JP6962761B2 - Composite resin particles, their manufacturing methods, foamable particles, foamed particles and foamed molded products - Google Patents

Composite resin particles, their manufacturing methods, foamable particles, foamed particles and foamed molded products Download PDF

Info

Publication number
JP6962761B2
JP6962761B2 JP2017184857A JP2017184857A JP6962761B2 JP 6962761 B2 JP6962761 B2 JP 6962761B2 JP 2017184857 A JP2017184857 A JP 2017184857A JP 2017184857 A JP2017184857 A JP 2017184857A JP 6962761 B2 JP6962761 B2 JP 6962761B2
Authority
JP
Japan
Prior art keywords
particles
molded product
composite resin
resin particles
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017184857A
Other languages
Japanese (ja)
Other versions
JP2019059836A (en
Inventor
慎悟 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2017184857A priority Critical patent/JP6962761B2/en
Publication of JP2019059836A publication Critical patent/JP2019059836A/en
Application granted granted Critical
Publication of JP6962761B2 publication Critical patent/JP6962761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、複合樹脂粒子、その製造方法、発泡性粒子、発泡粒子及び発泡成形体に関する。本発明によれば、帯電防止性能の向上した発泡粒子及び発泡成形体を与え得る複合樹脂粒子、その製造方法及び発泡性粒子、帯電防止性能の向上した発泡粒子及び発泡成形体に関する。 The present invention relates to composite resin particles, a method for producing the same, foamable particles, foamed particles, and a foamed molded product. The present invention relates to foamed particles having improved antistatic performance and composite resin particles capable of giving a foamed molded product, a method for producing the same, foamable particles, foamed particles having improved antistatic performance, and a foamed molded product.

ポリスチレン系樹脂からなる発泡成形体は、優れた緩衝性及び断熱性を有しているが、耐衝撃性や柔軟性が不十分である。一方、ポリオレフィン系樹脂からなる発泡成形体は、耐衝撃性や柔軟性に優れているが、剛性が不十分である。そこで、2つの異なる樹脂を併用することで、2つの樹脂の特長を併せもつ、複合樹脂粒子を用いた発泡成形体が提案されている。この発泡成形体は、各種物品の輸送時の緩衝材として多用されている。
ところで、発泡成形体は、帯電性が高いことが知られている。高い帯電性は、発泡成形体に静電気を蓄積させ、蓄積した静電気が埃を引き付けるという問題を生じる。この埃は、輸送時の物品に付着し、物品の商品価値を低下させることになる。また、物品が電子機器の場合、埃の付着による短絡や、蓄積した静電気による静電破壊により電子機器に不良が発生することがある。そのため、発泡成形体の帯電性を低下させることが求められていた。この求めに応じて、発泡成形体に帯電防止剤をコーティングする技術が提案されている(特開2014−193949号公報:特許文献1)。
特許文献1では、帯電防止剤を含む溶液を発泡成形体に塗布又は噴霧することにより、帯電性の抑制された発泡成形体が得られるとされている。
A foam molded product made of a polystyrene resin has excellent cushioning and heat insulating properties, but has insufficient impact resistance and flexibility. On the other hand, a foam molded product made of a polyolefin resin is excellent in impact resistance and flexibility, but has insufficient rigidity. Therefore, a foam molded product using composite resin particles, which has the features of the two resins by using two different resins in combination, has been proposed. This foam molded product is often used as a cushioning material during transportation of various articles.
By the way, the foam molded product is known to have high chargeability. The high chargeability causes a problem that static electricity is accumulated in the foamed molded product, and the accumulated static electricity attracts dust. This dust adheres to the article during transportation and reduces the commercial value of the article. Further, when the article is an electronic device, a defect may occur in the electronic device due to a short circuit due to adhesion of dust or electrostatic destruction due to accumulated static electricity. Therefore, it has been required to reduce the chargeability of the foam molded product. In response to this request, a technique for coating a foam molded product with an antistatic agent has been proposed (Japanese Unexamined Patent Publication No. 2014-193949: Patent Document 1).
Patent Document 1 states that a foam molded product having suppressed antistatic properties can be obtained by applying or spraying a solution containing an antistatic agent on the foam molded product.

特開2014−193949号公報Japanese Unexamined Patent Publication No. 2014-193949

しかしながら、帯電防止剤を含む溶液は発泡成形体に対する濡れ性が劣るため、発泡成形体を帯電防止剤で均一に覆うことができず、帯電性の抑制が不均一になるという欠点があった。また、帯電防止剤は発泡成形体の表面に付着しているだけであるため、物品に容易に移行することがあった。この移行は、物品が電子機器である場合、電子機器を構成する金属配線を腐食させるという欠点にもつながっていた。
そのため、均一な帯電性の抑制と、物品への帯電防止剤の移行とが防止可能な発泡成形体及び、この発泡成形体を与え得る複合樹脂粒子、発泡性粒子及び発泡粒子の提供が望まれていた。
However, since the solution containing the antistatic agent is inferior in wettability to the foamed molded product, the foamed molded product cannot be uniformly covered with the antistatic agent, and there is a drawback that the suppression of antistatic property becomes non-uniform. Further, since the antistatic agent is only attached to the surface of the foamed molded product, it may be easily transferred to the article. This transition has also led to the drawback of corroding the metal wiring that makes up the electronic device when the article is an electronic device.
Therefore, it is desired to provide a foamed molded product capable of uniformly suppressing the chargeability and preventing the transfer of the antistatic agent to the article, and composite resin particles, foamable particles and foamed particles capable of giving the foamed molded product. Was there.

本発明の発明者は、鋭意検討の結果、帯電防止剤としてのホウ素含有化合物を特定の範囲で表層から中心部に含む複合樹脂粒子により、帯電防止性の優れた発泡成形体が製造可能であることを見出し、本発明を完成するに至った。
かくして、本発明によれば、ポリオレフィン系樹脂とポリスチレン系樹脂とをこれらの合計に対してそれぞれ38.8〜17.9質量%及び61.2〜82.1質量%の範囲で含む発泡粒子製造用の複合樹脂粒子であり
前記複合樹脂粒子が、その1kgあたり、1.0〜15.0mgのホウ素量に対応する帯電防止剤として、かつ前記複合樹脂粒子から得られた100mm×100mm×30mmの大きさの発泡成形体を、その両面に表皮がある状態で、超純水100mLに25℃で72時間浸漬した際に、超純水に移行するホウ素量が0.20mg/L以下となるように、ホウ素含有化合物を含み、前記ホウ素含有化合物が、前記複合樹脂粒子の表層から中心部に存在し、かつ
前記複合樹脂粒子が、前記複合樹脂粒子から得られた発泡成形体を温度65℃かつ湿度90%の環境下に、500時間曝した場合、前記発泡成形体に1×10 10 Ω以下の表面抵抗値を与えることを特徴とする複合樹脂粒子が提供される。
As a result of diligent studies, the inventor of the present invention can produce a foamed molded product having excellent antistatic properties by using composite resin particles containing a boron-containing compound as an antistatic agent in a specific range from the surface layer to the center. This has led to the completion of the present invention.
Thus, according to the present invention, the production of foamed particles containing a polyolefin-based resin and a polystyrene-based resin in the ranges of 38.8 to 17.9 % by mass and 61.2 to 82.1% by mass, respectively, based on the total of these. It is a composite resin particles of use,
A foamed molded product having a size of 100 mm × 100 mm × 30 mm obtained from the composite resin particles as an antistatic agent corresponding to an amount of boron of 1.0 to 15.0 mg per kg of the composite resin particles. Contains boron-containing compounds so that the amount of boron transferred to ultrapure water is 0.20 mg / L or less when immersed in 100 mL of ultrapure water at 25 ° C. for 72 hours with skins on both sides. , The boron-containing compound is present from the surface layer to the center of the composite resin particles , and
When the composite resin particles expose the foamed molded product obtained from the composite resin particles to the foamed molded product in an environment of a temperature of 65 ° C. and a humidity of 90% for 500 hours , the surface resistance of the foamed molded product is 1 × 10 10 Ω or less. Composite resin particles are provided that are characterized by giving a value.

更に、本発明によれば、上記複合樹脂粒子の製造方法であって、
ホウ素含有化合物、又はホウ素含有化合物を含むポリオレフィン系樹脂製のマスターバッチと、ポリオレフィン系樹脂との溶融物をカットすることにより種粒子を得、
前記種粒子に、スチレン系単量体を含浸及び重合させることにより複合樹脂粒子を得ることを特徴とする複合樹脂粒子の製造方法が提供される。
また、本発明によれば、上記複合樹脂粒子と揮発性発泡剤とを含む発泡性粒子が提供される。
更に、本発明によれば、上記発泡性粒子を発泡させて得られた発泡粒子が提供される。
また、本発明によれば、上記発泡粒子を発泡成形させて得られた発泡成形体が提供される。
Further, according to the present invention, there is a method for producing the composite resin particles.
Seed particles are obtained by cutting a boron-containing compound or a masterbatch made of a polyolefin-based resin containing a boron-containing compound and a melt of the polyolefin-based resin.
Provided is a method for producing composite resin particles, which comprises obtaining composite resin particles by impregnating and polymerizing the seed particles with a styrene-based monomer.
Further, according to the present invention, foamable particles containing the composite resin particles and a volatile foaming agent are provided.
Further, according to the present invention, foamed particles obtained by foaming the foamable particles are provided.
Further, according to the present invention, there is provided a foam molded product obtained by foam molding the above foam particles.

本発明によれば、帯電防止性能の向上した発泡粒子及び発泡成形体を与え得る複合樹脂粒子、その製造方法及び発泡性粒子、帯電防止性能の向上した発泡粒子及び発泡成形体を提供できる。
以下のいずれかの場合、より帯電防止性能の向上した発泡粒子及び発泡成形体を与え得る複合樹脂粒子を提供できる。
(1)複合樹脂粒子は、複合樹脂粒子から得られた100mm×100mm×30mmの大きさの発泡成形体を、その両面に表皮がある状態で、超純水100mlに25℃で72時間浸漬した際に、超純水に移行するホウ素量が0.20mg/L以下となるように、ホウ素含有化合物を含む。
(2)ホウ素含有化合物が、ドナー成分としての半極性有機ホウ素化合物と、アクセプタ成分としての塩基性窒素化合物とを反応させて得られるドナー・アクセプター系分子化合物である。
(3)複合樹脂粒子は、複合樹脂粒子から得られた発泡成形体を温度65℃かつ湿度90%の環境下に、500時間曝した場合、発泡成形体に1×1010Ω以下の表面抵抗値を与える。
(4)ポリオレフィン系樹脂が、エチレン−酢酸ビニル共重合体、高密度ポリエチレン、直鎖状低密度ポリエチレン及びこれらの混合物から選択される。
According to the present invention, it is possible to provide foamed particles having improved antistatic performance and composite resin particles capable of giving a foamed molded product, a method for producing the same, foamable particles, foamed particles having improved antistatic performance, and a foamed molded product.
In any of the following cases, it is possible to provide foamed particles having improved antistatic performance and composite resin particles capable of giving a foamed molded product.
(1) For the composite resin particles, a foamed molded product having a size of 100 mm × 100 mm × 30 mm obtained from the composite resin particles was immersed in 100 ml of ultrapure water at 25 ° C. for 72 hours with skins on both sides thereof. At that time, the boron-containing compound is contained so that the amount of boron transferred to ultrapure water is 0.20 mg / L or less.
(2) The boron-containing compound is a donor-acceptor-based molecular compound obtained by reacting a semi-polar organoboron compound as a donor component with a basic nitrogen compound as an acceptor component.
(3) The composite resin particles have a surface resistance of 1 × 10 10 Ω or less when the foamed molded product obtained from the composite resin particles is exposed to the foamed molded product in an environment of a temperature of 65 ° C. and a humidity of 90% for 500 hours. Give a value.
(4) The polyolefin-based resin is selected from ethylene-vinyl acetate copolymer, high-density polyethylene, linear low-density polyethylene, and a mixture thereof.

(複合樹脂粒子)
複合樹脂粒子は、発泡粒子製造に使用される。また、複合樹脂粒子は、ポリオレフィン系樹脂とポリスチレン系樹脂とを、これらの合計に対して、それぞれ50〜10質量%及び50〜90質量%の範囲で含む。更に、複合樹脂粒子は、その1kgあたり、1.0〜15.0mgのホウ素量に対応する帯電防止剤としてのホウ素含有化合物を含む。また更に、ホウ素含有化合物は、複合樹脂粒子の表層から中心部に存在している。
(Composite resin particles)
The composite resin particles are used for producing foamed particles. Further, the composite resin particles contain a polyolefin resin and a polystyrene resin in the range of 50 to 10% by mass and 50 to 90% by mass, respectively, with respect to the total of these. Further, the composite resin particles contain a boron-containing compound as an antistatic agent corresponding to an amount of boron of 1.0 to 15.0 mg per kg thereof. Furthermore, the boron-containing compound is present from the surface layer to the center of the composite resin particles.

(1)ポリオレフィン系樹脂
ポリオレフィン系樹脂としては、特に限定されず、公知の樹脂が使用できる。また、ポリオレフィン系樹脂は、架橋していてもよい。例えば、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、これら重合体の架橋体等のポリエチレン系樹脂、プロピレン単独重合体、プロピレン−酢酸ビニル共重合体、エチレン−プロピレンランダム共重合体、プロピレン−1−ブテン共重合体、エチレン−プロピレン−ブテンランダム共重合体等のポリプロピレン系樹脂が挙げられる。上記例示中、低密度は、0.91〜0.94g/cm3であることが好ましく、0.91〜0.93g/cm3であることがより好ましい。高密度は、0.95〜0.97g/cm3であることが好ましく、0.95〜0.96g/cm3であることがより好ましい。中密度はこれら低密度と高密度の中間の密度である。ポリオレフィン系樹脂は、エチレン−酢酸ビニル共重合体、高密度ポリエチレン、直鎖状低密度ポリエチレン及びこれらの混合物から好適に選択できる。
(1) Polyolefin-based resin The polyolefin-based resin is not particularly limited, and known resins can be used. Moreover, the polyolefin resin may be crosslinked. For example, polyethylene-based resins such as branched low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methylmethacrylate copolymer, and crosslinked products of these polymers. , Polyethylene homopolymer, propylene-vinyl acetate copolymer, ethylene-propylene random copolymer, propylene-1-butene copolymer, ethylene-propylene-butene random copolymer and other polypropylene-based resins. In the above example, low density is preferably 0.91~0.94g / cm 3, more preferably 0.91~0.93g / cm 3. High density is preferably 0.95~0.97g / cm 3, more preferably 0.95~0.96g / cm 3. Medium density is an intermediate density between these low and high densities. The polyolefin-based resin can be preferably selected from ethylene-vinyl acetate copolymer, high-density polyethylene, linear low-density polyethylene, and mixtures thereof.

(2)ポリスチレン系樹脂
ポリスチレン系樹脂としては、スチレン系単量体を主成分とする樹脂であれば特に限定されず、スチレン又はスチレン誘導体の単独又は共重合体が挙げられる。
スチレン誘導体としては、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。これらのスチレン系単量体は、単独で用いられても、併用されてもよい。
(2) Polystyrene-based resin The polystyrene-based resin is not particularly limited as long as it is a resin containing a styrene-based monomer as a main component, and examples thereof include styrene or a styrene derivative alone or a copolymer.
Examples of the styrene derivative include α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, isopropylstyrene, dimethylstyrene, bromostyrene and the like. These styrene-based monomers may be used alone or in combination.

ポリスチレン系樹脂は、スチレン系単量体と共重合可能なビニル系単量体を併用したものであってもよい。
ビニル系単量体としては、例えば、o−ジビニルベンゼン、m−ジビニルベンゼン、p−ジビニルベンゼン等のジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート等の多官能性単量体;(メタ)アクリロニトリル、メチル(メタ)アクリレート、ブチル(メタ)アクリレート等が挙げられる。これらの中でも、多官能性単量体が好ましく、エチレングリコールジ(メタ)アクリレート、エチレン単位数が4〜16のポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼンがより好ましく、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレートが特に好ましい。尚、単量体は、単独で又は2種以上を組み合わせて用いてもよい。
また、単量体を併用する場合、その含有量は、スチレン系単量体が主成分となる量(例えば、50質量%以上)になるように設定されることが好ましい。
The polystyrene-based resin may be a combination of a styrene-based monomer and a copolymerizable vinyl-based monomer.
Examples of the vinyl-based monomer include divinylbenzene such as o-divinylbenzene, m-divinylbenzene, and p-divinylbenzene, and alkylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate. Polyfunctional monomers such as meta) acrylate; (meth) acrylonitrile, methyl (meth) acrylate, butyl (meth) acrylate and the like can be mentioned. Among these, polyfunctional monomers are preferable, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate having 4 to 16 ethylene units, and divinylbenzene are more preferable, and divinylbenzene and ethylene glycol di (divinylbenzene). Meta) acrylate is particularly preferred. The monomer may be used alone or in combination of two or more.
When a monomer is used in combination, the content thereof is preferably set so that the styrene-based monomer is the main component (for example, 50% by mass or more).

(3)樹脂成分の含有割合
ポリオレフィン系樹脂とポリスチレン系樹脂とは、これらの合計に対して、それぞれ50〜10質量%及び50〜90質量%の範囲で含まれる。
ポリスチレン系樹脂が50質量%未満の場合、発泡性、成形加工性が不十分になることがある。一方、ポリスチレン系樹脂が90質量%より多い場合、耐衝撃性や柔軟性が不十分になることがある。
ポリエチレン系樹脂とポリスチレン系樹脂とは、これらの合計に対して、それぞれ40〜15質量%及び60〜85質量%の範囲で含まれることが好ましい。
(3) Content ratio of resin component The polyolefin-based resin and the polystyrene-based resin are contained in the range of 50 to 10% by mass and 50 to 90% by mass, respectively, with respect to the total of these.
If the polystyrene-based resin is less than 50% by mass, the foamability and molding processability may be insufficient. On the other hand, when the polystyrene-based resin is more than 90% by mass, the impact resistance and flexibility may be insufficient.
The polyethylene-based resin and the polystyrene-based resin are preferably contained in the ranges of 40 to 15% by mass and 60 to 85% by mass, respectively, with respect to the total of these.

(4)ホウ素含有化合物
ホウ素含有化合物は、帯電防止剤として機能し、ホウ素を含有しさえすれば特に限定されない。例えば、アクセプタ成分と、ホウ素を含有するドナー成分とから構成されるホウ素含有化合物が挙げられる。
アクセプタ成分としては、例えば、アンモニウムカチオン、ピリジニウムカチオン、ピラジニウムカチオン、キノリウムカチオン、イソキノリウムカチオン、オキソニウムカチオン、ピリリウムカチオン、スルホニウムカチオン、スルホキソニウムカチオン、ホスホニウムカチオン、ヨードニウムカチオン、ヨードキソニウムカチオン、イミダゾリウムカチオン、オキサゾリウムカチオン、チアゾリウムカチオン、ベンゾイミダゾリウムカチオン、ベンゾオキサゾリウムカチオン及びベンゾチアゾリウムカチオン等が挙げられる。
ドナー成分としては、例えば、ホウ素原子に4つの置換基が結合した成分が挙げられる。4つの置換基としては、例えば、同一又は異なって、水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基及び複素環基が挙げられる。4つの置換基の内、隣接する2つの置換基が結合して、ホウ素原子と共に環を形成してもよい。
好適なホウ素含有化合物としては、下記式(1)で表される化合物が挙げられる。
(4) Boron-Containing Compound The boron-containing compound functions as an antistatic agent and is not particularly limited as long as it contains boron. For example, a boron-containing compound composed of an acceptor component and a boron-containing donor component can be mentioned.
Accepter components include, for example, ammonium cation, pyridinium cation, pyrazinium cation, quinolium cation, isoquinolium cation, oxonium cation, pyrylium cation, sulfonium cation, sulfoxonium cation, phosphonium cation, iodonium cation, iodine. Examples thereof include xonium cation, imidazolium cation, oxazolium cation, thiazolium cation, benzoimidazolium cation, benzoxazolium cation and benzothiazolium cation.
Examples of the donor component include a component in which four substituents are bonded to a boron atom. Examples of the four substituents include a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryl group and a heterocyclic group, which are the same or different. Of the four substituents, two adjacent substituents may be bonded to form a ring together with the boron atom.
Suitable boron-containing compounds include compounds represented by the following formula (1).

Figure 0006962761
Figure 0006962761

上記化合物は、ドナー成分としての半極性有機ホウ素化合物と、アクセプタ成分としての塩基性窒素化合物とを反応させて得られるドナー・アクセプター系分子化合物である。このドナー・アクセプター系分子化合物は、比較的少量で所望の帯電防止性を発泡成形体に与え得る。そのため、複合樹脂粒子から発泡成形体を得るまでの工程に悪影響を与えにくい化合物である。
上記式中、R1〜4は、同一又は異なって、置換基を有していてもよいアルキル基である。アルキル基の炭素数は、1〜4であることが好ましい(但し、置換基を構成する炭素数は未算入)。アルキル基には、構造異性体が含まれる。置換基としては、水酸基、炭素数1〜20のアルキルカルボニルオキシ基等が挙げられる。R5は、結合手、アルキレン基(例えば、炭素数1〜4)等が挙げられる。
具体的なR1及びR2としては、R−CO−OCH−(Rは、炭素数1〜20のアルキル基である)及びHOCH−が挙げられる。R3及びR4としては、CH−、C−、HOCH−、HOC−及びHOCHCH(CH)−等が挙げられる。R5としては、結合手、−CH2−、−C−及び−C−が挙げられる。
式(1)で表される化合物としては、ボロン研究所社製のビオミセルシリーズが挙げられる。特に、ビオミセルBN−105が好適である。
The above compound is a donor-acceptor-based molecular compound obtained by reacting a semi-polar organoboron compound as a donor component with a basic nitrogen compound as an acceptor component. This donor-acceptor-based molecular compound can impart the desired antistatic property to the foamed molded article in a relatively small amount. Therefore, it is a compound that does not easily adversely affect the process from obtaining the foamed molded product from the composite resin particles.
In the above formula, R1 to 4 are alkyl groups which may have the same or different substituents. The number of carbon atoms of the alkyl group is preferably 1 to 4 (however, the number of carbon atoms constituting the substituent is not included). Alkyl groups include structural isomers. Examples of the substituent include a hydroxyl group and an alkylcarbonyloxy group having 1 to 20 carbon atoms. Examples of R5 include a bond, an alkylene group (for example, 1 to 4 carbon atoms) and the like.
Specific examples of R1 and R2 include R f- CO-OCH 2- (R f is an alkyl group having 1 to 20 carbon atoms) and HOCH 2- . As R3 and R4, CH 3 -, C 2 H 5 -, HOCH 2 -, HOC 2 H 4 - and HOCH 2 CH (CH 3) -, and the like. Examples of R5 include a bond, −CH 2 −, −C 2 H 4 − and −C 3 H 6 −.
Examples of the compound represented by the formula (1) include a biomicelle series manufactured by Boron Research Institute. In particular, biomicelle BN-105 is suitable.

複合樹脂粒子中のホウ素量は、複合樹脂粒子1kgあたり、1.0〜15.0mgである。複合樹脂粒子中には、このホウ素量に対応する量のホウ素含有化合物が含まれている。ホウ素量が1.0mg未満の場合、帯電の防止効果を十分得られないことがある。ホウ素量が15.0mgより多い場合、複合樹脂粒子から発泡成形体を得るまでの工程に悪影響を与えることがある。ホウ素量は、2.0〜11.0mgであることが好ましく、3.0〜8.0mgであることがより好ましい。
ホウ素含有化合物は、複合樹脂粒子の表層から中心部に存在している。そのため、この複合樹脂粒子から得られた発泡成形体は、ホウ素含有化合物の脱離が抑制されている。ホウ素含有化合物の複合樹脂粒子内での存在状態は、脱離が抑制できていさえすれば、表層から中心部までに均一に存在していてもよく、偏在していてもよい。
The amount of boron in the composite resin particles is 1.0 to 15.0 mg per 1 kg of the composite resin particles. The composite resin particles contain an amount of boron-containing compound corresponding to the amount of boron. If the amount of boron is less than 1.0 mg, the antistatic effect may not be sufficiently obtained. If the amount of boron is more than 15.0 mg, the process from obtaining the foamed molded product from the composite resin particles may be adversely affected. The amount of boron is preferably 2.0 to 11.0 mg, more preferably 3.0 to 8.0 mg.
The boron-containing compound is present from the surface layer to the center of the composite resin particles. Therefore, in the foamed molded product obtained from the composite resin particles, the desorption of the boron-containing compound is suppressed. The presence state of the boron-containing compound in the composite resin particles may be uniformly present from the surface layer to the central portion as long as desorption can be suppressed, or may be unevenly distributed.

(5)物性
複合樹脂粒子は、複合樹脂粒子から得られた100mm×100mm×30mmの大きさの発泡成形体を、その両面に表皮がある状態で、超純水100mLに25℃で72時間浸漬した際に、超純水に移行するホウ素量が0.20mg/L以下となるように、ホウ素含有化合物を含むことが好ましい。ホウ素量が0.20mg/L以下であることは、複合樹脂粒子から得られた発泡成形体に含まれているホウ素含有化合物が、脱落し難いことを意味する。その結果、均一な帯電性の抑制と、物品への帯電防止剤の移行とが防止可能な発泡成形体を提供できる。ホウ素量は、0.15mg/L以下であることがより好ましく、0.10mg/L以下であることが更に好ましい。ホウ素量の下限は0mg/Lである。
複合樹脂粒子は、帯電防止性の劣化を測定するための加速試験として、複合樹脂粒子から得られた発泡成形体を温度65℃かつ湿度90%の環境下に、500時間曝した場合、発泡成形体に1×1010Ω以下の表面抵抗値を与えることが好ましい。この表面抵抗値を有することは、複合樹脂粒子に含まれるホウ素含有化合物が、表面に付着しておらず、表層から中心部に存在していることを意味する。加えて、この表面抵抗値を有することは、本発明の複合樹脂粒子を発泡粒子の製造に使用すれば、帯電防止性能を長期間持続し、発泡成形体に接する他の物品への帯電防止剤の移行を抑制し得ることを意味する。
複合樹脂粒子は、1.0〜2.0mmの平均粒子径を有することが好ましい。平均粒子径は、1.2〜1.6mmであることがより好ましい。
複合樹脂粒子の質量平均分子量:Mwは、250,000〜450,000程度である。質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定できる。
(5) Physical Properties The composite resin particles are obtained by immersing a foamed molded product having a size of 100 mm × 100 mm × 30 mm obtained from the composite resin particles in 100 mL of ultrapure water at 25 ° C. for 72 hours with skins on both sides thereof. It is preferable to contain a boron-containing compound so that the amount of boron transferred to ultrapure water is 0.20 mg / L or less. When the amount of boron is 0.20 mg / L or less, it means that the boron-containing compound contained in the foamed molded product obtained from the composite resin particles is hard to fall off. As a result, it is possible to provide a foam molded product capable of uniformly suppressing the antistatic property and preventing the transfer of the antistatic agent to the article. The amount of boron is more preferably 0.15 mg / L or less, and further preferably 0.10 mg / L or less. The lower limit of the amount of boron is 0 mg / L.
The composite resin particles are foam-molded when the foamed molded product obtained from the composite resin particles is exposed to an environment of a temperature of 65 ° C. and a humidity of 90% for 500 hours as an accelerated test for measuring deterioration of antistatic properties. It is preferable to give the body a surface resistance value of 1 × 10 10 Ω or less. Having this surface resistance value means that the boron-containing compound contained in the composite resin particles does not adhere to the surface and exists from the surface layer to the central portion. In addition, having this surface resistance value means that if the composite resin particles of the present invention are used in the production of foamed particles, the antistatic performance can be maintained for a long period of time, and an antistatic agent for other articles in contact with the foamed molded product. It means that the transition of can be suppressed.
The composite resin particles preferably have an average particle size of 1.0 to 2.0 mm. The average particle size is more preferably 1.2 to 1.6 mm.
The mass average molecular weight of the composite resin particles: Mw is about 250,000 to 450,000. The mass average molecular weight can be measured using gel permeation chromatography (GPC).

(6)製造方法
複合樹脂粒子は、特に限定されないが、例えば、シード重合法により製造できる
(a)シード重合法
シード重合法では、一般に、種粒子に単量体を吸収させ、吸収させた後又は吸収させつつ単量体の重合を行うことにより複合樹脂粒子を得ることができる。また、重合させた後又は重合させつつ複合樹脂粒子に発泡剤を含浸させて発泡性粒子を得ることもできる。
(6) Production method The composite resin particles are not particularly limited, but can be produced by, for example, a seed polymerization method. (A) Seed polymerization method In the seed polymerization method, the seed particles generally absorb the monomer and then absorb the monomer. Alternatively, composite resin particles can be obtained by polymerizing the monomers while absorbing them. It is also possible to obtain effervescent particles by impregnating the composite resin particles with a foaming agent after or while polymerizing.

具体的には、まず、水性媒体中で、種粒子に、スチレン系単量体を吸収させ、吸収させた後又は吸収させつつスチレン系単量体の重合を行うことで複合樹脂粒子を得る。
スチレン系単量体は、これを構成する単量体を全て同時に水性媒体中に供給する必要はなく、単量体の全部あるいは一部を別々のタイミングで水性媒体中に供給してもよい。複合樹脂粒子中に添加剤を含有させる場合には、添加剤をスチレン系単量体や水性媒体中に添加しても、あるいは、種粒子中に含有させてもよい。
尚、単量体と樹脂の量はほぼ同一である。
Specifically, first, the composite resin particles are obtained by allowing the seed particles to absorb the styrene-based monomer in an aqueous medium, and then polymerizing the styrene-based monomer after or while absorbing the styrene-based monomer.
As for the styrene-based monomer, it is not necessary to supply all the monomers constituting the styrene-based monomer into the aqueous medium at the same time, and all or a part of the monomers may be supplied into the aqueous medium at different timings. When the additive is contained in the composite resin particles, the additive may be added to the styrene-based monomer or the aqueous medium, or may be contained in the seed particles.
The amounts of the monomer and the resin are almost the same.

スチレン系単量体の重合は、例えば、60〜150℃で、2〜40時間加熱することにより行うことができる。
重合工程では、重合温度で長時間保持する、すなわちアニールするのが好ましい。
アニール工程に至るそれまでの工程において、種粒子に吸収させたスチレン系単量体及び重合開始剤は完全には反応を完了しておらず、複合樹脂粒子内部には未反応物も少なからず存在している。そのため、アニールせずに得た複合樹脂粒子を用いて発泡成形体を得た場合、スチレン系単量体等低分子量の未反応物の影響により、発泡成形体の機械的物性や耐熱性の低下や揮発性の未反応物を原因とした臭気が問題となる。そこで、アニール工程を導入することによって未反応物が重合反応を起こす時間を確保し、発泡成形体の物性に影響しないように残存する未反応物を除去できる。
スチレン系単量体としては、複合樹脂粒子の項に例示のものが挙げられ、その使用量は、複合樹脂粒子の項に記載の範囲である。
The polymerization of the styrene-based monomer can be carried out, for example, by heating at 60 to 150 ° C. for 2 to 40 hours.
In the polymerization step, it is preferable to keep the polymerization temperature for a long time, that is, to anneal.
In the steps leading up to the annealing step, the styrene-based monomer and the polymerization initiator absorbed in the seed particles have not completely completed the reaction, and there are not a few unreacted substances inside the composite resin particles. doing. Therefore, when a foamed molded product is obtained using the composite resin particles obtained without annealing, the mechanical properties and heat resistance of the foamed molded product deteriorate due to the influence of low molecular weight unreacted substances such as styrene-based monomers. Odor caused by volatile unreacted substances becomes a problem. Therefore, by introducing the annealing step, it is possible to secure a time for the unreacted product to cause a polymerization reaction and remove the remaining unreacted product so as not to affect the physical properties of the foamed molded product.
Examples of the styrene-based monomer are given in the section of composite resin particles, and the amount used thereof is within the range described in the section of composite resin particles.

(b)種粒子
種粒子は、ポリオレフィン系樹脂とホウ素含有化合物を含む。種粒子は、例えば、ポリオレフィン系樹脂とホウ素含有化合物を混合・溶融混錬後、ストランド状に押し出し、所望の粒子径でカットする方法により得ることができる。ホウ素含有化合物は、予めポリオレフィン系樹脂と混合されたマスターバッチの形態で、種粒子の製造に使用されてもよい。ホウ素含有化合物がこの形態で使用されることで、ホウ素含有化合物を種粒子内により均一に分散できる。
種粒子の粒子径は、複合樹脂粒子の平均粒子径に応じて適宜調整できる。好ましい粒子径は、0.2〜1.5mmの範囲であり、その平均質量は10〜100mg/100粒である。また、その形状は、真球状、楕円球状(卵状)、円柱状、角柱状等が挙げられる。
(B) Seed particles The seed particles include a polyolefin resin and a boron-containing compound. Seed particles can be obtained, for example, by mixing a polyolefin resin and a boron-containing compound, melt-kneading them, extruding them into strands, and cutting them to a desired particle size. The boron-containing compound may be used in the production of seed particles in the form of a masterbatch previously mixed with a polyolefin-based resin. By using the boron-containing compound in this form, the boron-containing compound can be more uniformly dispersed in the seed particles.
The particle size of the seed particles can be appropriately adjusted according to the average particle size of the composite resin particles. The preferred particle size is in the range of 0.2 to 1.5 mm, the average mass of which is 10 to 100 mg / 100 particles. The shape thereof includes a true sphere, an elliptical sphere (egg-like), a columnar shape, a prismatic shape, and the like.

(c)水性媒体
水性媒体としては、水、水と水溶性溶媒(例えば、メチルアルコールやエチルアルコール等の低級アルコール)との混合媒体が挙げられる。
(C) Aqueous medium Examples of the aqueous medium include water, a mixed medium of water and a water-soluble solvent (for example, a lower alcohol such as methyl alcohol or ethyl alcohol).

(d)分散剤
水性媒体には、スチレン系単量体の液滴及び種粒子の分散性を安定させるために分散剤を用いてもよい。このような分散剤としては、例えば、部分けん化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース等の有機系分散剤;ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム等の無機系分散剤が挙げられる。これらの中でも、より安定な分散状態を維持できることがあるため、無機系分散剤が好ましい。
無機系分散剤を用いる場合には、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、α−オレフィンスルホン酸ナトリウム等が挙げられる。
(D) Dispersant As the aqueous medium, a dispersant may be used to stabilize the dispersibility of the droplets of the styrene-based monomer and the seed particles. Examples of such dispersants include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinylpyrrolidone, carboxymethyl cellulose, and methyl cellulose; magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, magnesium phosphate, and the like. Examples thereof include inorganic dispersants such as magnesium carbonate and magnesium oxide. Among these, an inorganic dispersant is preferable because it may be possible to maintain a more stable dispersed state.
When an inorganic dispersant is used, it is preferable to use a surfactant in combination. Examples of such a surfactant include sodium dodecylbenzene sulfonate, sodium α-olefin sulfonate and the like.

(e)重合開始剤
スチレン系単量体は、通常重合開始剤の存在下で重合する。重合開始剤は、通常スチレン系単量体と同時に種粒子に含浸させる。
重合開始剤としては、従来からスチレン系単量体の重合に用いられているものであれば、特に限定されない。例えば、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシピバレート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、ジクミルパーオキサイド等の有機過酸化物が挙げられる。これら重合開始剤は、単独で又は2種以上を組み合わせて用いてもよい。重合開始剤の使用量は、スチレン系単量体100質量部に対して、例えば0.1〜5質量部の範囲である。
(E) Polymerization Initiator A styrene-based monomer is usually polymerized in the presence of a polymerization initiator. The polymerization initiator is usually impregnated into seed particles at the same time as the styrene-based monomer.
The polymerization initiator is not particularly limited as long as it has been conventionally used for polymerization of styrene-based monomers. For example, benzoyl peroxide, t-butyl peroxybenzoate, t-butyl peroxypivalate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2, 2-t-Butylperoxybutane, t-Butylperoxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, 2,5-dimethyl-2,5-bis (benzoyl) Peroxy) Organic peroxides such as hexane and dicumyl peroxide can be mentioned. These polymerization initiators may be used alone or in combination of two or more. The amount of the polymerization initiator used is, for example, in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the styrene-based monomer.

重合開始剤を種粒子又は種粒子から成長途上の粒子に均一に吸収させるために、重合開始剤を水性媒体中に添加するにあたって、重合開始剤を水性媒体中に予め懸濁又は乳化分散させた上で分散液中に添加するか、あるいは重合開始剤をスチレン系単量体に予め溶解させた上で水性媒体中に添加することが好ましい。 In order to uniformly absorb the polymerization initiator from the seed particles or the growing particles, the polymerization initiator was suspended or emulsified and dispersed in the aqueous medium in advance when the polymerization initiator was added to the aqueous medium. It is preferable to add the above to the dispersion, or to dissolve the polymerization initiator in the styrene-based monomer in advance and then add it to the aqueous medium.

重合開始剤の好ましい添加量は、スチレン系単量体100質量部あたり0.1〜0.9質量部である。
重合開始剤の添加量が0.1質量部未満では、分子量が高くなりすぎて発泡性が低下することがある。一方、重合開始剤の添加量が0.9質量部を超えると、重合速度が速くなりすぎて、ポリスチレン系樹脂の粒子がポリオレフィン系樹脂中の分散状況を制御しきれないことがある。重合開始剤のより好ましい添加量は、0.2〜0.5質量部である。
The preferable amount of the polymerization initiator added is 0.1 to 0.9 parts by mass per 100 parts by mass of the styrene-based monomer.
If the amount of the polymerization initiator added is less than 0.1 parts by mass, the molecular weight may become too high and the foamability may decrease. On the other hand, if the amount of the polymerization initiator added exceeds 0.9 parts by mass, the polymerization rate becomes too high, and the polystyrene-based resin particles may not be able to control the dispersion state in the polyolefin-based resin. A more preferable amount of the polymerization initiator is 0.2 to 0.5 parts by mass.

(f)他の成分
なお、複合樹脂粒子には、物性を損なわない範囲内において、可塑剤、結合防止剤、気泡調整剤、架橋剤、充填剤、滑剤、着色剤、融着促進剤、展着剤、難燃剤及び難燃助剤等の添加剤を添加してもよい。
(F) Other components The composite resin particles include a plasticizer, a bond inhibitor, a bubble conditioner, a cross-linking agent, a filler, a lubricant, a colorant, a fusion accelerator, and a spread as long as the physical properties are not impaired. Additives such as a lubricant, a flame retardant and a flame retardant aid may be added.

複合樹脂粒子には、加熱発泡時に用いられる水蒸気の圧力が低くても良好な発泡成形性を維持させるために、1気圧下における沸点が200℃を超える可塑剤を含有させることができる。
可塑剤としては、例えば、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、グリセリンジアセトモノステアレート等のグリセリン脂肪酸エステル、ジイソブチルアジペート等のアジピン酸エステル、ヤシ油等の可塑剤が挙げられる。
複合樹脂粒子中における可塑剤の含有量は、0.1〜3.0質量%が好ましい。
The composite resin particles may contain a plasticizer having a boiling point of more than 200 ° C. under 1 atm in order to maintain good foam moldability even when the pressure of water vapor used during heat foaming is low.
Examples of the plasticizer include glycerin fatty acid esters such as phthalates, glycerin diacet monolaurate, glycerin tristearate, and glycerin diacet monostearate, adipates such as diisobutyl adipate, and plasticizers such as coconut oil. ..
The content of the plasticizer in the composite resin particles is preferably 0.1 to 3.0% by mass.

結合防止剤としては、炭酸カルシウム、シリカ、ステアリン酸亜鉛、水酸化アルミニウム、エチレンビスステアリン酸アミド、第三リン酸カルシウム、ジメチルシリコン等が挙げられる。
気泡調整剤としては、エチレンビスステアリン酸アミド、ポリエチレンワックス等が挙げられる。
架橋剤としては、2,2−ジ−t−ブチルパーオキシブタン、2,2−ビス(t−ブチルパーオキシ)ブタン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン等の有機過酸化物等が挙げられる。
充填剤としては、合成又は天然に産出される二酸化ケイ素等が挙げられる。
滑剤としては、パラフィンワックス、ステアリン酸亜鉛等が挙げられる。
Examples of the bond inhibitor include calcium carbonate, silica, zinc stearate, aluminum hydroxide, ethylene bisstearate amide, tricalcium phosphate, dimethyl silicon and the like.
Examples of the bubble adjusting agent include ethylene bisstearic acid amide and polyethylene wax.
Examples of the cross-linking agent include 2,2-di-t-butylperoxybutane, 2,2-bis (t-butylperoxy) butane, dicumyl peroxide, and 2,5-dimethyl-2,5-di-t. -Organic peroxides such as butylperoxyhexane can be mentioned.
Examples of the filler include synthetically or naturally produced silicon dioxide and the like.
Examples of the lubricant include paraffin wax and zinc stearate.

着色剤としては、ファーネスブラック、ケッチェンブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、黒鉛、炭素繊維等のカーボンブラック、黄鉛、亜鉛黄、バリウム黄等のクロム酸塩、紺青等のフェロシアン化物、カドミウムイエロー、カドミウムレッド等の硫化物、鉄黒、紅殻等の酸化物、群青のようなケイ酸塩、酸化チタン等の無機系の顔料、モノアゾ顔料、ジスアゾ顔料、アゾレーキ、縮合アゾ顔料、キレートアゾ顔料等のアゾ顔料、フタロシアニン系、アントラキノン系、ペリレン系、ペリノン系、チオインジゴ系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系等の多環式顔料等の有機系の顔料が挙げられる。 Colorants include furnace black, ketjen black, channel black, thermal black, acetylene black, carbon black such as graphite and carbon fiber, chromate such as yellow lead, zinc yellow and barium yellow, and ferrocyanide such as dark blue. , Cadmium yellow, sulfides such as cadmium red, oxides such as iron black and red husks, silicates such as ultramarine, inorganic pigments such as titanium oxide, monoazo pigments, disazo pigments, azolakes, condensed azo pigments, chelate azo Examples thereof include azo pigments such as pigments, and organic pigments such as phthalocyanine-based, anthraquinone-based, perylene-based, perinone-based, thioindigo-based, quinacridone-based, dioxazine-based, isoindolinone-based, and quinophthalone-based polycyclic pigments.

融着促進剤としては、ステアリン酸、ステアリン酸トリグリセリド、ヒドロキシステアリン酸トリグリセリド、ステアリン酸ソルビタンエステル、ポリエチレンワックス等が挙げられる。
展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイル等が挙げられる。
Examples of the fusion accelerator include stearic acid, stearic acid triglyceride, hydroxystearic acid triglyceride, stearic acid sorbitan ester, polyethylene wax and the like.
Examples of the spreading agent include polybutene, polyethylene glycol, silicone oil and the like.

(発泡性粒子)
発泡性粒子は、複合樹脂粒子と、揮発性発泡剤とを含み、公知の方法により、複合樹脂粒子に揮発性発泡剤を含浸させることにより製造できる。
複合樹脂粒子に揮発性発泡剤を含浸させる温度としては、低いと、含浸に時間を要し、発泡性粒子の製造効率が低下することがある一方、高いと、発泡性粒子同士の合着が多量に発生することがあるので、50〜130℃が好ましく、60〜100℃がより好ましい。
(Effervescent particles)
The foamable particles contain composite resin particles and a volatile foaming agent, and can be produced by impregnating the composite resin particles with a volatile foaming agent by a known method.
If the temperature at which the composite resin particles are impregnated with the volatile foaming agent is low, impregnation may take time and the production efficiency of the foamable particles may decrease, while if the temperature is high, the foamable particles may coalesce. Since it may occur in a large amount, it is preferably 50 to 130 ° C, more preferably 60 to 100 ° C.

(1)発泡剤
揮発性発泡剤としては、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されず、例えば、イソブタン、n−ブタン、イソペンタン、n−ペンタン、ネオペンタン等炭素数5以下の脂肪族炭化水素等の揮発性発泡剤が挙げられ、特にブタン系発泡剤、ペンタン系発泡剤が好ましい。尚、ペンタンは可塑剤としての作用も期待できる。
(1) Foaming agent The volatile foaming agent is not particularly limited as long as it has been conventionally used for foaming polystyrene-based resins, and is, for example, isobutane, n-butane, isopentane, n-pentane, neopentane and the like. Examples thereof include volatile foaming agents such as aliphatic hydrocarbons having 5 or less carbon atoms, and butane-based foaming agents and pentane-based foaming agents are particularly preferable. Pentane can also be expected to act as a plasticizer.

発泡性粒子中における揮発性発泡剤の含有量は、通常5〜13質量%の範囲とされ、8〜12質量%の範囲が好ましく、9〜11質量%の範囲が特に好ましい。
揮発性発泡剤の含有量が少なく、例えば5質量%未満では、発泡性粒子から低密度の発泡成形体を得ることができないことがあると共に、型内発泡成形時の二次発泡力を高める効果が得られないために、発泡成形体の外観が低下することがある。一方、揮発性発泡剤の含有量が多く、例えば13質量%を超えると、発泡性粒子を用いた発泡成形体の製造工程における冷却工程に要する時間が長くなり生産性が低下することがある。
The content of the volatile foaming agent in the effervescent particles is usually in the range of 5 to 13% by mass, preferably in the range of 8 to 12% by mass, and particularly preferably in the range of 9 to 11% by mass.
If the content of the volatile foaming agent is small, for example, less than 5% by mass, it may not be possible to obtain a low-density foamed molded product from the foamable particles, and the effect of increasing the secondary foaming force during in-mold foam molding. The appearance of the foamed molded product may be deteriorated because the foamed molded product is not obtained. On the other hand, if the content of the volatile foaming agent is large and exceeds, for example, 13% by mass, the time required for the cooling step in the manufacturing process of the foamed molded product using the foamable particles becomes long, and the productivity may decrease.

(2)発泡助剤
発泡性粒子には、発泡剤と共に発泡助剤を含有させることができる。
発泡助剤としては、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されず、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等の1気圧下における沸点が200℃以下の溶剤が挙げられる。
(2) Foaming aid The effervescent particles can contain a foaming aid together with the foaming agent.
The foaming aid is not particularly limited as long as it is conventionally used for foaming polystyrene-based resins, and examples thereof include aromatic organic compounds such as styrene, toluene, ethylbenzene, and xylene, cyclohexane, and methylcyclohexane. Examples thereof include solvents such as cyclic aliphatic hydrocarbons, ethyl acetate, and butyl acetate having a boiling point of 200 ° C. or lower under 1 atmospheric pressure.

発泡性粒子中における発泡助剤の含有量は、通常0.3〜3.5質量%の範囲とされ、0.5〜2質量%の範囲が好ましい。
発泡助剤の含有量が少なく、例えば0.3質量%未満では、ポリスチレン系樹脂の可塑化効果が発現しないことがある。一方、発泡助剤の含有量が多く、3.5質量%を超えると、発泡性粒子を発泡させて得られる発泡成形体に収縮や融けが発生して外観が低下する、あるいは発泡性粒子を用いた発泡成形体の製造工程における冷却工程に要する時間が長くなることがある。
The content of the foaming aid in the foamable particles is usually in the range of 0.3 to 3.5% by mass, preferably in the range of 0.5 to 2% by mass.
If the content of the foaming aid is small, for example, less than 0.3% by mass, the plasticizing effect of the polystyrene resin may not be exhibited. On the other hand, if the content of the foaming aid is large and exceeds 3.5% by mass, the foamed molded product obtained by foaming the foamable particles shrinks or melts to deteriorate the appearance, or the foamable particles are formed. The time required for the cooling step in the manufacturing process of the foamed molded product used may become long.

(発泡粒子)
発泡粒子は、公知の方法により、発泡性粒子を所定の嵩密度に発泡させることにより得られ、蒸気を導入するバッチ式発泡や連続発泡、加圧下からの放出発泡が挙げられる。
発泡粒子は、20〜200kg/m3の範囲の嵩密度を有することが好ましい。発泡粒子の嵩密度が20kg/m3未満では、発泡成形体が収縮しやすく外観を損なうことがある。一方、発泡粒子の嵩密度が200kg/m3を超えると、発泡成形体として軽量化のメリットが損なわれることがある。好ましい発泡性粒子の嵩密度は、20〜100kg/m3の範囲である。
発泡においては、必要に応じて発泡する際にスチームと同時に空気を導入してもよい。
(Foam particles)
The foamed particles are obtained by foaming the foamable particles to a predetermined bulk density by a known method, and examples thereof include batch type foaming in which steam is introduced, continuous foaming, and release foaming under pressure.
The foamed particles preferably have a bulk density in the range of 20 to 200 kg / m 3. If the bulk density of the foamed particles is less than 20 kg / m 3 , the foamed molded product tends to shrink and the appearance may be impaired. On the other hand, if the bulk density of the foamed particles exceeds 200 kg / m 3 , the merit of weight reduction as a foamed molded product may be impaired. The preferred bulk density of effervescent particles is in the range of 20-100 kg / m 3.
In foaming, air may be introduced at the same time as steam when foaming, if necessary.

(発泡成形体)
発泡成形体は、公知の方法、例えば、発泡粒子を発泡成形機の金型内に充填し、再度加熱して発泡粒子を発泡させながら、発泡粒同士を熱融着させることにより得られる。
発泡成形体は、20〜200kg/m3の範囲の密度を有するのが好ましい。発泡成形体の密度が20kg/m3未満では、遅燃性及び耐衝撃性が十分でないことがある。一方、発泡成形体の密度が200kg/m3を超えると、発泡成形体の質量が増加し、輸送コストが高くなるため好ましくないことがある。好ましい発泡成形体の密度は、20〜100kg/m3の範囲である。
発泡成形体は、家電製品等の緩衝材(クッション材)、電子部品、各種工業資材、食品等の搬送容器、自動車関連部品(例えば、車輌用バンパーの芯材、ドア内装緩衝材等の衝撃エネルギー吸収材、下肢部衝撃吸収材やフロア嵩上げ材、ツールボックス)等に用いることができる。
(Foam molded product)
The foamed molded product is obtained by a known method, for example, by filling the mold of the foam molding machine with the foamed particles and heating the foamed particles again to foam the foamed particles while heat-sealing the foamed particles to each other.
The foam molded product preferably has a density in the range of 20 to 200 kg / m 3. If the density of the foam molded product is less than 20 kg / m 3 , the slow flame resistance and impact resistance may not be sufficient. On the other hand, if the density of the foamed molded product exceeds 200 kg / m 3 , the mass of the foamed molded product increases and the transportation cost increases, which may not be preferable. The preferred foam molding density is in the range of 20-100 kg / m 3.
Foam moldings are used for cushioning materials (cushion materials) for home appliances, electronic parts, various industrial materials, transport containers for foods, etc., and impact energy for automobile-related parts (for example, core materials for vehicle bumpers, cushioning materials for door interiors, etc.) It can be used as an absorbent material, a shock absorbing material for lower limbs, a floor raising material, a tool box, etc.

以下、実施例及び比較例により本発明を具体的に説明するが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。
実施例及び比較例においては、得られた複合樹脂粒子、発泡粒子及び発泡成形体を次のようにして評価した。
<複合樹脂粒子のホウ素量 金属元素含有量分析(ICP測定)>
(前処理方法)
試料約1.0gを精秤して450℃×3hr灰化し、濃塩酸2mLを加えた後、不溶分をNo.7濾紙で濾過した。得られたろ液を50mLにメスアップしてホウ素(B)濃度を下記条件にて測定して検量線より試料中B量を算出した。
B量(mg/kg)=B濃度(μg/mL)×50(mL)÷試料重量(g)
(ICP測定条件)
測定装置:島津製作所社製 マルチタイプICP発光分光分析装置 ICPE−9000
測定元素:B(249.773nm)
観測方向=軸方向、高周波出力=1.20kw、キャリアー流量=0.7L/min、プラズマ流量=10.0L/min、補助流量=0.6L/min、露光時間=30秒
検量線用標準液:米国SPEX社製XSTC−8(汎用混合標準溶液) 13元素混合(ベース5%HNO)−各約10mg/Lを超純水で適宜希釈し、5ppm、2.5ppm、1ppm、0.25ppm標準液を調製した。
(灰化条件)
測定装置:電気炉 マッフル炉STR−15K(いすず社製)
灰化条件:450℃×3hr(試料量=約1.0g)
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the following Examples are merely examples of the present invention, and the present invention is not limited to the following Examples.
In Examples and Comparative Examples, the obtained composite resin particles, foamed particles and foamed molded product were evaluated as follows.
<Analysis of boron content and metal element content of composite resin particles (ICP measurement)>
(Pretreatment method)
Approximately 1.0 g of the sample was precisely weighed, ashed at 450 ° C. × 3 hr, 2 mL of concentrated hydrochloric acid was added, and then the insoluble matter was No. 7 Filtered with filter paper. The obtained filtrate was scalpel-up to 50 mL, the boron (B) concentration was measured under the following conditions, and the amount of B in the sample was calculated from the calibration curve.
B amount (mg / kg) = B concentration (μg / mL) x 50 (mL) ÷ sample weight (g)
(ICP measurement conditions)
Measuring device: Shimadzu multi-type ICP emission spectroscopic analyzer ICPE-9000
Element to be measured: B (249.773 nm)
Observation direction = axial direction, high frequency output = 1.20 kW, carrier flow rate = 0.7 L / min, plasma flow rate = 10.0 L / min, auxiliary flow rate = 0.6 L / min, exposure time = 30 seconds Standard solution for calibration line : US SPEX XSTC-8 (general-purpose mixed standard solution) 13-element mixture (base 5% HNO 3 ) -Approximately 10 mg / L each diluted appropriately with ultrapure water, 5 ppm, 2.5 ppm, 1 ppm, 0.25 ppm A standard solution was prepared.
(Ashes condition)
Measuring device: Electric furnace Muffle furnace STR-15K (manufactured by Isuzu)
Ashification conditions: 450 ° C x 3 hr (sample amount = about 1.0 g)

<発泡粒子の嵩密度及び嵩倍数>
発泡粒子の嵩密度は、下記の要領で測定する。
まず、発泡粒子をメスシリンダに500cm3の目盛りまで充填する。但し、メスシリンダを水平方向から目視し、発泡粒子が一粒でも500cm3の目盛りに達していれば、充填を終了する。次に、メスシリンダ内に充填した発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とする。次式により発泡粒子の嵩密度を算出する。
嵩密度(kg/m3)=W÷500×1000
嵩密度の逆数の1000倍が嵩倍数である。
<Volume density and bulk factor of foamed particles>
The bulk density of the foamed particles is measured as follows.
First, the foamed particles are filled in a graduated cylinder up to a scale of 500 cm 3. However, when the measuring cylinder is visually inspected from the horizontal direction and even one of the foamed particles reaches the scale of 500 cm 3 , filling is completed. Next, the mass of the foamed particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as W (g). The bulk density of the foamed particles is calculated by the following formula.
Bulk density (kg / m 3 ) = W ÷ 500 × 1000
The bulk multiple is 1000 times the reciprocal of the bulk density.

<発泡成形体の密度及び発泡倍数>
発泡成形体の密度は、JIS A9511:1995「発泡プラスチック保温板」記載の方法で測定する。
得られた発泡成形体から10cm×10cm×3cm(300cm3)の試験片を切り出し、その質量W(g)を小数以下2位で秤量する。
得られた発泡成形体の質量W及び発泡成形体の体積から、次式により、発泡倍数(倍)を算出する。
発泡成形体の密度(kg/m3)=W÷300×1000
密度の逆数の1000倍が倍数である。
<Density of foam molded product and multiple of foam>
The density of the foam molded product is measured by the method described in JIS A9511: 1995 "Foam plastic heat insulating plate".
A test piece of 10 cm × 10 cm × 3 cm (300 cm 3 ) is cut out from the obtained foamed molded product, and its mass W (g) is weighed in two decimal places.
From the mass W of the obtained foamed molded product and the volume of the foamed molded product, the foaming multiple (times) is calculated by the following formula.
Density of foam molded product (kg / m 3 ) = W ÷ 300 × 1000
1000 times the reciprocal of the density is a multiple.

<発泡成形体の表面固有抵抗値>
JIS K 6911:1995「熱硬化性プラスチック一般試験方法」に記載の方法により測定した。即ち、試験装置( アドバンテスト社製デジタル超高抵抗/微小電流計R8340及びレジスティビティ・チェンバR12702A)を使用し、試料サンプルに、約30Nの荷重で電極を圧着させ、500Vで1分間充電後の抵抗値を測定した。測定値から次式より表面抵抗率を算出した。
ρs=π(D+d)/(D−d)×Rs
ρs:表面抵抗率(MΩ)
D:表面の環状電極の内径(cm)
d:表面電極の内円の外形(cm)
Rs: 表面抵抗(MΩ)
試料サンプルは、100mm×100mm×厚さ10mm以下の大きさを有し、同一の発泡成形体から切り出した。
試料サンプルを、20℃、湿度65%の環境下に24時間程度保存した後、試料サンプルの抵抗値を測定した。
<Surface specific resistance value of foam molded product>
Measurement was performed by the method described in JIS K 6911: 1995 "General Test Method for Thermosetting Plastics". That is, using a test device (Advantest digital ultra-high resistance / micro ammeter R8340 and resiliency chamber R12702A), the electrode was crimped to the sample sample with a load of about 30 N, and the resistance after charging at 500 V for 1 minute. The value was measured. The surface resistivity was calculated from the measured values by the following formula.
ρs = π (D + d) / (D−d) × Rs
ρs: Surface resistivity (MΩ)
D: Inner diameter (cm) of the annular electrode on the surface
d: Outer shape of the inner circle of the surface electrode (cm)
Rs: Surface resistance (MΩ)
Sample The sample had a size of 100 mm × 100 mm × thickness 10 mm or less, and was cut out from the same foam molded product.
The sample sample was stored in an environment of 20 ° C. and 65% humidity for about 24 hours, and then the resistance value of the sample sample was measured.

<発泡成形体の水抽出試験によるホウ素量 金属元素溶出試験(ICP測定)>
(前処理方法(成形品の溶出試験))
(1)発泡成形体を100(mm)×100(mm)×厚さ30(mm)(両面表皮有り)にカットした。
(2)上記サンプルをチャック袋に入れ、100mLの超純水を投入し、水平面に静置させて、25℃の環境下で3日間置いた。
(3)得られた超純水中ホウ素(B)濃度(mg/L)を下記条件にて測定して検量線より算出した。測定限界値以下のホウ素量は「ND」と表記した。
超純水中のホウ素量 0.20mg/L以下は「○」、0.20mg/Lを超えている場合は「×」とした。
(ICP測定条件)
測定装置:島津製作所社製 マルチタイプICP発光分光分析装置 ICPE−9000
測定元素:B(249.773nm)
観測方向=軸方向、高周波出力=1.20kw、キャリアー流量=0.7L/min、プラズマ流量=10.0L/min、補助流量=0.6L/min、露光時間=30秒
検量線用標準液:米国SPEX社製XSTC−8(汎用混合標準溶液) 13元素混合(ベース5%HNO)−各約10mg/Lを超純水で適宜希釈し、5ppm、2.5ppm、1ppm、0.25ppm標準液を調製した。
<Boron amount metal element elution test (ICP measurement) by water extraction test of foamed molded product>
(Pretreatment method (dissolution test of molded product))
(1) The foam molded product was cut into 100 (mm) × 100 (mm) × thickness 30 (mm) (with double-sided skin).
(2) The above sample was placed in a zipper bag, 100 mL of ultrapure water was added, and the sample was allowed to stand on a horizontal surface and left in an environment of 25 ° C. for 3 days.
(3) The obtained boron (B) concentration (mg / L) in ultrapure water was measured under the following conditions and calculated from the calibration curve. The amount of boron below the measurement limit is indicated as "ND".
When the amount of boron in ultrapure water was 0.20 mg / L or less, it was evaluated as “◯”, and when it exceeded 0.20 mg / L, it was evaluated as “x”.
(ICP measurement conditions)
Measuring device: Shimadzu multi-type ICP emission spectroscopic analyzer ICPE-9000
Element to be measured: B (249.773 nm)
Observation direction = axial direction, high frequency output = 1.20 kW, carrier flow rate = 0.7 L / min, plasma flow rate = 10.0 L / min, auxiliary flow rate = 0.6 L / min, exposure time = 30 seconds Standard solution for calibration line : US SPEX XSTC-8 (general-purpose mixed standard solution) 13-element mixture (base 5% HNO 3 ) -Approximately 10 mg / L each diluted appropriately with ultrapure water, 5 ppm, 2.5 ppm, 1 ppm, 0.25 ppm A standard solution was prepared.

実施例1
(複合樹脂粒子の作製)
ポリエチレン系樹脂(直鎖状低密度ポリエチレンLLDPE:日本ポリエチレン社製ハーモレックスNF366A)100質量部と、帯電防止剤を含むマスターバッチ(ボロン研究所社製ビオミセルBN−105)5質量部をタンブラーミキサーに投入し、10分間混合した。
次いで、この樹脂混合物を単軸押出機(型式:CER40Y 3.7MB−SX、星プラスチック社製、口径40mmφ、ダイスプレート(口径1.5mm))に供給して温度230〜250℃で溶融混練し、ストランドカット方式によりファンカッター(星プラスチック社製、型式:FCW−110B/SE1−N)にて円筒状0.40〜0.60mg/個(平均0.5mg/個)に切断し、種粒子を得た。
ビオミセルBN−105は、ポリエチレン系樹脂中に帯電防止剤としてのドナー・アクセプター系分子化合物を含むマスターバッチであり、有効成分99%以上の白色顆粒状固体である。ドナー・アクセプター系分子化合物は、上記式(1)において、R1及びR2がCH(CH16−CO−OCH、又はHOCHで、かつ少なくとも一方がCH(CH16−CO−OCHであり、R3及びR4がCH、C、HOCH、HOC、又はHOCHCH(CH)であり、R5が結合手の化合物である。
次に、攪拌機付の5リットルのオートクレーブに、ピロリン酸マグネシウム30g、ドデシルベンゼンスルホン酸ナトリウム0.15gを純水1.9kgに分散させて分散用媒体を得た。
Example 1
(Preparation of composite resin particles)
100 parts by mass of polyethylene resin (linear low density polyethylene LLDPE: Harmorex NF366A manufactured by Japan Polyethylene Corporation) and 5 parts by mass of master batch (Biomicelle BN-105 manufactured by Boron Research Institute) containing an antistatic agent are used in a tumbler mixer. It was charged and mixed for 10 minutes.
Next, this resin mixture is supplied to a single-screw extruder (model: CER40Y 3.7MB-SX, manufactured by Hoshi Plastic Co., Ltd., diameter 40 mmφ, die plate (diameter 1.5 mm)) and melt-kneaded at a temperature of 230 to 250 ° C. , Cut into a cylindrical shape of 0.40 to 0.60 mg / piece (average 0.5 mg / piece) with a fan cutter (manufactured by Hoshi Plastic Co., Ltd., model: FCW-110B / SE1-N) by the strand cut method, and seed particles. Got
Biomicelle BN-105 is a masterbatch containing a donor-acceptor-based molecular compound as an antistatic agent in a polyethylene-based resin, and is a white granular solid having an active ingredient of 99% or more. In the donor-acceptor-based molecular compound, in the above formula (1), R1 and R2 are CH 3 (CH 2 ) 16- CO-OCH 2 or HOCH 2 , and at least one of them is CH 3 (CH 2 ) 16- CO. -OCH 2 , R3 and R4 are CH 3 , C 2 H 5 , HOCH 2 , HOC 2 H 4 , or HOCH 2 CH (CH 3 ), and R 5 is the compound of the acceptor.
Next, 30 g of magnesium pyrophosphate and 0.15 g of sodium dodecylbenzenesulfonate were dispersed in 1.9 kg of pure water in a 5 liter autoclave equipped with a stirrer to obtain a dispersion medium.

分散用媒体に30℃で上記種粒子400gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。
更に、この懸濁液に、重合開始剤としてジクミルパーオキサイドを0.50g溶解させたスチレン単量体200gを30分かけて滴下した。滴下後、60分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、135℃に昇温し、この温度で2時間重合(第1重合)させた。
400 g of the seed particles were dispersed in a dispersion medium at 30 ° C. and held for 10 minutes, and then the temperature was raised to 60 ° C. to obtain a suspension.
Further, 200 g of a styrene monomer in which 0.50 g of dicumyl peroxide as a polymerization initiator was dissolved was added dropwise to this suspension over 30 minutes. The seed particles were impregnated with the styrene monomer by holding for 60 minutes after the dropping. After impregnation, the temperature was raised to 135 ° C., and polymerization (first polymerization) was carried out at this temperature for 2 hours.

次に、115℃に下げた懸濁液中に、ドデシルベンゼンスルホン酸ナトリウム0.65gを純水0.1kgに溶解した水溶液を投入した後、t−ブチルパーオキシベンゾエートを4.8g溶解させたスチレン単量体1400gを4時間かけて滴下した。スチレン単量体合計量は、種粒子100質量部に対して、400質量部とした。滴下後、気泡調整剤としてエチレンビスステアリン酸アミド3.4gを投入し、115℃で1時間保持することで、直鎖状低密度ポリエチレン系樹脂粒子中にスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で2時間保持して重合(第2重合)させた。この重合の結果、複合樹脂粒子を得ることができた。 Next, in a suspension cooled to 115 ° C., an aqueous solution prepared by dissolving 0.65 g of sodium dodecylbenzenesulfonate in 0.1 kg of pure water was added, and then 4.8 g of t-butylperoxybenzoate was dissolved. 1400 g of styrene monomer was added dropwise over 4 hours. The total amount of styrene monomer was 400 parts by mass with respect to 100 parts by mass of seed particles. After the dropping, 3.4 g of ethylene bisstearic acid amide was added as a bubble adjusting agent, and the mixture was kept at 115 ° C. for 1 hour to impregnate the linear low-density polyethylene-based resin particles with the styrene monomer. After impregnation, the temperature was raised to 140 ° C., and the temperature was maintained at this temperature for 2 hours for polymerization (second polymerization). As a result of this polymerization, composite resin particles could be obtained.

(発泡性粒子の作製)
次いで、30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。複合樹脂粒子2kgと水2リットルとドデシルベンゼンスルホン酸ナトリウム0.50gを、5リットルの攪拌機付オートクレーブに入れた。更に、発泡剤としてブタン(n−ブタン:イソブタン=7:3(質量比))520ミリリットル(300g)をオートクレーブに入れた。この後、70℃に昇温し、3時間攪拌を続けることで発泡性粒子を得ることができた。
その後、30℃以下まで冷却して、発泡性粒子をオートクレーブから取り出し、脱水乾燥させた。
(Preparation of effervescent particles)
Then, the mixture was cooled to 30 ° C. or lower, and the composite resin particles were taken out from the autoclave. 2 kg of composite resin particles, 2 liters of water and 0.50 g of sodium dodecylbenzene sulfonate were placed in a 5 liter autoclave with a stirrer. Further, 520 ml (300 g) of butane (n-butane: isobutane = 7: 3 (mass ratio)) was placed in the autoclave as a foaming agent. After that, the temperature was raised to 70 ° C. and stirring was continued for 3 hours to obtain effervescent particles.
Then, the temperature was cooled to 30 ° C. or lower, and the effervescent particles were taken out from the autoclave and dehydrated and dried.

(発泡粒子及び発泡成形体の作製)
次いで、得られた発泡性粒子を嵩密度50kg/m3に発泡させることで、発泡粒子を得た。得られた発泡粒子を1日間室温(23℃)に放置した後、400mm×300mm×30mmの大きさの成形用金型に入れた。その後、0.10MPa(ゲージ圧)の水蒸気を50秒間導入して加熱し、次いで、発泡成形体の面圧が0.01MPaに低下するまで冷却することで、密度50kg/m3の発泡成形体を得た。
得られた発泡成形体の外観及び融着は共に良好であった。
(Preparation of foamed particles and foamed molded product)
Then, the obtained foamable particles were foamed to a bulk density of 50 kg / m 3 to obtain foamed particles. The obtained foamed particles were allowed to stand at room temperature (23 ° C.) for 1 day, and then placed in a molding die having a size of 400 mm × 300 mm × 30 mm. Then, 0.10 MPa (gauge pressure) of water vapor is introduced for 50 seconds to heat the foamed molded product, and then the foamed molded product is cooled until the surface pressure of the foamed molded product drops to 0.01 MPa to obtain a foamed molded product having a density of 50 kg / m 3. Got
The appearance and fusion of the obtained foamed molded product were both good.

実施例2
マスターバッチの添加量を10質量部とし、発泡粒子の嵩密度及び発泡成形体の密度を33.3kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
実施例3
マスターバッチの添加量を15質量部とし、発泡粒子の嵩密度及び発泡成形体の密度を25.0kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
実施例4
LLDPEに代えてポリエチレン系樹脂(高密度ポリエチレンHDPE:東ソー社製TOSOH−HMS グレード名:10S65B、密度0.940g/cm3、mp126℃、MFR2.0g/10分)を使用し、第1の重合時の種粒子の量を600g、スチレン単量体の量を240gとし、第2の重合時のスチレン単量体の量を1160gとし、第2の重合時の温度を125℃、t−ブチルパーオキシベンゾエートをジクミルパーオキサイドに変更し、発泡粒子の嵩密度及び発泡成形体の密度を33.3kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
実施例5
LLDPEに代えて実施例4のHDPEを使用し、マスターバッチの添加量を10質量部とし、第1の重合時の種粒子の量を600g、スチレン単量体の量を240gとし、第2の重合時のスチレン単量体の量を1160gとし、第2の重合時の温度を125℃、t−ブチルパーオキシベンゾエートをジクミルパーオキサイドに変更すること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
Example 2
A foamed molded product was obtained in the same manner as in Example 1 except that the amount of the masterbatch added was 10 parts by mass and the bulk density of the foamed particles and the density of the foamed molded product were 33.3 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.
Example 3
A foamed molded product was obtained in the same manner as in Example 1 except that the amount of the masterbatch added was 15 parts by mass and the bulk density of the foamed particles and the density of the foamed molded product were 25.0 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.
Example 4
First polymerization using polyethylene resin (high density polyethylene HDPE: TOSOH-HMS grade name: 10S65B, density 0.940 g / cm 3 , mp126 ° C, MFR 2.0 g / 10 minutes) instead of LLDPE. The amount of seed particles at the time was 600 g, the amount of styrene monomer was 240 g, the amount of styrene monomer at the time of the second polymerization was 1160 g, the temperature at the time of the second polymerization was 125 ° C., and t-butylper. A foamed molded product was obtained in the same manner as in Example 1 except that the oxybenzoate was changed to dicumyl peroxide and the bulk density of the foamed particles and the density of the foamed molded product were 33.3 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.
Example 5
Using HDPE of Example 4 instead of LLDPE, the amount of the master batch added was 10 parts by mass, the amount of seed particles at the time of the first polymerization was 600 g, the amount of styrene monomer was 240 g, and the second Foam molding in the same manner as in Example 1 except that the amount of styrene monomer at the time of polymerization was 1160 g, the temperature at the time of the second polymerization was 125 ° C., and t-butyl peroxybenzoate was changed to dicumyl peroxide. I got a body. The appearance and fusion of the obtained foamed molded product were both good.

実施例6
LLDPEに代えて実施例4のHDPEを使用し、マスターバッチの添加量を15質量部とし、第1の重合時の種粒子の量を600g、スチレン単量体の量を240gとし、第2の重合時のスチレン単量体の量を1160gとし、第2の重合時の温度を125℃、t−ブチルパーオキシベンゾエートをジクミルパーオキサイドに変更し、発泡粒子の嵩密度及び発泡成形体の密度を33.3kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
実施例7
LLDPEに代えてポリエチレン系樹脂(エチレン−酢酸ビニル共重合体EVA:NUC社製NUC−3450)を使用し、第1の重合時の種粒子の量を800g、スチレン単量体の量を336gとし、第2の重合時のスチレン単量体の量を864gとし、第2の重合時の温度を90℃、t−ブチルパーオキシベンゾエートをベンゾイルパーオキサイドに変更すること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
実施例8
LLDPEに代えて実施例7のEVAを使用し、マスターバッチの添加量を10質量部とし、第1の重合時の種粒子の量を800g、スチレン単量体の量を336gとし、第2の重合時のスチレン単量体の量を864gとし、第2の重合時の温度を90℃、t−ブチルパーオキシベンゾエートをベンゾイルパーオキサイドに変更し、発泡粒子の嵩密度及び発泡成形体の密度を33.3kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
実施例9
LLDPEに代えて実施例7のEVAを使用し、マスターバッチの添加量を15質量部とし、第1の重合時の種粒子の量を800g、スチレン単量体の量を336gとし、第2の重合時のスチレン単量体の量を864gとし、第2の重合時の温度を90℃、t−ブチルパーオキシベンゾエートをベンゾイルパーオキサイドに変更し、発泡粒子の嵩密度及び発泡成形体の密度を33.3kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
Example 6
The HDPE of Example 4 was used instead of the LLDPE, the amount of the master batch added was 15 parts by mass, the amount of seed particles at the time of the first polymerization was 600 g, the amount of the styrene monomer was 240 g, and the second The amount of styrene monomer at the time of polymerization was set to 1160 g, the temperature at the time of the second polymerization was changed to 125 ° C., t-butylperoxybenzoate was changed to dicumyl peroxide, and the bulk density of the foamed particles and the density of the foamed molded product were changed. A foamed molded product was obtained in the same manner as in Example 1 except that the value was 33.3 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.
Example 7
A polyethylene resin (ethylene-vinyl acetate copolymer EVA: NUC-3450 manufactured by NUC) was used instead of LLDPE, and the amount of seed particles at the time of the first polymerization was 800 g and the amount of styrene monomer was 336 g. The same as in Example 1 except that the amount of styrene monomer at the time of the second polymerization was 864 g, the temperature at the time of the second polymerization was 90 ° C., and t-butylperoxybenzoate was changed to benzoyl peroxide. A foamed molded product was obtained. The appearance and fusion of the obtained foamed molded product were both good.
Example 8
EVA of Example 7 was used instead of LLDPE, the amount of the master batch added was 10 parts by mass, the amount of seed particles at the time of the first polymerization was 800 g, the amount of styrene monomer was 336 g, and the second The amount of styrene monomer at the time of polymerization was set to 864 g, the temperature at the time of the second polymerization was changed to 90 ° C., t-butylperoxybenzoate was changed to benzoyl peroxide, and the bulk density of the foamed particles and the density of the foamed molded product were changed. A foamed molded product was obtained in the same manner as in Example 1 except that the weight was 33.3 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.
Example 9
EVA of Example 7 was used instead of LLDPE, the amount of the master batch added was 15 parts by mass, the amount of seed particles at the time of the first polymerization was 800 g, the amount of styrene monomer was 336 g, and the second The amount of styrene monomer at the time of polymerization was set to 864 g, the temperature at the time of the second polymerization was changed to 90 ° C., t-butylperoxybenzoate was changed to benzoyl peroxide, and the bulk density of the foamed particles and the density of the foamed molded product were changed. A foamed molded product was obtained in the same manner as in Example 1 except that the weight was 33.3 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.

実施例10
LLDPEに代えて実施例7のEVAを使用し、マスターバッチの添加量を10質量部とし、第1の重合時の種粒子の量を200g、スチレン単量体の量を100gとし、第2の重合時のスチレン単量体の量を1700gとし、第2の重合時の温度を90℃、t−ブチルパーオキシベンゾエートをベンゾイルパーオキサイドに変更し、発泡粒子の嵩密度及び発泡成形体の密度を33.3kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
実施例11
LLDPEに代えて実施例7のEVAを使用し、マスターバッチの添加量を20質量部とし、第1の重合時の種粒子の量を200g、スチレン単量体の量を100gとし、第2の重合時のスチレン単量体の量を1700gとし、第2の重合時の温度を90℃、t−ブチルパーオキシベンゾエートをベンゾイルパーオキサイドに変更し、発泡粒子の嵩密度及び発泡成形体の密度を25.0kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
実施例12
マスターバッチの添加量を10質量部とし、第1の重合時の種粒子の量を300g、スチレン単量体の量を150gとし、第2の重合時のスチレン単量体の量を1550gに変更し、発泡粒子の嵩密度及び発泡成形体の密度を25.0kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
実施例13
マスターバッチの添加量を15質量部とし、第1の重合時の種粒子の量を300g、スチレン単量体の量を150gとし、第2の重合時のスチレン単量体の量を1550gに変更し、発泡粒子の嵩密度及び発泡成形体の密度を33.3kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
Example 10
EVA of Example 7 was used instead of LLDPE, the amount of the master batch added was 10 parts by mass, the amount of seed particles at the time of the first polymerization was 200 g, the amount of styrene monomer was 100 g, and the second The amount of styrene monomer at the time of polymerization was set to 1700 g, the temperature at the time of the second polymerization was changed to 90 ° C., t-butylperoxybenzoate was changed to benzoyl peroxide, and the bulk density of the foamed particles and the density of the foamed molded product were changed. A foamed molded product was obtained in the same manner as in Example 1 except that the weight was 33.3 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.
Example 11
EVA of Example 7 was used instead of LLDPE, the amount of the master batch added was 20 parts by mass, the amount of seed particles at the time of the first polymerization was 200 g, the amount of styrene monomer was 100 g, and the second The amount of styrene monomer at the time of polymerization was set to 1700 g, the temperature at the time of the second polymerization was changed to 90 ° C., t-butylperoxybenzoate was changed to benzoyl peroxide, and the bulk density of the foamed particles and the density of the foamed molded product were changed. A foamed molded product was obtained in the same manner as in Example 1 except that the weight was 25.0 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.
Example 12
The amount of the master batch added was 10 parts by mass, the amount of seed particles during the first polymerization was 300 g, the amount of styrene monomer was 150 g, and the amount of styrene monomer during the second polymerization was changed to 1550 g. A foamed molded product was obtained in the same manner as in Example 1 except that the bulk density of the foamed particles and the density of the foamed molded product were 25.0 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.
Example 13
The amount of the master batch added was 15 parts by mass, the amount of seed particles during the first polymerization was 300 g, the amount of styrene monomer was 150 g, and the amount of styrene monomer during the second polymerization was changed to 1550 g. A foamed molded product was obtained in the same manner as in Example 1 except that the bulk density of the foamed particles and the density of the foamed molded product were 33.3 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.

比較例1
マスターバッチの添加量を4質量部とし、発泡粒子の嵩密度及び発泡成形体の密度を33.3kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
比較例2
LLDPEに代えて実施例4のHDPEを使用し、マスターバッチの添加量を2.5質量部とし、第1の重合時の種粒子の量を600g、スチレン単量体の量を240gとし、第2の重合時のスチレン単量体の量を1160gとし、第2の重合時の温度を125℃、t−ブチルパーオキシベンゾエートをジクミルパーオキサイドに変更し、発泡粒子の嵩密度及び発泡成形体の密度を33.3kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
比較例3
LLDPEに代えて実施例7のEVAを使用し、マスターバッチの添加量を2質量部とし、第1の重合時の種粒子の量を800g、スチレン単量体の量を336gとし、第2の重合時のスチレン単量体の量を864gとし、第2の重合時の温度を90℃、t−ブチルパーオキシベンゾエートをベンゾイルパーオキサイドに変更すること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
比較例4
マスターバッチの添加量を3質量部とし、第1の重合時の種粒子の量を300g、スチレン単量体の量を150gとし、第2の重合時のスチレン単量体の量を1550gに変更し、発泡粒子の嵩密度及び発泡成形体の密度を33.3kg/m3とすること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
Comparative Example 1
A foamed molded product was obtained in the same manner as in Example 1 except that the amount of the masterbatch added was 4 parts by mass and the bulk density of the foamed particles and the density of the foamed molded product were 33.3 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.
Comparative Example 2
HDPE of Example 4 was used instead of LLDPE, the amount of the master batch added was 2.5 parts by mass, the amount of seed particles at the time of the first polymerization was 600 g, the amount of styrene monomer was 240 g, and the first The amount of styrene monomer at the time of polymerization of 2 was set to 1160 g, the temperature at the time of second polymerization was changed to 125 ° C., t-butylperoxybenzoate was changed to dicumyl peroxide, and the bulk density of foamed particles and the foamed molded product were changed. A foamed molded product was obtained in the same manner as in Example 1 except that the density of the mixture was 33.3 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.
Comparative Example 3
EVA of Example 7 was used instead of LLDPE, the amount of the master batch added was 2 parts by mass, the amount of seed particles at the time of the first polymerization was 800 g, the amount of styrene monomer was 336 g, and the second Foam molded article in the same manner as in Example 1 except that the amount of styrene monomer at the time of polymerization was 864 g, the temperature at the time of the second polymerization was 90 ° C., and t-butylperoxybenzoate was changed to benzoyl peroxide. Got The appearance and fusion of the obtained foamed molded product were both good.
Comparative Example 4
The amount of the master batch added was 3 parts by mass, the amount of seed particles during the first polymerization was 300 g, the amount of styrene monomer was 150 g, and the amount of styrene monomer during the second polymerization was changed to 1550 g. A foamed molded product was obtained in the same manner as in Example 1 except that the bulk density of the foamed particles and the density of the foamed molded product were 33.3 kg / m 3. The appearance and fusion of the obtained foamed molded product were both good.

比較例5
マスターバッチにペレスタット300(三洋化成社製)を使用し、マスターバッチの添加量を20質量部とし、第1の重合時の種粒子の量を600g、スチレン単量体の量を240gとし、第2の重合時のスチレン単量体の量を1160gに変更した結果、重合工程中に多数の結合粒子が発生し、良好な複合樹脂粒子を得ることができなかった。
Comparative Example 5
Perestat 300 (manufactured by Sanyo Kasei Co., Ltd.) was used for the master batch, the amount of the master batch added was 20 parts by mass, the amount of seed particles at the time of the first polymerization was 600 g, and the amount of styrene monomer was 240 g. As a result of changing the amount of the styrene monomer at the time of polymerization of No. 2 to 1160 g, a large number of bonded particles were generated during the polymerization step, and good composite resin particles could not be obtained.

比較例6
LLDPEに代えてポリエチレン系樹脂(エチレン−酢酸ビニル共重合体EVA:NUC社製NUC−3450)を使用し、マスターバッチの添加量を0質量部とし、第1の重合時の種粒子の量を800g、スチレン単量体の量を336gとし、第2の重合時のスチレン単量体の量を864gとし、第2の重合時の温度を90℃、t−ブチルパーオキシベンゾエートをベンゾイルパーオキサイドに変更すること以外は実施例1と同様にして発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
測定に使用する面に、成形体表面積に対しホウ素系化合物溶液「アンチスタH(ボロン研究所、ホウ素系帯電防止剤濃度1%の水溶液)」をホウ素系化合物が30g/mとなるように、霧吹きでまんべんなく噴霧した。表面固有抵抗値と水抽出試験の結果を表2に示す。
Comparative Example 6
A polyethylene resin (ethylene-vinyl acetate copolymer EVA: NUC-3450 manufactured by NUC) was used instead of LLDPE, the amount of the master batch added was 0 parts by mass, and the amount of seed particles at the time of the first polymerization was set. 800 g, the amount of styrene monomer is 336 g, the amount of styrene monomer at the time of the second polymerization is 864 g, the temperature at the time of the second polymerization is 90 ° C., and t-butylperoxybenzoate is changed to benzoyl peroxide. A foamed molded product was obtained in the same manner as in Example 1 except that it was changed. The appearance and fusion of the obtained foamed molded product were both good.
On the surface used for the measurement, apply a boron-based compound solution "Antista H (Boron Laboratory, an aqueous solution with a boron-based antistatic agent concentration of 1%)" to the surface surface of the molded body so that the boron-based compound is 30 g / m 2 . It was sprayed evenly with a mist. Table 2 shows the surface specific resistance value and the result of the water extraction test.

比較例7
ポリスチレン発泡性樹脂粒子を通常の方法で予備発泡、型内で発泡成形して、成形体密度33.3kg/m3のポリスチレン系発泡成形体(300mm×400mm×30mm(t))を作製した。測定に使用する面に、成形体表面積に対しホウ素系化合物溶液「アンチスタH(ボロン研究所、ホウ素系帯電防止剤濃度1%の水溶液)」をホウ素系化合物が30g/m2となるように、霧吹きでまんべんなく噴霧した。表面固有抵抗値と水抽出試験の結果を表2に示す。
実施例及び比較例の製造条件及び各種物性を表1及び2に示す。
なお、実施例10〜13は参考例である。
Comparative Example 7
Polystyrene foamable resin particles were pre-foamed by a usual method and foam-molded in a mold to prepare a polystyrene-based foamed molded product (300 mm × 400 mm × 30 mm (t)) having a molded product density of 33.3 kg / m 3. On the surface used for the measurement, apply a boron-based compound solution "Antista H (Boron Laboratory, an aqueous solution with a boron-based antistatic agent concentration of 1%)" to the surface surface of the molded body so that the boron-based compound is 30 g / m 2 . It was sprayed evenly with a mist. Table 2 shows the surface specific resistance value and the result of the water extraction test.
Tables 1 and 2 show the manufacturing conditions and various physical properties of Examples and Comparative Examples.
In addition, Examples 10 to 13 are reference examples.

Figure 0006962761
Figure 0006962761

Figure 0006962761
Figure 0006962761

表1及び2から、ホウ素量が、複合樹脂粒子1kgあたり、1.0〜15.0mgの範囲内であれば、表面固有抵抗値の高い(帯電防止効果の高い)発泡成形体が得られることが分かる。 From Tables 1 and 2, if the amount of boron is in the range of 1.0 to 15.0 mg per 1 kg of composite resin particles, a foam molded product having a high surface specific resistance value (high antistatic effect) can be obtained. I understand.

Claims (8)

ポリオレフィン系樹脂とポリスチレン系樹脂とをこれらの合計に対してそれぞれ38.8〜17.9質量%及び61.2〜82.1質量%の範囲で含む発泡粒子製造用の複合樹脂粒子であり
前記複合樹脂粒子が、その1kgあたり、1.0〜15.0mgのホウ素量に対応する帯電防止剤として、かつ前記複合樹脂粒子から得られた100mm×100mm×30mmの大きさの発泡成形体を、その両面に表皮がある状態で、超純水100mLに25℃で72時間浸漬した際に、超純水に移行するホウ素量が0.20mg/L以下となるように、ホウ素含有化合物を含み、前記ホウ素含有化合物が、前記複合樹脂粒子の表層から中心部に存在し、かつ
前記複合樹脂粒子が、前記複合樹脂粒子から得られた発泡成形体を温度65℃かつ湿度90%の環境下に、500時間曝した場合、前記発泡成形体に1×10 10 Ω以下の表面抵抗値を与えることを特徴とする複合樹脂粒子。
The composite resin particles for producing foamed particles containing a polyolefin-based resin and a polystyrene-based resin in the ranges of 38.8 to 17.9 % by mass and 61.2 to 82.1% by mass, respectively, based on the total amount thereof.
A foamed molded product having a size of 100 mm × 100 mm × 30 mm obtained from the composite resin particles as an antistatic agent corresponding to an amount of boron of 1.0 to 15.0 mg per kg of the composite resin particles. Contains boron-containing compounds so that the amount of boron transferred to ultrapure water is 0.20 mg / L or less when immersed in 100 mL of ultrapure water at 25 ° C. for 72 hours with skins on both sides. , The boron-containing compound is present from the surface layer to the center of the composite resin particles , and
When the composite resin particles expose the foamed molded product obtained from the composite resin particles to the foamed molded product in an environment of a temperature of 65 ° C. and a humidity of 90% for 500 hours , the surface resistance of the foamed molded product is 1 × 10 10 Ω or less. Composite resin particles characterized by giving a value.
前記ホウ素含有化合物が、ドナー成分としての半極性有機ホウ素化合物と、アクセプタ成分としての塩基性窒素化合物とを反応させて得られるドナー・アクセプター系分子化合物である請求項1に記載の複合樹脂粒子。 The composite resin particles according to claim 1, wherein the boron-containing compound is a donor-acceptor-based molecular compound obtained by reacting a semi-polar organoboron compound as a donor component with a basic nitrogen compound as an acceptor component. 前記ポリオレフィン系樹脂が、エチレン−酢酸ビニル共重合体、高密度ポリエチレン、直鎖状低密度ポリエチレン及びこれらの混合物から選択される請求項1又は2に記載の複合樹脂粒子。 The composite resin particles according to claim 1 or 2 , wherein the polyolefin-based resin is selected from an ethylene-vinyl acetate copolymer, high-density polyethylene, linear low-density polyethylene, and a mixture thereof. 請求項1〜のいずれか1つに記載の複合樹脂粒子の製造方法であって、
ホウ素含有化合物、又はホウ素含有化合物を含むポリオレフィン系樹脂製のマスターバッチと、ポリオレフィン系樹脂との溶融物をカットすることにより種粒子を得、
前記種粒子に、スチレン系単量体を含浸及び重合させることにより複合樹脂粒子を得ることを特徴とする複合樹脂粒子の製造方法。
The method for producing composite resin particles according to any one of claims 1 to 3.
Seed particles are obtained by cutting a boron-containing compound or a masterbatch made of a polyolefin-based resin containing a boron-containing compound and a melt of the polyolefin-based resin.
A method for producing composite resin particles, which comprises obtaining composite resin particles by impregnating and polymerizing the seed particles with a styrene-based monomer.
請求項1〜のいずれか1つに記載の複合樹脂粒子と揮発性発泡剤とを含む発泡性粒子。 Foamable particles containing the composite resin particles according to any one of claims 1 to 3 and a volatile foaming agent. 請求項に記載の発泡性粒子を発泡させて得られた発泡粒子。 Foamed particles obtained by foaming the foamable particles according to claim 5. 請求項6に記載の発泡粒子を発泡成形させて得られた発泡成形体。 A foamed molded product obtained by foam-molding the foamed particles according to claim 6. 前記発泡成形体が、電子機器輸送用の緩衝材である請求項に記載の発泡成形体。 The foamed molded product according to claim 7 , wherein the foamed molded product is a cushioning material for transporting electronic devices.
JP2017184857A 2017-09-26 2017-09-26 Composite resin particles, their manufacturing methods, foamable particles, foamed particles and foamed molded products Active JP6962761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017184857A JP6962761B2 (en) 2017-09-26 2017-09-26 Composite resin particles, their manufacturing methods, foamable particles, foamed particles and foamed molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017184857A JP6962761B2 (en) 2017-09-26 2017-09-26 Composite resin particles, their manufacturing methods, foamable particles, foamed particles and foamed molded products

Publications (2)

Publication Number Publication Date
JP2019059836A JP2019059836A (en) 2019-04-18
JP6962761B2 true JP6962761B2 (en) 2021-11-05

Family

ID=66176209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017184857A Active JP6962761B2 (en) 2017-09-26 2017-09-26 Composite resin particles, their manufacturing methods, foamable particles, foamed particles and foamed molded products

Country Status (1)

Country Link
JP (1) JP6962761B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247287B2 (en) * 2021-08-27 2023-03-28 古河電気工業株式会社 A transport container using a polypropylene resin foam having sustained antistatic performance on the surface of the foam and the foam layer inside the foam, a partition member for the transport container or a cushioning material for packing, and a transport container for these, Use for antibacterial and antifungal purposes in partitioning materials for shipping containers or cushioning materials for packaging

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6267869B2 (en) * 2013-03-28 2018-01-24 株式会社カネカ Foam molding
JP6243186B2 (en) * 2013-10-22 2017-12-06 株式会社ジェイエスピー Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles
JP5734491B1 (en) * 2014-04-10 2015-06-17 株式会社ボロン研究所 Molded product comprising antistatic agent and insulator polymer material and method for producing the same
JP6432410B2 (en) * 2015-03-25 2018-12-05 株式会社ジェイエスピー Foamed particle molded body and panel packing container

Also Published As

Publication number Publication date
JP2019059836A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP5664143B2 (en) Expandable composite thermoplastic resin particles, composite thermoplastic resin foam particles, and composite thermoplastic resin foam particles
JP5815934B2 (en) Method for producing composite resin expanded particles, and composite resin expanded particles
JPWO2007099833A1 (en) Styrene-modified polypropylene resin particles, expandable styrene-modified polypropylene resin particles, styrene-modified polypropylene resin foam particles, styrene-modified polypropylene resin foam moldings, and methods for producing them
JP5453923B2 (en) Modified resin foam particles and molded articles thereof
JP6251409B2 (en) COMPOSITE RESIN PARTICLE AND METHOD FOR PRODUCING THE SAME, FOAMABLE PARTICLE, FOAMED PARTICLE, FOAM MOLDED ARTICLE, AND AUTOMOBILE INTERIOR MATERIAL
JP5918905B2 (en) Composite resin particles and expandable composite resin particles, pre-expanded particles and foamed molded products
JP2006111862A (en) Black styrene-modified polyethylene-based resin particle, foamable resin particle thereof, method for producing the same, prefoamed particle, and foamed molded product
JP6453995B2 (en) Composite resin particles and their expandable particles, expanded particles and expanded molded articles
JP6500619B2 (en) Expandable composite resin particles
JP6962761B2 (en) Composite resin particles, their manufacturing methods, foamable particles, foamed particles and foamed molded products
JP6441948B2 (en) Expandable styrene composite polyolefin resin particles and process for producing the same, pre-expanded particles, and expanded molded body
WO2014157538A1 (en) Molded body of composite resin foam
JP5447573B2 (en) Modified resin foam particles and method for producing the same
JP5401083B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
JP2013117037A (en) Foam molding body
JP2012167148A (en) Composite resin particle, foamable resin particle, method for producing them, foamed particle and foamed molding
JP5337442B2 (en) Foam molded body and method for producing the same
JP2016190991A (en) Seed particle for seed polymerization, composite resin particle, foamable particle, foamed particle, and composite resin foamed molded body
JP2014062191A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, and polystyrene-based resin foamed molded product
JP2014177540A (en) Foaming polystyrene-based coloring composite resin particle, foam particle, foam molding and production methods for the colored composite resin particle, foam particle and foam molding
JP2017179243A (en) Carbon black-containing composite resin particle, foamable particle, foam particle and foam molded body
WO2017056743A1 (en) Styrene-modified polyolefin-based resin particles, method for producing same, foamable particles, foamed particles and foam molded body
JP2013194220A (en) Polyethylene-based resin particle, composite resin particle, foamable composite resin partcle, prefoamable particle and foamable molded product
JP2017066359A (en) Styrene modified polyolefin resin particle and manufacturing method therefor, expandable particle, foam particle and foam molded body
JP2021147597A (en) Foamable styrene resin particle, preliminary foamed styrene resin particle, and styrene resin foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R150 Certificate of patent or registration of utility model

Ref document number: 6962761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150