JP2011074239A - Foamable polystyrene resin particle for cushioning material - Google Patents
Foamable polystyrene resin particle for cushioning material Download PDFInfo
- Publication number
- JP2011074239A JP2011074239A JP2009227603A JP2009227603A JP2011074239A JP 2011074239 A JP2011074239 A JP 2011074239A JP 2009227603 A JP2009227603 A JP 2009227603A JP 2009227603 A JP2009227603 A JP 2009227603A JP 2011074239 A JP2011074239 A JP 2011074239A
- Authority
- JP
- Japan
- Prior art keywords
- polystyrene resin
- resin particles
- particles
- expandable polystyrene
- particle diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Molding Of Porous Articles (AREA)
Abstract
Description
本発明は、クッション材用発泡性ポリスチレン系樹脂粒子に関する。さらに詳しくは、本発明はクッションの充填材として好適に使用できる発泡粒子に関するものである。 The present invention relates to an expandable polystyrene resin particle for a cushion material. More specifically, the present invention relates to expanded particles that can be suitably used as a cushioning filler.
従来、クッション用充填材として発泡樹脂粒子が用いられてきた(特許文献1)。
しかし、この方法では発泡樹脂粒子の粒子径が大きく、また流動性も悪いため、クッションの座り心地が悪く、また圧縮されたときに発泡粒子同士が擦れ合うため音鳴りが発生するという問題があった。また、人が日常使用するため、揮発性有機溶剤を低く抑える必要がある。これに対して前記発泡樹脂粒子が400〜900μmの平均粒子径を有し、かつ流動促進剤の含有量が前記発泡樹脂粒子100重量部に対して0.4〜1.5重量部とすることで発泡樹脂粒子のクッション内での流動性を向上させ、上記問題を解決した(特許文献2)。
Conventionally, foamed resin particles have been used as cushioning fillers (Patent Document 1).
However, this method has a problem that the foamed resin particles have a large particle diameter and poor fluidity, so that the cushion is not comfortable to sit on, and the foamed particles rub against each other when compressed, resulting in noise. . In addition, it is necessary to keep the volatile organic solvent low for daily use by humans. On the other hand, the foamed resin particles have an average particle diameter of 400 to 900 μm, and the content of the glidant is 0.4 to 1.5 parts by weight with respect to 100 parts by weight of the foamed resin particles. Thus, the fluidity of the foamed resin particles in the cushion was improved to solve the above problem (Patent Document 2).
特許文献2により、上記のような欠点は解消できるが、発泡性ポリスチレン系樹脂粒子は発泡剤としてプロパン、ブタン、ペンタン等の炭化水素を含んでいる。またポリスチレン系樹脂粒子は摩擦により帯電しやすく、静電気により炭化水素に着火、爆発する危険性を含んでいる。この発泡性ポリスチレン系樹脂粒子の帯電を防ぐために帯電防止剤が添加されている。帯電性を改善する目的で樹脂に押出し機で帯電防止剤を練りこみ、その後、造粒する方法が挙げられている。(特許文献3) Although the above drawbacks can be solved by Patent Document 2, the expandable polystyrene resin particles contain hydrocarbons such as propane, butane and pentane as a foaming agent. Polystyrene resin particles are easily charged by friction, and there is a risk of ignition and explosion of hydrocarbons by static electricity. An antistatic agent is added to prevent the foamable polystyrene resin particles from being charged. For the purpose of improving the charging property, a method of kneading an antistatic agent into the resin with an extruder and then granulating it is mentioned. (Patent Document 3)
しかし特許文献3では、押出し機により帯電防止剤を練りこみ、その後に造粒することから、小粒子径の粒子を生産することが困難であり、本発明のような粒子径の小さいものには不適である。また特許文献3には具体的に帯電量を幾らにするとの記載がなく、帯電防止の観点からは安全性が不十分である。
特許文献2の実施例でも帯電防止剤は添加されているが、脂肪酸金属塩の選択によっては、帯電防止剤を添加しても効果が見られない。例えばステアリン酸マグネシウムを用いると、流動促進効果は高いが、帯電量が高いままで使用時の危険性が高い。また、帯電防止が不十分であると静電気による着火の危険性があるだけでなく、発泡粒子をクッションに充填する際に静電気により充填用機具等にまとわり付き、ハンドリングが悪いという欠点も有している。
However, in Patent Document 3, it is difficult to produce particles having a small particle size because an antistatic agent is kneaded by an extruder and then granulated. Unsuitable. Further, Patent Document 3 does not specifically describe how much the charge amount is set, and safety is insufficient from the viewpoint of preventing charging.
Although the antistatic agent is added also in the Example of patent document 2, even if it adds an antistatic agent depending on selection of a fatty acid metal salt, an effect is not seen. For example, when magnesium stearate is used, the flow promoting effect is high, but the risk of use is high while the charge amount remains high. In addition, inadequate anti-static treatment may not only pose a risk of ignition due to static electricity, but also has the disadvantage of poor handling due to static electricity clinging to filling equipment when filling foamed cushions. is doing.
本発明は、粒子径の小さいクッション材用発泡性スチレン系樹脂粒子でも、帯電防止剤の効果を阻害することなく、流動性の良好なクッション材用発泡性スチレン系樹脂粒子を提供することを課題とする。 It is an object of the present invention to provide foamable styrene resin particles for cushioning materials having good fluidity without impairing the effect of the antistatic agent, even for foamable styrene resin particles for cushioning materials having a small particle diameter. And
本発明の発明者は、上記の課題に鑑み、小粒子径の発泡性ポリスチレン系樹脂粒子において帯電防止性能を損ねることなく、十分な流動促進性能を発揮する発泡性ポリスチレン系樹脂粒子の生産を鋭意研究した結果、平均粒子径200〜450μmの発泡性ポリスチレン系樹脂粒子において帯電防止剤0.01〜1.0wt%の存在下において0.4〜1.0wt%のステアリン酸亜鉛が上記粒子表面に含まれていることで発泡性ポリスチレン系樹脂粒子において帯電を引き起こすことなく、またクッションに充填した際に良好な流動性を確保できることを見出した。 In view of the above problems, the inventors of the present invention eagerly produce expandable polystyrene resin particles that exhibit sufficient flow promoting performance without impairing antistatic performance in expandable polystyrene resin particles having a small particle diameter. As a result of research, 0.4 to 1.0 wt% of zinc stearate is present on the surface of the expandable polystyrene resin particles having an average particle diameter of 200 to 450 μm in the presence of 0.01 to 1.0 wt% of the antistatic agent. It has been found that, by containing the foamable polystyrene resin particles, good fluidity can be secured without causing electrification and filling the cushion.
本発明によれば発泡性ポリスチレン系樹脂粒子の帯電を引き起こすことなく、また発泡粒子の流動性を損ねないため、発泡性ポリスチレン系樹脂粒子の取り扱いにおいての安全性が確保でき、クッションに充填する際のハンドリングが良く、クッション内での音鳴りも発生しない、クッション材用発泡性ポリスチレン系樹脂粒子が提供される。 According to the present invention, the foamable polystyrene resin particles are not charged, and the flowability of the foamed particles is not impaired. Therefore, safety in handling the expandable polystyrene resin particles can be secured, and the cushion is filled. There are provided foamable polystyrene resin particles for a cushion material, which are easy to handle and do not generate sound in the cushion.
ポリスチレン系樹脂粒子は、公知の方法で製造されたものを用いることができ、例えば、(1)水性媒体、スチレン系単量体及び重合開始剤をオートクレーブ内に供給し、オートクレーブ内において加熱、攪拌しながらスチレン系単量体を懸濁重合させてポリスチレン系樹脂粒子を製造する懸濁重合法、(2)水性媒体及びポリスチレン系樹脂種粒子をオートクレーブ内に供給し、ポリスチレン系樹脂種粒子を水性媒体中に分散させた後、オートクレーブ内を加熱、攪拌しながらスチレン系単量体を連続的に或いは断続的に供給して、ポリスチレン系樹脂種粒子にスチレン系単量体を吸収させつつ重合開始剤の存在下にて重合させてポリスチレン系樹脂粒子を製造するシード重合法などが挙げられる。なお、ポリスチレン系樹脂種粒子は、上記(1)の懸濁重合法により製造し分級すればよい。
本発明の製造方法において、ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレンなどのスチレン系単量体の単独重合体又はこれらの共重合体などが挙げられ、スチレンを50重量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。
As the polystyrene resin particles, those produced by a known method can be used. For example, (1) an aqueous medium, a styrene monomer, and a polymerization initiator are supplied into an autoclave, and heated and stirred in the autoclave. (2) Aqueous medium and polystyrene resin seed particles are supplied into an autoclave and the polystyrene resin seed particles are aqueous. After being dispersed in the medium, the inside of the autoclave is heated and stirred, and then the styrene monomer is continuously or intermittently supplied to start the polymerization while the polystyrene resin seed particles absorb the styrene monomer. And a seed polymerization method in which polystyrene resin particles are produced by polymerization in the presence of an agent. The polystyrene-based resin seed particles may be produced and classified by the suspension polymerization method of (1) above.
In the production method of the present invention, the polystyrene-based resin is not particularly limited, and for example, a styrene-based monomer such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, isopropylstyrene, dimethylstyrene, and bromostyrene. Homopolymers of these bodies or copolymers thereof, and polystyrene resins containing 50% by weight or more of styrene are preferable, and polystyrene is more preferable.
又、上記ポリスチレン系樹脂としては、上記スチレン系単量体を主成分とする、
上記スチレン系単量体と、このスチレン系単量体と共重合可能なビニル単量体との共重合体であってもよく、このようなビニル単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレートなどのアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性単量体などが挙げられる。
Moreover, as the polystyrene resin, the styrene monomer as a main component,
A copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer may be used. Examples of such a vinyl monomer include methyl (meth) In addition to alkyl (meth) acrylates such as acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl fumarate, ethyl fumarate, And bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate.
更に、ポリスチレン系樹脂粒子を構成するポリスチレン系樹脂のスチレン換算重量平均分子量は、小さいと、発泡性ポリスチレン系樹脂粒子を発泡させて得られるポリスチレン系樹脂発泡成形体の機械的強度が低下することがある一方、大きいと、発泡性ポリスチレン系樹脂粒子の発泡性が低下し、高発泡倍率のポリスチレン系樹脂発泡成形体を得ることができない虞があるので、20万〜50万が好ましく、24万〜40万がより好ましい。 Furthermore, if the polystyrene-based weight average molecular weight of the polystyrene-based resin constituting the polystyrene-based resin particles is small, the mechanical strength of the polystyrene-based resin foam molded article obtained by foaming the expandable polystyrene-based resin particles may decrease. On the other hand, if it is large, the foamability of the expandable polystyrene resin particles is lowered, and there is a possibility that a polystyrene resin foam molded article having a high expansion ratio cannot be obtained. Therefore, 200,000 to 500,000 are preferable, and 240,000 to 400,000 is more preferable.
本発明で用いられるポリスチレン系樹脂粒子の平均粒子径は200μm〜450μmのものが用いられる。平均粒子径が200μmよりも小さいと発泡剤の保持性が悪く、所望の発泡倍数まで発泡できないことがある。平均粒子径が450μmよりも大きいと発泡粒子の粒子径が大きくなるため、クッションの感触を悪化させ好ましくない。また、発泡粒子の粒子径を小さくする為には発泡倍数を低くすることになるため、コスト面で不適である。 The average particle diameter of the polystyrene resin particles used in the present invention is 200 μm to 450 μm. When the average particle diameter is smaller than 200 μm, the retention of the foaming agent is poor, and it may not be possible to foam to a desired expansion ratio. If the average particle size is larger than 450 μm, the particle size of the expanded particles increases, which is not preferable because the feel of the cushion is deteriorated. Further, in order to reduce the particle diameter of the expanded particles, the expansion ratio is lowered, which is not suitable in terms of cost.
発泡性ポリスチレン系樹脂粒子の帯電量は絶対値として5kV以下が好ましく、より好ましくは0.5kV以下である。帯電量の絶対値が5kVを超えると、発泡性ポリスチレン系樹脂粒子を、フレキシブルコンテナからバンカーに投入する際や、バンカーから発泡機へ配管内を輸送するといった場合に、発泡性ポリスチレン系樹脂粒子が激しく動くために帯電し、静電気のスパークが発生し、着火、爆発の危険性があるため好ましくない。 The charge amount of the expandable polystyrene resin particles is preferably 5 kV or less as an absolute value, more preferably 0.5 kV or less. When the absolute value of the charge amount exceeds 5 kV, when the expandable polystyrene resin particles are put into the bunker from the flexible container or when the inside of the pipe is transported from the bunker to the foamer, the expandable polystyrene resin particles It is unfavorable because it is charged because it moves violently, static electricity sparks, and there is a risk of ignition and explosion.
なお、上記懸濁重合法又はシード重合法において用いられる重合開始剤としては、特に限定されず、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシべンゾエート、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、イソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−ビス(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシ−3、3、5トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレートなどの有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物などが挙げられ、これらは単独で用いられても二種以上が併用されてもよい。 In addition, it does not specifically limit as a polymerization initiator used in the said suspension polymerization method or seed polymerization method, For example, benzoyl peroxide, lauryl peroxide, t-butyl peroxybenzoate, t-butyl peroxide, t -Butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, isopropyl carbonate, t-butyl peroxyacetate, 2,2-bis (t-butylperoxy) butane , T-butylperoxy-3,3,5 trimethylhexanoate, organic peroxides such as di-t-butylperoxyhexahydroterephthalate, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile Etc. These may be used alone or in combination of two or more.
そして、水性媒体中にポリスチレン系樹脂粒子を分散させてなる水性懸濁液は、上記懸濁重合法又はシード重合法による重合後の反応液を水性懸濁液として用いても、或いは、上記懸濁重合法又はシード重合法によって得られたポリスチレン系樹脂粒子を反応液から分離し、このポリスチレン系樹脂粒子を別途用意した水性媒体に懸濁させて水性懸濁液を形成してもよい。なお、水性媒体としては、特に限定されず、例えば、水、アルコールなどが挙げられ、水が好ましい。 The aqueous suspension in which polystyrene resin particles are dispersed in an aqueous medium may be obtained by using the reaction liquid after polymerization by the suspension polymerization method or the seed polymerization method as an aqueous suspension, or the suspension described above. The polystyrene resin particles obtained by the turbid polymerization method or the seed polymerization method may be separated from the reaction solution, and the polystyrene resin particles may be suspended in a separately prepared aqueous medium to form an aqueous suspension. In addition, it does not specifically limit as an aqueous medium, For example, water, alcohol, etc. are mentioned, Water is preferable.
又、上記懸濁重合法又はシード重合法において、スチレン系単量体を重合させる際に、スチレン系単量体の液滴又はポリスチレン系樹脂種粒子の分散性を安定させるために懸濁安定剤を用いてもよく、このような懸濁安定剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウムなどの難水溶性無機塩などが挙げられ、難水溶性無機塩を用いる場合には、アニオン界面活性剤が通常、併用される。 In the suspension polymerization method or seed polymerization method, a suspension stabilizer is used to stabilize the dispersibility of the styrene monomer droplets or polystyrene resin seed particles when the styrene monomer is polymerized. Examples of such suspension stabilizers include water-soluble polymers such as polyvinyl alcohol, methylcellulose, polyacrylamide, and polyvinylpyrrolidone, and poorly water-soluble inorganic salts such as tribasic calcium phosphate and magnesium pyrophosphate. In the case of using a poorly water-soluble inorganic salt, an anionic surfactant is usually used in combination.
上記アニオン界面活性剤としては、例えば、ラウリル硫酸ナトリウムなどのアルキル硫酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、オレイン酸ナトリウムなどの高級脂肪酸塩、β−テトラヒドロキシナフタレンスルホン酸塩などが挙げられ、アルキルベンゼンスルホン酸塩が好ましい。 Examples of the anionic surfactant include alkyl sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, higher fatty acid salts such as sodium oleate, and β-tetrahydroxynaphthalene sulfonate. And alkylbenzene sulfonates are preferred.
又、懸濁重合法又はシード重合法によって得られたポリスチレン系樹脂粒子を別途用意した水性媒体に懸濁させて水性懸濁液を形成する場合にも、ポリスチレン系樹脂粒子の分散性を安定させるために、上述の懸濁安定剤やアニオン界面活性剤を水性媒体中に添加してもよい。 In addition, when the aqueous suspension is formed by suspending the polystyrene resin particles obtained by the suspension polymerization method or the seed polymerization method in a separately prepared aqueous medium, the dispersibility of the polystyrene resin particles is stabilized. Therefore, the above suspension stabilizer and anionic surfactant may be added to the aqueous medium.
この際、難水溶性無機塩の水性媒体中への添加量は、少ないと、水性媒体中におけるポリスチレン系樹脂粒子の分散性が低下し、ポリスチレン系樹脂粒子が塊状になってしまうことがある一方、多いと、ポリスチレン系樹脂粒子を分散させてなる水性媒体の粘性が上昇して、ポリスチレン系樹脂粒子を水性媒体中に均一に分散させることができないことがあるので、水性媒体100wt%に対して0.5〜2wt%が好ましい。 At this time, if the amount of the hardly water-soluble inorganic salt added to the aqueous medium is small, the dispersibility of the polystyrene resin particles in the aqueous medium is lowered, and the polystyrene resin particles may be agglomerated. If the amount is too large, the viscosity of the aqueous medium in which the polystyrene resin particles are dispersed increases, and the polystyrene resin particles may not be uniformly dispersed in the aqueous medium. 0.5-2 wt% is preferable.
そして、本発明の発泡性ポリスチレン系樹脂粒子の製造方法では、上記水性懸濁液中に分散させたポリスチレン系樹脂粒子中に発泡剤を公知の要領で含浸させる。このような発泡剤としては、沸点がポリスチレン系樹脂の軟化点以下であって、常圧でガス状もしくは液状の有機化合物が適しており、例えば、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン、n−ヘキサン、石油エーテルなどの炭化水素、アセトン、メチルエチルケトンなどのケトン類、メタノール、エタノール、イソプロピルアルコ―ルなどのアルコール類、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテルなどの低沸点のエーテル化合物、炭酸ガス、窒素、アンモニアなどの無機ガスなどが挙げられ、沸点が−45〜40℃の炭化水素が好ましく、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタンがより好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。 And in the manufacturing method of the expandable polystyrene resin particle of this invention, a foaming agent is impregnated in the well-known manner in the polystyrene resin particle disperse | distributed in the said aqueous suspension. As such a foaming agent, an organic compound which has a boiling point below the softening point of a polystyrene resin and is gaseous or liquid at normal pressure is suitable. For example, propane, n-butane, isobutane, n-pentane, Hydrocarbons such as isopentane, neopentane, cyclopentane, cyclopentadiene, n-hexane, petroleum ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl ether, diethyl ether and dipropyl ether , Low boiling point ether compounds such as methyl ethyl ether, inorganic gases such as carbon dioxide, nitrogen and ammonia, hydrocarbons having a boiling point of −45 to 40 ° C. are preferred, propane, n-butane, isobutane, n− Pentane and isopentane are more preferred Arbitrariness. In addition, a foaming agent may be used independently or 2 or more types may be used together.
なお、発泡性ポリスチレン系樹脂粒子には、物性を損なわない範囲内において、気泡調整剤、充填剤、難燃剤、難燃助剤、溶剤などの添加剤を必要に応じて添加することができる。 In addition, an additive such as a bubble adjusting agent, a filler, a flame retardant, a flame retardant aid, and a solvent can be added to the expandable polystyrene resin particles as needed within a range that does not impair the physical properties.
そして、得られた発泡性ポリスチレン系樹脂粒子に帯電防止剤と流動促進剤を粒子表面に塗布する。塗布する方法としては攪拌機中で帯電防止剤と流動促進剤とともに発泡性ポリスチレン系樹脂粒子を攪拌するのが好ましく、攪拌機としてはタンブラーミキサー、レディゲミキサー等の攪拌機が用いられる。 And an antistatic agent and a glidant are apply | coated to the particle | grain surface to the obtained expandable polystyrene resin particle. As a coating method, it is preferable to stir the expandable polystyrene resin particles together with the antistatic agent and the glidant in a stirrer. As the stirrer, a stirrer such as a tumbler mixer or a Redige mixer is used.
上記帯電防止剤としては、例えば、ヒドロキシアルキルアミン、ヒドロキシアルキルモノエーテルアミン、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエーテル等のノニオン系界面活性剤、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩等のアニオン系界面活性剤、テトラアルキルアンモニウム塩、トリアルキルベンジルアンモニウム塩等のカチオン系界面活性剤等がある。ヒドロキシアルキルアミン、ヒドロキシアルキルモノエーテルアミン、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテル等のノニオン系界面活性剤が好ましく用いられる。 Examples of the antistatic agent include nonionic surfactants such as hydroxyalkylamines, hydroxyalkyl monoetheramines, glycerin fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene alkyl ethers, alkyl sulfonates, and alkyl benzene sulfonic acids. Examples include anionic surfactants such as salts, and cationic surfactants such as tetraalkylammonium salts and trialkylbenzylammonium salts. Nonionic surfactants such as hydroxyalkylamines, hydroxyalkyl monoetheramines, glycerin fatty acid esters, and polyoxyethylene alkyl ethers are preferably used.
このような帯電防止剤の具体例としては、例えばN,N−ビス(ヒドロキシエチル)ドデシルアミン、N,N−ビス(ヒドロキシエチル)テトラデシルアミン、N,N−(ヒドロキシエチル)ヘキサデシルアミン、N,N−ビス(ヒドロキシエチル)オクタデシルアミン、N−ヒドロキシエチル−N−(2−ヒドロキシテトラデシル)アミン、N−ヒドロキシエチル−N−(2−ヒドロキシヘキサデシル)アミン、N−ヒドロキシエチル−N−(2−ヒドロキシオクタデシル)アミン、N−ヒドロキシプロピル−N−(2−ヒドロキシテトラデシル)アミン、N−ヒドロキシブチル−N−(2−ヒドロキシテトラデシル)アミン、N−ヒドロキシペンチル−N−(2−ヒドロキシテトラデシル)アミン、N−ヒドロキシペンチル−N−(2−ヒドロキシヘキサデシル)アミン、N−ヒドロキシペンチル−N−(2−ヒドロキシオクタデシル)アミン、N,N−ビス(2−ヒドロキシエチル)ドデシルアミン、N,N−ビス(2−ヒドロキシエチル)テトラデシルアミン、N,N−ビス(2−ヒドロキシエチル)ヘキサデシルアミン、N,N−ビス(2−ヒドロキシエチル)オクタデシルアミン、グリセリンジステアレート、ドデシルベンゼンスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、ポリエチレングリコール、ポリオキシエチレンオレイルエーテル、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ラウリルベタイン、スチアリルベタイン、ステアリン酸モノグリセリド等がある。また、これらの帯電防止剤は、単独または混合して使用することもできる。 Specific examples of such an antistatic agent include, for example, N, N-bis (hydroxyethyl) dodecylamine, N, N-bis (hydroxyethyl) tetradecylamine, N, N- (hydroxyethyl) hexadecylamine, N, N-bis (hydroxyethyl) octadecylamine, N-hydroxyethyl-N- (2-hydroxytetradecyl) amine, N-hydroxyethyl-N- (2-hydroxyhexadecyl) amine, N-hydroxyethyl-N -(2-hydroxyoctadecyl) amine, N-hydroxypropyl-N- (2-hydroxytetradecyl) amine, N-hydroxybutyl-N- (2-hydroxytetradecyl) amine, N-hydroxypentyl-N- (2 -Hydroxytetradecyl) amine, N-hydroxypentyl-N- (2- Droxyhexadecyl) amine, N-hydroxypentyl-N- (2-hydroxyoctadecyl) amine, N, N-bis (2-hydroxyethyl) dodecylamine, N, N-bis (2-hydroxyethyl) tetradecylamine N, N-bis (2-hydroxyethyl) hexadecylamine, N, N-bis (2-hydroxyethyl) octadecylamine, glycerol distearate, sodium dodecylbenzenesulfonate, sodium alkylbenzenesulfonate, polyethylene glycol, poly Examples thereof include oxyethylene oleyl ether, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, laurylbetaine, stearylbetaine, and stearic acid monoglyceride. Further, these antistatic agents can be used alone or in combination.
帯電防止剤の使用量としては0.01wt%〜1.0wt%が好ましく、その中でも0.03wt%〜0.1wt%が好ましい。すなわち帯電防止剤は、発泡性ポリスチレン系樹脂粒子100wt%に対して0.01〜1.0wt%が好ましい範囲である。使用量が0.01wt%を下回ると、十分な帯電防止効果が得られないため、好ましくない。使用量が1.0wt%を超えると発泡性ポリスチレン系樹脂粒子の輸送中に剥離し、配管の閉塞の要因となることがある。 The amount of the antistatic agent used is preferably 0.01 wt% to 1.0 wt%, and more preferably 0.03 wt% to 0.1 wt%. That is, the antistatic agent is preferably in the range of 0.01 to 1.0 wt% with respect to 100 wt% of the expandable polystyrene resin particles. If the amount used is less than 0.01 wt%, a sufficient antistatic effect cannot be obtained, which is not preferable. If the amount used exceeds 1.0 wt%, it may be peeled off during the transportation of the expandable polystyrene resin particles, which may cause a blockage of the piping.
上記流動促進剤としてはステアリン酸亜鉛が用いられる。ステアリン酸亜鉛の使用量は0.4wt%〜1.0wt%が好ましく、その中でも0.5wt%〜0.8wt%がより好ましい。すなわち流動促進剤は、発泡性ポリスチレン系樹脂粒子100wt%に対して0.4〜1.0wt%が好ましい範囲である。使用量が0.4wt%よりも少ないと流動促進効果が十分でなく、発泡時の結合やクッションに充填した際の手触りの悪化、音鳴りの原因となる。また、使用量が1.0wt%を超えると発泡性ポリスチレン系樹脂粒子の輸送中に剥離し、配管の閉塞の要因になることがある。 As the glidant, zinc stearate is used. The amount of zinc stearate used is preferably 0.4 wt% to 1.0 wt%, and more preferably 0.5 wt% to 0.8 wt%. That is, the flow promoter is preferably in a range of 0.4 to 1.0 wt% with respect to 100 wt% of the expandable polystyrene resin particles. When the amount used is less than 0.4 wt%, the flow promoting effect is not sufficient, which causes a deterioration in touch and a noise when the cushion is filled and a cushion is filled. Moreover, when the usage-amount exceeds 1.0 wt%, it may peel during the conveyance of an expandable polystyrene resin particle, and may become a factor of blockage | clogging of piping.
発泡性ポリスチレン系樹脂粒子を発泡させてなるクッション材用発泡粒子は0.01g/cm3〜0.2g/cm3の範囲の嵩密度を持つことが好ましい。より好ましくは0.015g/cm3〜0.05g/cm3である。嵩密度が0.2g/cm3を上回ると生産性が悪化する。嵩密度が0.01g/cm3を下回ると、発泡粒子の強度が弱く、使用時に潰れてしまうことがあるため好ましくない。 Expandable polystyrene resin particles formed by foamed cushion material foam particles preferably has a bulk density in the range of 0.01g / cm 3 ~0.2g / cm 3 . More preferably 0.015g / cm 3 ~0.05g / cm 3 . When the bulk density exceeds 0.2 g / cm 3 , productivity deteriorates. When the bulk density is less than 0.01 g / cm 3 , the strength of the foamed particles is weak and may be crushed during use.
また、発泡粒子の平均粒子径は400〜900μmの範囲にあることが好ましい。発泡粒子の平均粒子径が400μmを下回ると上記の嵩密度を満たすような発泡粒子を安定的に生産することが困難となり、900μmを上回るとクッションに充填した際の手触りが悪化するため好ましくない。 Moreover, it is preferable that the average particle diameter of foamed particle exists in the range of 400-900 micrometers. If the average particle diameter of the expanded particles is less than 400 μm, it is difficult to stably produce expanded particles satisfying the above-mentioned bulk density, and if it exceeds 900 μm, the touch when filled in the cushion is deteriorated, which is not preferable.
(実施例1)
内容積6350リットルの攪拌機付オートクレーブ内に、第三リン酸カルシウム(大平化学社製)12.7kg、ドデシルベンゼンスルホン酸ナトリウム0.254kg、ベンゾイルパーオキサイド(純度75重量%)8.89kg、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート1.91kg、イオン交換水2540kg及びスチレン単量体2540kgを供給した後、攪拌羽を42rpmの回転速度にて回転させて攪拌して水性懸濁液を形成した。
Example 1
In an autoclave with a stirrer having an internal volume of 6350 liters, 12.7 kg of tribasic calcium phosphate (manufactured by Ohira Chemical Co., Ltd.), 0.254 kg of sodium dodecylbenzenesulfonate, 8.89 kg of benzoyl peroxide (purity 75% by weight), t-butyl per After supplying 1.91 kg of oxy-2-ethylhexyl monocarbonate, 2540 kg of ion-exchanged water and 2540 kg of styrene monomer, the stirring blade was rotated at a rotational speed of 42 rpm and stirred to form an aqueous suspension.
次に、攪拌羽を42rpmで攪拌しながらオートクレーブ内の温度を90℃まで昇温して90℃にて6時間に亘って保持し、さらにオートクレーブ内の温度を120℃まで昇温し、120℃で2時間に亘って保持することによって、スチレン単量体を懸濁重合した。 Next, while stirring the stirring blade at 42 rpm, the temperature in the autoclave was raised to 90 ° C. and held at 90 ° C. for 6 hours, and the temperature in the autoclave was further raised to 120 ° C. The styrene monomer was subjected to suspension polymerization by holding for 2 hours.
しかる後、オートクレーブ内の温度を25℃まで冷却してオートクレーブ内からポリスチレン粒子を取り出して洗浄、脱水を複数回に亘って繰り返し行い、乾燥工程を経た後、ポリスチレン粒子を分級して、平均粒子径が400μmで且つ重量平均分子量が30万のポリスチレン粒子を得た。 After that, the temperature in the autoclave is cooled to 25 ° C., the polystyrene particles are taken out from the autoclave, washed and dehydrated repeatedly, and after passing through the drying step, the polystyrene particles are classified to obtain an average particle diameter. Of polystyrene particles having a weight average molecular weight of 300,000.
別の内容積6350リットルの攪拌機付オートクレーブ内に、ピロリン酸マグネシウム6.35kg、ドデシルベンゼンスルホン酸ナトリウム0.30kg、イオン交換水3080kg及びスチレン単量体2000kgを供給した後、攪拌羽を36rpmの回転速度にて回転させて、水中にポリスチレン粒子を均一に分散させた。 In another autoclave with an internal volume of 6350 liters, 6.35 kg of magnesium pyrophosphate, 0.30 kg of sodium dodecylbenzenesulfonate, 3080 kg of ion-exchanged water and 2000 kg of styrene monomer were supplied, and then the stirring blade was rotated at 36 rpm. The polystyrene particles were uniformly dispersed in water by rotating at a speed.
次いでオートクレーブを密閉し、90℃まで昇温した。しかる後、発泡剤としてブタン(イソブタン/ノルマルブタン(重量比)=30/70)54.0kgとペンタン(イソペンタン/ノルマルペンタン(重量比)=20/80)170kgとを窒素加圧してオートクレーブ内に30分間かけて圧入し、その状態で3時間に亘って保持した。 The autoclave was then sealed and heated to 90 ° C. Thereafter, 54.0 kg of butane (isobutane / normal butane (weight ratio) = 30/70) and 170 kg of pentane (isopentane / normal pentane (weight ratio) = 20/80) were pressurized as nitrogen in the autoclave. Press-fitting was performed for 30 minutes, and the state was maintained for 3 hours.
続いて、オートクレーブ内の温度を25℃まで冷却し、オートクレーブ内から発泡性ポリスチレン系樹脂粒子を取り出して洗浄、脱水を複数回に亘って繰り返し行い、乾燥行程を経た後、発泡性ポリスチレン系樹脂粒子を分級して平均粒子径が400μmで且つ重量平均分子量が30万の発泡性ポリスチレン系樹脂粒子を得た。 Subsequently, the temperature in the autoclave is cooled to 25 ° C., the expandable polystyrene resin particles are taken out from the autoclave, washed and dehydrated repeatedly, and after a drying process, the expandable polystyrene resin particles To obtain expandable polystyrene resin particles having an average particle diameter of 400 μm and a weight average molecular weight of 300,000.
発泡性ポリスチレン系樹脂粒子500kg、並びに、帯電防止剤としてポリエチレングリコール250g、流動促進剤としてステアリン酸亜鉛2.5kg、をタンブラーミキサーに供給し、30分間に亘って攪拌して発泡性ポリスチレン系樹脂粒子の表面に前記表面処理剤を被覆した。 Supply 500 kg of expandable polystyrene resin particles and 250 g of polyethylene glycol as an antistatic agent and 2.5 kg of zinc stearate as a glidant to a tumbler mixer and stir for 30 minutes to expand the polystyrene resin particles. The surface treatment agent was coated on the surface.
次いで、表面処理の完了した発泡性ポリスチレン系樹脂粒子500kgをポリエチレン製の内袋を備えた、ポリ酢酸ビニル製のフレキシブルコンテナに充填し、密閉した後、15℃の保冷庫にて48時間に亘って保管後、特許庁公報57(1982)−133〔3347〕周知・慣用技術集(発泡成形)第39頁に記載の発泡層上面検出器までの容積量が350リットルである円筒型バッチ式加圧予備発泡機に1ショット当たり発泡性ポリスチレン系樹脂粒子8.3kgを供給して水蒸気により4分間加熱し嵩密度0.040g/cm3のポリスチレン系発泡粒子を得た、その発泡粒子の平均粒子径は820μmであった。 Next, after filling the surface-treated expandable polystyrene resin particles (500 kg) into a polyvinyl acetate flexible container equipped with a polyethylene inner bag, the container was sealed and then kept in a 15 ° C. cool box for 48 hours. After the storage, the cylindrical batch type additive with a volume of 350 liters up to the foam layer upper surface detector described on page 39 of JPO Gazette 57 (1982) -133 [3347] well-known and commonly used technology (foam molding) page 39 8.3 kg of expandable polystyrene resin particles per shot were supplied to a pressure pre-foaming machine and heated with steam for 4 minutes to obtain polystyrene-based expanded particles having a bulk density of 0.040 g / cm 3. The diameter was 820 μm.
(実施例2)
ステアリン酸亜鉛の使用量を4.0kgとしたこと以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
(Example 2)
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the amount of zinc stearate used was 4.0 kg.
(実施例3)
ポリエチレングリコールの使用量を100gとしたこと以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
(Example 3)
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the amount of polyethylene glycol used was 100 g.
(比較例1)
ステアリン酸亜鉛の使用量を0.4kgとしたこと以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。その結果、流動性が阻害され、発泡の段階において発泡粒子が結合してしまうブロッキングが生じた。
(Comparative Example 1)
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the amount of zinc stearate used was 0.4 kg. As a result, the fluidity was hindered, and blocking occurred in which the foamed particles were bonded at the foaming stage.
(比較例2)
ステアリン酸亜鉛の使用量を6.0kgとしたこと以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。予備発泡機への送粒ライン内にステアリン酸亜鉛の堆積が確認された。
(Comparative Example 2)
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the amount of zinc stearate used was 6.0 kg. Accumulation of zinc stearate was confirmed in the feed line to the pre-foaming machine.
(比較例3)
ポリエチレングリコールの使用量を20gとしたこと以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。帯電量が−7.1kVとなり、帯電量の抑制効果が見られなかった。
(Comparative Example 3)
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the amount of polyethylene glycol used was 20 g. The charge amount was -7.1 kV, and the effect of suppressing the charge amount was not observed.
(比較例4)
ステアリン酸亜鉛をステアリン酸マグネシウムとしたこと以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。帯電量が−8.4kVとなり、帯電量の抑制効果が見られなかった。
(Comparative Example 4)
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the zinc stearate was changed to magnesium stearate. The charge amount was -8.4 kV, and the effect of suppressing the charge amount was not observed.
(比較例5)
ポリスチレン系樹脂粒子の平均粒子径を100μmとしたこと以外は実施例1と同様にした。その結果、発泡の段階で発泡性が低く、所望の粒径及び密度の発泡粒子を安定的に得ることが出来なかった。
(Comparative Example 5)
The same procedure as in Example 1 was conducted except that the average particle diameter of the polystyrene resin particles was 100 μm. As a result, foamability was low at the stage of foaming, and foamed particles having a desired particle size and density could not be stably obtained.
(比較例6)
ポリスチレン系樹脂粒子の平均粒子径を600μmとしたこと以外は実施例1と同様にした。発泡性の評価において密度0.2g/cm2の発泡においても平均粒子径が960μmとなり、この平均粒子径のクッションに充填した際には手触りが悪かった。
(Comparative Example 6)
The same procedure as in Example 1 was conducted except that the average particle diameter of the polystyrene resin particles was 600 μm. In the evaluation of foaming property, even in foaming with a density of 0.2 g / cm 2 , the average particle size was 960 μm, and when the cushion was filled with this average particle size, the touch was poor.
表1に本実施例及び比較例の評価を示している。本実施例は比較例3、比較例4に比して帯電量が充分に抑えられ、また本実施例は比較例1に比して流動性に優れている。また本実施例は比較例2に比して配管内での堆積が防止されると共に、本実施例は比較例5に比して好ましい発泡性を示している。また本実施例は比較例6に比して平均粒子径も数値範囲内に入っている。 Table 1 shows the evaluation of this example and the comparative example. In this example, the charge amount is sufficiently suppressed as compared with Comparative Examples 3 and 4, and this Example is superior in fluidity as compared with Comparative Example 1. Further, in this example, deposition in the piping is prevented as compared with Comparative Example 2, and this Example shows a preferable foaming property as compared with Comparative Example 5. Further, in this example, the average particle diameter is within the numerical range as compared with Comparative Example 6.
[測定方法]
〔帯電量測定〕
保冷庫にて48時間に亘って保管後、内袋を開封し、静電気測定器(シムコジャパン株式会社製FMX−003)にて発泡性ポリスチレン系樹脂粒子の帯電量を測定した。帯電量の絶対値が0.5kV以下の場合を◎、5kV以下である場合を○、5kVを超える場合を×と評価した。
[Measuring method]
(Charge amount measurement)
After storing for 48 hours in a cool box, the inner bag was opened, and the charge amount of the expandable polystyrene resin particles was measured with a static electricity meter (FMX-003 manufactured by Simco Japan Co., Ltd.). The case where the absolute value of the charge amount was 0.5 kV or less was evaluated as ◎, the case where it was 5 kV or less, and the case where it exceeded 5 kV was evaluated as ×.
〔発泡粒子の結合〕
上述の要領で得られたポリスチレン系発泡粒子をW1g用意し、このポリスチレン発泡粒子を目開きが0.5cmの篩でふるい、篩上に残ったポリスチレン発泡粒子の重量W2を測定して、下記式に基づいて発泡粒子の結合度を算出し、その結果を示した。なお、1重量%以下を「○」、1重量%を超えるものを「×」と評価した。この評価を流動性として示す。
発泡粒子の結合度(重量%)=100×W2/Wl
[Bonding of expanded particles]
W1g of polystyrene foam particles obtained as described above was prepared, and the polystyrene foam particles were sieved with a sieve having an opening of 0.5 cm, and the weight W2 of the polystyrene foam particles remaining on the sieve was measured. The degree of bonding of the expanded particles was calculated based on the results and the results were shown. In addition, 1 weight% or less evaluated as "(circle)" and 1 weight% or more was evaluated as "*". This evaluation is shown as fluidity.
Bonding degree of expanded particles (% by weight) = 100 × W2 / Wl
〔発泡粒子の嵩密度〕
先ず、ポリスチレン系樹脂発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積Vcm3をJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいてポリスチレン系樹脂発泡粒子の嵩密度を測定する。
嵩密度(g/cm3)=測定試料の質量(W)/測定試料の体積(V)
[Bulk density of expanded particles]
First, Wg was collected from polystyrene resin foam particles as a measurement sample, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was measured according to JIS K6911. And the bulk density of the polystyrene resin foam particles is measured based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)
〔発泡性の評価〕
次に、発泡性スチレン系樹脂粒子の発泡性の評価は、以下の方法で行うことができる。すなわち、発泡性スチレン系樹脂粒子を発泡槽中でゲージ圧0.7kgf/cm2の蒸気にて加熱発泡させる。このとき、加熱時間を1、3、4、5分と変化させ、発泡粒子に収縮が発生する直前の嵩密度及び平均粒子径を測定し、嵩密度が0.2g/cm3を超え、且つ発泡粒子の平均粒子径が400μm〜900μmの範囲にあることの両者を満たすことが出来たものを○、出来なかったものを×とした。
[Evaluation of foamability]
Next, the foamability of the expandable styrene resin particles can be evaluated by the following method. That is, expandable styrene resin particles are heated and foamed with steam having a gauge pressure of 0.7 kgf / cm 2 in a foaming tank. At this time, the heating time was changed to 1, 3, 4, 5 minutes, the bulk density and the average particle diameter immediately before the shrinkage of the expanded particles was measured, the bulk density exceeded 0.2 g / cm 3 , and The case where the average particle diameter of the expanded particles was in the range of 400 μm to 900 μm was satisfied, and the case where it was not satisfied was evaluated as ×.
〔ポリスチレン系樹脂粒子及び発泡粒子の平均粒子径の測定方法〕
本実施例において平均粒子径とはD50で表現される値である。具体的には、ふるい目開き4.00mm、目開き3.35mm、目開き2.80mm、目開き2.36mm、目開き2.00mm、目開き1.70mm、目開き1.40mm、目開き1.18mm、目開き1.00mm、目開き0.85mm、目開き0.71mm、目開き0.60mm、目開き0.50mm、目開き0.425mm、目開き0.355mm、目開き0.300mm、目開き0.250mm、目開き0.212mm、目開き0.180mmのJlS標準ふるいで分級し、その結果から得られた累積重量分布曲線を元にして累積重量が50%となる粒子径(メディアン径)を本実施例における平均粒子径と称する。
[Measurement method of average particle diameter of polystyrene resin particles and expanded particles]
In this embodiment, the average particle diameter is a value expressed by D50. Specifically, sieve opening 4.00 mm, opening 3.35 mm, opening 2.80 mm, opening 2.36 mm, opening 2.00 mm, opening 1.70 mm, opening 1.40 mm, opening 1.18 mm, Aperture 1.00 mm, Aperture 0.85 mm, Aperture 0.71 mm, Aperture 0.60 mm, Aperture 0.50 mm, Aperture 0.425 mm, Aperture 0.355 mm, Aperture 0. Particle size with a cumulative weight of 50% based on the cumulative weight distribution curve obtained by classification using a JLS standard sieve with 300mm, 0.250mm aperture, 0.212mm aperture, and 0.180mm aperture (Median diameter) is referred to as the average particle diameter in this example.
〔配管内での堆積〕
前記円筒型バッチ式加圧予備発泡機への送粒ライン内に堆積が確認されなかったものを○、同堆積が確認されたものを×と評価した。
[Deposition in piping]
A case where no deposition was confirmed in the granulation line to the cylindrical batch type pressure pre-foaming machine was evaluated as ◯, and a case where the deposition was confirmed was evaluated as ×.
本発明はクッション材用発泡性ポリスチレン系樹脂粒子または同発泡性ポリスチレン系樹脂粒子を発泡させた発泡粒子からなるクッション充填材に利用することができる。
INDUSTRIAL APPLICABILITY The present invention can be used for a cushion filler comprising foamable polystyrene resin particles for cushion material or foamed particles obtained by foaming the expandable polystyrene resin particles.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009227603A JP2011074239A (en) | 2009-09-30 | 2009-09-30 | Foamable polystyrene resin particle for cushioning material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009227603A JP2011074239A (en) | 2009-09-30 | 2009-09-30 | Foamable polystyrene resin particle for cushioning material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011074239A true JP2011074239A (en) | 2011-04-14 |
Family
ID=44018563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009227603A Pending JP2011074239A (en) | 2009-09-30 | 2009-09-30 | Foamable polystyrene resin particle for cushioning material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011074239A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013100443A (en) * | 2011-10-19 | 2013-05-23 | Jsp Corp | Thermoplastic resin preliminary foamed particle and thermoplastic resin foamed particle molding |
JP2015113418A (en) * | 2013-12-12 | 2015-06-22 | 積水化成品工業株式会社 | Foamable polystyrene resin particle for preventing abnormal noise and method of producing the same, pre-foamed particle, and foam molded body |
WO2015108040A1 (en) | 2014-01-14 | 2015-07-23 | 株式会社ジェイエスピー | Polyolefin resin particles, polyolefin resin foamed particles, and method for producing polyolefin resin foamed particles |
JP2018044050A (en) * | 2016-09-13 | 2018-03-22 | 積水化成品工業株式会社 | Foamable styrenic resin particle, foamed styrenic resin particle and filling body |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56112944A (en) * | 1980-02-14 | 1981-09-05 | Badische Yuka Co Ltd | Expandable styrene resin particle |
WO2003032783A1 (en) * | 2001-10-11 | 2003-04-24 | Sekisui Plastics Co., Ltd. | Cushion body and foam resin particles for filling cushion body |
JP2003306574A (en) * | 2002-02-18 | 2003-10-31 | Sekisui Plastics Co Ltd | Expandable thermoplastic resin particle and expansion molded product |
JP2006152029A (en) * | 2004-11-25 | 2006-06-15 | Sekisui Plastics Co Ltd | Expandable styrene-based resin particle |
JP2007106974A (en) * | 2005-10-11 | 2007-04-26 | Ryuudekku Corporation:Kk | Flowable granulated material |
JP2008156600A (en) * | 2006-11-30 | 2008-07-10 | Sekisui Plastics Co Ltd | Foamable polystyrene-based resin particle, foamed molded article, their production methods, pre-foamed particle |
-
2009
- 2009-09-30 JP JP2009227603A patent/JP2011074239A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56112944A (en) * | 1980-02-14 | 1981-09-05 | Badische Yuka Co Ltd | Expandable styrene resin particle |
WO2003032783A1 (en) * | 2001-10-11 | 2003-04-24 | Sekisui Plastics Co., Ltd. | Cushion body and foam resin particles for filling cushion body |
JP2003306574A (en) * | 2002-02-18 | 2003-10-31 | Sekisui Plastics Co Ltd | Expandable thermoplastic resin particle and expansion molded product |
JP2006152029A (en) * | 2004-11-25 | 2006-06-15 | Sekisui Plastics Co Ltd | Expandable styrene-based resin particle |
JP2007106974A (en) * | 2005-10-11 | 2007-04-26 | Ryuudekku Corporation:Kk | Flowable granulated material |
JP2008156600A (en) * | 2006-11-30 | 2008-07-10 | Sekisui Plastics Co Ltd | Foamable polystyrene-based resin particle, foamed molded article, their production methods, pre-foamed particle |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013100443A (en) * | 2011-10-19 | 2013-05-23 | Jsp Corp | Thermoplastic resin preliminary foamed particle and thermoplastic resin foamed particle molding |
JP2015113418A (en) * | 2013-12-12 | 2015-06-22 | 積水化成品工業株式会社 | Foamable polystyrene resin particle for preventing abnormal noise and method of producing the same, pre-foamed particle, and foam molded body |
WO2015108040A1 (en) | 2014-01-14 | 2015-07-23 | 株式会社ジェイエスピー | Polyolefin resin particles, polyolefin resin foamed particles, and method for producing polyolefin resin foamed particles |
KR20160085354A (en) | 2014-01-14 | 2016-07-15 | 가부시키가이샤 제이에스피 | Polyolefin resin particles, polyolefin resin foamed particles, and method for producing polyolefin resin foamed particles |
US9650486B2 (en) | 2014-01-14 | 2017-05-16 | Jsp Corporation | Polyolefin resin particles, polyolefin resin foamed particles, and method for producing polyolefin resin foamed particles |
JP2018044050A (en) * | 2016-09-13 | 2018-03-22 | 積水化成品工業株式会社 | Foamable styrenic resin particle, foamed styrenic resin particle and filling body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5548621B2 (en) | Pre-expanded particles, method for producing the same, and foam molded article | |
US9505898B2 (en) | Expandable composite resin bead | |
TWI444414B (en) | Expandable polystyrene resin particle and method for producing same | |
JP7455934B2 (en) | Expandable polystyrene resin particles and their use | |
JP2011074239A (en) | Foamable polystyrene resin particle for cushioning material | |
JP2022153315A (en) | Expandable styrene resin particle, preliminary expandable styrene resin particle, styrenic resin expandable molding, and, manufacturing method of expandable styrenic resin particle | |
WO2016152243A1 (en) | Foaming composite resin particle-containing slurry, filling container therefor, foamed particles, and foam molding | |
JP2008075051A (en) | Method for producing self fire-extinguishing foamable polystyrene-based resin particle | |
JP6243186B2 (en) | Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles | |
JP5528148B2 (en) | Pre-expanded particles, method for producing the same, and foam molded article | |
JP2011074242A (en) | Foamable polystyrene resin particle for lightweight aggregate | |
JP2009120662A (en) | Delayed combustion type foamable polyethylene-based resin particles, method for producing the same, and polyethylene-based expandable beads and resin molded article using those | |
JP4231251B2 (en) | Polypropylene resin pre-expanded particles and in-mold expanded molded articles using the same | |
JP5558038B2 (en) | Expandable polystyrene resin particles and method for producing the same | |
JP2011074238A (en) | Foamable polystyrene resin particle for food container | |
JP7250768B2 (en) | Expandable thermoplastic resin particles, thermoplastic resin pre-expanded particles and thermoplastic resin foam | |
JP2018053181A (en) | Method for producing foamable styrene resin particle | |
JP2010144004A (en) | Pre-expanded particle, method for manufacturing the same, and expansion-molded body | |
JP7445480B2 (en) | Expandable styrenic resin small particles, pre-expanded styrenic resin small particles, and styrenic resin foam molded products | |
JP7425639B2 (en) | Expandable styrenic resin particles, pre-expanded styrenic resin particles, and styrenic resin foam moldings | |
JP5044375B2 (en) | Method for producing flame retardant expandable polystyrene resin particles | |
JP7073144B2 (en) | Method for manufacturing foamable polystyrene resin particles | |
JP2023124554A (en) | Foamable styrenic resin particle, pre-foamed styrenic resin particle, and styrenic resin foam molding | |
JP5377917B2 (en) | Flame retardant expandable polystyrene resin particles | |
JP6677974B2 (en) | Method for producing expandable styrene resin particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130508 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140217 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140709 |