown in Tables 1 and 2. In addition, 70% or more was evaluated as “◯” and less than 70% was evaluated as “x”.
Fusing rate (%) = 100 × number of particles (a) / (number of particles (a) + number of particles (b))

Figure 0005044375
Figure 0005044375

Figure 0005044375
Figure 0005044375

Claims (3)

水性懸濁液中に分散させたポリスチレン系樹脂粒子に発泡剤を含浸させる前又は含浸中に、可塑剤100重量部に粉末状の難燃剤14〜200重量部を加熱して溶解させた後に冷却して難燃剤を析出させてなる難燃剤分散液を上記水性懸濁液中に供給して、上記ポリスチレン系樹脂粒子中に上記難燃剤を含浸させることを特徴とする難燃性発泡性ポリスチレン系樹脂粒子の製造方法。 Before or during impregnation with polystyrene resin particles dispersed in an aqueous suspension, 14 to 200 parts by weight of a powdered flame retardant is heated and dissolved in 100 parts by weight of a plasticizer and then cooled. A flame retardant foaming polystyrene system, wherein a flame retardant dispersion liquid in which a flame retardant is precipitated is supplied into the aqueous suspension and the polystyrene resin particles are impregnated with the flame retardant. A method for producing resin particles. 難燃剤分散液が可塑剤100重量部に対して100〜5000重量部の水性媒体中に分散されており、上記水性媒体100重量部中に界面活性剤0.004〜4重量部が含有されていることを特徴とする請求項1に記載の難燃性発泡性ポリスチレン系樹脂粒子の製造方法。 A flame retardant dispersion is dispersed in 100 to 5000 parts by weight of an aqueous medium with respect to 100 parts by weight of a plasticizer, and 0.004 to 4 parts by weight of a surfactant is contained in 100 parts by weight of the aqueous medium. The method for producing flame-retardant expandable polystyrene resin particles according to claim 1. 水性媒体中に難水溶性無機塩を含有させていることを特徴とする請求項2に記載の難燃性発泡性ポリスチレン系樹脂粒子の製造方法。 The method for producing flame-retardant expandable polystyrene resin particles according to claim 2, wherein the aqueous medium contains a hardly water-soluble inorganic salt.
JP2007307095A 2007-11-28 2007-11-28 Method for producing flame retardant expandable polystyrene resin particles Active JP5044375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307095A JP5044375B2 (en) 2007-11-28 2007-11-28 Method for producing flame retardant expandable polystyrene resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307095A JP5044375B2 (en) 2007-11-28 2007-11-28 Method for producing flame retardant expandable polystyrene resin particles

Publications (2)

Publication Number Publication Date
JP2009127032A JP2009127032A (en) 2009-06-11
JP5044375B2 true JP5044375B2 (en) 2012-10-10

Family

ID=40818279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307095A Active JP5044375B2 (en) 2007-11-28 2007-11-28 Method for producing flame retardant expandable polystyrene resin particles

Country Status (1)

Country Link
JP (1) JP5044375B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703935B2 (en) * 2010-04-28 2015-04-22 株式会社ジェイエスピー Thermoplastic resin pre-expanded particles and thermoplastic resin expanded particle molded body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4006745B2 (en) * 1997-10-31 2007-11-14 日立化成工業株式会社 Method for producing self-extinguishing expanded polystyrene resin particles and molded product
JP3970191B2 (en) * 2002-11-12 2007-09-05 積水化成品工業株式会社 Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
JP4920864B2 (en) * 2003-05-26 2012-04-18 株式会社ジェイエスピー Self-extinguishing foamable styrene resin particles and method for producing the same
JP4653507B2 (en) * 2005-02-04 2011-03-16 積水化成品工業株式会社 Expandable styrene resin particles
JP2008163119A (en) * 2006-12-27 2008-07-17 Sekisui Plastics Co Ltd Method for producing flame-retardant foamable polystyrene-based resin particle
JP2008163118A (en) * 2006-12-27 2008-07-17 Sekisui Plastics Co Ltd Method for producing flame-retardant foamable polystyrene-based resin particle

Also Published As

Publication number Publication date
JP2009127032A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5080226B2 (en) Expandable resin particles, method for producing the same, and foam molded article
JP5565240B2 (en) Composite resin foamed particles and method for producing the same, and method for producing foamable composite resin particles
JP5750221B2 (en) Flame retardant containing expandable polystyrene resin particles and method for producing the same, flame retardant polystyrene resin pre-expanded particles, and flame retardant polystyrene resin foam molding
JP5188083B2 (en) Method for producing flame retardant expandable polystyrene resin particles
JP2008163119A (en) Method for producing flame-retardant foamable polystyrene-based resin particle
JP4837407B2 (en) Expandable polystyrene resin particles, polystyrene resin foam particles, polystyrene resin foam moldings, polystyrene resin foam slices, and methods for producing the same
JP2008075051A (en) Method for producing self fire-extinguishing foamable polystyrene-based resin particle
JP5388194B2 (en) Expandable polystyrene resin particles and method for producing the same
JP2008163118A (en) Method for producing flame-retardant foamable polystyrene-based resin particle
JP6055685B2 (en) Method for producing flame-retardant styrene resin particles, method for producing foamable particles, method for producing foamed particles, and method for producing foamed molded article
JP5044375B2 (en) Method for producing flame retardant expandable polystyrene resin particles
JP2011026511A (en) Flame-retardant foamable polystyrene-based resin particle, method for producing the same, preliminarily-foamed particle of flame-retardant polystyrene-based resin and expansion molding of flame-retardant polystyrene-based resin
JP5558038B2 (en) Expandable polystyrene resin particles and method for producing the same
JP2011074239A (en) Foamable polystyrene resin particle for cushioning material
JP5798950B2 (en) Building materials and manufacturing method thereof
JP2012077149A (en) Expandable resin, method for producing the same, pre-expanded particle, and expansion molded body
JP3995516B2 (en) Styrenic resin pre-expanded particles having flame retardancy and method for producing the same
JP4887714B2 (en) Method for producing colored foamable styrene resin particles
JP5377917B2 (en) Flame retardant expandable polystyrene resin particles
JP2011074238A (en) Foamable polystyrene resin particle for food container
JP7425639B2 (en) Expandable styrenic resin particles, pre-expanded styrenic resin particles, and styrenic resin foam moldings
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article
JP2011094024A (en) Incombustible agent-containing expandable polystyrene resin particle and method for producing the same, incombustible polystyrene resin pre-expanded particle, and incombustible polystyrene resin expanded molded article
JP2011012117A (en) Expandable polystyrenic resin particles for heat insulating material used for automobile interior material and heat insulating material for automobile interior material
KR101151745B1 (en) Flame-retardant and expandable polystyrene resin beads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Ref document number: 5044375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3