JP6243186B2 - Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles - Google Patents

Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles Download PDF

Info

Publication number
JP6243186B2
JP6243186B2 JP2013219047A JP2013219047A JP6243186B2 JP 6243186 B2 JP6243186 B2 JP 6243186B2 JP 2013219047 A JP2013219047 A JP 2013219047A JP 2013219047 A JP2013219047 A JP 2013219047A JP 6243186 B2 JP6243186 B2 JP 6243186B2
Authority
JP
Japan
Prior art keywords
composite resin
particles
antistatic
mass
antistatic agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013219047A
Other languages
Japanese (ja)
Other versions
JP2015081274A (en
Inventor
浩気 西島
浩気 西島
篠原 充
篠原  充
政春 及川
政春 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2013219047A priority Critical patent/JP6243186B2/en
Publication of JP2015081274A publication Critical patent/JP2015081274A/en
Application granted granted Critical
Publication of JP6243186B2 publication Critical patent/JP6243186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、帯電防止性複合樹脂発泡粒子の製造方法、及び該方法により得られた帯電防止性複合樹脂発泡粒子を型内成形して得られる成形体に関する。   The present invention relates to a method for producing antistatic composite resin foam particles, and a molded body obtained by in-mold molding of antistatic composite resin foam particles obtained by the method.

ポリスチレン系樹脂成分とポリオレフィン系樹脂成分とから構成される複合樹脂発泡粒子を型内成形して得られる複合樹脂発泡粒子成形体は、ポリスチレン系樹脂の成形加工性に優れるという特徴とポリオレフィン系樹脂の耐熱性、靱性に優れるという特徴を両立させることができることから、電子機器や精密機器の部品の梱包や緩衝包装材料として広く利用されている。   The composite resin foamed particle molded body obtained by in-mold molding of composite resin foam particles composed of a polystyrene resin component and a polyolefin resin component is characterized by excellent molding processability of the polystyrene resin and the polyolefin resin. Since it is possible to achieve both the characteristics of excellent heat resistance and toughness, it is widely used as a packaging material for electronic equipment and precision equipment and as a buffer packaging material.

このような用途においては、静電気による埃の付着や放電などの過電流の発生による電気的な損傷防止のため、前記複合樹脂発泡粒子成形体に帯電防止性能を付与することが求められている。   In such applications, it is required to impart antistatic performance to the composite resin foamed particle molded body in order to prevent electrical damage due to the occurrence of overcurrent such as dust adhesion or discharge due to static electricity.

前記複合樹脂発泡粒子を得る方法として、例えば、ポリオレフィン系樹脂粒子を核粒子とし、該ポリオレフィン系樹脂粒子中にスチレン等のビニル芳香族モノマーを含浸させて、該ポリオレフィン系樹脂粒子中でビニル芳香族モノマーの重合を行うことにより、複合樹脂粒子とし、該複合樹脂粒子に発泡剤を含浸させて発泡性複合樹脂粒子とした後に、該発泡性複合樹脂粒子を発泡させて複合樹脂発泡粒子を得る方法が知られている。   As a method for obtaining the composite resin foamed particles, for example, polyolefin resin particles are used as core particles, vinyl aromatic monomers such as styrene are impregnated in the polyolefin resin particles, and vinyl aromatics are contained in the polyolefin resin particles. A method of obtaining composite resin foamed particles by polymerizing monomers to form composite resin particles, impregnating the composite resin particles with a foaming agent to form foamable composite resin particles, and then foaming the foamable composite resin particles It has been known.

また、このような発泡粒子成形体に帯電防止性能を付与するには、界面活性剤などの帯電防止剤を添加することが行われており、その具体的な方法としては、次の(1)〜(3)の方法が知られている。
(1)核粒子作製時に帯電防止剤を練り込む方法
(2)核粒子にモノマーを含浸させる際に帯電防止剤を添加する方法
(3)複合樹脂粒子を分散させた分散媒体中に帯電防止剤を添加し、発泡剤と共に帯電防止剤を複合樹脂粒子中に含浸させる方法
In addition, in order to impart antistatic performance to such a foamed particle molded body, an antistatic agent such as a surfactant is added, and the specific method is as follows (1). The method of (3) is known.
(1) Method of kneading antistatic agent at the time of core particle preparation (2) Method of adding antistatic agent when impregnating monomer into core particle (3) Antistatic agent in dispersion medium in which composite resin particles are dispersed And adding the antistatic agent together with the foaming agent to impregnate the composite resin particles

しかし、単一成分からなる樹脂を基材樹脂とした場合には、上記(1)、(2)の方法で帯電防止剤を添加しても問題は起きないのに対し、複合樹脂を用いて製造する場合には、上記(1)、(2)の方法では、帯電防止剤によりビニル芳香族モノマーの重合が阻害されて良好な発泡性複合樹脂粒子が得られないという問題が発生する。また、(3)の方法では、帯電防止剤を発泡剤と共に含浸させると、樹脂内に深く含浸した帯電防止剤が樹脂を過剰に可塑化してしまい、発泡粒子に分散剤が多く付着するようになり、粒子間の融着性が著しく低下するという問題、成形時に発泡粒子の耐熱性が低下して成形体が変形するという問題などが発生する。   However, when a resin composed of a single component is used as a base resin, there is no problem even if an antistatic agent is added by the methods (1) and (2) above, whereas a composite resin is used. In the case of production, the above methods (1) and (2) have a problem in that good antifoaming composite resin particles cannot be obtained because the polymerization of the vinyl aromatic monomer is inhibited by the antistatic agent. In the method (3), when the antistatic agent is impregnated together with the foaming agent, the antistatic agent deeply impregnated in the resin excessively plasticizes the resin so that a large amount of the dispersant adheres to the foamed particles. Thus, there arises a problem that the fusibility between the particles is remarkably lowered, a problem that the heat resistance of the foamed particles is lowered at the time of molding, and the molded body is deformed.

さらに、上記(3)の方法において、十分な帯電防止性能を発揮させるために帯電防止剤の量を多くすると、発泡粒子の金型充填性が悪化するという問題が生じる。以上のように従来の方法では、良好な帯電防止性能を有する複合樹脂発泡粒子成形体を得ることが困難であった。   Further, in the method (3), if the amount of the antistatic agent is increased in order to exhibit sufficient antistatic performance, there arises a problem that the mold filling property of the expanded particles is deteriorated. As described above, according to the conventional methods, it has been difficult to obtain a composite resin foamed particle molded body having good antistatic performance.

本発明は、前記従来技術の問題点を解決し、融着性や金型充填性に優れ、さらには得られる発泡粒子成形体の物性も低下せず、優れた帯電防止性能を有する複合樹脂発泡粒子成形体を得ることができる帯電防止性複合樹脂発泡粒子の製造方法、及び該製造方法により得られた発泡粒子を型内成形してなる電防止性複合樹脂発泡粒子成形体を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, has excellent fusion properties and mold filling properties, and further does not deteriorate the physical properties of the obtained foamed particle molded body, and has excellent antistatic performance. To provide a method for producing an antistatic composite resin foam particle capable of obtaining a particle molded body, and an antistatic composite resin foam particle molded body obtained by in-mold molding of the foam particles obtained by the production method. Objective.

本発明によれば、以下に示す帯電防止性複合樹脂発泡粒子の製造方法、帯電防止性複合樹脂発泡粒子成形体が提供される。
[1] 50〜95質量%のポリスチレン系樹脂成分と5〜50質量%のポリオレフィン系樹脂成分とを含む複合樹脂(ただし、該ポリスチレン系樹脂成分と該ポリオレフィン系樹脂成分の合計量は100質量%である。)から構成される複合樹脂発泡粒子に、下記(a)及び/又は(b)の塩素を含まないカチオン系帯電防止剤を該複合樹脂発泡粒子100質量部に対して0.4〜3.5質量部塗布することを特徴とする帯電防止性複合樹脂発泡粒子の製造方法。
] 前記(a)のカチオン系帯電防止剤がラウリルジメチルエチルアンモニウムエチルサルフェートであることを特徴とする前記[1]に記載の帯電防止性複合樹脂発泡粒子の製造方法。
] 前記(b)のカチオン系帯電防止剤が1−エチル−3−メチルイミダゾリウムエチルサルフェートとラウリルジエタノールアミンとの混合物であることを特徴とする前記[1]に記載の帯電防止性複合樹脂発泡粒子の製造方法。
前記[1]〜[3]のいずれかに記載の製造方法によって得られた帯電防止性複合樹脂発泡粒子を型内成形してなる、表面抵抗率が1×1013Ω以下、帯電圧減衰時間が3秒以下、密度10〜200kg/mの帯電防止性複合樹脂発泡粒子成形体。


According to this invention, the manufacturing method of the antistatic composite resin expanded particle shown below and the antistatic composite resin expanded particle molded object are provided.
[1] A composite resin containing 50 to 95% by mass of a polystyrene resin component and 5 to 50% by mass of a polyolefin resin component (however, the total amount of the polystyrene resin component and the polyolefin resin component is 100% by mass) (A) and / or (b) a cationic antistatic agent that does not contain chlorine in an amount of 0.4 to 100 parts by mass with respect to 100 parts by mass of the composite resin foam particles. A method for producing antistatic composite resin foamed particles, wherein 3.5 parts by mass is applied.
[ 2 ] The method for producing antistatic composite resin foamed particles according to [1] , wherein the cationic antistatic agent (a) is lauryldimethylethylammonium ethyl sulfate.
[ 3 ] The antistatic composite resin according to [1] , wherein the cationic antistatic agent (b) is a mixture of 1-ethyl-3-methylimidazolium ethyl sulfate and lauryldiethanolamine. A method for producing expanded particles.
[ 4 ] A surface resistivity of 1 × 10 13 Ω or less, obtained by in-mold molding of the antistatic composite resin foamed particles obtained by the production method according to any one of [1] to [3] , An antistatic composite resin foamed particle molded body having a voltage decay time of 3 seconds or less and a density of 10 to 200 kg / m 3 .


本発明によれば、ポリスチレン系樹脂成分とポリオレフィン系樹脂成分とを含む複合樹脂発泡粒子に、カチオン系の帯電防止剤を、特定量塗布することによって、良好な帯電防止性能を有すると共に、金型充填性、融着性に優れた帯電防止性複合樹脂発泡粒子が得られる。また、本発明で得られた帯電防止性複合樹脂発泡粒子を型内成形して得られる帯電防止性複合樹脂発泡粒子成形体(以下、単に発泡粒子成形体または成形体ともいう。)は、収縮し難く、良好な発泡粒子成形体となる。
特に前記(a)及び/又は(b)の帯電防止剤を用いることで、融着性に優れ、収縮変形の少ない発泡粒子成形体が得られ、発泡粒子成形体の帯電圧減衰時間を低減させると共に、表面抵抗率を低減させることができるという特有の効果が得られる。
また、本発明によれば、カチオン系の帯電防止剤を複合樹脂発泡粒子に塗布することにより帯電防止性複合樹脂発泡粒子(以下、単に発泡粒子ともいう。)を製造するので、帯電防止剤が排水中に流出するおそれがなく、優れた環境調和性が得られる。
According to the present invention, by applying a specific amount of a cationic antistatic agent to a composite resin foamed particle including a polystyrene resin component and a polyolefin resin component, the antistatic agent has a good antistatic performance and a mold. Antistatic composite foamed resin particles having excellent filling properties and fusion properties can be obtained. Further, the antistatic composite resin foamed particle molded body (hereinafter also simply referred to as a foamed particle molded body or a molded body) obtained by in-mold molding of the antistatic composite resin foamed particles obtained in the present invention is shrunk. It is difficult to form a foamed particle molded body.
In particular, by using the antistatic agent (a) and / or (b), it is possible to obtain a foamed particle molded body having excellent fusion property and less shrinkage deformation, and reducing the voltage decay time of the foamed particle molded body. In addition, a specific effect that the surface resistivity can be reduced is obtained.
According to the present invention, since the antistatic composite resin foam particles (hereinafter also simply referred to as foam particles) are produced by applying a cationic antistatic agent to the composite resin foam particles, the antistatic agent There is no risk of spilling into the waste water, and excellent environmental harmony is obtained.

以下、本発明の帯電防止性複合樹脂発泡粒子の製造方法、及び該方法により得られる帯電防止性複合樹脂発泡粒子成形体について詳細に説明する。
本発明の製造方法においては、例えば、まず複合樹脂粒子を製造し(複合樹脂粒子製造工程)、該複合樹脂粒子に発泡剤を含浸させ、さらに発泡させて複合樹脂発泡粒子(複合樹脂発泡粒子製造工程)とする。次に、該発泡粒子に帯電防止剤を塗布すること(帯電防止剤塗布工程)により帯電防止性複合樹脂発泡粒子が得られる。
Hereinafter, the manufacturing method of the antistatic composite resin expanded particle of the present invention and the antistatic composite resin expanded particle molded body obtained by the method will be described in detail.
In the production method of the present invention, for example, first, composite resin particles are produced (composite resin particle production process), and the composite resin particles are impregnated with a foaming agent and further expanded to produce composite resin foam particles (composite resin foam particle production). Process). Next, the antistatic composite resin foamed particles are obtained by applying an antistatic agent to the foamed particles (antistatic agent coating step).

[帯電防止性塗布工程]
本発明方法に使用する帯電防止剤としては、カチオン系帯電防止剤が用いられる。ポリエチレン等のポリオレフィン系ポリマーは一般にマイナスに帯電し易いことから、カチオン系帯電防止剤を使用すると優れた帯電防止性能を示すと考えられる。なお、塩化物イオンは成形用金型等の金属を腐食させるおそれがあることから、対イオンとして塩化物イオンを含まないものを用いることが好ましい。
[Antistatic coating process]
As the antistatic agent used in the method of the present invention, a cationic antistatic agent is used. Since polyolefin polymers such as polyethylene are generally easily charged negatively, it is considered that excellent antistatic performance is exhibited when a cationic antistatic agent is used. Since chloride ions may corrode metals such as molding dies, it is preferable to use those that do not contain chloride ions as counter ions.

該カチオン系帯電防止剤としては、次の(a)、(b)が好ましいものとして挙げられる。
(a)脂肪族第4級アンモニウム硫酸塩
(b)イミダゾリウム硫酸塩と脂肪族アミノアルコールとの混合物
As the cationic antistatic agent, the following (a) and (b) are preferable.
(A) Aliphatic quaternary ammonium sulfate (b) Mixture of imidazolium sulfate and aliphatic amino alcohol

前記(a)としては、例えば下記の(1)式であらわされる化合物が挙げられる。
Examples of (a) include compounds represented by the following formula (1).

(1)式において、R〜R基は、それぞれ炭素数1〜17のアルキル基を表す。
(1)式のR〜R基はそれぞれ炭素数1〜3の直鎖飽和アルキル基であることが好ましく、R基は炭素数5〜17の直鎖飽和アルキル基であることが好ましい。特に、R基が炭素数12の直鎖飽和アルキル基、R基がエチル基、R,R基がメチル基であるラウリルジメチルエチルアンモニウムエチルサルフェートが好ましい。
帯電防止剤(a)の具体例としては、例えば第一工業製薬株式会社製のラウリルジメチルエチルアンモニウムエチルサルフェート「カチオーゲンES-L」が挙げられる。
In the formula (1), R 1 to R 4 groups each represent an alkyl group having 1 to 17 carbon atoms.
The R 2 to R 4 groups in the formula (1) are each preferably a linear saturated alkyl group having 1 to 3 carbon atoms, and the R 1 group is preferably a linear saturated alkyl group having 5 to 17 carbon atoms. . In particular, lauryldimethylethylammonium ethyl sulfate in which R 1 group is a straight-chain saturated alkyl group having 12 carbon atoms, R 2 group is an ethyl group, and R 3 and R 4 groups are methyl groups is preferable.
Specific examples of the antistatic agent (a) include lauryldimethylethylammonium ethyl sulfate “Katiogen ES-L” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.

前記(b)の脂肪族アミノアルコールとしては、下記(2)式であらわされる化合物が挙げられる。
Examples of the aliphatic amino alcohol (b) include compounds represented by the following formula (2).

(2)式において、ROH、ROHはそれぞれ炭素数1〜3の直鎖飽和アルコール鎖であることが好ましく、該直鎖飽和アルコール鎖はエタノールであることがより好ましい。また、直鎖アルキル基Rにおける炭素数は5〜17の整数であることが好ましく、炭素数が12であることが特に好ましい。 In the formula (2), R 5 OH and R 6 OH are each preferably a linear saturated alcohol chain having 1 to 3 carbon atoms, and the linear saturated alcohol chain is more preferably ethanol. The number of carbon atoms in the linear alkyl group R 7 is preferably an integer of 5 to 17, and particularly preferably a carbon number of 12.

また、前記(b)のイミダゾリウム硫酸塩としては、例えば(3)式であらわされる化合物が挙げられる。
Examples of the imidazolium sulfate (b) include compounds represented by the formula (3).

(3)式で示されるイミダゾリウム硫酸塩のイミダゾリウム化合物としては、R基、R基の炭素数がそれぞれ1〜3のアルキル基であることが好ましく、R基、R基がそれぞれメチル基、エチル基である1−エチル−3−メチルイミダゾリウムエチルサルフェートがより好ましい。 The imidazolium compound of imidazolium sulfate represented by formula (3), R 8 group is preferably a carbon number of R 9 groups is from 1 to 3 alkyl groups each, R 8 group, R 9 groups are 1-ethyl-3-methylimidazolium ethyl sulfate, which is a methyl group and an ethyl group, respectively, is more preferable.

また、帯電防止剤(b)の脂肪族アミノアルコールとイミダゾリウム硫酸塩との混合割合としては、重量比で10:90〜50:50が好ましく、20:80〜40:60であることがより好ましい。この範囲であれば効果的に帯電防止性能を発揮する発泡粒子とすることができる。   Further, the mixing ratio of the aliphatic amino alcohol and the imidazolium sulfate of the antistatic agent (b) is preferably 10:90 to 50:50, more preferably 20:80 to 40:60 by weight. preferable. If it is this range, it can be set as the expanded particle which exhibits antistatic performance effectively.

帯電防止剤(b)の具体例としては、例えば日油株式会社製の1−エチル−3−メチルイミダゾリウムエチルサルフェート「エレガンC607L」が挙げられる。 Specific examples of the antistatic agent (b) include 1-ethyl-3-methylimidazolium ethyl sulfate “Elegan C607L” manufactured by NOF Corporation.

前記(a)及び/又は(b)に代表されるカチオン系帯電防止剤を用いることにより、複合樹脂発泡粒子の帯電防止性能が向上し、該複合樹脂粒子を型内成形して得られる成形体は、融着性に優れ、収縮変形が小さくなる。前記の通り、ポリエチレン等のポリオレフィン系ポリマーは一般にマイナスに帯電し易いことから、(a)、(b)等のカチオン系帯電防止剤を使用した際に優れた帯電防止性能を示すと考えられる。また、塩化物イオンは成形用金型等の金属を腐食させるおそれがあることから、本発明で使用する帯電防止剤は対イオンとして塩化物イオンを含まないものを用いる。   By using a cationic antistatic agent typified by (a) and / or (b), the antistatic performance of the composite resin foamed particles is improved, and a molded product obtained by molding the composite resin particles in a mold Is excellent in fusibility and shrinkage deformation is small. As described above, since polyolefin polymers such as polyethylene are generally easily charged negatively, it is considered that excellent antistatic performance is exhibited when cationic antistatic agents such as (a) and (b) are used. In addition, since chloride ions may corrode metals such as molding dies, the antistatic agent used in the present invention is one containing no chloride ions as a counter ion.

本発明方法においては、帯電防止剤の塗布量は、複合樹脂発泡粒子100質量部に対して、0.4〜3.5質量部の割合で帯電防止剤を塗布する。塗布量が少なすぎると十分な帯電防止性能を発現する事ができなくなってしまうおそれがある。また、塗布量が多すぎると発泡粒子を金型に充填する際に、発泡粒子が塊状になってしまい、金型への充填性が低下してしまう。
上記観点から、帯電防止剤の塗布量は複合樹脂発泡粒子100質量部に対して、0.5〜3質量部が好ましく、0.7〜2.5質量部がより好ましい。
In the method of the present invention, the antistatic agent is applied in an amount of 0.4 to 3.5 parts by mass with respect to 100 parts by mass of the composite resin foam particles. If the coating amount is too small, sufficient antistatic performance may not be exhibited. On the other hand, when the coating amount is too large, the foamed particles are agglomerated when the foamed particles are filled into the mold, and the filling property into the mold is lowered.
From the above viewpoint, the application amount of the antistatic agent is preferably 0.5 to 3 parts by mass, and more preferably 0.7 to 2.5 parts by mass with respect to 100 parts by mass of the composite resin foamed particles.

前記塗布量に対して、実際の発泡粒子への帯電防止剤の付着量は若干少なくなり、85〜95重量%程度となる。
なお、帯電防止剤の付着量は、帯電防止剤塗布後に充分乾燥させた複合樹脂発泡粒子の重量から塗布前の複合樹脂発泡粒子の重量を引くことで求められる。
The amount of the antistatic agent attached to the actual foamed particles is slightly smaller than the coating amount, and is about 85 to 95% by weight.
The adhesion amount of the antistatic agent is determined by subtracting the weight of the composite resin foamed particles before coating from the weight of the composite resin foamed particles sufficiently dried after the antistatic agent is applied.

前記帯電防止剤は、複合樹脂発泡粒子へ塗布することが重要である。核粒子や複合樹脂粒子を重合する際に前記帯電防止剤を練り込む方法では、重合が阻害されて良好な発泡性複合樹脂粒子が得られない虞や、仮に発泡粒子が得られたとしても十分な帯電防止性能が得られないおそれがある。帯電防止剤を圧力容器内で含浸する方法では、成形体にした場合、融着率が低下したり、成形体が収縮変形してしまうおそれがある。また、複合樹脂発泡粒子成形体に塗布する方法では、複合樹脂発泡粒子へ塗布する方法に比べて、帯電防止剤を塗布する際にムラが生じやすいことから帯電防止性能が不均一となり、帯電防止性能が不十分となる部分ができるおそれがある。   It is important to apply the antistatic agent to the composite resin foam particles. In the method of kneading the antistatic agent when polymerizing the core particles and composite resin particles, there is a possibility that good foamable composite resin particles may not be obtained due to inhibition of polymerization, or even if expanded particles are obtained. There is a possibility that a sufficient antistatic performance cannot be obtained. In the method in which the antistatic agent is impregnated in the pressure vessel, when the molded body is formed, there is a possibility that the fusion rate is lowered or the molded body is contracted and deformed. In addition, the method of applying to the composite resin foam particle molded body is more uneven when applying the antistatic agent than the method of applying to the composite resin foam particle, and the antistatic performance becomes non-uniform and antistatic. There is a possibility that a part where the performance is insufficient may be formed.

前記帯電防止剤の複合樹脂発泡粒子への塗布方法としては、吹付け塗布、エアレス塗布、浸漬塗布、ブレンド法或いはこれらの方法、原理を基本としたその他の塗布方法が挙げられる。なお、吹付塗布においては、複合樹脂発泡粒子に吹付けする際に帯電防止剤を流動状態とするか、または吹付け後に複合発泡粒子を攪拌して複合樹脂発泡粒子全面に帯電防止剤溶液が付着する様にすることが好ましい。   Examples of the method of applying the antistatic agent to the composite resin foam particles include spray coating, airless coating, dip coating, blending, or other coating methods based on these methods and principles. In spray coating, the antistatic agent is allowed to flow when sprayed onto the composite resin foam particles, or the composite foam particles are agitated after spraying and the antistatic agent solution adheres to the entire surface of the composite resin foam particles. It is preferable to do so.

なお、塗布に使用される帯電防止剤は、原液、粉体、水またはアルコール等の希釈液でもよく、その濃度に制限はない。さらに、発泡粒子に帯電防止剤を塗布する際の容器は、密閉系、開放系のどちらでもよく、温度も複合樹脂発泡粒子の耐熱温度以下であればよい。具体的には、例えば帯電防止剤を水で希釈して水溶液とし、該水溶液を複合樹脂発泡粒子に塗布した後に、複合樹脂粒子を撹拌混合して複合樹脂発泡粒子に帯電防止剤を均一に塗布することが可能である。なお、本発明方法においては、前記のいずれかの塗布方法、もしくはそれらを組み合わせることができる。   In addition, the antistatic agent used for application | coating may be dilution liquids, such as a stock solution, powder, water, or alcohol, and there is no restriction | limiting in the density | concentration. Furthermore, the container for applying the antistatic agent to the foamed particles may be either a closed system or an open system, and the temperature only needs to be equal to or lower than the heat resistant temperature of the composite resin foamed particles. Specifically, for example, an antistatic agent is diluted with water to form an aqueous solution, and after the aqueous solution is applied to the composite resin foam particles, the composite resin particles are stirred and mixed to uniformly apply the antistatic agent to the composite resin foam particles. Is possible. In the method of the present invention, any of the above coating methods or a combination thereof can be used.

[複合樹脂粒子製造工程]
本発明に用いられる複合樹脂粒子(以下、単に樹脂粒子ともいう。)の製造方法としては、含浸重合法が挙げられる。具体的には、先にポリエチレン等からなるポリオレフィン系樹脂粒子(核粒子)を押出機等で作製し、該ポリオレフィン系樹脂粒子を耐熱耐圧反応容器に分散媒、分散剤、スチレン系モノマー、重合開始剤等と共に入れ、加熱、撹拌する事でスチレン系モノマーをオレフィン粒子に含浸させ、重合して複合樹脂粒子を製造する。上記含浸重合法の他、押出溶融混練法、更にこれらの方法、原理を基本としたその他の製造方法を採用することができる。
[Composite resin particle manufacturing process]
An example of a method for producing composite resin particles (hereinafter also simply referred to as resin particles) used in the present invention is an impregnation polymerization method. Specifically, polyolefin resin particles (core particles) made of polyethylene or the like are first produced by an extruder or the like, and the polyolefin resin particles are placed in a heat and pressure resistant reaction vessel with a dispersion medium, a dispersant, a styrene monomer, and polymerization starts. The olefin monomer is impregnated with the styrene monomer by heating and stirring together with the agent, and polymerized to produce composite resin particles. In addition to the impregnation polymerization method, an extrusion melt-kneading method, and other production methods based on these methods and principles can be employed.

本発明に使用する前記ポリオレフィン系樹脂は、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、エチレン−プロピレン共重合体、エチレン−プロピレン−ブテン−1共重合体、エチレン−ブテン−1共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸アルキルエステル共重合体、エチレン−メタクリル酸アルキルエステル共重合体等のエチレン系樹脂を用いることができる。また、プロピレンホモ重合体、プロピレン−エチレン共重合体、プロピレン−ブテン−1共重合体、プロピレン−エチレン−ブテン−1共重合体、プロピレン−4−メチルペンテン−1共重合体等のプロピレン系樹脂を用いることができる。更に、これらの2種以上の混合物を利用することもできる。   The polyolefin resin used in the present invention is low density polyethylene, linear low density polyethylene, high density polyethylene, ethylene-propylene copolymer, ethylene-propylene-butene-1 copolymer, ethylene-butene-1 copolymer. Ethylene resins such as a polymer, an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid copolymer, an ethylene-acrylic acid alkyl ester copolymer, and an ethylene-methacrylic acid alkyl ester copolymer can be used. Also, propylene resins such as propylene homopolymer, propylene-ethylene copolymer, propylene-butene-1 copolymer, propylene-ethylene-butene-1 copolymer, propylene-4-methylpentene-1 copolymer Can be used. Furthermore, a mixture of two or more of these may be used.

前記ポリオレフィン系樹脂の融点は、70℃〜160℃であることが好ましく、85℃〜145℃であることがより好ましい。融点が低すぎる場合には、前記複合樹脂発泡粒子を製造する際に粒子相互の固着を防止するために、固着の防止措置を行う必要が生じる。そのため、製造コストが増大してしまうおそれがある。また、この場合には、前記複合樹脂発泡粒子成形体の耐熱性能が著しく低下し、高温環境下での使用が困難になり、実用性が悪くなるおそれがある。一方、融点が高すぎる場合には、型内成形により複合樹脂発泡粒子を成形する際に、型内成形に必要な加熱媒体の温度が高くなりすぎて、既存の成形機での成形が困難になるおそれがある。尚、上記オレフィン系樹脂種粒子の融点は、JIS K7121(1987)の熱流束DSC『一定の熱処理を行った後、融解温度を測定する場合』に基づいて、該オレフィン系樹脂粒子2〜4mgを10℃/分の昇温速度で加熱して得られるDSC曲線における吸熱ピークの頂点温度である。   The melting point of the polyolefin resin is preferably 70 ° C to 160 ° C, and more preferably 85 ° C to 145 ° C. If the melting point is too low, it is necessary to take measures to prevent sticking in order to prevent the particles from sticking together when the composite resin foamed particles are produced. As a result, the manufacturing cost may increase. Further, in this case, the heat resistance performance of the composite resin foamed particle molded body is remarkably lowered, making it difficult to use in a high temperature environment, and the practicality may be deteriorated. On the other hand, if the melting point is too high, the temperature of the heating medium required for in-mold molding becomes too high when molding composite resin foam particles by in-mold molding, making molding with existing molding machines difficult. There is a risk. The melting point of the olefinic resin seed particles is 2 to 4 mg of the olefinic resin particles based on the heat flux DSC of JIS K7121 (1987) “when melting temperature is measured after performing a certain heat treatment”. It is the peak temperature of the endothermic peak in the DSC curve obtained by heating at a rate of temperature increase of 10 ° C./min.

その他の添加剤として、前記ポリオレフィン系樹脂粒子には、本発明の効果を損なわない限り、気泡調整剤、顔料、スリップ剤、難燃剤等の添加剤を含有することができる。また、前記複合樹脂発泡粒子の平均気泡径を調整するための気泡調整剤としては、例えば、タルク、シリカ、水酸化アルミニウム、ホウ酸亜鉛等の従来公知の無機系、或いはポリテトラフルオロエチレン粉末等の有機系のものを用いることができる。   As other additives, the polyolefin-based resin particles may contain additives such as a bubble adjusting agent, a pigment, a slip agent, and a flame retardant, as long as the effects of the present invention are not impaired. Examples of the air conditioner for adjusting the average cell diameter of the composite resin expanded particles include conventionally known inorganic materials such as talc, silica, aluminum hydroxide, zinc borate, and polytetrafluoroethylene powder. The organic type can be used.

前記ポリオレフィン系樹脂粒子の製造方法としては、前記ポリオレフィン系樹脂に上記添加剤等を配合し、溶融混練してから細粒化する方法が挙げられる。溶融混練および細粒化は押出装置により行うことができる。このとき、添加剤をそのまま基材樹脂に練り込むこともできるが、より均一な混練を行うために、通常は前記ポリオレフィン系樹脂に上記添加剤を分散させたマスターバッチを作製し、該マスターバッチと前記ポリオレフィン系樹脂とを押出機に供給して混練する方法を用いることが好ましい。   Examples of the method for producing the polyolefin resin particles include a method of blending the above-mentioned additives and the like into the polyolefin resin, melt-kneading and then finely pulverizing. Melt kneading and atomization can be performed by an extrusion apparatus. At this time, the additive can be kneaded as it is into the base resin, but in order to perform more uniform kneading, a master batch in which the additive is dispersed in the polyolefin resin is usually prepared. It is preferable to use a method in which the polyolefin resin and the polyolefin resin are supplied to an extruder and kneaded.

前記ポリオレフィン系樹脂粒子を得るための細粒化は、前記押出機による溶融混練物を、ストランドカット方式、ホットカット方式、又は水中カット方式等によりペレタイズすることにより得ることができる。なお、所望のポリオレフィン系樹脂粒子が得られる方法であれば他の方法により行うこともできる。   Fine granulation for obtaining the polyolefin resin particles can be obtained by pelletizing the melt-kneaded product obtained by the extruder by a strand cut method, a hot cut method, an underwater cut method or the like. In addition, as long as the desired polyolefin resin particle is obtained, it can also be performed by other methods.

前記複合樹脂粒子を製造するために、前記核粒子に含浸させるスチレン系モノマーとしては、スチレン、及びスチレン誘導体であるα−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルトルエン、p−エチルスチレン、2,4−ジメチルスチレン、p−メトキシスチレン、p−フェニルスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、2,4−ジクロロスチレン、p−n−ブチルスチレン、p−t−ブチルスチレン、p−n−ヘキシルスチレン、p−オクチルスチレン、スチレンスルホン酸、スチレンスルホン酸ナトリウム等を挙げることができる。   In order to produce the composite resin particles, styrene monomers impregnated in the core particles include styrene and α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, vinyl which are styrene derivatives. Toluene, p-ethylstyrene, 2,4-dimethylstyrene, p-methoxystyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4-dichlorostyrene, pn- Examples thereof include butyl styrene, pt-butyl styrene, pn-hexyl styrene, p-octyl styrene, styrene sulfonic acid, sodium styrene sulfonate, and the like.

前記複合樹脂粒子発泡粒子を製造する上で、核粒子に含浸させるスチレン系モノマーは、50〜95質量%がポリスチレン系樹脂成分、5〜50質量%がポリオレフィン系樹脂成分を含む複合樹脂となるように添加される。該複合樹脂粒子中のポリスチレン系樹脂成分は60〜90質量%が好ましく、65〜85質量%がより好ましく、ポリオレフィン系樹脂成分は10〜40質量%が好ましく、15〜35質量%がより好ましい。   In the production of the foamed composite resin particles, the styrene monomer impregnated in the core particles is a composite resin containing 50 to 95% by mass of a polystyrene resin component and 5 to 50% by mass of a polyolefin resin component. To be added. The polystyrene resin component in the composite resin particles is preferably 60 to 90 mass%, more preferably 65 to 85 mass%, and the polyolefin resin component is preferably 10 to 40 mass%, more preferably 15 to 35 mass%.

本発明方法においては、前記スチレン系モノマーと共重合可能なモノマーを併用することができる。共重合可能なモノマーとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸−2−エチルヘキシル等のアクリル酸の炭素数が1〜10のアルキルエステル等が挙げられる。また、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸−2−エチルヘキシル等のメタクリル酸の炭素数が1〜10のアルキルエステル、アクリロニトリル、メタクリロニトリル等のニトリル基含有不飽和化合物等が挙げられる。これらのスチレン系モノマーと共重合可能なモノマー成分は、単独でまたは二種以上を組み合わせて、スチレン系モノマーと共重合させることができる。前記スチレン系モノマーに対する共重合モノマー成分の割合は、スチレン系モノマー100質量部に対し0.5〜10質量部であることが好ましい。   In the method of the present invention, a monomer copolymerizable with the styrenic monomer can be used in combination. Examples of the copolymerizable monomer include alkyl esters having 1 to 10 carbon atoms of acrylic acid such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate. Also, methacrylic acid having 1 to 10 carbon atoms such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate, containing no nitrile groups such as acrylonitrile and methacrylonitrile. And saturated compounds. These monomer components copolymerizable with the styrenic monomer can be copolymerized with the styrenic monomer alone or in combination of two or more. The ratio of the copolymerization monomer component to the styrene monomer is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the styrene monomer.

複合樹脂粒子製造工程においては、前記ポリオレフィン系樹脂粒子内でスチレン系モノマーを均一に重合させるために、スチレン系モノマーをポリオレフィン系樹脂粒子に含浸させてから重合させることが重要である。この場合、スチレン系モノマーの重合と共に架橋が生じることがある。そこで、スチレン系モノマーの重合において重合開始剤と共に必要に応じて架橋剤を併用して架橋反応を意図的に生じさせることができる。重合開始剤、架橋剤を使用する際には、予めスチレン系モノマーに溶解しておくことが好ましい。
なお、スチレン系モノマーの重合過程においては、前記ポリオレフィン系樹脂粒子中に含まれるオレフィンの架橋が生じる場合があることから、本明細書において、「重合」は「架橋」を含む意味で用いられる。
In the composite resin particle production process, in order to uniformly polymerize the styrene monomer in the polyolefin resin particles, it is important to polymerize after impregnating the polyolefin resin particles with the styrene monomer. In this case, crosslinking may occur with the polymerization of the styrene monomer. Therefore, in the polymerization of the styrene monomer, a crosslinking reaction can be intentionally caused by using a crosslinking initiator together with a polymerization initiator as necessary. When using a polymerization initiator and a crosslinking agent, it is preferable to dissolve in a styrene monomer in advance.
In the polymerization process of the styrene-based monomer, the olefin contained in the polyolefin-based resin particles may be cross-linked. Therefore, in this specification, “polymerization” is used to include “cross-linking”.

前記重合開始剤としては、周知のポリスチレン樹脂を得る際のスチレン系モノマーの懸濁重合法に用いられるもの、例えばスチレン系モノマーに可溶で、10時間半減期温度が50〜120℃であるものを用いることができる。具体的には、例えばクメンヒドロキシパーオキサイド、ジクミルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−アミルパーオキシ−2−エチルヘキシルカーボネート、ヘキシルパーオキシ−2−エチルヘキシルカーボネート、ラウロイルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル等のアゾ化合物等を用いることができる。これらの重合開始剤は1種類または2種類以上組み合わせて用いることができる。   As said polymerization initiator, what is used for the suspension polymerization method of the styrene-type monomer at the time of obtaining a well-known polystyrene resin, for example, is soluble in a styrene-type monomer, and 10 hours half-life temperature is 50-120 degreeC Can be used. Specifically, for example, cumene hydroxy peroxide, dicumyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxybenzoate, benzoyl peroxide, t-butylperoxyisopropyl carbonate, t- Organic peroxides such as amylperoxy-2-ethylhexyl carbonate, hexylperoxy-2-ethylhexyl carbonate, lauroyl peroxide, and azo compounds such as azobisisobutyronitrile can be used. These polymerization initiators can be used alone or in combination of two or more.

前記架橋剤としては、重合温度では分解せず、架橋温度で分解するものを用いることができる。具体的には、例えばジクミルパーオキサイド、2,5−t−ブチルパーベンゾエート、1,1−ビス−t−ブチルパーオキシシクロヘキサン等の過酸化物を用いることができる。前記架橋剤は、単独または2種類以上併用して用いることができる。前記架橋剤の配合量は、スチレン系モノマー100質量部に対して0.1〜5質量部であることが好ましい。なお、前記重合開始剤及び前記架橋剤として同じ化合物を採用することもできる。   As the crosslinking agent, one that does not decompose at the polymerization temperature but decomposes at the crosslinking temperature can be used. Specifically, for example, peroxides such as dicumyl peroxide, 2,5-t-butyl perbenzoate, and 1,1-bis-t-butyl peroxycyclohexane can be used. The said crosslinking agent can be used individually or in combination of 2 or more types. It is preferable that the compounding quantity of the said crosslinking agent is 0.1-5 mass parts with respect to 100 mass parts of styrene-type monomers. In addition, the same compound can also be employ | adopted as the said polymerization initiator and the said crosslinking agent.

スチレン系モノマーには、必要に応じて可塑剤、油溶性重合禁止剤、難燃剤、染料、気泡調整剤等のその他の添加剤を添加することができる。   If necessary, other additives such as a plasticizer, an oil-soluble polymerization inhibitor, a flame retardant, a dye, and a bubble regulator can be added to the styrene monomer.

また、本発明の効果を妨げない範囲であれば、重合後に脱水乾燥した前記複合樹脂粒子に表面被覆剤を添加することができる。前記表面被覆剤としては、例えば、ジンクステアレート、ステアリン酸トリグリセライド、ステアリン酸モノグリセライド、ひまし硬化油等が挙げられる。   In addition, a surface coating agent can be added to the composite resin particles dehydrated and dried after polymerization as long as the effects of the present invention are not hindered. Examples of the surface coating agent include zinc stearate, stearic acid triglyceride, stearic acid monoglyceride, castor hardened oil, and the like.

[複合樹脂発泡粒子製造工程]
本発明に用いられる複合樹脂発泡粒子は、例えば、分散媒放出発泡方法により作製することができる。具体的には、作製した樹脂粒子を密閉容器中で水性媒体中へ分散、加熱して物理発泡剤を含浸させて発泡性樹脂粒子とし、該発泡性樹脂粒子を発泡適性温度で密閉容器から水性媒体と共に放出して、発泡粒子を製造することができる。この方法においては、発泡剤含浸工程、発泡工程をそれぞれ別の工程として行なうこともできるが、通常では、前記の通り発泡剤含浸工程と発泡工程は連続して行なわれる。
[Production process of foamed composite resin particles]
The composite resin foamed particles used in the present invention can be produced, for example, by a dispersion medium releasing foaming method. Specifically, the prepared resin particles are dispersed in an aqueous medium in a closed container and heated to impregnate a physical foaming agent to form expandable resin particles, and the expandable resin particles are aqueous from the closed container at an appropriate foaming temperature. It can be released with the medium to produce expanded particles. In this method, the foaming agent impregnation step and the foaming step can be carried out as separate steps, but usually the foaming agent impregnation step and the foaming step are carried out continuously as described above.

前記複合樹脂発泡粒子の製造に際して、前記複合樹脂粒子を分散させる分散媒体としては、前記複合樹脂粒子を溶解させない媒体を使用することができる。このような分散媒体としては、例えばエチレングリコール、グリセリン、メタノール、エタノール等を用いることができるが、好ましくは水が用いられる。
前記分散媒体中には、必要に応じて、前記複合樹脂粒子が分散媒体中に均一に分散するように、酸化アルミニウム、第三リン酸カルシウム、ピロリン酸マグネシウム、酸化亜鉛、カオリンなどの難水溶性無機物質等の分散剤、ドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム等のアニオン系界面活性剤等の分散助剤を分散させることが好ましい。
In the production of the composite resin foamed particles, as a dispersion medium for dispersing the composite resin particles, a medium that does not dissolve the composite resin particles can be used. As such a dispersion medium, for example, ethylene glycol, glycerin, methanol, ethanol and the like can be used, but water is preferably used.
In the dispersion medium, a poorly water-soluble inorganic substance such as aluminum oxide, tricalcium phosphate, magnesium pyrophosphate, zinc oxide, and kaolin so that the composite resin particles are uniformly dispersed in the dispersion medium as necessary. It is preferable to disperse a dispersing aid such as a dispersing agent such as anionic surfactants such as sodium dodecylbenzenesulfonate and sodium alkanesulfonate.

前記複合樹脂発泡粒子を製造する際に分散媒体中に添加される分散剤の量は、前記複合樹脂粒子の質量を基準として決定することができ、前記複合樹脂粒子の質量と分散剤の質量との比率(前記複合樹脂粒子の質量/分散剤の質量)を20〜2000とすることが好ましく、30〜1000とすることがより好ましい。また、分散剤の質量と分散助剤の質量との比率(分散剤の質量/分散助剤の質量)は0.1〜500とすることが好ましく、1〜50とすることがより好ましい。   The amount of the dispersant added to the dispersion medium when producing the composite resin foam particles can be determined based on the mass of the composite resin particles, and the mass of the composite resin particles and the mass of the dispersant The ratio (mass of the composite resin particles / mass of the dispersant) is preferably 20 to 2000, and more preferably 30 to 1000. The ratio of the mass of the dispersant to the mass of the dispersion aid (the mass of the dispersant / the mass of the dispersion aid) is preferably 0.1 to 500, and more preferably 1 to 50.

また、物理発泡剤を上記耐圧容器内に圧入することにより樹脂粒子に物理発泡剤を含浸させる工程においては、液相含浸法や気相含浸法を適宜選択できる。ガス含浸予備発泡方法において物理発泡剤としては、窒素、二酸化炭素、アルゴン、空気、ヘリウム、水等の無機ガス、メタン、エタン、プロパン、ノルマルブタン、イソブタン、シクロブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、ノルマルヘキサン、シクロヘキサン、2−メチルペンタン、3−メチルペンタン、2,2−ジメチルブタン、2,3−ジメチルブタン等の有機揮発性ガス等が使用できる。   Further, in the step of impregnating the resin particles with the physical foaming agent by press-fitting the physical foaming agent into the pressure vessel, a liquid phase impregnation method or a gas phase impregnation method can be appropriately selected. In the gas impregnation pre-foaming method, as the physical foaming agent, nitrogen, carbon dioxide, argon, air, helium, water and other inorganic gases, methane, ethane, propane, normal butane, isobutane, cyclobutane, normal pentane, isopentane, neopentane, cyclohexane Organic volatile gases such as pentane, normal hexane, cyclohexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane can be used.

前記物理発泡剤の配合量は、目的とする前記複合樹脂発泡粒子の見掛け密度、基材樹脂の組成、または物理発泡剤の種類等を考慮して決定されるが、概ね、複合樹脂粒子100質量部に対して0.5〜30質量部の範囲で含浸されるように配合される。   The blending amount of the physical foaming agent is determined in consideration of the apparent density of the target composite resin foamed particles, the composition of the base resin, the type of the physical foaming agent, and the like. So as to be impregnated in the range of 0.5 to 30 parts by mass with respect to parts.

分散媒放出発泡方法においては、耐圧容器内で物理発泡剤が含浸された軟化状態の複合樹脂粒子を分散媒体と共に該耐圧容器から該容器内よりも低圧域(通常は大気圧下)に放出することにより発泡性複合樹脂粒子を発泡させて複合樹脂発泡粒子を得る。なお、該耐圧容器内から発泡性複合樹脂粒子を放出する際には、得られる発泡粒子の見掛け密度や気泡径のバラツキを小さくするために、該耐圧容器内の温度および圧力を一定に保つこと、或は徐々に高めることが好ましい。この場合、耐圧容器内の圧力調整は、発泡剤と同様のガス、或いは窒素、空気等の無機ガスで耐圧容器内に背圧をかけて該容器内の圧力が急激に低下しないようにして、内容物を放出することにより行なわれる。   In the dispersion medium release foaming method, the softened composite resin particles impregnated with the physical foaming agent in the pressure resistant container are discharged together with the dispersion medium from the pressure resistant container to a lower pressure region (usually under atmospheric pressure) than in the container. Thus, the foamable composite resin particles are foamed to obtain composite resin foam particles. When releasing expandable composite resin particles from the pressure vessel, the temperature and pressure in the pressure vessel must be kept constant in order to reduce the variation in apparent density and bubble diameter of the obtained expanded particles. Or gradually increasing. In this case, the pressure in the pressure vessel is adjusted so that the pressure in the pressure vessel is not lowered rapidly by applying a back pressure in the pressure vessel with a gas similar to the foaming agent, or an inorganic gas such as nitrogen or air, This is done by releasing the contents.

本発明方法で使用可能な複合樹脂粒子の発泡方法は前述の方法に限定される事はなく、金型内に充填して加熱する事で成形体を得る事が可能であれば如何なる方法でも良い。   The foaming method of the composite resin particles that can be used in the method of the present invention is not limited to the above-described method, and any method may be used as long as a molded body can be obtained by filling the mold and heating. .

前記のようにして得られた発泡粒子は、見掛け密度10〜300kg/mであることが好ましく、より好ましくは20〜200kg/mである。 The foamed particles obtained as described above preferably have an apparent density of 10 to 300 kg / m 3 , more preferably 20 to 200 kg / m 3 .

[帯電防止性複合樹脂発泡粒子成形体]
本発明の帯電防止性複合樹脂発泡粒子成形体(以下、単に発泡粒子成形体ともいう。)は、前述の方法によって得られた帯電防止剤性複合樹脂粒子を金型内に充填し、飽和水蒸気などの加熱媒体により加熱する型内成形により得ることができる。前記複合樹脂発泡粒子から得られる複合樹脂発泡粒子成形体は、優れた帯電防止性能を有し、発泡粒子相互の融着性、寸法安定性においても優れるものである。
[Antistatic composite resin foam particles]
The antistatic composite resin expanded particle molded body of the present invention (hereinafter also simply referred to as expanded particle molded body) is filled with antistatic agent-based composite resin particles obtained by the above-described method in a mold, and saturated water vapor. It can be obtained by in-mold molding that is heated by a heating medium such as The composite resin foam particle molded body obtained from the composite resin foam particles has excellent antistatic performance, and is excellent in the fusion property between the foam particles and the dimensional stability.

前記発泡粒子成形体を構成している複合樹脂発泡粒子の相互の融着状態の指標としての融着率は、60%以上、更に70%以上、特に80%以上であることが好ましい。なお、本発明においてはカチオン系帯電防止剤を用いているので、発泡粒子の相互の融着状態が良好なものとなる。   The fusion rate as an index of the mutual fusion state of the composite resin foam particles constituting the foamed particle molded body is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more. In the present invention, since the cationic antistatic agent is used, the mutual fusion state of the expanded particles becomes good.

複合樹脂発泡粒子成形体の密度は10〜200kg/m、特に15〜100kg/mであることが好ましい。成形体密度がこの範囲であれば、成形加熱時に熱収縮を起こすことがなく、大幅な成形蒸気圧の上昇や発泡粒子成形体の密度バラツキに起因して機械的物性が不十分となるおそれもない。 The density of the composite resin expanded particle molded body is preferably 10 to 200 kg / m 3 , particularly preferably 15 to 100 kg / m 3 . If the density of the molded body is within this range, thermal shrinkage will not occur during molding heating, and mechanical properties may be insufficient due to a significant increase in molding vapor pressure or density variation of the foamed particle molded body. Absent.

複合樹脂発泡粒子成形体のJIS K 6271に基づく表面抵抗率は、1×1013Ω/□以下であることが好ましく、5×1012Ω/□以下であることがより好ましく、2×1012Ω/□以下であることがさらに好ましい。
また、複合樹脂発泡粒子成形体の帯電圧減衰時間は、10秒以内であることが好ましく、5秒以下であることがより好ましく、3秒以下であることが特に好ましい。
The surface resistivity of the composite resin foamed particle molded body based on JIS K 6271 is preferably 1 × 10 13 Ω / □ or less, more preferably 5 × 10 12 Ω / □ or less, and 2 × 10 12. More preferably, it is Ω / □ or less.
Further, the charged voltage decay time of the composite resin foamed particle molded body is preferably within 10 seconds, more preferably 5 seconds or less, and particularly preferably 3 seconds or less.

前記帯電圧減衰時間はCPM(charged plate monitor)を用いて測定される。具体的には、成形体からスキン面が残るように試験片を切り出し、23℃湿度50%雰囲気下で24時間以上静置した試験片をCPM(charged plate monitor)を用いて、検知プレートにスキン面が接するように置き、検知プレートを1.25kVにチャージしてサンプル上面のスキン面にアースを接触させて検知プレートの電圧が1.0kVから0.1kVに低下するまでの時間から帯電圧減衰時間を測定する。   The charged voltage decay time is measured using a CPM (charged plate monitor). Specifically, the test piece is cut out from the molded body so that the skin surface remains, and the test piece left to stand for 24 hours or more in an atmosphere of 23 ° C. and 50% humidity is applied to the detection plate using a CPM (charged plate monitor). Place the electrodes in contact with each other, charge the detection plate to 1.25 kV, contact the ground with the skin surface on the upper surface of the sample, and reduce the voltage from the time until the voltage of the detection plate drops from 1.0 kV to 0.1 kV Measure time.

なお、本発明における複合樹脂発泡粒子成形体は、前記表面抵抗率と帯電圧減衰時間との両方において上記範囲を満足することが好ましい。   In addition, it is preferable that the composite resin foamed particle molded body in the present invention satisfies the above range in both the surface resistivity and the charged voltage decay time.

以下、本発明について、実施例、比較例により詳細に説明する。但し、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples and comparative examples. However, the present invention is not limited to the examples.

〔実施例1〕
[複合樹脂粒子製造工程]
(1)核粒子の作製
直鎖状低密度ポリエチレン樹脂(東ソー(株)製、商品名:ニポロン9P51A)14.36kgと酢酸ビニル成分含有量が15質量%のエチレン−酢酸ビニル共重合体(東ソー(株)製、商品名:ウルトラセン625)4.98kg、直鎖状低密度ポリエチレン樹脂(東ソー(株)製、商品名:ニポロン9P51A)にホウ酸亜鉛(富田製薬(株)製、ホウ酸亜鉛2335、平均粒子径:6μm)を10質量%含有したホウ酸亜鉛10%マスターバッチ0.66kgを押出機(アイケージー(株)製、型式:MS50−28;50mmφ単軸押出機、マドックタイプのスクリュ)にて230〜250℃で溶融混練後、押出し、水中カット方式により0.4〜0.6mg/個(平均0.5mg/個)のポリエチレン系樹脂粒子(核粒子)を得た。
[Example 1]
[Composite resin particle manufacturing process]
(1) Production of core particles 14.36 kg of linear low-density polyethylene resin (trade name: Nipolon 9P51A, manufactured by Tosoh Corporation) and an ethylene-vinyl acetate copolymer (Tosoh) having a vinyl acetate component content of 15% by mass Co., Ltd., trade name: Ultrasen 625) 4.98 kg, linear low density polyethylene resin (manufactured by Tosoh Corporation, trade name: Nipolon 9P51A) and zinc borate (Tonda Pharmaceutical Co., Ltd., boric acid) 0.66 kg of 10% zinc borate masterbatch containing 10% by weight of zinc 2335, average particle size: 6 μm) was manufactured by an extruder (Ecage Co., Ltd., model: MS50-28; 50 mmφ single screw extruder, Maddock type Screw) kneading at 230-250 ° C, extruding, and 0.4-0.6mg / piece (average 0.5mg / piece) polyethylene resin by underwater cutting method Give the child (nuclear particles).

(2)複合樹脂粒子の作製
撹拌装置の付いた内容積が3Lのオートクレーブに、脱イオン水1000gを入れ、更にピロリン酸ナトリウム6gを加えた後、粉末状の硝酸マグネシウム・6水和物12.9gを加え、室温で30分撹拌した。これにより、懸濁剤としてのピロリン酸マグネシウムスラリーを作製した。
次に、この懸濁剤に界面活性剤としてのラウリルスルホン酸ナトリウム(10重量%水溶液)1.5g、水溶性重合禁止剤としての亜硝酸ナトリウム(1重量%水溶液)5.0g、及び核粒子150gを投入した。
次いで、重合開始剤としての過酸化ベンゾイル1.715g(日油(株)製「ナイパーBW」、水希釈粉体品)とt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート0.258g(日油(株)製「パーブチルE」)、及び架橋剤としての1,1−ジ(ターシャリブチルパーオキシ)シクロヘキサン(アルケマ吉富(株)製「ルペロックス331M70」)4.38gを、モノマーとしてのスチレン335g及びアクリル酸ブチル15gに溶解させ、溶解物を撹拌速度500rpmで撹拌しながらオートクレーブ内の懸濁剤中に投入した。
(2) Production of Composite Resin Particles After adding 1000 g of deionized water to an autoclave with an internal volume of 3 L equipped with a stirrer and adding 6 g of sodium pyrophosphate, powdered magnesium nitrate hexahydrate 12. 9 g was added and stirred at room temperature for 30 minutes. This produced the magnesium pyrophosphate slurry as a suspending agent.
Next, 1.5 g of sodium lauryl sulfonate (10 wt% aqueous solution) as a surfactant, 5.0 g of sodium nitrite (1 wt% aqueous solution) as a water-soluble polymerization inhibitor, and core particles 150 g was charged.
Subsequently, 1.715 g of benzoyl peroxide (“NIPER BW” manufactured by NOF Corporation, water-diluted powder product) as a polymerization initiator and 0.258 g of t-butylperoxy-2-ethylhexyl monocarbonate (NOF ( "Perbutyl E"), and 1,1-di (tertiarybutylperoxy) cyclohexane ("Lupelox 331M70" manufactured by Arkema Yoshitomi Co., Ltd.) as a cross-linking agent, 335 g of styrene as a monomer and The resultant was dissolved in 15 g of butyl acrylate, and the dissolved product was charged into the suspension in the autoclave while stirring at a stirring speed of 500 rpm.

次いで、オートクレーブ内を窒素置換した後、昇温を開始し、1時間半かけて温度88℃まで昇温させた。昇温後、この温度88℃で30分間保持した後、撹拌速度を450rpmに下げ、温度82℃まで15分かけて冷却した。冷却後、この温度82℃で5時間保持した。次いで、温度120℃まで2時間かけて昇温させ、温度120℃で5時間保持した。
その後、温度90℃まで1時間かけて冷却し、撹拌速度を400rpmに下げ、温度90℃で3時間保持した。さらに、温度105℃まで2時間かけて昇温し、温度105℃で5時間保持した後、温度30℃まで約6時間かけて冷却した。
冷却後、内容物を取り出し、硝酸を添加し複合樹脂粒子の表面に付着したピロリン酸マグネシウムを溶解させた。その後、遠心分離機で脱水・洗浄し、気流乾燥装置で表面に付着した水分を除去し、平均粒径(d63)が約1.5mmの複合樹脂粒子(ポリスチレン成分69重量%、ポリエチレン成分31重量%)を得た。
Next, after the inside of the autoclave was purged with nitrogen, the temperature was raised and the temperature was raised to 88 ° C. over 1 hour and a half. After the temperature increase, the temperature was maintained at 88 ° C. for 30 minutes, and then the stirring speed was lowered to 450 rpm and the temperature was cooled to 82 ° C. over 15 minutes. After cooling, the temperature was maintained at 82 ° C. for 5 hours. Next, the temperature was raised to 120 ° C. over 2 hours and held at 120 ° C. for 5 hours.
Then, it cooled to the temperature of 90 degreeC over 1 hour, the stirring speed was reduced to 400 rpm, and it hold | maintained at the temperature of 90 degreeC for 3 hours. Further, the temperature was raised to 105 ° C. over 2 hours, held at 105 ° C. for 5 hours, and then cooled to 30 ° C. over about 6 hours.
After cooling, the contents were taken out, and nitric acid was added to dissolve the magnesium pyrophosphate adhering to the surface of the composite resin particles. Thereafter, it is dehydrated and washed with a centrifugal separator, and water adhering to the surface is removed with an air flow dryer. Composite resin particles having an average particle diameter (d63) of about 1.5 mm (69% by weight of polystyrene component, 31% by weight of polyethylene component) %).

[複合樹脂発泡粒子製造工程]
前記複合樹脂粒子製造工程で得た複合樹脂粒子500gを分散媒体として水3.5Lを攪拌機を備えた5Lの耐圧容器内に仕込み、更に耐圧容器内に、分散剤としてのカオリン3g、及び界面活性剤としてのアルキルベンゼンスルホン酸ナトリウム0.04gを添加した。次いで、300rpmで攪拌しながら160℃まで昇温した後に耐圧容器内に無機系物理発泡剤としての二酸化炭素を4.0MPaまで圧入し攪拌下で15分間保持して、発泡性樹脂粒子とした。その後、二酸化炭素の背圧で耐圧容器内の圧力を4.0MPaに保ちながらバルブを開放して発泡させ、複合樹脂発泡粒子を配管に通して受け網槽に送り、60℃のオーブンで3時間乾燥させる事で見掛け密度49kg/mの複合樹脂発泡粒子を得た。
[Production process of foamed composite resin particles]
Using 500 g of the composite resin particles obtained in the composite resin particle production process as a dispersion medium, 3.5 L of water is charged into a 5 L pressure vessel equipped with a stirrer, and further 3 g of kaolin as a dispersant and a surface activity in the pressure vessel. 0.04 g of sodium alkylbenzene sulfonate as an agent was added. Next, after the temperature was raised to 160 ° C. while stirring at 300 rpm, carbon dioxide as an inorganic physical foaming agent was pressed into the pressure resistant container to 4.0 MPa and held for 15 minutes with stirring to obtain expandable resin particles. Thereafter, the valve is opened and foamed while maintaining the pressure in the pressure vessel at 4.0 MPa with the back pressure of carbon dioxide, and the composite resin foam particles are sent to the receiving net tank through the pipe, and then in an oven at 60 ° C. for 3 hours. By drying, composite resin expanded particles having an apparent density of 49 kg / m 3 were obtained.

[帯電防止剤塗布工程]
前記複合樹脂発泡粒子100質量部に対して、帯電防止剤として、ラウリルジメチルエチルアンモニウムエチルサルフェート0.5質量部(第一工業製薬株式会社製「カチオーゲンES-L」(有効成分50%)1質量部)を水4質量部で希釈したものを50Lポリ袋に入れて口をとじた。これをよく振り混ぜた後、袋ごとタンブラーに入れて30分間混合し、発泡粒子に帯電防止剤を塗布した。塗布後の複合樹脂発泡粒子を40℃のオーブンで12時間乾燥させた。
[Antistatic agent application process]
As an antistatic agent, 100 parts by mass of the composite resin foam particles, 0.5 parts by mass of lauryldimethylethylammonium ethyl sulfate (Daiichi Kogyo Seiyaku Co., Ltd. “Catiogen ES-L” (active ingredient 50%) 1 mass) Part) diluted with 4 parts by mass of water was put into a 50 L plastic bag and the mouth was closed. After thoroughly shaking this, the bag was placed in a tumbler and mixed for 30 minutes, and an antistatic agent was applied to the foamed particles. The coated composite resin foamed particles were dried in an oven at 40 ° C. for 12 hours.

[型内成形]
前記帯電防止性複合樹脂発泡粒子を型内成形機を用いて、縦200mm×横700mm×厚み50mmの平板金型に充填率110%で充填し、成形を行った。成形条件は、成形後の成形体の表面平滑性が目視で良好となるスチーム圧力0.1MPa(ゲージ圧)で15秒間加熱し、大気圧に戻した後、水冷を行い、面圧計が0.02MPa(ゲージ圧)に到達したときに金型を開き成形体を離型した。
得られた発泡成形体は、CPM帯電圧減衰時間が1.3秒、表面抵抗率が7.7×1012Ωと帯電防止性能に優れたものであった。
[In-mold]
The antistatic composite resin foamed particles were filled into a flat plate mold having a length of 200 mm, a width of 700 mm, and a thickness of 50 mm using an in-mold molding machine, and molded. The molding conditions were as follows: the molded article after molding was heated for 15 seconds at a steam pressure of 0.1 MPa (gauge pressure) at which the surface smoothness was visually good. When the pressure reached 02 MPa (gauge pressure), the mold was opened to release the molded body.
The obtained foamed molded article had excellent antistatic performance with a CPM band voltage decay time of 1.3 seconds and a surface resistivity of 7.7 × 10 12 Ω.

〔実施例2〕
実施例1の帯電防止剤塗布工程において、複合樹脂発泡粒子100質量部に対してラウリルジメチルエチルアンモニウムエチルサルフェート3質量部を塗布した以外は同じ手法で発泡粒子を作製した。実施例1に比べ、塗布量が3質量部と多いため、より帯電防止性能に優れた成形体が得られた。
[Example 2]
In the antistatic agent coating step of Example 1, foamed particles were produced in the same manner except that 3 parts by mass of lauryldimethylethylammonium ethyl sulfate was applied to 100 parts by mass of the composite resin foamed particles. Compared with Example 1, since the coating amount was as large as 3 parts by mass, a molded article having more excellent antistatic performance was obtained.

〔実施例3〕
実施例1に記載の帯電防止剤塗布工程において、複合樹脂発泡粒子100質量部に対して、1−エチル3−メチルイミダソリウムエチルサルフェート(33重量%)とラウリルジエタノールアミン(67重量%)の混合物1質量部(日油(株)製「エレガンC607L」)を塗布した以外は同じ手法で発泡粒子を作製した。
前記帯電防止剤を使用した場合でも、帯電防止性能に優れた発泡粒子成形体が得られた。
Example 3
In the antistatic agent coating step described in Example 1, a mixture of 1-ethyl 3-methylimidazolium ethyl sulfate (33 wt%) and lauryl diethanolamine (67 wt%) with respect to 100 parts by mass of the composite resin expanded particles Expanded particles were prepared by the same method except that 1 part by mass (“Elegan C607L” manufactured by NOF Corporation) was applied.
Even when the antistatic agent was used, a foamed particle molded article excellent in antistatic performance was obtained.

〔比較例1〕
実施例1に記載の帯電防止剤塗布工程において、塗布量を本発明の範囲よりも少ない量とした例である。複合樹脂発泡粒子100質量部に対してラウリルジメチルエチルアンモニウムエチルサルフェートが0.25質量部として塗布した以外は実施例1と同様にして作製した。帯電防止剤の量が少なすぎたため、帯電圧減衰時間と表面固有抵抗の値が大きく、十分な帯電防止性能が得られなかった。
[Comparative Example 1]
In the antistatic agent coating process described in Example 1, the coating amount is an amount smaller than the range of the present invention. It was produced in the same manner as in Example 1 except that lauryldimethylethylammonium ethyl sulfate was applied as 0.25 part by mass with respect to 100 parts by mass of the composite resin foamed particles. Since the amount of the antistatic agent was too small, the value of the charged voltage decay time and the surface resistivity was large, and sufficient antistatic performance could not be obtained.

〔比較例2〕
実施例1に記載の帯電防止剤塗布工程において、塗布量を本発明の範囲よりも多い量とした例である。複合樹脂発泡粒子100質量部に対してラウリルジメチルエチルアンモニウムエチルサルフェートが4質量部と多すぎたため、金型充填性が悪くなり、良好な複合樹脂発泡粒子成形体が得られなかった。
[Comparative Example 2]
In the antistatic agent coating step described in Example 1, the coating amount is an amount larger than the range of the present invention. Since there were too many lauryl dimethyl ethyl ammonium ethyl sulfate with 4 mass parts with respect to 100 mass parts of composite resin expanded particles, mold filling property worsened and the favorable composite resin expanded particle molded object was not obtained.

〔比較例3〕
実施例1の複合樹脂粒子製造工程において、押出機に複合樹脂発泡粒子100質量部に対してラウリルジメチルエチルアンモニウムエチルサルフェートを1質量部(第一工業製薬株式会社製「カチオーゲンES−L」(有効成分50%)2質量部)となるように核粒子の作製時に練り込んで加えた以外は実施例1と同じ手法で複合樹脂粒子の作製を試みた。その結果、重合が阻害されて良好な発泡性複合樹脂粒子が得られなかった。
[Comparative Example 3]
In the composite resin particle manufacturing process of Example 1, 1 part by mass of lauryldimethylethylammonium ethyl sulfate (“Katiogen ES-L” manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (effective) An attempt was made to produce composite resin particles by the same method as in Example 1 except that 50%) and 2 parts by mass) were added during the preparation of the core particles. As a result, polymerization was inhibited and good foamable composite resin particles could not be obtained.

〔比較例4〕
実施例1と同様の手法により複合樹脂粒子作製後、複合樹脂粒子100質量部と帯電防止剤としてラウリルジメチルエチルアンモニウムエチルサルフェート1質量部(第一工業製薬株式会社製「カチオーゲンES-L」(有効成分50%)2質量部)を10Lポリ袋に入れて口を閉じた。これをよく振り混ぜた後40℃のオーブンで12時間乾燥させた。乾燥後、複合樹脂粒子500gを内容積5リットルの密閉容器内にカオリン3g、分散助剤としてドデシルベンゼンスルホン酸ナトリウム(第一工業製薬株式会社製「ネオゲンS20‐F」)0.04gを配合した3500gの水に分散させ、300rpmで攪拌しながら165℃まで昇温して容器内に発泡剤として二酸化炭素を容器内圧力が4.0MPaになるまで導入して、15分間保持した後、二酸化炭素を容器内に導入して発泡剤の平衡蒸気圧に等しい背圧をかけ、容器内圧を一定に保持するようにして耐圧容器内の内容物を大気圧下に放出し、見掛け密度49g/Lの複合樹脂発泡粒子を得た。得られた複合樹脂発泡粒子を用いて帯電防止剤の塗布を行わないこと以外、実施例1と同様に型内成形を行った。帯電防止剤を発泡前の複合樹脂粒子の段階で塗布した場合、表面抵抗率が高すぎて測定不能であることに加えて、帯電圧減衰時間が10秒よりも長く、十分な帯電防止性能が得られなかった。
[Comparative Example 4]
After preparing composite resin particles by the same method as in Example 1, 100 parts by weight of composite resin particles and 1 part by weight of lauryldimethylethylammonium ethyl sulfate as an antistatic agent (“Kachiogen ES-L” manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (effective 2% by weight of component 50%) was placed in a 10 L plastic bag and the mouth was closed. After thoroughly shaking this, it was dried in an oven at 40 ° C. for 12 hours. After drying, 500 g of the composite resin particles were mixed with 3 g of kaolin and 0.04 g of sodium dodecylbenzenesulfonate (“Neogen S20-F” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a dispersion aid in a sealed container having an internal volume of 5 liters. Disperse in 3500 g of water, raise the temperature to 165 ° C. while stirring at 300 rpm, introduce carbon dioxide as a foaming agent into the container until the pressure in the container reaches 4.0 MPa, hold for 15 minutes, and then carbon dioxide. Is introduced into the container, a back pressure equal to the equilibrium vapor pressure of the blowing agent is applied, and the contents in the pressure-resistant container are released under atmospheric pressure so as to keep the container internal pressure constant, and an apparent density of 49 g / L. Composite resin foam particles were obtained. In-mold molding was performed in the same manner as in Example 1 except that the antistatic agent was not applied using the obtained composite resin foamed particles. When the antistatic agent is applied at the stage of the composite resin particles before foaming, in addition to the surface resistivity being too high to be measured, the charged voltage decay time is longer than 10 seconds, and sufficient antistatic performance is obtained. It was not obtained.

〔比較例5〕
実施例1と同様の手法により複合樹脂粒子作製後、複合樹脂粒子500gを内容積5Lの密閉容器内にカオリン3g、分散助剤としてドデシルベンゼンスルホン酸ナトリウム(第一工業製薬株式会社製「ネオゲンS20‐F」)0.04gを配合した3500gの水に分散させ、300rpmで攪拌しながら165℃まで昇温して容器内に発泡剤として二酸化炭素を容器内圧力が4.0MPaになるまで導入して、15分間保持した後、二酸化炭素を容器内に導入して発泡剤の平衡蒸気圧に等しい背圧をかけ、容器内圧を一定に保持するようにして耐圧容器内の内容物を大気圧下に放出し、見掛け密度49g/Lの複合樹脂発泡粒子を得た。得られた複合樹脂発泡粒子を用いて帯電防止剤の塗布を行わないこと以外、実施例1と同様に型内成形を行った。
発泡工程で帯電防止剤を添加した場合、表面抵抗率が1015Ω以上であることに加えて、帯電圧減衰時間が10秒よりも長く、十分な帯電防止性能が得られなかった。また、得られた成形体に収縮変形による凹みが見られ、良好な成形体を得られなかった。
[Comparative Example 5]
After preparing composite resin particles in the same manner as in Example 1, 500 g of composite resin particles were placed in a sealed container having an internal volume of 5 L, 3 g of kaolin, and sodium dodecylbenzenesulfonate as a dispersion aid (Neogen S20, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). -F ") is dispersed in 3500 g of water containing 0.04 g, heated to 165 ° C while stirring at 300 rpm, and carbon dioxide as a blowing agent is introduced into the container until the pressure in the container reaches 4.0 MPa. After holding for 15 minutes, carbon dioxide is introduced into the container and a back pressure equal to the equilibrium vapor pressure of the blowing agent is applied to keep the container internal pressure constant. The composite resin foamed particles having an apparent density of 49 g / L were obtained. In-mold molding was performed in the same manner as in Example 1 except that the antistatic agent was not applied using the obtained composite resin foamed particles.
When an antistatic agent was added in the foaming step, in addition to the surface resistivity being 10 15 Ω or more, the charged voltage decay time was longer than 10 seconds, and sufficient antistatic performance was not obtained. In addition, dents due to shrinkage deformation were observed in the obtained molded product, and a good molded product could not be obtained.

〔比較例6〕
帯電防止剤を発泡粒子に塗布しない以外、実施例1と同様に成形体を作製し、得られた成形体表面全体に複合樹脂発泡粒子100質量部に対して、ラウリルジメチルエチルアンモニウムエチルサルフェート1質量部(第一工業製薬株式会社製「カチオーゲンES−L」(有効成分50%)を2質量部)を水4質量部で希釈したものを刷毛で塗布した後に40℃のオーブンで12時間以上乾燥させた。
成形体に帯電防止剤を塗布した場合、帯電圧減衰時間が10秒よりも長く、十分な帯電防止性能が得られなかった。また、成形体に帯電防止剤を刷毛で塗布する方法では、帯電防止剤が均一に塗布されず帯電防止性能にムラができてしまった。
[Comparative Example 6]
A molded body was prepared in the same manner as in Example 1 except that the antistatic agent was not applied to the expanded particles, and 1 mass of lauryldimethylethylammonium ethyl sulfate with respect to 100 parts by mass of the composite resin expanded particles on the entire surface of the obtained molded body. 2 parts by weight of a part (2 parts by weight of “Kachiogen ES-L” (active ingredient 50%) manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was applied with a brush and then dried in an oven at 40 ° C. for 12 hours or more. I let you.
When an antistatic agent was applied to the molded body, the charged voltage decay time was longer than 10 seconds, and sufficient antistatic performance could not be obtained. Further, in the method of applying the antistatic agent to the molded body with a brush, the antistatic agent is not uniformly applied, and the antistatic performance is uneven.

〔比較例7〕
複合樹脂発泡粒子100質量部に対して、ポリオキシエチレンアルキルアミンエーテル燐酸エステル1質量部(第一工業製薬株式会社製「プライサーフA208F」)を塗布した以外は、実施例1と同様にして複合樹脂発泡粒子を作製した。表面抵抗率が1.3×1014Ωであり、十分な表面抵抗率が得られなかった。
[Comparative Example 7]
The composite was made in the same manner as in Example 1 except that 1 part by mass of polyoxyethylene alkylamine ether phosphate ester (“Plysurf A208F” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was applied to 100 parts by mass of the composite resin expanded particles. Resin foam particles were prepared. The surface resistivity was 1.3 × 10 14 Ω, and sufficient surface resistivity was not obtained.

〔比較例8〕
帯電防止剤塗布工程において、帯電防止剤を変えた例である。複合樹脂発泡粒子100質量部に対してポリオキシエチレンアルキルアミンエーテル1質量部(第一工業製薬株式会社製「アミラヂンC1802」)を塗布した以外は、実施例1と同様にして複合樹脂発泡粒子を作製し、更に実施例1と同様にして成形体を作製した。得られた成形体の帯電圧減衰時間が10秒よりも長く、十分な帯電防止性能が得られなかった。
[Comparative Example 8]
This is an example in which the antistatic agent is changed in the antistatic agent application step. In the same manner as in Example 1, except that 1 part by mass of polyoxyethylene alkylamine ether (“Amiradin C1802” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was applied to 100 parts by mass of the composite resin foamed particles. Then, a molded body was produced in the same manner as in Example 1. The obtained molded body had a charged voltage decay time longer than 10 seconds, and sufficient antistatic performance could not be obtained.

〔比較例9〕
実施例1に対して帯電防止剤を変えた例である。複合樹脂発泡粒子100質量部に対してアルキル硫酸ナトリウム1質量部(花王株式会社製、「エレクトロストリッパーME2」(有効成分50%)を2質量部)を塗布した以外は、実施例1と同様にして複合樹脂発泡粒子を作製し、更に実施例1と同様にして成形体を作製した。得られた成形体の表面抵抗率が1013Ω以上であることに加えて、帯電圧減衰時間が10秒よりも長くなり、十分な帯電防止性能が得られなかった。
[Comparative Example 9]
This is an example in which the antistatic agent is changed from that of Example 1. Example 1 was applied except that 1 part by mass of sodium alkyl sulfate (2 parts by mass of “Electro Stripper ME2” (active ingredient 50%) manufactured by Kao Corporation) was applied to 100 parts by mass of the composite resin foamed particles. Composite resin foam particles were prepared, and a molded body was prepared in the same manner as in Example 1. In addition to the surface resistivity of the obtained molded body being 10 13 Ω or more, the charged voltage decay time was longer than 10 seconds, and sufficient antistatic performance was not obtained.

〔比較例10〕
実施例1に対して帯電防止剤を変えた例である。複合樹脂発泡粒子100質量部に対してラウリルジメチルアミノ酢酸ベタインを1質量部(第一工業製薬株式会社製「アモーゲンS」(有効成分38%)を2.6質量部)塗布した以外は、実施例1と同様にして複合樹脂発泡粒子を作製し、更に実施例1と同様にして成形体を作製した。得られた成形体の表面抵抗率が1015Ω以上となり、十分な帯電防止性能が得られず、帯電圧減衰時間が10秒よりも長く、十分な帯電圧減衰性能が得られなかった。
[Comparative Example 10]
This is an example in which the antistatic agent is changed from that of Example 1. Implementation was performed except that 1 part by mass of lauryldimethylaminoacetic acid betaine (2.6 parts by mass of “Amorgen S” (active ingredient 38%) manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was applied to 100 parts by mass of the composite resin expanded particles. Composite resin foam particles were produced in the same manner as in Example 1, and further, a molded article was produced in the same manner as in Example 1. The obtained molded article had a surface resistivity of 10 15 Ω or more, sufficient antistatic performance could not be obtained, and the charged voltage decay time was longer than 10 seconds, and sufficient charged voltage decay performance could not be obtained.

実施例、比較例における帯電防止剤の種類、有効成分などについては表1に、製造条件、発泡粒子及び発泡粒子成形体の物性、評価を実施例については表2に、比較例については表3、4に示す。   Table 1 shows the types of antistatic agents and active ingredients in Examples and Comparative Examples, Table 2 shows the manufacturing conditions, physical properties and evaluation of the foamed particles and the molded foamed products, and Table 3 shows the comparative examples. 4 shows.

実施例、比較例における各物性の測定、評価は以下の方法により行った。
〔帯電防止剤付着量測定〕
帯電防止剤塗布工程において、まず帯電防止剤塗布前の発泡粒子重量を精秤した。その後、所要の方法により、複合樹脂発泡粒子に任意の帯電防止剤塗布量(有効成分量)で塗布した後、40℃、24時間乾燥後に発泡粒子の重量を測定した。塗布後の重量から塗布前の重量を引いた値を精秤した帯電防止剤塗布前の複合樹脂発泡粒子重量で除して、その値に100を掛けて複合樹脂発泡粒子100質量部に対する帯電防止剤の付着量を求めた。
Measurement and evaluation of physical properties in Examples and Comparative Examples were performed by the following methods.
[Measurement of antistatic agent adhesion]
In the antistatic agent application step, first, the weight of the expanded particles before application of the antistatic agent was precisely weighed. Thereafter, the composite resin foam particles were coated with an arbitrary antistatic agent coating amount (effective component amount) by a required method, and then dried at 40 ° C. for 24 hours, and then the weight of the foamed particles was measured. The value obtained by subtracting the weight before coating from the weight after coating is divided by the weight of the composite resin foam particles before application of the antistatic agent, and the value is multiplied by 100 to prevent the charge to 100 parts by mass of the composite resin foam particles. The adhesion amount of the agent was determined.

〔発泡粒子の見掛け密度〕
発泡粒子を40℃のオーブンで12時間乾燥させた後に温度23℃、相対湿度50%の環境下で24時間静置した後に適量の発泡粒子の重量を測定した。その発泡粒子を水の入ったメスシリンダーに水没させて体積を求めた。重量を体積にて除し、単位換算することにより複合樹脂発泡粒子の見掛け密度(kg/m)を求めた。
[Apparent density of expanded particles]
The foamed particles were dried in an oven at 40 ° C. for 12 hours, and then allowed to stand in an environment at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours. The foamed particles were submerged in a graduated cylinder containing water to determine the volume. The apparent density (kg / m 3 ) of the composite resin foamed particles was determined by dividing the weight by the volume and converting the unit.

〔発泡粒子成形体密度〕
温度23℃、相対湿度50%の環境下で24時間放置した発泡粒子成形体の外形寸法から体積を求めた。次いで該発泡粒子成形体の重量を体積にて除し、単位換算することにより複合樹脂発泡粒子成形体の成形体密度(kg/m)を求めた。
[Foamed particle density]
The volume was determined from the external dimensions of the foamed particle molded body that was allowed to stand for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 50%. Subsequently, the weight of the foamed particle molded body was divided by the volume, and the unit density was calculated to obtain the molded body density (kg / m 3 ) of the composite resin foamed particle molded body.

〔帯電圧減衰性評価〕
成形体の帯電圧減衰性能を評価した。23℃湿度50%雰囲気下で24時間以上静置した、スキン面(150×150)×厚み(50mm)サイズの帯電防止剤を塗布した成形体サンプルをトレック・ジャパン株式会社製ハンドヘルドチャージドプレートモニター(159HH)の検知プレートにスキン面が接するように置き、検知プレートを1.25kVにチャージした。サンプル上面のスキン面にアースを接触させて検知プレートの電圧が1.0kVから0.1kVに低下するまでの減衰時間を測定した。
なお、30秒経過しても電圧が0.1kVまで減衰しなかった場合は「減衰せず」とした。
帯電圧減衰性評価は減衰時間が10秒以内であれば○、10秒より長い場合を×とした。
[Evaluation of voltage attenuation]
The charged voltage attenuation performance of the compact was evaluated. A molded sample coated with an antistatic agent of skin surface (150 × 150) × thickness (50 mm), which was allowed to stand for 24 hours or more in an atmosphere of 23 ° C. and 50% humidity, was a handheld charged plate monitor manufactured by Trek Japan Co., Ltd. 159HH) was placed so that the skin surface was in contact with it, and the detection plate was charged to 1.25 kV. The decay time until the voltage of the detection plate was lowered from 1.0 kV to 0.1 kV by contacting the ground with the skin surface on the upper surface of the sample was measured.
In addition, when the voltage did not attenuate to 0.1 kV even after 30 seconds, “not attenuated” was set.
In the evaluation of the voltage decay, when the decay time was within 10 seconds, the test was evaluated as ◯.

〔表面抵抗率〕
成形体の帯電防止性能は表面抵抗率を測定し評価した。JIS K 6271(2008年)に準拠した方法により、成形体を23℃、50%湿度条件下で1日養生した後に表面抵抗率を測定した。表中の表面抵抗率は、発泡成形体を縦200mm×横200mm×厚み50mmに切り出して測定試験片を作製し、該測定試験片を用いてスキン面を4点測定した値の相乗平均値である。尚、表面抵抗率が1015Ω以上となった箇所が1点でもあったものは「1015<」と表記した。1013Ω以下のものを良品とした。測定装置として三菱化学株式会社製「ハイレスタMCP−HT450」を使用した。
[Surface resistivity]
The antistatic performance of the molded body was evaluated by measuring the surface resistivity. The surface resistivity was measured after curing the molded body for 1 day under the conditions of 23 ° C. and 50% humidity by a method based on JIS K 6271 (2008). The surface resistivity in the table is a geometric mean value of values obtained by cutting a foam molded body into a length of 200 mm, a width of 200 mm, and a thickness of 50 mm to prepare a measurement test piece, and measuring the skin surface at four points using the measurement test piece. is there. Incidentally, those portions of the surface resistivity is not less than 10 15 Omega had also at one point was denoted as "10 15 <". Those having a resistance of 10 13 Ω or less were regarded as non-defective products. “HIRESTA MCP-HT450” manufactured by Mitsubishi Chemical Corporation was used as a measuring device.

〔金型充填性評価〕
発泡粒子を成形機に送粒して型内成形を実施した際、正常に充填可能か否か評価した。正常に充填可能であれば○、発泡粒子の塊がみられ、金型に円滑に充填できない状態になった場合を×として評価した。
[Evaluation of mold filling properties]
When the expanded particles were sent to a molding machine and subjected to in-mold molding, it was evaluated whether or not normal filling was possible. The case where it was omissible if it could be normally filled and a lump of expanded particles was seen and the mold could not be filled smoothly was evaluated as x.

〔融着性評価〕
発泡粒子成形体を折り曲げ略等分に破断させ、破断面を観察して破断している発泡粒子の数を、該破断面に存在している全ての発泡粒子の数にて除して100を掛けて融着率(百分率)を求め、融着率が60%以上のものを○、60%未満を×とした。
[Fusability evaluation]
The foamed particle molded body is bent approximately equally, and the number of foam particles broken by observing the fracture surface is divided by the number of all foam particles present on the fracture surface to give 100. The fusion rate (percentage) was obtained by multiplying, and those having a fusion rate of 60% or more were evaluated as “○” and those less than 60% as “×”.

〔成形体収縮変形性評価〕
発泡粒子を成形し、成形体を23℃、50%湿度条件下で1日養生後、作製した成形体が収縮変形していないかどうかを目視で判定し、凹みがないものを○、凹みが見られたものを×とした。
[Evaluation of molding shrinkage]
After molding the expanded particles and curing the molded body for 1 day under the conditions of 23 ° C. and 50% humidity, it is visually determined whether or not the formed molded body is contracted and deformed. What was seen was set as x.

Claims (4)

50〜95質量%のポリスチレン系樹脂成分と5〜50質量%のポリオレフィン系樹脂成分とを含む複合樹脂(ただし、該ポリスチレン系樹脂成分と該ポリオレフィン系樹脂成分の合計量は100質量%である。)から構成される複合樹脂発泡粒子に、下記(a)及び/又は(b)の塩素を含まないカチオン系帯電防止剤を該複合樹脂発泡粒子100質量部に対して0.4〜3.5質量部塗布することを特徴とする帯電防止性複合樹脂発泡粒子の製造方法。
(a)脂肪族第4級アンモニウム硫酸塩
(b)イミダゾリウム硫酸塩と脂肪族アミノアルコールとの混合物
A composite resin containing 50 to 95% by mass of a polystyrene resin component and 5 to 50% by mass of a polyolefin resin component (however, the total amount of the polystyrene resin component and the polyolefin resin component is 100% by mass). ) To the composite resin foamed particles composed of the following (a) and / or (b) a chlorine-free cationic antistatic agent in an amount of 0.4 to 3.5 with respect to 100 parts by mass of the composite resin foamed particles. A method for producing an antistatic composite resin foamed particle, characterized by applying a mass part.
(A) Aliphatic quaternary ammonium sulfate
(B) Mixture of imidazolium sulfate and aliphatic amino alcohol
前記(a)のカチオン系帯電防止剤がラウリルジメチルエチルアンモニウムエチルサルフェートであることを特徴とする請求項に記載の帯電防止性複合樹脂発泡粒子の製造方法。
The method for producing antistatic composite resin foamed particles according to claim 1 , wherein the cationic antistatic agent (a) is lauryldimethylethylammonium ethyl sulfate.
前記(b)のカチオン系帯電防止剤が1−エチル−3−メチルイミダゾリウムエチルサルフェートとラウリルジエタノールアミンとの混合物であることを特徴とする請求項に記載の帯電防止性複合樹脂発泡粒子の製造方法。
The antistatic composite resin foamed particles according to claim 1 , wherein the cationic antistatic agent (b) is a mixture of 1-ethyl-3-methylimidazolium ethyl sulfate and lauryl diethanolamine. Method.
請求項1〜のいずれかに記載の製造方法によって得られた帯電防止性複合樹脂発泡粒子を型内成形してなる、表面抵抗率が1×1013Ω以下、帯電圧減衰時間が3秒以下、密度10〜200kg/mの帯電防止性複合樹脂発泡粒子成形体
An antistatic composite resin foamed particle obtained by the production method according to any one of claims 1 to 3 , wherein the surface resistivity is 1 × 10 13 Ω or less and the voltage decay time is 3 seconds. Hereinafter, an antistatic composite resin foam particle molded body having a density of 10 to 200 kg / m 3
JP2013219047A 2013-10-22 2013-10-22 Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles Active JP6243186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219047A JP6243186B2 (en) 2013-10-22 2013-10-22 Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219047A JP6243186B2 (en) 2013-10-22 2013-10-22 Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles

Publications (2)

Publication Number Publication Date
JP2015081274A JP2015081274A (en) 2015-04-27
JP6243186B2 true JP6243186B2 (en) 2017-12-06

Family

ID=53012073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219047A Active JP6243186B2 (en) 2013-10-22 2013-10-22 Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles

Country Status (1)

Country Link
JP (1) JP6243186B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6722443B2 (en) * 2015-12-22 2020-07-15 株式会社カネカ Low-chargeable expandable styrenic resin particles, pre-expanded particles, and method for producing expanded molded article
JP6701943B2 (en) * 2016-05-13 2020-05-27 株式会社ジェイエスピー Expanded composite resin particles, method for producing the same, molded composite resin foam particles
JP6855706B2 (en) * 2016-08-23 2021-04-07 株式会社ジェイエスピー Composite resin foam particles, antistatic composite resin foam particles, composite resin foam particle molded product
JP6962761B2 (en) * 2017-09-26 2021-11-05 積水化成品工業株式会社 Composite resin particles, their manufacturing methods, foamable particles, foamed particles and foamed molded products

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176227A (en) * 1982-04-09 1983-10-15 Hiroshi Takeuchi Antistatic treatment of expanded plastic molding
CN101410444A (en) * 2006-02-07 2009-04-15 巴斯夫欧洲公司 Antistatic polyurethane
JP2011026436A (en) * 2009-07-24 2011-02-10 Sekisui Plastics Co Ltd Foamable composite resin particle, method for producing the same, prefoamed particle, and foam molded article
JP5528148B2 (en) * 2010-02-15 2014-06-25 積水化成品工業株式会社 Pre-expanded particles, method for producing the same, and foam molded article
JP5713944B2 (en) * 2011-03-31 2015-05-07 積水化成品工業株式会社 Method for producing foamable styrene resin particles having antistatic properties
EP2826813B1 (en) * 2012-03-14 2016-05-25 Kaneka Corporation Polypropylene resin foam particles, in-mold foam molded body comprising polypropylene resin foam particles, and method for producing same

Also Published As

Publication number Publication date
JP2015081274A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5453923B2 (en) Modified resin foam particles and molded articles thereof
JP5713944B2 (en) Method for producing foamable styrene resin particles having antistatic properties
EP2860217B1 (en) Expandable composite resin bead
JP6243186B2 (en) Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles
JP5815934B2 (en) Method for producing composite resin expanded particles, and composite resin expanded particles
WO2010074246A1 (en) Pre-expanded particles, process for producing same, and molded foam
JP5831548B2 (en) Composite resin foam particles and molded body thereof
JP2011256244A (en) Foaming modified resin particle and modified resin foamed particle
JP2017179212A (en) Composite resin foam particle and composite resin foam particle molded body
JP7455934B2 (en) Expandable polystyrene resin particles and their use
JP5528148B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
JP6701943B2 (en) Expanded composite resin particles, method for producing the same, molded composite resin foam particles
JP6349697B2 (en) Method for producing expandable polystyrene resin particles
JP5447573B2 (en) Modified resin foam particles and method for producing the same
JP2011074239A (en) Foamable polystyrene resin particle for cushioning material
JP7250768B2 (en) Expandable thermoplastic resin particles, thermoplastic resin pre-expanded particles and thermoplastic resin foam
JP6668813B2 (en) Composite resin expanded particles, method for producing the same, composite resin expanded particle molded body
TWI530516B (en) A method for producing a foamed particle, a manufacturing apparatus for a foamed particle, and a foamed particle
JP6962761B2 (en) Composite resin particles, their manufacturing methods, foamable particles, foamed particles and foamed molded products
JP6855706B2 (en) Composite resin foam particles, antistatic composite resin foam particles, composite resin foam particle molded product
JPH05507510A (en) Antistatic polyolefin foams and films and methods of making foams and antistatic compositions
JP2011074242A (en) Foamable polystyrene resin particle for lightweight aggregate
JP6642062B2 (en) Composite resin expanded particles, composite resin expanded particle molded article, and method for producing composite resin expanded particles
JP7339507B2 (en) Foamed beads and foamed beads
JP7445480B2 (en) Expandable styrenic resin small particles, pre-expanded styrenic resin small particles, and styrenic resin foam molded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171109

R150 Certificate of patent or registration of utility model

Ref document number: 6243186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250