JP6036347B2 - Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body - Google Patents
Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body Download PDFInfo
- Publication number
- JP6036347B2 JP6036347B2 JP2013016370A JP2013016370A JP6036347B2 JP 6036347 B2 JP6036347 B2 JP 6036347B2 JP 2013016370 A JP2013016370 A JP 2013016370A JP 2013016370 A JP2013016370 A JP 2013016370A JP 6036347 B2 JP6036347 B2 JP 6036347B2
- Authority
- JP
- Japan
- Prior art keywords
- styrene
- particles
- resin
- expandable
- resin particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
Description
本発明は、スチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂とを基材樹脂とし、脂肪族炭化水素を発泡剤とする発泡性スチレン系樹脂粒子、及びその製造方法、並びに発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡粒子成形体に関する。 The present invention relates to an expandable styrene resin particle using a styrene- (meth) acrylic acid copolymer and a polystyrene resin as a base resin and an aliphatic hydrocarbon as a foaming agent, a method for producing the same, and an expandable styrene system. The present invention relates to a styrenic resin foam particle molded body obtained using resin particles.
ポリスチレン発泡体などのプラスチック発泡体は、例えば25kg/m3以下の低密度になると急激に熱伝導率が上昇し、断熱性能が低下する。これは、低密度化に伴って発泡体の気泡膜の厚みが減少し、放射伝熱の影響が大きくなるためである。
そこで、低密度化に伴う断熱性能の低下を防止するために、赤外線遮蔽能を有する黒鉛や金属粉などのフィラーを含有させたポリスチレン発泡体が開発されている(特許文献1及び2参照)。しかし、このようなポリスチレン発泡体は、耐熱温度が例えば70〜80℃で低く、耐熱性の観点からその用途範囲が限定されてしまう。
When a plastic foam such as a polystyrene foam has a low density of, for example, 25 kg / m 3 or less, the thermal conductivity rapidly increases and the heat insulation performance decreases. This is because as the density is reduced, the thickness of the foam film of the foam decreases, and the influence of radiant heat transfer increases.
Therefore, in order to prevent the heat insulation performance from being lowered due to the reduction in density, a polystyrene foam containing a filler such as graphite or metal powder having infrared shielding ability has been developed (see Patent Documents 1 and 2). However, such polystyrene foam has a low heat resistant temperature of, for example, 70 to 80 ° C., and its application range is limited from the viewpoint of heat resistance.
一方、発泡粒子成形体の耐熱性を改善するために、スチレン−(メタ)アクリル酸共重合体とポリスチレンを押出機にて溶融混練して作製した発泡粒子成形体が開発されている(特許文献3参照)。 On the other hand, in order to improve the heat resistance of the foamed particle molded body, a foamed particle molded body produced by melt-kneading a styrene- (meth) acrylic acid copolymer and polystyrene with an extruder has been developed (Patent Document). 3).
しかしながら、スチレン−(メタ)アクリル酸共重合体とポリスチレンの溶融混合物に黒鉛などのフィラーを混合すると発泡性が著しく悪化するという問題がある。そのため、形状の良好な発泡粒子成形体を得ることが困難であった。 However, when a filler such as graphite is mixed with a molten mixture of styrene- (meth) acrylic acid copolymer and polystyrene, there is a problem that foamability is remarkably deteriorated. Therefore, it was difficult to obtain a foamed particle molded body having a good shape.
本発明は、かかる背景に鑑みてなされたものであって、耐熱性、断熱性に優れた発泡粒子成形体を得ることができると共に、発泡成形性に優れた発泡性スチレン系樹脂粒子及びその製造方法、並びに該発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡粒子成形体を提供しようとするものである。 The present invention has been made in view of such a background, and is capable of obtaining a foamed particle molded body excellent in heat resistance and heat insulating properties, and also has an expandable styrenic resin particle excellent in foam moldability and its production. It is an object of the present invention to provide a method and a styrene resin expanded resin molded article obtained by using the expandable styrene resin particles.
本発明の一態様は、黒鉛及び発泡剤として炭素数3〜6の脂肪族炭化水素を含む発泡性スチレン系樹脂粒子であって、
該発泡性スチレン系樹脂粒子の基材樹脂は、スチレン−(メタ)アクリル酸共重合体を主成分とする種粒子にスチレンを含浸及び重合してなる、スチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との複合樹脂であり、
上記スチレン−(メタ)アクリル酸共重合体と上記ポリスチレン樹脂との質量比が20:80〜80:20であり、
上記黒鉛の含有量が上記基材樹脂100質量部に対して0.1〜6質量部であることを特徴とする発泡性スチレン系樹脂粒子にある(請求項1)。
One aspect of the present invention is an expandable styrenic resin particle containing graphite and an aliphatic hydrocarbon having 3 to 6 carbon atoms as a foaming agent,
The base resin of the expandable styrene-based resin particles is a styrene- (meth) acrylic acid copolymer obtained by impregnating and polymerizing seed particles mainly composed of a styrene- (meth) acrylic acid copolymer. And a composite resin of polystyrene resin,
The mass ratio of the styrene- (meth) acrylic acid copolymer and the polystyrene resin is 20:80 to 80:20,
The expandable styrene resin particles are characterized in that the graphite content is 0.1 to 6 parts by mass with respect to 100 parts by mass of the base resin (claim 1).
本発明の他の態様は、上記発泡性スチレン系樹脂粒子を加熱発泡させて得られる予備発泡粒子を型内にて相互に融着させて得られることを特徴とするスチレン系樹脂発泡粒子成形体にある。 Another aspect of the present invention is a styrenic resin expanded particle molded article obtained by fusing pre-expanded particles obtained by heating and foaming the expandable styrene resin particles to each other in a mold. It is in .
本発明のさらに他の態様は、上記発泡性スチレン系樹脂粒子を製造する方法において、
スチレン−(メタ)アクリル酸共重合体を主成分とし、かつ黒鉛を含む種粒子を水性媒体中に懸濁させて懸濁液を得る懸濁工程と、
上記懸濁液に上記スチレンを添加し、該スチレンを上記種粒子に含浸及び重合させてスチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との複合樹脂を基材樹脂とするスチレン系樹脂粒子を得る含浸重合工程と、
該含浸重合工程におけるスチレンの重合中及び/又は重合後に、炭素数3〜6の脂肪族炭化水素からなる発泡剤を樹脂粒子中に含浸させる発泡剤含浸工程を含むことを特徴とする発泡性スチレン系樹脂粒子の製造方法にある。
Still another embodiment of the present invention is a method for producing the expandable styrenic resin particles.
A suspension step of suspending seed particles containing a styrene- (meth) acrylic acid copolymer as a main component and containing graphite in an aqueous medium;
Styrenic resin particles in which the styrene is added to the suspension, the styrene is impregnated and polymerized into the seed particles, and a composite resin of a styrene- (meth) acrylic acid copolymer and a polystyrene resin is used as a base resin. An impregnation polymerization step to obtain,
A foaming styrene comprising a foaming agent impregnation step of impregnating a resin particle with a foaming agent comprising an aliphatic hydrocarbon having 3 to 6 carbon atoms during and / or after the polymerization of styrene in the impregnation polymerization step A method for producing resin particles .
上記発泡性スチレン系樹脂粒子(以下、適宜「発泡性樹脂粒子」という)は、上記所定の質量比のスチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との複合樹脂を基材樹脂としている。そのため、発泡性樹脂粒子から得られるスチレン系樹脂発泡粒子成形体は、優れた耐熱性を示すことができる。
また、上記発泡性樹脂粒子は、上記所定量の黒鉛を含有する。そのため、上記発泡性樹脂粒子は、発泡時における低密度化に伴う断熱性能の低下を防止することができる。即ち、上記発泡性樹脂粒子を例えば20kg/m3程度の低密度まで発泡させても、優れた断熱性を示すスチレン系樹脂発泡粒子成形体を得ることができる。
The expandable styrene resin particles (hereinafter referred to as “expandable resin particles” as appropriate) have a base resin made of a composite resin of a styrene- (meth) acrylic acid copolymer and a polystyrene resin having the predetermined mass ratio. . Therefore, the styrene resin expanded resin molded body obtained from expandable resin particles can exhibit excellent heat resistance.
The expandable resin particles contain the predetermined amount of graphite. Therefore, the expandable resin particles can prevent a decrease in heat insulation performance due to a reduction in density during foaming. That is, even if the expandable resin particles are expanded to a low density of, for example, about 20 kg / m 3 , a styrene resin expanded resin molded article exhibiting excellent heat insulation can be obtained.
また、上記発泡性樹脂粒子において、上記基材樹脂は、上記スチレン−(メタ)アクリル酸共重合体を主成分とする種粒子にスチレンを含浸及び重合してなる。そのため、上記発泡性樹脂粒子は、上記のごとく黒鉛を含有していても、予備発泡時や型内成形の際の二次発泡時に黒鉛により気泡膜が破壊され難くなり、優れた発泡成形性を示すことができる。そのため、上記発泡性樹脂粒子を用いると、粒子間に間隙が少なく、良好な形状のスチレン系樹脂発泡粒子成形体を得ることができる。 Moreover, in the expandable resin particles, the base resin is obtained by impregnating and polymerizing seed particles mainly containing the styrene- (meth) acrylic acid copolymer. Therefore, even if the expandable resin particles contain graphite as described above, the bubble film is not easily destroyed by the graphite at the time of preliminary foaming or secondary foaming at the time of in-mold molding, and excellent foam moldability is achieved. Can show. Therefore, when the expandable resin particles are used, there can be obtained a styrenic resin expanded particle molded body having a good shape with few gaps between the particles.
次に、上記スチレン系樹脂発泡粒子成形体(以下、適宜「発泡粒子成形体」という)は、上記発泡性樹脂粒子を加熱発泡させて得られる予備発泡粒子を型内にて相互に融着させて得られる。
そのため、上記発泡性樹脂粒子の上述の優れた特性をいかして、上記発泡粒子成形体は、優れた断熱性及び耐熱性を示すことができる。また、上記発泡粒子成形体は、その形状を良好にすることができる。
Next, the styrene-based resin expanded particle molded body (hereinafter, appropriately referred to as “expanded particle molded body”) is obtained by fusing together pre-expanded particles obtained by heating and foaming the expandable resin particles in a mold. Obtained.
Therefore, the foamed particle molded body can exhibit excellent heat insulation and heat resistance by taking advantage of the above-described excellent characteristics of the foamable resin particles. Moreover, the said foaming particle molded object can make the shape favorable.
次に、上記発泡性樹脂粒子は、懸濁工程と、含浸重合工程と、発泡剤含浸工程とを行うことにより製造することができる。
上記懸濁工程においては、スチレン−(メタ)アクリル酸共重合体を主成分とし、かつ黒鉛を含む種粒子を水性媒体中に懸濁させる。これにより、懸濁液を得る。
また、上記含浸重合工程においては、上記懸濁液にスチレンを添加し、該スチレンを上記種粒子に含浸及び重合させる。これにより、スチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との複合樹脂を基材樹脂とするスチレン系樹脂粒子を得ることができる。
また、上記発泡剤含浸工程においては、含浸重合工程におけるスチレンの重合中及び/又は重合後に、炭素数3〜6の脂肪族炭化水素からなる発泡剤を樹脂粒子中に含浸させる。これにより、上記発泡性樹脂粒子を得ることができる。
Next, the expandable resin particles can be produced by performing a suspension process, an impregnation polymerization process, and a foaming agent impregnation process.
In the suspension step, seed particles containing a styrene- (meth) acrylic acid copolymer as a main component and containing graphite are suspended in an aqueous medium. This gives a suspension.
In the impregnation polymerization step, styrene is added to the suspension, and the seed particles are impregnated and polymerized. Thereby, the styrene-type resin particle which uses the composite resin of a styrene- (meth) acrylic acid copolymer and a polystyrene resin as base resin can be obtained.
In the foaming agent impregnation step, the resin particles are impregnated with a foaming agent composed of an aliphatic hydrocarbon having 3 to 6 carbon atoms during and / or after the polymerization of styrene in the impregnation polymerization step. Thereby, the said expandable resin particle can be obtained.
上記製造方法においては、上記含浸重合工程を行うことにより、スチレン−(メタ)アクリル酸共重合体とポリスチレン系樹脂との複合樹脂を形成しているため、黒鉛を含んでいても、発泡性と融着性に優れる発泡性スチレン系樹脂粒子を容易に得ることができる。 In the manufacturing method, by performing the impregnation polymerization step, a composite resin of a styrene- (meth) acrylic acid copolymer and a polystyrene resin is formed. It is possible to easily obtain expandable styrene-based resin particles having excellent fusibility.
次に、上記発泡性樹脂粒子の好ましい実施形態について説明する。
上記発泡性樹脂粒子は、スチレン−(メタ)アクリル酸共重合体種粒子にスチレンを含浸及び重合してなる、スチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂とからなる複合樹脂を基材樹脂とし、黒鉛と発泡剤としての炭素数3〜6の脂肪族炭化水素とを含む。
基材樹脂におけるスチレン−(メタ)アクリル酸共重合体の含有量が少なすぎてポリスチレン樹脂の含有量が多すぎる場合には、耐熱性に優れた発泡粒子成形体が得られなくなる虞がある。一方、基材樹脂におけるスチレン−(メタ)アクリル酸共重合体の含有量が多すぎてポリスチレン樹脂の含有量が少なすぎる場合には、上記発泡性樹脂粒子の発泡性が低下し、該発泡性樹脂粒子を目標の発泡倍率まで発泡させることが困難になる虞がある。かかる観点から、上記基材樹脂におけるスチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との質量比(但し、スチレン−(メタ)アクリル酸共重合体:ポリスチレン樹脂)は20:80〜80:20であることが好ましく、30:70〜70:30であることがより好ましく、40:60〜65:35であることがさらに好ましい。
Next, a preferred embodiment of the expandable resin particle will be described.
The foamable resin particles are based on a composite resin made of styrene- (meth) acrylic acid copolymer seed particles impregnated and polymerized with styrene and made of a styrene- (meth) acrylic acid copolymer and a polystyrene resin. As a resin, it contains graphite and an aliphatic hydrocarbon having 3 to 6 carbon atoms as a foaming agent.
When the content of the styrene- (meth) acrylic acid copolymer in the base resin is too small and the content of the polystyrene resin is too large, there is a possibility that a foamed particle molded article having excellent heat resistance cannot be obtained. On the other hand, when the content of the styrene- (meth) acrylic acid copolymer in the base resin is too large and the content of the polystyrene resin is too small, the foamability of the foamable resin particles is lowered and the foamability is reduced. There is a possibility that it is difficult to foam the resin particles to a target expansion ratio. From this viewpoint, the mass ratio of the styrene- (meth) acrylic acid copolymer to the polystyrene resin in the base resin (however, the styrene- (meth) acrylic acid copolymer: polystyrene resin) is 20:80 to 80: 20, preferably 30:70 to 70:30, and more preferably 40:60 to 65:35.
上記発泡性樹脂粒子の内部断面を透過型電子顕微鏡にて観察した場合において、その断面は、スチレン−(メタ)アクリル酸共重合体を連続相(海相)とし、ポリスチレン樹脂を分散相(島相)とする海島構造を有していることが好ましい。ポリスチレン樹脂を連続相とする相構造の場合には、発泡成形性が悪化し、良好な発泡粒子成形体を得ることが困難になる虞がある。 When the internal cross section of the expandable resin particle was observed with a transmission electron microscope, the cross section was a styrene- (meth) acrylic acid copolymer as a continuous phase (sea phase) and a polystyrene resin as a dispersed phase (island). It is preferable to have a sea-island structure. In the case of a phase structure having a polystyrene resin as a continuous phase, foam moldability is deteriorated, and it may be difficult to obtain a good foamed particle molded body.
また、ポリスチレン樹脂からなる分散相の平均分散相径は10μm以下であることが好ましく、0.3〜3μmであることがより好ましい。
上記平均分散相径は、発泡性樹脂粒子の中心部(発泡性樹脂粒子を2等分する断面の中央部)の透過型電子顕微鏡写真から、写真上の全て(好ましくは100個以上)の分散相について、各分散相径(最長径)を計測し、これらを加重平均して算出することができる。平均分散相径の具体的な算出方法は後述の実施例において詳説する。
The average dispersed phase diameter of the dispersed phase made of polystyrene resin is preferably 10 μm or less, and more preferably 0.3 to 3 μm.
The average dispersed phase diameter is the dispersion of all (preferably 100 or more) on the photograph from a transmission electron micrograph of the center of the expandable resin particles (the center of the cross section that bisects the expandable resin particles). About a phase, each dispersed phase diameter (longest diameter) is measured, and these can be calculated by weighted averaging. A specific method for calculating the average dispersed phase diameter will be described in detail in Examples described later.
また上記基材樹脂の重量平均分子量は、15万〜60万であることが好ましく、18万〜45万であることがより好ましい。上記基材樹脂の重量平均分子量が上記範囲内である場合には、上記発泡性樹脂粒子の発泡性と、上記発泡性樹脂粒子を用いて得られる発泡粒子成形体の強度とのバランスに特に優れたものとなる。上記基材樹脂の重量平均分子量はGPC法により測定した標準ポリスチレン換算値である。 The weight average molecular weight of the base resin is preferably 150,000 to 600,000, and more preferably 180,000 to 450,000. When the weight average molecular weight of the base resin is within the above range, the balance between the foamability of the foamable resin particles and the strength of the foamed particle molded body obtained using the foamable resin particles is particularly excellent. It will be. The weight average molecular weight of the base resin is a standard polystyrene equivalent value measured by the GPC method.
また、上記発泡性樹脂粒子は、発泡剤として炭素数3〜6の脂肪族炭化水素を含む。発泡剤の保持性や発泡性を考慮すると、発泡剤として炭素数4〜5の脂肪族炭化水素がより好ましい。
上記炭素数3〜6の脂肪族炭化水素としては、例えばプロパン、ノルマルブタン、イソブタン、シクロブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、ノルマルヘキサン、シクロヘキサン、2−メチルペンタン、3−メチルペンタン、2,3−ジメチルブタン等から選択された一種または二種以上を用いることができる。
Moreover, the said expandable resin particle contains a C3-C6 aliphatic hydrocarbon as a foaming agent. Considering the retention property and foamability of the foaming agent, an aliphatic hydrocarbon having 4 to 5 carbon atoms is more preferable as the foaming agent.
Examples of the aliphatic hydrocarbon having 3 to 6 carbon atoms include propane, normal butane, isobutane, cyclobutane, normal pentane, isopentane, neopentane, cyclopentane, normal hexane, cyclohexane, 2-methylpentane, 3-methylpentane, 2 One or two or more selected from 1,3-dimethylbutane and the like can be used.
また、上記発泡性樹脂粒子中の発泡剤の含有量は、所望の見掛け密度によって適宜調整することできるが、発泡剤の含有量が少なすぎる場合には、例えば20kg/m3以下という低密度まで発泡性樹脂粒子を発泡させることが困難になる虞がある。一方、発泡剤の含有量が多すぎる場合には、発泡後に得られる発泡粒子の気泡径が粗大になり、成形体の強度が低下する虞がある。また、この場合には断熱性に悪影響を及ぼす虞もある。したがって、上記発泡性樹脂粒子は、上記脂肪族炭化水素を2〜15質量%含有することが好ましい(請求項4)。より好ましくは、上記脂肪族炭化水素の含有量は3〜10質量%がよい。
脂肪族炭化水素の含有量は、ジメチルホルムアミド(DMF)などの溶媒に発泡性樹脂粒子を溶解させ、ガスクロマトグラフィーにて求めることができる。
Further, the content of the foaming agent in the expandable resin particles can be appropriately adjusted depending on the desired apparent density. However, when the content of the foaming agent is too small, for example, a low density of 20 kg / m 3 or less. There is a possibility that it becomes difficult to foam the expandable resin particles. On the other hand, when there is too much content of a foaming agent, the bubble diameter of the foaming particle obtained after foaming will become coarse, and there exists a possibility that the intensity | strength of a molded object may fall. In this case, there is a possibility that the heat insulating property may be adversely affected. Therefore, it is preferable that the expandable resin particles contain 2 to 15% by mass of the aliphatic hydrocarbon (claim 4). More preferably, the content of the aliphatic hydrocarbon is 3 to 10% by mass.
The content of the aliphatic hydrocarbon can be determined by gas chromatography by dissolving foamable resin particles in a solvent such as dimethylformamide (DMF).
また、上記発泡性樹脂粒子は、黒鉛を含有する。
黒鉛の含有量が多すぎる場合には、気泡膜の形成に悪影響して発泡性が低下したり、発泡性樹脂粒子を用いて得られる発泡粒子成形体における粒子同士の融着性や表面外観が悪化したりする虞がある。一方、黒鉛の含有量が少なすぎる場合には、断熱性の向上効果が充分に得られなくなる虞がある。したがって、上記発泡性樹脂粒子における黒鉛の含有量は、上記基材樹脂100質量部に対して0.1〜6質量部であることが好ましい。黒鉛の含有量は、0.5〜5質量部であることがより好ましく、1〜4質量部であることがさらに好ましい。
The expandable resin particles contain graphite.
When the graphite content is too high, the foamability is adversely affected by the formation of the bubble film, or the foamability and surface appearance of the particles in the foamed particle molded body obtained using the foamable resin particles are reduced. There is a risk of getting worse. On the other hand, when the graphite content is too small, there is a possibility that the effect of improving the heat insulating property cannot be obtained sufficiently. Therefore, the graphite content in the expandable resin particles is preferably 0.1 to 6 parts by mass with respect to 100 parts by mass of the base resin. The graphite content is more preferably 0.5 to 5 parts by mass, and even more preferably 1 to 4 parts by mass.
黒鉛としては、板状、鱗片状、薄片状、球状、粒状、不定形状、針状などの各種形状の粉末を用いることができる。好ましくは薄片状、鱗片状がよい。
また、高い断熱性向上効果が得られるという観点から、上記黒鉛の平均粒子径は、0.1〜50μmであることが好ましく、1〜20μmであることがより好ましい。黒鉛粉の平均粒子径は、黒鉛の粉末を水中に分散させ、レーザー回折散乱法等により測定することができる。具体的には、レーザー回折散乱法によって得られる粒度分布における積算値50%での粒径をもって平均粒子径とすることができる。
As graphite, powders of various shapes such as plate, scale, flake, sphere, granule, indefinite shape, and needle shape can be used. A flaky shape and a scaly shape are preferable.
Moreover, from the viewpoint that a high heat insulation improvement effect is obtained, the average particle diameter of the graphite is preferably 0.1 to 50 μm, and more preferably 1 to 20 μm. The average particle diameter of the graphite powder can be measured by dispersing the graphite powder in water and using a laser diffraction scattering method or the like. Specifically, the average particle size can be determined by the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction scattering method.
また、上記発泡性樹脂粒子を予備発泡させた予備発泡粒子において、その粒子表面部における(メタ)アクリル酸成分単位の含有率(質量%)が、粒子全体における(メタ)アクリル酸成分単位の含有率(質量%)よりも低いことが好ましい。
この場合には、ポリスチレン系樹脂発泡粒子が本来有する融着性を維持し、成形時に予備発泡粒子同士が充分に融着しやすくなり、特に強度に優れた発泡粒子成形体を得ることができる。また、表面外観に優れた発泡粒子成形体を得ることができる。
Further, in the pre-expanded particles obtained by pre-expanding the expandable resin particles, the content (% by mass) of the (meth) acrylic acid component unit in the particle surface portion is the content of the (meth) acrylic acid component unit in the entire particle It is preferably lower than the rate (mass%).
In this case, it is possible to maintain the inherent fusing property of the polystyrene-based resin expanded particles, and to easily fuse the pre-expanded particles to each other at the time of molding, and to obtain a foamed particle molded body particularly excellent in strength. Moreover, the foamed particle molded body excellent in surface appearance can be obtained.
また、上記発泡性樹脂粒子において、基材樹脂中におけるスチレン−(メタ)アクリル酸共重合体のガラス転移温度は、110〜130℃であることが好ましく(請求項2)、110〜120℃であることがより好ましい。スチレン−(メタ)アクリル酸共重合体のガラス転移温度が上記範囲内であると、発泡性樹脂粒子の発泡性と、得られる発泡成形体の耐熱性とのバランスに優れたものとなる。
なお、スチレン−(メタ)アクリル酸共重合体のガラス転移温度は、温度180℃に加熱したプレス機を用いて、発泡性樹脂粒子、またはその発泡粒子、またはその発泡粒子成形体からスチレン系樹脂のフィルムを作製し、このフィルムについて示差走査熱量分析(DSC)を実施することによって求められる。上記発泡性樹脂粒子においては、示差走査熱量分析によって得られるDSC曲線において、通常、2ヶ所でベースラインのシフトが観察される。これらは、それぞれ低温側(例えば100℃付近)に観察されるポリスチレン樹脂に由来するガラス転移温度と、高温側(例えば120℃付近)に観察されるスチレン−(メタ)アクリル酸共重合体に由来するガラス転移温度とを示す。そして、高温側に観察されるガラス転移温度をスチレン−(メタ)アクリル酸共重合体のガラス転移温度とする。
Moreover, in the said foamable resin particle, it is preferable that the glass transition temperature of the styrene- (meth) acrylic acid copolymer in base-material resin is 110-130 degreeC (Claim 2) at 110-120 degreeC. More preferably. When the glass transition temperature of the styrene- (meth) acrylic acid copolymer is within the above range, the balance between the foamability of the foamable resin particles and the heat resistance of the resulting foamed molded article is excellent.
The glass transition temperature of the styrene- (meth) acrylic acid copolymer is from a foamable resin particle, its foamed particle, or its foamed particle molded body to a styrene resin using a press machine heated to a temperature of 180 ° C. This film is obtained by performing differential scanning calorimetry (DSC) on this film. In the above-mentioned expandable resin particles, a baseline shift is usually observed at two locations in a DSC curve obtained by differential scanning calorimetry. These are derived from the glass transition temperature derived from the polystyrene resin observed on the low temperature side (for example, around 100 ° C.) and the styrene- (meth) acrylic acid copolymer observed on the high temperature side (for example, around 120 ° C.), respectively. The glass transition temperature to be shown. And let the glass transition temperature observed on the high temperature side be a glass transition temperature of a styrene- (meth) acrylic acid copolymer.
上記発泡性樹脂粒子は、上記基材樹脂100質量部に対し、臭素系難燃剤を0.5〜10質量部含有することが好ましい(請求項3)。
この場合には、上記発泡性樹脂粒子に難燃性を付与することができる。臭素系難燃剤の配合量が少なすぎる場合には、充分な難燃性が得られなくなる虞がある。一方、配合量が多くなるにつれて、上記発泡性樹脂粒子を発泡してなる予備発泡粒子の成形性が低下する傾向にあり、さらに得られる発泡粒子成形体の機械的物性が低下する傾向にある。かかる観点から、上記発泡性樹脂粒子においては、上記臭素系難燃剤の配合量が上記基材樹脂100質量部に対して上述のごとく0.5〜10質量部であることが好ましく、1〜5質量%であることがより好ましい。
The expandable resin particles preferably contain 0.5 to 10 parts by mass of a brominated flame retardant with respect to 100 parts by mass of the base resin.
In this case, flame retardancy can be imparted to the expandable resin particles. When the amount of the brominated flame retardant is too small, there is a possibility that sufficient flame retardancy cannot be obtained. On the other hand, as the blending amount increases, the moldability of the pre-expanded particles obtained by foaming the expandable resin particles tends to decrease, and the mechanical properties of the obtained expanded particle molded body tend to decrease. From this viewpoint, in the expandable resin particles, the amount of the brominated flame retardant is preferably 0.5 to 10 parts by mass as described above with respect to 100 parts by mass of the base resin. More preferably, it is mass%.
臭素系難燃剤としては、2,2−ビス[4’−(2”,3”−ジブロモ−2”−メチルプロポキシ)−3’,5’−ジブロモフェニル]プロパン、2,2−ビス[4’−(2”,3”−ジブロモプロポキシ)−3’,5’−ジブロモフェニル]プロパン、2,2−ビス[4’−(2”,3”−ジブロモ−2−メチルプロポキシ)−3’,5’−ジブロモフェニル]スルホン、2,2−ビス[4’−(2”,3”−ジブロモプロポキシ)−3’,5’−ジブロモフェニル]スルホン、1,3,5−トリス(2’,3’−ジブロモ−2’−メチルプロピル)イソシアヌレート、1,3,5−トリス(2’,3’−ジブロモプロピル)イソシアヌレート、2,4,6−トリブロモフェノール−2’,3’−ジブロモ−2’−メチルプロピルエーテル、2,4,6−トリブロモフェノール−2’,3’−ジブロモプロピルエーテル、1,2,5,6,9,10−ヘキサブロモシクロドデカン、1,2,5,6−テトラブロモシクロオクタン等の臭素化有機化合物を用いることができる。また、臭素化スチレン−ブタジエン共重合体、臭素化ポリスチレン、臭素化エポキシ樹脂等の臭素化高分子を用いることもできる。臭素系難燃剤は、1種又は2種以上を用いることができる。好ましくは、上記臭素系難燃剤として、2,2−ビス[4’−(2”,3”−ジブロモ−2”−メチルプロポキシ)−3’,5’−ジブロモフェニル]プロパンと、2,2−ビス[4’−(2”,3”−ジブロモプロポキシ)−3’,5’−ジブロモフェニル]プロパンとを併用することがよい。 Examples of brominated flame retardants include 2,2-bis [4 ′-(2 ″, 3 ″ -dibromo-2 ″ -methylpropoxy) -3 ′, 5′-dibromophenyl] propane, 2,2-bis [4. '-(2 ", 3" -dibromopropoxy) -3', 5'-dibromophenyl] propane, 2,2-bis [4 '-(2 ", 3" -dibromo-2-methylpropoxy) -3' , 5′-dibromophenyl] sulfone, 2,2-bis [4 ′-(2 ″, 3 ″ -dibromopropoxy) -3 ′, 5′-dibromophenyl] sulfone, 1,3,5-tris (2 ′ , 3′-Dibromo-2′-methylpropyl) isocyanurate, 1,3,5-tris (2 ′, 3′-dibromopropyl) isocyanurate, 2,4,6-tribromophenol-2 ′, 3 ′ -Dibromo-2'-methylpropyl ether 2,4,6-tribromophenol-2 ′, 3′-dibromopropyl ether, 1,2,5,6,9,10-hexabromocyclododecane, 1,2,5,6-tetrabromocyclooctane, etc. A brominated polymer such as brominated styrene-butadiene copolymer, brominated polystyrene, brominated epoxy resin, or the like can also be used. Alternatively, it is possible to use two or more kinds, preferably 2,2-bis [4 ′-(2 ″, 3 ″ -dibromo-2 ″ -methylpropoxy) -3 ′, 5 ′ as the brominated flame retardant. -Dibromophenyl] propane and 2,2-bis [4 '-(2 ", 3" -dibromopropoxy) -3', 5'-dibromophenyl] propane are preferably used in combination.
また、上記発泡性樹脂粒子は、上記スチレン−(メタ)アクリル酸共重合体を主成分とする種粒子にスチレンを含浸及び重合し、上記発泡剤を含浸してなる。
この場合には、スチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との広い配合比にわたり、スチレン−(メタ)アクリル酸共重合体を連続相としポリスチレン樹脂を分散相とする海島構造を示す発泡性樹脂粒子を得ることができる。かかる発泡性樹脂粒子は、上述のごとく発泡性に優れたものとなる。さらにこの場合には、粒子表面部における(メタ)アクリル酸成分単位の含有率が、粒子全体における(メタ)アクリル酸成分単位の含有率よりも低い発泡性樹脂粒子を容易に得ることができる。かかる発泡性樹脂粒子は、上述のごとく融着性に特に優れるため、該発泡性樹脂粒子を用いることにより、強度や表面外観に優れた発泡粒子成形体を得ることができる。
The expandable resin particles are obtained by impregnating and polymerizing seed particles mainly composed of the styrene- (meth) acrylic acid copolymer and impregnating the foaming agent.
In this case, a sea-island structure having a styrene- (meth) acrylic acid copolymer as a continuous phase and a polystyrene resin as a dispersed phase over a wide blending ratio of styrene- (meth) acrylic acid copolymer and polystyrene resin is shown. Expandable resin particles can be obtained. Such expandable resin particles have excellent foamability as described above. Furthermore, in this case, expandable resin particles in which the content of the (meth) acrylic acid component unit in the particle surface portion is lower than the content of the (meth) acrylic acid component unit in the entire particle can be easily obtained. Since such expandable resin particles are particularly excellent in fusibility as described above, by using the expandable resin particles, it is possible to obtain a expanded particle molded body excellent in strength and surface appearance.
次に、上記発泡性樹脂粒子の製造方法の好ましい実施形態について説明する。
上記発泡性樹脂粒子は、懸濁工程と含浸重合工程と発泡剤含浸工程とを行うことにより製造することができる。
懸濁工程においては、まず、スチレン−(メタ)アクリル酸共重合体を主成分とし、かつ黒鉛を含む種粒子を作製する。
種粒子に用いるスチレン−(メタ)アクリル酸共重合体としては、公知の重合方法で得られたスチレン−(メタ)アクリル酸共重合体を使用できる。該スチレン−(メタ)アクリル酸共重合体は、(メタ)アクリル酸とスチレンとの共重合体であるが、(メタ)アクリル酸またはスチレンと共重合し得る他のビニル化合物を分子内に含有するものであってもよい。そのようなビニル化合物としては、例えばα−メチルスチレン、p−メチルスチレン、t−ブチルスチレン、ジビニルベンゼン等の芳香族ビニル化合物がある。また、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸アルキルエステルがある。ビニル化合物としては、これらの芳香族ビニル化合物、(メタ)アクリル酸アルキルエステル等から選択された一種または二種以上を用いることができる。基材樹脂のスチレン−(メタ)アクリル酸共重合体に由来するガラス転移温度を上記範囲とするためには、スチレン−(メタ)アクリル酸共重合体として、ガラス転移温度が110〜135℃のものを用いることが好ましく、115〜130℃のものがより好ましい。
Next, a preferred embodiment of the method for producing the expandable resin particles will be described.
The said expandable resin particle can be manufactured by performing a suspension process, an impregnation polymerization process, and a foaming agent impregnation process.
In the suspending step, first, seed particles containing a styrene- (meth) acrylic acid copolymer as a main component and containing graphite are prepared.
As the styrene- (meth) acrylic acid copolymer used for the seed particles, a styrene- (meth) acrylic acid copolymer obtained by a known polymerization method can be used. The styrene- (meth) acrylic acid copolymer is a copolymer of (meth) acrylic acid and styrene, but contains (meth) acrylic acid or another vinyl compound that can be copolymerized with styrene in the molecule. You may do. Examples of such vinyl compounds include aromatic vinyl compounds such as α-methylstyrene, p-methylstyrene, t-butylstyrene, and divinylbenzene. Moreover, there are (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate. As the vinyl compound, one or two or more selected from these aromatic vinyl compounds, (meth) acrylic acid alkyl esters and the like can be used. In order to make the glass transition temperature derived from the styrene- (meth) acrylic acid copolymer of the base resin into the above range, the glass transition temperature is 110 to 135 ° C as the styrene- (meth) acrylic acid copolymer. It is preferable to use a thing, and the thing of 115-130 degreeC is more preferable.
また、上記種粒子中には、予め少量のポリスチレン樹脂を混練しておくことができる。
この場合には、スチレンの含浸性を高めることができる。その結果、発泡性及び融着性に優れる発泡性樹脂粒子を容易に得ることができる。また、この場合には、上記発泡性樹脂粒子の収率を高めることができる。
したがって、上記種粒子は、スチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂とを溶融混練してなることが好ましく、上記種粒子中のスチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との質量比が99:1〜70:30(但し、スチレン−(メタ)アクリル酸共重合体:ポリスチレン樹脂である)であることが好ましい。上記種粒子中のスチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との質量比は、95:5〜75:25であることがより好ましい。さらに、上記のように、スチレン−(メタ)アクリル酸共重合体と、少量のポリスチレン樹脂とを溶融混練した種粒子を用いる場合には、種粒子中のポリスチレン樹脂の含有量(質量部)に対する懸濁液に添加するスチレンの添加量(質量部)の比を2以上とすることが好ましく、3以上とすることがより好ましい。即ち、種粒子中のポリスチレン樹脂の質量をMA(質量部)とし、懸濁液に添加するスチレンの添加量をMB(質量部)とすると、MB/MA≧2が好ましく、MB/MA≧3がより好ましい。
Moreover, a small amount of polystyrene resin can be kneaded in advance in the seed particles.
In this case, the impregnation property of styrene can be improved. As a result, it is possible to easily obtain expandable resin particles having excellent foamability and fusion property. In this case, the yield of the expandable resin particles can be increased.
Therefore, the seed particles are preferably obtained by melt-kneading a styrene- (meth) acrylic acid copolymer and a polystyrene resin. The styrene- (meth) acrylic acid copolymer and the polystyrene resin in the seed particles are Is preferably 99: 1 to 70:30 (however, styrene- (meth) acrylic acid copolymer: polystyrene resin) . The mass ratio of the styrene- (meth) acrylic acid copolymer and the polystyrene resin in the seed particles is more preferably 95: 5 to 75:25. Furthermore, as described above, when using seed particles obtained by melt-kneading a styrene- (meth) acrylic acid copolymer and a small amount of polystyrene resin, the content (parts by mass) of the polystyrene resin in the seed particles is used. it is preferable to add the amount of styrene to be added to the suspension ratio (parts by weight) and 2 or more, and more preferably 3 or more. That is, when the mass of the polystyrene resin in the seed particles is M A (parts by mass) and the amount of styrene added to the suspension is M B (parts by mass), M B / M A ≧ 2 is preferable. B / M A ≧ 3 is more preferable.
種粒子は、上記スチレン−(メタ)アクリル酸共重合体、黒鉛粉、さらに必要に応じてポリスチレン樹脂を配合し、溶融混練してから細粒化することにより製造することができる。黒鉛粉は、粉末状あるいはマスターバッチとして、上記スチレン−(メタ)アクリル酸共重合体に配合することができる。溶融混練は、押出機により行うことができる。種粒子中の黒鉛の含有量は、発泡性樹脂粒子中の黒鉛の含有量が基材樹脂100質量部に対して0.1〜6質量部となるように適宜調整すればよく、種粒子中に黒鉛が0.12〜30質量%配合されることが好ましい。 The seed particles can be produced by blending the styrene- (meth) acrylic acid copolymer, graphite powder, and, if necessary, a polystyrene resin, melt-kneading and then finely pulverizing. The graphite powder can be blended into the styrene- (meth) acrylic acid copolymer as a powder or as a master batch. Melt kneading can be performed by an extruder. The graphite content in the seed particles may be appropriately adjusted so that the graphite content in the expandable resin particles is 0.1 to 6 parts by mass with respect to 100 parts by mass of the base resin. It is preferable that 0.12 to 30% by mass of graphite is blended in.
また、上述のように難燃剤を含有する発泡性樹脂粒子を作製する場合には、種粒子に難燃剤を配合しておくことが好ましい。難燃剤は粉末状、あるいは、マスターバッチとして上記スチレン−(メタ)アクリル酸共重合体と黒鉛に配合することが好ましい。
上記種粒子は、本発明の効果を損なわない限り、気泡調整剤、顔料、スリップ剤、帯電防止剤、可塑剤等の添加剤を含有することができる。
Moreover, when producing the expandable resin particle containing a flame retardant as described above, it is preferable to add a flame retardant to the seed particles. The flame retardant is preferably blended into the styrene- (meth) acrylic acid copolymer and graphite as a powder or as a master batch.
The seed particles can contain additives such as a bubble regulator, a pigment, a slip agent, an antistatic agent, and a plasticizer as long as the effects of the present invention are not impaired.
気泡調整剤としては、例えば脂肪族モノアミド、脂肪酸ビスアミド、タルク、シリカ、ポリエチレンワックス、メチレンビスステアリン酸、メタクリル酸メチル系共重合体、シリコーン等を用いることができる。
可塑剤としては、グリセリントリステアレート、グリセリントリオクトエート、グリセリントリラウレート、ソルビタントリステアレート、ソルビタンモノステアレート、ブチルステアレート、グリセリンジアセトモノラウレート等の脂肪酸エステルを用いることができる。また、シクロヘキサン、流動パラフィン等の有機化合物を用いることもできる。
顔料、スリップ剤、帯電防止剤としては、市販品や公知品を用いることができる。
Examples of the air conditioner include aliphatic monoamide, fatty acid bisamide, talc, silica, polyethylene wax, methylene bis stearic acid, methyl methacrylate copolymer, and silicone.
As the plasticizer, fatty acid esters such as glycerin tristearate, glycerin trioctoate, glycerin trilaurate, sorbitan tristearate, sorbitan monostearate, butyl stearate, glycerin diacetomonolaurate can be used. Moreover, organic compounds, such as a cyclohexane and a liquid paraffin, can also be used.
Commercially available products and known products can be used as the pigment, slip agent, and antistatic agent.
また、断熱性に優れた発泡粒子成形体を得ることができる上記発泡性樹脂粒子を得るためには、上記黒鉛粉を上記種粒子の上記スチレン−(メタ)アクリル酸共重合体中に均一に分散させることが好ましい。そのため、例えばダルメージタイプ、マドックタイプ、ユニメルトタイプ等の高混練タイプのスクリュの単軸押出機あるいは二軸押出機を用いて溶融混練を行うことが好ましい。
上記種粒子の微細化は、押出機で溶融混練した後、ストランドカット方式、ホットカット方式、水中カット方式等により行うことができる。所望の粒子径が得られる方法であれば他の方法により行うこともできる。
Moreover, in order to obtain the expandable resin particles capable of obtaining a foamed particle molded body having excellent heat insulation properties, the graphite powder is uniformly distributed in the styrene- (meth) acrylic acid copolymer of the seed particles. It is preferable to disperse. Therefore, for example, melt kneading is preferably performed using a single-screw extruder or a twin-screw extruder of a high kneading type screw such as a dalmage type, a Maddock type, or a unimelt type.
The seed particles can be refined by melt-kneading with an extruder, and then by a strand cut method, a hot cut method, an underwater cut method, or the like. Any other method can be used as long as the desired particle size can be obtained.
種粒子の重量が小さすぎる場合には、種粒子の生産性が著しく低下する虞がある。一方、種粒子の重量が大きすぎる場合には、発泡性樹脂粒子の粒径が大きくなり、それに伴って得られる予備発泡粒子の粒径も大きくなる。その結果、型内成形時に予備発泡粒子の金型への充填性が低下する虞がある。かかる観点から、種粒子の粒子重量は、0.1〜3mgが好ましく、0.3〜1.5mgがより好ましい。なお、押出機を用いる場合には、粒子重量の調整は、例えば0.5〜2mm程度の口径を有する孔から樹脂を押出し、カットスピードを変えることにより行うことができる。 If the weight of the seed particles is too small, the productivity of the seed particles may be significantly reduced. On the other hand, when the weight of the seed particles is too large, the particle diameter of the expandable resin particles increases, and the particle diameter of the pre-expanded particles obtained accordingly increases. As a result, the filling property of the pre-expanded particles into the mold may be deteriorated during the molding in the mold. From this viewpoint, the particle weight of the seed particles is preferably 0.1 to 3 mg, more preferably 0.3 to 1.5 mg. In addition, when using an extruder, adjustment of particle weight can be performed by extruding resin from the hole which has a diameter of about 0.5-2 mm, for example, and changing cut speed.
次いで、上記懸濁工程においては、上記種粒子を水性媒体中に懸濁させて懸濁液を得る。水性媒体中への分散は、例えば撹拌機を備えた密閉容器を用いて行うことができる。上記水性媒体としては、例えば脱イオン水等が挙げられる。
上記種粒子は、懸濁剤とともに水性媒体中に分散させることが好ましい。懸濁剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリビニルピロリドンなどの親水性高分子を用いることができる。また、懸濁剤として、第三リン酸カルシウム、ピロリン酸マグネシウムなどの難水溶性無機塩を用いることもできる。さらに必要に応じて、界面活性剤を併用しても良い。なお、難水溶性無機塩を使用する場合は、アルキルスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルジフェニルエーテルスルホン酸二ナトリウム、α−オレフィンスルホン酸ナトリウムなどのアニオン系界面活性剤を併用することが好ましい。
Next, in the suspension step, the seed particles are suspended in an aqueous medium to obtain a suspension. Dispersion in the aqueous medium can be performed using, for example, a closed container equipped with a stirrer. Examples of the aqueous medium include deionized water.
The seed particles are preferably dispersed in an aqueous medium together with a suspending agent. As the suspending agent, for example, hydrophilic polymers such as polyvinyl alcohol, methyl cellulose, polyvinyl pyrrolidone and the like can be used. In addition, a poorly water-soluble inorganic salt such as tricalcium phosphate or magnesium pyrophosphate can also be used as a suspending agent. Furthermore, you may use surfactant together as needed. When using a poorly water-soluble inorganic salt, it is preferable to use an anionic surfactant such as sodium alkyl sulfonate, sodium dodecylbenzene sulfonate, disodium dodecyl diphenyl ether sulfonate, sodium α-olefin sulfonate. .
懸濁剤の使用量は、種粒子100質量部に対して、0.01〜5質量部が好ましい。上述のように難水溶性無機塩とアニオン性界面活性剤とを併用する場合は、種粒子100質量部に対して、難水溶性無機塩を0.05〜3質量部、アニオン性界面活性剤を0.0001〜0.5質量部用いることが好ましい。上述の界面活性剤は、単独で、又は複数組み合わせて用いることができる。好ましくは、アニオン系界面活性剤を用いることがよい。より好ましくは、炭素数8〜20のアルキルスルホン酸アルカリ金属塩(好ましくはナトリウム塩)がよい。これにより、懸濁を充分に安定化させることができる。 As for the usage-amount of a suspension agent, 0.01-5 mass parts is preferable with respect to 100 mass parts of seed particles. As described above, when the poorly water-soluble inorganic salt and the anionic surfactant are used in combination, 0.05 to 3 parts by weight of the poorly water-soluble inorganic salt and the anionic surfactant are used with respect to 100 parts by weight of the seed particles. Is preferably used in an amount of 0.0001 to 0.5 parts by mass. The above-mentioned surfactants can be used alone or in combination. Preferably, an anionic surfactant is used. More preferably, it is an alkylsulfonic acid alkali metal salt (preferably a sodium salt) having 8 to 20 carbon atoms. Thereby, the suspension can be sufficiently stabilized.
また、上記懸濁液には、必要に応じて、例えば塩化リチウム、塩化カリウム、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム、酢酸ナトリウム、コハク酸ナトリウム等の電解質を添加することができる。 In addition, an electrolyte such as lithium chloride, potassium chloride, sodium chloride, sodium sulfate, sodium nitrate, sodium carbonate, sodium bicarbonate, sodium acetate, or sodium succinate may be added to the above suspension as necessary. Can do.
次に、含浸重合工程においては、上記懸濁液にスチレンを添加し、種粒子にスチレンを含浸及び重合させてスチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂とを基材樹脂とするスチレン系樹脂粒子を得る。
上記種粒子にスチレンを含浸させる際には、スチレンだけでなく、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルトルエン、p−エチルスチレン、2,4−ジメチルスチレン、p−メトキシスチレン、p−フェニルスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、2,4−ジクロロスチレン、p−n−ブチルスチレン、p−t−ブチルスチレン、p−n−ヘキシルスチレン、p−オクチルスチレン、ジビニルベンゼン、スチレンスルホン酸、スチレンスルホン酸ナトリウム等の芳香族ビニル化合物をスチレンと共に含浸させることもできる。芳香族ビニル化合物としては一種または二種以上を用いることができる。さらに必要に応じて、芳香族ビニル化合物と共重合が可能な(メタ)アクリル酸メチル、(メタ)アクリル酸エチル(メタ)アクリル酸ブチル等の(メタ)アクリル酸アルキルエステルなどのビニル化合物を併用することもできる。
なお、スチレン以外の上記単量体をスチレンと共に添加し、種粒子中でスチレンと共重合させた場合には、その共重合体をポリスチレン樹脂とする。この場合には、基材樹脂中におけるポリスチレン樹脂のガラス転移温度は110℃未満であることが好ましく、105℃以下がより好ましく、102℃以下がさらに好ましく、100℃以下がさらにより好ましい。スチレン以外の単量体の配合比は、上記ポリスチレン樹脂のガラス転移温度を満足する範囲で適宜設定することができる。スチレン以外の単量体の配合比は、好ましくは添加する単量体中に10質量%以下がよく、より好ましくは5質量%以下であり、さらに好ましくは0質量%、すなわちスチレンのみを用いることがよい。
Next, in the impregnation polymerization step, styrene is added to the suspension, and the seed particles are impregnated and polymerized with styrene, and styrene using a styrene- (meth) acrylic acid copolymer and a polystyrene resin as a base resin. System resin particles are obtained.
When impregnating the seed particles with styrene, not only styrene but also α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, p-ethylstyrene, 2,4-dimethyl Styrene, p-methoxystyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4-dichlorostyrene, pn-butylstyrene, pt-butylstyrene, p- Aromatic vinyl compounds such as n-hexyl styrene, p-octyl styrene, divinylbenzene, styrene sulfonic acid, sodium styrene sulfonate and the like can be impregnated with styrene. One or more aromatic vinyl compounds can be used. If necessary, vinyl compounds such as (meth) acrylic acid alkyl esters such as methyl (meth) acrylate and ethyl (meth) acrylate (butyl) can be copolymerized with aromatic vinyl compounds. You can also
In addition, when the said monomer other than styrene is added with styrene and it is made to copolymerize with styrene in a seed particle, the copolymer is made into a polystyrene resin. In this case, the glass transition temperature of the polystyrene resin in the base resin is preferably less than 110 ° C, more preferably 105 ° C or less, further preferably 102 ° C or less, and even more preferably 100 ° C or less. The blending ratio of monomers other than styrene can be appropriately set within a range that satisfies the glass transition temperature of the polystyrene resin. The mixing ratio of monomers other than styrene is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 0% by mass, that is, only styrene is used. Is good.
スチレンの添加量は、発泡性樹脂粒子の基材樹脂中のスチレン−(メタ)アクリル酸共重合体の質量比が20〜80質量%となるように調整すればよいが、種粒子中のスチレン−メタアクリル酸共重合体100質量部に対して25〜400質量部であることが好ましい。より好ましくは40〜150質量部、さらに好ましくは50〜120質量部であることがよい。
なお、基材樹脂中のポリスチレン樹脂の質量比は、予め種粒子中に存在するポリスチレン樹脂の含有量と、スチレンの配合量と、必要に応じて添加されるその他の上記単量体の配合量とから求めることができる。
The amount of styrene added may be adjusted so that the mass ratio of the styrene- (meth) acrylic acid copolymer in the base resin of the expandable resin particles is 20 to 80% by mass, but the styrene in the seed particles -It is preferable that it is 25-400 mass parts with respect to 100 mass parts of methacrylic acid copolymers. More preferably, it is 40-150 mass parts, More preferably, it is 50-120 mass parts.
In addition, the mass ratio of the polystyrene resin in the base resin is such that the content of the polystyrene resin present in the seed particles in advance, the blending amount of styrene, and the blending amount of the other monomers added as necessary. It can be obtained from
また、種粒子内でスチレンを均一に重合させるために、スチレンと重合開始剤を種粒子に含浸させて重合を行うことが好ましい。また、種粒子にスチレンを含浸させて重合させる際に、スチレンの添加は、一括して行っても、複数回に分割して行ってもよい。また、重合開始剤はスチレンに溶解させて添加してもよいし、重合開始剤を単独で添加してもよい。 In order to uniformly polymerize styrene in the seed particles, it is preferable to perform polymerization by impregnating the seed particles with styrene and a polymerization initiator. Further, when the seed particles are impregnated with styrene for polymerization, the addition of styrene may be performed all at once or divided into a plurality of times. Moreover, a polymerization initiator may be dissolved in styrene and added, or a polymerization initiator may be added alone.
上記重合開始剤としては、スチレンに可溶であり、10時間半減期温度が50〜120℃である有機過酸化物、アゾ化合物等が用いられる。有機過酸化物としては、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−アミルパーオキシ−2−エチルヘキシルカーボネート、ヘキシルパーオキシ−2−エチルヘキシルカーボネート、ラウロイルパーオキサイド、ジクミルパーオキサイド、2,5−t−ブチルパーベンゾエート、1,1−ビス−t−ブチルパーオキシシクロヘキサン、クメンヒドロキシパーオキサイド、ジクミルパーオキサイドなどを用いることができる。また、アゾ化合物としてはアゾビスイソブチロニトリルなどを用いることができる。これらの重合開始剤は1種類または2種類以上を組み合わせて用いることができる。重合開始剤の使用量は、スチレン100質量部に対して、0.01〜3質量部が好ましい。
重合温度は、使用する重合開始剤の種類によって異なるが、60〜120℃とすることが好ましい。
Examples of the polymerization initiator include organic peroxides and azo compounds that are soluble in styrene and have a 10-hour half-life temperature of 50 to 120 ° C. Organic peroxides include t-butyl peroxy-2-ethylhexanoate, t-butyl peroxybenzoate, benzoyl peroxide, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl mono Carbonate, t-amylperoxy-2-ethylhexyl carbonate, hexylperoxy-2-ethylhexyl carbonate, lauroyl peroxide, dicumyl peroxide, 2,5-t-butyl perbenzoate, 1,1-bis-t-butyl Peroxycyclohexane, cumene hydroxy peroxide, dicumyl peroxide and the like can be used. As the azo compound, azobisisobutyronitrile and the like can be used. These polymerization initiators can be used alone or in combination of two or more. As for the usage-amount of a polymerization initiator, 0.01-3 mass parts is preferable with respect to 100 mass parts of styrene.
Although superposition | polymerization temperature changes with kinds of polymerization initiator to be used, it is preferable to set it as 60-120 degreeC.
次に、上記発泡剤含浸工程においては、発泡剤を樹脂粒子中に含浸させる。
発泡剤の含浸は、スチレンの重合中または重合後に行うことができる。
具体的には、重合中の又は重合後の樹脂粒子を収容する容器内に発泡剤を圧入し、樹脂粒子中に発泡剤を含浸させる。
Next, in the foaming agent impregnation step, the foaming agent is impregnated in the resin particles.
Impregnation with the blowing agent can be performed during or after the polymerization of styrene.
Specifically, a foaming agent is press-fitted into a container containing the resin particles during or after polymerization, and the resin particles are impregnated with the foaming agent.
また、発泡剤含浸後には、発泡性樹脂粒子を脱水乾燥し、必要に応じて表面被覆剤を発泡性樹脂粒子の表面に被覆させることができる。
表面被覆剤としては、例えばジンクステアレート、ステアリン酸トリグリセライド、ステアリン酸モノグリセライド、ひまし硬化油、帯電防止剤などがある。上記表面被覆剤の添加量は、上記発泡性樹脂粒子100質量部に対して0.01〜2質量部であることが好ましい。
Further, after impregnation with the foaming agent, the foamable resin particles can be dehydrated and dried, and the surface coating agent can be coated on the surface of the foamable resin particles as necessary.
Examples of the surface coating agent include zinc stearate, stearic acid triglyceride, stearic acid monoglyceride, castor oil, and antistatic agent. The amount of the surface coating agent added is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the expandable resin particles.
上記発泡性樹脂粒子は、該発泡性樹脂粒子を加熱して予備発泡させ、得られた予備発泡粒子を型内にて相互に融着させて発泡粒子成形体を得るために用いることができる。
上記発泡性樹脂粒子を加熱発泡させる方法としては、具体的には、水蒸気(スチーム)等の加熱媒体を発泡性樹脂粒子に供給する方法がある。これにより、発泡性樹脂粒子を発泡させて予備発泡粒子を得ることができる。なお、得られる予備発泡粒子の嵩密度は10〜100kg/m3、更に12〜30kg/m3であることが好ましい。
The expandable resin particles can be used for heating and pre-expanding the expandable resin particles and fusing the obtained pre-expanded particles together in a mold to obtain a expanded particle molded body.
As a method of heating and foaming the expandable resin particles, specifically, there is a method of supplying a heating medium such as steam to the expandable resin particles. Thereby, expandable resin particles can be expanded to obtain pre-expanded particles. In addition, it is preferable that the bulk density of the pre-expanded particles obtained is 10 to 100 kg / m 3 , and more preferably 12 to 30 kg / m 3 .
また、発泡粒子においては、発泡粒子全体の(メタ)アクリル酸単量体単位の含有量に対する発泡粒子表面近傍における(メタ)アクリル酸単量体単位の含有量の比率が90質量%以下であることが好ましく、60〜85質量%であることがより好ましい。この場合には、成形体内部の融着度の高い発泡粒子成形体を得ることが容易になる。
上記発泡粒子を周知の成形手段により型内成形することにより、発泡粒子成形体を得ることができる。なお、得られる発泡粒子成形体の密度は10〜100kg/m3であることが好ましく,12〜30kg/m3であることがより好ましい。
In the expanded particles, the ratio of the content of (meth) acrylic acid monomer units in the vicinity of the surface of the expanded particles to the content of (meth) acrylic acid monomer units in the entire expanded particles is 90% by mass or less. It is preferably 60 to 85% by mass. In this case, it becomes easy to obtain a foamed particle molded body having a high degree of fusion inside the molded body.
A foamed particle molded body can be obtained by molding the foamed particles in a mold by a known molding means. Incidentally, it is preferable that the density of the obtained foamed bead molded article is 10 to 100 kg / m 3, more preferably 12~30kg / m 3.
(実施例1)
(1)種粒子の作製
φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体(PSジャパン社製、G9001:ガラス転移温度121℃)87質量部と、黒鉛マスターバッチ(黒鉛粉の平均粒子径:約15μm、黒鉛濃度:40質量%、基材樹脂(ポリスチレン):残部)13質量部とを溶融混練した。そして、溶融樹脂を穴径1.4mmのダイスからストランド状に押し出した。押出物を直ちに水槽へ導入して冷却した後、切断して約0.8mg/個の円柱形状のペレット(種粒子)を作製した。このようにして種粒子を得た。
Example 1
(1) Preparation of seed particles Using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 87 parts by mass of a styrene-methacrylic acid copolymer (PS Japan, G9001: glass transition temperature 121 ° C.), graphite 13 parts by mass of a master batch (average particle diameter of graphite powder: about 15 μm, graphite concentration: 40% by mass, base resin (polystyrene): remainder) was melt-kneaded. The molten resin was extruded in a strand form from a die having a hole diameter of 1.4 mm. The extrudate was immediately introduced into a water bath, cooled, and then cut to produce about 0.8 mg / piece of cylindrical pellets (seed particles). Thus, seed particles were obtained.
(2)発泡性樹脂粒子の作製
撹拌装置の付いた内容積が3Lのオートクレーブに、脱イオン水788g、ピロリン酸ナトリウム4.6g、硝酸マグネシウム11.4gを投入し、塩交換によりオートクレーブ内で懸濁剤としてのピロリン酸マグネシウムを合成した。次いで、この懸濁剤に、界面活性剤としてのアルキルスルホン酸ナトリウム0.2g、電解質としての塩化ナトリウム6g及び硝酸ナトリウム3g、種粒子414gを投入した。このようにして、種粒子を水性媒体中に懸濁させて懸濁液を得た。
(2) Production of expandable resin particles 788 g of deionized water, 4.6 g of sodium pyrophosphate, and 11.4 g of magnesium nitrate were put into an autoclave with a stirrer and a volume of 3 L, and suspended in the autoclave by salt exchange. Magnesium pyrophosphate as a suspending agent was synthesized. Next, 0.2 g of sodium alkyl sulfonate as a surfactant, 6 g of sodium chloride and 3 g of sodium nitrate as an electrolyte, and 414 g of seed particles were added to this suspension. In this way, the seed particles were suspended in an aqueous medium to obtain a suspension.
次に、オートクレーブ内を窒素置換した後、オートクレーブを密閉し、懸濁液を350rpmで撹拌しながらオートクレーブ内を温度72℃まで昇温させた。また、脱イオン水146g、アルキルスルホン酸ナトリウム0.12g、スチレン87g、過酸化ベンゾイル(日油社製、ナイパーBW)2.1g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(化薬アクゾ社製、トリゴノックス117)2.4g、ジクミルパーオキサイド(日油社製、パークミルD)3.0gの混合物をホモジナイザーにより乳化液に調整した。そして、オートクレーブ内の温度が上述の72℃に到達後、乳化液をオートクレーブ内に投入した。次いで、オートクレーブ内を温度72℃で1時間保持した後、4時間かけて温度93℃まで昇温させた。温度93℃到達後、この温度93℃で3時間保持し、さらに温度120℃まで3時間かけて昇温させた。次いで、この温度120℃で2時間保持し、その後室温まで冷却した。そして、温度72℃から93℃の昇温中に、スチレン190gを4時間かけてオートクレーブ内に連続的に添加した。また、温度93℃到達時から1時間後に発泡剤としてのペンタン(n−ペンタン80%、i−ペンタン20%)83gを30分かけてオートクレーブ内に添加して樹脂粒子中に発泡剤を含浸させた。 Next, after the inside of the autoclave was purged with nitrogen, the autoclave was sealed, and the temperature inside the autoclave was raised to 72 ° C. while stirring the suspension at 350 rpm. In addition, 146 g of deionized water, 0.12 g of sodium alkyl sulfonate, 87 g of styrene, 2.1 g of benzoyl peroxide (manufactured by NOF Corporation, Nyper BW), t-butylperoxy-2-ethylhexyl monocarbonate (Kayaku Akzo) Manufactured by Trigonox 117), 2.4 g of dicumyl peroxide (manufactured by NOF Corporation, Park Mill D) 3.0 g was adjusted to an emulsion using a homogenizer. Then, after the temperature in the autoclave reached the above-mentioned 72 ° C., the emulsion was put into the autoclave. Subsequently, after keeping the inside of the autoclave at a temperature of 72 ° C. for 1 hour, the temperature was raised to 93 ° C. over 4 hours. After reaching the temperature of 93 ° C., the temperature was maintained at 93 ° C. for 3 hours, and the temperature was further increased to 120 ° C. over 3 hours. Next, this temperature was maintained at 120 ° C. for 2 hours, and then cooled to room temperature. During the temperature increase from 72 ° C. to 93 ° C., 190 g of styrene was continuously added into the autoclave over 4 hours. Moreover, 83 hours of pentane (80% of n-pentane, 20% of i-pentane) as a blowing agent was added to the autoclave over 30 minutes after the temperature reached 93 ° C., and the resin particles were impregnated with the blowing agent. It was.
オートクレーブ内を室温まで冷却した後、発泡剤を含む発泡性樹脂粒子をオートクレーブより取り出した。そして、この発泡性樹脂粒子を希硝酸で洗浄して樹脂粒子表面に付着した懸濁剤を溶解除去した。次いで、水洗を行い、遠心分離機で脱水した。次に、発泡性樹脂粒子100質量部に対して、帯電防止剤としてのアルキルジエタノールアミン0.01質量部を被覆させた後、流動乾燥(室温空気、10分間)により樹脂粒子表面の水分を除去した。得られた発泡性樹脂粒子100質量部に対してブロッキング防止剤としてのステアリン酸亜鉛0.1質量部、帯電防止剤としてのグリセリンモノステアレート0.05質量部を被覆させた。
このようにして、発泡性樹脂粒子を得た。
After the inside of the autoclave was cooled to room temperature, expandable resin particles containing a foaming agent were taken out from the autoclave. The foamable resin particles were washed with dilute nitric acid to dissolve and remove the suspending agent attached to the resin particle surfaces. Subsequently, it was washed with water and dehydrated with a centrifuge. Next, after coating 0.01 parts by mass of an alkyldiethanolamine as an antistatic agent with respect to 100 parts by mass of the expandable resin particles, moisture on the surface of the resin particles was removed by fluid drying (room temperature air, 10 minutes). . 100 parts by mass of the obtained expandable resin particles were coated with 0.1 part by mass of zinc stearate as an antiblocking agent and 0.05 part by mass of glycerin monostearate as an antistatic agent.
In this way, expandable resin particles were obtained.
(3)発泡粒子成形体の作製
上記のようにして得られた発泡性樹脂粒子500gを容積30Lの常圧バッチ発泡機内に投入し、この発泡機内にスチームを供給することにより、発泡性樹脂粒子を加熱し、発泡させ、嵩密度が約20kg/m3の予備発泡粒子を得た。得られた予備発泡粒子を室温で1日間熟成した後、型物成形機(DABO社製のDSM−0705VS)の金型に充填した。そして、0.09MPa(ゲージ圧力)のスチームで金型内に充填した予備発泡粒子を15秒間加熱した。これにより、予備発泡粒子を金型内にて相互に融着させた。次いで、金型内を所定時間冷却した後、予備発泡粒子同士が相互に融着してなる発泡粒子成形体を金型から取り出した。
このようにして、発泡粒子成形体を得た。
本例の製造方法における、種粒子中の黒鉛量(質量%)及びPS量(質量%)、スチレン添加量、基材樹脂の組成(樹脂組成;質量部)、各種添加剤の配合割合等の製造条件を後述の表1に示す。なお、後述する実施例2〜11、比較例1〜5についても同様の製造条件を表1、表3に示す。
(3) Production of foamed particle molded body 500 g of the foamable resin particles obtained as described above was charged into a 30 L atmospheric pressure batch foaming machine, and steam was supplied into the foaming machine to obtain foaming resin particles. Was heated and foamed to obtain pre-expanded particles having a bulk density of about 20 kg / m 3 . The obtained pre-expanded particles were aged at room temperature for 1 day, and then filled in a mold of a mold molding machine (DSM-0705VS manufactured by DABO). Then, the pre-expanded particles filled in the mold with steam of 0.09 MPa (gauge pressure) were heated for 15 seconds. As a result, the pre-expanded particles were fused to each other in the mold. Next, after cooling the inside of the mold for a predetermined time, a foamed particle molded body obtained by fusing the pre-foamed particles with each other was taken out from the mold.
In this way, a foamed particle molded body was obtained.
In the production method of this example, the amount of graphite (mass%) and the amount of PS (mass%) in the seed particles, the amount of styrene added, the composition of the base resin (resin composition; parts by mass), the blending ratio of various additives, etc. The manufacturing conditions are shown in Table 1 described later. Tables 1 and 3 show similar production conditions for Examples 2 to 11 and Comparative Examples 1 to 5 described later.
(実施例2)
本例は、実施例1とは種粒子とスチレンの配合を変え、さらに難燃剤を添加して発泡性樹脂粒子、予備発泡粒子、発泡粒子成形体を作製する例である。
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体78質量部と、黒鉛マスターバッチ13質量部と、臭素系難燃剤マスターバッチ9質量部とを溶融混練した。スチレン−メタクリル酸共重合体及び黒鉛マスターバッチとしては、実施例1と同様のものを用い、臭素系難燃剤マスターバッチとしては、その組成が、2,2−ビス[4’−(2”,3”−ジブロモ−2”−メチルプロポキシ)−3’,5’−ジブロモフェニル]プロパン:23質量%、2,2−ビス[4’−(2”,3”−ジブロモプロポキシ)−3’,5’−ジブロモフェニル]プロパン:15質量%、基材樹脂(ポリスチレン):残部であるものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。
(Example 2)
This example is an example in which the compounding of seed particles and styrene is changed from Example 1, and a flame retardant is further added to produce expandable resin particles, pre-expanded particles, and expanded particle molded bodies.
Specifically, first, using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 78 parts by mass of a styrene-methacrylic acid copolymer, 13 parts by mass of a graphite masterbatch, and a brominated flame retardant masterbatch 9 A mass part was melt-kneaded. As the styrene-methacrylic acid copolymer and the graphite masterbatch, the same ones as in Example 1 were used, and the brominated flame retardant masterbatch had a composition of 2,2-bis [4 ′-(2 ″, 3 "-dibromo-2" -methylpropoxy) -3 ', 5'-dibromophenyl] propane: 23% by mass, 2,2-bis [4'-(2 ", 3" -dibromopropoxy) -3 ', 5′-dibromophenyl] propane: 15% by mass, base resin (polystyrene): the remainder was used Next, the molten resin was extruded in a strand shape in the same manner as in Example 1, cooled, and then cut. Cylindrical seed particles were prepared.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子は、種粒子の投入量を449gに変更し、温度72℃から93℃の昇温中に添加するスチレンの量を155gに変更した点を除いては、実施例1と同様にして作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, expandable resin particles were produced using the seed particles. In the foamable resin particles of this example, Example 1 was used except that the amount of seed particles added was changed to 449 g and the amount of styrene added during the temperature increase from 72 ° C. to 93 ° C. was changed to 155 g. It produced similarly.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(実施例3)
本例は、実施例1とは種粒子とスチレンの配合をさらに変え、難燃剤を添加して発泡性樹脂粒子、予備発泡粒子、発泡粒子成形体を作製する例である。
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体74質量部と、黒鉛マスターバッチ15質量部と、臭素系難燃剤マスターバッチ11質量部とを溶融混練した。スチレン−メタクリル酸共重合体及び黒鉛マスターバッチとしては、実施例1と同様のものを用い、臭素系難燃剤マスターバッチとしては、実施例2と同様のものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。
Example 3
This example is an example in which the blending of seed particles and styrene is further changed from Example 1, and a flame retardant is added to produce expandable resin particles, pre-expanded particles, and expanded particle molded bodies.
Specifically, first, using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 74 parts by mass of a styrene-methacrylic acid copolymer, 15 parts by mass of a graphite masterbatch, and a brominated flame retardant masterbatch 11 A mass part was melt-kneaded. The same styrene-methacrylic acid copolymer and graphite masterbatch as those used in Example 1 were used, and the same bromine-based flame retardant masterbatch as used in Example 2 was used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子の作製にあたっては、まず、脱イオン水の量を642gに変更した点を除いては実施例1と同様にして、オートクレーブ内にてピロリン酸マグネシウムの懸濁剤を合成した。
次いで、懸濁剤を合成したオートクレーブ内に、界面活性剤としてのアルキルスルホン酸ナトリウム0.2g、電解質としての塩化ナトリウム6gと硝酸ナトリウム3g、種粒子345gを投入した。このようにして、種粒子を水性媒体中に懸濁させて懸濁液を得た。
Next, expandable resin particles were produced using the seed particles. In preparing the expandable resin particles of this example, first, a suspension of magnesium pyrophosphate was synthesized in an autoclave in the same manner as in Example 1 except that the amount of deionized water was changed to 642 g. did.
Next, 0.2 g of sodium alkyl sulfonate as a surfactant, 6 g of sodium chloride, 3 g of sodium nitrate as an electrolyte, and 345 g of seed particles were charged into the autoclave in which the suspension was synthesized. In this way, the seed particles were suspended in an aqueous medium to obtain a suspension.
次に、オートクレーブ内を窒素置換した後、オートクレーブを密閉し、懸濁液を350rpmで撹拌しながらオートクレーブ内を温度72℃まで昇温させた。また、脱イオン水146g、アルキルスルホン酸ナトリウム0.12g、スチレン87g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(化薬アクゾ社製、トリゴノックス117)2.4g、ジクミルパーオキサイド(日油社製、パークミルD)3.0gの混合物をホモジナイザーにより乳化液に調整した。これを以下、乳化液Aという。そして、オートクレーブ内の温度が上述の72℃に到達後、乳化液Aをオートクレーブ内に投入した。また、脱イオン水146g、アルキルスルホン酸ナトリウム0.12g、スチレン70g、過酸化ベンゾイル(日油社製、ナイパーBW)2.1gの混合物をホモジナイザーにより乳化液に調整した。これを以下、乳化液Bという。そして、オートクレーブ内の温度が上述の72℃に到達してから1時間後に、乳化液Bをオートクレーブ内に投入した。 Next, after the inside of the autoclave was purged with nitrogen, the autoclave was sealed, and the temperature inside the autoclave was raised to 72 ° C. while stirring the suspension at 350 rpm. In addition, 146 g of deionized water, 0.12 g of sodium alkyl sulfonate, 87 g of styrene, 2.4 g of t-butylperoxy-2-ethylhexyl monocarbonate (manufactured by Kayaku Akzo, Trigonox 117), dicumyl peroxide (NOF) A mixture of 3.0 g (Park Mill D) was adjusted to an emulsion with a homogenizer. This is hereinafter referred to as Emulsion A. And after the temperature in an autoclave reached the above-mentioned 72 ° C, emulsified liquid A was supplied into an autoclave. Further, a mixture of 146 g of deionized water, 0.12 g of sodium alkyl sulfonate, 70 g of styrene, and 2.1 g of benzoyl peroxide (manufactured by NOF Corporation, Nyper BW) was adjusted to an emulsion using a homogenizer. This is hereinafter referred to as emulsion B. And 1 hour after the temperature in the autoclave reached the above-mentioned 72 ° C., the emulsion B was charged into the autoclave.
そして、オートクレーブ内を温度72℃で2時間保持した後は、実施例1と同様の条件で加熱を行うと共にスチレン、ペンタンを添加した。このようにして、発泡性樹脂粒子を作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
And after hold | maintaining the inside of an autoclave for 2 hours at the temperature of 72 degreeC, while heating on the conditions similar to Example 1, styrene and pentane were added. In this way, expandable resin particles were produced.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(実施例4)
本例は、実施例1とは種粒子とスチレンの配合をさらに変え、難燃剤を添加して発泡性樹脂粒子、予備発泡粒子、発泡粒子成形体を作製する例である。
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体78質量部と、黒鉛マスターバッチ13質量部と、臭素系難燃剤マスターバッチ9質量部とを溶融混練した。スチレン−メタクリル酸共重合体及び黒鉛マスターバッチとしては、実施例1と同様のものを用い、臭素系難燃剤マスターバッチとしては、実施例2と同様のものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。
Example 4
This example is an example in which the blending of seed particles and styrene is further changed from Example 1, and a flame retardant is added to produce expandable resin particles, pre-expanded particles, and expanded particle molded bodies.
Specifically, first, using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 78 parts by mass of a styrene-methacrylic acid copolymer, 13 parts by mass of a graphite masterbatch, and a brominated flame retardant masterbatch 9 A mass part was melt-kneaded. The same styrene-methacrylic acid copolymer and graphite masterbatch as those used in Example 1 were used, and the same bromine-based flame retardant masterbatch as used in Example 2 was used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子は、種粒子の投入量を483gに変更し、温度72℃から93℃の昇温中に添加するスチレンの量を121gに変更した点を除いては、実施例1と同様にして作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, expandable resin particles were produced using the seed particles. In the foamable resin particles of this example, Example 1 was used except that the amount of seed particles charged was changed to 483 g and the amount of styrene added during the temperature increase from 72 ° C. to 93 ° C. was changed to 121 g. It produced similarly.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(実施例5)
本例は、実施例1とは種粒子とスチレンの配合をさらに変え、難燃剤を添加して発泡性樹脂粒子、予備発泡粒子、発泡粒子成形体を作製する例である。
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体61質量部と、黒鉛マスターバッチ21質量部と、臭素系難燃剤マスターバッチ18質量部とを溶融混練した。スチレン−メタクリル酸共重合体及び黒鉛マスターバッチとしては、実施例1と同様のものを用い、臭素系難燃剤マスターバッチとしては、実施例2と同様のものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。
(Example 5)
This example is an example in which the blending of seed particles and styrene is further changed from Example 1, and a flame retardant is added to produce expandable resin particles, pre-expanded particles, and expanded particle molded bodies.
Specifically, first, using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 61 parts by mass of a styrene-methacrylic acid copolymer, 21 parts by mass of a graphite masterbatch, and a brominated flame retardant masterbatch 18 A mass part was melt-kneaded. The same styrene-methacrylic acid copolymer and graphite masterbatch as those used in Example 1 were used, and the same bromine-based flame retardant masterbatch as used in Example 2 was used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子は、本例において作製した種粒子を用いた点を除いては、実施例1と同様にして作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, expandable resin particles were produced using the seed particles. The expandable resin particles of this example were produced in the same manner as in Example 1 except that the seed particles produced in this example were used.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(実施例6)
本例は、実施例1とは種粒子とスチレンの配合をさらに変え、難燃剤を添加して発泡性樹脂粒子、予備発泡粒子、発泡粒子成形体を作製する例である。
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体87.5質量部と、黒鉛マスターバッチ7.5質量部と、臭素系難燃剤マスターバッチ5質量部とを溶融混練した。スチレン−メタクリル酸共重合体及び黒鉛マスターバッチとしては、実施例1と同様のものを用い、臭素系難燃剤マスターバッチとしては、実施例2と同様のものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。
(Example 6)
This example is an example in which the blending of seed particles and styrene is further changed from Example 1, and a flame retardant is added to produce expandable resin particles, pre-expanded particles, and expanded particle molded bodies.
Specifically, first, using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 87.5 parts by mass of a styrene-methacrylic acid copolymer, 7.5 parts by mass of a graphite masterbatch, 5 parts by mass of a fuel master batch was melt-kneaded. The same styrene-methacrylic acid copolymer and graphite masterbatch as those used in Example 1 were used, and the same bromine-based flame retardant masterbatch as used in Example 2 was used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子は、種粒子の投入量を431gに変更し、温度72℃から93℃の昇温中に添加するスチレンの量を173gに変更した点を除いては、実施例1と同様にして作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, expandable resin particles were produced using the seed particles. The expandable resin particles of this example were the same as in Example 1 except that the amount of seed particles was changed to 431 g and the amount of styrene added during the temperature increase from 72 ° C. to 93 ° C. was changed to 173 g. It produced similarly.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(実施例7)
本例は、実施例1とは種粒子とスチレンの配合をさらに変え、難燃剤を添加して発泡性樹脂粒子、予備発泡粒子、発泡粒子成形体を作製する例である。
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体69質量部と、黒鉛マスターバッチ18質量部と、臭素系難燃剤マスターバッチ13質量部とを溶融混練した。スチレン−メタクリル酸共重合体及び黒鉛マスターバッチとしては、実施例1と同様のものを用い、臭素系難燃剤マスターバッチとしては、実施例2と同様のものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。
(Example 7)
This example is an example in which the blending of seed particles and styrene is further changed from Example 1, and a flame retardant is added to produce expandable resin particles, pre-expanded particles, and expanded particle molded bodies.
Specifically, first, using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 69 parts by mass of a styrene-methacrylic acid copolymer, 18 parts by mass of a graphite masterbatch, and a brominated flame retardant masterbatch 13 A mass part was melt-kneaded. The same styrene-methacrylic acid copolymer and graphite masterbatch as those used in Example 1 were used, and the same bromine-based flame retardant masterbatch as used in Example 2 was used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子の作製にあたっては、まず、実施例1と同様にして、オートクレーブ内にてピロリン酸マグネシウムの懸濁剤を合成した。
次いで、懸濁剤を合成したオートクレーブ内に、界面活性剤としてのアルキルスルホン酸ナトリウム0.2g、電解質としての塩化ナトリウム6gと硝酸ナトリウム3g、種粒子311gを投入した。このようにして、種粒子を水性媒体中に懸濁させて懸濁液を得た。
Next, expandable resin particles were produced using the seed particles. In producing the expandable resin particles of this example, first, a suspension of magnesium pyrophosphate was synthesized in an autoclave in the same manner as in Example 1.
Next, 0.2 g of sodium alkyl sulfonate as a surfactant, 6 g of sodium chloride and 3 g of sodium nitrate as an electrolyte, and 311 g of seed particles were charged into the autoclave in which the suspension was synthesized. In this way, the seed particles were suspended in an aqueous medium to obtain a suspension.
次に、オートクレーブ内を窒素置換した後、オートクレーブを密閉し、懸濁液を350rpmで撹拌しながらオートクレーブ内を温度72℃まで昇温させた。また、実施例3と同様の乳化液Aを作製し、オートクレーブ内の温度が上述の72℃に到達後、この乳化液Aをオートクレーブ内に投入した。また、実施例3と同様の乳化液Bを作製し、オートクレーブ内の温度が上述の72℃に到達してから1時間後に、この乳化液Bをオートクレーブ内に投入した。 Next, after the inside of the autoclave was purged with nitrogen, the autoclave was sealed, and the temperature inside the autoclave was raised to 72 ° C. while stirring the suspension at 350 rpm. Moreover, the emulsion A similar to Example 3 was produced, and after the temperature in the autoclave reached the above-mentioned 72 ° C., the emulsion A was charged into the autoclave. Further, an emulsion B similar to that of Example 3 was prepared, and this emulsion B was charged into the autoclave 1 hour after the temperature in the autoclave reached 72 ° C. described above.
そして、オートクレーブ内を温度72℃で2時間保持した後、温度72℃から93℃の昇温中に添加するスチレンの量を224gに変更した点を除いては、実施例1と同様にして発泡性樹脂粒子を作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
The autoclave was held at a temperature of 72 ° C. for 2 hours, and then foamed in the same manner as in Example 1 except that the amount of styrene added during the temperature increase from 72 ° C. to 93 ° C. was changed to 224 g. Resin particles were prepared.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(実施例8)
本例は、実施例1とは種粒子とスチレンの配合をさらに変え、難燃剤を添加して発泡性樹脂粒子、予備発泡粒子、発泡粒子成形体を作製する例である。
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体83.5質量部と、黒鉛マスターバッチ10質量部と、臭素系難燃剤マスターバッチ6.5質量部とを溶融混練した。スチレン−メタクリル酸共重合体及び黒鉛マスターバッチとしては、実施例1と同様のものを用い、臭素系難燃剤マスターバッチとしては、実施例2と同様のものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。
(Example 8)
This example is an example in which the blending of seed particles and styrene is further changed from Example 1, and a flame retardant is added to produce expandable resin particles, pre-expanded particles, and expanded particle molded bodies.
Specifically, first, using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 83.5 parts by mass of a styrene-methacrylic acid copolymer, 10 parts by mass of a graphite master batch, and a brominated flame retardant master. 6.5 parts by mass of the batch was melt-kneaded. The same styrene-methacrylic acid copolymer and graphite masterbatch as those used in Example 1 were used, and the same bromine-based flame retardant masterbatch as used in Example 2 was used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子は、種粒子の投入量を552gに変更し、温度72℃から93℃の昇温中に添加するスチレンの量を52gに変更した点を除いては、実施例1と同様にして作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, expandable resin particles were produced using the seed particles. The expandable resin particles of this example are the same as in Example 1 except that the amount of seed particles added was changed to 552 g and the amount of styrene added during the temperature increase from 72 ° C. to 93 ° C. was changed to 52 g. It produced similarly.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(実施例9)
本例は、実施例1とは種粒子とスチレンの配合及び黒鉛の平均粒子径を変え、難燃剤を添加して発泡性樹脂粒子、予備発泡粒子、発泡粒子成形体を作製する例である。
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体78質量部と、黒鉛マスターバッチ13質量部と、臭素系難燃剤マスターバッチ9質量部とを溶融混練した。本例においては、黒鉛マスターバッチとしては、黒鉛粉の平均粒子径:約5μm、黒鉛濃度:40質量%、基材樹脂(ポリスチレン):残部であるものを用いた。また、スチレン−メタクリル酸共重合体としては、実施例1と同様のものを用い、臭素系難燃剤マスターバッチとしては、実施例2と同様のものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。
Example 9
This example is an example in which the blending of seed particles and styrene and the average particle diameter of graphite are changed from Example 1, and a flame retardant is added to produce expandable resin particles, pre-expanded particles, and expanded particle molded bodies.
Specifically, first, using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 78 parts by mass of a styrene-methacrylic acid copolymer, 13 parts by mass of a graphite masterbatch, and a brominated flame retardant masterbatch 9 A mass part was melt-kneaded. In this example, as the graphite masterbatch, a graphite powder having an average particle size of about 5 μm, a graphite concentration of 40% by mass, and a base resin (polystyrene): the balance was used. Further, the same styrene-methacrylic acid copolymer as in Example 1 was used, and the same brominated flame retardant masterbatch as in Example 2 was used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子は、種粒子の投入量を431gに変更し、温度72℃から93℃の昇温中に添加するスチレンの量を173gに変更した点を除いては、実施例1と同様にして作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, expandable resin particles were produced using the seed particles. The expandable resin particles of this example were the same as in Example 1 except that the amount of seed particles was changed to 431 g and the amount of styrene added during the temperature increase from 72 ° C. to 93 ° C. was changed to 173 g. It produced similarly.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(実施例10)
本例は、実施例1とは、スチレン−メタクリル酸共重合体の種類、種粒子とスチレンの配合を変え、難燃剤を添加して発泡性樹脂粒子、予備発泡粒子、発泡粒子成形体を作製する例である。
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体78質量部と、黒鉛マスターバッチ13質量部と、臭素系難燃剤マスターバッチ9質量部とを溶融混練した。本例においては、スチレン−メタクリル酸共重合体としては、DIC社製のリューレックスA−14(ガラス転移温度129℃)を用いた。また、黒鉛マスターバッチとしては、実施例1と同様のものを用い、臭素系難燃剤マスターバッチとしては、実施例2と同様のものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。
(Example 10)
This example is different from Example 1 in that the type of styrene-methacrylic acid copolymer, the blend of seed particles and styrene are changed, and a flame retardant is added to produce expandable resin particles, pre-expanded particles, and expanded particle molded bodies. This is an example.
Specifically, first, using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 78 parts by mass of a styrene-methacrylic acid copolymer, 13 parts by mass of a graphite masterbatch, and a brominated flame retardant masterbatch 9 A mass part was melt-kneaded. In this example, as the styrene-methacrylic acid copolymer, Lurex A-14 (glass transition temperature 129 ° C.) manufactured by DIC was used. In addition, the same graphite masterbatch as in Example 1 was used, and the same bromine-based flame retardant masterbatch as in Example 2 was used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子は、種粒子の投入量を449gに変更し、温度72℃から93℃の昇温中に添加するスチレンの量を155gに変更した点を除いては、実施例1と同様にして作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, expandable resin particles were produced using the seed particles. In the foamable resin particles of this example, Example 1 was used except that the amount of seed particles added was changed to 449 g and the amount of styrene added during the temperature increase from 72 ° C. to 93 ° C. was changed to 155 g. It produced similarly.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(実施例11)
本例は、実施例1とは種粒子とスチレンの配合、黒鉛の平均粒子径、及び発泡剤の組成を変え、さらに難燃剤を添加して発泡性樹脂粒子、予備発泡粒子、発泡粒子成形体を作製する例である。
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体48.4質量部と、ポリスチレン樹脂4.6質量部、黒鉛マスターバッチ8質量部と、臭素系難燃剤マスターバッチ9質量部とを溶融混練した。スチレン−メタクリル酸共重合体としては、実施例1と同様のものを用い、ポリスチレン樹脂としては、PSジャパン社製の「679」(重量平均分子量18万)を用いた。本例においては、黒鉛マスターバッチとしては、黒鉛粉の平均粒子径:約5μm、黒鉛濃度:40質量%、基材樹脂(ポリスチレン):残部であるものを用いた。また、臭素系難燃剤マスターバッチとしては、実施例2と同様のものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。
(Example 11)
This example is different from Example 1 in that the composition of seed particles and styrene, the average particle diameter of graphite, and the composition of the foaming agent are changed, and further, a flame retardant is added to obtain expandable resin particles, pre-expanded particles, and expanded particle molded bodies. It is an example which produces.
Specifically, first, using a φ30 mm single screw extruder, at a temperature of 210 to 230 ° C., 48.4 parts by mass of a styrene-methacrylic acid copolymer, 4.6 parts by mass of a polystyrene resin, and 8 parts by mass of a graphite master batch. And 9 parts by mass of a brominated flame retardant master batch were melt-kneaded. As the styrene-methacrylic acid copolymer, the same one as in Example 1 was used, and as the polystyrene resin, “679” (weight average molecular weight 180,000) manufactured by PS Japan Ltd. was used. In this example, as the graphite masterbatch, a graphite powder having an average particle size of about 5 μm, a graphite concentration of 40% by mass, and a base resin (polystyrene): the balance was used. Further, the same brominated flame retardant master batch as that used in Example 2 was used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子は、種粒子の投入量を431gに変更し、温度72℃から93℃の昇温中に添加するスチレンの量を173gに変更し、発泡剤としてペンタン(n−ペンタン80%、i−ペンタン20%)72gとブタン(n−ブタン65%、i−ブタン35%)22gを併用した点を除いては、実施例1と同様にして作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, expandable resin particles were produced using the seed particles. In the foamable resin particles of this example, the amount of seed particles added was changed to 431 g, the amount of styrene added during the temperature increase from 72 ° C. to 93 ° C. was changed to 173 g, and pentane (n-pentane as a blowing agent) was changed. 80%, i-pentane 20%) 72 g and butane (n-butane 65%, i-butane 35%) 22 g were used in the same manner as in Example 1 except that 22 g was used in combination.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
上述の実施例1〜11においては、スチレン−(メタ)アクリル酸共重合体を含有する種粒子にスチレンを含浸重合(シード重合)させることにより、スチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との複合樹脂を基材樹脂とする発泡性樹脂粒子を作製した。これに対し、下記の比較例1〜3は、種粒子にスチレンを含浸して重合することなく、スチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂とを溶融混練することのみにより、これらの混合樹脂を基材樹脂とする発泡性樹脂粒子を作製する例である。 In Examples 1 to 11 described above, styrene- (meth) acrylic acid copolymer and polystyrene were obtained by impregnating and polymerizing seed particles containing styrene- (meth) acrylic acid copolymer (seed polymerization). Expandable resin particles having a base resin as a composite resin with a resin were prepared. On the other hand, the following Comparative Examples 1 to 3 are obtained by melting and kneading a styrene- (meth) acrylic acid copolymer and a polystyrene resin without impregnating seed particles with styrene and polymerizing them. It is an example which produces the expandable resin particle which uses mixed resin as base resin.
(比較例1)
具体的には、まず、φ26mm同方向2軸押出機を用いて、温度200℃で、スチレン−メタクリル酸共重合体52質量部、ポリスチレン樹脂35質量部、黒鉛マスターバッチ7.5質量部、臭素系難燃剤マスターバッチ5.5質量部を溶融混練した。本例において、ポリスチレン樹脂としては、PSジャパン社製のポリスチレン「680」(重量平均分子量18万)を用いた。また、スチレン−メタクリル酸共重合体及び黒鉛マスターバッチとしては、実施例1と同様のものを用い、臭素系難燃剤マスターバッチとしては、実施例2と同様のものを用いた。
次いで、溶融樹脂を穴径1.5mmの小孔からストランド状に押し出し、直ちに水槽へ導入して冷却した後、切断して平均4mg/個の円柱形状の混合樹脂粒子を得た。
(Comparative Example 1)
Specifically, first, using a φ26 mm same-direction twin screw extruder, at a temperature of 200 ° C., 52 parts by mass of a styrene-methacrylic acid copolymer, 35 parts by mass of a polystyrene resin, 7.5 parts by mass of a graphite master batch, bromine 5.5 parts by mass of the flame retardant master batch of the system flame was kneaded. In this example, polystyrene “680” (weight average molecular weight 180,000) manufactured by PS Japan Co., Ltd. was used as the polystyrene resin. Moreover, as a styrene-methacrylic acid copolymer and a graphite masterbatch, the thing similar to Example 1 was used, and the thing similar to Example 2 was used as a brominated flame retardant masterbatch.
Next, the molten resin was extruded in a strand shape from a small hole having a hole diameter of 1.5 mm, immediately introduced into a water bath, cooled, and then cut to obtain 4 mg / piece of cylindrical mixed resin particles on average.
次に、撹拌装置の付いた内容積が3Lのオートクレーブに、脱イオン水900g、ピロリン酸ナトリウム4.6g、硝酸マグネシウム11.4gを投入し、塩交換によりオートクレーブ内で懸濁剤としてのピロリン酸マグネシウムを合成した。次いで、この懸濁剤に、界面活性剤としてのアルキルスルホン酸ナトリウム0.3g、電解質としての塩化ナトリウム6g及び硝酸ナトリウム3g、上記混合樹脂粒子600g、ジクミルパーオキサイド(日油社製、パークミルD)3.0gを投入した。このようにして、混合樹脂粒子を水性媒体中に懸濁させて懸濁液を得た。 Next, 900 g of deionized water, 4.6 g of sodium pyrophosphate, and 11.4 g of magnesium nitrate are added to an autoclave with a 3 L internal volume equipped with a stirrer, and pyrophosphoric acid as a suspending agent in the autoclave by salt exchange. Magnesium was synthesized. Next, 0.3 g of sodium alkyl sulfonate as a surfactant, 6 g of sodium chloride and 3 g of sodium nitrate as an electrolyte, 600 g of the mixed resin particles, dicumyl peroxide (manufactured by NOF Corporation, Park Mill D) ) 3.0 g was charged. In this way, the mixed resin particles were suspended in an aqueous medium to obtain a suspension.
次に、オートクレーブ内を窒素置換した後、オートクレーブを密閉し、懸濁液を350rpmで撹拌しながらオートクレーブ内を温度120℃まで昇温させた。そして、温度120℃到達後、発泡剤としてペンタン(n−ペンタン80%、i−ペンタン20%)72gを30分かけてオートクレーブ内に添加して混合樹脂粒子に発泡剤を含浸させた。オートクレーブ内を室温まで冷却した後、発泡性樹脂粒子をオートクレーブより取り出した。次いで、実施例1と同様にして、洗浄、脱水、帯電防止剤及びブロッキング防止剤の被覆を行うことにより、発泡性樹脂粒子を得た。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, after the inside of the autoclave was purged with nitrogen, the autoclave was sealed, and the temperature inside the autoclave was raised to 120 ° C. while stirring the suspension at 350 rpm. Then, after reaching the temperature of 120 ° C., 72 g of pentane (n-pentane 80%, i-pentane 20%) as a blowing agent was added to the autoclave over 30 minutes to impregnate the mixed resin particles with the blowing agent. After the inside of the autoclave was cooled to room temperature, the expandable resin particles were taken out from the autoclave. Next, in the same manner as in Example 1, foaming resin particles were obtained by performing washing, dehydration, coating with an antistatic agent and an antiblocking agent.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(比較例2)
本例は、比較例1とは異なる分子量のポリスチレン樹脂を用いて、スチレン−(メタ)アクリル酸共重合体を連続相とし、ポリスチレン樹脂を分散相とする海島構造を示す混合樹脂を基材樹脂とする発泡性樹脂粒子を作製した例、すなわち、比較例1の発泡性樹脂粒子の海島構造が逆転した混合樹脂を基材樹脂とする発泡性樹脂粒子を作製した例である。
具体的には、ポリスチレン樹脂としてPSジャパン社製のポリスチレン「GX−154」(重量平均分子量27万)を用い、φ30mmの同方向2軸押出機により、200℃の温度で、溶融混練し、溶融樹脂を穴径1.0mmの小孔からストランド状に押し出し、直ちに水槽へ導入して冷却後、切断して平均1.5mg/個の円柱形状の混合樹脂粒子を作製した以外は、比較例1と同様にして混合樹脂粒子を得た。
(Comparative Example 2)
In this example, a polystyrene resin having a molecular weight different from that of Comparative Example 1 is used, and a mixed resin showing a sea-island structure in which a styrene- (meth) acrylic acid copolymer is a continuous phase and a polystyrene resin is a dispersed phase is a base resin This is an example of producing expandable resin particles using as a base resin a mixed resin in which the sea-island structure of the expandable resin particles of Comparative Example 1 is reversed.
Specifically, polystyrene “GX-154” (weight average molecular weight 270,000) manufactured by PS Japan Co., Ltd. is used as the polystyrene resin, and melt kneaded and melted at a temperature of 200 ° C. with a φ30 mm same-direction twin screw extruder. Comparative Example 1 except that the resin was extruded in a strand shape from a small hole having a hole diameter of 1.0 mm, immediately introduced into a water tank, cooled, and then cut to produce 1.5 mg / piece of cylindrical mixed resin particles on average. In the same manner, mixed resin particles were obtained.
次に、撹拌装置の付いた内容積が3Lのオートクレーブに、脱イオン水900g、ピロリン酸ナトリウム4.6g、硝酸マグネシウム11.4gを投入し、塩交換によりオートクレーブ内で懸濁剤としてのピロリン酸マグネシウムを合成した。次いで、この懸濁剤に、界面活性剤としてのアルキルスルホン酸ナトリウム0.3g、電解質としての塩化ナトリウム9g及び硝酸ナトリウム4.5g、上記混合樹脂粒子600g、ジクミルパーオキサイド(日油社製、パークミルD)2.6gを投入した。このようにして、混合樹脂粒子を水性媒体中に懸濁させて懸濁液を得た。 Next, 900 g of deionized water, 4.6 g of sodium pyrophosphate, and 11.4 g of magnesium nitrate are added to an autoclave with a 3 L internal volume equipped with a stirrer, and pyrophosphoric acid as a suspending agent in the autoclave by salt exchange. Magnesium was synthesized. Next, 0.3 g of sodium alkyl sulfonate as a surfactant, 9 g of sodium chloride and 4.5 g of sodium nitrate as an electrolyte, 600 g of the mixed resin particles, dicumyl peroxide (manufactured by NOF Corporation, Park Mill D) 2.6 g was charged. In this way, the mixed resin particles were suspended in an aqueous medium to obtain a suspension.
次に、オートクレーブ内を窒素置換した後、オートクレーブを密閉し、懸濁液を350rpmで撹拌しながらオートクレーブ内を温度120℃まで昇温させた。そして、温度120℃到達後、発泡剤としてペンタン(n−ペンタン80%,i−ペンタン20%)78gを30分かけてオートクレーブ内に添加して混合樹脂粒子に発泡剤を含浸させた。オートクレーブ内を室温まで冷却した後、発泡性樹脂粒子をオートクレーブより取り出した。次いで、実施例1と同様にして、洗浄、脱水、帯電防止剤及びブロッキング防止剤の被覆を行うことにより、発泡性樹脂粒子を得た。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, after the inside of the autoclave was purged with nitrogen, the autoclave was sealed, and the temperature inside the autoclave was raised to 120 ° C. while stirring the suspension at 350 rpm. Then, after reaching the temperature of 120 ° C., 78 g of pentane (n-pentane 80%, i-pentane 20%) as a foaming agent was added to the autoclave over 30 minutes to impregnate the mixed resin particles with the foaming agent. After the inside of the autoclave was cooled to room temperature, the expandable resin particles were taken out from the autoclave. Next, in the same manner as in Example 1, foaming resin particles were obtained by performing washing, dehydration, coating with an antistatic agent and an antiblocking agent.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(比較例3)
本例は、比較例2よりもスチレン−メタクリル酸共重合体の質量比の高い、スチレン−メタクリル酸共重合体とポリスチレン樹脂との混合樹脂を基材樹脂とする発泡性樹脂粒子を作製した例である。
(Comparative Example 3)
This example is an example in which expandable resin particles using a mixed resin of a styrene-methacrylic acid copolymer and a polystyrene resin having a higher mass ratio of styrene-methacrylic acid copolymer than Comparative Example 2 as a base resin were prepared. It is.
具体的には、まず、φ30mmの同方向2軸押出機により、温度200℃で、スチレン−メタクリル酸共重合体66重量部、ポリスチレン樹脂21重量部、黒鉛マスターバッチ7.5重量部、臭素系難燃剤マスターバッチ5.5重量部を溶融混練した。本例において、スチレン−メタクリル酸共重合体及び黒鉛マスターバッチとしては実施例1と同様のものを用い、ポリスチレン樹脂としては比較例1と同様のものを用い、臭素系難燃剤マスターバッチとしては実施例2と同様のものを用いた。
次いで、溶融樹脂を穴径1.0mmの小孔からストランド状に押し出し、直ちに水槽へ導入して冷却後、切断して平均1.5mg/個の円柱形状の混合樹脂粒子を作製した。そして、この混合樹脂粒子を用いた点を除いては、比較例2と同様にして発泡性樹脂粒子、予備発泡粒子、及び発泡粒子成形体を得た。
Specifically, first, by a same-direction twin screw extruder of φ30 mm, at a temperature of 200 ° C., 66 parts by weight of a styrene-methacrylic acid copolymer, 21 parts by weight of a polystyrene resin, 7.5 parts by weight of a graphite master batch, bromine-based 5.5 parts by weight of a flame retardant master batch was melt-kneaded. In this example, the same styrene-methacrylic acid copolymer and graphite masterbatch as in Example 1 were used, the same polystyrene resin as in Comparative Example 1 was used, and the brominated flame retardant masterbatch was carried out. The same as in Example 2 was used.
Next, the molten resin was extruded in a strand shape from a small hole having a hole diameter of 1.0 mm, immediately introduced into a water tank, cooled, and then cut to produce 1.5 mg / piece of cylindrical mixed resin particles on average. And except for the point which used this mixed resin particle, it carried out similarly to the comparative example 2, and obtained the expandable resin particle, the pre-expanded particle, and the expanded particle molded object.
(比較例4)
本例は、複合樹脂粒子中のポリスチレンの質量比を非常に高くして発泡性樹脂粒子を作製する例である。
(Comparative Example 4)
In this example, expandable resin particles are produced by increasing the mass ratio of polystyrene in the composite resin particles very high.
具体的には、まず、φ30mm単軸押出機を用いて、温度210〜230℃で、スチレン−メタクリル酸共重合体70質量部と、黒鉛マスターバッチ30質量部とを溶融混練した。スチレン−メタクリル酸共重合体及び黒鉛マスターバッチとしては、実施例1と同様のものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。 Specifically, first, 70 parts by mass of a styrene-methacrylic acid copolymer and 30 parts by mass of a graphite master batch were melt-kneaded at a temperature of 210 to 230 ° C. using a φ30 mm single screw extruder. The same styrene-methacrylic acid copolymer and graphite master batch as those used in Example 1 were used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子の作製にあたっては、まず、脱イオン水の量を552gに変更した点を除いては実施例1と同様にして、オートクレーブ内にてピロリン酸マグネシウムの懸濁剤を合成した。
次いで、懸濁剤を合成したオートクレーブ内に、界面活性剤としてのアルキルスルホン酸ナトリウム0.2g、電解質としての塩化ナトリウム6gと硝酸ナトリウム3g、種粒子173gを投入した。このようにして、種粒子を水性媒体中に懸濁させて懸濁液を得た。
Next, expandable resin particles were produced using the seed particles. In producing the expandable resin particles of this example, first, a suspension of magnesium pyrophosphate was synthesized in an autoclave in the same manner as in Example 1 except that the amount of deionized water was changed to 552 g. did.
Next, 0.2 g of sodium alkyl sulfonate as a surfactant, 6 g of sodium chloride and 3 g of sodium nitrate as an electrolyte, and 173 g of seed particles were charged into the autoclave in which the suspension was synthesized. In this way, the seed particles were suspended in an aqueous medium to obtain a suspension.
次に、オートクレーブ内を窒素置換した後、オートクレーブを密閉し、懸濁液を350rpmで撹拌しながらオートクレーブ内を温度72℃まで昇温させた。また、脱イオン水146g、アルキルスルホン酸ナトリウム0.12g、スチレン34.8g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(化薬アクゾ社製、トリゴノックス117)2.4gの混合物をホモジナイザーにより乳化液に調整した。これを以下、乳化液Cという。そして、オートクレーブ内の温度が上述の72℃に到達後、乳化液Cをオートクレーブ内に投入した。また、脱イオン水146g、アルキルスルホン酸ナトリウム0.12g、スチレン24.4g、過酸化ベンゾイル(日油社製、ナイパーBW)2.1gの混合物をホモジナイザーにより乳化液に調整した。これを以下、乳化液Dという。そして、オートクレーブ内の温度が上述の72℃に到達してから1時間後に、乳化液Dをオートクレーブ内に投入した。 Next, after the inside of the autoclave was purged with nitrogen, the autoclave was sealed, and the temperature inside the autoclave was raised to 72 ° C. while stirring the suspension at 350 rpm. In addition, a mixture of 146 g of deionized water, 0.12 g of sodium alkyl sulfonate, 34.8 g of styrene, t-butylperoxy-2-ethylhexyl monocarbonate (manufactured by Kayaku Akzo, Trigonox 117) was emulsified with a homogenizer. Adjusted to liquid. This is hereinafter referred to as Emulsion C. And after the temperature in an autoclave reached the above-mentioned 72 ° C, emulsion C was thrown into the autoclave. A mixture of 146 g of deionized water, 0.12 g of sodium alkyl sulfonate, 24.4 g of styrene, and 2.1 g of benzoyl peroxide (manufactured by NOF Corporation, Nyper BW) was prepared into an emulsion using a homogenizer. This is hereinafter referred to as emulsion D. And 1 hour after the temperature in the autoclave reached the above-mentioned 72 ° C., the emulsion D was charged into the autoclave.
そして、オートクレーブ内を温度72℃で2時間保持した後、温度72℃から93℃の昇温中に添加するスチレンの量を459gに変更した点を除いては、実施例1と同様にして発泡性樹脂粒子を作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
The autoclave was held at a temperature of 72 ° C. for 2 hours, and then foamed in the same manner as in Example 1 except that the amount of styrene added during the temperature increase from 72 ° C. to 93 ° C. was changed to 459 g. Resin particles were prepared.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
(比較例5)
実施例1〜11においては、スチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂とを基材樹脂とする発泡性樹脂粒子を作製した。これに対し、本例は、アクリロニトリル−スチレン共重合体とポリスチレン樹脂とを基材樹脂とする発泡性樹脂粒子を作製する例である。
(Comparative Example 5)
In Examples 1 to 11, expandable resin particles using styrene- (meth) acrylic acid copolymer and polystyrene resin as base resins were prepared. On the other hand, this example is an example of producing expandable resin particles using acrylonitrile-styrene copolymer and polystyrene resin as base resins.
具体的には、まず、φ30mm単軸押出機を用いて、温度220〜240℃で、アクリロニトリル−スチレン共重合体80質量部と、黒鉛マスターバッチ20質量部とを溶融混練した。本例において、アクリロニトリル−スチレン共重合体としては、電気化学工業社製の「AG−XGS」を用い、黒鉛マスターバッチとしては、黒鉛粉の平均粒子径:約15μm、黒鉛濃度:25質量%、基材樹脂(アクリロニトリル−スチレン共重合体):残部であるものを用いた。次いで、実施例1と同様に溶融樹脂をストランド状に押し出し、冷却した後、切断して円柱形状の種粒子を作製した。 Specifically, first, 80 parts by mass of acrylonitrile-styrene copolymer and 20 parts by mass of graphite masterbatch were melt-kneaded at a temperature of 220 to 240 ° C. using a φ30 mm single screw extruder. In this example, as the acrylonitrile-styrene copolymer, “AG-XGS” manufactured by Denki Kagaku Kogyo Co., Ltd. was used, and as the graphite master batch, the average particle diameter of the graphite powder: about 15 μm, the graphite concentration: 25% by mass, Base resin (acrylonitrile-styrene copolymer): the balance was used. Next, in the same manner as in Example 1, the molten resin was extruded into a strand shape, cooled, and then cut to produce cylindrical seed particles.
次に、この種粒子を用いて発泡性樹脂粒子を作製した。本例の発泡性樹脂粒子は、本例において作製した種粒子を用いた点を除いては、実施例1と同様にして作製した。
また、この発泡性樹脂粒子を用いて、実施例1と同様にして予備発泡粒子を作製し、さらにこの予備発泡粒子を用いて、実施例1と同様にして発泡粒子成形体を作製した。
Next, expandable resin particles were produced using the seed particles. The expandable resin particles of this example were produced in the same manner as in Example 1 except that the seed particles produced in this example were used.
Further, using the expandable resin particles, pre-expanded particles were produced in the same manner as in Example 1, and further, using these pre-expanded particles, a foamed particle molded body was produced in the same manner as in Example 1.
上述の実施例1〜11、比較例1〜5において作製した各発泡性樹脂粒子について、発泡剤の含有量、ガラス転移温度、平均分子量、発泡性樹脂粒子断面の形態観察、平均分散相径を以下のようにして評価した。また、各予備発泡粒子について、表皮及び全体における(メタ)アクリル酸成分単位の含有量、平均気泡径、成形性を以下のようにして評価した。なお、比較例5は、スチレン−(メタ)アクリル酸共重合体を含有していないため、その含有量の評価、並びに発泡性樹脂粒子断面の形態観察及び平均分散相径の評価を省略した。これらの結果を表1〜表3に示す。
また、各発泡粒子成形体について、成形品密度、加熱寸法変化率、燃焼性、酸素指数、熱伝導率を以下のようにして評価した。但し、良好な発泡粒子成形体の製造ができなかった比較例1〜3及び比較例5については、これらの評価を省略した。また、難燃剤を含有していない実施例1、比較例1〜5については、燃焼性、酸素指数の評価を省略した。その結果を表2及び表3に示す。また、実施例2及び比較例1の発泡粒子成形体については、その外観をスキャナで画像データとして取り込み、その結果(デジタル写真)を図2及び図4にそれぞれ示す。
For each of the expandable resin particles prepared in Examples 1 to 11 and Comparative Examples 1 to 5, the content of the foaming agent, the glass transition temperature, the average molecular weight, the form observation of the cross section of the expandable resin particles, the average dispersed phase diameter Evaluation was performed as follows. Moreover, about each pre-expanded particle, content of the (meth) acrylic acid component unit in the skin and the whole, an average cell diameter, and a moldability were evaluated as follows. In addition, since the comparative example 5 did not contain a styrene- (meth) acrylic acid copolymer, the evaluation of the content, the form observation of the cross section of the expandable resin particles, and the evaluation of the average dispersed phase diameter were omitted. These results are shown in Tables 1 to 3.
Moreover, about each foamed particle molded object, the molded article density, the heating dimensional change rate, the combustibility, the oxygen index, and the thermal conductivity were evaluated as follows. However, these evaluations were omitted for Comparative Examples 1 to 3 and Comparative Example 5 in which good foamed particle molded bodies could not be produced. Moreover, about Example 1 and Comparative Examples 1-5 which do not contain a flame retardant, evaluation of combustibility and an oxygen index was abbreviate | omitted. The results are shown in Tables 2 and 3. Moreover, about the expanded particle molded object of Example 2 and the comparative example 1, the external appearance was taken in as image data with the scanner, and the result (digital photograph) is shown in FIG.2 and FIG.4, respectively.
(a)発泡剤含有量
発泡性樹脂粒子をジメチルホルムアミド(DMF)に溶解させ、ガスクロマトグラフィーにて、添加した発泡剤の含有量を測定し、各成分の含有量を合計して求めた。ガスクロマトグラフによる発泡剤の定量は、具体的には以下の手順で行った。
まず、100mLのメスフラスコにシクロペンタノール約5gを小数点以下第3位まで精秤し(このときの重量をWiとする)、DMFを加えて全体を100mLとした。このDMF溶液をさらにDMFで100倍に希釈し内部標準溶液とした。次いで、測定対象となる発泡性樹脂粒子約1gを小数点以下第3位まで精秤し、このときの重量をWs(g)とした。精秤した発泡性樹脂粒子の試料を約18mLのDMFに溶解させ、溶解物に、内部標準溶液をホールピペットにて正確に2mL加えた。この溶液1μLをマイクロシリンジにて採集し、ガスクロマトグラフィーに導入し、クロマトグラムを得た。得られたクロマトグラムから各発泡剤成分及び内部標準のピーク面積を求め、下式(1)により各成分濃度を求めた。
各成分濃度(質量%)=[(Wi/10000)×2]×[An/Ai]×Fn÷Ws×100・・・(1)
ここで、
Wi:内部標準溶液を作成したときのシクロペンタノール重量(g)
Ws:DMFに溶解させた試料重量(g)
An:ガスクロマトグラフ測定時の各発泡剤成分のピーク面積
Ai:ガスクロマトグラフ測定時の内部標準物質のピーク面積
Fn:あらかじめ作成した検量線より求めた各発泡剤成分の補正係数
また、上記ガスクロマトグラフ分析の条件は以下の通りとした。
使用機器:(株)島津製作所製のガスクロマトグラフGC−6AM
検出器:FID(水素炎イオン化検出器)
カラム材質:内径3mm、長さ5000mmのガラスカラム
カラム充填剤:[液相名]FFAP(遊離脂肪酸)、[液相含浸率]10質量%、[担体名]ガスクロマトグラフ用珪藻土Chomasorb W、[担体粒度]60/80メッシュ、[担体処理方法]AW−DMCS(水洗・焼成・酸処理・シラン処理)、[充填量]90mL
注入口温度:250℃
カラム温度:120℃
検出部温度:250℃
キャリヤーガス:N2、流量40ml/分
(A) Foaming agent content Foamable resin particles were dissolved in dimethylformamide (DMF), the content of the added blowing agent was measured by gas chromatography, and the content of each component was totaled. Specifically, the quantitative determination of the blowing agent by gas chromatography was performed according to the following procedure.
First, about 5 g of cyclopentanol was precisely weighed to the third decimal place in a 100 mL volumetric flask (the weight at this time was set to Wi), and DMF was added to make a total of 100 mL. This DMF solution was further diluted 100 times with DMF to obtain an internal standard solution. Next, about 1 g of the expandable resin particles to be measured was precisely weighed to the third decimal place, and the weight at this time was defined as Ws (g). A precisely weighed sample of expandable resin particles was dissolved in about 18 mL of DMF, and 2 mL of the internal standard solution was accurately added to the lysate using a whole pipette. 1 μL of this solution was collected with a microsyringe and introduced into gas chromatography to obtain a chromatogram. The peak area of each foaming agent component and internal standard was determined from the obtained chromatogram, and the concentration of each component was determined by the following equation (1).
Concentration of each component (mass%) = [(Wi / 10000) × 2] × [An / Ai] × Fn ÷ Ws × 100 (1)
here,
Wi: Weight of cyclopentanol when the internal standard solution was prepared (g)
Ws: weight of sample dissolved in DMF (g)
An: Peak area of each foaming agent component at the time of gas chromatographic measurement Ai: Peak area of the internal standard substance at the time of gas chromatographic measurement Fn: Correction coefficient of each foaming agent component obtained from a calibration curve prepared in advance The above gas chromatographic analysis The conditions were as follows.
Equipment used: Gas chromatograph GC-6AM manufactured by Shimadzu Corporation
Detector: FID (hydrogen flame ionization detector)
Column material: Glass column with an inner diameter of 3 mm and a length of 5000 mm Column filler: [Liquid phase name] FFAP (free fatty acid), [Liquid phase impregnation rate] 10 mass%, [Carrier name] Diatomaceous earth Comasorb W for gas chromatography, [Carrier Particle size] 60/80 mesh, [carrier treatment method] AW-DMCS (washing, baking, acid treatment, silane treatment), [filling amount] 90 mL
Inlet temperature: 250 ° C
Column temperature: 120 ° C
Detector temperature: 250 ° C
Carrier gas: N 2 , flow rate 40 ml / min
(b)ガラス転移温度(Tg)の測定
まず、温度180℃に加熱したプレス機を用いて、発泡性樹脂粒子またはその予備発泡粒子またはその発泡粒子成形体からスチレン系樹脂のフィルムを作製した。このフィルムから2〜4mgの試験片を切り出し、試験片について示差走査熱量(DSC)分析を行った。DSCの測定は、ティ・エイ・インスツルメント社製のDSC測定装置「Q1000型DSC」を用いて、JIS K 7121(1987年)に準拠して行なった。そして、昇温速度10℃/分の条件で得られるDSC曲線の中間点ガラス転移温度を求めた。そして、低温側に観察される、ポリスチレン樹脂に由来するガラス転移温度をTg1、高温側に観察される、スチレン−(メタ)アクリル酸共重合体に由来するガラス転移温度をTg2とした。
(B) Measurement of glass transition temperature (Tg) First, using a press machine heated to a temperature of 180 ° C., a styrenic resin film was prepared from the expandable resin particles, the pre-expanded particles, or the expanded particle molded body. A 2 to 4 mg test piece was cut out from this film, and a differential scanning calorimetry (DSC) analysis was performed on the test piece. The DSC measurement was performed according to JIS K 7121 (1987) using a DSC measuring apparatus “Q1000 DSC” manufactured by TI Instruments. And the midpoint glass transition temperature of the DSC curve obtained on temperature rising rate 10 degree-C / min conditions was calculated | required. The glass transition temperature derived from the polystyrene resin observed on the low temperature side was Tg1, and the glass transition temperature derived from the styrene- (meth) acrylic acid copolymer observed on the high temperature side was Tg2.
(c)平均分子量の測定
発泡性樹脂粒子の基材樹脂の平均分子量(数平均分子量、重量平均分子量、Z平均分子量)は、ポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィ(GPC)法により測定することができる。
具体的には、東ソー(株)製のHLC−8320GPC EcoSECを用いて、溶離液:テトラヒドロフラン(THF)、THF流量:0.6ml/分、試料濃度:0.1wt%という測定条件で測定した。カラムとしては、TSKguardcolumn SuperH−H×1本、TSK−GEL SuperHM−H×2本を直列に接続したカラムを用いた。即ち、発泡性樹脂粒子またはその発泡粒子またはその発泡粒子成形体をテトラヒドロフラン(THF)に溶解させ、ゲルパーミエーションクロマトグラフィ(GPC)で分子量を測定した。そして、測定値を標準ポリスチレンで校正して、数平均分子量、重量平均分子量、Z平均分子量をそれぞれ求めた。
(C) Measurement of average molecular weight The average molecular weight (number average molecular weight, weight average molecular weight, Z average molecular weight) of the base resin of the expandable resin particles is measured by a gel permeation chromatography (GPC) method using polystyrene as a standard substance. be able to.
Specifically, using HLC-8320GPC EcoSEC manufactured by Tosoh Corporation, measurement was performed under the measurement conditions of eluent: tetrahydrofuran (THF), THF flow rate: 0.6 ml / min, and sample concentration: 0.1 wt%. As the column, a column in which TSK guard column Super H-H × 1 and TSK-GEL Super HM-H × 2 were connected in series was used. That is, the expandable resin particles or the expanded particles thereof or the molded particles thereof were dissolved in tetrahydrofuran (THF), and the molecular weight was measured by gel permeation chromatography (GPC). And the measured value was calibrated with standard polystyrene and the number average molecular weight, the weight average molecular weight, and the Z average molecular weight were calculated | required, respectively.
(d)発泡性樹脂粒子断面の形態観察
発泡性樹脂粒子の中心部付近を切り出し、エポキシ樹脂に包埋した。四酸化ルテニウムにより染色後、ウルトラミクロトームにより超薄切片を作製した。この超薄切片をグリッドに載せ、発泡性樹脂粒子の断面部を透過型電子顕微鏡(日本電子社製、JEM1010)により観察した。透過型電子顕微鏡(TEM)観察は、加速電圧100kV、観察倍率10,000倍という条件で行った。そして、発泡性樹脂粒子を構成する基材樹脂のモルフォロジーを調べた。実施例2、比較例1の発泡性樹脂粒子の断面におけるTEM写真を図1、図3にそれぞれ示す。
また、TEM写真から平均分散相径を算出した。具体的には、TEM写真について、無作為に選択した100個の分散相の直径(各分散相の最長径)をそれぞれ計測し、計測値を加重平均することにより平均分散相径(μm)を求めた。なお、分散相の形状が例えば真円である場合には、その直径が分散相の最長径となり、分散相の形状が例えば楕円である場合には、その長径が分散相の最長径となる。
(D) Morphological observation of cross section of expandable resin particle The vicinity of the center of the expandable resin particle was cut out and embedded in an epoxy resin. After staining with ruthenium tetroxide, ultrathin sections were prepared with an ultramicrotome. This ultrathin slice was placed on a grid, and the cross section of the expandable resin particles was observed with a transmission electron microscope (JEM1010, manufactured by JEOL Ltd.). Transmission electron microscope (TEM) observation was performed under the conditions of an acceleration voltage of 100 kV and an observation magnification of 10,000 times. Then, the morphology of the base resin constituting the expandable resin particles was examined. The TEM photograph in the cross section of the expandable resin particle of Example 2 and Comparative Example 1 is shown in FIGS. 1 and 3, respectively.
Further, the average dispersed phase diameter was calculated from the TEM photograph. Specifically, for a TEM photograph, the diameter of 100 randomly selected dispersed phases (the longest diameter of each dispersed phase) was measured, and the average dispersed phase diameter (μm) was calculated by weighted averaging of the measured values. Asked. When the shape of the dispersed phase is, for example, a perfect circle, the diameter is the longest diameter of the dispersed phase. When the shape of the dispersed phase is, for example, an ellipse, the long diameter is the longest diameter of the dispersed phase.
(e)(メタ)アクリル酸成分単位の含有量の測定
(メタ)アクリル酸成分単位の含有量の測定は、全反射吸収測定装置を用いて行った。全反射吸収測定としては、日本分光社製の赤外分光光度計「FT/IR-460plus」と、同社製の全反射吸収測定装置「ATR PRO 450−S型」を用いた。また、全反射吸収測定装置側の測定条件は、プリズム:ZnSe、入射角:45°とした。
具体的には、まず、全反射吸収測定装置のプリズムに予備発泡粒子を押し付けて予備発泡粒子の表面の赤外吸収スペクトルを測定した。次に、予備発泡粒子を温度180℃で熱プレスしてフィルムを作製し、全反射吸収測定装置を用いてこのフィルムの赤外吸収スペクトルを測定した。これにより、予備発泡粒子全体の赤外吸収スペクトルを測定した。次に、得られた赤外吸収スペクトルをATR補正した後、スチレン成分単位に由来する698cm-1の吸光度I698と(メタ)アクリル酸成分単位に由来する1700cm-1における吸光度I1700を測定し、これらの吸光度比(I1700/I698)を求めた。そして、あらかじめ作成した検量線を用いて、予備発泡粒子表面及び全体における(メタ)アクリル酸成分単位の含有量(質量%)を求めた。10個の予備発泡粒子について、同様に(メタ)アクリル酸成分単位の含有量を測定し、算術平均して、予備発泡粒子の表面及び全体における(メタ)アクリル酸成分単位の含有量(質量%)を求めた。また、予備発泡粒子の全体における(メタ)アクリル酸成分単位の含有量に対する予備発泡粒子の表面における(メタ)アクリル酸成分単位の含有量の割合(表皮/全体;百分率)を算出した。
(E) Measurement of content of (meth) acrylic acid component unit The content of the (meth) acrylic acid component unit was measured using a total reflection absorption measuring apparatus. As the total reflection absorption measurement, an infrared spectrophotometer “FT / IR-460plus” manufactured by JASCO Corporation and a total reflection absorption measurement apparatus “ATR PRO 450-S type” manufactured by the same company were used. The measurement conditions on the total reflection absorption measuring apparatus side were prism: ZnSe and incident angle: 45 °.
Specifically, first, the pre-expanded particles were pressed against the prism of the total reflection absorption measuring apparatus, and the infrared absorption spectrum of the surface of the pre-expanded particles was measured. Next, the pre-expanded particles were hot-pressed at a temperature of 180 ° C. to produce a film, and the infrared absorption spectrum of the film was measured using a total reflection absorption measuring apparatus. This measured the infrared absorption spectrum of the whole pre-expanded particle. Next, after ATR correction was performed on the obtained infrared absorption spectrum, an absorbance I 698 of 698 cm −1 derived from the styrene component unit and an absorbance I 1700 of 1700 cm −1 derived from the (meth) acrylic acid component unit were measured. The absorbance ratio (I 1700 / I 698 ) was determined. And the content (mass%) of the (meth) acrylic acid component unit in the pre-expanded particle surface and the whole was calculated | required using the analytical curve created beforehand. For the 10 pre-expanded particles, the content of (meth) acrylic acid component units was measured in the same manner, and arithmetically averaged to obtain the content of (meth) acrylic acid component units on the surface and the whole of the pre-expanded particles (mass% ) In addition, the ratio of the content of the (meth) acrylic acid component unit on the surface of the prefoamed particle to the content of the (meth) acrylic acid component unit in the entire prefoamed particle (skin / whole; percentage) was calculated.
なお、検量線の作成は以下のように行った。
即ち、まず、押出機を用いて、スチレン−メタクリル酸共重合体(PSジャパン社製の「G9001」)とポリスチレン樹脂(PSジャパン社製の「680」)を、100/0、75/25、50/50、25/75、0/100の重量比(スチレン−メタクリル酸共重合体/ポリスチレン樹脂)で、溶融混練してペレットを作製した。次いで、温度180℃に加熱したプレス機によりこのペレットをフィルム状に成形した。上述の全反射吸収測定装置を用いて、得られたフィルムの赤外吸収スペクトルを測定した。この赤外吸収スペクトルをATR補正した後、上述の方法と同様に、吸光度I698及びI1700を測定し、これらの吸光度比(I1700/I698を)を求めた。スチレン−メタクリル酸共重合体(PSジャパン社製の「G9001」)のメタクリル酸成分単位の含有量を元素分析により8.2質量%とし、(メタ)アクリル酸成分単位の含有量と吸光度比の検量線を作成した。
The calibration curve was created as follows.
That is, first, using an extruder, a styrene-methacrylic acid copolymer (“G9001” manufactured by PS Japan) and a polystyrene resin (“680” manufactured by PS Japan) were converted into 100/0, 75/25, Pellets were prepared by melt-kneading at a weight ratio of 50/50, 25/75, and 0/100 (styrene-methacrylic acid copolymer / polystyrene resin). Next, the pellets were formed into a film by a press machine heated to a temperature of 180 ° C. The infrared absorption spectrum of the obtained film was measured using the above-mentioned total reflection absorption measuring apparatus. After ATR correction of this infrared absorption spectrum, the absorbances I 698 and I 1700 were measured in the same manner as described above, and the absorbance ratio (I 1700 / I 698 ) was determined. The content of the methacrylic acid component unit of the styrene-methacrylic acid copolymer (“G9001” manufactured by PS Japan) is set to 8.2% by elemental analysis, and the content of the (meth) acrylic acid component unit and the absorbance ratio A calibration curve was created.
(f)平均気泡径の測定
剃刀刃を用いて予備発泡粒子をその中心を通るように2つに切断し、蒸着処理後(Au−Pdターゲット)、走査型電子顕微鏡(キーエンス社製、VE7800)により、予備発泡粒子の断面を撮影した(観察倍率30倍)。得られた電子顕微鏡写真において、予備発泡粒子の中心を通るように直線を引き、該直線の実際の長さ、及び直線上に存在する気泡数を計測し、予備発泡粒子の直径を気泡数で除して気泡径(μm)とした。10個の予備発泡粒子について同様に気泡径を計測し、算術平均により平均気泡径を求めた。
(F) Measurement of average bubble diameter Using a razor blade, pre-expanded particles were cut into two so as to pass through the center thereof, and after vapor deposition (Au-Pd target), a scanning electron microscope (manufactured by Keyence Corporation, VE7800) Thus, a cross section of the pre-expanded particles was photographed (observation magnification 30 times). In the obtained electron micrograph, draw a straight line so as to pass through the center of the pre-expanded particles, measure the actual length of the straight line, and the number of bubbles existing on the straight line, and calculate the diameter of the pre-expanded particles by the number of bubbles. To obtain a bubble diameter (μm). The cell diameter was measured in the same manner for 10 pre-expanded particles, and the average cell diameter was determined by arithmetic average.
(g)成形性の評価
予備発泡粒子から作製した発泡粒子成形体の外観を目視にて観察し、下記の基準で判定した。
◎:成形体表面にボイド(発泡粒子間の間隙)が少なく平滑である場合。
○:成形体表面に多少のボイドが見られるが製品として問題ないレベルである場合。
×:成形することができない場合、又は成形体表面から内部まで発泡粒子間に大きな間隙が存在する成形体しか得られない場合。
(G) Evaluation of moldability The appearance of the expanded foam molded body prepared from the pre-expanded particles was visually observed and judged according to the following criteria.
A: When the surface of the molded body is smooth with few voids (gap between foamed particles).
○: When some voids are seen on the surface of the molded body, but the level is satisfactory as a product.
X: When it cannot shape | mold or when only a molded object with a big gap | interval between expanded particles from the molded object surface to the inside is obtained.
(h)成形品密度
発泡粒子成形体の外形寸法から体積を求め、次いで発泡粒子成形体の質量を測定し、該質量を体積で除することにより成形品密度を算出した。
(H) Molded Product Density The volume was determined from the outer dimensions of the foamed particle molded body, then the mass of the foamed particle molded body was measured, and the mass was divided by the volume to calculate the molded product density.
(i)加熱寸法変化率の測定
発泡粒子成形体から50mm×50mm×25mmの板状の試験片を切り出し、この試験片を温度23℃で1日間以上静置した。その後、ノギスを用いて、試験片の縦、横の各部位の寸法を小数点第2位まで測定した。次いで、温度80℃、90℃、又は100℃の各温度に設定した強制循環式オーブン内に、寸法測定後の試験片を22時間(約1日間)保持した。その後、試験片をオーブンから取り出し、温度23℃で1日間静置した。次いで、加熱前と同じ箇所の寸法を測定し、縦と横それぞれの加熱寸法変化率を次の式(2)から算出し、その相加平均値を加熱寸法変化率とした。
加熱寸法変化率(%)=(加熱前の寸法−加熱後の寸法)×100/加熱前の寸法・・・(2)
(I) Measurement of heating dimensional change rate A plate-like test piece of 50 mm × 50 mm × 25 mm was cut out from the foamed particle molded body, and the test piece was left at a temperature of 23 ° C. for 1 day or more. Then, using a caliper, the vertical and horizontal dimensions of the test piece were measured to the second decimal place. Subsequently, the test piece after the dimension measurement was held for 22 hours (about 1 day) in a forced circulation oven set at a temperature of 80 ° C., 90 ° C., or 100 ° C. Thereafter, the test piece was taken out of the oven and allowed to stand at a temperature of 23 ° C. for 1 day. Subsequently, the dimension of the same place as before heating was measured, the heating dimensional change rate of each length and width was calculated from the following formula (2), and the arithmetic average value was defined as the heating dimensional change rate.
Heating dimensional change rate (%) = (dimension before heating−dimension after heating) × 100 / dimension before heating (2)
(j)燃焼性の評価
燃焼性の評価は、JIS A 9511(2006年)の燃焼試験(A法)に準拠して行った。具体的には、まず、発泡粒子成形体を温度40℃で3日間、室温で1日養生した。その後、発泡粒子成形体から200mm×25mm×10mmの直方体状の試験片を5つ切り出した。次いで、ろうそくを用いて、着火限界指示線および燃焼限界指示線まで試験片を着火させた後、ろうそくをすばやく試験片から後退させた。そして、ろうそくを後退させた瞬間から試験片の炎が消えるまでの時間(消炎時間)を計測した。
(J) Evaluation of flammability The evaluation of flammability was performed in accordance with the combustion test (Method A) of JIS A 9511 (2006). Specifically, the foamed particle molded body was first cured at a temperature of 40 ° C. for 3 days and at room temperature for 1 day. Thereafter, five test pieces having a rectangular parallelepiped shape of 200 mm × 25 mm × 10 mm were cut out from the foamed particle molded body. Next, using a candle, the test piece was ignited to the ignition limit indicator line and the combustion limit indicator line, and then the candle was quickly retracted from the test piece. And the time (flame extinction time) until the flame of a test piece disappeared from the moment which retracted the candle was measured.
(k)酸素指数の測定
酸素指数の測定は、JIS K 7201−2(2007年)の試験方法に準拠して行った。測定にあたっては、発泡粒子成形体を温度40℃で3日間静置し、さらに室温で1日間養生した後、発泡粒子成形体から切り出した寸法150mm×10mm×10mmの試験片を15個作製し、これらの試験片について酸素指数を測定した。
(K) Measurement of oxygen index The oxygen index was measured in accordance with the test method of JIS K7201-2 (2007). In the measurement, the foamed particle molded body was allowed to stand at a temperature of 40 ° C. for 3 days, further cured at room temperature for 1 day, and then 15 specimens having dimensions of 150 mm × 10 mm × 10 mm cut out from the foamed particle molded body were produced. The oxygen index was measured for these specimens.
(l)熱伝導率の測定
JIS A 1412−2(1999年)に規定の熱流計法(HFM法)に準じて測定した。測定にあたっては、発泡粒子成形体を温度60℃で7日間静置し、さらに室温で1日間養生した後、発泡粒子成形体から切り出した寸法200mm×200mm×25mmの試験片を作製した。そして、この試験片を測定装置の加熱板と冷却熱板との間に挟み、試験片温度差20℃、試験辺平均温度23℃という条件で熱伝導率(W/m・K)の測定を行った。
(L) Measurement of thermal conductivity Measured according to the heat flow meter method (HFM method) defined in JIS A 1412-2 (1999). In the measurement, the foamed particle molded body was allowed to stand at a temperature of 60 ° C. for 7 days, further cured at room temperature for 1 day, and then a test piece having a size of 200 mm × 200 mm × 25 mm cut out from the foamed particle molded body was produced. Then, the test piece is sandwiched between the heating plate and the cooling hot plate of the measuring device, and the thermal conductivity (W / m · K) is measured under the conditions of a test piece temperature difference of 20 ° C. and a test side average temperature of 23 ° C. went.
表1及び2に示すごとく、スチレン−(メタ)アクリル酸共重合体を主成分とする種粒子にスチレンを含浸及び重合してなる複合樹脂を基材樹脂とする実施例にかかる発泡性樹脂粒子は、20kg/m3程度の低密度まで発泡させても、0.034W/m・K以下という低い熱伝導率を示し、断熱性に優れている。また、実施例にかかる発泡性樹脂粒子を用いると、温度80℃及び90℃における加熱寸法変化率が±2%以内という優れた耐熱性を有する発泡粒子成形体が得られることがわかる。 As shown in Tables 1 and 2, expandable resin particles according to examples using a composite resin obtained by impregnating and polymerizing styrene into seed particles mainly composed of a styrene- (meth) acrylic acid copolymer. Shows a low thermal conductivity of 0.034 W / m · K or less even when foamed to a low density of about 20 kg / m 3 , and is excellent in heat insulation. Moreover, when the expandable resin particle concerning an Example is used, it turns out that the expanded particle molded object which has the outstanding heat resistance that the heating dimensional change rate in the temperature of 80 degreeC and 90 degreeC is less than +/- 2% is obtained.
また、表1及び表2に示すごとく、実施例にかかる発泡性樹脂粒子は、黒鉛を含有していても、発泡時に黒鉛により気泡膜が破壊され難くなり、優れた発泡成形性を示す。その結果、これらの発泡性樹脂粒子を用いると、粒子間に間隙が少なく、良好な形状の発泡粒子成形体を得ることができた(図2参照)。
また、表1及び表2より知られるごとく、実施例にかかる発泡性樹脂粒子に臭素系難燃剤を添加することにより、発泡粒子成形体に難燃性を付与することができた。
Moreover, as shown in Table 1 and Table 2, even if the expandable resin particle concerning an Example contains graphite, it becomes difficult to destroy a bubble film | membrane by graphite at the time of foaming, and shows the outstanding foam moldability. As a result, when these expandable resin particles were used, there were few gaps between the particles, and a foamed particle molded body having a good shape could be obtained (see FIG. 2).
Moreover, as known from Tables 1 and 2, flame retardancy could be imparted to the foamed particle molded body by adding a brominated flame retardant to the foamable resin particles according to the examples.
これに対し、比較例1〜3の発泡樹脂粒子は、ポリスチレン樹脂とスチレン−(メタ)アクリル酸共重合体とを溶融混練してなる混合樹脂を基材樹脂とする混合樹脂粒子に発泡剤を含浸させて作製したものである。この場合には、表3より知られるごとく、基材樹脂がポリスチレン樹脂を連続相とし、スチレン−(メタ)アクリル酸共重合体を分散相とする海島構造を有する場合であっても、スチレン−(メタ)アクリル酸共重合体を連続相とし、ポリスチレン樹脂を分散相とする海島構造を有する場合であっても、発泡成形性が不十分であり、良好な発泡粒子成形体を得ることができなかった(図4参照)。なお、良好な発泡粒子成形体が得られなかったため、比較例1〜3については、発泡粒子成形体の評価を省略した(表3参照)。 On the other hand, the foamed resin particles of Comparative Examples 1 to 3 are obtained by adding a foaming agent to the mixed resin particles having a base resin as a mixed resin obtained by melt-kneading a polystyrene resin and a styrene- (meth) acrylic acid copolymer. It was produced by impregnation. In this case, as is known from Table 3, even if the base resin has a sea-island structure in which the polystyrene resin is a continuous phase and the styrene- (meth) acrylic acid copolymer is a dispersed phase, the styrene- Even when it has a sea-island structure with a (meth) acrylic acid copolymer as a continuous phase and a polystyrene resin as a dispersed phase, the foam moldability is insufficient and a good foamed particle molded body can be obtained. None (see FIG. 4). In addition, since the favorable expanded particle molded object was not obtained, evaluation of the expanded particle molded object was abbreviate | omitted about Comparative Examples 1-3 (refer Table 3).
また、表3に示すごとく、基材樹脂中のスチレン−(メタ)アクリル酸共重合体の比率が18質量部と低い比較例4においては、温度90℃における寸法変化率が3%もあり、耐熱性が劣っていた。
また、表3に示すごとく、アクリロニトリル−スチレン共重合体とポリスチレン樹脂を基材樹脂とする比較例5においては、発泡成形性が不十分であり、良好な発泡粒子成形体を得ることができなかった。なお、良好な発泡粒子成形体が得られなかったため、比較例5については、発泡粒子成形体の評価を省略した(表3参照)。
Moreover, as shown in Table 3, in Comparative Example 4 where the ratio of the styrene- (meth) acrylic acid copolymer in the base resin is as low as 18 parts by mass, the dimensional change rate at a temperature of 90 ° C. is 3%, The heat resistance was poor.
Moreover, as shown in Table 3, in Comparative Example 5 using acrylonitrile-styrene copolymer and polystyrene resin as the base resin, the foam moldability is insufficient, and a good foamed particle molded body cannot be obtained. It was. In addition, since the favorable expanded particle molded object was not obtained, the evaluation of the expanded particle molded object was abbreviate | omitted about the comparative example 5 (refer Table 3).
Claims (9)
該発泡性スチレン系樹脂粒子の基材樹脂は、スチレン−(メタ)アクリル酸共重合体を主成分とする種粒子にスチレンを含浸及び重合してなる、スチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との複合樹脂であり、
上記スチレン−(メタ)アクリル酸共重合体と上記ポリスチレン樹脂との質量比が20:80〜80:20であり、
上記黒鉛の含有量が上記基材樹脂100質量部に対して0.1〜6質量部であることを特徴とする発泡性スチレン系樹脂粒子。 Expandable styrene resin particles containing graphite and an aliphatic hydrocarbon having 3 to 6 carbon atoms as a foaming agent,
The base resin of the expandable styrene-based resin particles is a styrene- (meth) acrylic acid copolymer obtained by impregnating and polymerizing seed particles mainly composed of a styrene- (meth) acrylic acid copolymer. And a composite resin of polystyrene resin,
The mass ratio of the styrene- (meth) acrylic acid copolymer and the polystyrene resin is 20:80 to 80:20,
Expandable styrenic resin particles, wherein the graphite content is 0.1 to 6 parts by mass with respect to 100 parts by mass of the base resin.
スチレン−(メタ)アクリル酸共重合体を主成分とし、かつ黒鉛を含む上記種粒子を水性媒体中に懸濁させて懸濁液を得る懸濁工程と、
上記懸濁液に上記スチレンを添加し、該スチレンを上記種粒子に含浸及び重合させてスチレン−(メタ)アクリル酸共重合体とポリスチレン樹脂との複合樹脂を基材樹脂とするスチレン系樹脂粒子を得る含浸重合工程と、
該含浸重合工程におけるスチレンの重合中及び/又は重合後に、炭素数3〜6の脂肪族炭化水素からなる発泡剤を樹脂粒子中に含浸させる発泡剤含浸工程を含むことを特徴とする発泡性スチレン系樹脂粒子の製造方法。 In the method for producing expandable styrene resin particles according to any one of claims 1 to 6 ,
A suspending step of suspending the seed particles containing a styrene- (meth) acrylic acid copolymer as a main component and containing graphite in an aqueous medium to obtain a suspension;
Styrenic resin particles in which the styrene is added to the suspension, the styrene is impregnated and polymerized into the seed particles, and a composite resin of a styrene- (meth) acrylic acid copolymer and a polystyrene resin is used as a base resin. An impregnation polymerization step to obtain,
A foaming styrene comprising a foaming agent impregnation step of impregnating a resin particle with a foaming agent comprising an aliphatic hydrocarbon having 3 to 6 carbon atoms during and / or after the polymerization of styrene in the impregnation polymerization step For producing resin-based resin particles.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013016370A JP6036347B2 (en) | 2013-01-31 | 2013-01-31 | Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body |
CN201410041120.6A CN103965560B (en) | 2013-01-31 | 2014-01-27 | Foamable styrene system resin particles and its manufacture method and expanded beads formed body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013016370A JP6036347B2 (en) | 2013-01-31 | 2013-01-31 | Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013227351A Division JP6036646B2 (en) | 2013-10-31 | 2013-10-31 | Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014148558A JP2014148558A (en) | 2014-08-21 |
JP6036347B2 true JP6036347B2 (en) | 2016-11-30 |
Family
ID=51235587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013016370A Active JP6036347B2 (en) | 2013-01-31 | 2013-01-31 | Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6036347B2 (en) |
CN (1) | CN103965560B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3348612A4 (en) * | 2015-09-09 | 2019-04-17 | Kaneka Corporation | Expandable styrene resin particles, pre-expanded particles of styrene resin, styrene resin foam molded body, and method for producing expandable resin particles |
JP6701943B2 (en) * | 2016-05-13 | 2020-05-27 | 株式会社ジェイエスピー | Expanded composite resin particles, method for producing the same, molded composite resin foam particles |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101925647B (en) * | 2008-01-30 | 2013-01-23 | 积水化成品工业株式会社 | Expandable polystyrene resin beads, process for production thereof, pre-expanded beads and expanded moldings |
WO2010066331A1 (en) * | 2008-12-12 | 2010-06-17 | Jackon Gmbh | Process for the preparation of an expandable polymer composition in the form of beads |
JP5410803B2 (en) * | 2009-03-26 | 2014-02-05 | 積水化成品工業株式会社 | Expandable thermoplastic resin particles and method for producing the same, pre-expanded particles and foamed molded body |
JP2011093953A (en) * | 2009-10-27 | 2011-05-12 | Sekisui Plastics Co Ltd | Foamable polystyrene-based resin particle for manufacturing heat insulation material for floor heating and manufacturing method therefor, pre-foamed particle for manufacturing heat insulation material for floor heating, heat insulation material for floor heating, and floor-heating apparatus |
US8912242B2 (en) * | 2011-02-10 | 2014-12-16 | Fina Technology, Inc. | Polar polystyrene copolymers for enhanced foaming |
-
2013
- 2013-01-31 JP JP2013016370A patent/JP6036347B2/en active Active
-
2014
- 2014-01-27 CN CN201410041120.6A patent/CN103965560B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN103965560A (en) | 2014-08-06 |
CN103965560B (en) | 2017-08-25 |
JP2014148558A (en) | 2014-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6036646B2 (en) | Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body | |
JP4316305B2 (en) | Method for producing styrene resin foam containing graphite powder | |
JP6263987B2 (en) | Method for producing expandable polystyrene resin particles | |
JP6156060B2 (en) | Method for producing expandable composite resin particles | |
WO2015137363A1 (en) | Styrene-based resin foam-molded article and method for manufacturing same | |
CN108026311B (en) | Expandable styrene resin particles, pre-expanded particles and molded body produced from the same, and method for producing the same | |
JP6473675B2 (en) | Styrenic resin foamable particles and method for producing the same, foamed particles, foamed molded article and use thereof | |
JP5641785B2 (en) | Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body | |
JP6323242B2 (en) | Method for producing expandable composite resin particles | |
JP6036347B2 (en) | Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body | |
JP6349697B2 (en) | Method for producing expandable polystyrene resin particles | |
JP2017002236A (en) | Expandable composite resin particle | |
JP2016180038A (en) | Expandable composite resin particle | |
JP2018203871A (en) | Complex resin particle, complex resin foam particle, and complex resin foam particle molded body | |
JP2018039923A (en) | Composite resin particle, composite resin foamed particle, and composite resin particle molding | |
JP5690632B2 (en) | Polypropylene resin particles for seed polymerization, process for producing the same, composite resin particles, expandable composite resin particles, pre-expanded particles, and expanded molded body | |
JP6407113B2 (en) | Styrenic resin foam molding, method for producing the same, and use thereof | |
JP2011026511A (en) | Flame-retardant foamable polystyrene-based resin particle, method for producing the same, preliminarily-foamed particle of flame-retardant polystyrene-based resin and expansion molding of flame-retardant polystyrene-based resin | |
JP2004346281A (en) | Self-extinguishing foaming styrene-based resin particle and method for producing the same | |
JP2020033446A (en) | Foamable composite resin particle | |
JP2017203144A (en) | Composite resin foam particle, method for producing the same, and composite resin foam particle molded body | |
JP6031614B2 (en) | Carbon black-containing composite resin pre-expanded particles, method for producing the same, and expanded molded article | |
JP6013905B2 (en) | Foam molded body and method for producing foam molded body | |
JP7482740B2 (en) | Expandable vinyl chloride resin particles, expanded particles thereof, and foamed molded article using the same | |
JP7078849B2 (en) | Effervescent composite resin particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150717 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6036347 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |