JP6701943B2 - Expanded composite resin particles, method for producing the same, molded composite resin foam particles - Google Patents
Expanded composite resin particles, method for producing the same, molded composite resin foam particles Download PDFInfo
- Publication number
- JP6701943B2 JP6701943B2 JP2016097358A JP2016097358A JP6701943B2 JP 6701943 B2 JP6701943 B2 JP 6701943B2 JP 2016097358 A JP2016097358 A JP 2016097358A JP 2016097358 A JP2016097358 A JP 2016097358A JP 6701943 B2 JP6701943 B2 JP 6701943B2
- Authority
- JP
- Japan
- Prior art keywords
- composite resin
- particles
- styrene
- ethylene
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims description 298
- 239000000805 composite resin Substances 0.000 title claims description 147
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000006260 foam Substances 0.000 title description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 355
- 239000000178 monomer Substances 0.000 claims description 141
- 239000011347 resin Substances 0.000 claims description 131
- 229920005989 resin Polymers 0.000 claims description 131
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 86
- 239000005977 Ethylene Substances 0.000 claims description 86
- 239000002216 antistatic agent Substances 0.000 claims description 82
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 66
- 238000006116 polymerization reaction Methods 0.000 claims description 39
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 239000011324 bead Substances 0.000 claims description 26
- 239000012736 aqueous medium Substances 0.000 claims description 25
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 24
- 238000005187 foaming Methods 0.000 claims description 24
- 239000004088 foaming agent Substances 0.000 claims description 23
- 238000001179 sorption measurement Methods 0.000 claims description 16
- 230000009477 glass transition Effects 0.000 claims description 14
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 13
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 13
- 230000000379 polymerizing effect Effects 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 10
- 238000012986 modification Methods 0.000 claims description 9
- 230000004048 modification Effects 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 7
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 5
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 description 44
- 238000002835 absorbance Methods 0.000 description 38
- -1 polyethylene chain Polymers 0.000 description 37
- 239000000047 product Substances 0.000 description 32
- 238000000465 moulding Methods 0.000 description 20
- 230000004927 fusion Effects 0.000 description 19
- 238000000862 absorption spectrum Methods 0.000 description 18
- 238000012937 correction Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- 239000003505 polymerization initiator Substances 0.000 description 17
- 238000005259 measurement Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 238000012360 testing method Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 10
- 238000011088 calibration curve Methods 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 10
- 239000000375 suspending agent Substances 0.000 description 10
- 229920002554 vinyl polymer Polymers 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 239000003431 cross linking reagent Substances 0.000 description 8
- 238000005470 impregnation Methods 0.000 description 8
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000004793 Polystyrene Substances 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000002612 dispersion medium Substances 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 238000000944 Soxhlet extraction Methods 0.000 description 4
- 239000003945 anionic surfactant Substances 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000012986 chain transfer agent Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 235000010288 sodium nitrite Nutrition 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 239000005022 packaging material Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- FZYCEURIEDTWNS-UHFFFAOYSA-N prop-1-en-2-ylbenzene Chemical compound CC(=C)C1=CC=CC=C1.CC(=C)C1=CC=CC=C1 FZYCEURIEDTWNS-UHFFFAOYSA-N 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- JXCAHDJDIAQCJO-UHFFFAOYSA-N (1-tert-butylperoxy-2-ethylhexyl) hydrogen carbonate Chemical compound CCCCC(CC)C(OC(O)=O)OOC(C)(C)C JXCAHDJDIAQCJO-UHFFFAOYSA-N 0.000 description 2
- FVQMJJQUGGVLEP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)C FVQMJJQUGGVLEP-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 2
- UAJRSHJHFRVGMG-UHFFFAOYSA-N 1-ethenyl-4-methoxybenzene Chemical compound COC1=CC=C(C=C)C=C1 UAJRSHJHFRVGMG-UHFFFAOYSA-N 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical compound CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 2
- WXDJDZIIPSOZAH-UHFFFAOYSA-N 2-methylpentan-2-yl benzenecarboperoxoate Chemical compound CCCC(C)(C)OOC(=O)C1=CC=CC=C1 WXDJDZIIPSOZAH-UHFFFAOYSA-N 0.000 description 2
- PFEOZHBOMNWTJB-UHFFFAOYSA-N 3-methylpentane Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000005396 acrylic acid ester group Chemical group 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000001687 destabilization Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 238000001864 heat-flux differential scanning calorimetry Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 description 2
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 2
- 125000002560 nitrile group Chemical group 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 229940078499 tricalcium phosphate Drugs 0.000 description 2
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 2
- 235000019731 tricalcium phosphate Nutrition 0.000 description 2
- VMPHSYLJUKZBJJ-UHFFFAOYSA-N trilaurin Chemical compound CCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC)COC(=O)CCCCCCCCCCC VMPHSYLJUKZBJJ-UHFFFAOYSA-N 0.000 description 2
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 2
- DGCVRYFGSWXGNH-UHFFFAOYSA-N (2-ethyl-1-hexylperoxyhexyl) hydrogen carbonate Chemical compound CCCCCCOOC(OC(O)=O)C(CC)CCCC DGCVRYFGSWXGNH-UHFFFAOYSA-N 0.000 description 1
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 1
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 1
- PZWQOGNTADJZGH-SNAWJCMRSA-N (2e)-2-methylpenta-2,4-dienoic acid Chemical compound OC(=O)C(/C)=C/C=C PZWQOGNTADJZGH-SNAWJCMRSA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- HSLFISVKRDQEBY-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclohexane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCC1 HSLFISVKRDQEBY-UHFFFAOYSA-N 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- DEIGXXQKDWULML-UHFFFAOYSA-N 1,2,5,6,9,10-hexabromocyclododecane Chemical compound BrC1CCC(Br)C(Br)CCC(Br)C(Br)CCC1Br DEIGXXQKDWULML-UHFFFAOYSA-N 0.000 description 1
- ICKFOGODAXJVSQ-UHFFFAOYSA-N 1,3,5-tribromo-2-ethenylbenzene Chemical compound BrC1=CC(Br)=C(C=C)C(Br)=C1 ICKFOGODAXJVSQ-UHFFFAOYSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- BOVQCIDBZXNFEJ-UHFFFAOYSA-N 1-chloro-3-ethenylbenzene Chemical compound ClC1=CC=CC(C=C)=C1 BOVQCIDBZXNFEJ-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- OEVVKKAVYQFQNV-UHFFFAOYSA-N 1-ethenyl-2,4-dimethylbenzene Chemical compound CC1=CC=C(C=C)C(C)=C1 OEVVKKAVYQFQNV-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- WHFHDVDXYKOSKI-UHFFFAOYSA-N 1-ethenyl-4-ethylbenzene Chemical compound CCC1=CC=C(C=C)C=C1 WHFHDVDXYKOSKI-UHFFFAOYSA-N 0.000 description 1
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- ISRGONDNXBCDBM-UHFFFAOYSA-N 2-chlorostyrene Chemical compound ClC1=CC=CC=C1C=C ISRGONDNXBCDBM-UHFFFAOYSA-N 0.000 description 1
- SKVOYPCECYQZAI-UHFFFAOYSA-N 2-ethylhexyl 2-methylbutan-2-ylperoxy carbonate Chemical compound CCCCC(CC)COC(=O)OOOC(C)(C)CC SKVOYPCECYQZAI-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- RUPBZQFQVRMKDG-UHFFFAOYSA-M Didecyldimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC RUPBZQFQVRMKDG-UHFFFAOYSA-M 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- AZFNGPAYDKGCRB-XCPIVNJJSA-M [(1s,2s)-2-amino-1,2-diphenylethyl]-(4-methylphenyl)sulfonylazanide;chlororuthenium(1+);1-methyl-4-propan-2-ylbenzene Chemical compound [Ru+]Cl.CC(C)C1=CC=C(C)C=C1.C1=CC(C)=CC=C1S(=O)(=O)[N-][C@@H](C=1C=CC=CC=1)[C@@H](N)C1=CC=CC=C1 AZFNGPAYDKGCRB-XCPIVNJJSA-M 0.000 description 1
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229940024545 aluminum hydroxide Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- CAMXVZOXBADHNJ-UHFFFAOYSA-N ammonium nitrite Chemical compound [NH4+].[O-]N=O CAMXVZOXBADHNJ-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- WAKZZMMCDILMEF-UHFFFAOYSA-H barium(2+);diphosphate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O WAKZZMMCDILMEF-UHFFFAOYSA-H 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- WRKRMDNAUJERQT-UHFFFAOYSA-N cumene hydroxyperoxide Chemical compound OOOO.CC(C)C1=CC=CC=C1 WRKRMDNAUJERQT-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229960004670 didecyldimethylammonium chloride Drugs 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- KQPPJWHBSYEOKV-UHFFFAOYSA-M dodecyl-ethyl-dimethylazanium;ethyl sulfate Chemical compound CCOS([O-])(=O)=O.CCCCCCCCCCCC[N+](C)(C)CC KQPPJWHBSYEOKV-UHFFFAOYSA-M 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- XUQIHIHYTRZORE-UHFFFAOYSA-M ethyl-dimethyl-octylazanium;ethyl sulfate Chemical compound CCOS([O-])(=O)=O.CCCCCCCC[N+](C)(C)CC XUQIHIHYTRZORE-UHFFFAOYSA-M 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229960004887 ferric hydroxide Drugs 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- SEEYREPSKCQBBF-UHFFFAOYSA-N n-methylmaleimide Chemical compound CN1C(=O)C=CC1=O SEEYREPSKCQBBF-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000004304 potassium nitrite Substances 0.000 description 1
- 235000010289 potassium nitrite Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 239000012508 resin bead Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N sec-butylidene Natural products CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- ZIWRUEGECALFST-UHFFFAOYSA-M sodium 4-(4-dodecoxysulfonylphenoxy)benzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCOS(=O)(=O)c1ccc(Oc2ccc(cc2)S([O-])(=O)=O)cc1 ZIWRUEGECALFST-UHFFFAOYSA-M 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 1
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 239000001589 sorbitan tristearate Substances 0.000 description 1
- 235000011078 sorbitan tristearate Nutrition 0.000 description 1
- 229960004129 sorbitan tristearate Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
- C08J9/18—Making expandable particles by impregnating polymer particles with the blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/41—Compounds containing sulfur bound to oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2351/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2351/06—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/017—Additives being an antistatic agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/04—Antistatic
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Molding Of Porous Articles (AREA)
- Graft Or Block Polymers (AREA)
Description
本発明は、エチレン系樹脂にスチレン系単量体が含浸重合された複合樹脂を基材樹脂とする複合樹脂発泡粒子、その製造方法、及び複合樹脂発泡粒子が相互に融着した成形体に関する。 TECHNICAL FIELD The present invention relates to a composite resin foamed particle having a composite resin obtained by impregnating and polymerizing an styrene-based monomer in an ethylene resin as a base resin, a method for producing the same, and a molded body in which the composite resin foamed particles are mutually fused.
エチレン系樹脂にスチレン系単量体が含浸重合された複合樹脂を基材樹脂とする複合樹脂発泡粒子の型内成形体(すなわち、複合樹脂発泡粒子成形体)は、電子機器や精密機器の部品の梱包や緩衝包装材料として広く利用されている。このような用途の成形体には、埃の付着や、放電等の過電流の発生による電気的な損傷を防止するために、一般に帯電防止性能が付与されることがある。 In-mold molded products of composite resin expanded particles (that is, composite resin expanded particle molded products) whose base resin is a composite resin obtained by impregnating and polymerizing an styrene-based monomer with an ethylene-based resin are parts of electronic devices and precision equipment. Widely used as packaging materials and cushioning packaging materials. A molded article for such a purpose is generally provided with an antistatic property in order to prevent dust from adhering and electrical damage due to generation of overcurrent such as discharge.
複合樹脂発泡粒子を得る方法としては、例えば次の方法が知られている。具体的には、まず、エチレン系樹脂を含有する種粒子中にスチレン系単量体を含浸、重合させることにより、エチレン系樹脂にスチレン系単量体が含浸重合された複合樹脂を基材樹脂とする複合樹脂粒子を得る。次いで、発泡剤を複合樹脂粒子に含浸させ、該複合樹脂粒子を発泡させることにより複合樹脂発泡粒子を得ることができる。また、発泡粒子成形体に帯電防止性能を付与する方法としては、一般に、界面活性剤などからなる帯電防止剤を添加する方法が用いられている。具体的には、複合樹脂粒子への揮発性発泡剤の含浸時又は含浸後に帯電防止剤を含浸させる方法が知られている。また、複合樹脂発泡粒子に帯電防止剤を塗布する方法も知られている。 For example, the following method is known as a method of obtaining composite resin expanded particles. Specifically, first, by impregnating and polymerizing a styrene-based monomer in seed particles containing an ethylene-based resin, a composite resin in which the styrene-based monomer is impregnated and polymerized in the ethylene-based resin is used as a base resin. To obtain composite resin particles. Next, the composite resin particles can be obtained by impregnating the composite resin particles with a foaming agent and foaming the composite resin particles. Further, as a method for imparting antistatic performance to the expanded particle molded article, a method of adding an antistatic agent such as a surfactant is generally used. Specifically, a method of impregnating a composite resin particle with an antistatic agent during or after impregnation of a volatile foaming agent is known. Further, a method of applying an antistatic agent to the composite resin expanded particles is also known.
揮発性発泡剤の含浸時に帯電防止剤を含浸させる方法では、帯電防止剤によって樹脂粒子が過剰に可塑化されることにより、成形時に発泡粒子の耐熱性が低下して成形体が変形するおそれや、発泡粒子同士の融着性が低下するおそれがある。そこで、特許文献1のように、複合樹脂発泡粒子にカチオン系帯電防止剤を所定量塗布する方法が開発されている。また、特許文献2のように、複合樹脂粒子に対してポリエチレングリコール(メタ)アクリル酸エステルを含浸重合させ、次いで発泡剤の含浸時に帯電防止剤を含浸させる方法が開発されている。
In the method of impregnating the antistatic agent at the time of impregnating the volatile foaming agent, the resin particles are excessively plasticized by the antistatic agent, which may lower the heat resistance of the foamed particles at the time of molding and deform the molded body. However, there is a possibility that the fusibility of the foamed particles may deteriorate. Therefore, as in
しかしながら、特許文献1に記載のように、複合樹脂発泡粒子に帯電防止剤を塗布する方法では、帯電防止剤の定着性が不十分な場合があり、型内成形時の加熱条件によっては、加熱媒体であるスチーム等によって発泡粒子に付着した帯電防止剤が部分的に脱離するおそれがある。したがって、帯電防止性能に更なる改善が望まれている。また、特許文献2に記載のように、複合樹脂粒子に反応性界面活性剤であるポリエチレングリコール(メタ)アクリル酸エステルを含浸重合させ、次いで帯電防止剤を含浸させる方法においては、帯電防止性能の向上は可能である。しかし、ポリエチレングリコール(メタ)アクリル酸エステルは水溶性が高い反応性界面活性剤であるため、含浸重合時に複合樹脂粒子中に含浸されにくく、複合樹脂粒子のごく表面付近でポリエチレングリコール(メタ)アクリル酸エステルの重合が生じる。これにより、ポリエチレングリコール(メタ)アクリル酸エステルの重合体が複合樹脂粒子の表面付近に偏在することで発泡粒子とした際の融着性が低下し、成形体の圧縮剛性、たわみ耐性等の強度物性が不十分となるおそれがある。また、特許文献2の方法では、発泡剤の含浸時に帯電防止剤を含浸させるため、上記したように発泡粒子同士の融着性が低下するおそれがある。
However, as described in
本発明は、かかる課題に鑑みてなされたものであり、内部融着が良好で圧縮剛性及びたわみ耐性に優れると共に、帯電防止性能に優れた成形体を得ることができる複合樹脂発泡粒子、その製造方法、及び該複合樹脂発泡粒子を用いた成形体を提供しようとするものである。 The present invention has been made in view of the above problems, and is a composite resin foamed particle capable of obtaining a molded article excellent in antistatic performance as well as having excellent internal fusion and excellent compression rigidity and bending resistance, and the production thereof. It is intended to provide a method and a molded article using the composite resin expanded particles.
本発明の一態様は、エチレン系樹脂に(メタ)アクリル酸とスチレン系単量体とを含浸重合させた複合樹脂を基材樹脂とする複合樹脂発泡粒子であって、
上記複合樹脂は、スチレン系単量体由来の構造単位をエチレン系樹脂100質量部に対して100〜1900質量部含有し、
上記複合樹脂中のキシレン可溶分をさらにアセトンに溶解させて得られるアセトン可溶分のガラス転移温度Tgが105℃以下であり、
上記複合樹脂発泡粒子の表面におけるカルボニル量が0.03mol%以上である、複合樹脂発泡粒子にある。
One embodiment of the present invention is a composite resin foamed particle having a base resin of a composite resin obtained by impregnating ethylene resin with (meth)acrylic acid and a styrene monomer.
The composite resin contains 100 to 1900 parts by mass of a structural unit derived from a styrene-based monomer with respect to 100 parts by mass of an ethylene-based resin,
The glass transition temperature Tg of the acetone-soluble component obtained by further dissolving the xylene-soluble component in the composite resin in acetone is 105° C. or lower,
The foamed composite resin particles have a carbonyl content of 0.03 mol% or more on the surface of the foamed composite resin particles.
本発明の他の態様は、上記複合樹脂発泡粒子が相互に融着した成形体であって、該成形体の表面抵抗率が1×1012Ω未満である、複合樹脂発泡粒子成形体にある。 Another aspect of the present invention is a molded composite resin foamed particle, wherein the molded composite resin foamed particles are fused to each other, and the surface resistivity of the molded body is less than 1×10 12 Ω. ..
本発明のさらに他の態様は、水性媒体中にエチレン系樹脂種粒子が分散した分散液中に、上記エチレン系樹脂種粒子中のエチレン系樹脂100質量部に対して100〜1900質量部のスチレン系単量体と、(メタ)アクリル酸とを添加し、上記エチレン系樹脂種粒子に上記スチレン系単量体と上記(メタ)アクリル酸とを含浸、重合させて複合樹脂粒子を得る改質工程と、
発泡剤を用いて上記複合樹脂粒子を発泡させて複合樹脂発泡粒子を得る発泡工程と、を有し、
上記複合樹脂発泡粒子中のキシレン可溶分をさらにアセトンに溶解させて得られるアセトン可溶分のガラス転移温度Tgが105℃以下であり、
上記複合樹脂発泡粒子の表面におけるカルボニル量が0.03mol%以上である、複合樹脂発泡粒子の製造方法にある。
Still another aspect of the present invention is to add 100 to 1900 parts by mass of styrene to 100 parts by mass of the ethylene resin in the ethylene resin seed particles in a dispersion liquid in which the ethylene resin seed particles are dispersed in an aqueous medium. Modification to obtain composite resin particles by adding a system monomer and (meth)acrylic acid, impregnating and polymerizing the styrene monomer and the (meth)acrylic acid in the ethylene resin seed particles Process,
A foaming step of foaming the composite resin particles using a foaming agent to obtain composite resin expanded particles,
The glass transition temperature Tg of the acetone-soluble component obtained by further dissolving the xylene-soluble component in the composite resin expanded beads in acetone is 105° C. or lower,
The method for producing a foamed composite resin particle has a carbonyl amount of 0.03 mol% or more on the surface of the foamed composite resin particle.
上記複合樹脂発泡粒子(以下、適宜「発泡粒子」という)においては、(メタ)アクリル酸及びスチレン系単量体がエチレン系樹脂に含浸重合された複合樹脂を基材樹脂とし、複合樹脂発泡粒子の表面におけるカルボニル量が所定量以上に調整されている。そのため、複合樹脂発泡粒子に帯電防止剤を塗布しても、成形時の帯電防止剤の流出を抑制することができ、良好な帯電防止性能を有する複合樹脂発泡粒子成形体(以下、適宜「成形体」という)を得ることができる。また、複合樹脂中のキシレン可溶分をさらにアセトンに溶解させて得られるアセトン可溶分のガラス転移温度が所定値以下であるため、成形体の内部融着、すなわち、発泡粒子同士の融着性が良好になる。そのため、成形体は、エチレン系樹脂やスチレン系樹脂の組成等に基づいた複合樹脂本来の優れた圧縮剛性及びたわみ耐性等の強度特性を発揮することができる。 In the composite resin expanded particles (hereinafter, appropriately referred to as “expanded particles”), the composite resin expanded particles obtained by impregnating and polymerizing the ethylene-based resin with (meth)acrylic acid and a styrene-based monomer are used as the base resin. The amount of carbonyl on the surface of the is adjusted to a predetermined amount or more. Therefore, even when the antistatic agent is applied to the composite resin expanded particles, the outflow of the antistatic agent at the time of molding can be suppressed, and the composite resin expanded particle molded article having good antistatic performance (hereinafter, referred to as "molding as appropriate" Can be obtained). Further, since the glass transition temperature of the acetone-soluble component obtained by further dissolving the xylene-soluble component in the composite resin in acetone is equal to or lower than a predetermined value, internal fusion of the molded body, that is, fusion of the expanded particles to each other. The quality is good. Therefore, the molded body can exhibit strength properties such as excellent compression rigidity and flexure resistance, which are inherent in the composite resin based on the composition of the ethylene resin or the styrene resin.
また、発泡粒子が相互に融着した、表面抵抗率が1×1012Ω未満の成形体は、帯電防止性能に優れるだけでなく、上述のように圧縮剛性及びたわみ耐性等の強度物性に優れている。したがって、上記複合樹脂粒子を用いて得られる成形体は、液晶パネル、太陽光発電パネルなどの電子機器又は精密機器の部品の梱包容器や緩衝包装材料等の用途に好適である。 In addition, the molded product having the surface resistivity of less than 1×10 12 Ω, in which the foamed particles are fused to each other, has not only excellent antistatic performance but also excellent strength physical properties such as compression rigidity and flexure resistance as described above. ing. Therefore, the molded product obtained by using the above-mentioned composite resin particles is suitable for applications such as a packaging container for parts of electronic equipment such as liquid crystal panels and solar power generation panels or precision equipment, buffer packaging material, and the like.
発泡粒子は、改質工程と発泡工程とを行うことにより製造することができる。改質工程においては、エチレン系樹脂種粒子が水性媒体中に分散した分散液中に、所定量のスチレン系単量体と、(メタ)アクリル酸とを添加し、エチレン系樹脂種粒子にスチレン系単量体と(メタ)アクリル酸とを含浸、重合させる。これにより、スチレン系単量体と(メタ)アクリル酸とがエチレン系樹脂に含浸重合された複合樹脂粒子を得ることができる。発泡工程においては、発泡剤を用いて複合樹脂粒子を発泡させて発泡粒子を得る。このようにして得られた発泡粒子に帯電防止剤を塗布しても、上述のように成形時の帯電防止剤の流出を抑制することができ、良好な帯電防止性能を有する成形体を得ることができる。また、成形体は、内部融着が良好で圧縮剛性及びたわみ耐性等の強度特性に優れる。 The expanded beads can be produced by performing a modification step and an expansion step. In the modification step, a predetermined amount of styrene monomer and (meth)acrylic acid are added to a dispersion liquid in which ethylene resin seed particles are dispersed in an aqueous medium, and styrene is added to the ethylene resin seed particles. A system monomer and (meth)acrylic acid are impregnated and polymerized. This makes it possible to obtain composite resin particles in which an ethylene resin is impregnated and polymerized with a styrene monomer and (meth)acrylic acid. In the foaming step, the composite resin particles are foamed with a foaming agent to obtain expanded particles. Even if the antistatic agent is applied to the expanded particles thus obtained, it is possible to suppress the outflow of the antistatic agent at the time of molding as described above, and to obtain a molded article having good antistatic performance. You can Further, the molded body has good internal fusion bonding and is excellent in strength characteristics such as compression rigidity and bending resistance.
次に、上記発泡粒子の好ましい実施形態について説明する。発泡粒子は、例えば、その表面に帯電防止剤が塗布される用途に用いられる。このような用途の発泡粒子は、帯電防止剤を付着させるための帯電防止剤接触面を表面に有するといえる。なお、本明細書において、発泡粒子は、表面に帯電防止剤が付着した粒子、帯電防止剤が付着していない粒子のいずれをも含む概念である。 Next, a preferred embodiment of the expanded beads will be described. The expanded particles are used, for example, for applications in which an antistatic agent is applied to the surface thereof. It can be said that the foamed particles for such an application have an antistatic agent contact surface for adhering the antistatic agent on the surface. In the present specification, the expanded particles are a concept including both particles having an antistatic agent attached to the surface thereof and particles having no antistatic agent attached thereto.
発泡粒子は、型内成形により成形体を得るために用いられる。すなわち、多数の発泡粒子を成形型内に充填し、成形型内で複合樹脂粒子同士を相互に融着させることにより、所望形状の成形体を得ることができる。 The expanded particles are used to obtain a molded product by in-mold molding. That is, it is possible to obtain a molded product having a desired shape by filling a large number of expanded particles in a molding die and fusing the composite resin particles to each other in the molding die.
発泡粒子は、エチレン系樹脂にスチレン系単量体及び(メタ)アクリル酸(以下、これらをスチレン系単量体等ともいう。)が含浸重合された複合樹脂を基材樹脂とする。本明細書において、複合樹脂は、上述のようにエチレン系樹脂にスチレン系単量体等が含浸、重合された樹脂であり、エチレン系樹脂成分と、スチレン系樹脂成分とを含有する樹脂である。スチレン系樹脂成分は、スチレン系単量体同士が重合してなる成分と、スチレン系単量体と(メタ)アクリル酸とが共重合してなる成分とを含む。さらに、スチレン系単量体等の重合時には、スチレン系単量体同士の重合だけでなく、エチレン系樹脂を構成するポリマー鎖にスチレン系単量体のグラフト重合が起こる場合がある。この場合、複合樹脂は、エチレン系樹脂からなるエチレン系樹脂成分と、スチレン系単量体が重合してなるスチレン系樹脂成分とを含有するだけでなく、さらにスチレン系単量体がグラフト重合したエチレン系樹脂成分(すなわち、PE−g−PS成分)を含有する。したがって、複合樹脂は重合済みのエチレン系樹脂と重合済みのスチレン系樹脂とを混合してなる混合樹脂とは異なる概念である。 The expanded beads have a base resin of a composite resin obtained by impregnating and polymerizing an styrene-based monomer and (meth)acrylic acid (hereinafter, also referred to as a styrene-based monomer or the like) in an ethylene-based resin. In the present specification, the composite resin is a resin obtained by impregnating an ethylene-based resin with a styrene-based monomer or the like and polymerized as described above, and is a resin containing an ethylene-based resin component and a styrene-based resin component. .. The styrene-based resin component includes a component formed by polymerizing styrene-based monomers and a component formed by copolymerization of the styrene-based monomer and (meth)acrylic acid. Furthermore, during the polymerization of styrene-based monomers and the like, not only styrene-based monomers may be polymerized with each other, but also styrene-based monomers may be graft-polymerized on the polymer chains constituting the ethylene-based resin. In this case, the composite resin not only contains an ethylene-based resin component composed of an ethylene-based resin and a styrene-based resin component formed by polymerization of a styrene-based monomer, but also a styrene-based monomer is graft-polymerized. It contains an ethylene resin component (that is, a PE-g-PS component). Therefore, the composite resin is a different concept from the mixed resin formed by mixing the polymerized ethylene resin and the polymerized styrene resin.
エチレン系樹脂に含浸、重合させるスチレン系単量体の量は、所望の物性に応じて適宜調整することができる。具体的には、複合樹脂中のエチレン系樹脂の割合を高めると、靱性、復元性が向上するが、剛性が低下する傾向にある。一方、スチレン系単量体由来の構造単位の割合を高めた場合には、剛性が向上するが、靭性、復元性が低下する傾向にある。上記のごとく、複合樹脂は、スチレン系単量体由来の構造単位をエチレン系樹脂100質量部に対して100質量部以上かつ1900質量部以下含有するため、靱性、復元性、剛性のバランスの良い成形体を得ることができる。靱性、復元性、剛性のバランスがより良い成形体を得るためには、複合樹脂は、スチレン系単量体由来の構造単位をエチレン系樹脂100質量部に対して、150質量部を超えかつ1900質量部以下含有することが好ましい。さらに成形体の剛性をより向上させるという観点から、エチレン系樹脂100質量部に対するスチレン系単量体由来の構造単位の含有量は、400質量部を超えることがより好ましく、450質量部以上であることがさらに好ましく、500質量部以上であることが特に好ましい。また、成形体の靱性、復元性をより向上させるためには、エチレン系樹脂100質量部に対するスチレン系単量体由来の構造単位の含有量は、1000質量部以下であることがより好ましく、900質量部以下であることがさらに好ましい。なお、本明細書において、数値範囲の上限及び下限に関する好ましい範囲、より好ましい範囲、さらに好ましい範囲は、上限及び下限の全ての組み合わせから決定することができる。 The amount of the styrene-based monomer to be impregnated and polymerized in the ethylene-based resin can be appropriately adjusted according to desired physical properties. Specifically, if the proportion of the ethylene resin in the composite resin is increased, the toughness and the resilience are improved, but the rigidity tends to be lowered. On the other hand, when the ratio of the structural unit derived from the styrene-based monomer is increased, the rigidity is improved, but the toughness and the resilience tend to be decreased. As described above, since the composite resin contains the structural unit derived from the styrene-based monomer in an amount of 100 parts by mass or more and 1900 parts by mass or less with respect to 100 parts by mass of the ethylene-based resin, it has a good balance of toughness, resilience, and rigidity. A molded body can be obtained. In order to obtain a molded product having a better balance of toughness, resilience, and rigidity, the composite resin has a structural unit derived from a styrene-based monomer exceeding 150 parts by mass and 1900 parts by mass with respect to 100 parts by mass of the ethylene-based resin. It is preferably contained in an amount of not more than mass parts. Further, from the viewpoint of further improving the rigidity of the molded body, the content of the structural unit derived from the styrene-based monomer with respect to 100 parts by mass of the ethylene-based resin is more preferably more than 400 parts by mass, and is 450 parts by mass or more. It is more preferable that the amount is 500 parts by mass or more. Further, in order to further improve the toughness and the resilience of the molded body, the content of the structural unit derived from the styrene-based monomer is more preferably 1000 parts by mass or less based on 100 parts by mass of the ethylene-based resin, and 900 It is more preferable that the amount is not more than parts by mass. In the present specification, a preferable range, a more preferable range, and a further preferable range regarding the upper limit and the lower limit of the numerical range can be determined from all combinations of the upper limit and the lower limit.
エチレン系樹脂としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、分岐状低密度ポリエチレン、高密度ポリエチレン、エチレン−アクリル酸共重合体、エチレン−アクリル酸アルキルエステル共重合体、エチレン−メタクリル酸アルキルエステル共重合体、エチレン−酢酸ビニル共重合体等を用いることができる。エチレン系樹脂としては、1種の重合体でもよいが、2種以上の重合体の混合物を用いることもできる。 Examples of the ethylene-based resin include low-density polyethylene, linear low-density polyethylene, branched low-density polyethylene, high-density polyethylene, ethylene-acrylic acid copolymer, ethylene-acrylic acid alkyl ester copolymer, ethylene-methacrylic acid. Acid alkyl ester copolymers, ethylene-vinyl acetate copolymers and the like can be used. As the ethylene resin, one kind of polymer may be used, but a mixture of two or more kinds of polymers can also be used.
上記エチレン系樹脂は、直鎖状低密度ポリエチレン、又は直鎖状低密度ポリエチレン及びエチレン−酢酸ビニル共重合体からなることが好ましい。エチレン系樹脂中のエチレン−酢酸ビニル共重合体の含有量は10質量%未満であることが好ましく、5質量%未満であることがより好ましい。エチレン系樹脂は、酢酸ビニル共重合体を含有しないことが最も好ましい。さらに、エチレン系樹脂は、直鎖状低密度ポリエチレンを主成分とすることが好ましい。具体的には、エチレン系樹脂中の直鎖状低密度ポリエチレンの含有量が50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、直鎖状低密度ポリエチレンのみからなることが特に好ましい。 The ethylene resin is preferably linear low-density polyethylene, or linear low-density polyethylene and an ethylene-vinyl acetate copolymer. The content of the ethylene-vinyl acetate copolymer in the ethylene-based resin is preferably less than 10% by mass, more preferably less than 5% by mass. Most preferably, the ethylene resin does not contain a vinyl acetate copolymer. Furthermore, it is preferable that the ethylene-based resin contains linear low-density polyethylene as a main component. Specifically, the content of the linear low-density polyethylene in the ethylene resin is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. It is particularly preferable that the linear low-density polyethylene is exclusively used.
直鎖状低密度ポリエチレンは、直鎖のポリエチレン鎖と炭素数2〜6の短鎖状の分岐鎖とを有する構造を有することが好ましい。具体的には、例えばエチレン−ブテン共重合体、エチレン−ヘキセン共重合体、エチレン−オクテン共重合体等が挙げられる。特に、エチレン系樹脂は、メタロセン系重合触媒を用いて重合してなる、融点105℃以下の直鎖状低密度ポリエチレンであることが好ましい。この場合には、複合樹脂中のエチレン系樹脂成分と、スチレン系単量体が重合してなるスチレン系樹脂成分との親和性がより向上し、複合樹脂の靱性を高めることできる。また、低分子量成分を少なくしつつ、成形時の発泡粒子間の融着強度を高めることができるため、低VOCでかつ割れにくい成形体を得ることが可能になる。さらに、スチレン系樹脂の優れた剛性とエチレン系樹脂の優れた粘り強さとをより高いレベルで兼ね備えた成形体を得ることが可能になる。 The linear low-density polyethylene preferably has a structure having a linear polyethylene chain and a short-chain branched chain having 2 to 6 carbon atoms. Specific examples include ethylene-butene copolymers, ethylene-hexene copolymers, ethylene-octene copolymers, and the like. In particular, the ethylene-based resin is preferably linear low-density polyethylene having a melting point of 105° C. or lower, which is obtained by polymerization using a metallocene-based polymerization catalyst. In this case, the affinity between the ethylene resin component in the composite resin and the styrene resin component obtained by polymerizing the styrene monomer is further improved, and the toughness of the composite resin can be increased. Further, since the fusion strength between the foamed particles at the time of molding can be increased while reducing the amount of low molecular weight components, it becomes possible to obtain a molded product having a low VOC and being hard to break. Further, it becomes possible to obtain a molded product having a higher level of the excellent rigidity of the styrene resin and the excellent tenacity of the ethylene resin.
また、エチレン系樹脂の融点Tmは95〜105℃であることが好ましい。この場合には、エチレン系樹脂にスチレン系単量体を充分に含浸させることができるため、重合時に懸濁系が不安定化することを防止することができる。その結果、スチレン系樹脂の優れた剛性とエチレン系樹脂の優れた粘り強さとをより高いレベルで兼ね備えた成形体を得ることが可能になる。同様の観点から、エチレン系樹脂の融点Tmは100〜105℃であることがより好ましい。なお、融点Tmは、JIS K7121−1987年に基づいて、示差走査熱量測定(すなわち、DSC)にて融解ピーク温度として測定することができる。 The melting point Tm of the ethylene resin is preferably 95 to 105°C. In this case, since the ethylene resin can be sufficiently impregnated with the styrene monomer, it is possible to prevent the suspension system from becoming unstable during the polymerization. As a result, it becomes possible to obtain a molded product having both the excellent rigidity of the styrene resin and the excellent tenacity of the ethylene resin at a higher level. From the same viewpoint, the melting point Tm of the ethylene resin is more preferably 100 to 105°C. The melting point Tm can be measured as a melting peak temperature by differential scanning calorimetry (that is, DSC) based on JIS K7121-1987.
エチレン系樹脂は、融点Tm(単位:℃)とビカット軟化点Tv(単位:℃)とが、Tm−Tv≦20(単位:℃)という関係を満足する直鎖状低密度ポリエチレンからなることが好ましい。このようなエチレン系樹脂は、均一な分子構造を示し、架橋による網目構造がより均一にエチレン系樹脂中に分布するものと推察される。したがって、この場合には、上記発泡粒子を用いて得られる発泡粒子成形体の強度及び粘り強さを向上させることができる。成形体の強度及び粘り強さをより向上させるという観点から、直鎖状低密度ポリエチレンは、Tm−Tv≦15(単位:℃)を満足することがより好ましく、Tm−Tv≦10(単位:℃)を満足することが更に好ましい。通常、融点Tmはビカット軟化点Tvよりも高くなる。なお、ビカット軟化点Tvは、JIS K7206(2016年)のA50法に基づいて、測定することができる。また、エチレン系樹脂が2種類以上の樹脂からなる混合樹脂である場合には、混合樹脂の融点、ビカット軟化点を測定し、それをエチレン系樹脂の融点、ビカット軟化点とする。 The ethylene-based resin may be made of a linear low-density polyethylene that has a melting point Tm (unit: °C) and a Vicat softening point Tv (unit: °C) satisfying a relationship of Tm-Tv ≤ 20 (unit: °C). preferable. It is presumed that such an ethylene-based resin has a uniform molecular structure and the network structure due to crosslinking is more evenly distributed in the ethylene-based resin. Therefore, in this case, it is possible to improve the strength and tenacity of the expanded particle molded product obtained by using the expanded particles. From the viewpoint of further improving the strength and tenacity of the molded product, the linear low-density polyethylene more preferably satisfies Tm-Tv ≤ 15 (unit: °C), and Tm-Tv ≤ 10 (unit: °C). It is more preferable to satisfy the above requirement. Usually, the melting point Tm is higher than the Vicat softening point Tv. The Vicat softening point Tv can be measured based on the A50 method of JIS K7206 (2016). When the ethylene-based resin is a mixed resin composed of two or more kinds of resins, the melting point and the Vicat softening point of the mixed resin are measured and used as the melting point and the Vicat softening point of the ethylene-based resin.
発泡性をより向上できるという観点から、温度190℃、荷重2.16kgの条件におけるエチレン系樹脂のメルトマスフローレイト(すなわち、MFR)は、0.5〜4.0g/10分が好ましく、1.0〜3.0g/10分がより好ましい。温度190℃、荷重2.16kgの条件におけるエチレン系樹脂のMFRは、JIS K7210−1(2014年)に基づき、測定される値である。なお、測定装置としては、メルトインデクサー(例えば宝工業(株)製の型式L203など)を用いることができる。 From the viewpoint of further improving the foamability, the melt mass flow rate (that is, MFR) of the ethylene resin under the conditions of a temperature of 190° C. and a load of 2.16 kg is preferably 0.5 to 4.0 g/10 minutes, and 0 to 3.0 g/10 minutes is more preferable. The MFR of the ethylene resin under the conditions of a temperature of 190° C. and a load of 2.16 kg is a value measured based on JIS K7210-1 (2014). A melt indexer (for example, model L203 manufactured by Takara Industry Co., Ltd.) can be used as the measuring device.
複合樹脂は、スチレン系単量体と(メタ)アクリル酸が共重合してなる成分を含有する。なお、本明細書では、スチレン系樹脂成分を構成するスチレン、必要に応じて添加されるスチレンと共重合可能なモノマー(ただし、(メタ)アクリル酸を除く)を、併せてスチレン系単量体と称することがある。スチレン系単量体中のスチレンの割合は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。スチレンと共重合可能なモノマーとしては、例えば下記のスチレン誘導体、その他のビニルモノマー等がある。 The composite resin contains a component obtained by copolymerizing a styrene-based monomer and (meth)acrylic acid. In addition, in the present specification, styrene constituting the styrene resin component, and a monomer copolymerizable with styrene which is added as necessary (however, excluding (meth)acrylic acid) are also combined with the styrene monomer. Sometimes called. The proportion of styrene in the styrene-based monomer is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. Examples of the monomer copolymerizable with styrene include the following styrene derivatives and other vinyl monomers.
スチレン誘導体としては、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−メトキシスチレン、p−n−ブチルスチレン、p−t−ブチルスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、2,4,6−トリブロモスチレン、ジビニルベンゼン、スチレンスルホン酸、スチレンスルホン酸ナトリウムなどが挙げられる。これらは、単独でも2種類以上を混合したものを用いても良い。 Examples of the styrene derivative include α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p-methoxystyrene, pn-butylstyrene and p-methylstyrene. Examples thereof include -t-butylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4,6-tribromostyrene, divinylbenzene, styrenesulfonic acid, and sodium styrenesulfonate. These may be used alone or as a mixture of two or more kinds.
また、その他のビニルモノマーとしては、アクリル酸エステル、メタクリル酸エステル、水酸基を含有するビニル化合物、ニトリル基を含有するビニル化合物、有機酸ビニル化合物、オレフィン化合物、ジエン化合物、ハロゲン化ビニル化合物、ハロゲン化ビニリデン化合物、マレイミド化合物などが挙げられる。これらのビニルモノマーは、単独でも2種類以上を混合したものを用いても良い。 Further, as other vinyl monomers, acrylic acid ester, methacrylic acid ester, vinyl compound containing a hydroxyl group, vinyl compound containing a nitrile group, organic acid vinyl compound, olefin compound, diene compound, halogenated vinyl compound, halogenated compound Examples thereof include vinylidene compounds and maleimide compounds. These vinyl monomers may be used alone or as a mixture of two or more kinds.
アクリル酸エステルとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルヘキシル等がある。メタクリル酸エステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル等がある。これらは、単独でも2種類以上を混合したものを用いても良い。 Examples of the acrylate ester include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate. Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and the like. These may be used alone or as a mixture of two or more kinds.
水酸基を含有するビニル化合物としては、例えばアクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシプロピル等がある。ニトリル基を含有するビニル化合物としては、例えばアクリロニトリル、メタクリロニトリル等がある。有機酸ビニル化合物としては、例えば酢酸ビニル、プロピオン酸ビニル等がある。これらは、単独でも2種類以上を混合したものを用いても良い。 Examples of the vinyl compound having a hydroxyl group include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate and hydroxypropyl methacrylate. Examples of the vinyl compound containing a nitrile group include acrylonitrile and methacrylonitrile. Examples of the organic acid vinyl compound include vinyl acetate and vinyl propionate. These may be used alone or as a mixture of two or more kinds.
オレフィン化合物としては、例えばエチレン、プロピレン、1−ブテン、2−ブテン等がある。ジエン化合物としては、例えばブタジエン、イソプレン、クロロプレン等がある。ハロゲン化ビニル化合物としては、例えば塩化ビニル、臭化ビニル等がある。ハロゲン化ビニリデン化合物としては、例えば塩化ビニリデン等がある。マレイミド化合物としては、例えばN−フェニルマレイミド、N−メチルマレイミド等がある。これらは、単独でも2種類以上を混合したものを用いても良い。 Examples of the olefin compound include ethylene, propylene, 1-butene and 2-butene. Examples of the diene compound include butadiene, isoprene and chloroprene. Examples of the vinyl halide compound include vinyl chloride and vinyl bromide. Examples of the vinylidene halide compound include vinylidene chloride. Examples of the maleimide compound include N-phenylmaleimide and N-methylmaleimide. These may be used alone or as a mixture of two or more kinds.
発泡性を高めるという観点から、スチレン系単量体としては、スチレン、又はスチレンとアクリル酸エステル系単量体とを併用することが好ましい。さらに発泡性を高めるという観点からは、スチレンとアクリル酸ブチルとを併用することが好ましい。この場合には、複合樹脂中のアクリル酸ブチル由来の構造単位の含有量は、複合樹脂全体に対して0.5〜10質量%であることが好ましく、1〜8質量%であることがより好ましく、2〜5質量%であることがさらに好ましい。 From the viewpoint of enhancing the foamability, it is preferable to use styrene or a combination of styrene and an acrylate monomer as the styrene monomer. From the viewpoint of further enhancing the foamability, it is preferable to use styrene and butyl acrylate together. In this case, the content of the structural unit derived from butyl acrylate in the composite resin is preferably 0.5 to 10% by mass, and more preferably 1 to 8% by mass with respect to the entire composite resin. It is preferably 2 to 5% by mass, and further preferably.
また、スチレン系樹脂成分は(メタ)アクリル酸由来の構造単位をさらに含有する。本明細書において、「(メタ)アクリル酸」は、「アクリル酸」と「メタクリル酸」とを含む概念であり、これらの一方、又は双方を意味する。(メタ)アクリル酸は、構造内に炭素−炭素間の2重結合を有するため、スチレン系単量体の含浸重合時に、スチレン系単量体と共重合することができる。そして、(メタ)アクリル酸由来の構造単位が発泡粒子における例えば表面に存在することによって、発泡粒子の融着性の低下を抑制しつつ帯電防止剤の定着性の向上が可能になる。この理由は次のように考えられる。 The styrene resin component further contains a structural unit derived from (meth)acrylic acid. In the present specification, “(meth)acrylic acid” is a concept including “acrylic acid” and “methacrylic acid”, and means one or both of them. Since (meth)acrylic acid has a carbon-carbon double bond in its structure, it can be copolymerized with the styrene-based monomer during impregnation polymerization of the styrene-based monomer. The presence of the structural unit derived from (meth)acrylic acid, for example, on the surface of the expanded particles makes it possible to improve the fixability of the antistatic agent while suppressing the decrease in the fusion property of the expanded particles. The reason for this is considered as follows.
すなわち、(メタ)アクリル酸は、適度な水溶性を有するため、重合安定性が高く、凝結が生じにくい。さらに、(メタ)アクリル酸がスチレン系単量体と共重合することにより、複合樹脂がスチレン系単量体由来の構造単位と(メタ)アクリル酸由来の構造単位とを有する共重合体成分を含有すると共に、この共重合体成分を粒子表面に含有させることができると考えられる。そのため、発泡粒子の融着性を維持したまま、帯電防止剤の定着性を向上させることが可能になる。 That is, since (meth)acrylic acid has appropriate water solubility, it has high polymerization stability and is unlikely to cause coagulation. Furthermore, by copolymerizing (meth)acrylic acid with a styrene-based monomer, the composite resin has a copolymer component having a structural unit derived from a styrene-based monomer and a structural unit derived from (meth)acrylic acid. It is considered that the copolymer component can be contained on the surface of the particle as well as the content. Therefore, it becomes possible to improve the fixing property of the antistatic agent while maintaining the fusion property of the expanded particles.
(メタ)アクリル酸由来の構造は、発泡粒子の中心部よりも表面付近に多く存在していることが好ましい。この場合には、発泡粒子の帯電防止剤の定着性をより向上させることができる。後述の発泡粒子の製造工程において、(メタ)アクリル酸を添加するタイミングを調整することにより、(メタ)アクリル酸由来の構造が発泡粒子の表面付近に存在しやすくなる。具体的には、スチレン系単量体の含浸重合時において、スチレン系単量体を複数回に分けて添加する場合において、2回目以降に添加するスチレン系単量体と共に(メタ)アクリル酸を添加することにより、(メタ)アクリル酸由来の構造が発泡粒子の表面付近に存在し易くなる。 The structure derived from (meth)acrylic acid is preferably present in the vicinity of the surface more than in the central part of the expanded particles. In this case, the fixability of the antistatic agent for the expanded particles can be further improved. By adjusting the timing of adding (meth)acrylic acid in the process for producing expanded particles described below, a structure derived from (meth)acrylic acid is likely to exist near the surface of the expanded particles. Specifically, during impregnation polymerization of a styrene-based monomer, when the styrene-based monomer is added in a plurality of times, (meth)acrylic acid is added together with the styrene-based monomer added after the second time. By the addition, the structure derived from (meth)acrylic acid easily exists near the surface of the expanded beads.
可能な限り、少なくとも最後に添加されるスチレン系単量体と共に(メタ)アクリル酸を添加するか、或いは、最後に添加されるスチレン系単量体を添加した後からそのスチレン系単量体の重合が完了するまでの間に(メタ)アクリル酸を添加することがより好ましい。この場合には、発泡粒子の表面における(メタ)アクリル酸由来のカルボニル量を高め易くなる。 Whenever possible, add (meth)acrylic acid together with at least the last styrene-based monomer, or add the styrene-based monomer after the last-added styrene-based monomer. It is more preferable to add (meth)acrylic acid by the time the polymerization is completed. In this case, the amount of carbonyl derived from (meth)acrylic acid on the surface of the expanded particles can be easily increased.
また、最後に添加されるスチレン系単量体は、例えば上述のアクリル酸エステル等のスチレンと共重合可能なモノマーを含まないことが好ましい。具体的には、最後に添加されるスチレン系単量体は、スチレンであることがより好ましい。この場合には、帯電防止剤の定着性を(メタ)アクリル酸の添加量に応じて効率良く高めることができる。 Further, it is preferable that the styrene-based monomer added last does not include a monomer copolymerizable with styrene such as the above-mentioned acrylic acid ester. Specifically, the styrene-based monomer added last is more preferably styrene. In this case, the fixability of the antistatic agent can be efficiently enhanced according to the amount of (meth)acrylic acid added.
複合樹脂中のキシレン可溶分をさらにアセトンに溶解させて得られるアセトン可溶分のガラス転移温度Tgは、105℃以下であり、102℃以下であることが好ましい。一方、ガラス転移温度Tgの下限は、概ね85℃以上であることが好ましい。この場合には、複合樹脂粒子の発泡時における発泡性をより向上させることができ、発泡時の収縮をより防止することができる。さらに、発泡後に得られる発泡粒子の型内成形時に、発泡粒子同士の融着性をより向上させることができ、発泡粒子成形体の寸法安定性をより向上させることができる。 The glass transition temperature Tg of the acetone-soluble component obtained by further dissolving the xylene-soluble component in the composite resin in acetone is 105° C. or lower, and preferably 102° C. or lower. On the other hand, the lower limit of the glass transition temperature Tg is preferably about 85° C. or higher. In this case, the foamability of the composite resin particles during foaming can be further improved, and the shrinkage during foaming can be further prevented. Furthermore, during in-mold molding of the expanded beads obtained after foaming, the fusibility of the expanded particles can be further improved, and the dimensional stability of the expanded particle molded product can be further improved.
上記ガラス転移温度Tgは、例えば次のようにして測定できる。まず、150メッシュの金網袋中に複合樹脂粒子1.0gを入れる。次に、容積200mlの丸型フラスコにキシレン約200mlを入れ、ソックスレー抽出管に上記金網袋に入れたサンプルをセットする。マントルヒーターで8時間加熱し、ソックスレー抽出を行う。抽出したキシレン溶液をアセトン600mlへ投下し、デカンテーションし、上澄み液を減圧蒸発乾固し、アセトン可溶分を得る。得られたアセトン可溶分2〜4mgについて、ティ・エイ・インスツルメント社製のDSC測定器Q1000を用い、JIS K7121(1987年)に準拠して熱流束示差走査熱量測定を行う。そして、加熱速度10℃/分の条件で得られるDSC曲線の中間点ガラス転移温度としてアセトン可溶分のTgが得られ、それを複合樹脂中のキシレン可溶分をさらにアセトンに溶解させて得られるアセトン可溶分のTgとする。なお、複合樹脂中のキシレン可溶分をさらにアセトンに溶解させて得られるアセトン可溶分は、主にスチレン系樹脂である。 The glass transition temperature Tg can be measured, for example, as follows. First, 1.0 g of the composite resin particles is put in a wire mesh bag of 150 mesh. Next, about 200 ml of xylene is placed in a round flask having a volume of 200 ml, and the Soxhlet extraction tube is set with the sample placed in the wire mesh bag. Soxhlet extraction is performed by heating with a mantle heater for 8 hours. The extracted xylene solution is dropped into 600 ml of acetone, decanted, and the supernatant is evaporated to dryness under reduced pressure to obtain an acetone-soluble component. With respect to the obtained acetone-soluble content of 2 to 4 mg, a heat flux differential scanning calorimetry is performed using a DSC measuring instrument Q1000 manufactured by TA Instruments in accordance with JIS K7121 (1987). Then, the Tg of the acetone-soluble component was obtained as the midpoint glass transition temperature of the DSC curve obtained under the heating rate of 10° C./min, which was obtained by further dissolving the xylene-soluble component in the composite resin in acetone. It is the Tg of the acetone-soluble component. The acetone-soluble component obtained by further dissolving the xylene-soluble component in the composite resin in acetone is mainly a styrene resin.
発泡粒子の表面におけるカルボニル量(以下、表面カルボニル量ともいう)は0.03mol%以上である。0.03mol%未満の場合には、帯電防止剤の定着性の向上効果が不十分になるおそれがある。その結果、成形体の帯電防止性能が不十分になるおそれがある。帯電防止剤の定着性をより向上させるという観点から、発泡粒子の表面におけるカルボニル量は0.07mol%以上であることがより好ましく、0.1mol%以上であることがさらに好ましい。 The amount of carbonyls on the surface of the expanded beads (hereinafter, also referred to as the amount of surface carbonyls) is 0.03 mol% or more. If it is less than 0.03 mol %, the effect of improving the fixing property of the antistatic agent may be insufficient. As a result, the antistatic performance of the molded product may be insufficient. From the viewpoint of further improving the fixability of the antistatic agent, the amount of carbonyl on the surface of the expanded beads is more preferably 0.07 mol% or more, and further preferably 0.1 mol% or more.
一方、発泡粒子全体のカルボニル量が多くなりすぎると、ガラス転移温度Tgが105℃を超えて高くなり、発泡粒子の融着性が低下するおそれがある。ガラス転移温度を高めずに発泡粒子の融着性を維持しつつ、帯電防止剤の定着性をより向上させるという観点から、発泡粒子の表面におけるカルボニル量は0.2mol%以下であることが好ましく、0.16mol%以下であることがより好ましく、0.15mol%以下であることがさらに好ましい。 On the other hand, if the amount of carbonyls in the entire expanded particles is too large, the glass transition temperature Tg becomes higher than 105° C., and the fusion property of the expanded particles may decrease. The carbonyl content on the surface of the foamed particles is preferably 0.2 mol% or less from the viewpoint of further improving the fixability of the antistatic agent while maintaining the fusibility of the foamed particles without increasing the glass transition temperature. , 0.16 mol% or less is more preferable, and 0.15 mol% or less is further preferable.
発泡粒子の表面におけるカルボニル量は全反射吸収(ATR法)の赤外吸収スペクトルから求めることができる。具体的には、発泡粒子の表面におけるスチレン量と、表面におけるスチレン量に対するカルボニル量の乗算から求められる。まず、以下のようにして、スチレン量、及びスチレン量に対するカルボニル量を測定する。
(a)スチレン量
スチレン量の測定にあたっては、測定装置として、赤外分光光度計と全反射吸収測定装置を用いて発泡粒子の表面の赤外吸収スペクトル(ただし、ATR補正なし)を得る。次に、赤外吸収スペクトル(ただし、ATR補正なし)から得られる698cm-1における吸光度D698、2850cm-1における吸光度D2850を測定し、吸光度比D698/D2850を求める。これらの平均値を発泡粒子の吸光度比D698/D2850とする。上記吸光度比D698/D2850は、発泡性改質樹脂粒子の表面におけるポリスチレン量を推定する指標となる。なお、赤外吸収スペクトル(ただし、ATR補正なし)から得られる吸光度D698は、スチレン系樹脂に主に含まれるベンゼン環の面外変角振動に由来するピークの高さである。また、赤外吸収スペクトル(ただし、ATR補正なし)から得られる吸光度D2850は、エチレン系樹脂とスチレン系樹脂の双方に含まれるメチレン基のC−H間伸縮振動に由来するピークの高さである。そして、検量線を用いて発泡粒子表面のスチレン量を求めることができる。
(b)スチレン量に対するカルボニル量
カルボニル量の測定にあたっては、上述のスチレン量の測定と同様の測定装置、測定条件により求められる。次に、赤外吸収スペクトル(ただし、ATR補正なし)から得られる698cm-1における吸光度D698、1730cm-1における吸光度D1730を測定し、吸光度比D1730/D698を求める。同様の測定を5つの発泡粒子について行い、これらの平均値を複合樹脂発泡粒子の吸光度比D1730/D698とする。なお、赤外吸収スペクトル(ただし、ATR補正なし)から得られる吸光度D1730は、(メタ)アクリル酸成分単位のカルボキシ基に由来するピークの高さである。そして、あらかじめ作成した検量線を用いて、スチレン量に対するカルボニル量を求める。そして、上記スチレン量とスチレン量に対するカルボニル量の乗算から発泡粒子の表面におけるカルボニル量を求めることができる。
The amount of carbonyl on the surface of the expanded particles can be determined from the infrared absorption spectrum of total reflection absorption (ATR method). Specifically, it is determined by multiplying the amount of styrene on the surface of the expanded particles by the amount of carbonyl on the amount of styrene on the surface. First, the amount of styrene and the amount of carbonyl relative to the amount of styrene are measured as follows.
(A) Amount of styrene In measuring the amount of styrene, an infrared spectrophotometer and a total reflection absorption measuring device are used as a measuring device to obtain an infrared absorption spectrum (without ATR correction) of the surface of the expanded particles. Next, the absorbance D 698 at 698 cm −1 and the absorbance D 2850 at 2850 cm −1 obtained from the infrared absorption spectrum (without ATR correction) are measured to obtain the absorbance ratio D 698 /D 2850 . The average value of these is defined as the absorbance ratio D 698 /D 2850 of the expanded particles. The absorbance ratio D 698 /D 2850 is an index for estimating the polystyrene content on the surface of the expandable modified resin particles. The absorbance D 698 obtained from the infrared absorption spectrum (without ATR correction) is the height of the peak derived from the out-of-plane bending vibration of the benzene ring mainly contained in the styrene resin. Further, the absorbance D 2850 obtained from the infrared absorption spectrum (without ATR correction) is the height of the peak derived from the CH stretching vibration of the methylene group contained in both the ethylene resin and the styrene resin. is there. Then, the calibration curve can be used to determine the amount of styrene on the surface of the expanded particles.
(B) Carbonyl amount relative to styrene amount When measuring the carbonyl amount, it can be determined by the same measuring device and measuring conditions as the above-mentioned measurement of the styrene amount. Next, the absorbance D 698 at 698 cm −1 and the absorbance D 1730 at 1730 cm −1 obtained from the infrared absorption spectrum (without ATR correction) are measured to obtain the absorbance ratio D 1730 /D 698 . The same measurement is performed for five expanded particles, and the average value of these is taken as the absorbance ratio D 1730 /D 698 of the expanded resin particles of the composite resin. The absorbance D 1730 obtained from the infrared absorption spectrum (without ATR correction) is the height of the peak derived from the carboxy group of the (meth)acrylic acid component unit. Then, the carbonyl amount with respect to the styrene amount is obtained using the calibration curve prepared in advance. Then, the amount of carbonyl on the surface of the expanded particles can be obtained by multiplying the amount of styrene by the amount of carbonyl with respect to the amount of styrene.
スチレン系樹脂成分は、メタクリル酸由来の構造単位、アクリル酸由来の構造単位、又はメタクリル酸由来の構造単位とアクリル酸由来の構造単位を有する。好ましくは、スチレン系樹脂成分は、少なくともメタクリル酸由来の構造単位を有することがよい。この場合には、帯電防止剤の定着性と発泡粒子の融着性とをよりバランス良く向上させることができる。 The styrene resin component has a structural unit derived from methacrylic acid, a structural unit derived from acrylic acid, or a structural unit derived from methacrylic acid and a structural unit derived from acrylic acid. Preferably, the styrene resin component should have at least a structural unit derived from methacrylic acid. In this case, the fixing property of the antistatic agent and the fusion property of the expanded particles can be improved in a better balance.
発泡粒子においては、複合樹脂100質量部に対する(メタ)アクリル酸由来の構造単位の含有量が0.1〜2質量部であることが好ましい。この場合には、帯電防止剤の定着性と発泡粒子の融着性とをよりバランス良く向上させることができる。帯電防止剤の定着性をより向上させるという観点から、複合樹脂100質量部に対する(メタ)アクリル酸由来の構造単位の含有量は0.2質量部以上がより好ましく、0.5質量部以上がさらに好ましい。一方、融着性の低下をより抑制するという観点から、複合樹脂100質量部に対する(メタ)アクリル酸由来の構造単位の含有量は、1.5質量部以下がより好ましく、1質量部以下がさらに好ましい。 In the expanded beads, the content of the structural unit derived from (meth)acrylic acid is preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the composite resin. In this case, the fixing property of the antistatic agent and the fusion property of the expanded particles can be improved in a better balance. From the viewpoint of further improving the fixability of the antistatic agent, the content of the structural unit derived from (meth)acrylic acid relative to 100 parts by mass of the composite resin is more preferably 0.2 parts by mass or more, and 0.5 parts by mass or more. More preferable. On the other hand, the content of the structural unit derived from (meth)acrylic acid with respect to 100 parts by mass of the composite resin is more preferably 1.5 parts by mass or less, and preferably 1 part by mass or less, from the viewpoint of further suppressing the decrease in fusion property. More preferable.
発泡粒子の表面には帯電防止剤を付着させることができる。帯電防止剤の付着量は、使用する帯電防止剤の種類にもよるが、発泡粒子100質量部に対して0.3〜5質量部であることが好ましい。この場合には、帯電防止性能が十分に得られると共に、融着性の低下をより防止することができる。帯電防止性能をより十分に得るという観点から、発泡粒子100質量部に対する帯電防止剤の付着量は、0.5質量部以上であることがより好ましい。また、融着性の低下をさらに一層防止できるという観点から、帯電防止剤の付着量は、3質量部以下であることがより好ましく、2質量部以下であることがさらに好ましい。 An antistatic agent can be attached to the surface of the expanded beads. The amount of the antistatic agent attached depends on the type of the antistatic agent used, but is preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the expanded particles. In this case, sufficient antistatic performance can be obtained and the fusion property can be prevented from lowering. From the viewpoint of obtaining more sufficient antistatic performance, the amount of the antistatic agent attached to 100 parts by mass of the expanded particles is more preferably 0.5 parts by mass or more. Further, from the viewpoint that the fusion property can be further prevented from decreasing, the amount of the antistatic agent attached is more preferably 3 parts by mass or less, and further preferably 2 parts by mass or less.
なお、エチレン系樹脂にスチレン系単量体が含浸重合された複合樹脂を基材樹脂とする複合樹脂発泡粒子は基本的に疎水性を有するため、親水性を有する帯電防止剤を付着させた際の定着性が低く、発泡粒子を型内成形する際の加熱条件によっては、加熱媒体であるスチーム等によって発泡粒子に付着した帯電防止剤が部分的に脱離するおそれがある。しかしながら、上記発泡粒子は、上述のように(メタ)アクリル酸由来の構造単位を特定量含有しているため、発泡粒子同士の融着性を阻害することなく表面付近が適度に親水化され、帯電防止剤の定着性が向上すると考えられる。すなわち、上記複合樹脂発泡粒子によれば、優れた機械的強度と帯電防止性能とを兼ね備えた成形体を得ることが可能になる。 In addition, since the composite resin foamed particles using the composite resin in which the styrene-based monomer is impregnated and polymerized with the ethylene-based resin as the base resin have basically hydrophobic properties, when an antistatic agent having hydrophilicity is attached, The fixing property is low and the antistatic agent attached to the expanded particles may be partially released by steam or the like which is a heating medium depending on the heating conditions for in-mold molding of the expanded particles. However, since the foamed particles contain a specific amount of the structural unit derived from (meth)acrylic acid as described above, the vicinity of the surface is appropriately hydrophilized without inhibiting the fusibility of the foamed particles, It is considered that the fixability of the antistatic agent is improved. That is, according to the composite resin expanded particles, it becomes possible to obtain a molded product having both excellent mechanical strength and antistatic performance.
帯電防止剤としては、特に制限はなく、例えば、ヒドロキシアルキルアミン、ヒドロキシアルキルモノエーテルアミン、ポリオキシアルキレンアルキルアミン、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエーテル等のノニオン系界面活性剤;アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルホスフェート等のアニオン系界面活性剤;オクチルジメチルエチルアンモニウムエチルサルフェート、ラウリルジメチルエチルアンモニウムエチルサルフェート、ジデシルジメチルアンモニウムクロライド、テトラアルキルアンモニウム塩、トリアルキルベンジルアンモニウム塩等のカチオン系界面活性剤等が挙げられる。また、これらの帯電防止剤は、単独または混合して使用することもできる。帯電防止剤としては、例えば各種市販品を利用することができる。 The antistatic agent is not particularly limited, and examples thereof include nonionic surfactants such as hydroxyalkyl amine, hydroxyalkyl monoether amine, polyoxyalkylene alkyl amine, glycerin fatty acid ester, polyoxyethylene alkyl ether, and polyoxyethylene alkyl ether. Agents: anionic surfactants such as alkyl sulfonates, alkyl benzene sulfonates, alkyl phosphates; octyl dimethyl ethyl ammonium ethyl sulfate, lauryl dimethyl ethyl ammonium ethyl sulfate, didecyl dimethyl ammonium chloride, tetraalkyl ammonium salt, trialkyl benzyl Examples include cationic surfactants such as ammonium salts. In addition, these antistatic agents can be used alone or in combination. As the antistatic agent, for example, various commercially available products can be used.
帯電防止剤は、少なくともカチオン系界面活性剤を含有することが好ましく、少なくともオクチルジメチルエチルアンモニウムエチルサルフェートを用いることがより好ましい。この場合には、(メタ)アクリル酸由来の構造単位を含有する発泡粒子に帯電防止剤がより定着し易くなり、成形体の帯電防止性能をより向上させることができる。 The antistatic agent preferably contains at least a cationic surfactant, and at least octyldimethylethylammoniumethylsulfate is more preferably used. In this case, the antistatic agent is more easily fixed to the foamed particles containing the structural unit derived from (meth)acrylic acid, and the antistatic performance of the molded product can be further improved.
発泡粒子が相互に融着した成形体の表面抵抗率は、1×1012Ω未満であることが好ましい。表面抵抗率が上記範囲であれば、液晶パネル、太陽光発電パネルなどの梱包容器、緩衝包装材料に要求される帯電防止性能を十分に発揮することができる。成形体の表面抵抗率は5×1011Ω以下がより好ましく、2.5×1011Ω以下がさらに好ましい。 The surface resistivity of the molded body in which the foamed particles are fused to each other is preferably less than 1×10 12 Ω. When the surface resistivity is in the above range, the antistatic performance required for packing containers such as liquid crystal panels and solar power generation panels and buffer packing materials can be sufficiently exhibited. The surface resistivity of the molded body is more preferably equal to or less than 5 × 10 11 Ω, more preferably 2.5 × 10 11 Ω or less.
発泡粒子の水蒸気吸着量は、0.5cm3/g以上であることが好ましい。この場合には、発泡粒子表面における帯電防止剤の定着性をより確実かつ十分に向上させることができる。上記観点から、発泡粒子の水蒸気吸着量は、0.7cm3/g以上であることがより好ましく、0.8cm3/g以上であることがさらに好ましい。なお、上記水蒸気吸着量は、発泡粒子表面に水蒸気がどれだけ吸着できるかを示すものである。この水蒸気吸着量は、発泡粒子の親水性の指標であり、発泡粒子の表面におけるカルボニル量が増大すると、発泡粒子表面に吸着する水蒸気量も高くなる傾向にある。 The water vapor adsorption amount of the foamed particles is preferably 0.5 cm 3 /g or more. In this case, the fixing property of the antistatic agent on the surface of the expanded beads can be more reliably and sufficiently improved. In view of the above, the water vapor adsorption amount of the foamed particles is more preferably 0.7 cm 3 / g or more, further preferably 0.8 cm 3 / g or more. The water vapor adsorption amount shows how much water vapor can be adsorbed on the surface of the expanded particles. The amount of water vapor adsorbed is an index of the hydrophilicity of the expanded particles, and when the amount of carbonyls on the surface of the expanded particles increases, the amount of water vapor adsorbed on the surface of the expanded particles also tends to increase.
複合樹脂発泡粒子の水蒸気吸着量の測定は、蒸気吸着量測定装置を用いて25℃にて吸着等温線(設定相対圧:0.005〜0.9)を測定し、最大相対圧0.9における水蒸気吸着量を本発明における複合樹脂発泡粒子の水蒸気吸着量として求めることができる。具体的には、例えば、予め複合樹脂粒子を約0.2g計量し、次に、計量した複合樹脂粒子をサンプルセル内に入れ、25℃における水蒸気の吸着等温線(設定相対圧:0.005〜0.9)を測定し、最大相対圧0.9における水蒸気吸着量を本発明における複合樹脂発泡粒子の水蒸気吸着量として求めることができる。 The vapor adsorption amount of the composite resin foamed particles is measured by measuring an adsorption isotherm (set relative pressure: 0.005 to 0.9) at 25° C. using a vapor adsorption amount measuring device to obtain a maximum relative pressure of 0.9. The amount of adsorbed water vapor can be obtained as the amount of adsorbed water vapor of the expanded resin beads of the present invention. Specifically, for example, about 0.2 g of composite resin particles is weighed in advance, then the weighed composite resin particles are put in a sample cell, and the adsorption isotherm of water vapor at 25° C. (set relative pressure: 0.005 .About.0.9), and the amount of water vapor adsorbed at the maximum relative pressure of 0.9 can be determined as the amount of water vapor adsorbed by the composite resin expanded particles of the present invention.
次に、発泡粒子の製造方法の実施形態について説明する。発泡粒子は、改質工程及び発泡工程を行うことにより得られる。以下、各工程について詳細に説明する。 Next, an embodiment of a method for producing expanded beads will be described. Expanded particles can be obtained by performing a modifying step and a foaming step. Hereinafter, each step will be described in detail.
改質工程においては、エチレン系樹脂成分を主成分とするエチレン系樹脂種粒子(以下、適宜「種粒子」という)が用いられる。種粒子は、エチレン系樹脂成分の他に、気泡調整剤、着色剤、滑剤、分散径拡大剤等の添加剤をさらに含有することができる。種粒子は、必要に応じて添加される上述の添加剤をエチレン系樹脂成分に配合し、配合物を溶融混練してから細粒化することにより製造することができる。溶融混練は押出機により行うことができる。均一な混練を行うためには、予め樹脂成分を混合した後に押出を行うことが好ましい。樹脂成分の混合は、例えばヘンシェルミキサー、リボンブレンダー、Vブレンダー、レディーゲミキサーなどの混合機を用いて行うことができる。溶融混練は、例えばダルメージタイプ、マドックタイプ、ユニメルトタイプ等の高分散タイプのスクリュを備えた単軸押出機や二軸押出機を用いて行うことが好ましい。 In the modifying step, ethylene-based resin seed particles containing an ethylene-based resin component as a main component (hereinafter referred to as “seed particles” as appropriate) are used. The seed particles may further contain additives such as a bubble control agent, a colorant, a lubricant, and a dispersion diameter expanding agent, in addition to the ethylene resin component. The seed particles can be produced by blending the above-mentioned additives, which are added as necessary, with the ethylene resin component, melt-kneading the blend, and then finely granulating the blend. Melt kneading can be performed by an extruder. In order to carry out uniform kneading, it is preferable to extrude after mixing the resin components in advance. The resin components can be mixed using a mixer such as a Henschel mixer, a ribbon blender, a V blender, and a Ledige mixer. The melt-kneading is preferably performed using a single-screw extruder or a twin-screw extruder equipped with a high dispersion type screw such as a dullage type, a mudock type, a unimelt type.
種粒子の造粒は、例えば、溶融混練した配合物を押出機等により押出しながら切断することにより行われる。造粒は、例えばストランドカット方式、アンダーウォーターカット方式、ホットカット方式等によって行うことができる。 The seed particles are granulated by, for example, cutting the melt-kneaded mixture while extruding it with an extruder or the like. Granulation can be performed by, for example, a strand cut method, an underwater cut method, a hot cut method, or the like.
改質工程においては、まず、水性媒体中に種粒子を分散させることにより分散液を得る。水性媒体としては、例えば脱イオン水を用いることができる。種粒子は、懸濁剤とともに水性媒体中に分散させることが好ましい。この場合には、種粒子を分散させた水性媒体中に後述のスチレン系単量体を均一に懸濁させることができる。懸濁剤としては、例えばリン酸三カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウム、リン酸マグネシウム、水酸化アルミニウム、水酸化第2鉄、水酸化チタン、水酸化マグネシウム、リン酸バリウム、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、タルク、カオリン、ベントナイト等の微粒子状の無機懸濁剤を用いることができる。また、例えばポリビニルピロリドン、ポリビニルアルコール、エチルセルロース、ヒドロキシプロピルメチルセルロース等の有機懸濁剤を用いることもできる。好ましくは、リン酸三カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウムがよい。これらの懸濁剤は単独で、または2種以上を組み合わせて用いることができる。 In the modification step, first, seed particles are dispersed in an aqueous medium to obtain a dispersion liquid. For example, deionized water can be used as the aqueous medium. The seed particles are preferably dispersed in an aqueous medium together with the suspending agent. In this case, the styrene-based monomer described below can be uniformly suspended in the aqueous medium in which the seed particles are dispersed. Examples of the suspending agent include tricalcium phosphate, hydroxyapatite, magnesium pyrophosphate, magnesium phosphate, aluminum hydroxide, ferric hydroxide, titanium hydroxide, magnesium hydroxide, barium phosphate, calcium carbonate, magnesium carbonate. Inorganic suspending agents in the form of fine particles such as barium carbonate, calcium sulfate, barium sulfate, talc, kaolin and bentonite can be used. In addition, for example, an organic suspending agent such as polyvinylpyrrolidone, polyvinyl alcohol, ethyl cellulose, hydroxypropylmethyl cellulose can be used. Preferred are tricalcium phosphate, hydroxyapatite, and magnesium pyrophosphate. These suspending agents can be used alone or in combination of two or more kinds.
懸濁剤の使用量は、懸濁重合系の水性媒体(具体的には、反応生成物含有スラリーなどの水を含む系内の全ての水)100質量部に対して、固形分量で0.05〜10質量部が好ましい。より好ましくは0.3〜5質量部がよい。懸濁剤が少なすぎる場合には、改質工程において、スチレン系単量体を安定して懸濁させることが困難になり、樹脂の塊状物が発生するおそれがある。一方、懸濁剤が多すぎる場合には、製造コストが増大してしまうだけでなく、改質工程後に得られる複合樹脂粒子の粒子径分布が広がってしまうおそれがある。 The amount of the suspending agent used is 100 parts by mass with respect to 100 parts by mass of the aqueous medium of the suspension polymerization system (specifically, all the water in the system containing water such as the reaction product-containing slurry). 05 to 10 parts by mass is preferable. More preferably, it is 0.3 to 5 parts by mass. If the amount of the suspending agent is too small, it becomes difficult to stably suspend the styrene-based monomer in the modifying step, and a lump of resin may be generated. On the other hand, if the amount of the suspending agent is too large, not only the manufacturing cost will increase, but also the particle size distribution of the composite resin particles obtained after the modifying step may be broadened.
水性媒体には、界面活性剤からなる分散剤を添加することができる。界面活性剤としては、例えばアニオン系界面活性剤、ノニオン系界面活性剤を用いることが好ましい。これらの界面活性剤は、単独で又は複数を組み合わせて用いることができる。 A dispersant composed of a surfactant can be added to the aqueous medium. As the surfactant, it is preferable to use, for example, an anionic surfactant or a nonionic surfactant. These surfactants can be used alone or in combination of two or more.
アニオン系界面活性剤としては、例えばアルキルスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、α−オレフィンスルホン酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸ナトリウム等を用いることができる。ノニオン系界面活性剤としては、例えばポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル等を用いることができる。より好ましくは、分散剤としては、炭素数8〜20のアルキルスルホン酸アルカリ金属塩(好ましくはナトリウム塩)からなるアニオン系界面活性剤を用いることがよい。これにより、懸濁を充分に安定化させることができる。 Examples of the anionic surfactant that can be used include sodium alkyl sulfonate, sodium alkylbenzene sulfonate, sodium lauryl sulfate, sodium α-olefin sulfonate, sodium dodecyl diphenyl ether disulfonate, and the like. As the nonionic surfactant, for example, polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, etc. can be used. More preferably, as the dispersant, an anionic surfactant composed of an alkyl sulfonic acid alkali metal salt (preferably sodium salt) having 8 to 20 carbon atoms may be used. Thereby, the suspension can be sufficiently stabilized.
また、水性媒体には、必要に応じて、例えば塩化リチウム、塩化カリウム、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム等の無機塩類からなる電解質を添加することができる。また、靭性、機械的強度により優れた成形体を得るためには、水性媒体に水溶性重合禁止剤を添加することが好ましい。水溶性重合禁止剤としては、例えば亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸アンモニウム、L−アスコルビン酸、クエン酸等を用いることができる。 If necessary, an electrolyte composed of inorganic salts such as lithium chloride, potassium chloride, sodium chloride, sodium sulfate, sodium nitrate, sodium carbonate and sodium bicarbonate can be added to the aqueous medium. Further, in order to obtain a molded product excellent in toughness and mechanical strength, it is preferable to add a water-soluble polymerization inhibitor to the aqueous medium. As the water-soluble polymerization inhibitor, for example, sodium nitrite, potassium nitrite, ammonium nitrite, L-ascorbic acid, citric acid and the like can be used.
水溶性重合禁止剤は、種粒子内に含浸し難く、水性媒体中に溶解する。したがって、種粒子に含浸したスチレン系単量体の重合は行われるが、種粒子に含浸されていない水性媒体中のスチレン系単量体の微小液滴、及び種粒子に吸収されつつある種粒子表面付近のスチレン系単量体の重合を抑制することができる。その結果、複合樹脂粒子の最表面付近におけるスチレン系樹脂成分の量を少なくすることができ、得られる成形体の靭性が向上すると推察される。水溶性重合禁止剤の添加量は、水性媒体(具体的には、反応生成物含有スラリーなどの水を含む系内の全ての水)100質量部に対して0.001〜0.1質量部が好ましく、より好ましくは0.005〜0.06質量部がよい。 The water-soluble polymerization inhibitor is difficult to impregnate in the seed particles and is soluble in the aqueous medium. Therefore, the styrenic monomer impregnated in the seed particles is polymerized, but the styrene monomer fine droplets in the aqueous medium not impregnated in the seed particles, and the seed particles being absorbed by the seed particles. It is possible to suppress the polymerization of the styrene-based monomer near the surface. As a result, it is presumed that the amount of the styrene resin component near the outermost surface of the composite resin particles can be reduced, and the toughness of the obtained molded product is improved. The amount of the water-soluble polymerization inhibitor added is 0.001 to 0.1 part by mass with respect to 100 parts by mass of the aqueous medium (specifically, all the water in the system including water such as the reaction product-containing slurry). Is preferable, and 0.005-0.06 parts by mass is more preferable.
改質工程においては、上記のように種粒子が水性媒体に分散した分散液中において、スチレン系単量体と(メタ)アクリル酸とを種粒子に含浸、重合させる。なお、スチレン系単量体等の重合は、重合開始剤の存在下で行うことができる。この場合には、スチレン系単量体等の共重合と共にエチレン系樹脂の架橋が生じることがある。また、必要に応じて架橋剤を併用することができる。重合開始剤、架橋剤を使用する際には、予めスチレン系単量体に重合開始剤、架橋剤を溶解させておくことが好ましい。 In the modification step, the styrene-based monomer and (meth)acrylic acid are impregnated and polymerized in the dispersion liquid in which the seed particles are dispersed in the aqueous medium as described above. The polymerization of the styrene-based monomer and the like can be performed in the presence of a polymerization initiator. In this case, the ethylene resin may be crosslinked together with the copolymerization of the styrene monomer and the like. Further, a cross-linking agent can be used together if necessary. When using the polymerization initiator and the crosslinking agent, it is preferable to dissolve the polymerization initiator and the crosslinking agent in the styrene monomer in advance.
重合開始剤としては、スチレン系単量体の懸濁重合法に用いられるものを用いることができる。例えばスチレン系単量体に可溶で、10時間半減期温度が50〜120℃である重合開始剤を用いることができる。重合開始剤としては、例えばクメンヒドロキシパーオキサイド、ジクミルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−アミルパーオキシ−2−エチルヘキシルカーボネート、ヘキシルパーオキシ−2−エチルヘキシルカーボネート、ラウロイルパーオキサイド等の有機過酸化物を用いることができる。また、重合開始剤としては、アゾビスイソブチロニトリル等のアゾ化合物等を用いることができる。これらの重合開始剤は1種類、または2種類以上を組み合わせて用いることができる。また、残留スチレン系モノマーを低減しやすいという観点からt−ブチルパーオキシ−2−エチルヘキサノエートが好ましい。重合開始剤は、スチレン系単量体100質量部に対して0.01〜3質量部で使用することが好ましい。 As the polymerization initiator, those used in the suspension polymerization method of styrene-based monomers can be used. For example, a polymerization initiator which is soluble in a styrene-based monomer and has a 10-hour half-life temperature of 50 to 120° C. can be used. Examples of the polymerization initiator include cumene hydroxyperoxide, dicumyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxybenzoate, benzoyl peroxide, t-butylperoxyisopropyl carbonate, t. Organic peroxides such as -butylperoxy-2-ethylhexyl carbonate, t-amylperoxy-2-ethylhexyl carbonate, hexylperoxy-2-ethylhexyl carbonate and lauroyl peroxide can be used. Moreover, as the polymerization initiator, an azo compound such as azobisisobutyronitrile can be used. These polymerization initiators may be used alone or in combination of two or more. Further, t-butylperoxy-2-ethylhexanoate is preferable from the viewpoint of easily reducing the residual styrene-based monomer. The polymerization initiator is preferably used in an amount of 0.01 to 3 parts by mass with respect to 100 parts by mass of the styrene-based monomer.
また、架橋剤としては、重合温度では分解せず、架橋温度で分解する10時間半減期温度が重合温度よりも5℃〜50℃高い物質を用いることが好ましい。具体的には、例えばジクミルパーオキサイド、2,5−t−ブチルパーベンゾエート、1,1−ビス−t−ブチルパーオキシシクロヘキサン等の過酸化物を用いることができる。架橋剤は、単独または2種類以上併用して用いることができる。架橋剤の配合量は、スチレン系単量体100質量部に対して0.1〜5質量部であることが好ましい。なお、重合開始剤及び架橋剤としては、同じ化合物を採用することもできる。 As the cross-linking agent, it is preferable to use a substance that does not decompose at the polymerization temperature but decomposes at the cross-linking temperature and has a 10-hour half-life temperature higher by 5 to 50° C. than the polymerization temperature. Specifically, for example, peroxides such as dicumyl peroxide, 2,5-t-butylperbenzoate, and 1,1-bis-t-butylperoxycyclohexane can be used. The cross-linking agents can be used alone or in combination of two or more kinds. The compounding amount of the crosslinking agent is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the styrene-based monomer. The same compound may be used as the polymerization initiator and the crosslinking agent.
また、(メタ)アクリル酸は、スチレン系単量体に予め溶解させておくことが好ましい。すなわち、水性媒体中に分散させた種粒子に、(メタ)アクリル酸を溶解させたスチレン系単量体を含浸、重合させることが好ましい。この場合には、スチレン系単量体の重合時に(メタ)アクリル酸がより取り込まれ易くなる。 Further, (meth)acrylic acid is preferably dissolved in the styrene-based monomer in advance. That is, it is preferable to impregnate and polymerize seed particles dispersed in an aqueous medium with a styrene-based monomer in which (meth)acrylic acid is dissolved. In this case, (meth)acrylic acid is more easily taken in during the polymerization of the styrene-based monomer.
種粒子にスチレン系単量体を含浸させて重合させるにあたって、種粒子を分散させた水性媒体中に、配合予定のスチレン系単量体の全量を一括して添加することもできるが、配合予定のスチレン系単量体の全量を例えば2以上に分割し、これらのモノマーを異なるタイミングで添加することもできる。具体的には、配合予定のスチレン系単量体の全量のうちの一部を、種粒子が分散された水性媒体中に添加して、スチレン系単量体を含浸、重合をさせつつ、次いで、さらに配合予定のスチレン系単量体の残部を1回又は2回以上に分けて水性媒体中に添加することができる。後者のように、スチレン系単量体を分割して添加することにより、重合時に樹脂粒子同士が凝結することをより抑制することが可能になる。 When impregnating the seed particles with the styrene-based monomer for polymerization, the total amount of the styrene-based monomer to be blended can be added all at once to the aqueous medium in which the seed particles are dispersed. It is also possible to divide the total amount of the styrene-based monomer of, for example, into two or more and add these monomers at different timings. Specifically, a part of the total amount of the styrenic monomer to be blended is added to the aqueous medium in which the seed particles are dispersed, the styrenic monomer is impregnated, and the polymerization is performed. Further, the balance of the styrenic monomer to be blended can be added once or twice or more to the aqueous medium. By adding the styrene-based monomer in a divided manner as in the latter case, it becomes possible to further suppress the coagulation of the resin particles during the polymerization.
また、上述のように配合予定のスチレン系単量体の全量を2以上に分割し、これらのモノマーを異なるタイミングで添加する場合には、2回目以降に添加されるスチレン系単量体と共に(メタ)アクリル酸を添加することが好ましい。より好ましくは、少なくとも最後に添加されるスチレン系単量体と共に(メタ)アクリル酸を添加することが好ましい。この場合には、発泡粒子の表面付近に(メタ)アクリル酸由来の構造単位を含むスチレン系樹脂成分を存在させやすくなる。その結果、発泡粒子における帯電防止剤の定着性をより向上させることができる。 In addition, as described above, when the total amount of the styrenic monomer to be blended is divided into two or more and these monomers are added at different timings, together with the styrenic monomer added after the second time ( It is preferred to add (meth)acrylic acid. More preferably, it is preferable to add (meth)acrylic acid together with at least the styrene-based monomer added last. In this case, the styrene resin component containing the structural unit derived from (meth)acrylic acid is likely to be present near the surface of the expanded beads. As a result, the fixability of the antistatic agent on the expanded particles can be further improved.
また、重合開始剤は、スチレン系単量体に溶解させた状態で、水性媒体中に添加することができる。上述のごとく、配合予定のスチレン系単量体を2回以上に分割して異なるタイミングで添加する場合には、いずれのタイミングで添加されるスチレン系単量体にも重合開始剤を溶解させることができ、異なるタイミングで添加される各スチレン系単量体に重合開始剤を添加することもできる。スチレン系単量体を分割して添加する場合には、少なくとも最初に添加されるスチレン系単量体(以下、「第1モノマー」という)には重合開始剤を溶解させておくことが好ましい。第1モノマーには、配合予定の重合開始剤の全量のうちの75%以上を溶解させることが好ましく、80%以上を溶解させておくことがより好ましい。この場合には、複合樹脂粒子の製造時に、エチレン系樹脂にスチレン系単量体を充分に含浸させることができ、重合時に懸濁系が不安定化することを防止することができる。その結果、スチレン系樹脂の優れた剛性とエチレン系樹脂の優れた粘り強さとをより高いレベルで兼ね備えた成形体を得ることが可能になる。また、上述のように、配合予定のスチレン系単量体の一部を第1モノマーとして添加する場合には、配合予定のスチレン系単量体の全量のうちの残部を第2モノマーとして、第1モノマーの添加後に第1モノマーとは異なるタイミングで添加することができる。第2モノマーをさらに分割して添加することもできる。 Further, the polymerization initiator can be added to the aqueous medium in a state of being dissolved in the styrene-based monomer. As described above, when the styrenic monomer to be mixed is divided into two or more parts and added at different timings, the polymerization initiator should be dissolved in the styrenic monomer added at any timing. It is also possible to add a polymerization initiator to each styrene monomer added at different timings. When the styrene-based monomer is divided and added, it is preferable that the polymerization initiator is dissolved in at least the styrene-based monomer (hereinafter referred to as “first monomer”) added first. It is preferable to dissolve 75% or more, and more preferably 80% or more of the total amount of the polymerization initiator to be mixed in the first monomer. In this case, the ethylene resin can be sufficiently impregnated with the styrene monomer during the production of the composite resin particles, and the destabilization of the suspension system during the polymerization can be prevented. As a result, it becomes possible to obtain a molded product having both the excellent rigidity of the styrene resin and the excellent tenacity of the ethylene resin at a higher level. Further, as described above, when a part of the styrenic monomer to be blended is added as the first monomer, the rest of the total amount of the styrenic monomer to be blended is used as the second monomer. After the addition of one monomer, it can be added at a timing different from that of the first monomer. The second monomer can be added in a divided manner.
なお、第1モノマーとして添加するスチレン系単量体のシード比(すなわち、種粒子に対する第1モノマーの質量比)は、0.5以上であることが好ましい。この場合には、複合樹脂粒子の形状をより球状に近づけることが容易になる。同様の観点から、シード比は0.7以上であることがより好ましく、0.8以上であることがさらに好ましい。また、シード比は、1.5以下であることが好ましい。この場合には、スチレン系単量体が種粒子に充分に含浸される前に重合することをより防止することができ、樹脂の塊状物の発生をより防止することができる。同様の観点から、第1モノマーのシード比は、1.3以下であることがより好ましく、1.2以下であることがさらに好ましい。 The seed ratio of the styrene-based monomer added as the first monomer (that is, the mass ratio of the first monomer to the seed particles) is preferably 0.5 or more. In this case, it becomes easy to make the shape of the composite resin particles more spherical. From the same viewpoint, the seed ratio is more preferably 0.7 or more, further preferably 0.8 or more. The seed ratio is preferably 1.5 or less. In this case, it is possible to further prevent the styrene-based monomer from polymerizing before being sufficiently impregnated in the seed particles, and it is possible to further prevent the formation of resin lumps. From the same viewpoint, the seed ratio of the first monomer is more preferably 1.3 or less, and further preferably 1.2 or less.
種粒子中のエチレン系樹脂の融点Tm(℃)と、改質工程における重合温度Tp(℃)とが、Tm−10≦Tp≦Tm+30の関係を満足することが好ましい。この場合には、複合樹脂粒子の製造時に、エチレン系樹脂にスチレン系単量体を充分に含浸させることができ、重合時に懸濁系が不安定化することを防止することができる。その結果、スチレン系樹脂の優れた剛性とエチレン系樹脂の優れた粘り強さとをより高いレベルで兼ね備えた発泡粒子成形体を得ることが可能になる。また、改質工程における含浸温度、重合温度は、使用する重合開始剤の種類によって異なるが、60〜105℃であることが好ましく、70〜105℃であることがより好ましい。また、架橋温度は使用する架橋剤の種類によって異なるが、100〜150℃であることが好ましい。 It is preferable that the melting point Tm (° C.) of the ethylene resin in the seed particles and the polymerization temperature Tp (° C.) in the modification step satisfy the relationship of Tm−10≦Tp≦Tm+30. In this case, the ethylene resin can be sufficiently impregnated with the styrene monomer during the production of the composite resin particles, and the destabilization of the suspension system during the polymerization can be prevented. As a result, it becomes possible to obtain a foamed particle molded article having both the excellent rigidity of styrene resin and the excellent tenacity of ethylene resin at a higher level. Further, the impregnation temperature and the polymerization temperature in the modification step are preferably 60 to 105°C, more preferably 70 to 105°C, although they vary depending on the type of the polymerization initiator used. The crosslinking temperature varies depending on the type of crosslinking agent used, but is preferably 100 to 150°C.
また、スチレン系単量体には、必要に応じて可塑剤、油溶性重合禁止剤、難燃剤、着色剤、連鎖移動剤等の添加剤を添加することができる。これらの添加剤をスチレン系単量体に添加する場合には、上述の第1モノマーに添加することが好ましい。少なくとも上述の最後に添加されるスチレン系単量体には、これらの添加剤の内、カルボニル基を有する添加剤を添加しないことが好ましい。 In addition, additives such as a plasticizer, an oil-soluble polymerization inhibitor, a flame retardant, a colorant, and a chain transfer agent can be added to the styrene-based monomer, if necessary. When these additives are added to the styrene-based monomer, it is preferable to add them to the above-mentioned first monomer. Of these additives, it is preferable not to add an additive having a carbonyl group to at least the styrene-based monomer added last.
可塑剤としては、例えば脂肪酸エステル、アセチル化モノグリセライド、油脂類、炭化水素化合物等を用いることができる。脂肪酸エステルとしては、例えばグリセリントリステアレート、グリセリントリオクトエート、グリセリントリラウレート、ソルビタントリステアレート、ソルビタンモノステアレート、ブチルステアレート等を用いることができる。また、アセチル化モノグリセライドとしては、例えばグリセリンジアセトモノラウレート等を用いることができる。油脂類としては、例えば硬化牛脂、硬化ひまし油等を用いることができる。炭化水素化合物としては、例えばシクロヘキサン、流動パラフィン等を用いることもできる。また、油溶性重合禁止剤としては、例えばパラ−t−ブチルカテコール、ハイドロキノン、ベンゾキノン等を用いることができる。難燃剤としては、例えばヘキサブロモシクロドデカン、テトラブロモビスフェノールA系化合物、トリメチルホスフェート、臭素化ブタジエン−スチレンブロック共重合体、水酸化アルミニウム等を用いることができる。着色剤としては、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、ケッチェンブラック、黒鉛、炭素繊維等を用いることができる。連鎖移動剤としては、例えばn−ドデシルメルカプタン、α−メチルスチレンダイマー等を用いることができる。上記添加剤は、単独または2種以上の組合せで添加することができる。 As the plasticizer, for example, fatty acid ester, acetylated monoglyceride, fats and oils, hydrocarbon compounds and the like can be used. Examples of the fatty acid ester that can be used include glycerin tristearate, glycerin trioctoate, glycerin trilaurate, sorbitan tristearate, sorbitan monostearate, and butyl stearate. As the acetylated monoglyceride, for example, glycerin diacetomonolaurate or the like can be used. As the fats and oils, for example, hardened beef tallow, hardened castor oil, etc. can be used. As the hydrocarbon compound, for example, cyclohexane, liquid paraffin, etc. can be used. Further, as the oil-soluble polymerization inhibitor, for example, para-t-butylcatechol, hydroquinone, benzoquinone or the like can be used. As the flame retardant, for example, hexabromocyclododecane, tetrabromobisphenol A compound, trimethyl phosphate, brominated butadiene-styrene block copolymer, aluminum hydroxide and the like can be used. Furnace black, channel black, thermal black, acetylene black, Ketjen black, graphite, carbon fiber and the like can be used as the colorant. As the chain transfer agent, for example, n-dodecyl mercaptan, α-methylstyrene dimer or the like can be used. The above additives can be added alone or in combination of two or more.
上述の可塑剤、油溶性重合禁止剤、難燃剤、着色剤、連鎖移動剤等の添加剤は、溶剤に溶解させて種粒子に含浸させることもできる。溶剤としては、例えばエチルベンゼン、トルエン等の芳香族炭化水素、ヘプタン、オクタン等の脂肪族炭化水素等を用いることができる。 The above-mentioned additives such as the plasticizer, the oil-soluble polymerization inhibitor, the flame retardant, the colorant, and the chain transfer agent can be dissolved in a solvent and impregnated in the seed particles. As the solvent, for example, aromatic hydrocarbons such as ethylbenzene and toluene, and aliphatic hydrocarbons such as heptane and octane can be used.
発泡工程においては、複合樹脂粒子を発泡させる。発泡方法としては、特に限定されるものではないが、例えばガス含浸予備発泡方法、分散媒放出発泡方法、或いはこれらの方法、原理を基本としたその他の発泡方法が挙げられる。 In the foaming step, the composite resin particles are foamed. The foaming method is not particularly limited, and examples thereof include a gas-impregnated pre-foaming method, a dispersion medium releasing foaming method, and these methods, and other foaming methods based on the principle.
ガス含浸予備発泡方法においては、重合中、重合後、又は重合中及び重合後の複合樹脂粒子に物理発泡剤等の発泡剤を含浸させる。発泡剤が含浸された複合樹脂粒子を以下、適宜「発泡性複合樹脂粒子」という。次いで、発泡性複合樹脂粒子を予備発泡機に投入し、水蒸気、熱風、或いはそれらの混合物などの加熱媒体にて加熱することにより発泡性複合樹脂粒子を発泡させて発泡粒子を得ることができる。また、圧力容器内にて重合して得られた複合樹脂粒子を別の圧力容器内に充填し、発泡剤を圧入することにより複合樹脂粒子に発泡剤を含浸させて発泡性複合樹脂粒子を作製することもできる。 In the gas-impregnated pre-foaming method, a foaming agent such as a physical foaming agent is impregnated into the composite resin particles during polymerization, after polymerization, or during and after polymerization. Hereinafter, the composite resin particles impregnated with the foaming agent are appropriately referred to as "expandable composite resin particles". Next, the expandable composite resin particles can be obtained by charging the expandable composite resin particles into a pre-expanding machine and heating with a heating medium such as steam, hot air, or a mixture thereof. Also, the composite resin particles obtained by polymerization in the pressure vessel are filled in another pressure vessel, and the foaming agent is impregnated with the foaming agent by press-fitting the foaming agent to produce expandable composite resin particles. You can also do it.
一方、分散媒放出発泡方法においては、まず、圧力容器内の水性媒体中に分散させた複合樹脂粒子に、加熱、加圧下で発泡剤を含浸させて発泡性複合樹脂粒子を作製する。次いで、発泡適正温度条件下において、水性媒体と共に発泡性複合樹脂粒子を圧力容器から圧力容器内よりも低圧下に放出することにより、発泡性複合樹脂粒子を発泡させて発泡粒子を得ることができる。 On the other hand, in the dispersion medium discharging foaming method, first, the composite resin particles dispersed in the aqueous medium in the pressure vessel are impregnated with a foaming agent under heating and pressure to produce expandable composite resin particles. Then, under proper foaming temperature conditions, the expandable composite resin particles can be foamed by discharging the expandable composite resin particles together with the aqueous medium from the pressure vessel under a lower pressure than in the pressure vessel. .
発泡剤の含浸には、液相含浸法、気相含浸法を適宜選択できる。物理発泡剤としては、窒素、二酸化炭素、アルゴン、空気、ヘリウム、水等の無機ガス;メタン、エタン、プロパン、ノルマルブタン、イソブタン、シクロブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、ノルマルヘキサン、シクロヘキサン、2−メチルペンタン、3−メチルペンタン、2,2−ジメチルブタン、2,3−ジメチルブタン等の有機揮発性ガス等が挙げられる。好ましくは、無機系発泡剤がよい。この場合には、発泡後に発泡粒子から発泡剤が放散し、発泡粒子内に発泡剤が残留しない。そのため、成形時に発泡粒子の内圧が過度に上昇しにくく、短時間で成形体の冷却を完了し、成形型から取り出すことが可能となる。 For the impregnation of the foaming agent, a liquid phase impregnation method or a vapor phase impregnation method can be appropriately selected. As a physical foaming agent, an inorganic gas such as nitrogen, carbon dioxide, argon, air, helium, water; methane, ethane, propane, normal butane, isobutane, cyclobutane, normal pentane, isopentane, neopentane, cyclopentane, normal hexane, cyclohexane , 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, and other organic volatile gases. An inorganic foaming agent is preferable. In this case, the foaming agent is diffused from the foamed particles after foaming, and the foaming agent does not remain in the foamed particles. Therefore, the internal pressure of the expanded beads is unlikely to rise excessively during molding, and the molded body can be cooled in a short time and taken out from the molding die.
発泡粒子の形状としては、例えば、円柱状、ラグビーボール状、球状などが挙げられる。また、発泡粒子の大きさは、発泡剤の量や樹脂粒子の大きさにもよるが、直径0.5mm〜5mm程度である。 Examples of the shape of the foamed particles include a columnar shape, a rugby ball shape, and a spherical shape. The size of the foamed particles is about 0.5 mm to 5 mm in diameter, depending on the amount of the foaming agent and the size of the resin particles.
帯電防止剤の発泡粒子への塗布方法としては、吹付け塗布、エアレス塗布、浸漬塗布、ブレンド法、或いはこれらの方法、原理を基本としたその他の塗布方法が挙げられる。吹付け塗布は、帯電防止剤溶液を霧状にして高圧空気とともに発泡粒子に吹きつける方法である。エアレス塗布は、帯電防止剤溶液を高圧にしてその圧力を用いてスプレーノズルから発泡粒子に噴霧して塗布する方法である。なお、発泡粒子は、吹付時に流動状態とするか、または吹付け後に攪拌して発泡粒子の表面全体に帯電防止剤溶液を付着させることが好ましい。浸漬塗布は、発泡粒子を帯電防止剤溶液に浸漬後に引き上げる方法である。ブレンド法は、発泡粒子と少量の帯電防止剤溶液とを攪拌することにより塗布する方法である。 Examples of the method of applying the antistatic agent to the foamed particles include spray coating, airless coating, dip coating, blending methods, and these methods and other coating methods based on the principle. The spray coating is a method in which the antistatic agent solution is atomized and sprayed onto the expanded particles together with high-pressure air. The airless coating is a method of applying a high pressure antistatic agent solution and spraying the foamed particles from a spray nozzle using the pressure. In addition, it is preferable that the foamed particles are brought into a fluid state at the time of spraying or are stirred after being sprayed to adhere the antistatic agent solution to the entire surface of the foamed particles. The dip coating is a method in which the expanded beads are dipped in an antistatic agent solution and then pulled up. The blending method is a method in which foamed particles and a small amount of an antistatic agent solution are applied by stirring.
塗布に使用される帯電防止剤の濃度及び性状に制限は無く、原液でも粉体でもよく、水またはアルコール等の希釈液でもよい。さらに、発泡粒子に帯電防止剤を塗布する際の容器は、密閉系、開放系のどちらでもよく、塗布時の温度も発泡粒子の耐熱温度以下であればよい。塗布時、または、塗布後に発泡粒子をよく攪拌して、帯電防止剤が複合発泡粒子の表面全体に付着させることが好ましい。塗布方法は、上記のいずれか、もしくはそれらを組み合わせることもできる。 There is no limitation on the concentration and properties of the antistatic agent used for coating, and it may be a stock solution or a powder, or a diluting solution such as water or alcohol. Furthermore, the container for applying the antistatic agent to the expanded beads may be either a closed system or an open system, and the temperature at the time of application may be below the heat resistant temperature of the expanded particles. It is preferred that the antistatic agent be adhered to the entire surface of the composite expanded particles by stirring the expanded particles well during or after the application. The coating method may be any of the above or a combination thereof.
帯電防止剤の塗布工程においては、帯電防止剤の付着量が上記範囲となるように、発泡粒子100質量部に対して、帯電防止剤を0.3〜5質量部塗布することが好ましい。この場合には、発泡粒子に十分優れた帯電防止性能を付与することができると共に、発泡粒子の流動性の低下を防止し、成形時に充填不良を防止することができる。複合樹脂発泡粒子100質量部に対する帯電防止剤の塗布量は、0.5〜4質量部であることがより好ましく、1〜3質量部であることがさらに好ましい。なお、帯電防止剤の被覆は、帯電防止剤が発泡粒子の表面に存在していればよく、発泡粒子の表面を完全に覆っている態様がより好ましい。したがって、帯電防止剤によって被覆された発泡粒子は、必ずしも表面が完全に覆われている必要はなく、発泡粒子表面に帯電防止剤によって覆われていない部分を有していてもよい。 In the step of applying the antistatic agent, it is preferable to apply 0.3 to 5 parts by mass of the antistatic agent to 100 parts by mass of the foamed particles so that the amount of the antistatic agent attached falls within the above range. In this case, it is possible to impart sufficiently excellent antistatic performance to the expanded beads, prevent deterioration of the fluidity of the expanded particles, and prevent defective filling during molding. The amount of the antistatic agent applied to 100 parts by mass of the composite resin expanded particles is more preferably 0.5 to 4 parts by mass, further preferably 1 to 3 parts by mass. The antistatic agent may be coated as long as the antistatic agent is present on the surface of the expanded beads, and it is more preferable that the surface of the expanded beads is completely covered. Therefore, the expanded particles coated with the antistatic agent do not necessarily have to have their surfaces completely covered, and may have a portion not covered with the antistatic agent on the surface of the expanded particles.
成形体は、公知のスチーム加熱による型内成形方法により、製造可能である。即ち、多数の発泡粒子を金型等の成形型内に充填し、該成形型内にスチームを導入して発泡粒子を相互に融着させることにより、成形体を得ることができる。 The molded body can be manufactured by a known in-mold molding method using steam heating. That is, a molded product can be obtained by filling a large number of expanded particles in a molding die such as a mold and introducing steam into the molding die to fuse the expanded particles to each other.
以下に発泡粒子、成形体を製造する実施例について詳細に示す。 Examples for producing expanded particles and molded products will be described in detail below.
(実施例1)
(1)種粒子の作製
エチレン系樹脂として、メタロセン重合触媒を用いて重合してなる直鎖状低密度ポリエチレン樹脂(具体的には、東ソー社製「ニポロンZ HF210K」)を準備した。このエチレン系樹脂の融点Tmは、103℃である。このエチレン系樹脂20kgと、ホウ酸亜鉛(具体的には、富田製薬(株)製のホウ酸亜鉛2335)0.144kgとをヘンシェルミキサー(具体的には、三井三池化工機(株)製の型式FM−75E)に投入し、5分間混合し、樹脂混合物を得た。
(Example 1)
(1) Preparation of seed particles As the ethylene resin, a linear low-density polyethylene resin (specifically, "Nipolon Z HF210K" manufactured by Tosoh Corporation) prepared by polymerization using a metallocene polymerization catalyst was prepared. The melting point Tm of this ethylene resin is 103°C. 20 kg of this ethylene resin and 0.144 kg of zinc borate (specifically, zinc borate 2335 manufactured by Tomita Pharmaceutical Co., Ltd.) were mixed with a Henschel mixer (specifically, manufactured by Mitsui Miike Kakoki Co., Ltd.). The mixture was put into a model FM-75E) and mixed for 5 minutes to obtain a resin mixture.
次いで、26mmφの2軸押出機(具体的には、東芝機械(株)製の型式TEM−26SS)を用いて、樹脂混合物を温度230〜250℃で溶融混練した。溶融混練物を押出し、水中カット方式により平均0.5mg/個に切断することにより、種粒子を得た。 Next, the resin mixture was melt-kneaded at a temperature of 230 to 250° C. using a 26 mmφ twin-screw extruder (specifically, model TEM-26SS manufactured by Toshiba Machine Co., Ltd.). Seed particles were obtained by extruding the melt-kneaded product and cutting it into an average of 0.5 mg/piece by an underwater cutting method.
(2)複合樹脂粒子の作製
撹拌装置の付いた内容積3Lのオートクレーブに、脱イオン水1000gを入れ、更にピロリン酸ナトリウム6.0gを加えた。その後、粉末状の硝酸マグネシウム・6水和物12.9gを加え、室温で30分間撹拌した。これにより、懸濁剤としてのピロリン酸マグネシウムスラリーを作製した。次に、この懸濁剤を含む水性媒体中に界面活性剤としてのラウリルスルホン酸ナトリウム(具体的には、10質量%水溶液)2.0g、水溶性重合禁止剤としての亜硝酸ナトリウム0.21g、及び種粒子75gを投入した。
(2) Preparation of Composite Resin Particles 1000 g of deionized water was placed in an autoclave with an internal volume of 3 L equipped with a stirrer, and 6.0 g of sodium pyrophosphate was further added. Then, 12.9 g of powdery magnesium nitrate hexahydrate was added, and the mixture was stirred at room temperature for 30 minutes. As a result, a magnesium pyrophosphate slurry as a suspending agent was prepared. Next, in an aqueous medium containing this suspending agent, 2.0 g of sodium lauryl sulfonate (specifically, a 10 mass% aqueous solution) as a surfactant and 0.21 g of sodium nitrite as a water-soluble polymerization inhibitor. , And 75 g of seed particles.
次いで、重合開始剤として、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(具体的には、日油社製「パーブチルE」)及びt−ヘキシルパーオキシベンゾエート(具体的には、日油社製「パーヘキシルZ」)を準備した。また、連鎖移動剤として、αメチルスチレンダイマー(具体的には、日油社製「ノフマーMSD」)を準備した。そして、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート1.72gと、t−ヘキシルパーオキシベンゾエート0.86gと、αメチルスチレンダイマー0.63gとを、第1モノマー(すなわち、スチレン系単量体)に溶解させた。そして、溶解物を回転速度500rpmで撹拌しながらオートクレーブ内の水性媒体中に投入した。なお、第1モノマーとしては、スチレン60gとアクリル酸ブチル15gとの混合モノマーを用いた。 Then, as a polymerization initiator, t-butylperoxy-2-ethylhexyl monocarbonate (specifically, “Perbutyl E” manufactured by NOF CORPORATION) and t-hexylperoxybenzoate (specifically manufactured by NOF CORPORATION). "Perhexyl Z") was prepared. In addition, α-methylstyrene dimer (specifically, “NOFMER MSD” manufactured by NOF CORPORATION) was prepared as a chain transfer agent. Then, 1.72 g of t-butylperoxy-2-ethylhexyl monocarbonate, 0.86 g of t-hexylperoxybenzoate, and 0.63 g of α-methylstyrene dimer were added as a first monomer (that is, a styrene-based monomer). ). Then, the melt was put into an aqueous medium in the autoclave while stirring at a rotation speed of 500 rpm. A mixed monomer of 60 g of styrene and 15 g of butyl acrylate was used as the first monomer.
次いで、オートクレーブ内の空気を窒素にて置換した後、昇温を開始し、1時間30分かけてオートクレーブ内を温度100℃まで昇温させた。昇温後、この温度100℃で1時間保持した。その後、撹拌速度を450rpmに下げ、温度100℃で7.5時間保持した。このときの温度(具体的には100℃)が重合温度である。尚、温度100℃に到達してから1時間経過時に、第2モノマー(具体的にはスチレン系単量体)としてのスチレン346.25gと、メタクリル酸(すなわち、MAA)3.75gとを5時間かけてオートクレーブ内に添加した。なお、MAAは、予め第2モノマーとしてのスチレンに溶解させた状態で添加した。 Next, after replacing the air in the autoclave with nitrogen, the temperature rise was started, and the temperature in the autoclave was raised to 100° C. over 1 hour and 30 minutes. After the temperature was raised, the temperature was kept at 100° C. for 1 hour. Then, the stirring speed was reduced to 450 rpm, and the temperature was maintained at 100° C. for 7.5 hours. The temperature at this time (specifically 100° C.) is the polymerization temperature. In addition, 1 hour after the temperature reached 100° C., 56.4 g of styrene as the second monomer (specifically, styrene-based monomer) and 3.75 g of methacrylic acid (that is, MAA) were added. It was added to the autoclave over time. MAA was added in a state of being dissolved in styrene as the second monomer in advance.
次いで、オートクレーブ内を温度125℃まで2時間かけて昇温させ、そのまま温度125℃で5時間保持した。その後、オートクレーブ内を冷却させ、内容物(具体的には、複合樹脂粒子)を取り出した。次いで、硝酸を添加して複合樹脂粒子の表面に付着したピロリン酸マグネシウムを溶解させた。その後、遠心分離機により脱水及び洗浄を行い、気流乾燥装置で表面に付着した水分を除去することにより、複合樹脂粒子を得た。なお、製造時に用いたスチレン系単量体とエチレン系樹脂との配合比(質量比)から、複合樹脂中のエチレン系樹脂に由来する成分とスチレン系単量体に由来する成分との質量比を求めた。 Then, the temperature inside the autoclave was raised to a temperature of 125°C over 2 hours, and the temperature was kept at 125°C for 5 hours. Then, the inside of the autoclave was cooled, and the contents (specifically, composite resin particles) were taken out. Next, nitric acid was added to dissolve the magnesium pyrophosphate attached to the surfaces of the composite resin particles. After that, dehydration and washing were performed with a centrifuge, and water adhering to the surface was removed with an airflow drying device to obtain composite resin particles. From the compounding ratio (mass ratio) of the styrene-based monomer and the ethylene-based resin used during production, the mass ratio of the component derived from the ethylene-based resin and the component derived from the styrene-based monomer in the composite resin I asked.
上記のようにして得られた複合樹脂粒子について、スチレン系単量体の配合量、MAAの量、MAAの添加時期、添加時間、エチレン系樹脂成分(すなわち、PE)とスチレン系樹脂成分(すなわち、PS)との質量比を後述の表1に示す。なお、MAAの量は、エチレン系樹脂とスチレン系単量体とMAAとの合計100質量部に対する量である。また、複合樹脂粒子について、以下のようにして複合樹脂中のキシレン可溶分をさらにアセトンに溶解させて得られるアセトン可溶分のガラス転移温度Tg(以下、適宜「アセトン可溶分のTg」という)を測定し、さらに発泡性の評価を行った。その結果を表1に示す。 Regarding the composite resin particles obtained as described above, the amount of styrene-based monomer, the amount of MAA, the timing of addition of MAA, the time of addition, the ethylene-based resin component (that is, PE) and the styrene-based resin component (that is, PE) , PS) are shown in Table 1 below. The amount of MAA is the amount based on 100 parts by mass of the total of the ethylene resin, the styrene monomer, and the MAA. Further, regarding the composite resin particles, the glass transition temperature Tg of the acetone-soluble component obtained by further dissolving the xylene-soluble component in the composite resin in acetone as described below (hereinafter, appropriately referred to as “Tg of acetone-soluble component”). Was measured, and the foamability was evaluated. The results are shown in Table 1.
「アセトン可溶分のTg」
まず、150メッシュの金網袋中に複合樹脂粒子1.0gを入れる。次に、容積200mlの丸型フラスコにキシレン約200mlを入れ、ソックスレー抽出管に上記金網袋に入れたサンプル(すなわち複合樹脂粒子)をセットする。マントルヒーターで8時間加熱し、ソックスレー抽出を行う。抽出したキシレン溶液をアセトン600mlへ投下し、デカンテーションし、上澄み液を減圧蒸発乾固し、アセトン可溶分を分離する。得られたアセトン可溶分2〜4mgについて、ティ・エイ・インスツルメント社製のDSC測定器Q1000を用い、JIS K7121(1987年)に準拠して熱流束示差走査熱量測定を行う。そして、加熱速度10℃/分の条件で得られるDSC曲線の中間点ガラス転移温度としてアセトン可溶分のTgを求めることができる。
"Tg of soluble acetone"
First, 1.0 g of the composite resin particles is put in a wire mesh bag of 150 mesh. Next, about 200 ml of xylene is placed in a round flask having a volume of 200 ml, and a sample (that is, composite resin particles) placed in the wire mesh bag is set in a Soxhlet extraction tube. Soxhlet extraction is performed by heating with a mantle heater for 8 hours. The extracted xylene solution is dropped into 600 ml of acetone, decanted, and the supernatant is evaporated to dryness under reduced pressure to separate the acetone-soluble matter. About 2-4 mg of the acetone-soluble matter thus obtained, a heat flux differential scanning calorimetry is carried out using a DSC measuring instrument Q1000 manufactured by TA Instruments in accordance with JIS K7121 (1987). Then, the Tg of the acetone-soluble component can be determined as the midpoint glass transition temperature of the DSC curve obtained under the heating rate of 10° C./min.
「発泡性の評価」
複合樹脂粒子1kgを水3.5リットルと共に攪拌機を備えた5Lの耐圧容器内に仕込み、更に、水に分散剤としてのカオリン5g、及び界面活性剤としてのアルキルベンゼンスルホン酸ナトリウム0.6gを添加した。次いで、耐圧容器内を撹拌速度300rpmで攪拌しながら、耐圧容器内を発泡温度165℃まで昇温させた後、耐圧容器内に無機系物理発泡剤としての二酸化炭素を4.0MPa(ただし、ゲージ圧)となるように圧入し、攪拌下で20分間保持した。その後、内容物を大気圧下に放出することにより、複合樹脂粒子を発泡させて発泡粒子を得た。得られた発泡粒子の嵩密度を測定し、以下の基準にて発泡性を評価した。
"Evaluation of foamability"
1 kg of the composite resin particles was charged with 3.5 liters of water in a pressure-resistant container of 5 L equipped with a stirrer, and 5 g of kaolin as a dispersant and 0.6 g of sodium alkylbenzenesulfonate as a surfactant were further added to water. .. Next, while stirring the pressure vessel at a stirring speed of 300 rpm, the pressure vessel was heated to a foaming temperature of 165° C., and then carbon dioxide as an inorganic physical foaming agent was added to the pressure vessel at 4.0 MPa (however, with a gauge. Pressure), and kept under stirring for 20 minutes. Then, the composite resin particles were foamed by releasing the contents under atmospheric pressure to obtain expanded particles. The bulk density of the obtained expanded beads was measured, and the foamability was evaluated according to the following criteria.
即ち、嵩密度が40kg/m3未満の場合を「優」とし、40kg/m3以上かつ50kg/m3未満の場合を「良」とし、50kg/m3以上の場合を「不良」として評価した。その結果を後述の表1に示す。なお、表1においては、発泡性の評価における嵩密度の値を示すと共に、その評価結果を括弧内に示す。なお、嵩密度(単位:kg/m3)は、次のようにして測定した。まず、1Lのメスシリンダーを用意し、空のメスシリンダー中に発泡粒子を1Lの標線まで充填した。次いで、1Lあたりの発泡粒子の質量(単位:g)を測定した。そして、発泡粒子1Lの質量(単位:g)を単位換算することにより嵩密度(単位:kg/m3)を算出した。 That is, the case where the bulk density is less than 40 kg / m 3 as "excellent", a case of less than 40 kg / m 3 or more and 50 kg / m 3 as "good", rating the case of 50 kg / m 3 or more as "poor" did. The results are shown in Table 1 below. In addition, in Table 1, the value of the bulk density in the evaluation of foaming property is shown, and the evaluation result is shown in parentheses. The bulk density (unit: kg/m 3 ) was measured as follows. First, a 1-liter graduated cylinder was prepared, and the empty graduated cylinder was filled with the expanded particles up to the 1-L marked line. Then, the mass (unit: g) of the expanded particles per 1 L was measured. Then, the bulk density (unit: kg/m 3 ) was calculated by converting the mass (unit: g) of the foamed particles 1 L into a unit.
(3)発泡粒子の作製
上記のようにして作製した複合樹脂粒子500gを分散媒としての水3500gと共に撹拌機を備えた5Lの圧力容器内に仕込んだ。続いて、容器内の分散媒中に分散剤としてのカオリン5gと、界面活性剤としてのアルキルベンゼンスルホン酸ナトリウム0.5gとをさらに添加した。次いで、回転速度300rpmで容器内を撹拌しながら、容器内を発泡温度165℃まで昇温させた。その後、無機系物理発泡剤である二酸化炭酸を容器内の圧力が3.9MPa(ただし、ゲージ圧)になるように容器内に圧入し、同温度(すなわち、165℃)で15分間保持した。これにより複合樹脂粒子中に二酸化炭素を含浸させて、発泡性複合樹脂粒子を得た。次いで、発泡性複合樹脂粒子を分散媒と共に容器から大気圧下に放出することにより、嵩密度が50kg/m3の発泡粒子を得た。発泡粒子は、複合樹脂粒子の発泡体であるため、複合樹脂発泡粒子とも言える。発泡条件を後述の表1に示す。
(3) Preparation of Expanded Particles 500 g of the composite resin particles prepared as described above was charged together with 3500 g of water as a dispersion medium in a 5 L pressure vessel equipped with a stirrer. Then, 5 g of kaolin as a dispersant and 0.5 g of sodium alkylbenzenesulfonate as a surfactant were further added to the dispersion medium in the container. Next, the inside of the container was heated to a foaming temperature of 165° C. while stirring the inside of the container at a rotation speed of 300 rpm. Then, carbon dioxide, which is an inorganic physical foaming agent, was pressed into the container so that the pressure in the container was 3.9 MPa (however, gauge pressure), and held at the same temperature (that is, 165° C.) for 15 minutes. Thus, the composite resin particles were impregnated with carbon dioxide to obtain expandable composite resin particles. Next, the expandable composite resin particles were discharged together with the dispersion medium from the container under atmospheric pressure to obtain expanded particles having a bulk density of 50 kg/m 3 . Since the foamed particles are a foamed body of composite resin particles, they can be said to be composite resin foamed particles. The foaming conditions are shown in Table 1 below.
上記のようにして作製した発泡粒子について、表面のカルボニル量、及び水蒸気吸着量を以下のようにして測定した。その結果を表1に示す。 With respect to the expanded particles produced as described above, the amount of carbonyl on the surface and the amount of water vapor adsorbed were measured as follows. The results are shown in Table 1.
「カルボニル量」
発泡粒子の表面におけるカルボニル量は、発泡粒子の表面におけるスチレン量と、表面におけるスチレン量に対するカルボニル量の乗算によって表される。まず、下記のようにして、スチレン量、及びスチレン量に対するカルボニル量を測定する。
"Carbonyl amount"
The amount of carbonyl on the surface of the expanded beads is represented by the amount of styrene on the surface of the expanded particles and the product of the amount of styrene and the amount of styrene on the surface. First, the amount of styrene and the amount of carbonyl relative to the amount of styrene are measured as follows.
(a)スチレン量
スチレン量の測定にあたっては、測定装置として、日本分光社製の赤外分光光度計「FT/IR−460plus」と、同社製の全反射吸収測定装置「ATR PRO 450−S型」を用いた。また、全反射吸収測定装置の測定条件は、プリズム:ZnSe、入射角:45°とした。具体的には、まず、全反射吸収測定装置のプリズムに発泡粒子を170kg/cm2の圧力で押し付けて密着させて発泡粒子の表面の赤外スペクトルを測定し、赤外吸収スペクトル(ただし、ATR補正なし)を得た。
(A) Amount of styrene In measuring the amount of styrene, an infrared spectrophotometer “FT/IR-460plus” manufactured by JASCO Corporation and a total reflection absorption measurement device “ATR PRO 450-S type” manufactured by the same company are used as measuring devices. Was used. Moreover, the measurement conditions of the total reflection absorption measurement apparatus were prism: ZnSe and incident angle: 45°. Specifically, first, the foamed particles are pressed against the prism of the total reflection absorption measurement device at a pressure of 170 kg/cm 2 to be in close contact with the prism, and the infrared spectrum of the surface of the foamed particles is measured. (Without correction).
次に、赤外吸収スペクトル(ただし、ATR補正なし)から得られる698cm-1付近における吸光度D698、2850cm-1付近における吸光度D2850を測定し、吸光度比D698/D2850を求める。同様の測定を5つの発泡粒子について行い、これらの平均値を発泡粒子の吸光度比D698/D2850とする。その結果を表1に示す。 Next, the absorbance D 698 near 698 cm −1 and the absorbance D 2850 near 2850 cm −1 obtained from the infrared absorption spectrum (without ATR correction) are measured, and the absorbance ratio D 698 /D 2850 is obtained. The same measurement is performed on five expanded particles, and the average value of these is taken as the absorbance ratio D 698 /D 2850 of the expanded particles. The results are shown in Table 1.
赤外吸収スペクトル(ただし、ATR補正なし)から得られる吸光度D698は、スチレン系樹脂に主に含まれるベンゼン環の面外変角振動に由来するピークの高さである。また、赤外吸収スペクトル(ただし、ATR補正なし)から得られる吸光度D2850は、エチレン系樹脂とスチレン系樹脂の双方に含まれるメチレン基のC−H間伸縮振動に由来するピークの高さである。そして、あらかじめスチレンの検量線を作成し、その検量線から得られる下記の(式1)に、上記赤外吸収スペクトルから求めた発泡粒子の吸光度比D698/D2850を代入することにより発泡粒子表面のスチレン量を求めた。その結果を表1に示す。
(式1) スチレン量=0.7622×(吸光度比D698/D2850)2+7.4831×(吸光度比D698/D2850)+1.1635
The absorbance D 698 obtained from the infrared absorption spectrum (without ATR correction) is the height of the peak derived from the out-of-plane bending vibration of the benzene ring mainly contained in the styrene resin. Further, the absorbance D 2850 obtained from the infrared absorption spectrum (without ATR correction) is the height of the peak derived from the CH stretching vibration of the methylene group contained in both the ethylene resin and the styrene resin. is there. Then, a calibration curve of styrene is prepared in advance, and the absorbance ratio D 698 /D 2850 of the foamed particles obtained from the infrared absorption spectrum is substituted into the following (formula 1) obtained from the calibration curve to obtain the foamed particles. The amount of styrene on the surface was determined. The results are shown in Table 1.
(Equation 1) Styrene amount=0.7622×(absorbance ratio D 698 /D 2850 ) 2 +7.4831×(absorbance ratio D 698 /D 2850 )+1.165
スチレンの検量線の作成は以下のように行った。即ち、まず、押出機を用いて、ポリエチレン(具体的には、東ソー社製「ニポロンZ HF210K」)とポリスチレン(具体的には、PSジャパン社製「680」)を、100/0、91.8/8.2、78.8/21.2、55.3/44.7、0/100のmol比(ただし、ポリエチレン/ポリスチレン)で溶融混練してペレットを作製した。具体的には、エチレンのモル質量28g/mol、スチレンのモル質量104g/molに基づいて、モル比を質量比に換算した後、ポリエチレン、ポリスチレンを特定の質量比となるようにそれぞれ秤で計量することによって、上記のmol比を有するペレットを作製することができる。次いで、温度180℃で加熱したプレス機によりこのペレットをフィルム状に成形することにより、フィルムを得た。上述の全反射吸収測定装置を用いて、フィルムの赤外吸収スペクトル(ただし、ATR補正なし)を測定した。次に、上述の方法と同様にして赤外吸収スペクトル(ただし、ATR補正なし)から得られる吸光度D698と吸光度D2850を測定し、吸光度比D698/D2850を求める。そして、横軸に標準試料中のスチレン量(単位:mol%)をとり、縦軸に吸光度比D698/D2850をとることにより、図1に例示されるような検量線を得ることができる。 The calibration curve of styrene was prepared as follows. That is, first, using an extruder, polyethylene (specifically, "Nipolon Z HF210K" manufactured by Tosoh Corporation) and polystyrene (specifically, "680" manufactured by PS Japan Co., Ltd.) were mixed with 100/0, 91. Pellets were prepared by melt-kneading at a molar ratio of 8/8.2, 78.8/21.2, 55.3/44.7 and 0/100 (however, polyethylene/polystyrene). Specifically, based on a molar mass of ethylene of 28 g/mol and a molar mass of styrene of 104 g/mol, the molar ratio is converted into a mass ratio, and then polyethylene and polystyrene are weighed with a specific mass ratio. By doing so, a pellet having the above molar ratio can be produced. Next, a film was obtained by molding the pellets into a film with a press machine heated at a temperature of 180°C. The infrared absorption spectrum (however, without ATR correction) of the film was measured using the above-mentioned total internal reflection absorption measuring device. Then, the absorbance D 698 and the absorbance D 2850 obtained from the infrared absorption spectrum (without ATR correction) are measured in the same manner as the above-mentioned method, and the absorbance ratio D 698 /D 2850 is obtained. Then, by taking the amount of styrene (unit: mol%) in the standard sample on the horizontal axis and the absorbance ratio D 698 /D 2850 on the vertical axis, a calibration curve as illustrated in FIG. 1 can be obtained. .
(b)スチレン量に対するカルボニル量
カルボニル量の測定にあたっては、上述のスチレン量の測定と同様の測定装置を用い、全反射吸収測定装置の測定条件もスチレン量の測定と同様である。具体的には、まず、全反射吸収測定装置のプリズムに発泡粒子を170kg/cm2の圧力で押し付けて密着させて発泡粒子の表面の赤外スペクトルを測定し、赤外吸収スペクトル(ただし、ATR補正なし)を得た。次に、赤外吸収スペクトル(ただし、ATR補正なし)から得られる698cm-1付近における吸光度D698、1730cm-1付近における吸光度D1730を測定し、吸光度比D1730/D698を求める。同様の測定を5つの発泡粒子について行い、これらの平均値を発泡粒子の吸光度比D1730/D698とする。なお、赤外吸収スペクトル(ただし、ATR補正なし)から得られる吸光度D1730は、(メタ)アクリル酸成分単位のカルボキシ基のC=O間の伸縮振動に由来するピークの高さである。そして、あらかじめ検量線を作成し、その検量線から得られる下記の(式2)に上記赤外吸収スペクトルから求めた発泡粒子の吸光度比D1730/D698を代入することによりスチレン量に対するカルボニル量を求めた。その結果を表1に示す。
(式2) スチレン量に対するカルボニル量=6.4838×(吸光度比D1730/D698)−0.0523
(B) Amount of carbonyl relative to the amount of styrene When measuring the amount of carbonyl, the same measuring device as that used for measuring the amount of styrene described above is used, and the measurement conditions of the total reflection absorption measuring device are the same as those for measuring the amount of styrene. Specifically, first, the foamed particles are pressed against the prism of the total reflection absorption measurement device at a pressure of 170 kg/cm 2 to be in close contact with the prism, and the infrared spectrum of the surface of the foamed particles is measured. (Without correction). Next, the absorbance D 698 near 698 cm −1 and the absorbance D 1730 near 1730 cm −1 obtained from the infrared absorption spectrum (without ATR correction) are measured to obtain the absorbance ratio D 1730 /D 698 . The same measurement is performed for five expanded particles, and the average value of these is taken as the absorbance ratio D 1730 /D 698 of the expanded particles. The absorbance D 1730 obtained from the infrared absorption spectrum (without ATR correction) is the height of a peak derived from stretching vibration between C═O of the carboxy group of the (meth)acrylic acid component unit. Then, a calibration curve is created in advance, and the absorbance ratio D 1730 /D 698 of the expanded particles obtained from the above infrared absorption spectrum is substituted into the following (formula 2) obtained from the calibration curve to obtain the amount of carbonyl relative to the amount of styrene. I asked. The results are shown in Table 1.
(Formula 2) Amount of carbonyl relative to amount of styrene=6.4838×(Absorbance ratio D 1730 /D 698 )−0.0523
カルボニル量の検量線の作成は以下のように行った。即ち、スチレンとアクリル酸ブチルを用い、懸濁重合法にてアクリル酸ブチルの量がそれぞれ0mol%、0.8mol%、2.5mol%、4.1mol%の重合粒子を作製した。次に、重合粒子を温度180℃で加熱したプレス機によりフィルム状に成形してフィルムを得た。上述の全反射吸収測定装置を用いてフィルムの赤外吸収スペクトル(ただし、ATR補正なし)を測定した。次に、上述の方法と同様にして赤外吸収スペクトル(ATR補正なし)から得られる吸光度D698と吸光度D1730を測定し、吸光度比D1730/D698を求めた。そして、横軸に標準試料中のカルボニル量(単位:mol%)をとり、縦軸に吸光度比D1730/D698をとることにより、図2に例示されるような検量線を得ることができる。 The calibration curve for the amount of carbonyl was prepared as follows. That is, styrene and butyl acrylate were used to prepare polymer particles in which the amounts of butyl acrylate were 0 mol%, 0.8 mol%, 2.5 mol%, and 4.1 mol% by suspension polymerization. Next, the polymer particles were formed into a film by a press machine heated at a temperature of 180° C. to obtain a film. The infrared absorption spectrum (however, without ATR correction) of the film was measured using the above-mentioned total internal reflection absorption measuring device. Next, the absorbance D 698 and the absorbance D 1730 obtained from the infrared absorption spectrum (without ATR correction) were measured in the same manner as the above-mentioned method to obtain the absorbance ratio D 1730 /D 698 . Then, by taking the carbonyl amount (unit: mol%) in the standard sample on the horizontal axis and the absorbance ratio D 1730 /D 698 on the vertical axis, a calibration curve as illustrated in FIG. 2 can be obtained. ..
(c)表面カルボニル量
上述の方法で求めた発泡粒子表面のスチレン量を100で割った値にスチレン量に対するカルボニル量を乗算した値を、複合樹脂発泡粒子の表面カルボニル量とした。その結果を表1に示す。
(C) Surface carbonyl amount The value obtained by dividing the styrene amount on the surface of the expanded beads obtained by the above method by 100 and the carbonyl amount relative to the styrene amount was taken as the surface carbonyl amount of the composite resin expanded beads. The results are shown in Table 1.
「複合樹脂発泡粒子の水蒸気吸着量」
水蒸気吸着量の測定は、蒸気吸着量測定装置(BELSORP−max(日本ベル株式会社製))を使用し、25℃にて吸着等温線(設定相対圧:0.005〜0.9)を測定し、最大相対圧0.9における水蒸気吸着量を本発明における複合樹脂発泡粒子の水蒸気吸着量として求めた。具体的には、まず予め複合樹脂粒子を約0.2g計量した。次に、計量した複合樹脂粒子をサンプルセル内に入れ、BELSORP−max(日本ベル株式会社製)を用いて、25℃における水蒸気の吸着等温線(設定相対圧:0.005〜0.9)を測定し、最大相対圧0.9における水蒸気吸着量を複合樹脂発泡粒子の水蒸気吸着量として求めた。その結果を表1に示す。
"Amount of water vapor adsorbed on composite resin foam particles"
For the measurement of the water vapor adsorption amount, a vapor adsorption amount measuring device (BELSORP-max (manufactured by Bell Japan Ltd.)) is used, and an adsorption isotherm (set relative pressure: 0.005-0.9) is measured at 25°C. Then, the water vapor adsorption amount at the maximum relative pressure of 0.9 was determined as the water vapor adsorption amount of the composite resin expanded particles in the present invention. Specifically, first, about 0.2 g of composite resin particles was weighed in advance. Next, the weighed composite resin particles were put in a sample cell, and using BELSORP-max (manufactured by Bell Japan Ltd.), an adsorption isotherm of water vapor at 25° C. (set relative pressure: 0.005 to 0.9). Was measured, and the water vapor adsorption amount at the maximum relative pressure of 0.9 was determined as the water vapor adsorption amount of the composite resin expanded particles. The results are shown in Table 1.
(4)帯電防止剤の塗布工程
帯電防止剤として、オクチルジメチルエチルアンモニウムエチルサルフェート(具体的には、第一工業製薬(株)製の「カチオーゲンES−O」;有効成分50%)を準備した。発泡粒子を帯電防止剤と共にポリ袋に入れ、良く振り混ぜた後、袋ごとタンブラーに入れて30分間混合することにより、発泡粒子に帯電防止剤を塗布した。帯電防止剤の添加量は、発泡粒子100質量部に対して2質量部とした。有効成分量としては、発泡粒子100質量部に対して1質量部である。その後、発泡粒子を温度40℃のオーブン内で12時間乾燥した。このようにして、表面に帯電防止剤が付着した発泡粒子を得た。この発泡粒子について、帯電防止剤の付着量を次のようにして測定した。
(4) Step of Applying Antistatic Agent As an antistatic agent, octyldimethylethylammoniumethylsulfate (specifically, “Cationogen ES-O” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.; active ingredient 50%) was prepared. .. The antistatic agent was applied to the expanded particles by placing the expanded particles in a polybag together with the antistatic agent, thoroughly shaking and mixing, and then putting the entire bag in a tumbler and mixing for 30 minutes. The amount of the antistatic agent added was 2 parts by mass with respect to 100 parts by mass of the expanded particles. The amount of the active ingredient is 1 part by mass with respect to 100 parts by mass of the expanded particles. Then, the expanded beads were dried in an oven at a temperature of 40° C. for 12 hours. In this way, expanded particles having an antistatic agent attached to the surface thereof were obtained. The amount of the antistatic agent attached to the expanded particles was measured as follows.
「帯電防止剤の付着量」
帯電防止剤が付着した発泡粒子約5g及び帯電防止剤が付着していない発泡粒子約5gをそれぞれ秤量した。帯電防止剤が付着していない発泡粒子の重量をW0(W0≒5)とする。秤量後の各発泡粒子を洗浄液(具体的にはエタノール)100cm3(ml)で3回洗浄した。洗浄後の洗浄液約300cm3を回収し、温度40℃で24時間保持することにより洗浄液を蒸発させた。そして、帯電防止剤が付着した発泡粒子の洗浄液の蒸発後の残渣物重量WAと、帯電防止剤が付着していない発泡粒子の洗浄液の蒸発後の残渣物重量WBとを測定した。これらの残渣物重量WA、WB、及び発泡粒子の重量W0に基づいて、下記の(式3)から、発泡粒子100質量部に対する帯電防止剤の付着量A(質量部)を算出した。その結果を表1に示す。
(式3) A=(WA−WB)/W0×100
"Amount of antistatic agent deposited"
About 5 g of the expanded particles to which the antistatic agent was attached and about 5 g of the expanded particles to which the antistatic agent was not attached were weighed. The weight of the expanded particles to which the antistatic agent is not attached is W 0 (W 0 ≈5). Each weighed expanded particle was washed three times with 100 cm 3 (ml) of a washing liquid (specifically, ethanol). About 300 cm 3 of the washing liquid after washing was collected and kept at a temperature of 40° C. for 24 hours to evaporate the washing liquid. Then, the weight W A of the residue of the foamed particle cleaning liquid to which the antistatic agent adhered after evaporation and the weight W B of the residue of the foamed particle cleaning liquid to which the antistatic agent did not adhere after evaporation were measured. Based on these residue weights W A , W B and the weight W 0 of the expanded particles, the amount A (parts by mass) of the antistatic agent adhering to 100 parts by mass of the expanded particles was calculated from the following (formula 3). .. The results are shown in Table 1.
(Formula 3) A=(W A −W B )/W 0 ×100
(5)型内成形
次に、帯電防止剤を被覆させた発泡粒子を、縦250mm、横200mm、厚み50mmの平板形状のキャビティを有する金型内に充填した。次いで、金型内に水蒸気を導入することにより、発泡粒子を加熱して相互に融着させた。その後、水冷により金型内を冷却した後、金型より成形体を取り出した。さらに成形体を温度60℃に調整されたオーブン内で12時間載置することにより、成形体の乾燥及び養生を行った。このようにして、多数の発泡粒子が相互に融着してなる成形体を得た。
(5) In-mold molding Next, the expanded particles coated with the antistatic agent were filled in a mold having a flat plate-shaped cavity having a length of 250 mm, a width of 200 mm, and a thickness of 50 mm. Next, by introducing water vapor into the mold, the expanded particles were heated and fused to each other. Then, after cooling the inside of the mold by water cooling, the molded body was taken out from the mold. Furthermore, the molded body was placed in an oven adjusted to a temperature of 60° C. for 12 hours to dry and cure the molded body. In this way, a molded body was obtained in which a large number of expanded particles were fused to each other.
上記のようにして作製した成形体について、見掛け密度、融着率、表面抵抗率、曲げ弾性率、破断エネルギー、圧縮強度を測定した。その結果を表1に示す。測定方法は次の通りである。 The apparent density, the fusion rate, the surface resistivity, the flexural modulus, the breaking energy, and the compressive strength of the molded body produced as described above were measured. The results are shown in Table 1. The measuring method is as follows.
「見掛け密度」
見掛け密度を、成形体の質量をその体積で除することにより算出した。
"Apparent density"
The apparent density was calculated by dividing the mass of the molded body by its volume.
「融着率」
成形体を折り曲げ、略等分に破断させた。破断面を観察し、内部で破断した発泡粒子数と界面で剥離した発泡粒子数をそれぞれ計測した。次いで、内部で破断した発泡粒子と界面で剥離した発泡粒子の合計数に対する内部で破断した発泡粒子の割合を算出し、これを百分率で表した値を融着率(%)とした。
"Fusion rate"
The molded body was bent and broken into approximately equal parts. The fractured surface was observed, and the number of foamed particles broken inside and the number of foamed particles separated at the interface were measured. Next, the ratio of the foamed particles broken inside to the total number of the foamed particles broken inside and the foamed particles peeled off at the interface was calculated, and the value expressed as a percentage was taken as the fusion rate (%).
「表面抵抗率」
成形体の表面抵抗率を測定することにより、成形体の帯電防止性能の評価を行った。表面抵抗率は、JIS K 6271−1−2015年に準拠した方法により測定した。測定にあたっては、まず、温度23℃、50%RH条件下で1日養生した成形体の中央付近から、縦100mm×横100mm×厚み25mmの直方体状の試験片を切り出した。このとき、直方体に存在する縦100mm×横100mmの2つの面の内の一方が発泡粒子成形体表面(すなわち、スキン面)となるように試験片を切り出した。そして、三菱化学社製の「ハイレスタMCP−HT450」を用いて、試験片のスキン面における表面抵抗率を測定した。プローブとしては、三菱化学社製の「UR100」を使用し、23℃、50%RH、印加電圧500Vを30秒間保持するという条件で測定を行った。測定は、同一試験片上の任意の4箇所について行い、その最大値、最小値、及び算術平均値を求めた。なお、スキン面とは、型内成形によって得られた発泡粒子成形体の表面である。
"Surface resistivity"
The antistatic performance of the molded product was evaluated by measuring the surface resistivity of the molded product. The surface resistivity was measured by the method based on JIS K 6271-1-2015. In the measurement, first, a rectangular parallelepiped test piece having a length of 100 mm, a width of 100 mm, and a thickness of 25 mm was cut out from the vicinity of the center of the molded body that was aged at a temperature of 23° C. and 50% RH for one day. At this time, the test piece was cut out so that one of the two surfaces of 100 mm in length×100 mm in width present in the rectangular parallelepiped was the surface of the expanded particle molded body (that is, the skin surface). Then, the surface resistivity of the skin surface of the test piece was measured using "HIRESTA MCP-HT450" manufactured by Mitsubishi Chemical Corporation. As the probe, "UR100" manufactured by Mitsubishi Chemical Co., Ltd. was used, and the measurement was performed under the conditions of holding 23° C., 50% RH, and an applied voltage of 500 V for 30 seconds. The measurement was performed at arbitrary four points on the same test piece, and the maximum value, the minimum value, and the arithmetic mean value were obtained. The skin surface is the surface of the expanded particle molded body obtained by in-mold molding.
「曲げ弾性率」
曲げ弾性率は、JIS K7221−1(2006年)に記載の3点曲げ試験方法に準拠して測定した。具体的には、まず、厚み20mm×幅25mm×長さ120mmの5つの試験片を成形体の任意の箇所から全面が切削面となるように切り出した。室温23℃、湿度50%の恒室内で試験片を24時間以上放置した後、支点間距離100mm、圧子の半径R15.0mm、支持台の半径R15.0mm、試験速度20mm/min、室温23℃、湿度50%の条件で、(株)島津製作所製のオートグラフAGS−10kNG試験機により曲げ弾性率を測定した。5つの試験片の測定値の算術平均値を曲げ弾性率の測定結果として採用した。
"Flexural modulus"
The flexural modulus was measured according to the three-point bending test method described in JIS K7221-1 (2006). Specifically, first, five test pieces having a thickness of 20 mm, a width of 25 mm, and a length of 120 mm were cut out from an arbitrary portion of the molded body so that the entire surface became the cut surface. After leaving the test piece for 24 hours or more in a constant temperature room at a room temperature of 23° C. and a humidity of 50%, a distance between
「曲げ破断エネルギー」
上述の曲げ弾性率の測定と同様に3点曲げ試験を行い、歪(単位:m/m)と応力(単位:MPa)との関係から破断点までのエネルギー(単位:MJ/m3)を5つの試験片の測定値の算術平均値から求めた。なお、曲げ破断エネルギーは、破断点までの歪−応力曲線と、横軸(すなわち、歪)とによって囲まれる面積から算出される。
"Bending fracture energy"
A three-point bending test is performed in the same manner as the above-mentioned measurement of the bending elastic modulus, and the energy (unit: MJ/m 3 ) to the break point is calculated from the relationship between strain (unit: m/m) and stress (unit: MPa). It was determined from the arithmetic mean value of the measured values of five test pieces. The bending fracture energy is calculated from the area surrounded by the strain-stress curve up to the fracture point and the horizontal axis (that is, strain).
「圧縮強度」
発泡粒子成形体の中央部分から縦50mm、横50mm、厚み25mmの直方体状の試験片を切出した。次に、この試験片に対してJIS K6767−1999年に準拠して50%ひずみ時の圧縮荷重を求めた。この圧縮荷重を試験片の受圧面積で除することより、圧縮強度(すなわち、50%圧縮応力)を算出した。
"Compressive strength"
A rectangular parallelepiped test piece having a length of 50 mm, a width of 50 mm and a thickness of 25 mm was cut out from the center of the foamed particle molded body. Next, the compressive load at 50% strain was determined for this test piece in accordance with JIS K6767-1999. The compressive strength (ie, 50% compressive stress) was calculated by dividing this compressive load by the pressure receiving area of the test piece.
(実施例2)
実施例2〜4は、MAAの配合を変更した例である。具体的には、本例においては、第2モノマーとしてのスチレン345gと、MAA5gとを用いた点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Example 2)
Examples 2 to 4 are examples in which the composition of MAA was changed. Specifically, in this example, foamed particles and a molded body were produced in the same manner as in Example 1 except that 345 g of styrene as the second monomer and 5 g of MAA were used.
(実施例3)
本例においては、第2モノマーとしてのスチレン347.5gと、MAA2.5gとを用いた点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Example 3)
In this example, expanded particles and a molded body were produced in the same manner as in Example 1 except that 347.5 g of styrene as the second monomer and 2.5 g of MAA were used.
(実施例4)
本例においては、第2モノマーとしてのスチレン348.75gと、MAA1.25gとを用いた点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Example 4)
In this example, foamed particles and a molded product were produced in the same manner as in Example 1 except that 348.75 g of styrene as the second monomer and 1.25 g of MAA were used.
(実施例5)
実施例5及び6は、MAAの配合を変更し、さらにMAAを添加するタイミング及び添加にかける時間を変更した例である。具体的には、本例においては、水溶性重合禁止剤として使用する亜硝酸ナトリウム量を0.21gから0.15gに変更し、オートクレーブの温度が100℃に到達してから1時間経過時に第2モノマーのスチレン348.75gを4時間50分かけてオートクレーブ内に添加し、スチレンの添加後にMAA1.25gを10分かけてオートクレーブ内に添加した点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Example 5)
Examples 5 and 6 are examples in which the composition of MAA was changed, and the timing of addition of MAA and the time required for addition were also changed. Specifically, in this example, the amount of sodium nitrite used as a water-soluble polymerization inhibitor was changed from 0.21 g to 0.15 g, and when the autoclave temperature reached 100° C., 1 hour later, As in Example 1, except that 348.75 g of 2 monomer styrene was added into the autoclave over 4 hours and 50 minutes and 1.25 g of MAA was added into the autoclave over 10 minutes after the addition of styrene. Foamed particles and molded bodies were produced.
(実施例6)
本例においては、水溶性重合禁止剤として使用する亜硝酸ナトリウム量を0.21gから0.15gに変更し、オートクレーブの温度が100℃に到達してから1時間経過時に第2モノマーのスチレン347.5gを4時間50分かけてオートクレーブ内に添加し、スチレンの添加後にMAA2.5gを10分かけてオートクレーブ内に添加した点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Example 6)
In this example, the amount of sodium nitrite used as the water-soluble polymerization inhibitor was changed from 0.21 g to 0.15 g, and 1 hour after the temperature of the autoclave reached 100° C., the second monomer, styrene 347 0.5 g of the foamed particles were added into the autoclave over 4 hours and 50 minutes, and 2.5 g of MAA was added into the autoclave over 10 minutes after the addition of styrene. Was produced.
(実施例7)
実施例7及び8は、複合樹脂中のエチレン系樹脂とスチレン系樹脂との質量比を変更した例である。具体的には、本例においては、オートクレーブ内に添加する種粒子の量を150gに変更し、第1モノマーとして、スチレン135gとアクリル酸ブチル15gとの混合モノマーを用い、第2モノマーとしてスチレン196.25gを用いた点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Example 7)
Examples 7 and 8 are examples in which the mass ratio of the ethylene resin and the styrene resin in the composite resin was changed. Specifically, in this example, the amount of seed particles added to the autoclave was changed to 150 g, a mixed monomer of styrene 135 g and butyl acrylate 15 g was used as the first monomer, and styrene 196 was used as the second monomer. Foamed particles and a molded product were produced in the same manner as in Example 1 except that 0.25 g was used.
(実施例8)
本例においては、オートクレーブ内に添加する種粒子の量を50gに変更し、第1モノマーとして、スチレン35gとアクリル酸ブチル15gとの混合モノマーを用い、第2モノマーとしてスチレン396.25gを用いた点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Example 8)
In this example, the amount of seed particles added to the autoclave was changed to 50 g, a mixed monomer of 35 g of styrene and 15 g of butyl acrylate was used as the first monomer, and 396.25 g of styrene was used as the second monomer. Foamed particles and a molded product were produced in the same manner as in Example 1 except for the above points.
(実施例9)
本例は、MAAをアクリル酸(すなわち、AA)に変更した例である。具体的には、本例においては、MAAの代わりにAAを用いた点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Example 9)
This example is an example in which MAA is changed to acrylic acid (that is, AA). Specifically, in this example, foamed particles and a molded body were produced in the same manner as in Example 1 except that AA was used instead of MAA.
(比較例1)
本例は、メタクリル酸及びアクリル酸を用いずに作製した発泡粒子、及び成形体の例である。具体的には、本例においては、メタクリ酸を添加せずに、第2モノマーとしてスチレン350gを用いた点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Comparative Example 1)
This example is an example of a foamed particle and a molded body produced without using methacrylic acid and acrylic acid. Specifically, in this example, expanded particles and a molded body were produced in the same manner as in Example 1 except that methacrylic acid was not added and 350 g of styrene was used as the second monomer.
(比較例2)
本例は、メタクリル酸の添加量を過少にした例である。具体的には、本例においては、第2モノマーとしてのスチレン349.55gと、MAA0.45gとを用いた点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Comparative example 2)
This example is an example in which the amount of methacrylic acid added was too small. Specifically, in this example, foamed particles and a molded product were produced in the same manner as in Example 1 except that 349.55 g of styrene as the second monomer and 0.45 g of MAA were used.
(比較例3)
比較例3は、メタクリル酸を過剰に添加した例である。具体的には、本例においては、第2モノマーとしてのスチレン337.55gと、MAA12.5gとを用いた点を除いては、実施例1と同様にして発泡粒子、成形体を作製した。
(Comparative example 3)
Comparative Example 3 is an example in which methacrylic acid was excessively added. Specifically, in this example, foamed particles and a molded product were produced in the same manner as in Example 1 except that 337.55 g of styrene as the second monomer and 12.5 g of MAA were used.
(比較例4)
本例は、エチレン系樹脂に対するスチレン系単量体の添加量を過少にし、さらに第1モノマーと共にメタクリル酸を添加した例である。具体的には、本例においては、オートクレーブ内に添加する種粒子の量を260gに変更した。また、第1モノマーとして、スチレン221.25gとアクリル酸ブチル15gとの混合モノマーを用い、この第1モノマーと共にメタクリル酸3.75gをオートクレーブ内に添加した。その他は実施例1と同様にして発泡粒子、成形体を作製した。
(Comparative example 4)
This example is an example in which the amount of styrene-based monomer added to the ethylene-based resin is made too small and methacrylic acid is added together with the first monomer. Specifically, in this example, the amount of seed particles added to the autoclave was changed to 260 g. As the first monomer, a mixed monomer of 221.25 g of styrene and 15 g of butyl acrylate was used, and 3.75 g of methacrylic acid was added to the autoclave together with the first monomer. Others were the same as in Example 1 to produce expanded particles and a molded body.
(比較例5)
本例は、エチレン系樹脂に対するスチレン系単量体の添加量を過剰にした例である。具体的には、本例においては、オートクレーブ内に添加する種粒子の量を24gに変更した。また、第1モノマーとして、スチレン9gとアクリル酸ブチル15gとの混合モノマーを用いた。また、第2モノマーとして、スチレン448.25gを用いた。その他は実施例1と同様にして発泡粒子、成形体を作製した。
(Comparative example 5)
This example is an example in which the amount of the styrene-based monomer added to the ethylene-based resin is excessive. Specifically, in this example, the amount of seed particles added to the autoclave was changed to 24 g. Further, a mixed monomer of 9 g of styrene and 15 g of butyl acrylate was used as the first monomer. Further, 448.25 g of styrene was used as the second monomer. Others were the same as in Example 1 to produce expanded particles and a molded body.
(比較例6)
本例は、第2モノマーにメタクリル酸(すなわち、MAA)を、メタクリル酸メチル(すなわち、MMA)に変更した例である。具体的には、本例においては、第2モノマー(具体的にはスチレン系単量体)としてのスチレン346.25gと、メタクリル酸メチル3.75gとを5時間かけてオートクレーブ内に添加した。なお、MMAは、予め第2モノマーとしてのスチレンに溶解させた状態で添加した。その他は実施例1と同様にして発泡粒子、成形体を作製した。
(Comparative example 6)
In this example, methacrylic acid (that is, MAA) is changed to methyl methacrylate (that is, MMA) as the second monomer. Specifically, in this example, 346.25 g of styrene as the second monomer (specifically, styrene-based monomer) and 3.75 g of methyl methacrylate were added to the autoclave over 5 hours. Note that MMA was added in a state of being dissolved in styrene as the second monomer in advance. Others were the same as in Example 1 to produce expanded particles and a molded body.
実施例2〜9及び比較例1〜6についても、実施例1と同様の評価を行い、その結果を表1及び表2に示す。 The same evaluations as in Example 1 were performed for Examples 2 to 9 and Comparative Examples 1 to 6, and the results are shown in Tables 1 and 2.
表1より知られるように、実施例の発泡粒子を用いて得られる帯電防止剤が付着した成形体は、表面抵抗率1×1012Ω未満という優れた帯電防止性能を示した。また、帯電防止剤が付着した発泡粒子は、上述の優れた帯電防止性能を発揮しつつも、融着性にも優れる。したがって、内部融着が良好で、圧縮剛性及びたわみ耐性に優れ、変形による破壊を防止できる成形体の製造が可能になる。したがって、実施例の発泡粒子を用いて得られる成形体は、自動車部材、液晶パネル、太陽光発電パネル等のような電子機器、精密機器の梱包容器等に好適である。 As is known from Table 1, the molded articles to which the antistatic agent obtained by using the expanded beads of the Examples adhered showed excellent antistatic performance of surface resistivity of less than 1×10 12 Ω. In addition, the expanded particles to which the antistatic agent is attached are excellent in fusion property while exhibiting the above-mentioned excellent antistatic performance. Therefore, it is possible to manufacture a molded body that has good internal fusion bonding, is excellent in compression rigidity and flexure resistance, and can prevent damage due to deformation. Therefore, the molded product obtained by using the foamed particles of the examples is suitable for a packaging container for electronic devices such as automobile members, liquid crystal panels, solar power generation panels, and precision devices.
これに対し、表2より知られるように、複合樹脂発泡粒子の表面カルボニル量が少ない比較例1及び2においては、十分な帯電防止性能が得られなかった。また、(メタ)アクリル酸の添加量を増やした比較例3においては、アセトン可溶分のガラス転移温度が高く、発泡性や融着性が不十分になっていた。スチレン系単量体の添加量が少ない比較例4においては、成形体の剛性が低下するため、圧縮強度が小さく、曲げ弾性率が低い。そのため、比較例4の成形体は、撓みにより変形しやすく、たわみ耐性が不十分である。一方、スチレン系単量体の添加量の多い比較例5においては、成形体の圧縮強度や曲げ弾性率は高くなるが、曲げ破断エネルギーが不十分である。そのため、比較例5の成形体は、変形による破壊が起こりやすくなる。また、比較例6においては、十分な耐電防止性能が得られなかった。 On the other hand, as known from Table 2, sufficient antistatic performance was not obtained in Comparative Examples 1 and 2 in which the amount of surface carbonyls of the composite resin expanded particles was small. Further, in Comparative Example 3 in which the amount of (meth)acrylic acid added was increased, the acetone-soluble component had a high glass transition temperature, and the foaming property and the fusion property were insufficient. In Comparative Example 4 in which the amount of the styrene-based monomer added was small, the rigidity of the molded body was lowered, so the compressive strength was low and the flexural modulus was low. Therefore, the molded body of Comparative Example 4 is easily deformed by bending and has insufficient flexure resistance. On the other hand, in Comparative Example 5 in which the addition amount of the styrene-based monomer is large, the compression strength and the bending elastic modulus of the molded body are high, but the bending rupture energy is insufficient. Therefore, the molded body of Comparative Example 5 is likely to be broken due to deformation. Further, in Comparative Example 6, sufficient anti-static performance was not obtained.
以上のように、実施例について説明したが、本発明は、上記の各実施例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。 Although the embodiments have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention.
Claims (10)
上記複合樹脂は、スチレン系単量体由来の構造単位をエチレン系樹脂100質量部に対して100〜1900質量部含有し、
上記複合樹脂中のキシレン可溶分をさらにアセトンに溶解させて得られるアセトン可溶分のガラス転移温度Tgが105℃以下であり、
上記複合樹脂発泡粒子の表面におけるカルボニル量が0.03mol%以上である、複合樹脂発泡粒子。 A composite resin foamed particle comprising a composite resin obtained by impregnating and polymerizing an ethylene-based resin with (meth)acrylic acid and a styrene-based monomer,
The composite resin contains 100 to 1900 parts by mass of a structural unit derived from a styrene-based monomer with respect to 100 parts by mass of an ethylene-based resin,
The glass transition temperature Tg of the acetone-soluble component obtained by further dissolving the xylene-soluble component in the composite resin in acetone is 105° C. or lower,
Composite resin foamed particles, wherein the amount of carbonyls on the surface of the composite resin foamed particles is 0.03 mol% or more.
発泡剤を用いて上記複合樹脂粒子を発泡させて複合樹脂発泡粒子を得る発泡工程と、を有し、
上記複合樹脂発泡粒子中のキシレン可溶分をさらにアセトンに溶解させて得られるアセトン可溶分のガラス転移温度Tgが105℃以下であり、
上記複合樹脂発泡粒子の表面におけるカルボニル量が0.03mol%以上である、複合樹脂発泡粒子の製造方法。 100 to 1900 parts by mass of a styrene-based monomer, relative to 100 parts by mass of the ethylene-based resin in the ethylene-based resin seed particles, in a dispersion liquid in which the ethylene-based resin seed particles are dispersed in an aqueous medium, (meth) Acrylic acid is added, the ethylene-based resin seed particles are impregnated with the styrene-based monomer and the (meth)acrylic acid, and a polymerization step of polymerizing to obtain composite resin particles,
A foaming step of foaming the composite resin particles using a foaming agent to obtain composite resin expanded particles,
The glass transition temperature Tg of the acetone-soluble component obtained by further dissolving the xylene-soluble component in the composite resin expanded beads in acetone is 105° C. or lower,
A method for producing a foamed composite resin particle, wherein the amount of carbonyls on the surface of the foamed composite resin particle is 0.03 mol% or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016097358A JP6701943B2 (en) | 2016-05-13 | 2016-05-13 | Expanded composite resin particles, method for producing the same, molded composite resin foam particles |
CN201710325890.7A CN107365424B (en) | 2016-05-13 | 2017-05-10 | Composite resin expanded particle, method for producing same, and composite resin expanded particle molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016097358A JP6701943B2 (en) | 2016-05-13 | 2016-05-13 | Expanded composite resin particles, method for producing the same, molded composite resin foam particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017203144A JP2017203144A (en) | 2017-11-16 |
JP6701943B2 true JP6701943B2 (en) | 2020-05-27 |
Family
ID=60304352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016097358A Active JP6701943B2 (en) | 2016-05-13 | 2016-05-13 | Expanded composite resin particles, method for producing the same, molded composite resin foam particles |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6701943B2 (en) |
CN (1) | CN107365424B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6759895B2 (en) * | 2016-09-08 | 2020-09-23 | 株式会社ジェイエスピー | Composite resin particles, composite resin foam particles, composite resin foam particle molded products |
JP7148790B2 (en) * | 2018-08-29 | 2022-10-06 | 株式会社ジェイエスピー | Expandable composite resin particles |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63125538A (en) * | 1986-11-14 | 1988-05-28 | Japan Styrene Paper Co Ltd | Modified expanded high-density polyethylene resin particle |
JP4410479B2 (en) * | 2003-03-25 | 2010-02-03 | 新日本無線株式会社 | Electromagnetic wave absorber |
JP2009102632A (en) * | 2007-10-05 | 2009-05-14 | Kaneka Corp | Styrene modified polyethylene based resin prefoamed particle, and foam formed of the prefoamed particle |
US20090181253A1 (en) * | 2008-01-15 | 2009-07-16 | Nova Chemicals Inc. | Particulate interpenetrating network polymer |
JP5536357B2 (en) * | 2009-03-27 | 2014-07-02 | 株式会社カネカ | Method for producing pre-expanded particles of styrene-modified polyethylene resin and styrene-modified polyethylene resin foam |
JP5641785B2 (en) * | 2010-03-26 | 2014-12-17 | 積水化成品工業株式会社 | Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body |
JP5731428B2 (en) * | 2012-02-29 | 2015-06-10 | 積水化成品工業株式会社 | Styrene-modified polyethylene resin particles, expandable composite resin particles, pre-expanded particles, foam-molded article and method for producing pre-expanded particles |
JP5942763B2 (en) * | 2012-10-11 | 2016-06-29 | 株式会社ジェイエスピー | Composite resin foam particles |
JP6036347B2 (en) * | 2013-01-31 | 2016-11-30 | 株式会社ジェイエスピー | Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body |
JP5992349B2 (en) * | 2013-02-28 | 2016-09-14 | 積水化成品工業株式会社 | Expandable styrenic resin particles, method for producing the same, expanded particles, and expanded molded body |
JP6029500B2 (en) * | 2013-03-15 | 2016-11-24 | 株式会社カネカ | Styrene-modified polyethylene pre-expanded particles and molded articles thereof |
JP6243186B2 (en) * | 2013-10-22 | 2017-12-06 | 株式会社ジェイエスピー | Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles |
-
2016
- 2016-05-13 JP JP2016097358A patent/JP6701943B2/en active Active
-
2017
- 2017-05-10 CN CN201710325890.7A patent/CN107365424B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107365424A (en) | 2017-11-21 |
CN107365424B (en) | 2021-09-14 |
JP2017203144A (en) | 2017-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5664143B2 (en) | Expandable composite thermoplastic resin particles, composite thermoplastic resin foam particles, and composite thermoplastic resin foam particles | |
JP5453923B2 (en) | Modified resin foam particles and molded articles thereof | |
CN107266701B (en) | Composite resin expanded particle and composite resin expanded particle molded body | |
US9505898B2 (en) | Expandable composite resin bead | |
TWI557170B (en) | Composite resin foamed particles and their molded bodies | |
JP6701943B2 (en) | Expanded composite resin particles, method for producing the same, molded composite resin foam particles | |
CN107805352B (en) | Composite resin particles and use thereof | |
JP6816656B2 (en) | Composite resin particles, composite resin foam particles, composite resin foam particle molded products | |
JP6243186B2 (en) | Method for producing antistatic composite resin expanded particles and molded antistatic composite resin expanded particles | |
CN106009359B (en) | Panel packaging container | |
JP2014189767A (en) | Polystyrenic resin composition for foaming, polystyrenic resin foam sheet, and foam molding | |
JP6668813B2 (en) | Composite resin expanded particles, method for producing the same, composite resin expanded particle molded body | |
TWI749014B (en) | Composite resin foamed particles, antistatic composite resin foamed particles, and composite resin foamed particle molded body | |
JP5447573B2 (en) | Modified resin foam particles and method for producing the same | |
JP6657883B2 (en) | Method for producing composite resin particles | |
CN106008841B (en) | Composite resin particle and method for producing same | |
JP6964962B2 (en) | Composite resin particles | |
JP2020033446A (en) | Foamable composite resin particle | |
JP6642062B2 (en) | Composite resin expanded particles, composite resin expanded particle molded article, and method for producing composite resin expanded particles | |
JP2019081821A (en) | Foamable resin particle | |
JP7121279B2 (en) | Expandable styrene resin particles | |
JP7339507B2 (en) | Foamed beads and foamed beads | |
JP7078849B2 (en) | Effervescent composite resin particles | |
JP2019099683A (en) | Foamable composite resin particle, composite resin foam particles, and foam particle molded body | |
JP2012184355A (en) | Pre-foamed particle and foam molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6701943 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |