JP2012184355A - Pre-foamed particle and foam molded body - Google Patents

Pre-foamed particle and foam molded body Download PDF

Info

Publication number
JP2012184355A
JP2012184355A JP2011049277A JP2011049277A JP2012184355A JP 2012184355 A JP2012184355 A JP 2012184355A JP 2011049277 A JP2011049277 A JP 2011049277A JP 2011049277 A JP2011049277 A JP 2011049277A JP 2012184355 A JP2012184355 A JP 2012184355A
Authority
JP
Japan
Prior art keywords
particles
expanded particles
resin
expanded
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011049277A
Other languages
Japanese (ja)
Inventor
Seiichi Morimoto
誠一 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2011049277A priority Critical patent/JP2012184355A/en
Publication of JP2012184355A publication Critical patent/JP2012184355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide pre-foamed particles excellent in fluidity.SOLUTION: The pre-foamed particle satisfies formula (1): 1.0≤L/D≤1.5 (wherein L is a major axis (mm) of the pre-foamed particle; and D is a minor axis (mm) thereof), and formula (2): Y≤0.13X-1.0 (wherein X is a bulk foaming magnification (times) of the pre-foamed particle; and Y is a percentage (mass%) of moisture attached to the surface of the pre-foamed particle), and has a repose angle of 0 to 22 degrees.

Description

本発明は、予備発泡粒子および発泡成形体に関する。さらに詳しくは、本発明は、流動性に優れた予備発泡粒子および前記予備発泡粒子から得られる発泡成形体に関する。   The present invention relates to pre-expanded particles and a foam-molded product. More specifically, the present invention relates to pre-expanded particles having excellent fluidity and a foam-molded product obtained from the pre-expanded particles.

従来、ポリスチレン系樹脂、ポリプロピレン系樹脂等を熱可塑性樹脂成分として含む発泡性樹脂粒子から得られる発泡成形体は、耐衝撃性、成形性等に優れるため、包装用緩衝材、自動車用構造部材等として幅広く利用されている。   Conventionally, foam molded articles obtained from expandable resin particles containing polystyrene resin, polypropylene resin or the like as a thermoplastic resin component are excellent in impact resistance, moldability, etc., so that cushioning materials for packaging, structural members for automobiles, etc. Is widely used.

また、前記発泡成形体は、通常、樹脂成分と発泡剤とを含む発泡性樹脂粒子を予備発泡させることにより予備発泡粒子を得、次いで得られた予備発泡粒子を発泡成形機内で水蒸気等の熱媒を用いて発泡成形することにより製造される。   In addition, the foamed molded product is usually obtained by prefoaming expandable resin particles containing a resin component and a foaming agent, and then the obtained prefoamed particles are heated with heat such as water vapor in a foam molding machine. It is manufactured by foam molding using a medium.

しかし、発泡成形時に成形用型内発泡金型へ予備発泡粒子を送粒する際、予備発泡粒子の形状、性質等によっては、予備発泡粒子がフィーダー(予備発泡粒子を成形用型内発泡金型へ送り込む機構)内に滞留し、十分に発泡成形機内に充填できないことがある。   However, when the pre-expanded particles are sent to the in-mold foam mold during foam molding, depending on the shape, properties, etc. of the pre-expanded particles, the pre-expanded particles may become a feeder May stay in the mechanism) and may not be sufficiently filled into the foam molding machine.

この場合、得られた発泡成形体は、部分的な充填不良により発泡成形体に欠損を引き起こすことがあり、この様な欠損の存在は、発泡成形体の商品価値を著しく損なう。このため、前記のような問題を解決する予備発泡粒子として、例えば特開2009−256477号公報(特許文献1)には、樹脂成分としてポリプロピレン系樹脂を含む金型への充填性を改善した予備発泡粒子が記載されている。   In this case, the obtained foamed molded product may cause defects in the foamed molded product due to partial filling failure, and the presence of such defects significantly impairs the commercial value of the foamed molded product. For this reason, as pre-expanded particles that solve the above-mentioned problems, for example, JP 2009-256477 A (Patent Document 1) discloses a pre-improved filling property in a mold containing a polypropylene resin as a resin component. Expanded particles are described.

特開2009−256477号公報JP 2009-256477 A

しかしながら、具体的な実施態様として挙げられている特許文献1の実施例や比較例に記載の予備発泡粒子は、大きな安息角(23〜37度)を有するものであり、予備発泡粒子の流動性の改善という点では満足のいくものではなかった。具体的には、これらは略液状等の優れた流動性を示すものではなく、予備発泡粒子の発泡成形機への充填性の改善および表面性に優れた発泡成形体を得るという観点からは必ずしも満足のいくものではなかった。   However, the pre-expanded particles described in Examples and Comparative Examples of Patent Document 1 listed as specific embodiments have a large angle of repose (23 to 37 degrees), and the fluidity of the pre-expanded particles In terms of improvement, it was not satisfactory. Specifically, these do not show excellent fluidity such as substantially liquid, but from the viewpoint of improving the filling property of the pre-foamed particles to the foam molding machine and obtaining a foam molded article having excellent surface properties. It was not satisfactory.

このため、これらの問題点に鑑みて、流動性に優れた予備発泡粒子および前記予備発泡粒子から得られる高品質な発泡成形体を提供することが求められている。   For this reason, in view of these problems, it is required to provide pre-expanded particles having excellent fluidity and a high-quality foam-molded product obtained from the pre-expanded particles.

かくして本発明によれば、下記式(1):
1.0≦L/D≦1.5 (1)
(式中、Lは予備発泡粒子の長径(mm)であり、Dは予備発泡粒子の短径(mm)である)
と下記式(2):
Y≦0.13X−1.0 (2)
(式中、Xは予備発泡粒子の嵩発泡倍率(倍)であり、Yは予備発泡粒子の表面付着水分率(質量%)である)
とを満たし、かつ、0〜22度の安息角を有することを特徴とする予備発泡粒子が提供される。
Thus, according to the present invention, the following formula (1):
1.0 ≦ L / D ≦ 1.5 (1)
(In the formula, L is the major axis (mm) of the pre-expanded particles, and D is the minor axis (mm) of the pre-expanded particles)
And the following formula (2):
Y ≦ 0.13X−1.0 (2)
(In the formula, X is the bulk foaming ratio (times) of the pre-foamed particles, and Y is the surface adhering moisture content (mass%) of the pre-foamed particles)
And pre-expanded particles characterized by having an angle of repose of 0 to 22 degrees.

また本発明によれば、前記予備発泡粒子から得られる発泡成形体も提供される。   Moreover, according to this invention, the foaming molding obtained from the said pre-expanded particle is also provided.

本発明によれば、流動性に優れた予備発泡粒子を提供することができる。   According to the present invention, pre-expanded particles having excellent fluidity can be provided.

また本発明によれば、予備発泡粒子が2.0〜7.0mmの長径および2.0〜6.5mmの短径を有する場合、予備発泡粒子の粒径を好適に設計することができるため、より流動性に優れた予備発泡粒子を提供することができる。   Further, according to the present invention, when the pre-expanded particles have a major axis of 2.0 to 7.0 mm and a minor axis of 2.0 to 6.5 mm, the particle size of the pre-expanded particles can be suitably designed. Thus, it is possible to provide pre-expanded particles having more excellent fluidity.

また本発明によれば、予備発泡粒子が20〜60倍の嵩発泡倍率を有する場合、予備発泡粒子は好適な嵩比重を有するため、より流動性に優れた予備発泡粒子を提供することができる。   Further, according to the present invention, when the pre-expanded particles have a bulk expansion ratio of 20 to 60 times, the pre-expanded particles have a suitable bulk specific gravity, and thus can provide pre-expanded particles with more excellent fluidity. .

また本発明によれば、予備発泡粒子が0〜6.8質量%の表面付着水分率を有する場合、その表面に存在する水分を介した凝集を抑制することができるため、より流動性に優れた予備発泡粒子を提供することができる。   Further, according to the present invention, when the pre-expanded particles have a surface-attached moisture content of 0 to 6.8% by mass, aggregation due to moisture present on the surface can be suppressed, so that the fluidity is more excellent. Pre-expanded particles can be provided.

また本発明によれば、予備発泡粒子が樹脂成分としてポリオレフィン系樹脂100質量部とポリスチレン系樹脂100〜400質量部とを少なくとも含む場合、予備発泡粒子はその強度に寄与し得るポリオレフィン系樹脂を好適な割合で含むため、より強度および流動性に優れた予備発泡粒子を提供することができる。   Further, according to the present invention, when the pre-expanded particles include at least 100 parts by mass of a polyolefin resin and 100 to 400 parts by mass of a polystyrene resin as resin components, the pre-expanded particles are preferably a polyolefin resin that can contribute to the strength. Therefore, pre-expanded particles having higher strength and fluidity can be provided.

また本発明によれば、予備発泡粒子が難燃剤を含む場合、より難燃性および流動性に優れた予備発泡粒子を提供することができる。   Moreover, according to this invention, when a pre-expanded particle contains a flame retardant, the pre-expanded particle more excellent in a flame retardance and fluidity | liquidity can be provided.

また本発明によれば、予備発泡粒子が、
分散剤を含む水性懸濁液中に、水性媒体100質量部に対して0.001〜0.05質量部の界面活性剤の存在下、ポリオレフィン系樹脂のシード粒子と、第1のスチレン系単量体と、第1の重合開始剤とを分散させる工程Aと、
得られた分散液を第1のスチレン系単量体が実質的に重合しない温度に加熱して第1のスチレン系単量体をシード粒子に含浸させる工程Bと、
ポリオレフィン系樹脂の融点をT℃としたとき、(T−10)℃〜(T+20)℃の温度で、第1のスチレン系単量体の第1の重合を行って第1の粒子を得る工程Cと、
工程Cに続いて、第2のスチレン系単量体と第2の重合開始剤とをさらに加え、かつ、(T−25)℃〜(T+10)℃の温度とすることにより、第1の粒子への第2のスチレン系単量体の含浸および第2の重合を行って樹脂粒子を得る工程Dを経るシード重合工程(ただし、ポリオレフィン系樹脂の量と、第1のスチレン系単量体と第2のスチレン系単量体との合計量とが、100:100〜400(質量比)である);
発泡剤を、樹脂粒子に含浸させることによって発泡性樹脂粒子を得る含浸工程;
発泡性樹脂粒子を予備発泡させる予備発泡工程;および
予備発泡後の発泡性樹脂粒子を室温以上の温度で、12時間以上放置する熟成工程
を含む製造方法によって得られる場合、より強度および流動性に優れた予備発泡粒子を容易に提供することができる。
According to the invention, the pre-expanded particles are
In the aqueous suspension containing the dispersant, in the presence of 0.001 to 0.05 parts by mass of a surfactant with respect to 100 parts by mass of the aqueous medium, the polyolefin resin seed particles and the first styrene monomer Step A for dispersing the monomer and the first polymerization initiator;
Heating the obtained dispersion to a temperature at which the first styrenic monomer is not substantially polymerized to impregnate the seed particles with the first styrenic monomer; and
The step of obtaining the first particles by performing the first polymerization of the first styrene monomer at a temperature of (T-10) ° C. to (T + 20) ° C. when the melting point of the polyolefin resin is T ° C. C
Subsequent to Step C, the second particles are further added with a second styrene monomer and a temperature of (T-25) ° C. to (T + 10) ° C. Impregnation of the second styrenic monomer and the seed polymerization step through the second polymerization to obtain resin particles D (however, the amount of polyolefin resin and the first styrenic monomer) The total amount of the second styrenic monomer is 100: 100 to 400 (mass ratio));
An impregnation step of obtaining expandable resin particles by impregnating resin particles with a foaming agent;
A pre-foaming step for pre-foaming the expandable resin particles; and when the pre-foamed expandable resin particles are obtained by a production method including an aging step of standing at a temperature of room temperature or higher for 12 hours or longer Excellent pre-expanded particles can be easily provided.

本発明によれば、予備発泡粒子が流動性に優れるため、表面性に優れた発泡成形体を提供することができる。   According to the present invention, since the pre-expanded particles have excellent fluidity, it is possible to provide a foamed molded article having excellent surface properties.

本発明の特徴は、下記式(1):
1.0≦L/D≦1.5 (1)
(式中、Lは予備発泡粒子の長径(mm)であり、Dは予備発泡粒子の短径(mm)である)
と下記式(2):
Y≦0.13X−1.0 (2)
(式中、Xは予備発泡粒子の嵩発泡倍率(倍)であり、Yは予備発泡粒子の表面付着水分率(質量%)である)
とを満たし、かつ、0〜22度の安息角を有する予備発泡粒子である。
The feature of the present invention is the following formula (1):
1.0 ≦ L / D ≦ 1.5 (1)
(In the formula, L is the major axis (mm) of the pre-expanded particles, and D is the minor axis (mm) of the pre-expanded particles)
And the following formula (2):
Y ≦ 0.13X−1.0 (2)
(In the formula, X is the bulk foaming ratio (times) of the pre-foamed particles, and Y is the surface adhering moisture content (mass%) of the pre-foamed particles)
And pre-expanded particles having an angle of repose of 0 to 22 degrees.

本発明の予備発泡粒子は、式(1)を満足するような略球状の形状を有し、かつ、嵩発泡倍率と表面付着水分率との間で好適な関係を有するため、優れた流動性を示し、0〜22度という極めて小さい安息角を有する。本発明において安息角とは、JIS R 9301−2−2に準拠して測定される角度(°)をいう。具体的には、ロート型容器の下端から予備発泡粒子を落下せしめ、円盤状の台に堆積した予備発泡粒子の高さを測定し、円盤状の台の直径と堆積した発泡粒子の高さの関係から、堆積した予備発泡粒子の安息角を算出する。また、予備発泡粒子の長径および短径とは、予備発泡粒子の最も長い径および最も短い径を意味し、長径は短径以上の径である。さらに、略球状とは、球状〜卵状の形状を意味する。なお、前記の安息角の測定方法等については実施例において詳説する。   The pre-expanded particles of the present invention have a substantially spherical shape that satisfies the formula (1), and have a suitable relationship between the bulk expansion ratio and the surface adhering moisture content. And has a very small angle of repose of 0 to 22 degrees. In the present invention, the angle of repose refers to an angle (°) measured in accordance with JIS R 9301-2-2. Specifically, the pre-expanded particles are dropped from the lower end of the funnel container, and the height of the pre-expanded particles deposited on the disk-shaped table is measured, and the diameter of the disk-shaped table and the height of the deposited expanded particles are measured. From the relationship, the angle of repose of the deposited pre-expanded particles is calculated. The major axis and minor axis of the pre-expanded particles mean the longest and shortest diameters of the pre-expanded particles, and the major axis is a diameter equal to or greater than the minor axis. Furthermore, the substantially spherical shape means a spherical to egg-shaped shape. The repose angle measurement method and the like will be described in detail in Examples.

従来、予備発泡粒子は円柱状の樹脂粒子等を用いて製造されるため、得られた予備発泡粒子も円柱状等の異形の形状を有していると予想される。このため、これらの予備発泡粒子は、大きな安息角を有し、その流動性も低いものであった。   Conventionally, since pre-expanded particles are manufactured using cylindrical resin particles or the like, it is expected that the obtained pre-expanded particles also have an irregular shape such as a column. For this reason, these pre-expanded particles had a large angle of repose and low fluidity.

他方、本発明の予備発泡粒子は略球状の樹脂粒子を用いて製造されるため、得られた予備発泡粒子も式(1)を満たすような略球状の形状を有している。具体的には、本発明の予備発泡粒子を得るために、まず、略球状の樹脂粒子に発泡剤を含浸させることにより、同様に略球状の発泡性樹脂粒子を得る。次いで、得られた略球状の発泡性樹脂粒子を予備発泡させることによって、予備発泡粒子を得る。このため、本発明の予備発泡粒子は略球状の形状を有し、異形の予備発泡粒子とは異なって、流動性に極めて優れたものである。   On the other hand, since the pre-expanded particles of the present invention are produced using substantially spherical resin particles, the obtained pre-expanded particles also have a substantially spherical shape that satisfies the formula (1). Specifically, in order to obtain the pre-expanded particles of the present invention, first, approximately spherical resin particles are similarly obtained by impregnating approximately spherical resin particles with a foaming agent. Next, pre-expanded particles are obtained by pre-expanding the substantially spherical expandable resin particles obtained. For this reason, the pre-expanded particles of the present invention have a substantially spherical shape and are extremely excellent in fluidity unlike the irregular-shaped pre-expanded particles.

また、本発明の予備発泡粒子は嵩発泡倍率と表面付着水分率との間で好適な関係を有するため、予備発泡粒子間のその表面に存在する水分を介した凝集を抑制することができ、その結果、予備発泡粒子の流動性をより向上させることができる。   Moreover, since the pre-expanded particles of the present invention have a suitable relationship between the bulk expansion ratio and the surface adhering moisture content, it is possible to suppress agglomeration via moisture existing on the surface between the pre-expanded particles, As a result, the fluidity of the pre-expanded particles can be further improved.

従って、本発明の予備発泡粒子は、従来の予備発泡粒子では実現することができなかったような、0〜22度という極めて小さな安息角を実現することができ、その結果、フィーダー内で滞留等することなく、予備発泡粒子を発泡成形機内に容易に充填することができる。
以下、本発明の予備発泡粒子について詳説する。
Therefore, the pre-expanded particles of the present invention can realize an extremely small angle of repose of 0 to 22 degrees, which could not be realized with conventional pre-expanded particles, and as a result, stay in the feeder, etc. Therefore, the pre-expanded particles can be easily filled in the foam molding machine.
Hereinafter, the pre-expanded particles of the present invention will be described in detail.

<樹脂粒子>
本発明の予備発泡粒子は樹脂粒子に発泡剤を含浸させて発泡性樹脂粒子とし、次いで得られた発泡性樹脂粒子を予備発泡させることによって製造される。本発明においては、樹脂粒子の形状が予備発泡粒子の形状に大きな影響を与えるため、樹脂粒子も略球状であることが好ましい。
<Resin particles>
The pre-expanded particles of the present invention are produced by impregnating resin particles with a foaming agent to obtain expandable resin particles, and then pre-expanding the obtained expandable resin particles. In the present invention, since the shape of the resin particles greatly affects the shape of the pre-foamed particles, the resin particles are also preferably substantially spherical.

具体的には、本発明の樹脂粒子が略球状である場合、好ましくは下記式(3):
1.0≦A/B≦1.5 (3)
(式中、Aは樹脂粒子の長径(mm)であり、Bは樹脂粒子の短径(mm)である)
を満たし、より好ましくは下記式(4):
1.0≦A/B≦1.3 (4)
を満たす。
Specifically, when the resin particles of the present invention are substantially spherical, preferably the following formula (3):
1.0 ≦ A / B ≦ 1.5 (3)
(In the formula, A is the major axis (mm) of the resin particles, and B is the minor axis (mm) of the resin particles)
More preferably, the following formula (4):
1.0 ≦ A / B ≦ 1.3 (4)
Meet.

本発明においては、より容易に予備発泡粒子の流動性を確保することができるため、樹脂粒子は、好ましくは2.0〜7.0mm、より好ましくは2.0〜6.5mmの長径および、好ましくは2.0〜6.5mm、より好ましくは2.0〜6.0mmの短径を有する。なお、長径は短径以上の径である。   In the present invention, since the fluidity of the pre-foamed particles can be more easily ensured, the resin particles are preferably 2.0 to 7.0 mm, more preferably 2.0 to 6.5 mm long diameter, Preferably it has a minor axis of 2.0 to 6.5 mm, more preferably 2.0 to 6.0 mm. The major axis is a diameter greater than the minor axis.

本発明の樹脂粒子を構成する樹脂成分は発泡可能であれば特に限定されず、公知の熱可塑性樹脂、熱硬化性樹脂等を使用することができる。具体的には、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリ(メタ)アクリル系樹脂、ポリフェニレンエーテル系樹脂、ポリカーボネート系樹脂、ポリ乳酸系樹脂を含むポリエステル系樹脂、塩素系樹脂等を挙げることができる。なお、(メタ)アクリルはアクリルまたはメタクリルを意味する。   The resin component which comprises the resin particle of this invention will not be specifically limited if foamable, A well-known thermoplastic resin, a thermosetting resin, etc. can be used. Specific examples include polystyrene resins, polyolefin resins, poly (meth) acrylic resins, polyphenylene ether resins, polycarbonate resins, polyester resins including polylactic acid resins, and chlorine resins. In addition, (meth) acryl means acryl or methacryl.

本発明の樹脂粒子に含まれる樹脂成分として、剛性と高い発泡性能を付与することができるためポリスチレン系樹脂が好ましい。   As the resin component contained in the resin particles of the present invention, a polystyrene resin is preferable because rigidity and high foaming performance can be imparted.

また、高耐熱性と耐衝撃性とを付与することができるためポリオレフィン系樹脂も好ましい。さらに、両者の特性を共に含むこともできるため、本発明の樹脂粒子はポリスチレン系樹脂とポリオレフィン系樹脂とを共に含むことがより好ましい。なお、本発明において、予備発泡粒子の樹脂成分として複数の樹脂成分を使用する場合、使用原料についての、単量体間の質量比率、単量体と樹脂との間の質量比率および樹脂間の質量比率と、それらから得られる樹脂粒子、予備発泡粒子および発泡成形体に含まれる樹脂成分の質量比率とは略同一である。   A polyolefin resin is also preferable because it can impart high heat resistance and impact resistance. Furthermore, since both of the characteristics can be included, it is more preferable that the resin particles of the present invention include both a polystyrene resin and a polyolefin resin. In the present invention, when a plurality of resin components are used as the resin component of the pre-expanded particles, the mass ratio between the monomers, the mass ratio between the monomer and the resin, and the resin The mass ratio is substantially the same as the mass ratio of the resin component contained in the resin particles, the pre-expanded particles, and the foamed molded product obtained therefrom.

本発明においてポリスチレン系樹脂とは、スチレン単独重合体、またはスチレンを主成分とし、スチレンと共重合可能な他の単量体との共重合体を意味する。ここでスチレンを主成分とするとは、スチレンが全単量体の50質量%以上を占めることを意味する。他の単量体として、α−メチルスチレン、p−メチルスチレン、アクリロニトリル、メタクリロニトリル、アクリル酸、メタクリル酸、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、ジビニルベンゼン、ポリエチレングリコールジメタクリレート等が例示される。例示中、アルキルとは炭素数1〜8のアルキルを意味する。本発明においては、発泡性樹脂粒子を安定に予備発泡させることができるスチレン単独重合体が好ましい。   In the present invention, the polystyrene-based resin means a styrene homopolymer or a copolymer of styrene as a main component and another monomer copolymerizable with styrene. Here, styrene as a main component means that styrene accounts for 50% by mass or more of all monomers. Examples of other monomers include α-methylstyrene, p-methylstyrene, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid, alkyl acrylate ester, alkyl methacrylate ester, divinylbenzene, and polyethylene glycol dimethacrylate. The In the examples, alkyl means alkyl having 1 to 8 carbon atoms. In the present invention, a styrene homopolymer capable of stably pre-foaming expandable resin particles is preferable.

また本発明においてポリオレフィン系樹脂とは、オレフィン単独重合体、またはオレフィン系単量体を主成分とし、オレフィン系単量体と共重合可能な他の単量体との共重合体を意味する。ここでオレフィン系単量体を主成分とするとは、オレフィン系単量体が全単量体の50質量%以上を占めることを意味する。   In the present invention, the polyolefin resin means an olefin homopolymer or a copolymer of an olefin monomer as a main component and another monomer copolymerizable with the olefin monomer. Here, having an olefin monomer as a main component means that the olefin monomer occupies 50% by mass or more of the total monomers.

具体的には、ポリオレフィン系樹脂として、例えば、分枝鎖状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体等のポリエチレン系樹脂;
プロピレン単独重合体、エチレン−プロピレン共重合体、プロピレン−1−ブテン共重合体、エチレン−プロピレン−1−ブテン共重合体等のポリプロピレン系樹脂等を挙げることができる。
Specifically, as the polyolefin resin, for example, branched low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer Polyethylene resins such as
Examples thereof include polypropylene resins such as propylene homopolymer, ethylene-propylene copolymer, propylene-1-butene copolymer, and ethylene-propylene-1-butene copolymer.

本発明においては、より高いレベルの耐熱性と耐衝撃性を期待することができるため、ポリオレフィン系樹脂としてポリプロピレン系樹脂が好ましい。   In the present invention, since a higher level of heat resistance and impact resistance can be expected, a polypropylene resin is preferred as the polyolefin resin.

また、所望の物性に影響を与えない限り前記ポリオレフィン系樹脂を単独で使用しても、2種以上を使用してもよい。なお、前記例示中、低密度とは0.91〜0.94g/cm3であることが好ましく、0.91〜0.93g/cm3であることがより好ましい。高密度とは0.95〜0.97g/cm3であることが好ましく、0.95〜0.96g/cm3であることがより好ましい。中密度とはこれら低密度と高密度の中間の密度である。 Moreover, as long as the desired physical properties are not affected, the polyolefin resin may be used alone or in combination of two or more. In addition, in the said illustration, it is preferable that low density is 0.91-0.94 g / cm < 3 >, and it is more preferable that it is 0.91-0.93 g / cm < 3 >. Preferably high density and is 0.95~0.97g / cm 3, more preferably 0.95~0.96g / cm 3. The medium density is an intermediate density between the low density and the high density.

ポリオレフィン系樹脂には、タルク、珪酸カルシウム、ステアリン酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合等の気泡調整剤、カーボンブラック、酸化鉄、グラファイト等の着色剤等を含んでいてもよい。   Polyolefin resins include talc, calcium silicate, calcium stearate, synthetic or naturally produced silicon dioxide, ethylene bis-stearic acid amide, methacrylic acid ester copolymer, etc., carbon black, iron oxide, graphite, etc. It may contain a coloring agent.

さらに、本発明の樹脂成分は、所望の物性に影響を与えない限り、ビニル基、カルボニル基、芳香族基、エステル基、エーテル基、アルデヒド基、アミノ基、ニトリル基、ニトロ基等の官能基を含んでいてもよく、2以上のビニル基を有する架橋剤等により架橋されていてもよく、単独で使用しても2種以上を併用してもよい。   Furthermore, the resin component of the present invention has a functional group such as a vinyl group, a carbonyl group, an aromatic group, an ester group, an ether group, an aldehyde group, an amino group, a nitrile group, and a nitro group as long as the desired physical properties are not affected. May be contained, may be crosslinked with a crosslinking agent having two or more vinyl groups, and may be used alone or in combination of two or more.

また、本発明の樹脂粒子は同様に所望の物性に影響を与えない限り、その他の樹脂成分を含んでいてもよい。他の樹脂成分としては公知の熱可塑性樹脂、熱硬化性樹脂等を挙げることができる。具体的には、ポリ(メタ)アクリル系樹脂、ポリフェニレンエーテル系樹脂、ポリカーボネート系樹脂、ポリ乳酸系樹脂を含むポリエステル系樹脂、塩素系樹脂等を挙げることができる。   Similarly, the resin particles of the present invention may contain other resin components as long as they do not affect the desired physical properties. Examples of other resin components include known thermoplastic resins and thermosetting resins. Specific examples include poly (meth) acrylic resins, polyphenylene ether resins, polycarbonate resins, polyester resins including polylactic acid resins, and chlorine resins.

本発明において、樹脂成分としてポリスチレン系樹脂とポリオレフィン系樹脂とを使用する場合、ポリスチレン系樹脂は樹脂粒子中に、ポリオレフィン系樹脂100質量部に対して100〜400質量部含有されることが好ましく、125〜240質量部含有されることがより好ましい。ポリスチレン系樹脂の含有量が400質量部より多いと、ポリオレフィン系樹脂が不足し、耐熱性、耐衝撃性が劣る場合がある。一方、100質量部より少ないと、ポリスチレン系樹脂が不足し、所望の発泡性を得ることができないことがある。   In the present invention, when a polystyrene resin and a polyolefin resin are used as the resin component, the polystyrene resin is preferably contained in the resin particles in an amount of 100 to 400 parts by mass with respect to 100 parts by mass of the polyolefin resin. More preferably, it is contained in an amount of 125 to 240 parts by mass. If the content of the polystyrene resin is more than 400 parts by mass, the polyolefin resin may be insufficient, and the heat resistance and impact resistance may be inferior. On the other hand, when the amount is less than 100 parts by mass, the polystyrene-based resin may be insufficient and desired foamability may not be obtained.

また、両者の有する物性を好適に発泡成形体に導入することができるため、樹脂粒子は樹脂粒子100質量部中に両者を併せた樹脂成分を、好ましくは70〜100質量部、より好ましくは80〜100質量部含む。他方、ポリオレフィン系樹脂とポリスチレン系樹脂との組合せとして、ポリプロピレン系樹脂とスチレン単独重合体との組合せが好ましい。   Moreover, since the physical property which both have can be introduce | transduced into a foaming molding suitably, the resin particle is a resin component which combined both in 100 mass parts of resin particles, Preferably it is 70-100 mass parts, More preferably, it is 80. Contains 100 parts by mass. On the other hand, as a combination of a polyolefin resin and a polystyrene resin, a combination of a polypropylene resin and a styrene homopolymer is preferable.

また、所望の発泡成形体を得ることができる限り、樹脂粒子は他の添加剤等を含んでいてもよい。添加剤として、具体的には、難燃剤、難燃助剤、被覆剤、連鎖移動剤、光安定剤、紫外線吸収剤、顔料、染料、消泡剤、増粘剤、熱安定剤、レベリング剤、滑剤、帯電防止剤等が挙げられる。なお、樹脂粒子がこれらの添加剤を含む場合、樹脂粒子から得られる予備発泡粒子、発泡成形体もこれらの添加剤を含むことができる。   Moreover, as long as a desired foaming molding can be obtained, the resin particle may contain the other additive. Specific additives include flame retardants, flame retardant aids, coating agents, chain transfer agents, light stabilizers, UV absorbers, pigments, dyes, antifoaming agents, thickeners, heat stabilizers, leveling agents. , Lubricants, antistatic agents and the like. In addition, when the resin particle contains these additives, the pre-foamed particles and the foamed molded product obtained from the resin particles can also contain these additives.

<樹脂粒子の製造方法>
発泡性樹脂粒子の製造時に使用する樹脂粒子の製造には、公知の重合法、即ち、懸濁重合法、乳化重合法、溶液重合法、シード重合法等を適宜使用することができる。シード重合法は、シード粒子(種粒子)に単量体成分を水性媒体中で含浸させて、重合させることにより樹脂粒子を得る方法である。本発明においては、樹脂成分を複数含む複合樹脂粒子を容易に製造することができるため、シード重合法が好ましい。この場合、発泡成形体に、より高い耐薬品性、耐衝撃性、強度等を導入できることがある。また、製造方法としてシード重合法を用いた場合、得られた樹脂粒子は略球状となり易い。この場合、前記樹脂粒子から得られる発泡性樹脂粒子、予備発泡粒子も略球状となり好ましい。
<Method for producing resin particles>
A known polymerization method, that is, a suspension polymerization method, an emulsion polymerization method, a solution polymerization method, a seed polymerization method, or the like can be used as appropriate for the production of the resin particles used in the production of the expandable resin particles. The seed polymerization method is a method of obtaining resin particles by impregnating seed particles (seed particles) with a monomer component in an aqueous medium and polymerizing them. In the present invention, since a composite resin particle containing a plurality of resin components can be easily produced, a seed polymerization method is preferable. In this case, higher chemical resistance, impact resistance, strength, etc. may be introduced into the foamed molded product. Moreover, when the seed polymerization method is used as a production method, the obtained resin particles are likely to be substantially spherical. In this case, the expandable resin particles and the pre-expanded particles obtained from the resin particles are also preferably substantially spherical.

<複合樹脂粒子の製造方法>
以下に一例を挙げて、樹脂成分としてポリオレフィン系樹脂とポリスチレン系樹脂とを含む複合樹脂粒子のシード重合法による製造方法を説明するが、本発明はこれらに限定されるものではない。
<Method for producing composite resin particles>
An example will be given below to describe a method for producing composite resin particles containing a polyolefin resin and a polystyrene resin as resin components by a seed polymerization method, but the present invention is not limited to these.

本発明の複合樹脂粒子は、例えば、
分散剤を含む水性懸濁液中に、水性媒体100質量部に対して0.001〜0.05質量部の界面活性剤の存在下、ポリオレフィン系樹脂のシード粒子と、第1のスチレン系単量体と、第1の重合開始剤とを分散させる工程Aと、
得られた分散液を第1のスチレン系単量体が実質的に重合しない温度に加熱して第1のスチレン系単量体をシード粒子に含浸させる工程Bと、
ポリオレフィン系樹脂の融点をT℃としたとき、(T−10)℃〜(T+20)℃の温度で、第1のスチレン系単量体の第1の重合を行って第1の粒子を得る工程Cと、
工程Cに続いて、第2のスチレン系単量体と第2の重合開始剤とをさらに加え、かつ、(T−25)℃〜(T+10)℃の温度とすることにより、第1の粒子への第2のスチレン系単量体の含浸および第2の重合を行って樹脂粒子を得る工程Dを経るシード重合工程(ただし、ポリオレフィン系樹脂の量と、第1のスチレン系単量体と第2のスチレン系単量体との合計量とが、100:100〜400(質量比)である)を含む製造方法を用いることにより製造することができる。なお、この場合、ポリオレフィン系樹脂とスチレン系単量体との質量比は発泡成形体、予備発泡粒子、複合樹脂粒子中の樹脂成分比率と略同一である。
The composite resin particles of the present invention are, for example,
In the aqueous suspension containing the dispersant, in the presence of 0.001 to 0.05 parts by mass of a surfactant with respect to 100 parts by mass of the aqueous medium, the polyolefin resin seed particles and the first styrene monomer Step A for dispersing the monomer and the first polymerization initiator;
Heating the obtained dispersion to a temperature at which the first styrenic monomer is not substantially polymerized to impregnate the seed particles with the first styrenic monomer; and
The step of obtaining the first particles by performing the first polymerization of the first styrene monomer at a temperature of (T-10) ° C. to (T + 20) ° C. when the melting point of the polyolefin resin is T ° C. C
Subsequent to Step C, the second particles are further added with a second styrene monomer and a temperature of (T-25) ° C. to (T + 10) ° C. Impregnation of the second styrenic monomer and the seed polymerization step through the second polymerization to obtain resin particles D (however, the amount of polyolefin resin and the first styrenic monomer) The total amount of the second styrene monomer can be 100: 100 to 400 (mass ratio). In this case, the mass ratio of the polyolefin resin and the styrene monomer is substantially the same as the resin component ratio in the foamed molded product, the pre-foamed particles, and the composite resin particles.

工程A〜Dのそれぞれは、例えば、懸濁重合法、シード重合法等の周知の重合方法を実施する際に使用するオートクレーブ重合装置を用いて実施できるが、使用される製造装置はこれに限定されない。   Each of the steps A to D can be carried out using an autoclave polymerization apparatus used when a known polymerization method such as a suspension polymerization method or a seed polymerization method is carried out, but the production apparatus used is limited to this. Not.

(工程A)
本発明の工程Aは、分散剤を含む水性懸濁液中に、水性媒体100質量部に対して0.001〜0.05質量部の界面活性剤の存在下、ポリオレフィン系樹脂のシード粒子と、第1のスチレン系単量体と、第1の重合開始剤とを分散させる工程である。
(Process A)
In the step A of the present invention, in the aqueous suspension containing the dispersant, in the presence of 0.001 to 0.05 parts by mass of a surfactant with respect to 100 parts by mass of the aqueous medium, In this step, the first styrene monomer and the first polymerization initiator are dispersed.

シード重合の際のシード粒子として使用するポリオレフィン系樹脂粒子は、例えば、ポリオレフィン系樹脂を押出機で溶融し、ストランドカット、水中カット、ホットカット等により造粒ペレット化する方法、粉砕機にて直接樹脂粒子を粉砕しペレット化する方法により得ることができる。また、その形状は、真球状、略球状、円柱状、角柱状等を挙げることができる。この場合、より容易に略球状の複合樹脂粒子を得ることができるため、ポリオレフィン系樹脂粒子も略球状であることが好ましい。さらに、同様の観点から、このポリオレフィン系樹脂粒子の好ましい粒子径は、0.5〜1.5mmの範囲であり、より好ましくは、0.6〜1.0mmの範囲である。   The polyolefin resin particles used as seed particles in seed polymerization are, for example, a method in which a polyolefin resin is melted with an extruder and granulated into pellets by strand cutting, underwater cutting, hot cutting, etc. It can be obtained by a method in which resin particles are pulverized and pelletized. Further, examples of the shape include a true spherical shape, a substantially spherical shape, a cylindrical shape, and a prismatic shape. In this case, since the substantially spherical composite resin particles can be obtained more easily, the polyolefin resin particles are also preferably substantially spherical. Furthermore, from the same viewpoint, the preferred particle diameter of the polyolefin resin particles is in the range of 0.5 to 1.5 mm, and more preferably in the range of 0.6 to 1.0 mm.

他方、水性懸濁液を得るのに使用する分散剤としては、例えば、部分けん化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース等の有機系分散剤;
ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム等の無機系分散剤が挙げられる。この内、より安定な水性懸濁液を得ることができる場合があるため、無機系分散剤が好ましく、ピロリン酸マグネシウムがより好ましい。
On the other hand, examples of the dispersant used to obtain an aqueous suspension include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose;
Examples include inorganic dispersants such as magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, magnesium phosphate, magnesium carbonate, and magnesium oxide. Among these, since a more stable aqueous suspension may be obtained, an inorganic dispersant is preferable, and magnesium pyrophosphate is more preferable.

また、略球状の複合樹脂粒子をより容易に得ることができるため、分散剤は、水性媒体100質量部に対して、好ましくは0.1〜5質量部、より好ましくは1〜4質量部の割合で使用される。水性懸濁液を構成する水性媒体は、水、水と水溶性溶媒(例えば、メタノール、エタノール等の低級アルコール)との混合物等が挙げられる。さらに、所望の物性に影響を与えない限り、水性媒体は電解質等の添加剤を含んでいてもよい。   Moreover, since the substantially spherical composite resin particles can be obtained more easily, the dispersant is preferably 0.1 to 5 parts by mass, more preferably 1 to 4 parts by mass with respect to 100 parts by mass of the aqueous medium. Used in proportions. Examples of the aqueous medium constituting the aqueous suspension include water, a mixture of water and a water-soluble solvent (for example, lower alcohols such as methanol and ethanol), and the like. Furthermore, the aqueous medium may contain an additive such as an electrolyte as long as the desired physical properties are not affected.

本発明においては、より安定にシード重合を行うことができるため、シード粒子は、水性媒体100質量部に対して、好ましくは10〜80質量部、より好ましくは20〜50質量部の割合で使用される。また、樹脂粒子が難燃剤等を含む複合樹脂粒子の場合も、シード粒子は、水性媒体100質量部に対して、好ましくは10〜80質量部、より好ましくは20〜50質量部の割合で使用される。   In the present invention, since seed polymerization can be performed more stably, the seed particles are preferably used in a proportion of 10 to 80 parts by mass, more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the aqueous medium. Is done. Moreover, also when the resin particles are composite resin particles containing a flame retardant or the like, the seed particles are preferably used in a proportion of 10 to 80 parts by mass, more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the aqueous medium. Is done.

他方、略球状の複合樹脂粒子を安定に得ることができるため、界面活性剤を使用することが好ましい。界面活性剤としては、所望の物性に影響を与えない限り、アニオン性界面活性剤、ノニオン性界面活性剤およびカチオン性界面活性剤のいずれも使用することができる。   On the other hand, it is preferable to use a surfactant because substantially spherical composite resin particles can be obtained stably. As the surfactant, any of an anionic surfactant, a nonionic surfactant and a cationic surfactant can be used as long as the desired physical properties are not affected.

具体的には、オレイン酸ナトリウム、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸塩およびアルキルリン酸エステル塩のようなアニオン性界面活性剤;
ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミンおよびグリセリン脂肪酸エステルのようなノニオン性界面活性剤;
ラウリルジメチルアミンオキサイドのような両性界面活性剤;ならびに
脂肪族第四級アンモニウム塩のようなカチオン性界面活性剤等を挙げることができる。
Specifically, anionic surfactants such as sodium oleate, sodium lauryl sulfate, sodium dodecylbenzene sulfonate, alkyl naphthalene sulfonate and alkyl phosphate ester salts;
Nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine and glycerin fatty acid ester;
Examples include amphoteric surfactants such as lauryl dimethylamine oxide; and cationic surfactants such as aliphatic quaternary ammonium salts.

本発明においては、略球状の複合樹脂粒子をより安定に得ることができるため、アニオン性界面活性剤が好ましく、ドデシルベンゼンスルホン酸ソーダが特に好ましい。また、略球状の形状を有する樹脂粒子や予備発泡粒子をさらにより容易に得ることができるため、第1の重合時に使用する界面活性剤は、水性媒体100質量部に対して、好ましくは0.001〜0.05質量部、より好ましくは0.005〜0.05質量部の割合で使用される。   In the present invention, since an approximately spherical composite resin particle can be obtained more stably, an anionic surfactant is preferable, and sodium dodecylbenzenesulfonate is particularly preferable. In addition, since the resin particles and pre-expanded particles having a substantially spherical shape can be obtained more easily, the surfactant used in the first polymerization is preferably 0.1% relative to 100 parts by mass of the aqueous medium. It is used at a ratio of 001 to 0.05 parts by mass, more preferably 0.005 to 0.05 parts by mass.

第1の重合開始剤および第2の重合開始剤として使用する重合開始剤としては、スチレン系単量体の重合に汎用されている従来周知の重合開始剤を使用することができる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t−アミルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、t−アミルパーオキシベンゾエート、t−ブチルパーオキシビバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、2,2−ジ−t−ブチルパーオキシブタン、ジクミルパーオキサイド等の有機過酸化物;
アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ系化合物が挙げられる。なお、重合開始剤は、単独で用いられても併用されてもよい。重合開始剤の使用量は、スチレン系単量体100質量部の合計に対して、0.1〜5質量部であることが好ましい。また、第1の重合開始剤の使用量は、第1のスチレン系単量体100質量部に対して、0.01〜1質量部であることが好ましい。さらに、第2の重合開始剤の使用量は、第2のスチレン系単量体100質量部に対して、0.05〜4質量部であることが好ましい。
As the polymerization initiator used as the first polymerization initiator and the second polymerization initiator, conventionally known polymerization initiators widely used for the polymerization of styrene monomers can be used. For example, benzoyl peroxide, lauroyl peroxide, t-amyl peroxy octoate, t-butyl peroxybenzoate, t-amyl peroxybenzoate, t-butyl peroxybivalate, t-butyl peroxyisopropyl carbonate, t- Butyl peroxyacetate, t-butylperoxy-3,3,5-trimethylcyclohexanoate, di-t-butylperoxyhexahydroterephthalate, 2,2-di-t-butylperoxybutane, dicumyl peroxide Organic peroxides such as;
Examples include azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. In addition, a polymerization initiator may be used independently or may be used together. It is preferable that the usage-amount of a polymerization initiator is 0.1-5 mass parts with respect to the sum total of 100 mass parts of styrene-type monomers. Moreover, it is preferable that the usage-amount of a 1st polymerization initiator is 0.01-1 mass part with respect to 100 mass parts of 1st styrenic monomers. Furthermore, it is preferable that the usage-amount of a 2nd polymerization initiator is 0.05-4 mass parts with respect to 100 mass parts of 2nd styrene-type monomers.

また、架橋剤を使用してもよい。架橋剤としては、2,2−ジ−t−ブチルパーオキシブタン、2,2−ビス(t−ブチルパーオキシ)ブタン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン等の有機過酸化物等が挙げられる。架橋剤の添加方法としては、例えば、架橋剤をポリオレフィン系樹脂に直接添加する方法、溶剤、可塑剤またはスチレン系単量体に架橋剤を溶解させた上で添加する方法、架橋剤を水に分散させた上で添加する方法等が挙げられる。この内、スチレン系単量体に架橋剤を溶解させた上で添加する方法が好ましい。   Moreover, you may use a crosslinking agent. As a crosslinking agent, 2,2-di-t-butylperoxybutane, 2,2-bis (t-butylperoxy) butane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t -Organic peroxides such as butylperoxyhexane. Examples of the method of adding the crosslinking agent include a method of directly adding the crosslinking agent to the polyolefin resin, a method of adding the crosslinking agent after dissolving it in a solvent, a plasticizer or a styrene monomer, and a method of adding the crosslinking agent to water. The method of adding after dispersing is mentioned. Among these, a method of adding a crosslinking agent after dissolving it in a styrene monomer is preferable.

スチレン系単量体をポリオレフィン系樹脂粒子に含浸させるために、水性媒体に連続的にあるいは断続的に添加することができる。スチレン系単量体は水性媒体中に徐々に添加していくことが好ましい。   In order to impregnate the polyolefin resin particles with the styrene monomer, it can be added continuously or intermittently to the aqueous medium. It is preferable to gradually add the styrenic monomer to the aqueous medium.

(工程B)
本発明の工程Bは、得られた分散液を第1のスチレン系単量体が実質的に重合しない温度に加熱して第1のスチレン系単量体をシード粒子に含浸させる工程である。
(Process B)
Step B of the present invention is a step in which the obtained dispersion is heated to a temperature at which the first styrenic monomer is not substantially polymerized to impregnate the seed particles with the first styrenic monomer.

本発明において、第1のスチレン系単量体が実質的に重合しない温度とは、使用する重合開始剤種にもよるが、使用する重合開始剤の10時間半減期温度以下の温度を意味する。また、第1のスチレン系単量体を十分にポリオレフィン系樹脂中に吸収、願浸させることができるため、前記の温度は45〜70℃の範囲であることが好ましい。加熱温度が45℃未満であると、第1のスチレン系単量体の含浸が不十分となってポリスチレンの重合粉末が生成されることがある。一方、加熱温度が70℃を超えると、スチレン系単量体がポリオレフィン系樹脂粒子に十分含浸される前に重合してしまうことがある。より好ましい前記の温度は50〜65℃の範囲である。   In the present invention, the temperature at which the first styrenic monomer is not substantially polymerized means a temperature not higher than the 10-hour half-life temperature of the polymerization initiator used, although it depends on the type of polymerization initiator used. . In addition, the temperature is preferably in the range of 45 to 70 ° C., because the first styrene monomer can be sufficiently absorbed and poured into the polyolefin resin. When the heating temperature is less than 45 ° C., the impregnation of the first styrene monomer may be insufficient, and a polystyrene polymer powder may be generated. On the other hand, when the heating temperature exceeds 70 ° C., polymerization may occur before the styrene monomer is sufficiently impregnated into the polyolefin resin particles. More preferably, the temperature is in the range of 50-65 ° C.

(工程CおよびD)
本発明の工程Cは、ポリオレフィン系樹脂の融点をT℃としたとき、(T−10)℃〜(T+20)℃の温度で、第1のスチレン系単量体の第1の重合を行って第1の粒子を得る工程である。また、本発明の工程Dは、工程Cに続いて、第2のスチレン系単量体と第2の重合開始剤とをさらに加え、かつ、(T−25)℃〜(T+10)℃の温度とすることにより、第1の粒子への第2のスチレン系単量体の含浸および第2の重合を行って樹脂粒子を得る工程である。
(Processes C and D)
In the step C of the present invention, when the melting point of the polyolefin resin is T ° C., the first polymerization of the first styrene monomer is performed at a temperature of (T−10) ° C. to (T + 20) ° C. This is a step of obtaining first particles. Moreover, the process D of this invention adds the 2nd styrene-type monomer and the 2nd polymerization initiator following the process C, and is the temperature of (T-25) degreeC-(T + 10) degreeC. Thus, the first particle is impregnated with the second styrenic monomer and the second polymerization is performed to obtain resin particles.

工程Cおよび工程Dにおいて、重合温度は重要な要因である。前記温度範囲で重合を行うことにより、中心部はポリスチレン系樹脂の存在量が多く、表層はポリオレフィン系樹脂の存在量が多い複合樹脂粒子を得ることができる場合がある。この場合、ポリスチレン系樹脂とポリオレフィン系樹脂とが偏在する結果として、ポリオレフィン系樹脂とポリスチレン系樹脂のそれぞれの長所が生かされ、剛性、発泡成形性および耐薬品性を良好に保持された発泡成形体を提供できる場合がある。   In step C and step D, the polymerization temperature is an important factor. By performing polymerization in the above temperature range, composite resin particles having a large amount of polystyrene resin in the center and a large amount of polyolefin resin in the surface layer may be obtained in some cases. In this case, as a result of the uneven distribution of the polystyrene resin and the polyolefin resin, the foam molded article that has the advantages of the polyolefin resin and the polystyrene resin, and has excellent rigidity, foam moldability and chemical resistance. May be able to provide.

重合温度が前記温度範囲より低くなると、中心部のポリスチレン系樹脂の存在量が少なく、良好な物性を示す発泡成形体が得られないことがある。また、重合温度が前記温度範囲より高くなると、スチレン系単量体がポリオレフィン系樹脂粒子に十分含浸される前に重合が開始してしまうので、良好な物性を示す発泡成形体が得られないことがある。また、高くなると、耐熱性に優れた高価格の重合設備が必要になる。   When the polymerization temperature is lower than the above temperature range, the abundance of the polystyrene-based resin at the center is small, and a foamed molded article having good physical properties may not be obtained. In addition, when the polymerization temperature is higher than the above temperature range, the polymerization starts before the styrene monomer is sufficiently impregnated with the polyolefin resin particles, so that a foam molded article having good physical properties cannot be obtained. There is. Moreover, if it becomes high, the superposition | polymerization equipment excellent in heat resistance will be needed.

また、スチレン系単量体の重合を、工程Cと工程Dの二段階に分ける理由は、一度に多くのスチレン系単量体をポリオレフィン系樹脂に含浸させようとすると、スチレン系単量体がポリオレフィン系樹脂に十分に含浸されず、ポリオレフィン系樹脂の表面に残る場合がある。重合工程を二段階に分ければ、工程Cにおいてスチレン系単量体が確実にポリオレフィン系樹脂の中心部に含浸され、工程Dにおいてもスチレン系単量体がポリオレフィン系樹脂の中心部に向かって含浸されることがある。   The reason for dividing the polymerization of the styrenic monomer into two stages, Step C and Step D, is that if a large amount of styrene monomer is impregnated into the polyolefin resin at once, the styrene monomer The polyolefin resin may not be sufficiently impregnated and may remain on the surface of the polyolefin resin. If the polymerization process is divided into two stages, the styrene monomer is reliably impregnated in the center of the polyolefin resin in the process C, and the styrene monomer is impregnated in the process D toward the center of the polyolefin resin. May be.

本発明においては、前記の含浸をより効率的に行うことができるため、ポリオレフィン系樹脂の量と、第1のスチレン系単量体と第2のスチレン系単量体との合計量とが、好ましくは100:100〜400、より好ましくは100:125〜240(質量比)である。同様にポリオレフィン系樹脂の量と、第1のスチレン系単量体の量とは好ましくは100:10〜100、より好ましくは100:30〜70(質量比)である。   In the present invention, since the impregnation can be performed more efficiently, the amount of the polyolefin resin and the total amount of the first styrene monomer and the second styrene monomer are: Preferably it is 100: 100-400, More preferably, it is 100: 125-240 (mass ratio). Similarly, the amount of the polyolefin resin and the amount of the first styrene monomer are preferably 100: 10 to 100, more preferably 100: 30 to 70 (mass ratio).

また、工程Dにおいて、界面活性剤を第2のスチレン系単量体または第2の重合活性剤と共に任意に加えてもよい。この場合も、使用する界面活性剤として、略球状の複合樹脂粒子をより安定に得ることができるため、アニオン性界面活性剤が好ましく、ドデシルベンゼンスルホン酸ソーダが特に好ましい。さらに、第2の重合時に使用する界面活性剤は、水性媒体100質量部に対して、好ましくは0.001〜1質量部、より好ましくは0.005〜0.1質量部の割合で使用される。   In Step D, a surfactant may be optionally added together with the second styrenic monomer or the second polymerization activator. Also in this case, since the substantially spherical composite resin particles can be obtained more stably as the surfactant to be used, an anionic surfactant is preferable, and sodium dodecylbenzenesulfonate is particularly preferable. Furthermore, the surfactant used in the second polymerization is preferably used in a ratio of 0.001 to 1 part by mass, more preferably 0.005 to 0.1 part by mass with respect to 100 parts by mass of the aqueous medium. The

他方、複合樹脂粒子が難燃剤を含む場合、第2の重合中の第1の粒子または複合樹脂粒子に難燃剤を含浸させることもできる。さらに、工程Dの後、反応槽を冷却し、複合樹脂粒子を水性媒体と分離することで、複合樹脂粒子を単離することができる。他方、シード重合工程時のその他の温度、圧力、工程時間等は製造設備や製造条件に従って、適宜設定される。   On the other hand, when the composite resin particles contain a flame retardant, the first particles or the composite resin particles in the second polymerization can be impregnated with the flame retardant. Furthermore, after the step D, the reaction vessel is cooled, and the composite resin particles can be isolated from the aqueous medium to isolate the composite resin particles. On the other hand, other temperatures, pressures, process times, and the like during the seed polymerization process are appropriately set according to manufacturing equipment and manufacturing conditions.

<発泡性樹脂粒子>
発泡性樹脂粒子とは、樹脂粒子に所定の割合で発泡剤を含浸させた、加熱により発泡性を示す樹脂粒子を意味する。
<Foaming resin particles>
The foamable resin particles mean resin particles that are foamed by heating, in which resin particles are impregnated with a foaming agent at a predetermined ratio.

発泡剤としては、公知の種々の発泡剤が使用できる。例えば、プロパン、n−ブタン(ノルマルブタン)、イソブタン、n−ペンタン(ノルマルペンタン)、イソペンタン、工業用ペンタン、石油エーテル、シクロヘキサン、シクロペンタン、フロン、ハロン等の単独または混合物が挙げられる。これらの内、より大きな発泡性能を発泡性樹脂粒子に導入することができる、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタンおよびシクロペンタンのいずれかが好ましく、n−ブタン、イソブタンがより好ましい。発泡剤は単独で用いてもよく2種以上を用いてもよい。   Various known foaming agents can be used as the foaming agent. Examples thereof include propane, n-butane (normal butane), isobutane, n-pentane (normal pentane), isopentane, industrial pentane, petroleum ether, cyclohexane, cyclopentane, flon, and halon alone or in a mixture. Among these, propane, n-butane, isobutane, n-pentane, isopentane, and cyclopentane, which can introduce greater foaming performance into the foamable resin particles, are preferred, and n-butane and isobutane are more preferred. . A foaming agent may be used independently and may use 2 or more types.

発泡剤の含有率は、発泡性樹脂粒子100質量部に対して、20質量部以下であることが好ましい。20質量部を超えると、予備発泡粒子中の気泡サイズが過大となり易く、成形性の低下や、得られる発泡成形体の圧縮、曲げ等の強度特性の低下が発生することがある。より好ましい発泡剤の含有率は7.5〜18質量部の範囲である。   It is preferable that the content rate of a foaming agent is 20 mass parts or less with respect to 100 mass parts of expandable resin particles. When the amount exceeds 20 parts by mass, the bubble size in the pre-expanded particles tends to be excessive, and the moldability may be deteriorated and the strength characteristics such as compression and bending of the obtained foamed molded article may be deteriorated. A more preferable foaming agent content is in the range of 7.5 to 18 parts by mass.

さらに、さらに均一に発泡性樹脂粒子を予備発泡させ得る発泡助剤を用いてもよい。発泡助剤として、例えば、トルエン、キシレン、シクロヘキサン、d−リモネン等の溶剤、ジイソブチルアジペート、グリセリン、ジアセチル化モノラウレート、やし油等の可塑剤(高沸点溶剤)が挙げられる。   Furthermore, you may use the foaming auxiliary agent which can pre-expand foamable resin particles more uniformly. Examples of the foaming aid include solvents such as toluene, xylene, cyclohexane, and d-limonene, and plasticizers (high-boiling solvents) such as diisobutyl adipate, glycerin, diacetylated monolaurate, and palm oil.

<発泡性樹脂粒子の製造方法>
発泡性樹脂粒子の製造方法は特に限定されず、公知の方法をいずれも使用することができる。
例えば、V型、C型あるいはDC型等の回転混合機であって、密閉耐圧の容器に樹脂粒子を入れて流動させ、次いで発泡剤を導入することで樹脂粒子に発泡剤を含浸させる方法;
攪拌機付密閉耐圧容器内で樹脂粒子を水性媒体に懸濁させ、次いで発泡剤を導入し、樹脂粒子に発泡剤を含浸させる方法
等が挙げられる(含浸工程)。また揮発性発泡剤の含浸は、50℃〜140℃の雰囲気下、0.5〜6時間程度行うことが好ましい。さらに、前記含浸は所望の発泡成形体等を得ることができる限り、大気圧下で行ってもよく、加圧条件下で行ってもよい。
<Method for producing expandable resin particles>
The production method of the expandable resin particles is not particularly limited, and any known method can be used.
For example, a V-type, C-type or DC-type rotary mixer, in which resin particles are placed in a sealed pressure-resistant container and flowed, and then a foaming agent is introduced to impregnate the resin particles with the foaming agent;
Examples include a method of suspending resin particles in an aqueous medium in an airtight pressure vessel equipped with a stirrer, then introducing a foaming agent, and impregnating the resin particles with the foaming agent (impregnation step). Moreover, it is preferable to impregnate a volatile foaming agent for about 0.5 to 6 hours in 50 degreeC-140 degreeC atmosphere. Further, the impregnation may be performed under atmospheric pressure or under pressure as long as a desired foamed molded article or the like can be obtained.

<予備発泡粒子の製造方法>
予備発泡粒子とは、発泡性樹脂粒子を所定の嵩倍率まで加熱発泡させた樹脂粒子を意味する。また、本発明の予備発泡粒子は公知の予備発泡方法を用いて製造することができる。予備発泡方法の一例を挙げれば、水蒸気等の加熱媒体を用いて発泡性樹脂粒子を加熱し、所定の嵩密度に予備発泡させることで、予備発泡粒子を得ることができる。
<Method for producing pre-expanded particles>
Pre-expanded particles mean resin particles obtained by heating and foaming expandable resin particles to a predetermined bulk magnification. The pre-expanded particles of the present invention can be produced using a known pre-expand method. As an example of the pre-foaming method, the pre-foamed particles can be obtained by heating the foamable resin particles using a heating medium such as water vapor and pre-foaming to a predetermined bulk density.

本発明において、樹脂粒子の製造方法としてシード重合法を用いた場合、得られた樹脂粒子は略球状となり易い。この場合、前記樹脂粒子から得られる発泡性樹脂粒子、予備発泡粒子も略球状となり好ましい。他方、樹脂粒子として円柱状等の異形樹脂粒子を使用した場合、これらの樹脂粒子から得られる発泡性樹脂粒子、予備発泡粒子も異形となり易い。この場合、Lを予備発泡粒子の長径(mm)とし、Dを予備発泡粒子の短径(mm)とすると、L/D値がより大きな値となり、その結果、安息角が大きくなり、予備発泡性樹脂粒子の流動性が悪化することがある。   In the present invention, when a seed polymerization method is used as a method for producing resin particles, the obtained resin particles tend to be substantially spherical. In this case, the expandable resin particles and the pre-expanded particles obtained from the resin particles are also preferably substantially spherical. On the other hand, when deformed resin particles such as a columnar shape are used as the resin particles, expandable resin particles and pre-expanded particles obtained from these resin particles are also likely to be deformed. In this case, if L is the long diameter (mm) of the pre-expanded particles and D is the short diameter (mm) of the pre-expanded particles, the L / D value becomes a larger value, and as a result, the angle of repose becomes large and the pre-expanded The fluidity of the conductive resin particles may deteriorate.

また、予備発泡粒子が、
分散剤を含む水性懸濁液中に、水性媒体100質量部に対して0.001〜0.05質量部の界面活性剤の存在下、ポリオレフィン系樹脂のシード粒子と、第1のスチレン系単量体と、第1の重合開始剤とを分散させる工程Aと、
得られた分散液を第1のスチレン系単量体が実質的に重合しない温度に加熱して第1のスチレン系単量体をシード粒子に含浸させる工程Bと、
ポリオレフィン系樹脂の融点をT℃としたとき、(T−10)℃〜(T+20)℃の温度で、第1のスチレン系単量体の第1の重合を行って第1の粒子を得る工程Cと、
工程Cに続いて、第2のスチレン系単量体と第2の重合開始剤とをさらに加え、かつ、(T−25)℃〜(T+10)℃の温度とすることにより、第1の粒子への第2のスチレン系単量体の含浸および第2の重合を行って樹脂粒子を得る工程Dを経るシード重合工程(ただし、ポリオレフィン系樹脂の量と、第1のスチレン系単量体と第2のスチレン系単量体との合計量とが、100:100〜400(質量比)である);
発泡剤を、樹脂粒子に含浸させることによって発泡性樹脂粒子を得る含浸工程;
発泡性樹脂粒子を予備発泡させる予備発泡工程;および
予備発泡後の発泡性樹脂粒子を室温以上の温度で、12時間以上放置する熟成工程
を含む製造方法によって得られる場合、より強度および流動性に優れた予備発泡粒子を容易に得ることができるため好ましい。
Also, pre-expanded particles
In the aqueous suspension containing the dispersant, in the presence of 0.001 to 0.05 parts by mass of a surfactant with respect to 100 parts by mass of the aqueous medium, the polyolefin resin seed particles and the first styrene monomer Step A for dispersing the monomer and the first polymerization initiator;
Heating the obtained dispersion to a temperature at which the first styrenic monomer is not substantially polymerized to impregnate the seed particles with the first styrenic monomer; and
The step of obtaining the first particles by performing the first polymerization of the first styrene monomer at a temperature of (T-10) ° C. to (T + 20) ° C. when the melting point of the polyolefin resin is T ° C. C
Subsequent to Step C, the second particles are further added with a second styrene monomer and a temperature of (T-25) ° C. to (T + 10) ° C. Impregnation of the second styrenic monomer and the seed polymerization step through the second polymerization to obtain resin particles D (however, the amount of polyolefin resin and the first styrenic monomer) The total amount of the second styrenic monomer is 100: 100 to 400 (mass ratio));
An impregnation step of obtaining expandable resin particles by impregnating resin particles with a foaming agent;
A pre-foaming step for pre-foaming the expandable resin particles; and when the pre-foamed expandable resin particles are obtained by a production method including an aging step of standing at a temperature of room temperature or higher for 12 hours or longer It is preferable because excellent pre-expanded particles can be easily obtained.

予備発泡工程の一例を挙げると、公知の予備発泡機内に発泡性樹脂粒子を充填し、所定の嵩倍数まで加熱することにより予備発泡粒子を得ることができる。加熱用の熱媒体は水蒸気が好適に使用される。また、予備発泡工程の温度、圧力、工程時間等は、予備発泡粒子についての優れた流動性を確保することができる限り、適宜設定される。   As an example of the pre-foaming step, pre-foamed particles can be obtained by filling expandable resin particles in a known pre-foaming machine and heating to a predetermined bulk factor. Steam is preferably used as the heating medium for heating. In addition, the temperature, pressure, process time, and the like of the pre-foaming process are appropriately set as long as excellent fluidity of the pre-foamed particles can be secured.

本発明の熟成工程においては、好ましくは室温以上の温度で、より好ましくは10〜50℃の温度で、さらに好ましくは10〜40℃の温度で、また、好ましくは12時間以上、より好ましくは24時間以上、予備発泡粒子を放置、熟成する。前記の温度および時間の範囲内で予備発泡粒子を放置、熟成した場合、予備発泡粒子の表面付着水分率を好適に設定することができる。この場合、予備発泡粒子の流動性をさらに向上させることができ、より表面性に優れた発泡成形体を得ることができる。   In the aging step of the present invention, the temperature is preferably room temperature or higher, more preferably 10 to 50 ° C, still more preferably 10 to 40 ° C, and preferably 12 hours or more, more preferably 24. The pre-expanded particles are allowed to stand for more than an hour and are aged. When the pre-expanded particles are allowed to stand and age within the above temperature and time ranges, the surface adhering moisture content of the pre-expanded particles can be suitably set. In this case, the fluidity of the pre-expanded particles can be further improved, and a foamed molded product with better surface properties can be obtained.

本発明においては、熟成工程後に、得られた予備発泡粒子を、さらに、好ましくは50〜90℃で、より好ましくは50〜70℃の温度で、また、好ましくは12時間以上、より好ましくは24時間以上、予備発泡粒子を放置、熟成することもできる。この場合、予備発泡粒子の流動性をさらにより向上させることができ、さらにより表面性に優れた発泡成形体を得ることができる。   In the present invention, the pre-expanded particles obtained after the aging step are further preferably at 50 to 90 ° C., more preferably at a temperature of 50 to 70 ° C., and preferably 12 hours or more, more preferably 24 Pre-expanded particles can be left and aged for longer than the time. In this case, the fluidity of the pre-expanded particles can be further improved, and a foamed molded article with even better surface properties can be obtained.

また、熟成工程は所望の発泡成形体等を得ることができる限り、大気圧下で行ってもよく、加圧条件下で行ってもよい。   In addition, the aging step may be performed under atmospheric pressure or under pressure as long as a desired foamed molded article can be obtained.

<予備発泡粒子>
本発明において、予備発泡粒子とは、発泡成形体を製造するための、発泡性樹脂粒子を予備的に発泡させた発泡粒子を意味する。また、本発明の予備発泡粒子は、いずれの発泡成形方法においても使用することができ、型内発泡成形用予備発泡粒子として使用することもできる。
<Pre-expanded particles>
In the present invention, the pre-expanded particles mean expanded particles obtained by pre-expanding expandable resin particles for producing a foam molded article. The pre-expanded particles of the present invention can be used in any foam molding method, and can also be used as pre-expanded particles for in-mold foam molding.

本発明の予備発泡粒子は、略球状であるため、下記式(1):
1.0≦L/D≦1.5 (1)
(式中、Lは予備発泡粒子の長径(mm)であり、Dは予備発泡粒子の短径(mm)である)
を満たし、好ましくは下記式(5):
1.0≦L/D≦1.4 (5)
を満たし、より好ましくは下記式(6):
1.0≦L/D≦1.3 (6)
を満たす。
Since the pre-expanded particles of the present invention are substantially spherical, the following formula (1):
1.0 ≦ L / D ≦ 1.5 (1)
(In the formula, L is the major axis (mm) of the pre-expanded particles, and D is the minor axis (mm) of the pre-expanded particles)
And preferably the following formula (5):
1.0 ≦ L / D ≦ 1.4 (5)
More preferably, the following formula (6):
1.0 ≦ L / D ≦ 1.3 (6)
Meet.

このため、本発明の予備発泡粒子は0〜22度、好ましくは0〜20度、より好ましくは0〜18度の安息角を有する。前記安息角は本発明の予備発泡粒子が極めて高い流動性を有することを意味し、その結果、本発明の予備発泡粒子を用いることによって予備発泡粒子の発泡成形機への充填性を大きく改善することができる。なお、0度の安息角とは、実質的な角度を有さず、予備発泡粒子が略液状化するような状態を意味する。   For this reason, the pre-expanded particles of the present invention have an angle of repose of 0 to 22 degrees, preferably 0 to 20 degrees, more preferably 0 to 18 degrees. The angle of repose means that the pre-expanded particles of the present invention have extremely high fluidity. As a result, the use of the pre-expanded particles of the present invention greatly improves the filling properties of the pre-expanded particles into the foam molding machine. be able to. The angle of repose of 0 degrees means a state where the pre-expanded particles are substantially liquefied without having a substantial angle.

本発明においては、より容易に予備発泡粒子の流動性を確保することができるため、予備発泡粒子は、好ましくは2.0〜7.0mm、より好ましくは2.0〜6.5mmの長径および好ましくは2.0〜6.5mm、より好ましくは2.0〜6.0mmの短径を有する。   In the present invention, since the fluidity of the pre-expanded particles can be more easily ensured, the pre-expanded particles preferably have a major axis of 2.0 to 7.0 mm, more preferably 2.0 to 6.5 mm. Preferably it has a minor axis of 2.0 to 6.5 mm, more preferably 2.0 to 6.0 mm.

また、予備発泡粒子が、予備発泡粒子の質量に対して、好ましくは0〜6.8質量%、より好ましくは0〜6.0質量%の表面付着水分率を有する場合、予備発泡粒子同士の水分を介した凝集を抑制することができる。その結果、予備発泡粒子はより高い流動性を有することができる。   Further, when the pre-expanded particles have a surface adhering moisture content of preferably 0 to 6.8% by mass, more preferably 0 to 6.0% by mass, based on the mass of the pre-expanded particles, Aggregation through moisture can be suppressed. As a result, the pre-expanded particles can have higher fluidity.

さらに、予備発泡粒子が好ましくは20〜60倍、より好ましくは25〜55倍、さらに好ましくは30〜50倍の嵩発泡倍率を有する場合、予備発泡粒子は流動性に好適な嵩比重を有することとなる。その結果、この場合も、予備発泡粒子はより高い流動性を有することができる。また嵩発泡倍率が60倍より大きいと、得られる発泡成形体の強度が低下することがある。一方、20倍より小さいと、得られる発泡成形体の重量が増加することがある。なお、本発明において、予備発泡粒子の嵩発泡倍率とは、熟成工程終了後に測定される予備発泡粒子の嵩発泡倍率が意味される。   Furthermore, when the pre-expanded particles preferably have a bulk expansion ratio of 20 to 60 times, more preferably 25 to 55 times, and even more preferably 30 to 50 times, the pre-expanded particles have a bulk specific gravity suitable for fluidity. It becomes. As a result, also in this case, the pre-expanded particles can have higher fluidity. On the other hand, when the bulk foaming ratio is larger than 60 times, the strength of the obtained foamed molded product may be lowered. On the other hand, if it is smaller than 20 times, the weight of the obtained foamed molded product may increase. In the present invention, the bulk expansion ratio of the pre-expanded particles means the bulk expansion ratio of the pre-expanded particles measured after completion of the aging step.

他方、予備発泡粒子が、下記式(2):
Y≦0.13X−1.0 (2)
(式中、Xは予備発泡粒子の嵩発泡倍率(倍)であり、Yは予備発泡粒子の表面付着水分率(質量%)である)
を満たす場合、嵩発泡倍率と表面付着水分率との調和を図ることにより、予備発泡粒子はさらにより高い流動性を有することができる。
On the other hand, the pre-expanded particles have the following formula (2):
Y ≦ 0.13X−1.0 (2)
(In the formula, X is the bulk foaming ratio (times) of the pre-foamed particles, and Y is the surface adhering moisture content (mass%) of the pre-foamed particles)
When satisfy | filling, the pre-expanded particle | grains can have still higher fluidity | liquidity by aiming at harmony with a bulk foaming ratio and a surface adhesion moisture rate.

一方、Y>0.13X−1.0を満たす予備発泡粒子は、安息角の範囲が大きくなり、充填不良を起こすことがある。また、予備発泡粒子の好適な範囲の表面付着水分率は、嵩発泡倍率に依存するため、式(2)を満たす場合、所望の流動性に優れた予備発泡粒子を得ることができる。   On the other hand, pre-expanded particles satisfying Y> 0.13X-1.0 have a large angle of repose and may cause poor filling. Moreover, since the surface adhering moisture content in a suitable range of the pre-expanded particles depends on the bulk expansion ratio, when the formula (2) is satisfied, the pre-expanded particles having excellent desired fluidity can be obtained.

他方、予備発泡粒子、発泡成形体等に好適な難燃性を付与することができるため、樹脂粒子は難燃剤を含むことが好ましく、難燃剤と難燃助剤とを含むことがより好ましい。また、好適な難燃性を確保することができるため、予備発泡粒子は、樹脂成分100質量部に対して、好ましくは0.15〜8質量部の、より好ましくは0.2〜4質量部の難燃剤を含む。同様に、予備発泡粒子は、樹脂成分100質量部に対して、好ましくは0〜4質量部の、より好ましくは0〜2質量部の難燃助剤を含む。なお、所望の物性を得ることができる限り、予備発泡粒子は難燃助剤を任意に含んでいてもよい。   On the other hand, since suitable flame retardance can be imparted to the pre-expanded particles, the foamed molded article, etc., the resin particles preferably include a flame retardant, and more preferably include a flame retardant and a flame retardant aid. Moreover, since suitable flame retardance can be ensured, the pre-expanded particles are preferably 0.15 to 8 parts by mass, more preferably 0.2 to 4 parts by mass with respect to 100 parts by mass of the resin component. Contains flame retardant. Similarly, the pre-expanded particles preferably contain 0 to 4 parts by mass, more preferably 0 to 2 parts by mass of a flame retardant aid with respect to 100 parts by mass of the resin component. In addition, as long as a desired physical property can be obtained, the pre-expanded particles may optionally contain a flame retardant aid.

難燃剤としては、トリス(2,3−ジブロモプロピル)イソシアヌレート、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、デカブロモジフェニルエーテル、トリブロモフェニルアリルエーテル、テトラブロモビスフェノールAジアリルエーテル、テトラブロモビスフェノールAジプロピルエーテル、テトラブロモビスフェノールAジグリシジルエーテル、テトラブロモビスフェノールAジ(ヒドロキシエチル)エーテル、テトラブロモビスフェノールAビス(2,3−ジブロモプロピルエーテル)等の臭素系難燃剤、塩化パラフィン、塩化トリフェニル、塩化ジフェニル、パークロルペンタシクロデカン等の塩素系難燃剤、1,2−ジブロモ3−クロルプロパン、2−クロル−1,2,3,4−テトラブロモブタン等の塩素臭素含有難燃剤等が挙げられる。難燃剤は、1種のみ使用してもよく、複数種組み合わせて使用してもよい。複数種組み合わせて使用する場合は、トリス(2,3−ジブロモプロピル)イソシアヌレートが主成分(例えば、50質量%以上)であることが好ましい。   Flame retardants include tris (2,3-dibromopropyl) isocyanurate, tetrabromocyclooctane, hexabromocyclododecane, decabromodiphenyl ether, tribromophenyl allyl ether, tetrabromobisphenol A diallyl ether, tetrabromobisphenol A dipropyl Brominated flame retardants such as ether, tetrabromobisphenol A diglycidyl ether, tetrabromobisphenol A di (hydroxyethyl) ether, tetrabromobisphenol A bis (2,3-dibromopropyl ether), chlorinated paraffin, triphenyl chloride, chloride Chlorine flame retardants such as diphenyl and perchlorpentacyclodecane, and chlorine odors such as 1,2-dibromo-3-chloropropane and 2-chloro-1,2,3,4-tetrabromobutane Containing flame retardants and the like. Only one type of flame retardant may be used, or multiple types of flame retardants may be used in combination. When used in combination of plural kinds, it is preferable that tris (2,3-dibromopropyl) isocyanurate is a main component (for example, 50% by mass or more).

難燃助剤としては、2,3−ジメチル−2,3−ジフェニルブタン、3,4−ジメチル−3,4−ジフェニルヘキサン、ジクミルパーオキサイド、クメンヒドロパーオキサイド等が挙げられる。難燃助剤は、1種のみ使用してもよく、複数種組み合わせて使用してもよい。複数種組み合わせて使用する場合は、2,3−ジメチル−2,3−ジフェニルブタンが主成分(例えば、50質量%以上)であることが好ましい。   Examples of the flame retardant aid include 2,3-dimethyl-2,3-diphenylbutane, 3,4-dimethyl-3,4-diphenylhexane, dicumyl peroxide, cumene hydroperoxide, and the like. Only one flame retardant aid may be used, or a plurality of flame retardant aids may be used in combination. When using in combination of two or more kinds, it is preferable that 2,3-dimethyl-2,3-diphenylbutane is a main component (for example, 50 mass% or more).

また、予備発泡粒子の平均粒子径は6.5mm以下が好ましく、6.0mm以下がより好ましい。平均粒子径が6.5mmより大きいと、発泡成形機への予備発泡粒子の充填性が低下することがあり、得られる発泡成形体の強度が低下することがある。   The average particle diameter of the pre-expanded particles is preferably 6.5 mm or less, and more preferably 6.0 mm or less. When the average particle diameter is larger than 6.5 mm, the filling property of the pre-expanded particles in the foam molding machine may be lowered, and the strength of the obtained foam molded product may be lowered.

本発明の予備発泡粒子は流動性に優れるため、予備発泡粒子の嵩発泡倍率(P)と発泡成形後に得られる発泡成形体の嵩発泡倍率(Q)との間に、好ましくは1.0以下の比(Q/P)を有することができる。Q/Pが1.0より高い場合、予備発泡粒子の流動性不足に起因して、予備発泡粒子の充填不良を引き起こすことがある。この場合、発泡成形体に欠損が生じ、得られる発泡成形体の重量が小さくなり、その結果、発泡成形体の嵩発泡倍率が使用した予備発泡粒子の嵩発泡倍率より大きくなる。   Since the pre-expanded particles of the present invention are excellent in fluidity, it is preferably 1.0 or less between the bulk expansion ratio (P) of the pre-expanded particles and the bulk expansion ratio (Q) of the foam molded product obtained after foam molding. Ratio (Q / P). When Q / P is higher than 1.0, poor filling of the pre-foamed particles may be caused due to insufficient fluidity of the pre-foamed particles. In this case, a defect occurs in the foamed molded product, and the weight of the obtained foamed molded product is reduced. As a result, the bulk foaming ratio of the foamed molded product is larger than the bulk foaming ratio of the pre-expanded particles used.

<発泡成形体>
本発明の発泡成形体は公知の発泡成形方法を用いて製造することができる。一例を挙げると、金型内に予備発泡粒子を充填し、再度加熱する。次いで予備発泡粒子を型内発泡させて粒子同士を熱融着させ、冷却を行うことによって発泡成形体を得ることができる。加熱用の媒体は、ゲージ圧力0.05〜0.45MPaの水蒸気が好適に使用され、水蒸気を導入する時間は10〜180秒が好ましい。
<Foamed molded product>
The foamed molded product of the present invention can be produced using a known foam molding method. For example, pre-expanded particles are filled in a mold and heated again. Next, the pre-foamed particles are foamed in-mold, the particles are thermally fused together, and cooled to obtain a foamed molded product. As the heating medium, water vapor having a gauge pressure of 0.05 to 0.45 MPa is preferably used, and the time for introducing water vapor is preferably 10 to 180 seconds.

また、発泡成形体は好ましくは20〜60倍、より好ましくは25〜55倍の嵩発泡倍率を有する場合、所望の嵩比重を得ることができ、耐衝撃性等の所望の物性を得ることができる。   Further, when the foamed molded article preferably has a bulk foaming ratio of 20 to 60 times, more preferably 25 to 55 times, a desired bulk specific gravity can be obtained and desired physical properties such as impact resistance can be obtained. it can.

本発明の発泡成形体は好適な嵩発泡倍率を有し、優れた表面性を有する。このため、本発明で得られる発泡成形体は包装用緩衝材、自動車用構造部材等として好適に使用することができる。   The foamed molded article of the present invention has a suitable bulk foaming ratio and excellent surface properties. For this reason, the foaming molding obtained by this invention can be used conveniently as a cushioning material for packaging, a structural member for motor vehicles, etc.

以下、実施例を挙げて本発明をさらに説明するが、本発明はこれら実施例によって限定されるものではない。実施例に記載した各種測定法および製造条件を以下で説明する。   EXAMPLES Hereinafter, although an Example is given and this invention is further demonstrated, this invention is not limited by these Examples. Various measurement methods and production conditions described in the examples will be described below.

<予備発泡粒子および樹脂粒子の長径および短径および長径/短径(L/D)>
粒子の長径と短径の比(長径/短径(L/D))は、走査型電子顕微鏡JSM−6360LV(日本電子社製)を用い10〜1000倍で無作為に選んだ20個の粒子を各々観察し、それぞれの粒子の長径と短径を測定し、さらにその比を求め、それらを平均した値である。
<Long diameter and short diameter and long diameter / short diameter (L / D) of pre-expanded particles and resin particles>
The ratio of the major axis to the minor axis of the particles (major axis / minor axis (L / D)) is 20 particles randomly selected at 10 to 1000 times using a scanning electron microscope JSM-6360LV (manufactured by JEOL Ltd.). Is the value obtained by measuring the major axis and minor axis of each particle, further determining the ratio, and averaging them.

<予備発泡粒子の安息角>
予備発泡粒子の安息角はJIS R 9301−2−2に準拠して、注入法により測定する。具体的には、上部が直径300mmの円筒形、下部が直径40mmで開閉用栓をノズル中央付近に有するノズル、上部円筒と下部ノズルが高さ160mmの円錐状物で接続されたロート型容器に測定する予備発泡粒子2Lを入れ、下部ノズル下端から10cm下に直径15cm、高さ7cmの円盤状の台をセットした後、ノズル部の栓を開き予備発泡粒子を全て落下せしめ、円盤状の台に堆積した予備発泡粒子の高さを測定し、円盤状の台の直径と堆積した発泡粒子の高さの関係から、堆積した予備発泡粒子の安息角(°)を算出する。
<Repose angle of pre-expanded particles>
The angle of repose of the pre-expanded particles is measured by an injection method according to JIS R 9301-2-2. Specifically, the upper part is a cylindrical shape with a diameter of 300 mm, the lower part is a nozzle with a diameter of 40 mm and an opening / closing stopper is located near the center of the nozzle, and the funnel is connected to the upper cylinder and the lower nozzle by a conical object with a height of 160 mm. Put 2L of pre-expanded particles to be measured, and set a disk-shaped base with a diameter of 15cm and a height of 7cm 10cm below the lower end of the lower nozzle. Then, open the nozzle and drop all the pre-foamed particles. The height of the pre-expanded particles deposited on the surface is measured, and the angle of repose (°) of the deposited pre-expanded particles is calculated from the relationship between the diameter of the disk-shaped platform and the height of the deposited expanded particles.

<予備発泡粒子の嵩発泡倍率>
約5gの試料の重量(a)を小数以下2位まで秤量する。次に、最小目盛り単位が5cm3である500cm3メスシリンダーに秤量した試料を入れ、これにメスシリンダーの口径よりやや小さい円形の樹脂板であって、その中心に幅約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて境界面を均一にし、試料の体積(b)を読み取り、式(a)/(b)により試料の嵩密度(g/cm3)を求める。なお、嵩発泡倍率(倍)は嵩密度の逆数、すなわち式(b)/(a)とする。
<Bulk expansion ratio of pre-expanded particles>
About 5 g of sample weight (a) is weighed to the second decimal place. Next, the sample weighed is placed in a 500 cm 3 graduated cylinder with a minimum scale unit of 5 cm 3 , and this is a round resin plate slightly smaller than the caliber of the graduated cylinder. Apply a pressing tool fixed upright with a rod-shaped resin plate of about 30 cm to make the boundary surface uniform, read the volume (b) of the sample, and calculate the bulk density (g / g) of the sample by the formula (a) / (b) cm 3 ). The bulk foaming ratio (times) is the reciprocal of the bulk density, that is, the formula (b) / (a).

<予備発泡粒子の表面付着水分率>
まず、予備発泡粒子の全水分量、即ち内部水分量と表面付着水分量の合計量を測定する。方法は、予備発泡粒子を500cm3メスシリンダーに入れ、体積が500cm3となるように調整した後、その重量(W1)を測定する。続いて、前記予備発泡粒子を60℃の熱風循環式乾燥機の中に168時間置いた後に取り出し、前記と同様の方法で重量(W2)を測定し、予備発泡粒子の全水分量(W1-W2)を算出する。
次いで、予備発泡粒子の内部水分量を測定する。方法は、予備発泡粒子5gを200mlのメタノール中へ浸漬し、約1分間攪拌して表面の付着水分を除去する。その後、真空濾過装置にて粒子とメタノールを分離し、5分間風乾させる。得られた粒子を0.5g精秤し、微量水分測定装置(平沼産業社製AQ−2100)を使用し、加熱温度150℃でカールフィッシャー法にて測定する。測定した全水分量から内部水分量を差し引いた値を、表面付着水分量(W3)とする。
さらに、予備発泡粒子の表面付着水分率(H)を下記式によって算出する。
H(質量%)=W3/W1×100
<Moisture adhering to the surface of pre-expanded particles>
First, the total moisture content of the pre-expanded particles, that is, the total amount of the internal moisture content and the surface adhesion moisture content is measured. In the method, the pre-expanded particles are put into a 500 cm 3 graduated cylinder, adjusted so that the volume becomes 500 cm 3, and then the weight (W1) is measured. Subsequently, the pre-expanded particles were placed in a hot air circulating dryer at 60 ° C. for 168 hours and then taken out. The weight (W2) was measured by the same method as described above, and the total water content (W1- W2) is calculated.
Next, the internal moisture content of the pre-expanded particles is measured. In the method, 5 g of pre-foamed particles are immersed in 200 ml of methanol and stirred for about 1 minute to remove the adhering moisture on the surface. Thereafter, the particles and methanol are separated by a vacuum filtration device and air-dried for 5 minutes. 0.5 g of the obtained particles are precisely weighed and measured by a Karl Fischer method at a heating temperature of 150 ° C. using a trace moisture measuring device (AQ-2100 manufactured by Hiranuma Sangyo Co., Ltd.). A value obtained by subtracting the internal moisture content from the measured total moisture content is defined as a surface adhesion moisture content (W3).
Further, the surface adhering moisture content (H) of the pre-expanded particles is calculated by the following formula.
H (mass%) = W3 / W1 × 100

<予備発泡粒子の平均粒子径>
試料約50gをロータップ型篩振とう機((株)飯田製作所製)を用いて、ふるい
目開き8.00mm、目開き6.70mm、目開き5.60mm、目開き4.75mm、目開き4.00mm、目開き3.35mm、目開き2.80mm、目開き2.36mm、目開き2.00mm、目開き1.70mm、目開き1.40mm、目開き1.18mm、目開き1.00mm、目開き0.85mm、目開き0.71mm、目開き0.60mm、目開き0.50mmの標準ふるいで10分間分級し、ふるい網上の試料重量を測定し、その結果から得られた累積重量分布曲線を元にして累積重量が50%となる粒子径(メディアン径)を平均粒子径として求める。
<Average particle diameter of pre-expanded particles>
About 50 g of the sample was sieved using a low-tap type sieve shaker (manufactured by Iida Seisakusho Co., Ltd.) with a sieve opening of 8.00 mm, an opening of 6.70 mm, an opening of 5.60 mm, an opening of 4.75 mm, and an opening of 4 0.000, Aperture 3.35 mm, Aperture 2.80 mm, Aperture 2.36 mm, Aperture 2.00 mm, Aperture 1.70 mm, Aperture 1.40 mm, Aperture 1.18 mm, Aperture 1.00 mm , Classifying with a standard sieve having an opening of 0.85 mm, an opening of 0.71 mm, an opening of 0.60 mm, and an opening of 0.50 mm, and measuring the sample weight on the sieve screen, and the cumulative result obtained from the results Based on the weight distribution curve, the particle diameter (median diameter) at which the cumulative weight is 50% is determined as the average particle diameter.

<予備発泡粒子の充填性>
予備発泡粒子の嵩発泡倍率(P)と発泡成形後に得られる発泡成形体の嵩発泡倍率(Q)との比(Q/P)を算出する。
本発明においては、
(1)Q/P≦1.0・・・○(充填性が良好)
(2)Q/P>1.0・・・×(充填不良)
と判定する。
<Fillability of pre-expanded particles>
The ratio (Q / P) between the bulk foaming ratio (P) of the pre-foamed particles and the bulk foaming ratio (Q) of the foamed molded product obtained after foam molding is calculated.
In the present invention,
(1) Q / P ≦ 1.0 (good filling)
(2) Q / P> 1.0 ... × (poor filling)
Is determined.

<発泡成形体の嵩発泡倍率>
発泡成形体の嵩密度は、発泡成形後に得られる発泡成形体の見かけの体積(cm3)(c)と、その重量(g)(d)を測定し、式(d)/(c)により発泡成形体の嵩密度(g/cm3)を求める。発泡成形体の見かけの体積は成形後の収縮を考慮しなければ、例えば発泡成形体が得られた時点での金型キャビティ内の体積に等しく、金型図面寸法から算出できる。なお、嵩発泡倍率は嵩密度の逆数、すなわち式(c)/(d)とする。
<Bulk foaming ratio of foam molded article>
The bulk density of the foam-molded product was determined by measuring the apparent volume (cm 3 ) (c) and weight (g) (d) of the foam-molded product obtained after foam molding, and using the formula (d) / (c) The bulk density (g / cm 3 ) of the foamed molded product is determined. If the shrinkage after molding is not taken into account, the apparent volume of the foam molded body is equal to the volume in the mold cavity at the time when the foam molded body is obtained, and can be calculated from the dimensions of the mold drawing. The bulk foaming ratio is the reciprocal of the bulk density, that is, the formula (c) / (d).

実施例1
(ポリプロピレン系樹脂粒子の製造工程)
ポリプロピレン系樹脂(プライムポリマー社製、商品名「F−744NP」、融点:140℃、プロピレン単位:96質量%)50kgを押出機に供給して溶融混練してホットカットにより造粒ペレット化することにより、略球状(卵状)のポリプロピレン系樹脂粒子を得た。ポリプロピレン系樹脂粒子は、100粒あたり50mgの重量と、約1mmの平均粒子径を有していた。
Example 1
(Production process of polypropylene resin particles)
Supply 50 kg of polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, melting point: 140 ° C., propylene unit: 96 mass%) to an extruder, melt knead, and granulate pellets by hot cut. Thus, substantially spherical (egg-like) polypropylene resin particles were obtained. The polypropylene resin particles had a weight of 50 mg per 100 grains and an average particle diameter of about 1 mm.

(樹脂粒子の製造工程(シード重合工程))
次に、撹拌機付5Lオートクレーブに、前記ポリプロピレン系樹脂粒子800gを入れ、さらに水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加えた。内容物を撹拌することで水性媒体と懸濁させ、10分間保持し、その後60℃に昇温することで水系懸濁液とした。次に、この懸濁液中にジクミルパーオキサイド0.7gを溶解させたスチレン単量体350gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、重合開始剤としてジクミルパーオキサイド3.6gを溶解したスチレン単量体850gを4時間かけて滴下し、第1の粒子に吸収させながら重合(第2の重合)を行った。滴下終了後、120℃で1時間保持、次いで140℃に昇温し、3時間保持して重合を完結することで樹脂粒子を得た。その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)20gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)10gとを投入した。投入後、反応系の温度を130℃に昇温し、2時間攪拌を続けることで難燃剤含有樹脂粒子(長径1.35mm、短径1.34mm、長径/短径1.01)を得た。
(Production process of resin particles (seed polymerization process))
Next, 800 g of the polypropylene resin particles were placed in a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium. The contents were suspended in an aqueous medium by stirring, held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension. Next, 350 g of a styrene monomer in which 0.7 g of dicumyl peroxide was dissolved in this suspension was dropped over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer. Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles. Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate was added to the suspension, and then 850 g of a styrene monomer in which 3.6 g of dicumyl peroxide was dissolved as a polymerization initiator was added dropwise over 4 hours. Polymerization (second polymerization) was carried out while absorbing the particles in one particle. After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining resin particles. Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid were added to this suspension. -10 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo) was added. After the addition, the temperature of the reaction system was raised to 130 ° C. and stirring was continued for 2 hours to obtain flame retardant-containing resin particles (major axis 1.35 mm, minor axis 1.34 mm, major axis / minor axis 1.01). .

(発泡性樹脂粒子の製造工程(含浸工程))
次に、常温まで冷却し、難燃剤含有樹脂粒子を5Lオートクレーブから取り出した。取り出し後の難燃剤含有樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。その後、常温まで冷却して5Lオートクレーブから発泡性樹脂粒子を取り出し、脱水乾燥させた。
(Process for producing expandable resin particles (impregnation process))
Next, it was cooled to room temperature, and the flame retardant-containing resin particles were taken out from the 5 L autoclave. 2 kg of the flame retardant-containing resin particles after removal and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. . After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out the foamable resin particle from the 5L autoclave, and made it dehydrated and dried.

(予備発泡粒子の製造工程(予備発泡工程および熟成工程))
次に、得られた発泡性樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約30倍に予備発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の平均粒子径は3.61mmであった。得られた予備発泡粒子を用いて、嵩発泡倍率、長径(L)、短径(D)、(L/D)等の測定を行った。
さらに、予備発泡粒子を24時間室温に放置し、次いで60℃の熱風循環式乾燥機の中に48時間放置し、表面付着水分率、安息角等の測定を行った。
(Pre-foamed particle production process (pre-foaming process and aging process))
Next, 1000 g of the obtained expandable resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated, and the bulk foaming ratio was about 30 times. And pre-foamed particles were obtained. The average particle diameter of the obtained pre-expanded particles was 3.61 mm. Using the obtained pre-expanded particles, bulk expansion ratio, major axis (L), minor axis (D), (L / D), and the like were measured.
Further, the pre-expanded particles were allowed to stand at room temperature for 24 hours and then left in a hot air circulation dryer at 60 ° C. for 48 hours to measure the surface moisture content, the angle of repose, and the like.

(発泡成形体の製造工程)
前記予備発泡粒子を400mm×300mm×30mmの大きさのキャビティ内に充填し、キャビティを含む成形型にゲージ圧力0.25MPaの水蒸気を50秒間導入して加熱した。水蒸気導入後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得るとともに、嵩発泡倍率、充填性の評価を行った。結果を表1に示す。
(Manufacturing process of foamed molded product)
The pre-expanded particles were filled into a cavity having a size of 400 mm × 300 mm × 30 mm, and steam having a gauge pressure of 0.25 MPa was introduced into a mold including the cavity for 50 seconds and heated. After the introduction of water vapor, the foamed molded body was cooled until the maximum surface pressure was reduced to 0.001 MPa to obtain a foamed molded body, and the bulk foaming ratio and the filling property were evaluated. The results are shown in Table 1.

実施例2
実施例1と同様にして、難燃剤含有樹脂粒子(長径1.36mm、短径1.31mm、長径/短径1.04)を得た。前記難燃剤含有樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。その後、常温まで冷却して5Lオートクレーブから発泡性樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約30倍に予備発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の平均粒子径は3.22mmであった。得られた予備発泡粒子を用いて、嵩発泡倍率、長径(L)、短径(D)、(L/D)等の測定を行った。その後、予備発泡粒子を24時間室温に放置し、表面付着水分率、安息角等の測定を行った。前記予備発泡粒子を用いて、発泡成形を行ったこと以外は、実施例1と同様にして、発泡成形体を得た。
Example 2
In the same manner as in Example 1, flame retardant-containing resin particles (major axis 1.36 mm, minor axis 1.31 mm, major axis / minor axis 1.04) were obtained. 2 kg of the flame retardant-containing resin particles and 2 L of water were again charged into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out the foamable resin particle from the 5L autoclave, and made it dehydrated and dried.
Next, 1000 g of the obtained expandable resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated, and the bulk foaming ratio was about 30 times. And pre-foamed particles were obtained. The average particle diameter of the obtained pre-expanded particles was 3.22 mm. Using the obtained pre-expanded particles, bulk expansion ratio, major axis (L), minor axis (D), (L / D), and the like were measured. Thereafter, the pre-expanded particles were allowed to stand at room temperature for 24 hours, and the moisture content on the surface, the angle of repose, etc. were measured. A foam molded article was obtained in the same manner as in Example 1 except that foam molding was performed using the pre-expanded particles.

実施例3
実施例1と同様にして、難燃剤含有樹脂粒子(長径1.38mm、短径1.38mm、長径/短径1.00)を得た。前記難燃剤含有樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。その後、常温まで冷却して5Lオートクレーブから発泡性樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約55倍に予備発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の平均粒子径は6.05mmであった。得られた予備発泡粒子を用いて、嵩発泡倍率、長径(L)、短径(D)、(L/D)等の測定を行った。さらに、予備発泡粒子を24時間室温に放置し、次いで60℃の熱風循環式乾燥機の中に48時間放置し、表面付着水分率、安息角等の測定を行った。その後、実施例1と同様にして、発泡成形体を得た。
Example 3
In the same manner as in Example 1, flame retardant-containing resin particles (major axis 1.38 mm, minor axis 1.38 mm, major axis / minor axis 1.00) were obtained. 2 kg of the flame retardant-containing resin particles and 2 L of water were again charged into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out the foamable resin particle from the 5L autoclave, and made it dehydrated and dried.
Next, 1000 g of the obtained expandable resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk foaming factor of about 55 times. And pre-foamed particles were obtained. The average particle diameter of the obtained pre-expanded particles was 6.05 mm. Using the obtained pre-expanded particles, bulk expansion ratio, major axis (L), minor axis (D), (L / D), and the like were measured. Further, the pre-expanded particles were allowed to stand at room temperature for 24 hours and then left in a hot air circulation dryer at 60 ° C. for 48 hours to measure the surface moisture content, the angle of repose, and the like. Then, it carried out similarly to Example 1, and obtained the foaming molding.

実施例4
実施例1と同様にして、難燃剤含有樹脂粒子(長径1.41mm、短径1.35mm、長径/短径1.04)を得た。前記難燃剤含有樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。その後、常温まで冷却して5Lオートクレーブから発泡性樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約55倍に予備発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の平均粒子径は5.42mmであった。得られた予備発泡粒子を用いて、嵩発泡倍率、長径(L)、短径(D)、(L/D)等の測定を行った。その後、予備発泡粒子を24時間室温に放置し、表面付着水分率、安息角等の測定を行った。前記予備発泡粒子を用いて、発泡成形を行ったこと以外は、実施例1と同様にして、発泡成形体を得た。
Example 4
In the same manner as in Example 1, flame retardant-containing resin particles (major axis 1.41 mm, minor axis 1.35 mm, major axis / minor axis 1.04) were obtained. 2 kg of the flame retardant-containing resin particles and 2 L of water were again charged into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out the foamable resin particle from the 5L autoclave, and made it dehydrated and dried.
Next, 1000 g of the obtained expandable resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk foaming factor of about 55 times. And pre-foamed particles were obtained. The average particle diameter of the obtained pre-expanded particles was 5.42 mm. Using the obtained pre-expanded particles, bulk expansion ratio, major axis (L), minor axis (D), (L / D), and the like were measured. Thereafter, the pre-expanded particles were allowed to stand at room temperature for 24 hours, and the moisture content on the surface, the angle of repose, etc. were measured. A foam molded article was obtained in the same manner as in Example 1 except that foam molding was performed using the pre-expanded particles.

実施例5
実施例1と同様にして得たポリプロピレン系樹脂粒子800gを攪拌機付5Lオートクレーブに入れ、さらに水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ1.0gを加えた。内容物を撹拌することで水性媒体と懸濁させ、10分間保持し、その後60℃に昇温することで水系懸濁液とした。次に、この懸濁液中にジクミルパーオキサイド0.7gを溶解させたスチレン単量体350gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、重合開始剤としてジクミルパーオキサイド3.6gを溶解したスチレン単量体850gを4時間かけて滴下し、第1の粒子に吸収させながら重合(第2の重合)を行った。滴下終了後、120℃で1時間保持、次いで140℃に昇温し、3時間保持して重合を完結することで樹脂粒子を得た。その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)20gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)10gとを投入した。投入後、反応系の温度を130℃に昇温し、2時間攪拌を続けることで難燃剤含有樹脂粒子(長径1.76mm、短径1.16mm、長径/短径1.52)を得た。次に、常温まで冷却し、難燃剤含有樹脂粒子を5Lオートクレーブから取り出した。取り出し後の難燃剤含有樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。その後、常温まで冷却して5Lオートクレーブから発泡性樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約55倍に予備発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の平均粒子径は5.39mmであった。得られた予備発泡粒子を用いて、嵩発泡倍率、長径(L)、短径(D)、(L/D)等の測定を行った。さらに、予備発泡粒子を24時間室温に放置し、次いで60℃の熱風循環式乾燥機の中に48時間放置し、表面付着水分率、安息角等の測定を行った。その後、実施例1と同様にして、発泡成形体を得た。
Example 5
800 g of polypropylene resin particles obtained in the same manner as in Example 1 was placed in a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 1.0 g of sodium dodecylbenzenesulfonate were added as an aqueous medium. The contents were suspended in an aqueous medium by stirring, held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension. Next, 350 g of a styrene monomer in which 0.7 g of dicumyl peroxide was dissolved in this suspension was dropped over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer. Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles. Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate was added to the suspension, and then 850 g of a styrene monomer in which 3.6 g of dicumyl peroxide was dissolved as a polymerization initiator was added dropwise over 4 hours. Polymerization (second polymerization) was carried out while absorbing the particles in one particle. After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining resin particles. Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid were added to this suspension. -10 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo) was added. After the addition, the temperature of the reaction system was raised to 130 ° C. and the stirring was continued for 2 hours to obtain flame retardant-containing resin particles (major axis 1.76 mm, minor axis 1.16 mm, major axis / minor axis 1.52). . Next, it was cooled to room temperature, and the flame retardant-containing resin particles were taken out from the 5 L autoclave. 2 kg of the flame retardant-containing resin particles after removal and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. . After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out the foamable resin particle from the 5L autoclave, and made it dehydrated and dried.
Next, 1000 g of the obtained expandable resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk foaming factor of about 55 times. And pre-foamed particles were obtained. The average particle diameter of the obtained pre-expanded particles was 5.39 mm. Using the obtained pre-expanded particles, bulk expansion ratio, major axis (L), minor axis (D), (L / D), and the like were measured. Further, the pre-expanded particles were allowed to stand at room temperature for 24 hours and then left in a hot air circulation dryer at 60 ° C. for 48 hours to measure the surface moisture content, the angle of repose, and the like. Then, it carried out similarly to Example 1, and obtained the foaming molding.

実施例6
実施例1と同様にして得たポリプロピレン系樹脂粒子1000gを攪拌機付5Lオートクレーブに入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加えた。内容物を攪拌して水性媒体と懸濁させ、10分間保持し、その後60℃に昇温することで水系懸濁液とした。次に、この懸濁液中に、ジクミルパーオキサイド0.8gを溶解させたスチレン単量体400gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド3gを溶解したスチレン単量体600gを3時間かけて滴下し、ポリプロピレン系樹脂粒子に吸収させながら重合(第2の重合)を行った。滴下終了後、120℃で1時間保持、次いで140℃に昇温し、3時間保持して重合を完結することで樹脂粒子を得た。その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)20gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)10gとを投入した。投入後、反応系の温度を130℃に昇温し、2時間攪拌を続けることで難燃剤含有樹脂粒子(長径1.35mm、短径1.33mm、長径/短径1.02)を得た。次に、常温まで冷却し、難燃剤含有樹脂粒子を5Lオートクレーブから取り出した。取り出し後の難燃剤含有樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。その後、常温まで冷却して5Lオートクレーブから発泡性樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約30倍に予備発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の平均粒子径は3.91mmであった。得られた予備発泡粒子を用いて、嵩発泡倍率、長径(L)、短径(D)、(L/D)等の測定を行った。その後、予備発泡粒子を24時間室温に放置し、表面付着水分率、安息角等の測定を行った。前記予備発泡粒子を用いて、発泡成形を行ったこと以外は、実施例1と同様にして、発泡成形体を得た。
Example 6
1000 g of polypropylene resin particles obtained in the same manner as in Example 1 was placed in a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium. The contents were stirred and suspended in an aqueous medium, held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension. Next, 400 g of styrene monomer in which 0.8 g of dicumyl peroxide was dissolved was dropped into this suspension over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer. Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles. Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate is added to the suspension, and then 600 g of a styrene monomer in which 3 g of dicumyl peroxide is dissolved is added dropwise over 3 hours to be absorbed by the polypropylene resin particles. The polymerization (second polymerization) was carried out. After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining resin particles. Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid were added to this suspension. -10 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo) was added. After the addition, the temperature of the reaction system was raised to 130 ° C. and the stirring was continued for 2 hours to obtain flame retardant-containing resin particles (major axis 1.35 mm, minor axis 1.33 mm, major axis / minor axis 1.02). . Next, it was cooled to room temperature, and the flame retardant-containing resin particles were taken out from the 5 L autoclave. 2 kg of the flame retardant-containing resin particles after removal and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. . After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out the foamable resin particle from the 5L autoclave, and made it dehydrated and dried.
Next, 1000 g of the obtained expandable resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated, and the bulk foaming ratio was about 30 times. And pre-foamed particles were obtained. The average particle diameter of the obtained pre-expanded particles was 3.91 mm. Using the obtained pre-expanded particles, bulk expansion ratio, major axis (L), minor axis (D), (L / D), and the like were measured. Thereafter, the pre-expanded particles were allowed to stand at room temperature for 24 hours, and the moisture content on the surface, the angle of repose, etc. were measured. A foam molded article was obtained in the same manner as in Example 1 except that foam molding was performed using the pre-expanded particles.

実施例7
実施例1と同様にして得たポリプロピレン系樹脂粒子400gを攪拌機付5Lオートクレーブに入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水系懸濁液とした。次に、この懸濁液中にジクミルパーオキサイド0.4gを溶解させたスチレン単量体200gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド4.8gを溶解したスチレン単量体1400gを6.5時間かけて滴下し、第1の粒子に吸収させながら重合(第2の重合)を行った。滴下終了後、120℃で1時間保持、次いで140℃に昇温し、3時間保持して重合を完結することで樹脂粒子を得た。その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)20gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)10gとを投入した。投入後、反応系の温度を130℃に昇温し、2時間攪拌を続けることで難燃剤含有樹脂粒子(長径1.58mm、短径1.53mm、長径/短径1.03)を得た。次に、常温まで冷却し、難燃剤含有樹脂粒子を5Lオートクレーブから取り出した。取り出し後の難燃剤含有樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。その後、常温まで冷却して5Lオートクレーブから発泡性樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約60倍に予備発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の平均粒子径は6.04mmであった。得られた予備発泡粒子を用いて、嵩発泡倍率、長径(L)、短径(D)、(L/D)等の測定を行った。その後、予備発泡粒子を24時間室温に放置し、表面付着水分率、安息角等の測定を行った。前記予備発泡粒子を用いて、発泡成形を行ったこと以外は、実施例1と同様にして、発泡成形体を得た。
Example 7
400 g of the polypropylene resin particles obtained in the same manner as in Example 1 was placed in a 5 L autoclave equipped with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate and 0.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium and stirred to obtain an aqueous medium. The suspension was suspended for 10 minutes and then heated to 60 ° C. to obtain an aqueous suspension. Next, 200 g of a styrene monomer in which 0.4 g of dicumyl peroxide was dissolved in this suspension was dropped over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer. Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles. Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate was added to the suspension, and 1400 g of a styrene monomer in which 4.8 g of dicumyl peroxide was dissolved was dropped over 6.5 hours. Polymerization (second polymerization) was performed while absorbing the particles. After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining resin particles. Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid were added to this suspension. -10 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo) was added. After the addition, the temperature of the reaction system was raised to 130 ° C. and stirring was continued for 2 hours to obtain flame retardant-containing resin particles (major axis 1.58 mm, minor axis 1.53 mm, major axis / minor axis 1.03). . Next, it was cooled to room temperature, and the flame retardant-containing resin particles were taken out from the 5 L autoclave. 2 kg of the flame retardant-containing resin particles after removal and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. . After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out the foamable resin particle from the 5L autoclave, and made it dehydrated and dried.
Next, 1000 g of the obtained expandable resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk foaming ratio of about 60 times. And pre-foamed particles were obtained. The average particle diameter of the obtained pre-expanded particles was 6.04 mm. Using the obtained pre-expanded particles, bulk expansion ratio, major axis (L), minor axis (D), (L / D), and the like were measured. Thereafter, the pre-expanded particles were allowed to stand at room temperature for 24 hours, and the moisture content on the surface, the angle of repose, etc. were measured. A foam molded article was obtained in the same manner as in Example 1 except that foam molding was performed using the pre-expanded particles.

比較例1
実施例1と同様にして、難燃剤含有樹脂粒子(長径1.35mm、短径1.33mm、長径/短径1.02)を得た。前記難燃剤含有樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。その後、常温まで冷却して5Lオートクレーブから発泡性樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約30倍に予備発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の平均粒子径は3.10mmであった。得られた予備発泡粒子を用いて、嵩発泡倍率、長径(L)、短径(D)、(L/D)等の測定を行った。その後、予備発泡粒子を室温に6時間放置した後、表面付着水分率、安息角等の測定を行った。前記予備発泡粒子を用いて、発泡成形を行ったこと以外は、実施例1と同様にして、発泡成形体を得た。
Comparative Example 1
In the same manner as in Example 1, flame retardant-containing resin particles (major axis 1.35 mm, minor axis 1.33 mm, major axis / minor axis 1.02) were obtained. 2 kg of the flame retardant-containing resin particles and 2 L of water were again charged into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out the foamable resin particle from the 5L autoclave, and made it dehydrated and dried.
Next, 1000 g of the obtained expandable resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated, and the bulk foaming ratio was about 30 times. And pre-foamed particles were obtained. The average particle diameter of the obtained pre-expanded particles was 3.10 mm. Using the obtained pre-expanded particles, bulk expansion ratio, major axis (L), minor axis (D), (L / D), and the like were measured. Thereafter, the pre-expanded particles were allowed to stand at room temperature for 6 hours, and then the surface adhering moisture content and the angle of repose were measured. A foam molded article was obtained in the same manner as in Example 1 except that foam molding was performed using the pre-expanded particles.

比較例2
実施例1と同様にして、難燃剤含有樹脂粒子(長径1.37mm、短径1.37mm、長径/短径1.00)を得た。前記難燃剤含有樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。その後、常温まで冷却して5Lオートクレーブから発泡性樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約55倍に予備発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の平均粒子径は5.53mmであった。得られた予備発泡粒子を用いて、嵩発泡倍率、長径(L)、短径(D)、(L/D)等の測定を行った。その後、予備発泡粒子を室温に6時間放置した後、表面付着水分率、安息角等の測定を行った。前記予備発泡粒子を用いて、発泡成形を行ったこと以外は、実施例1と同様にして、発泡成形体を得た。
Comparative Example 2
In the same manner as in Example 1, flame retardant-containing resin particles (major axis 1.37 mm, minor axis 1.37 mm, major axis / minor axis 1.00) were obtained. 2 kg of the flame retardant-containing resin particles and 2 L of water were again charged into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out the foamable resin particle from the 5L autoclave, and made it dehydrated and dried.
Next, 1000 g of the obtained expandable resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk foaming factor of about 55 times. And pre-foamed particles were obtained. The average particle diameter of the obtained pre-expanded particles was 5.53 mm. Using the obtained pre-expanded particles, bulk expansion ratio, major axis (L), minor axis (D), (L / D), and the like were measured. Thereafter, the pre-expanded particles were allowed to stand at room temperature for 6 hours, and then the surface adhering moisture content and the angle of repose were measured. A foam molded article was obtained in the same manner as in Example 1 except that foam molding was performed using the pre-expanded particles.

比較例3
実施例1と同様にして得たポリプロピレン系樹脂粒子800gを攪拌機付5Lオートクレーブに入れ、さらに水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ2.5gを加えた。内容物を撹拌することで水性媒体と懸濁させ、10分間保持し、その後60℃に昇温することで水系懸濁液とした。次に、この懸濁液中にジクミルパーオキサイド0.7gを溶解させたスチレン単量体350gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、重合開始剤としてジクミルパーオキサイド3.6gを溶解したスチレン単量体850gを4時間かけて滴下し、第1の粒子に吸収させながら重合(第2の重合)を行った。滴下終了後、120℃で1時間保持、次いで140℃に昇温し、3時間保持して重合を完結することで樹脂粒子を得た。その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)20gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)10gとを投入した。投入後、反応系の温度を130℃に昇温し、2時間攪拌を続けることで難燃剤含有樹脂粒子(長径1.83mm、短径1.14mm、長径/短径1.61)を得た。次に、常温まで冷却し、難燃剤含有樹脂粒子を5Lオートクレーブから取り出した。取り出し後の難燃剤含有樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。その後、常温まで冷却して5Lオートクレーブから発泡性樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約30倍に予備発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の平均粒子径は3.03mmであった。得られた予備発泡粒子を用いて、嵩発泡倍率、長径(L)、短径(D)、(L/D)等の測定を行った。その後、予備発泡粒子を24時間室温に放置し、表面付着水分率、安息角等の測定を行った。前記予備発泡粒子を用いて、発泡成形を行ったこと以外は、実施例1と同様にして、発泡成形体を得た。
Comparative Example 3
800 g of polypropylene resin particles obtained in the same manner as in Example 1 was placed in a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 2.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium. The contents were suspended in an aqueous medium by stirring, held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension. Next, 350 g of a styrene monomer in which 0.7 g of dicumyl peroxide was dissolved in this suspension was dropped over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer. Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles. Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate was added to the suspension, and then 850 g of a styrene monomer in which 3.6 g of dicumyl peroxide was dissolved as a polymerization initiator was added dropwise over 4 hours. Polymerization (second polymerization) was carried out while absorbing the particles in one particle. After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining resin particles. Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid were added to this suspension. -10 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo) was added. After the addition, the temperature of the reaction system was raised to 130 ° C., and stirring was continued for 2 hours to obtain flame retardant-containing resin particles (major axis 1.83 mm, minor axis 1.14 mm, major axis / minor axis 1.61). . Next, it was cooled to room temperature, and the flame retardant-containing resin particles were taken out from the 5 L autoclave. 2 kg of the flame retardant-containing resin particles after removal and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. . After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out the foamable resin particle from the 5L autoclave, and made it dehydrated and dried.
Next, 1000 g of the obtained expandable resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated, and the bulk foaming ratio was about 30 times. And pre-foamed particles were obtained. The average particle diameter of the obtained pre-expanded particles was 3.03 mm. Using the obtained pre-expanded particles, bulk expansion ratio, major axis (L), minor axis (D), (L / D), and the like were measured. Thereafter, the pre-expanded particles were allowed to stand at room temperature for 24 hours, and the moisture content on the surface, the angle of repose, etc. were measured. A foam molded article was obtained in the same manner as in Example 1 except that foam molding was performed using the pre-expanded particles.

比較例4
発泡倍率30倍、平均粒子径2.64mmの発泡ポリプロピレン樹脂[(1)プロピレンとエチレンのランダム共重合体、(2)2.16kg加重時のMFRが7.0g/10分、(3)MS(160℃での溶融張力(mN))>90−130×log(MFR)]を24時間間室温に放置し、表面付着水分率、安息角等の測定を行った。前記予備発泡粒子を用いて、発泡成形を行い、実施例1と同形状の発泡体を得た。
Comparative Example 4
Expanded polypropylene resin with an expansion ratio of 30 times and an average particle diameter of 2.64 mm [(1) Random copolymer of propylene and ethylene, (2) MFR when loaded with 2.16 kg is 7.0 g / 10 min, (3) MS (Melt tension (mN) at 160 ° C.)> 90-130 × log (MFR)] was allowed to stand at room temperature for 24 hours, and surface adhering moisture content, angle of repose, etc. were measured. Using the pre-expanded particles, foam molding was performed to obtain a foam having the same shape as in Example 1.

表1において、実施例および比較例の原料種、評価結果を詳説する。   In Table 1, the raw material seed | species and evaluation result of an Example and a comparative example are explained in full detail.

Figure 2012184355
Figure 2012184355

実施例については全て、良好な充填性、即ち優れた流動性を示した。他方、比較例については、前記のような結果を得ることができない場合があった。
従って、本発明の予備発泡粒子は包装用緩衝材、自動車用構造部材等の発泡成形体の製造に好適に使用することができる。
All examples showed good filling properties, i.e. excellent flowability. On the other hand, there was a case where the above results could not be obtained for the comparative example.
Therefore, the pre-expanded particles of the present invention can be suitably used for the production of foamed molded articles such as packaging cushioning materials and automobile structural members.

Claims (8)

下記式(1):
1.0≦L/D≦1.5 (1)
(式中、Lは予備発泡粒子の長径(mm)であり、Dは予備発泡粒子の短径(mm)である)
と下記式(2):
Y≦0.13X−1.0 (2)
(式中、Xは予備発泡粒子の嵩発泡倍率(倍)であり、Yは予備発泡粒子の表面付着水分率(質量%)である)
とを満たし、かつ、0〜22度の安息角を有することを特徴とする予備発泡粒子。
Following formula (1):
1.0 ≦ L / D ≦ 1.5 (1)
(In the formula, L is the major axis (mm) of the pre-expanded particles, and D is the minor axis (mm) of the pre-expanded particles)
And the following formula (2):
Y ≦ 0.13X−1.0 (2)
(In the formula, X is the bulk foaming ratio (times) of the pre-foamed particles, and Y is the surface adhering moisture content (mass%) of the pre-foamed particles)
And having an angle of repose of 0 to 22 degrees.
前記予備発泡粒子が、2.0〜7.0mmの長径および2.0〜6.5mmの短径を有する請求項1に記載の予備発泡粒子。   The pre-expanded particles according to claim 1, wherein the pre-expanded particles have a major axis of 2.0 to 7.0 mm and a minor axis of 2.0 to 6.5 mm. 前記予備発泡粒子が、20〜60倍の嵩発泡倍率を有する請求項1または2に記載の予備発泡粒子。   The pre-expanded particles according to claim 1 or 2, wherein the pre-expanded particles have a bulk expansion ratio of 20 to 60 times. 前記予備発泡粒子が、0〜6.8質量%の表面付着水分率を有する請求項1〜3のいずれか1つに記載の予備発泡粒子。   The pre-expanded particle according to any one of claims 1 to 3, wherein the pre-expanded particle has a surface adhering moisture content of 0 to 6.8% by mass. 前記予備発泡粒子が、樹脂成分としてポリオレフィン系樹脂100質量部とポリスチレン系樹脂100〜400質量部とを少なくとも含む請求項1〜4のいずれか1つに記載の予備発泡粒子。   The pre-expanded particles according to any one of claims 1 to 4, wherein the pre-expanded particles include at least 100 parts by mass of a polyolefin resin and 100 to 400 parts by mass of a polystyrene resin as a resin component. 前記予備発泡粒子が、難燃剤を含む請求項1〜5のいずれか1つに記載の予備発泡粒子。   The pre-expanded particles according to any one of claims 1 to 5, wherein the pre-expanded particles include a flame retardant. 前記予備発泡粒子が、
分散剤を含む水性懸濁液中に、水性媒体100質量部に対して0.001〜0.05質量部の界面活性剤の存在下、ポリオレフィン系樹脂のシード粒子と、第1のスチレン系単量体と、第1の重合開始剤とを分散させる工程Aと、
得られた分散液を前記第1のスチレン系単量体が実質的に重合しない温度に加熱して前記第1のスチレン系単量体を前記シード粒子に含浸させる工程Bと、
前記ポリオレフィン系樹脂の融点をT℃としたとき、(T−10)℃〜(T+20)℃の温度で、前記第1のスチレン系単量体の第1の重合を行って第1の粒子を得る工程Cと、
前記工程Cに続いて、第2のスチレン系単量体と第2の重合開始剤とをさらに加え、かつ、(T−25)℃〜(T+10)℃の温度とすることにより、前記第1の粒子への第2のスチレン系単量体の含浸および第2の重合を行って樹脂粒子を得る工程Dを経るシード重合工程(ただし、前記ポリオレフィン系樹脂の量と、前記第1のスチレン系単量体と前記第2のスチレン系単量体との合計量とが、100:100〜400(質量比)である);
発泡剤を、前記樹脂粒子に含浸させることによって発泡性樹脂粒子を得る含浸工程;
前記発泡性樹脂粒子を予備発泡させる予備発泡工程;および
予備発泡後の発泡性樹脂粒子を室温以上の温度で、12時間以上放置する熟成工程
を含む製造方法によって得られる請求項5または6に記載の予備発泡粒子。
The pre-expanded particles are
In the aqueous suspension containing the dispersant, in the presence of 0.001 to 0.05 parts by mass of a surfactant with respect to 100 parts by mass of the aqueous medium, the polyolefin resin seed particles and the first styrene monomer Step A for dispersing the monomer and the first polymerization initiator;
Heating the obtained dispersion to a temperature at which the first styrenic monomer is not substantially polymerized to impregnate the seed particles with the first styrenic monomer; and
When the melting point of the polyolefin resin is T ° C., the first polymerization of the first styrene monomer is performed at a temperature of (T−10) ° C. to (T + 20) ° C. Obtaining step C;
Subsequent to the step C, the second styrene monomer and the second polymerization initiator are further added, and the temperature is set to (T−25) ° C. to (T + 10) ° C. A seed polymerization step through the step D of impregnating the particles of the second styrene monomer and performing the second polymerization to obtain resin particles (however, the amount of the polyolefin resin and the first styrene type) The total amount of the monomer and the second styrene monomer is 100: 100 to 400 (mass ratio));
An impregnation step of obtaining expandable resin particles by impregnating the resin particles with a foaming agent;
The pre-foaming step of pre-foaming the foamable resin particles; and a aging step of leaving the foamable resin particles after pre-foaming at room temperature or higher for 12 hours or longer. Pre-expanded particles.
請求項1〜7のいずれか1つに記載の予備発泡粒子から得られる発泡成形体。   The foaming molding obtained from the pre-expanded particle as described in any one of Claims 1-7.
JP2011049277A 2011-03-07 2011-03-07 Pre-foamed particle and foam molded body Pending JP2012184355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049277A JP2012184355A (en) 2011-03-07 2011-03-07 Pre-foamed particle and foam molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049277A JP2012184355A (en) 2011-03-07 2011-03-07 Pre-foamed particle and foam molded body

Publications (1)

Publication Number Publication Date
JP2012184355A true JP2012184355A (en) 2012-09-27

Family

ID=47014706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049277A Pending JP2012184355A (en) 2011-03-07 2011-03-07 Pre-foamed particle and foam molded body

Country Status (1)

Country Link
JP (1) JP2012184355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189912A (en) * 2014-03-28 2015-11-02 積水化成品工業株式会社 High density polyethylene resin particle, compound resin particle, foam particle, and foam molded body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060058406A1 (en) * 2003-03-25 2006-03-16 Sekisui Plasticks Co., Ltd Expandable resin beads of styrene-modified straight-chain and low-density polyethylene, process for production thereof, pre-expand beads, and foams
JP2008075076A (en) * 2006-08-25 2008-04-03 Sekisui Plastics Co Ltd Styrene-modified polypropylenic resin particle and its foamable resin particle, their production method, pre-foamed particle and foam-molded article
WO2008117504A1 (en) * 2007-03-27 2008-10-02 Sekisui Plastics Co., Ltd. Particle of carbon-containing modified polystyrene resin, expandable particle of carbon-containing modified polystyrene resin, expanded particle of carbon-containing modified polystyrene resin, molded foam of carbon-containing modified polystyrene resin, and processes for producing these
JP2008239794A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Self-extinguishing carbon-containing modified polystyrene resin particle, expandable self-extinguishing carbon-containing modified polystyrene resin particle, self-extinguishing carbon-containing modified polystyrene resin foamed particle, self-extinguishing carbon-containing modified polystyrene resin foamed molded product, and manufacturing methods therefor
US20100022674A1 (en) * 2006-10-26 2010-01-28 Sekisui Plastics Co., Ltd. Expandable polystyrenic resin particles and production process thereof, pre-expanded particles and molded foam product
JP2010202752A (en) * 2009-03-03 2010-09-16 Sekisui Plastics Co Ltd Foamable composite resin particle for long-term preservation, pre-foamed particle and foamed molded product
JP2010222546A (en) * 2009-03-25 2010-10-07 Sekisui Plastics Co Ltd Carbon-containing modified polystyrene resin foam particle and method for producing the same, and carbon-containing modified polystyrene resin foam molded article and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060058406A1 (en) * 2003-03-25 2006-03-16 Sekisui Plasticks Co., Ltd Expandable resin beads of styrene-modified straight-chain and low-density polyethylene, process for production thereof, pre-expand beads, and foams
JP2008075076A (en) * 2006-08-25 2008-04-03 Sekisui Plastics Co Ltd Styrene-modified polypropylenic resin particle and its foamable resin particle, their production method, pre-foamed particle and foam-molded article
US20100022674A1 (en) * 2006-10-26 2010-01-28 Sekisui Plastics Co., Ltd. Expandable polystyrenic resin particles and production process thereof, pre-expanded particles and molded foam product
WO2008117504A1 (en) * 2007-03-27 2008-10-02 Sekisui Plastics Co., Ltd. Particle of carbon-containing modified polystyrene resin, expandable particle of carbon-containing modified polystyrene resin, expanded particle of carbon-containing modified polystyrene resin, molded foam of carbon-containing modified polystyrene resin, and processes for producing these
JP2008239794A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Self-extinguishing carbon-containing modified polystyrene resin particle, expandable self-extinguishing carbon-containing modified polystyrene resin particle, self-extinguishing carbon-containing modified polystyrene resin foamed particle, self-extinguishing carbon-containing modified polystyrene resin foamed molded product, and manufacturing methods therefor
US20100063170A1 (en) * 2007-03-27 2010-03-11 Shinji Ishida Carbon-containing modified polystyrene type resin particle, foamable carbon-containing modified polystyrene type resin particle, carbon-containing modified polystyrene type resin foamed particle, carbon-containing modified polystyrene type resin foamed molded product, and production methods thereof
JP2010202752A (en) * 2009-03-03 2010-09-16 Sekisui Plastics Co Ltd Foamable composite resin particle for long-term preservation, pre-foamed particle and foamed molded product
US20120041085A1 (en) * 2009-03-03 2012-02-16 Sekisui Plastics Co., Ltd. Expandable composite resin particles for long-term storage, pre-expanded particles formed therefrom and expanded molded articles
JP2010222546A (en) * 2009-03-25 2010-10-07 Sekisui Plastics Co Ltd Carbon-containing modified polystyrene resin foam particle and method for producing the same, and carbon-containing modified polystyrene resin foam molded article and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189912A (en) * 2014-03-28 2015-11-02 積水化成品工業株式会社 High density polyethylene resin particle, compound resin particle, foam particle, and foam molded body

Similar Documents

Publication Publication Date Title
JP5548621B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
JP5192420B2 (en) Expandable composite resin particles for long-term storage, pre-expanded particles and expanded molded articles
JP5815934B2 (en) Method for producing composite resin expanded particles, and composite resin expanded particles
JPWO2010110337A1 (en) Method for reducing volatile organic compounds in composite resin particles and composite resin particles
WO2011122081A1 (en) Foamable composite resin particle for frozen storage
JP2012214691A (en) Polyethylene-based resin particle for seed polymerization, composite resin particle, method for producing these, foamable composite resin particle, and preliminary foaming particle, and foamed article
JP5699018B2 (en) Method for producing polypropylene resin particles for seed polymerization and method for producing composite resin particles
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP5493606B2 (en) Styrene-modified polyethylene resin foamed molded article and method for producing styrene-modified polyethylene resin pre-expanded particles
JP5664238B2 (en) Styrene-modified polyethylene resin pre-expanded particles and foam-molded article comprising the styrene-modified polyethylene resin pre-expanded particles
JP5690632B2 (en) Polypropylene resin particles for seed polymerization, process for producing the same, composite resin particles, expandable composite resin particles, pre-expanded particles, and expanded molded body
JP5401083B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
JP5447573B2 (en) Modified resin foam particles and method for producing the same
JP5346571B2 (en) Method for producing pre-expanded particles
JP2009263639A (en) Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body
JP2012184355A (en) Pre-foamed particle and foam molded body
JP5957599B2 (en) Foamed particle manufacturing method and foamed particle manufacturing apparatus
JP6698566B2 (en) Method for producing expanded beads and method for producing expanded molded article
JP6081266B2 (en) Foam molding
JP5785735B2 (en) Interior materials for railway vehicles
JP5731368B2 (en) Seed particles, composite resin particles, methods for producing the same, composite resin particles, expandable particles, pre-expanded particles, and foam molded article
TWI807710B (en) Composite resin particle, composite resin foamed particle and foam molded body
JP2012201827A (en) Polystyrene resin particle, method for producing the same, foamable particle, foam particle and foam molded body
JP6209116B2 (en) Composite resin particles and production method thereof, expandable composite resin particles, pre-expanded composite resin particles, and composite resin foam molded article
JP5216843B2 (en) Expandable composite resin particles for long-term storage, pre-expanded particles and expanded molded articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930