JP3970188B2 - Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam - Google Patents

Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam Download PDF

Info

Publication number
JP3970188B2
JP3970188B2 JP2003016520A JP2003016520A JP3970188B2 JP 3970188 B2 JP3970188 B2 JP 3970188B2 JP 2003016520 A JP2003016520 A JP 2003016520A JP 2003016520 A JP2003016520 A JP 2003016520A JP 3970188 B2 JP3970188 B2 JP 3970188B2
Authority
JP
Japan
Prior art keywords
flame retardant
self
styrene
extinguishing
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003016520A
Other languages
Japanese (ja)
Other versions
JP2004224977A (en
Inventor
克典 西嶋
郁雄 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2003016520A priority Critical patent/JP3970188B2/en
Publication of JP2004224977A publication Critical patent/JP2004224977A/en
Application granted granted Critical
Publication of JP3970188B2 publication Critical patent/JP3970188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自己消火型発泡性スチレン系樹脂粒子、予備発泡粒子及び自己消火型発泡成形体に関する。更に詳しくは、本発明は、スチレン系樹脂粒子に特定の複合難燃剤を含ませることにより、少量の難燃剤で自己消火性に優れ、高発泡性や高断熱性を有し、並びに残留スチレン系モノマーの少ない発泡性スチレン系樹脂粒子、予備発泡粒子及び自己消火型発泡成形体に関する。
【0002】
【従来の技術】
一般に発泡性スチレン系樹脂粒子を型内成形法(ビーズ法)で成形した発泡成形体は数々の特長を有し、広い範囲の用途に使用されている。例えば、軽量で断熱性や耐水性に優れていることにより、住宅の断熱建材として用いられている。しかし、この発泡成形体は、燃え易く、かつ近年の住宅の高気密化に伴って問題となったシックハウス症候群(室内空気汚染)の原因物質とされる揮発性有機化合物(VOC)の一つであるスチレン系モノマーが多く含まれるという性質を有している。
【0003】
発泡成形体を燃え難くするために、難燃剤によってスチレン系樹脂発泡成形体に自己消火性化を付与する方法が既に種々検討されてきた。
ビーズ法によるスチレン系樹脂発泡成形体を自己消火性とする方法としては、▲1▼難燃剤をスチレン系モノマーの懸濁重合時に添加する方法、▲2▼スチレン系樹脂を押出して樹脂粒子(ミニペレット)とする際に溶融樹脂中に難燃剤を添加する方法、▲3▼難燃剤を発泡性スチレン系樹脂粒子の表面にコーティングする方法、▲4▼スチレン系樹脂粒子に揮発性発泡剤を含浸する際に難燃剤を添加する方法がある。
【0004】
これらの方法に用いられる難燃剤として、ヘキサブロモシクロドデカン、ペンタブロモシクロオクタン、トリブロモフェノール、テトラブロモビスフェノールA、テトラブロモビスフェノールAジアリルエーテル等が一般的に知られている。また、難燃剤の性能を向上させるために難燃助剤を使用することが知られており、難燃助剤としてジクミルパーオキサイド、クメンヒドロパーオキサイド等の有機過酸化物や2,3−ジメチル−2,3−ジフェニルブタン(ビスクミル)が用いられている。
【0005】
具体的には、特開昭60−206845号公報(特許文献1)には、懸濁重合時に、難燃剤としてヘキサブロモシクロドデカン、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタンを添加した発泡性スチレン系樹脂粒子が記載されている(上記方法▲1▼)。
また、特開2000−001563号公報(特許文献2)には、スチレン系樹脂の押出し時に、難燃剤としてヘキサブロモシクロドデカン、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタンを添加した発泡性スチレン系樹脂粒子が記載されている(上記方法▲2▼)。
【0006】
更に、特開平5−339416号公報(特許文献3)には、発泡性スチレン系樹脂粒子の表面を、難燃剤としてヘキサブロモシクロドデカンと難燃助剤としてアゾジイソブチロニトリルでコーティングした発泡性スチレン系樹脂粒子が記載されている(上記方法▲3▼)。
また更に、特開平11−130898号公報(特許文献4)には、スチレン系樹脂粒子に揮発性発泡剤を含浸する際に、難燃剤としてテトラブロモビスフェノールAジアリルエーテル、難燃助剤としてジクミルパーオキサイドやクメンヒドロパーオキサイドを添加した発泡性スチレン系樹脂粒子が記載されている(上記方法▲4▼)。
【0007】
【特許文献1】
特開昭60−206845号公報
【特許文献2】
特開2000−001563号公報
【特許文献3】
特開平5−339416号公報
【特許文献4】
特開平11−130898号公報
【0008】
【発明が解決しようとする課題】
発泡性スチレン系樹脂粒子、それから得られた予備発泡粒子及び発泡成形体に自己消火性を付与するために、難燃剤は、それら粒子や成形体中に均一に分散していることが望まれる。
上記観点からすると、ヘキサブロモシクロドデカンのような比較的高融点で分子量の大きい難燃剤であっても、懸濁重合時に添加すると、スチレン系モノマーの重合を阻害するため、スチレン系樹脂の高分子量化が難しくなり、樹脂の強度低下をまねく。加えて、残存モノマーが増大し低VOC化を実現することが困難となる。一方、重合後に樹脂粒子に含浸させる方法が考えられるが、上記難燃剤は融点が高いためにスチレン系樹脂粒子にほとんど含浸させることができず、この方法では、自己消火性を付与することが困難となる。従って、上記難燃剤を使用する場合、粒子や成形体に分散させる方法は、押出法のように溶融させた樹脂と難燃剤とを混練して分散させる方法に限定され、その結果製造工程が複雑となる。
【0009】
また、難燃助剤としてジクミルパーオキサイドやクメンヒドロパーオキサイドのような有機過酸化物が知られている。しかし、このような有機過酸化物は、リサイクル時に溶融混練されるとラジカルを発生し、そのラジカルがスチレン系樹脂を分解して分子量の低下をまねき、リサイクルされた樹脂の強度等の品質を悪化させるという課題がある。
そのため、スチレン系樹脂発泡成形体のもつ本来の特性、例えば断熱性、機械的強度を保持し、自己消火性に優れかつ残留スチレン系モノマーの少ない発泡成形体、並びにその原料となる発泡性スチレン系樹脂粒子を提供することがのぞまれていた。
【0010】
【課題を解決するための手段】
本発明の発明者等は、前記課題を解決するために種々の難燃剤と難燃助剤との組み合わせを検討した結果、下記種類の難燃剤と難燃助剤とを特定の比率で含む複合難燃剤が、リサイクル時にスチレン系樹脂の分子量低下を起こしにくく、スチレン系樹脂のもつ本来の特性(例えば断熱性、機械的強度)を保持し、優れた自己消火性を発揮し、かつスチレン系樹脂への分散方法が限定されないことを意外にも見い出した。更に、この複合難燃剤を、特定の性質を有するスチレン系樹脂粒子に使用することで、樹脂の特性を阻害することなく自己消火性を付与できることを見い出し本発明に至った。
【0011】
かくして本発明によれば、スチレン系樹脂、易揮発性発泡剤、複合難燃剤から構成され、
スチレン系樹脂が、
(1)スチレン系モノマーの含有量がスチレン系樹脂に対して2000ppm以下、
(2)多分散度(Mw/Mn)が3.5〜7.0、
(3)メルトフローレート(200℃、5.0kg荷重)が0.1〜2.0g/10分、
(4)メルトフローレート測定時の膨張割合SRの値が1.60〜2.50であり、
複合難燃剤が、トリス(2,3−ジブロモプロピル)イソシアヌレートである難燃剤90〜40重量%と、難燃助剤が、下記一般式
【0012】
【化2】

Figure 0003970188
【0013】
(式中、R1〜R4は、同一又は異なって、メチル又はエチル基である)で表わされる難燃助剤10〜60重量%とから構成され、スチレン系樹脂粒子100重量部に対して1〜7重量部含まれる
ことを特徴とする自己消火型発泡性スチレン系樹脂粒子が提供される。
更に、本発明によれば、上記自己消火型発泡性スチレン系樹脂粒子を予備発泡させて得られた予備発泡粒子が提供される。
また、本発明によれば、上記予備発泡粒子を発泡成形して得られた自己消火型発泡成形体が提供される。
【0014】
【発明の実施の形態】
本発明で使用される複合難燃剤は、トリス(2,3−ジブロモプロピル)イソシアヌレート(以下TDICとも称する。融点115℃、分解温度285℃)である難燃剤と、下記一般式
【0015】
【化3】
Figure 0003970188
【0016】
(式中、R1〜R4は、同一又は異なって、メチル又はエチル基である)で表わされる難燃助剤から構成される。
難燃助剤の具体例としては、2,3−ジメチル−2,3−ジフェニルブタン(ビスクミルと呼ばれることから、以下BCとも称する。融点113℃、分解温度205℃)、3,4−ジメチル−3,4−ジフェニルヘキサン(融点142℃、分解温度230℃)等が挙げられる。
【0017】
上記難燃剤と難燃助剤は、融点が比較的近いため、それらを混合した複合難燃剤は、融点がほぼ一つのピークを形成する(この温度を融点ピーク温度と称する)。また、複合難燃剤の融点ピーク温度は、融点降下により難燃剤及び難燃助剤単独の融点より低いことを発明者らは見出している。例えば、横軸に複合難燃剤中の難燃助剤BCの割合を、縦軸に複合難燃剤の融点ピーク温度を表す図1に示すように、TDIC70重量%とBC30重量%とから構成される複合難燃剤の場合、示差熱分析(DTA)にて測定した融点ピーク温度は約101℃であり、TDICとBC単独の融点より15℃程度低くなっている。複合難燃剤の融点ピーク温度は、含浸温度又は混練温度をより低くすることができるので好ましい。
【0018】
なお、融点ピーク温度は、80〜140℃の範囲にあることが好ましい。融点ピーク温度が80℃より低いと、含浸時に樹脂粒子同士の合着や混練時に難燃剤がブリードし、予備発泡時に発泡粒子同士の合着を起こすため好ましくない。一方、140℃を越えると含浸効率や混練時の分散性が劣る場合があるので好ましくない。より好ましい融点ピーク温度は90〜130℃である。
【0019】
本発明において難燃剤と難燃助剤は、90〜40重量%と10〜60重量%割合で使用される。難燃助剤の割合が10重量%未満の場合、自己消火性の発現には複合難燃剤を多量に使用する必要が生じ、その結果リサイクル性が阻害される。また、融点ピーク温度があまり低下せず、含浸温度又は混練温度を高くしなければならない。一方、60重量%を越える場合、難燃剤の割合が減るため、自己消火性が劣ることとなる。また、融点ピーク温度があまり低下せず、含浸温度又は混練温度を高くしなければならない。より好ましい難燃剤と難燃助剤の割合は、90〜60重量%と10〜40重量%である。
【0020】
なお、本発明において、より好ましい難燃剤と難燃助剤の組み合わせは、TDICとBCの組み合わせである。
複合難燃剤の含有割合は、スチレン系樹脂粒子100重量部に対して1〜7重量部である。1重量部未満では十分な自己消火性は得られない。一方、7重量部を超える場合、自己消火性効果は飽和し、経済的でない。通常、1〜5重量部で十分である。
【0021】
次に、本発明では、スチレン系樹脂が、
(1)スチレン系モノマーの含有量がスチレン系樹脂に対して2000ppm以下、
(2)多分散度(Mw/Mn)が3.5〜7.0、
(3)メルトフローレート(200℃、5.0kg荷重)が0.1〜2.0g/10分、
(4)メルトフローレート測定時の膨張割合SR、即ち内径Bmmのオリフィスから押出された樹脂ストランドの外径をAmmとしたときのA/Bの値が1.60〜2.50
の性質を有している。この性質を有する樹脂を使用することで、少ない易揮発性発泡剤量で高発泡化でき、より自己消火性に優れた発泡性スチレン系樹脂粒子を得ることができる。なお、(1)〜(4)の具体的な測定方法は、実施例の欄に記載する。
【0022】
(1)本発明では、スチレン系モノマーの含有量を2000ppm以下に抑えているので、シックハウス症候群(室内空気汚染)の発生を抑制することができる。スチレン系モノマーの含有量は、1000ppm以下であることがより好ましい。
(2)において、多分散度が3.5未満の場合は高発泡時の成形性に劣り、外観に優れた成形品とすることが難しい。7.0を超えると成形性には優れるが成形サイクルが長く、コストアップを招く傾向にある。より好ましい多分散度は、3.5〜5.0である。
(3)において、メルトフローレートが0.1g/10分未満であると発泡成形体の機械的強度は高くなるが、高発泡化しにくくなる。2.0g/10分を超えると発泡成形体の強度が低下する傾向にある。より好ましいメルトフローレートは、0.5〜1.8g/10分である。
(4)において、膨張割合(SR)が1.60未満であると高発泡化は不十分となり、低密度化によって発泡成形体に収縮が起こり易く、外観に劣ったものとなり易い。この場合、発泡成形体を加熱養生しても収縮は回復しにくい。2.50を超えると高発泡化効果は飽和となるだけでなく、逆に成形性は低下するので美麗な外観の発泡成形体性は得らにくい傾向にある。より好ましいSRは、1.80〜2.50である。
【0023】
本発明のスチレン系樹脂は、上記(1)〜(4)の性質を有する限りどのようなスチレン系樹脂でも使用することができる。例えば、スチレン単独重合体であっても、スチレンと共重合可能な他のモノマーとの共重合体であってもよい。他のモノマーとしては、例えば、α−メチルスチレン、ビニルトルエン、アクリロニトリル、メチルメタクリレート、グリシジルメタクリレート、ブチルアクリレート、メタクリル酸、ジビニルベンゼン、アルキレングリコールジメタクリレート等が挙げられる。なお、本発明では、スチレン及びスチレンと共重合と可能なモノマーもスチレン系モノマーと称している。
更に、スチレン系樹脂は、他樹脂との混合樹脂であってもよい。他の樹脂の例としては、ポリエチレン、ポリプロピレン、ポリフェニレンエーテル及びゴム変性スチレン系樹脂が挙げられる。
【0024】
本発明では、スチレンに対して、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの多官能性モノマー0.008〜0.03mol%を共重合して得られたスチレン系樹脂を使用することが好ましい。多官能性モノマーを使用することが好ましい理由は、発泡成形体の気泡に、破れやシワが発生することを抑制し、より低い熱伝導率を得るためである。また、多官能性モノマーの量が0.008mol%未満の場合は、添加した効果が現れにくいので好ましくなく、0.03mol%を超える場合は、発泡性が低下し高発泡化できなくなるので好ましくない。より好ましい多官能性モノマーの量は、0.01〜0.024mol%である。
【0025】
本発明で使用されるスチレン系樹脂粒子の製法は、特に限定されず、公知の方法をいずれも使用することができる。例えば、押出機から押し出されたスチレン系樹脂のストランドをペレタイズし樹脂粒子を得る方法、スチレン系モノマーを水性媒体中に懸濁させて重合させる、いわゆる懸濁重合法、あるいは水性媒体中にスチレン系重合体粒子(種粒子)を分散させ、これにスチレン系モノマーを連続的または断続的に供給して重合開始剤の存在下で重合するいわゆるシード重合法が採用できる。この内、生産効率の観点から懸濁重合法及びシード重合法が好ましい。
【0026】
懸濁重合法及びシード重合法において、複合難燃剤を樹脂粒子に含浸させる方法としては、重合転化率が99.8%以上の段階又は、重合完了後の水性媒体中に添加して含浸させる方法が挙げられる。重合転化率が99.8%以上のときに含浸させることで、所定の分子量のスチレン系樹脂粒子を簡便に得ることができるので好ましい。重合転化率が99.8%未満の時点で難燃剤が含浸されると、それ以降のスチレン系モノマーの重合が阻害されて、最終的に得られる発泡成形体中にモノマーが多量に残る場合がある。また、該発泡成形体の気泡径が微細化するために熱伝導率が高くなり、断熱性能が低下する場合がある。
【0027】
複合難燃剤の添加方法は、例えば、水性媒体中に難燃剤と難燃助剤を別々に又は同時に投入する方法、難燃剤と難燃助剤をスーパーミキサー等で混合してから粉体状態のままで水性媒体中に投入する方法、攪拌装置を備えた予備分散槽内で均一に分散させた懸濁液とし、それを水性媒体に投入する方法が挙げられる。更に、易揮発性発泡剤及び/又はその他の添加剤と同時に含浸させることが好ましい。含浸をより円滑に行うために、水性媒体を加温することが好ましい。具体的には70〜120℃の温度で、1〜6時間加温することが好ましい。
【0028】
上記懸濁重合法及びシード重合法において、スチレン系樹脂粒子の重合は、重合開始剤の存在下で通常行われる。重合開始剤としては、当該分野で公知のものをいずれも使用することができる。例えば、ラジカル発生型重合開始剤を用いることができる。具体的には、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジt−ブチルパーオキシヘキサハイドロテレフタレート、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート等の有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。これらの重合開始剤は単独または2種以上併用して用いることができる。特に、分子量を調整し残存モノマーを減少させる為に、10時間の半減期を得るための分解温度が80〜120℃の異なる重合開始剤を併用することが望ましい。
【0029】
懸濁重合及びシード重合を行う際に、スチレン系単量体の小滴及び種粒子を水性媒体中に分散させるために懸濁安定剤を使用してもよい。懸濁安定剤としては、懸濁重合において一般に使用されているポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、第三リン酸カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウム等の難水溶性無機塩等が挙げられる。難水溶性無機塩を用いる場合には通常アニオン界面活性剤が併用される。
【0030】
アニオン界面活性剤としては、例えば脂肪酸石鹸、N−アシルアミノ酸またはその塩、アルキルエーテルカルボン酸塩などのカルボン酸塩,アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルホン酸塩などのスルホン酸塩;高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩などの硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩などのリン酸エステル塩などがある。
【0031】
本発明で使用される易揮発性発泡剤としては、一般の熱可塑性樹脂発泡体の製造に使用されている炭素数3〜5の炭化水素、即ちプロパン、ブタン、ペンタン、ヘキサン及びそれらの異性体を用いることができる。特にブタンとイソブタンを併用することが好ましい。
発泡剤の使用割合は、スチレン系樹脂100重量部に対して2〜10重量部とすることが好ましい。2重量部未満であると、低密度化が困難であるばかりでなく、成形時の二次発泡力を高める効果が得られない為に成形体の外観が劣る場合があるので好ましくない。一方、10重量部を超えると、発泡成形体中の残存ガスが多くなるので自己消火性に劣るだけでなく、成形サイクルが長くなり、生産性の観点からも好ましくない。好ましくは、3〜8重量部である。
【0032】
本発明においては、上記易揮発性発泡剤を水性媒体中でスチレン系樹脂粒子に含浸させる際に、ステアリン酸アミド、12−ヒドロキシステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、メチレンビスステアリン酸アミドなどの脂肪酸アミドを水性媒体中に添加しておくことが好ましい。これらの添加により、最終的に得られる発泡性スチレン系樹脂粒子の熱安定性が向上する。例えば、夏場の高温雰囲気下での放置や発泡及び成形加工する工場へ輸送する際の熱履歴によって気泡が不均一かつ粗大化する(熱あれ)のを防止することができる。また、該発泡性スチレン系樹脂粒子を予備発泡すると、内部気泡よりも表面気泡が細かくなった発泡粒子が得られ、成形サイクルを短縮させることができる。通常、表面の平均気泡径を内部の平均気泡径の2/3以下とするとその顕著な効果が現れる。
【0033】
例えば嵩密度0.02g/cm3に予備発泡した場合、内部の平均気泡径は150〜300μm程度であることが好ましく、表面の平均気泡径は50〜200μm程度であることが好ましい。
脂肪酸アミドの添加量は、スチレン系樹脂100重量部に対して通常0.01〜0.2重量部であることが好ましい。これらの添加時期は、上記のように易揮発性発泡剤を含浸させる時が好ましい。スチレン系モノマーを重合させるときに添加した場合、予備発泡粒子(嵩密度0.02g/cm3)の平均気泡径は内部、表面共に100μm以下となり、得られる発泡成形体は断熱性の劣ったものとなる場合がある。
【0034】
本発明においては、より低密度の発泡成形体を得る目的で可塑剤を使用してもよい。可塑剤としては、ジイソブチルアジペート、ジオクチルアジペート、ジブチルセバケート、グリセリントリステアレート、グリセリントリカプリレート、ヤシ油、パーム油などが挙げられる。可塑剤の使用量は、スチレン系樹脂100重量部に対して2重量部以内であることが好ましい。2重量%を超える場合は成形時に収縮及び溶けが発生するばかりか、製造コストが高くなり好ましくない。可塑剤はスチレン系樹脂粒子の重合工程、複合難燃剤及び発泡剤を含浸させる工程等で添加される。また、押出機等で造粒する際に添加してスチレン系樹脂粒子に含有させることも可能である。
【0035】
本発明においては、従来から発泡性スチレン系樹脂粒子の製造に使用される気泡調整剤、気泡安定化剤、充填剤、着色剤等を必要に応じて適宜使用してもよい。得られた自己消火型発泡性スチレン系樹脂粒子は、脱水、乾燥、分級を施し、次いで粒子表面に帯電防止剤や予備発泡時の粒子同士の合着を防ぐために結合防止剤で被覆してもよい。
予備発泡は発泡ポリスチレンビーズ用予備発泡機を用いて行うことができる。得られる予備発泡粒子の嵩密度は、0.008〜0.1g/cm3であることが好ましい。
予備発泡粒子を成形機の金型内に充填し、水蒸気等で再加熱して予備発泡粒子同士を熱融着させた後に、冷却することで所望の形の発泡成形体を得ることができる。成形機には、公知の発泡ポリスチレン用成形機を用いることができる。
【0036】
【実施例】
以下、実施例及び比較例にて、本発明を詳細に述べるが、本発明はこれら実施例に限定されるものではない。
なお、分析及び評価は次に示す方法で行った。
【0037】
[重合転化率と残留スチレン量の定量]
重合転化率は以下の式で算出した。
重合転化率(重量%)=100×(A−B)/A
また、残存スチレン量は以下の式で算出した。
残存スチレン量(重量%)=100×B/A
但し、Aは未反応スチレン系単量体を含むスチレン系樹脂粒子の重量(g)であり、Bは上記未反応のスチレン系単量体を含む樹脂粒子中の未反応単量体の重量(g)である。Bは、例えば、ガスクロマトグラフィー(GC)等により定量される。GCによるスチレン系単量体の定量は、スチレン系樹脂粒子をN,N−ジメチルホルムアミドに溶解し、内部標準液(シクロペンタノール)を加えて測定した。
GC:島津製作所社製 GC−14A
カラム:PEG−20M PT25% 60/80(2.5m)
カラム温度:105℃
検出器(FID)温度:220℃
【0038】
[平均分子量]
重合体の平均分子量(Mw及びMn)は、GPC(Gel Permeation Chromatography)によって、以下の条件で測定した。
測定装置:東ソー社製 高速GPC装置 HLC−8020
カラム:積水ファインケミカル社製 HSG−60S×2本、HSG−40H×1本、HSG−20H×1本
カラム温度:40℃、移動相:THF(テトラヒドロフラン)、
流量:1.0ml/分、注入量:500ml
検出器:東ソー社製 RID−6A
試料の分子量測定:試料の分子量測定条件は、該試料の有する分子量分布が、数種の単分散ポリスチレン標準試料により作成された検量線の分子量の対数とカウンド数が直線となる範囲内に包含される測定条件を選択した。また、本発明においてポリスチレンの検量線は、重量平均分子量が2.74×103、1.91×104、1.02×105、3.55×105、2.89×106、4.48×106である東ソー社製の6個のポリスチレン標準試料(TSKスタンダードポリスチレン)を用いて作成した。
【0039】
[平均気泡径]
発泡粒子表面及び発泡粒子内部の平均気泡径を求める。
まず、発泡粒子をカッターで略二分割した一方の切断面を、走査型電子顕微鏡にて40倍に拡大して写真撮影し、その写真上に発泡粒子の直径となるように直線を引く。
発泡粒子表面の平均気泡径として、直線により二分割された発泡粒子断面の内、どちらか一方の半円の最外周(直線に掛かる気泡も含む。また、非発泡のスキン層を有する発泡粒子においては、スキン層の内側を最外周とする)にある全ての気泡の最大径を測定し、この測定を10個の発泡粒子に対して行い、求められた該最大径の相加平均値を発泡粒子表面の平均気泡径とした。
発泡粒子内部の平均気泡径として、上記直線を四等分した内側二つの線分上に掛かる全ての気泡の最大径を測定し、この測定を10個の発泡粒子に対して行い、求められた該最大径の相加平均値を発泡粒子内部の平均気泡径とした。
【0040】
[熱伝導率]
熱伝導率の測定は、JIS−A−1412−2に基づき行った。試験片は実施例で得られた発泡成形体(長さ400mm×幅300mm×厚み20mm)の中央部から所定の寸法で切り出したものを使用した。
測定装置:英弘精機社製AUTO−A HC−072
試験片:長さ200mm×幅200mm×厚み20mm
測定方法:平板熱流計法
測定温度:20℃
【0041】
[燃焼性]
JIS A9511に基づき自己消火にかかる時間を測定した。JIS規格から、自己消火時間が3.0秒以内である必要があり、2.0秒以内が好ましい。なお、成形後に50℃で24時間養生した発泡成形体を測定試料とした。
【0042】
[メルトフローレート(MFR)と膨張割合(SR)]
上記メルトフローレートと膨張割合(SR)の測定は、JIS K7210に基づき下記の条件で行った。
測定装置:東洋精機製作所製 メルトインデクサー
測定温度:200℃
荷重重量:5kgf
オリフィス径:2.09mm(B)
押出後のストランド径 A mm(ストランド先端より5mmの間で測定)
膨張割合(SR)=A/B
スチレン系樹脂5gを予め200℃に加熱したメルトインデクサー内に入れ、3分程放置する。次に5kgfの荷重を加え、オリフィス径2.09mmよりスチレン系樹脂を押出す。押出されたストランドを取り、先端から5mmの間でストランド径を5個所測定し平均値をAとする。
【0043】
MFRの測定は、JIS K7210に基づき下記の条件で行った。まず、測定試料は、実施例及び比較例にて得られた自己消火型発泡性スチレン系樹脂粒子を、50℃のオーブン中で到達圧力10Paとして真空吸引しながら24時間保持し、樹脂粒子中の揮発性有機溶剤を除去したものを用いた。
【0044】
実施例1
(懸濁重合によるポリスチレン粒子の製造)
内容量100Lの攪拌機付き重合容器に、水40.0L、第三リン酸カルシウム100g及びドデシルベンゼンスルホン酸ソーダ2.0gを入れ、続いて攪拌しながらスチレン40.0kg、ベンゾイルパーオキサイド100.0g、t−ブチルパーオキシ−2−エチルヘキシルカーボネート28.0gを添加し、88℃に昇温して重合温度とした。そしてこの温度で6時間30分保持し、更に125℃に昇温してから2時間後、冷却し球状のポリスチレン粒子(A)を得た。
ポリスチレン粒子(A)の重合転化率は99.96重量%であり、Mwは29.5万、多分散度(Mw/Mn)は3.0であり、メルトフローレートは4.2g/10分、膨張割合SRは1.42であった。
【0045】
上記で得られたポリスチレン粒子(A)を篩分けして粒子径0.5〜0.7mmのポリスチレン粒子(B)を得た。内容量5Lの攪拌機付き耐圧容器に、水2.2L、ポリスチレン粒子(B)500g、ピロリン酸マグネシウム6.0g及びドデシルベンゼンスルホン酸ナトリウム0.3gを入れ、攪拌しながら70℃に昇温した。次いでベンゾイルパーオキサイド5.2g、t−ブチルパーオキシ−2−エチルヘキシルカーボネート1.1gをスチレン200gに溶解し耐圧容器に入れた。30分後90℃に昇温して、予めジビニルベンゼン0.45gを溶解したスチレン1300gを2時間かけてポンプで一定量づつ耐圧容器に供給した。供給を終了してから30分後に125℃まで昇温して2時間保持した。その後、70℃まで冷却して容器内から一部をサンプリングして球状のポリスチレン粒子を得た。
【0046】
このポリスチレン粒子の重合転化率は99.95重量%であり、Mwは44.7万、多分散度(Mw/Mn)は4.5、メルトフローレートは1.4g/10分、膨張割合SRは2.16であった。
次いで攪拌を継続しながら、トリス(2,3−ジブロモプロピル)イソシアヌレート34.0gと2,3−ジメチル−2,3−ジフェニルブタン6.0gとを混合した複合難燃剤を投入して混合した。
また、上記複合難燃剤(BC割合15.0%)の融点をDTAにて測定したところ、融点ピーク温度は一つであり103℃であった。なお、複合難燃剤の融点ピーク温度は、JIS K7121に準拠し、DTA測定を行うことで求めた。
熱分析装置:セイコーインスツルメンツ社製TG/DTA6200R
測定試料質量:10mg
昇温速度:10℃/分
【0047】
続いて、別の容器内でドデシルベンゼンスルホン酸ナトリウム0.1gを溶解した水200gにジイソブチルアジペート10.0gとエチレンビスステアリン酸アミド0.8gを加えて乳濁液とし、該乳濁液を耐圧容器に入れた。その後、耐圧容器内を100℃に昇温してから、ノルマルブタン105gとイソブタン35gを圧入して4時間保持した。
次に、耐圧容器内を30℃以下まで冷却し自己消火型発泡性ポリスチレン粒子を得た。取り出した発泡性ポリスチレン粒子を乾燥した後、20℃の恒温室で5日間保存し、次いで予備発泡機で嵩密度0.02g/cm3に発泡した。得られた予備発泡粒子の平均気泡径は内部が180μm、表面が70μmであった。
予備発泡粒子を室温(25℃)で8時間熟成した後、発泡ポリスチレン用成形機(積水工機社製ACE−3QS)で成形し、外観の美麗な板状発泡成形体(長さ400mm、幅300mm、厚み20mm)を得た。この発泡成形体を50℃の乾燥室で6時間養成した後、JIS−A9511の燃焼試験を行った。その結果を表1に示す。
【0048】
実施例2
複合難燃剤をトリス(2,3−ジブロモプロピル)イソシアヌレートを28.0g、2,3−ジメチル−2,3−ジフェニルブタンを12.0gとした他は実施例1と同様して板状発泡成形体を得た。また、上記複合難燃剤(BC割合30.0%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり103℃であった。評価結果を表1に示す。
【0049】
実施例3
複合難燃剤をトリス(2,3−ジブロモプロピル)イソシアヌレートを68.0g、2,3−ジメチル−2,3−ジフェニルブタンを12.0gとした他は実施例1と同様して板状発泡成形体を得た。また、上記複合難燃剤(BC割合15.0%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり103℃であった。評価結果を表1に示す。
【0050】
実施例4
複合難燃剤に使用する難燃助剤の2,3−ジメチル−2,3−ジフェニルブタンを3,4−ジメチル−3,4−ジフェニルヘキサン(DDPH)とした他は実施例1と同様して板状発泡成形体を得た。また、複合難燃剤(DDPH割合15.0%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり131℃であった。評価結果を表1に示す。
【0051】
実施例5
t−ブチルパーオキシ2−エチルヘキシルカーボネートを1.1gを0.06gとした他は実施例1と同様して板状発泡成形体を得た。また、複合難燃剤(BC割合15.0%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり103℃であった。評価結果を表1に示す。
【0052】
比較例1
トリス(2,3−ジブロモプロピル)イソシアヌレートを7.0g、2,3−ジメチル−2,3−ジフェニルブタンを3.0gとした他は実施例1と同様して板状発泡成形体を得た。また、複合難燃剤(BC割合30.0%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり103℃であった。評価結果を表1に示す。
【0053】
比較例2
内容量5Lの攪拌機付き耐圧容器に、水2.2L、実施例1で得られたポリスチレン粒子(B)500g、ピロリン酸マグネシウム6.0g及びドデシルベンゼンスルホン酸ナトリウム0.3gを入れ、攪拌しながら70℃に昇温した。次いでベンゾイルパーオキサイド5.2g、t−ブチルパーオキシ2−エチルヘキシルカーボネート1.1gをスチレン200gに溶解し耐圧容器に入れた。30分後90℃に昇温して、予めジビニルベンゼン0.45gを溶解したスチレン1300gを2時間かけてポンプで一定量づつ耐圧容器に供給した。供給を終了してから30分後に容器内から一部をサンプリングして球状のポリスチレン粒子を得た。このポリスチレン粒子の重合転化率は94.2重量%であった。
【0054】
次いで攪拌を継続しながら、トリス(2,3−ジブロモプロピル)イソシアヌレート34.0gと2,3−ジメチル−2,3−ジフェニルブタン6.0gとからなる複合難燃剤を投入して混合した。また、上記複合難燃剤(BC割合15.0%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり103℃であった。次いで、125℃まで昇温して2時間保持した。その後、70℃まで冷却して、別の容器内でドデシルベンゼンスルホン酸ナトリウム0.1gを溶解した水200gにジイソブチルアジペート10.0gとエチレンビスステアリン酸アミド0.8gを加えて乳濁液としたものを入れた。その後、耐圧容器内を100℃に昇温してから、ノルマルブタン130gとイソブタン50gを圧入して4時間保持した。
次に、耐圧容器内を30℃以下まで冷却し自己消火型発泡性ポリスチレン粒子を得た。取り出した発泡性粒子は実施例1と同様の処理を行ってから評価した。その結果を表1に示す。
【0055】
比較例3
トリス(2,3−ジブロモプロピル)イソシアヌレートを80.0gとし、2,3−ジメチル−2,3−ジフェニルブタンを使用しなかった他は実施例1と同様にした。また、この難燃剤(BC割合0%)の融点をDTAにて実施例1と同様に測定したところ、115℃であった。その評価結果を表1に示す。
【0056】
比較例4
トリス(2,3−ジブロモプロピル)イソシアヌレートを16.0gとし、2,3−ジメチル−2,3−ジフェニルブタンを64.0g(80重量%)とした他は実施例1と同様にした。また、この複合難燃剤(BC割合80.0%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は一つであり104℃であった。評価結果を表1に示す。
【0057】
比較例5
2,3−ジメチル−2,3−ジフェニルブタンを6.0gの替わりにジクミルパーオキサイド(DCP)6.0gとした他は実施例1と同様にした。また、この複合難燃剤(DCP割合15.0%)の融点をDTAにて実施例1と同様に測定したところ、測定途中でDCPが分解してしまい測定できなかった。評価結果を表1に示す。
【0058】
比較例6
トリス(2,3−ジブロモプロピル)イソシアヌレート34.0gの替わりにヘキサブロモシクロドデカン28.0g、更に2,3−ジメチル−2,3−ジフェニルブタンを12.0gとした他は実施例1と同様した。しかし、ヘキサブロモシクロドデカンは吸収されずに耐圧容器内に残っていた。また、この複合難燃剤(BC割合30.0%)の融点をDTAにて実施例1と同様に測定したところ、融点ピーク温度は二つであり、BCの融点は106℃、HBCDの融点は190℃であった。評価結果を表1に示す。
【0059】
比較例7
トリス(2,3−ジブロモプロピル)イソシアヌレート34.0gの替わりにテトラブロモシクロオクタン28.0gとし、更に2,3−ジメチル−2,3−ジフェニルブタン6.0gの替わりにジクミルパーオキサイド12.0gとした他は実施例1と同様した。また、この複合難燃剤(DCP割合30.0%)の融点をDTAにて実施例1と同様に測定したところ、測定途中でDCPが分解してしまい測定できなかった。その評価結果を表1に示す。
【0060】
【表1】
Figure 0003970188
【0061】
表1から、実施例1〜5の予備発泡粒子から得られた発泡成形体は断熱性に優れ、加えて燃焼試験も3秒以内と優れた自己消火性を示した。
比較例1の予備発泡粒子から得られた発泡成形体は、断熱性は良好であったが、複合難燃剤の含有量が1.0重量部未満であるため、自己消火性に劣った発泡成形体であった。
比較例2はスチレン系樹脂粒子の重合途中、すなわち重合転化率が低い状態で難燃剤を添加した例であるが、この結果より、ポリスチレン粒子の重合転化率が低い時点で複合難燃剤を添加すると、残留スチレンが多くなるだけでなく、発泡成形体は気泡が微細で断熱性能に劣っていた。
比較例3の予備発泡粒子から得られた発泡成形体は、難燃助剤を含まないため自己消火性に劣っていた。
【0062】
比較例4の予備発泡粒子から得られた発泡成形体は、実施例1よりも断熱性に劣り、また実質的に難燃剤の含有量が少ないため自己消火性に劣っていた。
比較例5においては、難燃助剤としてジクミルパーオキサイドを使用すると難燃剤の不均一吸収が起こり、その結果気泡の微細な発泡粒子が混在し(内部気泡では60μmのものと170μmのものが混在)、成形時に凹凸が発生して外観の良好な発泡成形体は得られなかった。また、断熱性も実施例1より劣っていた。
比較例6の予備発泡粒子から得られた発泡成形体は、難燃剤を実質的に含まないため自己消火性に劣っていた。
比較例7の予備発泡粒子から得られた発泡成形体は、比較例5と同様に気泡の粗密が混在し、外観の良好なものが得られなかった。また、断熱性も実施例1よりも劣っていた。
【0063】
実施例6
この実施例は、上記実施例及び比較例の発泡成形体のリサイクル性を評価する例である。
実施例1と2及び比較例5と7で得られた自己消火型発泡性ポリスチレン樹脂粒子のメルトフローレート(MFR)を測定した。また、MFR測定前後の樹脂粒子の重量平均分子量も測定した。MFR及び重量平均分子量を表2に示す。
なお、比較のため、以下のように難燃剤を含まないポリスチレン粒子を作製しMFRの測定を行った。
【0064】
(難燃剤を含まないポリスチレン粒子の作製)
ポリスチレン粒子(A)を篩分けして粒子径0.5〜0.7mmのポリスチレン粒子(B)を得た。内容量5Lの攪拌機付き耐圧容器に、水2.2L、ポリスチレン粒子(B)500g、ピロリン酸マグネシウム6.0g及びドデシルベンゼンスルホン酸ナトリウム0.3gを入れ、攪拌しながら70℃に昇温した。次いでベンゾイルパーオキサイド5.2g、t−ブチルパーオキシ−2−エチルヘキシルカーボネート1.1gをスチレン200gに溶解し耐圧容器に入れた。30分後90℃に昇温して、予めジビニルベンゼン0.45gを溶解したスチレン1300gを2時間かけてポンプで一定量づつ耐圧容器に供給した。供給を終了してから30分後に125℃まで昇温して2時間保持した。その後、30℃まで冷却して容器内から取り出し洗浄及び乾燥して、粒子状のポリスチレン粒子(C)を得た。
【0065】
【表2】
Figure 0003970188
表2から以下のことがわかる。
まず、押出機で溶融混練し、ストランド化することでリサイクルが可能なポリスチレン樹脂のMFRは、20g/10分以下、好ましくは15g/10分以下、特に難燃剤未添加の場合、すなわち粒子(C)のMFRに近いことが好ましい。この観点から表2を見ると、実施例1と2の樹脂粒子はいずれも15g/10以下であり、十分リサイクル可能である。これに対して、比較例5と7の樹脂粒子は、MFRが大きく上昇しており、リサイクル困難である。
【0066】
更に、重量平均分子量は、熱処理(MFR測定処理)の前後において、できるだけ変化しないことがリサイクルの観点から望まれる。大きく低下すると、押出機で溶融混練した後にストランドとして押し出せないか又はストランドの切断が頻繁に起こり、リサイクルが困難である。この観点から表2を見ると、実施例1と2の樹脂粒子は、難燃剤未添加の場合に比べて重量平均分子量の低下は小さく、十分リサイクル可能である。これに対して比較例5と7の樹脂粒子は、重量平均分子量が大きく低下しており、リサイクル困難しても強度低下が著しく再利用できない。
【0067】
【発明の効果】
本発明によれば、特定の種類の難燃剤と難燃助剤とを特定の比率で含む複合難燃剤を使用するので、リサイクル時にスチレン系樹脂の分子量低下を起こしにくく、スチレン系樹脂のもつ本来の特性(例えば断熱性、機械的強度)を保持し、優れた自己消火性を発揮し、かつスチレン系樹脂への分散方法が限定されない。更に、特定の複合難燃剤を、特定の性質を有するスチレン系樹脂粒子に使用することで、樹脂の特性を阻害することなく自己消火性を付与できる。
【図面の簡単な説明】
【図1】複合難燃剤の融点を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to self-extinguishing foamable styrene resin particles, pre-expanded particles, and a self-extinguishing foam molded article. More specifically, the present invention includes a specific composite flame retardant in the styrene resin particles, so that it has excellent self-extinguishing properties with a small amount of flame retardant, has high foaming properties and high heat insulation properties, and residual styrene type. The present invention relates to an expandable styrene resin particle, a pre-expanded particle, and a self-extinguishing foamed molded product with a small amount of monomer.
[0002]
[Prior art]
In general, a foam molded article obtained by molding expandable styrene resin particles by an in-mold molding method (bead method) has many features and is used in a wide range of applications. For example, it is used as a heat insulating building material for a house because of its light weight and excellent heat insulation and water resistance. However, this foam molding is one of the volatile organic compounds (VOCs) that are flammable and are a causative substance of sick house syndrome (indoor air pollution) that has become a problem with the recent high airtightness of houses. It has the property that many styrenic monomers are contained.
[0003]
Various methods for imparting self-extinguishing properties to a styrene-based resin foam molded article with a flame retardant have already been studied in order to make the foam molded article difficult to burn.
The self-extinguishing property of the styrene resin foam molded article by the bead method is as follows: (1) a method in which a flame retardant is added during suspension polymerization of a styrene monomer, and (2) resin particles (mini Pellets), a method of adding a flame retardant into the molten resin, (3) a method of coating the flame retardant on the surface of the expandable styrene resin particles, and (4) impregnating the styrene resin particles with a volatile foaming agent. There is a method of adding a flame retardant.
[0004]
As flame retardants used in these methods, hexabromocyclododecane, pentabromocyclooctane, tribromophenol, tetrabromobisphenol A, tetrabromobisphenol A diallyl ether and the like are generally known. In addition, it is known to use a flame retardant aid to improve the performance of the flame retardant. As the flame retardant aid, organic peroxides such as dicumyl peroxide and cumene hydroperoxide and 2,3- Dimethyl-2,3-diphenylbutane (biscumyl) is used.
[0005]
Specifically, JP-A-60-206845 (Patent Document 1) discloses hexabromocyclododecane as a flame retardant and 2,3-dimethyl-2,3-diphenyl as a flame retardant aid during suspension polymerization. An expandable styrene resin particle to which butane is added is described (the above method (1)).
JP-A-2000-001563 (Patent Document 2) discloses hexabromocyclododecane as a flame retardant and 2,3-dimethyl-2,3-diphenylbutane as a flame retardant at the time of extrusion of a styrene resin. The added expandable styrenic resin particles are described (the above method (2)).
[0006]
Further, JP-A-5-339416 (Patent Document 3) discloses an expandable styrene in which the surface of expandable styrene resin particles is coated with hexabromocyclododecane as a flame retardant and azodiisobutyronitrile as a flame retardant aid. System resin particles are described (the above method (3)).
Furthermore, in Japanese Patent Application Laid-Open No. 11-130898 (Patent Document 4), when styrene resin particles are impregnated with a volatile foaming agent, tetrabromobisphenol A diallyl ether is used as a flame retardant, and dicumyl is used as a flame retardant aid. An expandable styrene resin particle to which peroxide or cumene hydroperoxide is added is described (the above method (4)).
[0007]
[Patent Document 1]
JP 60-206845 A
[Patent Document 2]
JP 2000-001563 A
[Patent Document 3]
JP-A-5-339416
[Patent Document 4]
JP-A-11-130898
[0008]
[Problems to be solved by the invention]
In order to impart self-extinguishing properties to the expandable styrenic resin particles, the pre-expanded particles obtained therefrom, and the foamed molded product, it is desirable that the flame retardant is uniformly dispersed in the particles and the molded product.
From the above viewpoint, even if a flame retardant having a relatively high melting point and a large molecular weight such as hexabromocyclododecane is added during suspension polymerization, it inhibits the polymerization of the styrenic monomer. It becomes difficult to reduce the strength of the resin. In addition, the residual monomer increases, making it difficult to achieve low VOC. On the other hand, a method of impregnating resin particles after polymerization is conceivable. However, since the above flame retardant has a high melting point, styrene resin particles can hardly be impregnated, and it is difficult to provide self-extinguishing properties by this method. It becomes. Therefore, when using the above-mentioned flame retardant, the method of dispersing the particles and the molded body is limited to the method of kneading and dispersing the molten resin and the flame retardant as in the extrusion method, resulting in a complicated manufacturing process. It becomes.
[0009]
Further, organic peroxides such as dicumyl peroxide and cumene hydroperoxide are known as flame retardant aids. However, such organic peroxides generate radicals when melt-kneaded at the time of recycling, and the radicals decompose the styrene resin, leading to a decrease in molecular weight, and deteriorate the quality such as strength of the recycled resin. There is a problem of making it.
Therefore, the foamed molded product that retains the original properties of the styrene-based resin foamed molding, such as heat insulation and mechanical strength, is excellent in self-extinguishing properties and has little residual styrene-based monomer, and the foamable styrene based material It was desired to provide resin particles.
[0010]
[Means for Solving the Problems]
The inventors of the present invention have studied a combination of various flame retardants and flame retardant aids in order to solve the above problems, and as a result, a composite containing the following types of flame retardants and flame retardant aids in a specific ratio: The flame retardant is unlikely to cause a decrease in the molecular weight of the styrene resin during recycling, retains the original characteristics of the styrene resin (for example, heat insulation and mechanical strength), exhibits excellent self-extinguishing properties, and is a styrene resin. Surprisingly, it was found that the dispersion method is not limited. Furthermore, it has been found that by using this composite flame retardant for styrene resin particles having specific properties, self-extinguishing properties can be imparted without impairing the properties of the resin.
[0011]
Thus, according to the present invention, it is composed of a styrene resin, a readily volatile foaming agent, and a composite flame retardant,
Styrenic resin
(1) The content of the styrene monomer is 2000 ppm or less with respect to the styrene resin,
(2) Polydispersity (Mw / Mn) is 3.5 to 7.0,
(3) Melt flow rate (200 ° C., 5.0 kg load) is 0.1 to 2.0 g / 10 minutes,
(4) The value of the expansion ratio SR when measuring the melt flow rate is 1.60 to 2.50,
The composite flame retardant is tris (2,3-dibromopropyl) isocyanurate 90 to 40% by weight, and the flame retardant aid is represented by the following general formula:
[0012]
[Chemical 2]
Figure 0003970188
[0013]
(Wherein R1 to R4 are the same or different and are methyl or ethyl groups) and are composed of 10 to 60% by weight of a flame retardant aid represented by 1 to 100 parts by weight of styrene resin particles. 7 parts by weight included
Self-extinguishing foamable styrene resin particles are provided.
Furthermore, according to the present invention, pre-expanded particles obtained by pre-expanding the self-extinguishing foamable styrene resin particles are provided.
Moreover, according to this invention, the self-extinguishing type | mold foaming molding obtained by foam-molding the said pre-expanded particle is provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The composite flame retardant used in the present invention is a flame retardant which is tris (2,3-dibromopropyl) isocyanurate (hereinafter also referred to as TDIC, melting point 115 ° C., decomposition temperature 285 ° C.), and the following general formula:
[0015]
[Chemical 3]
Figure 0003970188
[0016]
(Wherein R1 to R4 are the same or different and are methyl or ethyl groups).
Specific examples of the flame retardant aid include 2,3-dimethyl-2,3-diphenylbutane (hereinafter referred to as BC because it is called biscumyl, melting point 113 ° C., decomposition temperature 205 ° C.), 3,4-dimethyl- 3,4-diphenylhexane (melting point 142 ° C., decomposition temperature 230 ° C.) and the like.
[0017]
Since the flame retardant and the flame retardant aid have a relatively close melting point, the composite flame retardant mixed with them forms a peak having almost one melting point (this temperature is referred to as a melting point peak temperature). Further, the inventors have found that the melting point peak temperature of the composite flame retardant is lower than the melting point of the flame retardant and the flame retardant auxiliary alone due to the melting point drop. For example, the horizontal axis represents the ratio of the flame retardant auxiliary BC in the composite flame retardant, and the vertical axis represents the melting point peak temperature of the composite flame retardant. As shown in FIG. 1, it is composed of 70% by weight of TDIC and 30% by weight of BC. In the case of a composite flame retardant, the melting point peak temperature measured by differential thermal analysis (DTA) is about 101 ° C., which is about 15 ° C. lower than the melting points of TDIC and BC alone. The melting point peak temperature of the composite flame retardant is preferable because the impregnation temperature or the kneading temperature can be further lowered.
[0018]
In addition, it is preferable that melting | fusing point peak temperature exists in the range of 80-140 degreeC. When the melting point peak temperature is lower than 80 ° C., the flame retardant bleeds during resin impregnation or kneading at the time of impregnation, and the foam particles adjoin at the time of preliminary foaming. On the other hand, if it exceeds 140 ° C., the impregnation efficiency and the dispersibility during kneading may be inferior. A more preferable melting point peak temperature is 90 to 130 ° C.
[0019]
In the present invention, the flame retardant and the flame retardant aid are used in a proportion of 90 to 40% by weight and 10 to 60% by weight. When the ratio of the flame retardant aid is less than 10% by weight, it is necessary to use a large amount of the composite flame retardant for the self-extinguishing property, and as a result, the recyclability is hindered. In addition, the melting point peak temperature does not decrease so much and the impregnation temperature or kneading temperature must be increased. On the other hand, when it exceeds 60% by weight, the ratio of the flame retardant is reduced, so that the self-extinguishing property is inferior. In addition, the melting point peak temperature does not decrease so much and the impregnation temperature or kneading temperature must be increased. The ratio of a more preferable flame retardant and a flame retardant adjuvant is 90 to 60 weight% and 10 to 40 weight%.
[0020]
In the present invention, a more preferable combination of the flame retardant and the flame retardant aid is a combination of TDIC and BC.
The content rate of a composite flame retardant is 1-7 weight part with respect to 100 weight part of styrene resin particles. If it is less than 1 part by weight, sufficient self-extinguishing properties cannot be obtained. On the other hand, when it exceeds 7 parts by weight, the self-extinguishing effect is saturated and is not economical. Usually 1 to 5 parts by weight is sufficient.
[0021]
Next, in the present invention, the styrene resin is
(1) The content of the styrene monomer is 2000 ppm or less with respect to the styrene resin,
(2) Polydispersity (Mw / Mn) is 3.5 to 7.0,
(3) Melt flow rate (200 ° C., 5.0 kg load) is 0.1 to 2.0 g / 10 minutes,
(4) The expansion ratio SR when measuring the melt flow rate, that is, the A / B value is 1.60 to 2.50, where Amm is the outer diameter of the resin strand extruded from the orifice having the inner diameter Bmm.
It has the properties of By using a resin having this property, it is possible to obtain a foamable styrene resin particle that can be highly foamed with a small amount of a volatile foaming agent and that is more excellent in self-extinguishing properties. In addition, the specific measuring method of (1)-(4) is described in the Example column.
[0022]
(1) In this invention, since content of a styrene-type monomer is restrained to 2000 ppm or less, generation | occurrence | production of sick house syndrome (room air pollution) can be suppressed. The content of the styrene monomer is more preferably 1000 ppm or less.
In (2), when the polydispersity is less than 3.5, the moldability at the time of high foaming is inferior, and it is difficult to obtain a molded product having an excellent appearance. If it exceeds 7.0, the moldability is excellent, but the molding cycle is long and the cost tends to increase. A more preferable polydispersity is 3.5 to 5.0.
In (3), if the melt flow rate is less than 0.1 g / 10 minutes, the mechanical strength of the foamed molded product is increased, but it is difficult to achieve high foaming. If it exceeds 2.0 g / 10 minutes, the strength of the foamed molded product tends to decrease. A more preferable melt flow rate is 0.5 to 1.8 g / 10 min.
In (4), when the expansion ratio (SR) is less than 1.60, high foaming is insufficient, and the foamed molded product tends to shrink due to low density, and the appearance tends to be inferior. In this case, shrinkage is difficult to recover even if the foamed molded body is heat-cured. If it exceeds 2.50, not only the high foaming effect is saturated, but also the moldability is lowered, so that it is difficult to obtain a foamed molded product having a beautiful appearance. More preferable SR is 1.80 to 2.50.
[0023]
Any styrenic resin can be used as the styrenic resin of the present invention as long as it has the properties (1) to (4). For example, it may be a styrene homopolymer or a copolymer with another monomer copolymerizable with styrene. Examples of other monomers include α-methylstyrene, vinyl toluene, acrylonitrile, methyl methacrylate, glycidyl methacrylate, butyl acrylate, methacrylic acid, divinylbenzene, and alkylene glycol dimethacrylate. In the present invention, styrene and monomers capable of copolymerization with styrene are also referred to as styrene monomers.
Furthermore, the styrene resin may be a mixed resin with other resins. Examples of other resins include polyethylene, polypropylene, polyphenylene ether, and rubber-modified styrene resin.
[0024]
In this invention, it is preferable to use the styrene resin obtained by copolymerizing 0.008-0.03 mol% of polyfunctional monomers, such as divinylbenzene and alkylene glycol dimethacrylate, with respect to styrene. The reason why it is preferable to use a polyfunctional monomer is to suppress the generation of tears and wrinkles in the bubbles of the foamed molded product and to obtain a lower thermal conductivity. In addition, when the amount of the polyfunctional monomer is less than 0.008 mol%, the added effect is hardly exhibited, which is not preferable. When the amount exceeds 0.03 mol%, the foamability is lowered and high foaming cannot be achieved. . A more preferable amount of the multifunctional monomer is 0.01 to 0.024 mol%.
[0025]
The production method of the styrene resin particles used in the present invention is not particularly limited, and any known method can be used. For example, a method of obtaining resin particles by pelletizing a strand of a styrene resin extruded from an extruder, a so-called suspension polymerization method in which a styrene monomer is suspended in an aqueous medium, or a styrene resin in an aqueous medium. A so-called seed polymerization method in which polymer particles (seed particles) are dispersed, and a styrene monomer is continuously or intermittently supplied to the polymer particles in the presence of a polymerization initiator can be employed. Among these, the suspension polymerization method and the seed polymerization method are preferable from the viewpoint of production efficiency.
[0026]
In the suspension polymerization method and the seed polymerization method, as a method of impregnating the resin particles with the composite flame retardant, a method in which the polymerization conversion rate is 99.8% or more, or a method of adding and impregnating into the aqueous medium after the polymerization is completed Is mentioned. It is preferable to impregnate when the polymerization conversion rate is 99.8% or more because styrene resin particles having a predetermined molecular weight can be easily obtained. If the flame retardant is impregnated when the polymerization conversion rate is less than 99.8%, the subsequent polymerization of the styrenic monomer is inhibited, and a large amount of monomer may remain in the finally obtained foamed molded article. is there. Moreover, since the bubble diameter of the foamed molded product is made finer, the thermal conductivity is increased, and the heat insulation performance may be lowered.
[0027]
The method of adding the composite flame retardant is, for example, a method in which the flame retardant and the flame retardant aid are added separately or simultaneously in an aqueous medium, and the powdered state after mixing the flame retardant and the flame retardant aid with a super mixer or the like. Examples thereof include a method of charging into an aqueous medium as it is, and a method of preparing a suspension uniformly dispersed in a pre-dispersion tank equipped with a stirrer and charging it into an aqueous medium. Furthermore, it is preferable to impregnate simultaneously with a readily volatile foaming agent and / or other additives. In order to perform the impregnation more smoothly, it is preferable to warm the aqueous medium. Specifically, it is preferable to heat at a temperature of 70 to 120 ° C. for 1 to 6 hours.
[0028]
In the suspension polymerization method and the seed polymerization method, the polymerization of the styrene resin particles is usually performed in the presence of a polymerization initiator. Any polymerization initiator known in the art can be used. For example, a radical generating polymerization initiator can be used. Specifically, benzoyl peroxide, lauryl peroxide, t-butylperoxy-2-ethylhexanoate, di-t-butylperoxyhexahydroterephthalate, t-butylperoxide, t-butylperoxypivalate, t-butylperoxyisopropyl carbonate, t-butylperoxyacetate, 2,2-t-butylperoxybutane, t-butylperoxy-3,3,5-trimethylhexanoate, t-butylperoxy-2 -Organic peroxides such as ethylhexyl carbonate and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. These polymerization initiators can be used alone or in combination of two or more. In particular, in order to adjust the molecular weight and reduce the residual monomer, it is desirable to use together different polymerization initiators having a decomposition temperature of 80 to 120 ° C. in order to obtain a half-life of 10 hours.
[0029]
A suspension stabilizer may be used to disperse styrenic monomer droplets and seed particles in an aqueous medium during suspension polymerization and seed polymerization. Suspension stabilizers include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone that are commonly used in suspension polymerization, and poorly water-soluble inorganic substances such as tricalcium phosphate, hydroxyapatite, and magnesium pyrophosphate. Examples include salts. When using a poorly water-soluble inorganic salt, an anionic surfactant is usually used in combination.
[0030]
Examples of anionic surfactants include fatty acid soaps, N-acyl amino acids or salts thereof, carboxylates such as alkyl ether carboxylates, alkylbenzene sulfonates, alkyl naphthalene sulfonates, dialkyl sulfosuccinate esters, alkyl sulfoacetic acids. Salts, sulfonates such as α-olefin sulfonates; sulfates such as higher alcohol sulfates, alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates; alkyl ether phosphates, alkyl phosphates There are phosphate ester salts such as salts.
[0031]
As the readily volatile foaming agent used in the present invention, hydrocarbons having 3 to 5 carbon atoms used in the production of general thermoplastic resin foams, that is, propane, butane, pentane, hexane and isomers thereof. Can be used. It is particularly preferable to use butane and isobutane in combination.
The use ratio of the foaming agent is preferably 2 to 10 parts by weight with respect to 100 parts by weight of the styrene resin. If it is less than 2 parts by weight, not only is it difficult to reduce the density, but the effect of increasing the secondary foaming power during molding cannot be obtained, and the appearance of the molded product may be inferior. On the other hand, when the amount exceeds 10 parts by weight, not only is the self-extinguishing property inferior because the residual gas in the foamed molded product increases, but the molding cycle becomes longer, which is not preferable from the viewpoint of productivity. Preferably, it is 3 to 8 parts by weight.
[0032]
In the present invention, when the styrene resin particles are impregnated with the above-mentioned readily volatile foaming agent in an aqueous medium, stearic acid amide, 12-hydroxystearic acid amide, ethylene bisstearic acid amide, ethylene bisoleic acid amide, methylene It is preferable to add a fatty acid amide such as bis stearic acid amide to the aqueous medium. Addition of these improves the thermal stability of the finally obtained expandable styrene resin particles. For example, it is possible to prevent bubbles from becoming uneven and coarse (heating) due to a heat history when left in a high temperature atmosphere in summer or when transported to a foaming and molding factory. Further, when the expandable styrene resin particles are pre-expanded, expanded particles whose surface bubbles are finer than the internal bubbles can be obtained, and the molding cycle can be shortened. Usually, when the average bubble diameter on the surface is 2/3 or less of the average bubble diameter inside, the remarkable effect appears.
[0033]
For example, bulk density 0.02g / cm Three In the case of pre-foaming, the inside average bubble diameter is preferably about 150 to 300 μm, and the surface average bubble diameter is preferably about 50 to 200 μm.
The addition amount of the fatty acid amide is preferably 0.01 to 0.2 parts by weight with respect to 100 parts by weight of the styrene resin. These addition times are preferably when impregnated with a readily volatile foaming agent as described above. When added when polymerizing a styrene monomer, pre-expanded particles (bulk density 0.02 g / cm Three ) Average cell diameter is 100 μm or less for both the inside and the surface, and the resulting foamed molded product may be inferior in heat insulation.
[0034]
In the present invention, a plasticizer may be used for the purpose of obtaining a foamed product having a lower density. Examples of the plasticizer include diisobutyl adipate, dioctyl adipate, dibutyl sebacate, glycerin tristearate, glycerin tricaprylate, coconut oil, and palm oil. The amount of the plasticizer used is preferably within 2 parts by weight with respect to 100 parts by weight of the styrene resin. If it exceeds 2% by weight, not only shrinkage and melting occur during molding, but also the production cost increases, which is not preferable. The plasticizer is added in a process of polymerizing styrene resin particles, a process of impregnating a composite flame retardant and a foaming agent, and the like. Further, it can be added when granulated by an extruder or the like and contained in styrene resin particles.
[0035]
In the present invention, a bubble regulator, a bubble stabilizer, a filler, a colorant and the like conventionally used in the production of expandable styrene resin particles may be appropriately used as necessary. The obtained self-extinguishing foamable styrenic resin particles may be dehydrated, dried, classified, and then coated with an antistatic agent or a binding inhibitor to prevent coalescence of particles during preliminary foaming on the particle surface. Good.
Pre-foaming can be performed using a pre-foaming machine for expanded polystyrene beads. The bulk density of the pre-expanded particles obtained is 0.008 to 0.1 g / cm. Three It is preferable that
Pre-expanded particles are filled in a mold of a molding machine, reheated with water vapor or the like to heat-seal the pre-expanded particles, and then cooled to obtain a foam-molded article having a desired shape. As the molding machine, a known molding machine for expanded polystyrene can be used.
[0036]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples.
Analysis and evaluation were performed by the following methods.
[0037]
[Quantification of polymerization conversion and residual styrene content]
The polymerization conversion rate was calculated by the following formula.
Polymerization conversion rate (% by weight) = 100 × (A−B) / A
The amount of residual styrene was calculated by the following formula.
Residual styrene content (% by weight) = 100 × B / A
However, A is the weight (g) of the styrene resin particle containing the unreacted styrene monomer, and B is the weight of the unreacted monomer in the resin particle containing the unreacted styrene monomer ( g). B is quantified by, for example, gas chromatography (GC). The styrene monomer by GC was measured by dissolving styrene resin particles in N, N-dimethylformamide and adding an internal standard solution (cyclopentanol).
GC: Shimadzu Corporation GC-14A
Column: PEG-20M PT25% 60/80 (2.5 m)
Column temperature: 105 ° C
Detector (FID) temperature: 220 ° C
[0038]
[Average molecular weight]
The average molecular weight (Mw and Mn) of the polymer was measured by GPC (Gel Permeation Chromatography) under the following conditions.
Measuring device: Tosoh Corporation high-speed GPC device HLC-8020
Column: manufactured by Sekisui Fine Chemical Co., Ltd. HSG-60S × 2, HSG-40H × 1, HSG-20H × 1
Column temperature: 40 ° C., mobile phase: THF (tetrahydrofuran),
Flow rate: 1.0 ml / min, injection volume: 500 ml
Detector: RID-6A manufactured by Tosoh Corporation
Measurement of the molecular weight of a sample: The molecular weight measurement conditions of a sample include the molecular weight distribution of the sample within a range in which the logarithm of the molecular weight of the calibration curve prepared by several monodisperse polystyrene standard samples and the number of counds are linear. Measurement conditions were selected. In the present invention, the polystyrene calibration curve has a weight average molecular weight of 2.74 × 10. Three 1.91 × 10 Four 1.02 × 10 Five 3.55 × 10 Five 2.89 × 10 6 4.48 × 10 6 These were prepared using 6 polystyrene standard samples (TSK standard polystyrene) manufactured by Tosoh Corporation.
[0039]
[Average bubble diameter]
The average cell diameter inside the foamed particle surface and inside the foamed particle is determined.
First, one cut surface obtained by dividing the expanded particle into approximately two parts by a cutter is magnified 40 times with a scanning electron microscope and photographed, and a straight line is drawn on the photograph so as to have the diameter of the expanded particle.
As the average bubble diameter on the surface of the expanded particle, the outermost periphery of one of the half circles in the expanded particle cross section divided by a straight line (including air bubbles applied to the straight line. In the expanded particle having a non-expanded skin layer) Measure the maximum diameter of all the bubbles in the skin layer as the outermost periphery), perform this measurement on 10 foamed particles, and calculate the arithmetic mean value of the maximum diameter obtained. The average cell diameter on the particle surface was used.
As the average bubble diameter inside the foamed particles, the maximum diameter of all the bubbles on the two inner line segments obtained by dividing the straight line into four equal parts was measured, and this measurement was performed on ten foamed particles. The arithmetic average value of the maximum diameter was defined as the average cell diameter inside the expanded particles.
[0040]
[Thermal conductivity]
The measurement of thermal conductivity was performed based on JIS-A-1412-2. The test piece used was cut out with a predetermined dimension from the center of the foamed molded product (length 400 mm × width 300 mm × thickness 20 mm) obtained in the examples.
Measuring apparatus: AUTO-A HC-072 manufactured by Eihiro Seiki Co., Ltd.
Test piece: length 200 mm x width 200 mm x thickness 20 mm
Measuring method: Plate heat flow meter method
Measurement temperature: 20 ° C
[0041]
[Combustion quality]
The time required for self-extinguishing was measured based on JIS A9511. From the JIS standard, the self-extinguishing time needs to be within 3.0 seconds, and preferably within 2.0 seconds. A foamed molded article cured at 50 ° C. for 24 hours after molding was used as a measurement sample.
[0042]
[Melt flow rate (MFR) and expansion ratio (SR)]
The melt flow rate and the expansion ratio (SR) were measured under the following conditions based on JIS K7210.
Measuring device: Melt indexer manufactured by Toyo Seiki Seisakusho
Measurement temperature: 200 ° C
Load weight: 5kgf
Orifice diameter: 2.09 mm (B)
Strand diameter after extrusion A mm (measured between 5 mm from the strand tip)
Expansion ratio (SR) = A / B
5 g of styrenic resin is placed in a melt indexer heated to 200 ° C. in advance and left for about 3 minutes. Next, a load of 5 kgf is applied, and a styrene resin is extruded from an orifice diameter of 2.09 mm. Take the extruded strand, measure 5 strand diameters between 5 mm from the tip, and let A be the average value.
[0043]
The measurement of MFR was performed under the following conditions based on JIS K7210. First, the measurement sample was held for 24 hours while holding the self-extinguishing foamable styrene resin particles obtained in Examples and Comparative Examples in a 50 ° C. oven under vacuum at a final pressure of 10 Pa. What removed the volatile organic solvent was used.
[0044]
Example 1
(Production of polystyrene particles by suspension polymerization)
In a polymerization vessel equipped with a stirrer having an internal volume of 100 L, 40.0 L of water, 100 g of tricalcium phosphate and 2.0 g of sodium dodecylbenzenesulfonate were added, followed by stirring with 40.0 kg of styrene, 100.0 g of benzoyl peroxide, t- Butyl peroxy-2-ethylhexyl carbonate (28.0 g) was added, and the temperature was raised to 88 ° C. to obtain a polymerization temperature. And it hold | maintained at this temperature for 6 hours and 30 minutes, and also, after heating up to 125 degreeC, after 2 hours, it cooled and obtained the spherical polystyrene particle (A).
The polymerization conversion rate of the polystyrene particles (A) is 99.96% by weight, the Mw is 295,000, the polydispersity (Mw / Mn) is 3.0, and the melt flow rate is 4.2 g / 10 min. The expansion ratio SR was 1.42.
[0045]
The polystyrene particles (A) obtained above were sieved to obtain polystyrene particles (B) having a particle size of 0.5 to 0.7 mm. In a pressure vessel with a stirrer having an internal volume of 5 L, 2.2 L of water, 500 g of polystyrene particles (B), 6.0 g of magnesium pyrophosphate and 0.3 g of sodium dodecylbenzenesulfonate were added and heated to 70 ° C. while stirring. Subsequently, 5.2 g of benzoyl peroxide and 1.1 g of t-butylperoxy-2-ethylhexyl carbonate were dissolved in 200 g of styrene and placed in a pressure resistant container. After 30 minutes, the temperature was raised to 90 ° C., and 1300 g of styrene, in which 0.45 g of divinylbenzene had been dissolved in advance, was supplied to the pressure vessel by a constant amount over a period of 2 hours. 30 minutes after the supply was completed, the temperature was raised to 125 ° C. and held for 2 hours. Then, it cooled to 70 degreeC and sampled a part from the inside of the container, and obtained the spherical polystyrene particle.
[0046]
The polymerization conversion rate of the polystyrene particles is 99.95% by weight, the Mw is 447,000, the polydispersity (Mw / Mn) is 4.5, the melt flow rate is 1.4 g / 10 min, and the expansion ratio SR. Was 2.16.
Next, with continued stirring, a composite flame retardant mixed with 34.0 g of tris (2,3-dibromopropyl) isocyanurate and 6.0 g of 2,3-dimethyl-2,3-diphenylbutane was added and mixed. .
Moreover, when the melting point of the said composite flame retardant (BC ratio 15.0%) was measured by DTA, the melting | fusing point peak temperature was one and was 103 degreeC. In addition, melting | fusing point peak temperature of the composite flame retardant was calculated | required by performing DTA measurement based on JISK7121.
Thermal analyzer: Seiko Instruments TG / DTA6200R
Measurement sample mass: 10 mg
Temperature increase rate: 10 ° C / min
[0047]
Subsequently, 10.0 g of diisobutyl adipate and 0.8 g of ethylenebisstearic acid amide are added to 200 g of water in which 0.1 g of sodium dodecylbenzenesulfonate is dissolved in another container to form an emulsion. Placed in a container. Then, after raising the temperature in the pressure vessel to 100 ° C., 105 g of normal butane and 35 g of isobutane were injected and held for 4 hours.
Next, the inside of the pressure vessel was cooled to 30 ° C. or lower to obtain self-extinguishing foamable polystyrene particles. The expanded polystyrene particles taken out are dried and then stored in a constant temperature room at 20 ° C. for 5 days. Then, the bulk density is 0.02 g / cm using a preliminary foaming machine. Three Foamed. The obtained pre-expanded particles had an average cell diameter of 180 μm inside and 70 μm on the surface.
After pre-expanded particles were aged at room temperature (25 ° C.) for 8 hours, they were molded with a molding machine for expanded polystyrene (ACE-3QS manufactured by Sekisui Koki Co., Ltd.), and a plate-like expanded molded article having a beautiful appearance (length: 400 mm, width) 300 mm, thickness 20 mm). The foamed molded body was trained in a drying room at 50 ° C. for 6 hours, and then subjected to a combustion test of JIS-A9511. The results are shown in Table 1.
[0048]
Example 2
The plate-like foaming was carried out in the same manner as in Example 1 except that the composite flame retardant was 28.0 g of tris (2,3-dibromopropyl) isocyanurate and 12.0 g of 2,3-dimethyl-2,3-diphenylbutane. A molded body was obtained. Moreover, when the melting point of the said composite flame retardant (BC ratio 30.0%) was measured by DTA similarly to Example 1, the melting | fusing point peak temperature was one and was 103 degreeC. The evaluation results are shown in Table 1.
[0049]
Example 3
The plate-like foaming was the same as in Example 1 except that the composite flame retardant was 68.0 g of tris (2,3-dibromopropyl) isocyanurate and 12.0 g of 2,3-dimethyl-2,3-diphenylbutane. A molded body was obtained. Moreover, when the melting point of the said composite flame retardant (BC ratio 15.0%) was measured by DTA similarly to Example 1, the melting | fusing point peak temperature was one and was 103 degreeC. The evaluation results are shown in Table 1.
[0050]
Example 4
Except that the flame retardant auxiliary 2,3-dimethyl-2,3-diphenylbutane used for the composite flame retardant was changed to 3,4-dimethyl-3,4-diphenylhexane (DDPH), the same as in Example 1. A plate-like foamed molded product was obtained. Moreover, when the melting point of the composite flame retardant (DDPH ratio 15.0%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was one and 131 ° C. The evaluation results are shown in Table 1.
[0051]
Example 5
A plate-like foamed molded article was obtained in the same manner as in Example 1 except that 1.1 g of t-butylperoxy 2-ethylhexyl carbonate was changed to 0.06 g. Further, the melting point of the composite flame retardant (BC ratio 15.0%) was measured by DTA in the same manner as in Example 1. As a result, the melting point peak temperature was one and was 103 ° C. The evaluation results are shown in Table 1.
[0052]
Comparative Example 1
A plate-like foam molded article was obtained in the same manner as in Example 1 except that 7.0 g of tris (2,3-dibromopropyl) isocyanurate and 3.0 g of 2,3-dimethyl-2,3-diphenylbutane were used. It was. Further, when the melting point of the composite flame retardant (BC ratio 30.0%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was one and was 103 ° C. The evaluation results are shown in Table 1.
[0053]
Comparative Example 2
In a pressure vessel equipped with a stirrer with an internal volume of 5 L, 2.2 L of water, 500 g of the polystyrene particles (B) obtained in Example 1, 6.0 g of magnesium pyrophosphate and 0.3 g of sodium dodecylbenzenesulfonate were added and stirred. The temperature was raised to 70 ° C. Subsequently, 5.2 g of benzoyl peroxide and 1.1 g of t-butylperoxy 2-ethylhexyl carbonate were dissolved in 200 g of styrene and placed in a pressure resistant container. After 30 minutes, the temperature was raised to 90 ° C., and 1300 g of styrene, in which 0.45 g of divinylbenzene had been dissolved in advance, was supplied to the pressure vessel by a constant amount over a period of 2 hours. A portion of the container was sampled 30 minutes after the supply was completed to obtain spherical polystyrene particles. The polymerization conversion rate of the polystyrene particles was 94.2% by weight.
[0054]
Next, with continuing stirring, a composite flame retardant composed of 34.0 g of tris (2,3-dibromopropyl) isocyanurate and 6.0 g of 2,3-dimethyl-2,3-diphenylbutane was added and mixed. Moreover, when the melting point of the said composite flame retardant (BC ratio 15.0%) was measured by DTA similarly to Example 1, the melting | fusing point peak temperature was one and was 103 degreeC. Subsequently, it heated up to 125 degreeC and hold | maintained for 2 hours. Thereafter, the mixture was cooled to 70 ° C. and 10.0 g of diisobutyl adipate and 0.8 g of ethylenebisstearic acid amide were added to 200 g of water in which 0.1 g of sodium dodecylbenzenesulfonate was dissolved in another container to obtain an emulsion. I put things in. Then, after raising the temperature inside the pressure vessel to 100 ° C., 130 g of normal butane and 50 g of isobutane were injected and held for 4 hours.
Next, the inside of the pressure vessel was cooled to 30 ° C. or lower to obtain self-extinguishing foamable polystyrene particles. The expanded particles taken out were evaluated after the same treatment as in Example 1. The results are shown in Table 1.
[0055]
Comparative Example 3
The procedure was the same as Example 1 except that 80.0 g of tris (2,3-dibromopropyl) isocyanurate was used and 2,3-dimethyl-2,3-diphenylbutane was not used. Moreover, it was 115 degreeC when melting | fusing point of this flame retardant (BC ratio 0%) was measured similarly to Example 1 by DTA. The evaluation results are shown in Table 1.
[0056]
Comparative Example 4
The same procedure as in Example 1 was repeated except that 16.0 g of tris (2,3-dibromopropyl) isocyanurate and 64.0 g (80% by weight) of 2,3-dimethyl-2,3-diphenylbutane were used. Moreover, when the melting point of this composite flame retardant (BC ratio 80.0%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was one and was 104 ° C. The evaluation results are shown in Table 1.
[0057]
Comparative Example 5
The same procedure as in Example 1 was conducted except that 6.0 g of 2,3-dimethyl-2,3-diphenylbutane was used instead of 6.0 g of dicumyl peroxide (DCP). Further, when the melting point of the composite flame retardant (DCP ratio 15.0%) was measured by DTA in the same manner as in Example 1, DCP was decomposed during the measurement and could not be measured. The evaluation results are shown in Table 1.
[0058]
Comparative Example 6
Example 3 except that 38.0 g of tris (2,3-dibromopropyl) isocyanurate was replaced with 28.0 g of hexabromocyclododecane and 12.0 g of 2,3-dimethyl-2,3-diphenylbutane. Same. However, hexabromocyclododecane was not absorbed and remained in the pressure vessel. Further, when the melting point of this composite flame retardant (BC ratio 30.0%) was measured by DTA in the same manner as in Example 1, the melting point peak temperature was two, the melting point of BC was 106 ° C., and the melting point of HBCD was 190 ° C. The evaluation results are shown in Table 1.
[0059]
Comparative Example 7
Instead of 34.0 g of tris (2,3-dibromopropyl) isocyanurate, 28.0 g of tetrabromocyclooctane was used, and dicumyl peroxide 12 instead of 6.0 g of 2,3-dimethyl-2,3-diphenylbutane. 0.0 g, but the same as Example 1. Further, when the melting point of this composite flame retardant (DCP ratio 30.0%) was measured with DTA in the same manner as in Example 1, DCP was decomposed during the measurement and could not be measured. The evaluation results are shown in Table 1.
[0060]
[Table 1]
Figure 0003970188
[0061]
From Table 1, the foamed moldings obtained from the pre-expanded particles of Examples 1 to 5 were excellent in heat insulating properties, and in addition, the combustion test showed excellent self-extinguishing properties within 3 seconds.
The foam molded product obtained from the pre-expanded particles of Comparative Example 1 had good heat insulation, but the content of the composite flame retardant was less than 1.0 part by weight, so the foam molded product was inferior in self-extinguishing properties. It was a body.
Comparative Example 2 is an example in which a flame retardant is added during the polymerization of styrene resin particles, that is, in a state where the polymerization conversion rate is low. From this result, when a composite flame retardant is added at a time when the polymerization conversion rate of polystyrene particles is low In addition to an increase in residual styrene, the foamed molded product had fine bubbles and poor heat insulation performance.
The foamed molded article obtained from the pre-expanded particles of Comparative Example 3 was inferior in self-extinguishing properties because it did not contain a flame retardant aid.
[0062]
The foamed molded product obtained from the pre-expanded particles of Comparative Example 4 was inferior in heat insulating properties to that in Example 1, and was inferior in self-extinguishing properties because it contained substantially less flame retardant.
In Comparative Example 5, when dicumyl peroxide is used as a flame retardant aid, non-uniform absorption of the flame retardant occurs, and as a result, fine foam particles of bubbles are mixed (internal bubbles of 60 μm and 170 μm Mixed), irregularities occurred during molding, and a foamed molded article having a good appearance could not be obtained. Moreover, the heat insulation was also inferior to Example 1.
The foamed molded article obtained from the pre-expanded particles of Comparative Example 6 was inferior in self-extinguishing properties because it did not substantially contain a flame retardant.
The foamed molded product obtained from the pre-expanded particles of Comparative Example 7 had a mixture of bubbles in the same manner as Comparative Example 5, and a product with good appearance could not be obtained. Further, the heat insulating property was inferior to that of Example 1.
[0063]
Example 6
This example is an example for evaluating the recyclability of the foamed molded products of the above examples and comparative examples.
The melt flow rate (MFR) of the self-extinguishing foamable polystyrene resin particles obtained in Examples 1 and 2 and Comparative Examples 5 and 7 was measured. Further, the weight average molecular weight of the resin particles before and after the MFR measurement was also measured. Table 2 shows the MFR and the weight average molecular weight.
For comparison, MFR was measured by preparing polystyrene particles containing no flame retardant as follows.
[0064]
(Production of polystyrene particles that do not contain flame retardants)
The polystyrene particles (A) were sieved to obtain polystyrene particles (B) having a particle diameter of 0.5 to 0.7 mm. In a pressure vessel with a stirrer having an internal volume of 5 L, 2.2 L of water, 500 g of polystyrene particles (B), 6.0 g of magnesium pyrophosphate and 0.3 g of sodium dodecylbenzenesulfonate were added and heated to 70 ° C. while stirring. Subsequently, 5.2 g of benzoyl peroxide and 1.1 g of t-butylperoxy-2-ethylhexyl carbonate were dissolved in 200 g of styrene and placed in a pressure resistant container. After 30 minutes, the temperature was raised to 90 ° C., and 1300 g of styrene, in which 0.45 g of divinylbenzene had been dissolved in advance, was supplied to the pressure vessel by a constant amount over a period of 2 hours. 30 minutes after the supply was completed, the temperature was raised to 125 ° C. and held for 2 hours. Then, it cooled to 30 degreeC, took out from the inside of a container, and wash | cleaned and dried, and the particulate polystyrene particle (C) was obtained.
[0065]
[Table 2]
Figure 0003970188
Table 2 shows the following.
First, the MFR of polystyrene resin that can be recycled by melt-kneading with an extruder and forming a strand is 20 g / 10 min or less, preferably 15 g / 10 min or less, particularly when no flame retardant is added, that is, particles (C It is preferable that it is close to MFR. Looking at Table 2 from this point of view, the resin particles of Examples 1 and 2 are both 15 g / 10 or less and can be sufficiently recycled. In contrast, the resin particles of Comparative Examples 5 and 7 have a significantly increased MFR and are difficult to recycle.
[0066]
Furthermore, it is desired from the viewpoint of recycling that the weight average molecular weight does not change as much as possible before and after the heat treatment (MFR measurement process). If greatly reduced, it cannot be extruded as a strand after being melt-kneaded by an extruder, or the strand is frequently cut and difficult to recycle. Looking at Table 2 from this point of view, the resin particles of Examples 1 and 2 have a small decrease in weight average molecular weight as compared with the case where no flame retardant is added, and are sufficiently recyclable. On the other hand, the resin particles of Comparative Examples 5 and 7 have a greatly reduced weight average molecular weight, and even if it is difficult to recycle, the strength is not remarkably reduced.
[0067]
【The invention's effect】
According to the present invention, since a composite flame retardant containing a specific kind of flame retardant and a flame retardant aid in a specific ratio is used, the molecular weight of the styrene resin is hardly lowered during recycling, and the inherent property of the styrene resin is These properties (for example, heat insulation and mechanical strength) are maintained, excellent self-extinguishing properties are exhibited, and the method for dispersing in styrene resin is not limited. Furthermore, by using a specific composite flame retardant for styrene resin particles having specific properties, self-extinguishing properties can be imparted without impairing the properties of the resin.
[Brief description of the drawings]
FIG. 1 is a graph showing the melting point of a composite flame retardant.

Claims (6)

スチレン系樹脂、易揮発性発泡剤、複合難燃剤から構成され、
スチレン系樹脂が、
(1)スチレン系モノマーの含有量がスチレン系樹脂に対して2000ppm以下、
(2)多分散度(Mw/Mn)が3.5〜7.0、
(3)メルトフローレート(200℃、5.0kg荷重)が0.1〜2.0g/10分、
(4)メルトフローレート測定時の膨張割合SRの値が1.60〜2.50であり、
複合難燃剤が、トリス(2,3−ジブロモプロピル)イソシアヌレートである難燃剤90〜40重量%と、難燃助剤が、下記一般式
Figure 0003970188
(式中、R1〜R4は、同一又は異なって、メチル又はエチル基である)で表わされる難燃助剤10〜60重量%とから構成され、スチレン系樹脂粒子100重量部に対して1〜7重量部含まれる
ことを特徴とする自己消火型発泡性スチレン系樹脂粒子。
Consists of styrenic resin, readily volatile foaming agent, composite flame retardant,
Styrenic resin
(1) The content of the styrene monomer is 2000 ppm or less with respect to the styrene resin,
(2) Polydispersity (Mw / Mn) is 3.5 to 7.0,
(3) Melt flow rate (200 ° C., 5.0 kg load) is 0.1 to 2.0 g / 10 minutes,
(4) The value of the expansion ratio SR when measuring the melt flow rate is 1.60 to 2.50,
The composite flame retardant is tris (2,3-dibromopropyl) isocyanurate 90 to 40% by weight, and the flame retardant aid is represented by the following general formula:
Figure 0003970188
(Wherein R1 to R4 are the same or different and are methyl or ethyl groups) and are composed of 10 to 60% by weight of a flame retardant aid represented by 1 to 100 parts by weight of styrene resin particles. 7 parts by weight of self-extinguishing foamable styrenic resin particles.
スチレン系樹脂が、スチレン系モノマーに対して多官能性モノマーを0.008〜0.03mol%共重合させた共重合体である請求項1に記載の自己消火型発泡性スチレン系樹脂粒子。The self-extinguishing foamable styrene resin particle according to claim 1, wherein the styrene resin is a copolymer obtained by copolymerizing 0.008 to 0.03 mol% of a polyfunctional monomer with respect to the styrene monomer. 難燃助剤が、2,3−ジメチル−2,3−ジフェニルブタン又は3,4−ジメチル−3,4−ジフェニルヘキサンである請求項1に記載の自己消火型発泡性スチレン系樹脂粒子。The self-extinguishing foamable styrene-based resin particle according to claim 1, wherein the flame retardant aid is 2,3-dimethyl-2,3-diphenylbutane or 3,4-dimethyl-3,4-diphenylhexane. スチレン系モノマーの含有量が、スチレン系樹脂に対して1000ppm以下である請求項1に記載の自己消火型発泡性スチレン系樹脂粒子。The self-extinguishing foamable styrene resin particles according to claim 1, wherein the content of the styrene monomer is 1000 ppm or less with respect to the styrene resin. 請求項1〜4のいずれか1つに記載の自己消火型発泡性スチレン系樹脂粒子を予備発泡させて得られた予備発泡粒子。Pre-expanded particles obtained by pre-expanding the self-extinguishing foamable styrene resin particles according to any one of claims 1 to 4. 請求項5に記載の予備発泡粒子を発泡成形して得られた自己消火型発泡成形体。A self-extinguishing foam molded article obtained by foam molding of the pre-expanded particles according to claim 5.
JP2003016520A 2003-01-24 2003-01-24 Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam Expired - Fee Related JP3970188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016520A JP3970188B2 (en) 2003-01-24 2003-01-24 Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016520A JP3970188B2 (en) 2003-01-24 2003-01-24 Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam

Publications (2)

Publication Number Publication Date
JP2004224977A JP2004224977A (en) 2004-08-12
JP3970188B2 true JP3970188B2 (en) 2007-09-05

Family

ID=32903953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016520A Expired - Fee Related JP3970188B2 (en) 2003-01-24 2003-01-24 Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam

Country Status (1)

Country Link
JP (1) JP3970188B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123506B2 (en) * 2006-09-11 2013-01-23 株式会社ジェイエスピー Method for producing recycle foamable styrene resin particles
JP2009235250A (en) * 2008-03-27 2009-10-15 Kaneka Corp Method for producing foamable styrenic resin particles
WO2010023235A1 (en) * 2008-08-29 2010-03-04 Akzo Nobel N.V. Flame retardant polyolefin composition
JP5371036B2 (en) * 2009-02-25 2013-12-18 株式会社ジェイエスピー Expandable styrene resin particles and method for producing the same
CN102378780B (en) 2009-03-30 2013-08-28 积水化成品工业株式会社 Expandable polystyrene resin particles and process for producing same
JP5558038B2 (en) * 2009-03-30 2014-07-23 積水化成品工業株式会社 Expandable polystyrene resin particles and method for producing the same
US10358538B2 (en) 2009-10-27 2019-07-23 Sekisui Plastics Co., Ltd. Foamable polystyrene resin particles and polystyrene resin prefoamed particles
JP2013023565A (en) * 2011-07-20 2013-02-04 Sekisui Plastics Co Ltd Foamable polystyrene resin particle for middle-low ratio expansion molding, foamed particle, expansion molded product and manufacturing method for expansion molded product
JP7032231B2 (en) * 2018-05-14 2022-03-08 シャープ株式会社 Reliability evaluation method and quality control method for flame-retardant polystyrene recycled material

Also Published As

Publication number Publication date
JP2004224977A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
TWI439503B (en) Expandable polystyrene type resin pellets and production method thereof, polystyrene type resin pre- expanded particle, polystyrene type resin expanded form, insulator for building material, banking material, and interior material for vehicle
JP5080226B2 (en) Expandable resin particles, method for producing the same, and foam molded article
JP5815934B2 (en) Method for producing composite resin expanded particles, and composite resin expanded particles
JP3732418B2 (en) Expandable styrene resin particles
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP3970191B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
JP6500619B2 (en) Expandable composite resin particles
JP2007246566A (en) Foamable thermoplastic resin particle and foamed molded article obtained from the same
JP4066337B2 (en) Expandable styrene resin particles for building materials and foamed molded articles thereof
JPH0790105A (en) Expandable styrene resin particle and molded styrene resin foam produced therefrom
JP2020094186A (en) Foamable thermoplastic resin particle, thermoplastic pre-foamed particle, thermoplastic foamed molded body and production methods thereof
JP2017132970A (en) Styrenic resin foamable particle, foamed particle and foamed molding
JP5338364B2 (en) Styrene resin particle foam molding
JPWO2014157538A1 (en) Composite resin foam molding
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP3805209B2 (en) Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them
JP5739057B2 (en) Automotive parts
JP2018053181A (en) Method for producing foamable styrene resin particle
JP2011208066A (en) Expansion-molded item, interior material for vehicle, tire spacer for vehicle and luggage box for vehicle
JP3935849B2 (en) Self-extinguishing styrene resin foam particles and self-extinguishing foam
JP6343485B2 (en) Polystyrene foamed molded product and method for producing the same
JP5666796B2 (en) Method for producing styrenic polymer particles
JP2019059843A (en) Manufacturing method of foamable styrene resin particle
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP5592731B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees