JP6971743B2 - Method for manufacturing foamable styrene resin particles - Google Patents

Method for manufacturing foamable styrene resin particles Download PDF

Info

Publication number
JP6971743B2
JP6971743B2 JP2017185349A JP2017185349A JP6971743B2 JP 6971743 B2 JP6971743 B2 JP 6971743B2 JP 2017185349 A JP2017185349 A JP 2017185349A JP 2017185349 A JP2017185349 A JP 2017185349A JP 6971743 B2 JP6971743 B2 JP 6971743B2
Authority
JP
Japan
Prior art keywords
styrene
resin particles
weight
parts
styrene resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017185349A
Other languages
Japanese (ja)
Other versions
JP2019059843A (en
Inventor
忍 落越
勇貴 早瀬
洋一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2017185349A priority Critical patent/JP6971743B2/en
Publication of JP2019059843A publication Critical patent/JP2019059843A/en
Application granted granted Critical
Publication of JP6971743B2 publication Critical patent/JP6971743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、型内発泡成形に使用される発泡性スチレン系樹脂粒子の製造方法に関するものである。詳しくは、揮発性有機成分の含有量を低減することのできる発泡性スチレン系樹脂粒子の製造方法に関する。 The present invention relates to a method for producing foamable styrene resin particles used for in-mold foam molding. More specifically, the present invention relates to a method for producing effervescent styrene resin particles capable of reducing the content of volatile organic components.

一般に、発泡性スチレン系樹脂粒子の製造方法として、市販のスチレンモノマー(以下、単にスチレンと記載することもある)を水系懸濁系で重合して樹脂粒子を作成後、発泡剤を含浸する方法や、市販のスチレン系樹脂を押出機で溶融混練して樹脂粒子を作製後、発泡剤を含浸する方法等々が知られている。かかる方法により製造された発泡性スチレン系樹脂粒子を型内発泡成形することで得られる発泡体(以下、発泡成形体と記載することもある)は、軽量であり、かつ断熱材として優れた素材であることから、建築物の壁、床、屋根等の断熱材や畳の芯材、自動車部材等として広く使用されてきた。 Generally, as a method for producing effervescent styrene-based resin particles, a method of polymerizing a commercially available styrene monomer (hereinafter, may be simply referred to as styrene) in an aqueous suspension system to produce resin particles and then impregnating with a foaming agent. Alternatively, a method of melt-kneading a commercially available styrene-based resin with an extruder to produce resin particles and then impregnating with a foaming agent is known. A foam obtained by in-mold foam molding of foamable styrene resin particles produced by such a method (hereinafter, also referred to as a foam molded product) is a lightweight material and is an excellent material as a heat insulating material. Therefore, it has been widely used as a heat insulating material for walls, floors, roofs, etc. of buildings, a core material for tatami mats, an automobile member, and the like.

ところで、発泡性スチレン系樹脂粒子は、一般に、エチルベンゼン、スチレンモノマー等の揮発性有機成分(以下、VOCと記載することもある)を含んでいる。これらの有機揮発性成分は、発泡性スチレン系樹脂粒子の予備発泡粒子の作製時に、大気中に排出され、その臭気が作業環境の悪化につながる場合がある。又、型内発泡成形で得られた発泡成形体中に揮発性有機成分が残留している場合には、揮発性有機成分が大気中に排出されることで、その発泡成形体の養生、保管中の倉庫内において臭気が発生することがある。
近年、住宅、自動車の高気密化高断熱化が進む中で、様々な揮発性有機成分による室内空気汚染、即ちシックハウスが重要な問題となっている。このシックハウスを解決するために、室内における空気中の有機成分の量を規制する動きがある。従って、発泡性スチレン系樹脂粒子から放出される揮発性有機成分はできるだけ少なくすることが望ましい。このため、VOC量の少ない発泡性スチレン系樹脂粒子が望まれている。
By the way, the effervescent styrene resin particles generally contain volatile organic components such as ethylbenzene and styrene monomer (hereinafter, may be referred to as VOC). These organic volatile components are discharged into the atmosphere when the pre-foamed particles of the foamable styrene resin particles are produced, and the odor may lead to deterioration of the working environment. Further, when the volatile organic component remains in the foamed molded product obtained by in-mold foam molding, the volatile organic component is discharged into the atmosphere to cure and store the foamed molded product. Odor may be generated in the warehouse inside.
In recent years, with the progress of high airtightness and high heat insulation of houses and automobiles, indoor air pollution due to various volatile organic components, that is, sick house syndrome has become an important problem. In order to solve this sick house syndrome, there is a movement to regulate the amount of organic components in the air in the room. Therefore, it is desirable to reduce the amount of volatile organic components released from the effervescent styrene resin particles as much as possible. Therefore, foamable styrene resin particles having a small amount of VOC are desired.

ここで、発泡性スチレン系樹脂粒子中の主な揮発性有機成分は、スチレンとエチルベンゼンである。スチレンは、発泡性スチレン系樹脂粒子の製造工程に含まれる重合反応における重合条件、重合開始剤の選択により、低減することができるが、エチルベンゼンは、重合反応に寄与しないために、スチレン樹脂中のエチルベンゼン量が、そのまま、発泡性スチレン系樹脂粒子に残存してしまう。このように、発泡性スチレン系樹脂粒子中のエチルベンゼン量は、スチレン樹脂中のエチルベンゼン量に依存する傾向にあり、重合法により、VOC成分量(特に、スチレン量)の低減した発泡性スチレン系樹脂粒子を得ることは難しい。 Here, the main volatile organic components in the effervescent styrene resin particles are styrene and ethylbenzene. Styrene can be reduced by selecting the polymerization conditions and the polymerization initiator in the polymerization reaction contained in the process of producing the effervescent styrene resin particles, but ethylbenzene does not contribute to the polymerization reaction, so that it is contained in the styrene resin. The amount of ethylbenzene remains as it is in the effervescent styrene resin particles. As described above, the amount of ethylbenzene in the effervescent styrene resin particles tends to depend on the amount of ethylbenzene in the styrene resin, and the amount of VOC components (particularly, the amount of styrene) is reduced by the polymerization method. It is difficult to obtain particles.

また、スチレン系樹脂を用いる発泡性スチレン系樹脂粒子の製造方法として、例えば、特許文献1には、スチレン系樹脂を押出機で溶融混練し、小孔を有するダイスを通じて押出した後カッターで切断することによりスチレン系樹脂粒子を得た後、該スチレン系樹脂粒子を水中に懸濁させ、発泡剤を含有させて得る製造方法が開示されている。また、特許文献3には、スチレン系樹脂を押出機で溶融混練して製造した短ストランド状のシード粒子に、スチレン系単量体を吸収重合させて得られたスチレン系樹脂粒子に発泡剤を含浸させる発泡性スチレン系樹脂粒子の製造方法が開示されている。しかしながら、特許文献1の方法では使用するスチレン系樹脂に含まれるVOCを減少させることはできず、また、特許文献3の方法では使用するスチレン系樹脂やスチレン系単量体中のエチルベンゼンは重合で消費されることなく、低VOC化が達成されていない。 Further, as a method for producing foamable styrene resin particles using a styrene resin, for example, in Patent Document 1, a styrene resin is melt-kneaded with an extruder, extruded through a die having small holes, and then cut with a cutter. Thus, a production method obtained by suspending the styrene-based resin particles in water after obtaining the styrene-based resin particles and containing a foaming agent is disclosed. Further, in Patent Document 3, a foaming agent is applied to the styrene-based resin particles obtained by absorbing and polymerizing a styrene-based monomer into short-strand-shaped seed particles produced by melt-kneading the styrene-based resin with an extruder. A method for producing foamable styrene resin particles to be impregnated is disclosed. However, the method of Patent Document 1 cannot reduce the VOC contained in the styrene-based resin used, and the method of Patent Document 3 uses polymerization to polymerize the styrene-based resin and ethylbenzene in the styrene-based monomer. Low VOC has not been achieved without being consumed.

VOC量を低減させる方法として、例えば、特許文献2,4には、スチレン系樹脂を水と押出機で溶融混練し、脱気吸引後、発泡剤を圧入した低VOC化したポリスチレン系押出発泡断熱材の製造方法が開示されているが、発泡性スチレン系樹脂粒子の製造方法に関して記載されていない。
特開2014−80514号公報 特開2002−225104号公報 特開2006−036993号公報 WO2002/022723
As a method for reducing the amount of VOC, for example, in Patent Documents 2 and 4, a styrene resin is melt-kneaded with water by an extruder, degassed and sucked, and then a foaming agent is press-fitted to reduce the VOC of the polystyrene-based extrusion foam insulation. Although a method for producing a material is disclosed, there is no description regarding a method for producing foamable styrene resin particles.
Japanese Unexamined Patent Publication No. 2014-80514 Japanese Unexamined Patent Publication No. 2002-225104 Japanese Unexamined Patent Publication No. 2006-036993 WO2002 / 022723

以上のような状況に鑑み、揮発性有機成分の含有量を低減することのできる発泡性スチレン系樹脂粒子の製造方法を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a method for producing effervescent styrene resin particles capable of reducing the content of volatile organic components.

本発明者らは、鋭意検討の結果、本発明の完成に至った。すなわち、本発明は、以下のとおりである。
(1)スチレン系樹脂100重量部に対して、水0.01〜5重量部、熱安定剤0.05〜0.6重量部を押出機で溶融混練した後、揮発性有機成分を押出機内から真空度−0.08MPaG以下、溶融部のシリンダ温度200℃〜250℃の条件で吸引処理し、小孔を有するダイスを通じて押出した後カッターで切断してスチレン系樹脂粒子を製造する工程と、前記工程により得られたスチレン系樹脂粒子を水中に懸濁させ、温度100℃〜120℃で、発泡剤を、該スチレン系樹脂粒子に含浸させて製造する工程と、を備える発泡性スチレン系樹脂粒子の製造方法。
(2)スチレン系樹脂粒子を製造する工程において製造されたスチレン系樹脂粒子の揮発性有機成分量(スチレンモノマーとエチルベンゼンの合計量)が200ppm未満である、(1)の発泡性スチレン系樹脂粒子の製造方法。
(3)スチレン系樹脂粒子を製造する工程において、スチレン系樹脂100重量部に対して、0.5重量部以上3重量部の水を添加する、(1)又は(2)に記載の発泡性スチレン系樹脂粒子の製造方法。
(4)熱安定剤が、ヒンダードアミン系化合物、リン系化合物およびエポキシ系化合物よりなる群から選ばれる少なくとも1種の化合物であることを特徴とする、(1)〜(3
)のいずれかに記載の発泡性スチレン系樹脂粒子の製造方法。
(5)熱安定剤は、リン系安定剤及びヒンダードアミン系安定剤であり、スチレン系樹脂100重量部に対して、リン系安定剤を0.025〜0.3重量部、かつ、ヒンダードアミン系安定剤を0.025〜0.3重量部、添加することを特徴とする、(1)〜(4)のいずれかに記載の発泡性スチレン系樹脂粒子の製造方法。
(6)発泡剤が、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、シクロペンタンおよびネオペンタンよりなる群から選ばれる少なくとも1種の化合物であることを特徴とする、(1)〜(5)のいずれかに記載の発泡性スチレン系樹脂粒子の製造方法。
(7)(1)〜(6)のいずれかで記載された製造方法で製造した発泡性スチレン系樹脂粒子を加熱して予備発泡させて予備発泡粒子を得る工程と、前記工程で得た予備発泡粒子を成型キャビティ内に充填して型内発泡成形する工程と、を備える発泡成形体の製造方法。
As a result of diligent studies, the present inventors have completed the present invention. That is, the present invention is as follows.
(1) 0.01 to 5 parts by weight of water and 0.05 to 0.6 parts by weight of a heat stabilizer are melt-kneaded with 100 parts by weight of a styrene resin in an extruder, and then volatile organic components are put into the extruder. To produce styrene resin particles by suction treatment under the condition of vacuum degree of -0.08 MPaG or less and cylinder temperature of the molten part of 200 ° C to 250 ° C, extruding through a die having small holes, and then cutting with a cutter. A foamable styrene resin comprising a step of suspending the styrene resin particles obtained in the above step in water and impregnating the styrene resin particles with a foaming agent at a temperature of 100 ° C to 120 ° C. How to make particles.
(2) The foamable styrene resin particles of (1), wherein the amount of volatile organic components (total amount of styrene monomer and ethylbenzene) of the styrene resin particles produced in the step of producing the styrene resin particles is less than 200 ppm. Manufacturing method.
(3) The foamability according to (1) or (2), wherein 0.5 parts by weight or more and 3 parts by weight of water are added to 100 parts by weight of the styrene resin in the step of producing the styrene resin particles. A method for producing styrene-based resin particles.
(4) The heat stabilizer is at least one compound selected from the group consisting of hindered amine compounds, phosphorus compounds and epoxy compounds (1) to (3).
). The method for producing effervescent styrene resin particles according to any one of.
(5) The heat stabilizer is a phosphorus-based stabilizer and a hindered amine-based stabilizer. The phosphorus-based stabilizer is 0.025 to 0.3 parts by weight and the hindered amine-based stabilizer is 100 parts by weight based on 100 parts by weight of the styrene resin. The method for producing effervescent styrene resin particles according to any one of (1) to (4), which comprises adding 0.025 to 0.3 parts by weight of the agent.
(6) Any of (1) to (5), wherein the foaming agent is at least one compound selected from the group consisting of normal butane, isobutane, normal pentane, isopentane, cyclopentane and neopentane. The method for producing foamable styrene resin particles according to.
(7) A step of heating the effervescent styrene resin particles produced by the production method according to any one of (1) to (6) and pre-foaming them to obtain pre-foamed particles, and a step of preliminarily obtained in the above step. A method for manufacturing a foamed molded product, comprising a step of filling a foamed particle into a molding cavity and foaming and molding in a mold.

本発明によれば、揮発性有機成分の含有量が低減された発泡性スチレン系樹脂粒子を製造することができる。 According to the present invention, foamable styrene resin particles having a reduced content of volatile organic components can be produced.

本発明の発泡性スチレン系樹脂粒子は、スチレン系樹脂100重量部に対して、水0.01〜5重量部、熱安定剤0.05〜0.6重量部を押出機で溶融混練した後、揮発性有機成分を押出機内から真空度−0.08MPaG以下、溶融部のシリンダ温度200℃〜250℃の条件で吸引処理し、小孔を有するダイスを通じて押出した後カッターで切断して製造したスチレン系樹脂粒子を、水中に懸濁させ、温度100℃〜120℃で、発泡剤を、該スチレン系樹脂粒子に含浸させて製造することを特徴とする発泡性スチレン系樹脂粒子の製造方法である。 The foamable styrene resin particles of the present invention are obtained by melt-kneading 0.01 to 5 parts by weight of water and 0.05 to 0.6 parts by weight of a heat stabilizer with an extruder against 100 parts by weight of the styrene resin. The volatile organic component was sucked from the inside of the extruder under the conditions of a vacuum degree of -0.08 MPaG or less and a cylinder temperature of 200 ° C. to 250 ° C. of the molten part, extruded through a die having small holes, and then cut with a cutter. A method for producing foamable styrene resin particles, which comprises suspending styrene resin particles in water and impregnating the styrene resin particles with a foaming agent at a temperature of 100 ° C. to 120 ° C. be.

ここで、発泡性スチレン系樹脂粒子中の主な揮発性有機成分は、スチレンとエチルベンゼンである。スチレンは、発泡性スチレン系樹脂粒子の製造工程に含まれる重合反応における重合条件、重合開始剤の選択により、低減することができるが、エチルベンゼンは、重合反応に寄与しないために、スチレン樹脂中のエチルベンゼン量が、そのまま、発泡性スチレン系樹脂粒子に残存してしまう。このように、発泡性スチレン系樹脂粒子中のエチルベンゼン量は、スチレン樹脂中のエチルベンゼン量に依存する傾向にあり、重合法により、VOC成分量(特に、スチレン量)の低減した発泡性スチレン系樹脂粒子を得ることは難しい。又、市販されているスチレン系樹脂中には、エチルベンゼンとスチレンの合計量が200ppmを超えるものが多く、エチルベンゼンとスチレンを200ppm以下に低減することは難しい。 Here, the main volatile organic components in the effervescent styrene resin particles are styrene and ethylbenzene. Styrene can be reduced by selecting the polymerization conditions and the polymerization initiator in the polymerization reaction contained in the process of producing the effervescent styrene resin particles, but ethylbenzene does not contribute to the polymerization reaction, so that it is contained in the styrene resin. The amount of ethylbenzene remains as it is in the effervescent styrene resin particles. As described above, the amount of ethylbenzene in the effervescent styrene resin particles tends to depend on the amount of ethylbenzene in the styrene resin, and the amount of VOC components (particularly, the amount of styrene) is reduced by the polymerization method. It is difficult to obtain particles. Further, in many commercially available styrene-based resins, the total amount of ethylbenzene and styrene exceeds 200 ppm, and it is difficult to reduce ethylbenzene and styrene to 200 ppm or less.

このように、エチルベンゼンとスチレンの揮発性有機成分量が200ppm以下になるような発泡性スチレン系樹脂粒子が得られていないのが現状である。
本発明で用いられるスチレン系樹脂はスチレン単独重合体(ポリスチレンホモポリマー)のみならず、本発明の効果を損なわない範囲で、スチレンと共重合可能な他の単量体またはその誘導体が共重合されていてもよい。一般に、これらのスチレン系樹脂中のVOC成分(スチレン+エチルベンゼン)量は、200ppmを超えている。
As described above, the present situation is that effervescent styrene resin particles having an amount of volatile organic components of ethylbenzene and styrene of 200 ppm or less have not been obtained.
The styrene-based resin used in the present invention is not only a styrene homopolymer (polystyrene homopolymer), but also other monomers copolymerizable with styrene or derivatives thereof are copolymerized as long as the effects of the present invention are not impaired. May be. Generally, the amount of VOC component (styrene + ethylbenzene) in these styrene-based resins exceeds 200 ppm.

スチレンと共重合可能な他の単量体またはその誘導体としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレンなどのスチレン誘導体;ジビニルベンゼンなどの多官能性ビニル化合物;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチルなどの(メタ)アクリル酸エステル化合物;(メタ)アクリロニトリルなどのシアン化ビニル化合物;ブダジエンなどのジエン系化合物またはその誘導体;無水マレイン酸、無水イタコン酸などの不飽和カルボン酸無水物;N−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−4−ジフェニルマレイミド、N−2−クロロフェニルマレイミド、N−4−ブロモフェニルマレイミド、N−1−ナフチルマレイミドなどのN−アルキル置換マレイミド化合物、などがあげられる。これらは単独で使用してもよく、2種以上を混合して使用してもよい。 Examples of other monomers copolymerizable with styrene or derivatives thereof include methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, and the like. Styrene derivatives such as trichlorostyrene; polyfunctional vinyl compounds such as divinylbenzene; (meth) acrylic acid ester compounds such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate; (Meta) Vinyl cyanide compounds such as acrylonitrile; Diene compounds such as budadiene or derivatives thereof; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride; N-methylmaleimide, N-butylmaleimide, N-cyclohexyl Examples thereof include N-alkyl substituted maleimide compounds such as maleimide, N-phenylmaleimide, N-4-diphenylmaleimide, N-2-chlorophenylmaleimide, N-4-bromophenylmaleimide and N-1-naphthylmaleimide. These may be used alone or in combination of two or more.

本発明で用いられるスチレン系樹脂は、前記スチレン単独重合体、および/または、スチレンと共重合可能な他の単量体またはその誘導体との共重合体に限らず、本発明の効果を損なわない範囲で、前記他の単量体又は誘導体の単独重合体又は共重合体とのブレンド物であってもよく、例えば、ジエン系ゴム強化ポリスチレン、アクリル系ゴム強化ポリスチレン、ポリフェニレンエーテル系樹脂、等をブレンドすることもできる。 The styrene-based resin used in the present invention is not limited to the styrene homopolymer and / or a copolymer with another monomer copolymerizable with styrene or a derivative thereof, and does not impair the effects of the present invention. In the range, it may be a homopolymer or a blend of the other monomer or derivative with a homopolymer or a copolymer, and for example, diene-based rubber-reinforced polystyrene, acrylic-based rubber-reinforced polystyrene, polyphenylene ether-based resin, and the like may be used. It can also be blended.

本発明で用いられるスチレン系樹脂の中では、比較的安価で、特殊な方法を用いずに低圧の水蒸気等で発泡成形ができ、断熱性、難燃性、緩衝性のバランスに優れることから、ポリスチレンホモポリマー、スチレンーアクリロニトリル共重合体、スチレン−アクリル酸ブチル共重合体が好ましい。 Among the styrene-based resins used in the present invention, it is relatively inexpensive, can be foam-molded with low-pressure steam or the like without using a special method, and has an excellent balance of heat insulating properties, flame retardancy, and cushioning properties. Polystyrene homopolymers, styrene-acrylonitrile copolymers and styrene-butyl acrylate copolymers are preferred.

本発明で用いられる水は、押出機内で溶融されたスチレン系樹脂と混練することで、有機揮発性成分を、効率よく押出機内から吸引除去することができる。水の働きは、VOC成分(エチルベンゼン、スチレン)と水との混合によって、極小共沸点を有し水の沸点(100℃)より低い温度で沸騰するため、溶融したスチレン系樹脂中のVOC成分を効率よく除去することができる。 By kneading the water used in the present invention with the styrene-based resin melted in the extruder, the organic volatile components can be efficiently sucked and removed from the extruder. The function of water is that by mixing VOC components (ethylbenzene, styrene) with water, it has a minimum co-boiling point and boils at a temperature lower than the boiling point of water (100 ° C). It can be removed efficiently.

本発明における水の添加量は、スチレン系樹脂100重量部に対して、0.01重量部以上5重量部以下であることが好ましく、0.5重量部以上3重量部以下であることがより好ましい。水の添加量が0.01重量部未満の場合、共沸の効果が少なく、VOC成分量を低減することができなく、水の添加量が5重量部を超えると、押出機の圧力変動が大きくなり、小孔を有するダイスを通じて押出したストランドが不安定となり、ストランド切れの多発、樹脂粒子の重量バラツキが大きくなる。 The amount of water added in the present invention is preferably 0.01 parts by weight or more and 5 parts by weight or less, and more preferably 0.5 parts by weight or more and 3 parts by weight or less with respect to 100 parts by weight of the styrene resin. preferable. When the amount of water added is less than 0.01 parts by weight, the effect of azeotrope is small and the amount of VOC component cannot be reduced. The size becomes large, the strands extruded through the die having small holes become unstable, the strands are frequently broken, and the weight variation of the resin particles becomes large.

本発明で用いられる熱安定剤(以下、安定剤と記載することもある)は、フェノール系抗酸化剤、リン系安定剤、窒素系安定剤、イオウ系安定剤,ラクトン系安定剤、ベンゾトリアゾール系安定剤、ヒンダードアミン系安定剤、などである。 The heat stabilizer used in the present invention (hereinafter, also referred to as a stabilizer) is a phenol-based antioxidant, a phosphorus-based stabilizer, a nitrogen-based stabilizer, a sulfur-based stabilizer, a lactone-based stabilizer, and a benzotriazole. System stabilizers, hindered amine system stabilizers, etc.

具体的な安定剤としては、例えば、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、ビス(2,6−t−ブチル−4−メチルフェニル)−ペンタエリスリトールジホスファイトなどのリン系安定剤、
デカン二酸ビス(2,2,6,6−テトラメチル−4− ピペリジニル)、デカン二酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ−4−ピペリジニル)、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラートなどの4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン、4−ヒドロキシ−1,2,2,6,6−ペンタメチルピペリジン、または4−ヒドロキシ−1−オクチルオキシ−2,2,6,6−テトラメチルピレリジンの脂肪族または芳香族カルボン酸エステルであるヒンダードアミン系安定剤、
エチレンビス(オキシエチレン)ビス[3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート]、ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]などのフェノール系安定剤、などが挙げられる。
Specific stabilizers include, for example, phosphorus such as tris (2,4-di-t-butylphenyl) phosphite and bis (2,6-t-butyl-4-methylphenyl) -pentaerythritol diphosphite. System stabilizer,
Bis decaneate (2,2,6,6-tetramethyl-4-piperidinyl), bis decaneate (1,2,2,6,6-pentamethyl-4-piperidinyl), bisdecandiate (2,2) 2,6,6-Tetramethyl-1 (octyloxy-4-piperidinyl), tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, etc. 4-Hydroxy-2,2,6,6-tetramethylpiperidine, 4-hydroxy-1,2,2,6,6-pentamethylpiperidine, or 4-hydroxy-1-octyloxy-2,2,6 , A hindered amine-based stabilizer that is an aliphatic or aromatic carboxylic acid ester of 6-tetramethylpyridine,
Ethylene bis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate], pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate] and other phenolic stabilizers.

これらは、単独で使用しても良く、2種以上を併用しても良い。これらのうちでも、特に、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、ビス(2,6−t−ブチル−4−メチルフェニル)−ペンタエリスリトールジホスファイトなどのリン系安定剤および、デカン二酸ビス(2,2,6,6−テトラメチル−4− ピペリジニル)、デカン二酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ−4−ピペリジニル)、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラートなどのヒンダードアミン系安定剤を併用することが、発泡体の難燃性能を低下させることなく、且つ、発泡体の熱安定性を向上させることから、好ましい。 These may be used alone or in combination of two or more. Among these, in particular, phosphorus-based stabilizers such as tris (2,4-di-t-butylphenyl) phosphite and bis (2,6-t-butyl-4-methylphenyl) -pentaerythritol diphosphite. And bis decanoate (2,2,6,6-tetramethyl-4-piperidinyl), bis decanoate (1,2,2,6,6-pentamethyl-4-piperidinyl), bis decanoate (1,2,2,6,6-pentamethyl-4-piperidinyl) 2,2,6,6-tetramethyl-1 (octyloxy-4-piperidinyl), tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxyl It is preferable to use a hindered amine-based stabilizer such as lat, because it does not deteriorate the flame retardant performance of the foam and improves the thermal stability of the foam.

本発明における上記安定剤の含有量としては、スチレン系樹脂100重量部に対して、リン系安定剤では、0.025〜0.3重量部が好ましく、かつ、ヒンダードアミン系安定剤では、0.025〜0.3重量部が好ましく、併用する場合は安定剤量の総量が、0.05重量部〜0.6重量部が好ましい。 The content of the stabilizer in the present invention is preferably 0.025 to 0.3 parts by weight for the phosphorus-based stabilizer and 0. 025 to 0.3 parts by weight is preferable, and when used in combination, the total amount of stabilizer is preferably 0.05 parts by weight to 0.6 parts by weight.

熱安定剤の総量が0.05重量部未満の場合、押出機中でスチレン系樹脂の分解が起こり、スチレン量が増加し好ましくなく、熱安定剤が0.6重量部を超えると、スチレン系樹脂の分解を抑制することができるが、高コストになることに加え、安定剤によるポリスチレン系樹脂の可塑化効果により、発泡成形体の強度が弱くなる傾向がある。 If the total amount of the heat stabilizer is less than 0.05 parts by weight, the styrene resin is decomposed in the extruder and the amount of styrene increases, which is not preferable. If the amount of the heat stabilizer exceeds 0.6 parts by weight, the styrene resin is decomposed. Decomposition of the resin can be suppressed, but in addition to the high cost, the strength of the foamed molded product tends to be weakened due to the plasticizing effect of the polystyrene-based resin by the stabilizer.

本発明では、必要に応じて、難燃剤、加工助剤、帯電防止剤、顔料などの着色剤などの添加剤を含有させることができる。特に、建材や自動車市場においては、難燃性は、重要な特性である。 In the present invention, additives such as flame retardants, processing aids, antistatic agents, and colorants such as pigments can be contained, if necessary. In particular, flame retardancy is an important property in the building materials and automobile markets.

難燃剤の具体的な例としては、ヘキサブロモシクロドデカン、テトラブロモシクロオクタン、クロロペンタブロモシクロヘキサンなどのハロゲン化脂環化合物;ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビスペンタブロモジフェニル、デカブロモジフェニルエーテル、2,3−ジブロモプロピルペンタブロモフェニルエーテル、ビス(2,4,6−トリブロモフェノキシ)エタン、テトラブロモ無水フタル酸、オクタブロモトリメチルフェニルインダン、ペンタブロモベンジルアクリレート、トリブロモフェニルアリルエーテルなどのハロゲン化芳香族化合物あるいはその誘導体;テトラブロモビスフェノール−A、テトラブロモビスフェノール−S、テトラブロモビスフェノール−F、テトラブロモビスフェノール−A−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノール−S−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノール−F−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノール−A−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノール−S−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノール−F−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノール−A−ジアリルエーテル、テトラブロモビスフェノール−S−ジアリルエーテル、テトラブロモビスフェノール−F−ジアリルエーテル、などの臭素化ビスフェノール類およびその誘導体、臭素化スチレン、臭素化ブタジエン・ビニル芳香族共重合体、臭素化ノボラック樹脂アリルエーテル、臭素化ポリ(1,3−シクロアルカジエン)及び臭素化ポリ(4−ビニルフェノールアリルエーテル)等の臭素化ポリマーがあげられる。これらの物質は、単体で用いても、2種以上の混合物として用いても良い。 Specific examples of flame retardant agents include halogenated alicyclic compounds such as hexabromocyclododecane, tetrabromocyclooctane, chloropentabromocyclohexane; hexabromobenzene, pentabromotoluene, ethylenebispentabromodiphenyl, decabromodiphenyl ether, etc. Halogenization of 2,3-dibromopropylpentabromophenyl ether, bis (2,4,6-tribromophenoxy) ethane, tetrabromobisphenol phthalic acid, octabromotrimethylphenyl indane, pentabromobenzyl acrylate, tribromophenylallyl ether, etc. Aroma compounds or derivatives thereof; Tetrabromobisphenol-A, Tetrabromobisphenol-S, Tetrabromobisphenol-F, Tetrabromobisphenol-A-bis (2,3-dibromopropyl ether), Tetrabromobisphenol-S-bis ( 2,3-Dibromopropyl ether), Tetrabromobisphenol-F-bis (2,3-dibromopropyl ether), Tetrabromobisphenol-A-bis (2,3-dibromo-2-methylpropyl ether), Tetrabromobisphenol -S-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol-F-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol-A-diallyl ether, tetrabromo Brominated bisphenols and derivatives thereof such as bisphenol-S-diallyl ether, tetrabromobisphenol-F-diallyl ether, brominated styrene, brominated butadiene-vinyl aromatic copolymer, brominated novolak resin allyl ether, brominated. Examples thereof include brominated polymers such as poly (1,3-cycloalkaziene) and brominated poly (4-vinylphenol allyl ether). These substances may be used alone or as a mixture of two or more kinds.

加工助剤の具体例として、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、流動パラフィンなどがあげられる。 Specific examples of the processing aid include sodium stearate, magnesium stearate, calcium stearate, zinc stearate, barium stearate, liquid paraffin and the like.

本発明の発泡性スチレン系樹脂粒子の製造方法は、(1)吸引脱気口を付帯している押出機を用いて、スチレン系樹脂と前記の配合剤とを溶融混練したのち粒子状に切断して樹脂粒子を得る押出工程と、(2)押出工程で得られた樹脂粒子を、水中に懸濁させ、温度100℃〜120℃で、発泡剤を、該スチレン系樹脂粒子に含浸する発泡性スチレン性樹脂粒子を得る発泡剤含浸工程に、区別することができる。 The method for producing foamable styrene resin particles of the present invention is as follows: (1) Using an extruder equipped with a suction degassing port, the styrene resin and the above-mentioned compounding agent are melt-kneaded and then cut into particles. The styrene-based resin particles are impregnated with a foaming agent at a temperature of 100 ° C. to 120 ° C. by suspending the resin particles obtained in the extrusion step and (2) the extrusion step in water. It can be distinguished from the foaming agent impregnation step of obtaining the sex styrene resin particles.

(1)押出工程
本発明の製造方法で用いられる吸引脱気口を付帯している押出機としては、例えば、単軸押出機、二軸押出機等が挙げられる。
本発明の製造方法における押出機の溶融部でのシリンダ温度は、スチレン系樹脂が溶融する温度であればよく、200℃以上250℃以下であることが好ましい。スチレン系樹脂および各種配合物を供給してから溶融混錬終了までの押出機内滞留時間が7分以下であることが好ましい。200℃より低い場合は、押出機の負荷が大きくなって押出が不安定になったり、添加する材料の分散性が悪化したりする場合がある。一方、250℃を越える場合、および/または、融混錬終了までの押出機内滞留時間が7分より長い場合には、スチレン系樹脂自体の分解、あるいは難燃剤自体の分解が起こる場合がある。
(1) Extrusion Step Examples of the extruder having a suction degassing port used in the manufacturing method of the present invention include a single-screw extruder and a twin-screw extruder.
The cylinder temperature at the melted portion of the extruder in the manufacturing method of the present invention may be any temperature as long as the styrene resin melts, and is preferably 200 ° C. or higher and 250 ° C. or lower. It is preferable that the residence time in the extruder from the supply of the styrene resin and various formulations to the end of melt kneading is 7 minutes or less. If the temperature is lower than 200 ° C., the load on the extruder may become large and the extrusion may become unstable, or the dispersibility of the material to be added may deteriorate. On the other hand, if the temperature exceeds 250 ° C. and / or if the residence time in the extruder until the end of fusion and kneading is longer than 7 minutes, the styrene resin itself may be decomposed or the flame retardant itself may be decomposed.

水の添加は、単軸あるいは二軸スクリューを有する押出機の原料フィード部以降のシリンダよりダイス側の箇所より、圧入ポンプを用いて圧入することが、所定量が添加されることから好ましい。スチレン系樹脂に水をブレンダーで予め混合した樹脂組成物を、押出機へ投入すると、押出機の原料供給が不安定となり、ストランド切れ等が発生し、粒重量がそろったスチレン系樹脂粒子が得られない傾向がある。 It is preferable to add water by using a press-fitting pump from a portion on the die side of the cylinder after the raw material feed portion of the extruder having a single-screw or twin-screw screw because a predetermined amount is added. When a resin composition obtained by premixing styrene resin with water in a blender is put into an extruder, the raw material supply of the extruder becomes unstable, strand breakage occurs, and styrene resin particles having the same grain weight are obtained. It tends not to be.

吸引脱気口は、水の圧入部分よりダイス側の箇所に設け、押出機中に1ヶ所以上が設けることが好ましい。更に、スチレン系樹脂が溶融混練している箇所に、吸引脱気口を設置することが好ましい。溶融混練していない箇所に吸引口を設けると、配合剤の粉末が吸引脱気口から、飛散してしまうことがある。 It is preferable that the suction / degassing port is provided at a position on the die side of the water press-fitting portion and at least one is provided in the extruder. Further, it is preferable to install a suction degassing port at a place where the styrene resin is melt-kneaded. If a suction port is provided in a place where the mixture is not melt-kneaded, the powder of the compounding agent may be scattered from the suction / degassing port.

吸引脱気する真空度は、低いほどVOC成分を除去することができるが、―0.08MPaG以下が好ましく、VOC成分を効率よく、吸引除去される。下限値を記載するなら、−1.0MPaGである。−1.0MPaGより低くなると、装置負荷の観点から好ましくない。すなわち、−1.0MPaから―0.08MPaGの範囲が好ましい。―0.08MPaGより高いと、VOC成分量の吸引除去量が少なくなる。 The lower the degree of vacuum for suction and degassing, the more the VOC component can be removed, but it is preferably −0.08 MPaG or less, and the VOC component is efficiently sucked and removed. If the lower limit value is described, it is −1.0 MPaG. If it is lower than −1.0 MPaG, it is not preferable from the viewpoint of device load. That is, the range from −1.0 MPa to −0.08 MPaG is preferable. If it is higher than −0.08 MPaG, the suction removal amount of the VOC component amount becomes small.

本発明の製造方法においては、押出機内で溶融混練された溶融樹脂を、押出機先端に取り付けたダイスを通じて得られるストランドを10℃以上40℃以下の水槽にて冷却し、回転カッターによりストランドを切断し、粒重量0.3mg〜1.0mgのスチレン系樹脂粒子を得る。ダイスにおける小孔の直径は、0.2mm以上1.5mm以下であることが好ましく、0.3mm以上1.0mm以下であることがより好ましい。又、アンダーウォーターカットのように、スチレン系樹脂粒子を造粒する方法も差し支えない。 In the manufacturing method of the present invention, the molten resin melt-kneaded in the extruder is cooled in a water tank having a temperature of 10 ° C. or higher and 40 ° C. or lower, and the strands are cut by a rotary cutter. Then, styrene-based resin particles having a grain weight of 0.3 mg to 1.0 mg are obtained. The diameter of the small holes in the die is preferably 0.2 mm or more and 1.5 mm or less, and more preferably 0.3 mm or more and 1.0 mm or less. Further, a method of granulating styrene resin particles such as underwater cut may be used.

(2)発泡剤含浸工程
攪拌翼付き耐圧容器を用いて、押出工程で得られたスチレン系樹脂粒子を、分散剤とともに水中に懸濁させる。分散剤としては、一般的に用いられている分散剤、例えば、燐酸カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウムなどの難水溶性無機塩が挙げられる。これら、難水溶性無機塩を用いる場合には、α−オレフィンスルフォン酸ソーダ、ドデシルベンゼンスルフォン酸ソーダなどのアニオン性界面活性剤を併用すると、分散安定性が増すので効果的である。
(2) Foaming agent impregnation step Using a pressure-resistant container with a stirring blade, the styrene-based resin particles obtained in the extrusion step are suspended in water together with a dispersant. Examples of the dispersant include commonly used dispersants, for example, poorly water-soluble inorganic salts such as calcium phosphate, hydroxyapatite, and magnesium pyrophosphate. When these poorly water-soluble inorganic salts are used, it is effective to use anionic surfactants such as α-olefin sulphonic acid sodium and dodecylbenzene sulphonic acid sodium in combination because the dispersion stability is increased.

次いで、懸濁液中に、発泡剤を添加する。本発明で使用する発泡剤としては、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、ネオペンタンよりなる群から選ばれる少なくとも1種以上が使用される。使用量としてはスチレン系樹脂粒子100重量部に対して、好ましくは2重量部以上10重量部以下、更に好ましくは4重量部以上8重量部以下である。 The foaming agent is then added to the suspension. As the foaming agent used in the present invention, at least one selected from the group consisting of propane, isobutane, normal butane, isopentane, normal pentane, and neopentane is used. The amount used is preferably 2 parts by weight or more and 10 parts by weight or less, and more preferably 4 parts by weight or more and 8 parts by weight or less with respect to 100 parts by weight of the styrene resin particles.

発泡剤を添加した後、重合系内の温度を100℃以上120℃以下、好ましくは、110℃以上120℃以下に上昇させ、一定時間、発泡剤を樹脂粒子中に含浸させる。含浸温度100℃未満の場合、樹脂粒子への発泡剤の含浸度合が悪く、発泡粒子のセル構造が不均一となり、得られる発泡成形体表面にクボミ等の外観を損ねることになる。一方、120℃を超えると、発泡剤の含浸は良くなるが、重合機の内圧が高くなり、重装備の耐圧を有する重合機仕様が必要となる場合がある。発泡剤含浸の所定時間が終了したら、重合温度を冷却、乾燥を経て、発泡性スチレン系樹脂粒子が得られる。 After adding the foaming agent, the temperature in the polymerization system is raised to 100 ° C. or higher and 120 ° C. or lower, preferably 110 ° C. or higher and 120 ° C. or lower, and the foaming agent is impregnated into the resin particles for a certain period of time. When the impregnation temperature is less than 100 ° C., the degree of impregnation of the foaming agent into the resin particles is poor, the cell structure of the foamed particles becomes non-uniform, and the appearance of the foamed molded product obtained is impaired. On the other hand, if the temperature exceeds 120 ° C., the impregnation of the foaming agent is improved, but the internal pressure of the polymerizer becomes high, and a polymerizer specification having a pressure resistance of heavy equipment may be required. After the predetermined time of impregnation with the foaming agent is completed, the polymerization temperature is cooled and dried to obtain effervescent styrene resin particles.

発泡性スチレン系樹脂粒子中のVOC量(スチレンとエチルベンゼンの合計)の上限値は、200ppm以下である。下限は、実用的には0ppmになり難いので敢えて表示するなら1ppm以上である。 The upper limit of the amount of VOC (total of styrene and ethylbenzene) in the effervescent styrene resin particles is 200 ppm or less. The lower limit is practically difficult to be 0 ppm, so if it is intentionally displayed, it is 1 ppm or more.

本発明の発泡性スチレン系樹脂粒子は、一般的な予備発泡方法によって、予備発泡粒子とすることができる。具体的には攪拌機を具備した容器内に入れ水蒸気等の熱源により加熱することで、所望の発泡倍率までに予備発泡を行う。 The foamable styrene resin particles of the present invention can be made into pre-foamed particles by a general pre-foaming method. Specifically, it is placed in a container equipped with a stirrer and heated by a heat source such as steam to perform preliminary foaming up to a desired foaming ratio.

更に予備発泡粒子は、一般的な型内成形方法によって成形し、発泡成形体にすることができる。具体的には、閉鎖し得るが密閉しえない金型内に充填し、水蒸気により加熱融着することで発泡成形体とする。
発泡成形体中のVOC量は、発泡性スチレン系樹脂粒子中のVOC量より多くなることはないため、VOC含有量が200ppm以下の発泡性スチレン系樹脂粒子を用いることで、200ppm以下の低VOCが要求される建材や自動車内装材等の発泡成形体を製造することができる。但し、当該発泡成形体を、VOC量が多い発泡成形体と混在して保管していると、放散したVOCを当該発泡成形体中に吸収し、200ppmを超えることがあるので、注意が必要である。
Further, the prefoamed particles can be molded by a general in-mold molding method to form a foamed molded product. Specifically, it is filled in a mold that can be closed but cannot be closed, and heat-fused with steam to obtain a foam molded product.
Since the amount of VOC in the foamed molded product does not exceed the amount of VOC in the foamable styrene resin particles, by using the foamable styrene resin particles having a VOC content of 200 ppm or less, a low VOC of 200 ppm or less is used. It is possible to manufacture foamed molded bodies such as building materials and automobile interior materials, which are required for the above. However, if the foamed molded product is stored in combination with the foamed molded product having a large amount of VOC, the emitted VOC may be absorbed into the foamed molded product and may exceed 200 ppm, so caution is required. be.

以下に、実施例および比較例を挙げて、本発明を具体的に説明するが、これらに限定されるものではない。なお、実施例および比較例の評価は下記の方法で行なった。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The examples and comparative examples were evaluated by the following methods.

(スチレン、エチルベンゼンの測定)
サンプルを、塩化メチレン(内部標準シクロペンタノール)に溶解し、(株)島津製作所製ガスクロマトグラフィーGC−2014(キャピラリーカラム:GLサイエンス製Rtx−1、カラム温度条件:50→80℃(3℃/min)後、80→180℃昇温(10℃/min)、キャリアガス:ヘリウム)を用いて、スチレン系樹脂粒子、発泡性スチレン系樹脂粒子、発泡成形体中に含まれるスチレンとエチルベンゼン量(ppm)を定量した。
(Measurement of styrene and ethylbenzene)
The sample was dissolved in methylene chloride (internal standard cyclopentanol), gas chromatography GC-2014 manufactured by Shimadzu Corporation (capillary column: Rtx-1, manufactured by GL Science, column temperature condition: 50 → 80 ° C. (3 ° C./). After min), the amount of styrene-based resin particles, foamable styrene-based resin particles, and the amount of styrene and ethylbenzene contained in the foamed molded product (min), using a temperature rise of 80 → 180 ° C. (10 ° C./min), carrier gas: helium) (min). ppm) was quantified.

(押出安定性)
押出工程において、押出時の圧力変動なく、ダイスを通じて得られるストランドを安定的に引き取れたものについては○、そうでないものについては×とした。
(Extrusion stability)
In the extrusion process, those in which the strands obtained through the die were stably taken out without pressure fluctuation during extrusion were marked with ◯, and those not were marked with x.

(揮発分)
発泡性スチレン系樹脂粒子を、オーブン150℃、30分間で熱処理し、減量分を測定した。
(Vaporized content)
The effervescent styrene resin particles were heat-treated in an oven at 150 ° C. for 30 minutes, and the weight loss was measured.

(発泡粒子のセルの均一性)
発泡粒子をカッターで切断し、発泡粒子の表層部と中央部のセル構造を観察した。表層部と中央部のセル弦長がほぼ同じであれば、均一とみなし○とし、セル弦長が異なる場合は、不均一とし、×とした。
(Cell uniformity of foamed particles)
The foamed particles were cut with a cutter, and the cell structures in the surface layer and the center of the foamed particles were observed. If the cell chord lengths of the surface layer and the center are almost the same, they are regarded as uniform and marked with ◯, and if the cell chord lengths are different, they are regarded as non-uniform and marked with x.

実施例および比較例においては、以下の原材料を用いた。
<スチレン系樹脂>
(A1)スチレン系樹脂[PSジャパン(株)製、G9401]
(A2)スチレン系樹脂[PSジャパン(株)製、G0002]
(A3)スチレン系樹脂[東洋スチレン(株)製、HRM52N]
スチレン系樹脂中のVOC量を、表1に示す。
In the examples and comparative examples, the following raw materials were used.
<Styrene resin>
(A1) Styrene-based resin [manufactured by PS Japan Corporation, G9401]
(A2) Styrene-based resin [manufactured by PS Japan Corporation, G0002]
(A3) Styrene resin [manufactured by Toyo Styrene Co., Ltd., HRM52N]
The amount of VOC in the styrene resin is shown in Table 1.

Figure 0006971743
Figure 0006971743

<熱安定剤>
(B1)ビス(2,6−t−ブチル−4−メチルフェニル)−ペンタエリスリトールジホスファイト[(株)ADEKA製、アデカスタブPEP−36]
(B2)テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラート[(株)ADEKA製、アデカスタブLA−57]
<難燃剤>
(C1)テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピル)エーテル[第一工業製薬(株)製、ピロガードSR−130]
<発泡剤>
(D1)ブタン[ノルマル/イソ=70/30比率の混合ブタン 岩谷産業(株)製]
<Heat stabilizer>
(B1) Bis (2,6-t-butyl-4-methylphenyl) -pentaerythritol diphosphite [manufactured by ADEKA Corporation, ADEKA STUB PEP-36]
(B2) Tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate [Adeka Stab LA-57, manufactured by ADEKA Corporation]
<Flame retardant>
(C1) Tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether [Pyroguard SR-130, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.]
<Effervescent agent>
(D1) Butane [Mixed butane with normal / iso = 70/30 ratio, manufactured by Iwatani Corp.]

(実施例1)
[スチレン系樹脂粒子の作製]
スチレン系樹脂(A1)100重量部に対して、熱安定剤(B1)を0.15重量部、難燃剤(C1)4重量部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。得られた樹脂組成物を、二軸押出機(TEM−26SX、東芝(株)製)へ供給し、押出機内で、溶融部のシリンダ温度240℃で、溶融混錬し、圧入ポンプで、水0.5重量部を圧入し、真空ポンプ(SW−25S、神港精機(株)製)を用いて、脱気吸引口より、真空度―0.09MPaGで、脱気した。押出機先端に取り付けられた直径1.4mmの小穴が20個設けられたダイスを通して吐出200kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、ストランドカッターで、粒重量1.0mgのスチレン系樹脂粒子を得た。このとき押出機先端部での樹脂の温度が248℃、押出機内滞留時間3分であった。
スチレン系樹脂粒子中のVOC量を、表2に示す。
(Example 1)
[Preparation of styrene resin particles]
To 100 parts by weight of the styrene resin (A1), 0.15 parts by weight of the heat stabilizer (B1) and 4 parts by weight of the flame retardant (C1) are added to the blender and blended for 10 minutes to form a resin composition. Got The obtained resin composition is supplied to a twin-screw extruder (TEM-26SX, manufactured by Toshiba Corporation), melt-kneaded in the extruder at a cylinder temperature of the melting part at 240 ° C., and water is pumped by a press-fitting pump. 0.5 part by weight was press-fitted and degassed from the degassing suction port using a vacuum pump (SW-25S, manufactured by Shinko Seiki Co., Ltd.) with a vacuum degree of −0.09 MPaG. A strand-shaped resin extruded at a discharge rate of 200 kg / hour through a die provided with 20 small holes with a diameter of 1.4 mm attached to the tip of the extruder is cooled and solidified in a water tank at 20 ° C. Styrene-based resin particles having a weight of 1.0 mg were obtained. At this time, the temperature of the resin at the tip of the extruder was 248 ° C., and the residence time in the extruder was 3 minutes.
The amount of VOC in the styrene resin particles is shown in Table 2.

[発泡性スチレン系樹脂粒子の作製]
次いで, 容積が6L の撹拌装置付きオートクレーブに, 得られたスチレン系樹脂粒子100重量部に対して脱イオン水200重量部、リン酸三カルシウム1重量部、ドデシルベンゼンスルホン酸ナトリウム0.03重量部、塩化ナトリウム1重量部 を投入し圧力容器を密閉した。その後、発泡剤としてブタン( ノルマルブタン70 % とイソブタン30 % の混合物)8重量部 を30分かけて圧力容器内に添加した後、120 ℃まで30分かけて昇温し、そのまま5時間保持した。保持後室温まで冷却し、オートクレーブから発泡剤の含浸された樹脂粒子を取り出し、塩酸での酸洗、水洗し、遠心分離機で脱水後、気流乾燥機で樹脂粒子表面に付着している水分を乾燥させ、発泡性スチレン系樹脂粒子を得た。発泡性スチレン系樹脂粒子中のVOC量を、表2に示す。
[Preparation of effervescent styrene resin particles]
Next, in an autoclave with a stirrer having a volume of 6 L, 200 parts by weight of deionized water, 1 part by weight of tricalcium phosphate, and 0.03 part by weight of sodium dodecylbenzene sulfonate were added to 100 parts by weight of the obtained styrene resin particles. , 1 part by weight of sodium chloride was added and the pressure vessel was sealed. Then, 8 parts by weight of butane (a mixture of 70% normal butane and 30% isobutane) was added as a foaming agent into the pressure vessel over 30 minutes, the temperature was raised to 120 ° C. over 30 minutes, and the mixture was kept as it was for 5 hours. .. After holding, cool to room temperature, take out the resin particles impregnated with the foaming agent from the autoclave, wash with hydrochloric acid, wash with water, dehydrate with a centrifuge, and then use an air flow dryer to remove the moisture adhering to the surface of the resin particles. The particles were dried to obtain effervescent styrene resin particles. The amount of VOC in the effervescent styrene resin particles is shown in Table 2.

[予備発泡粒子の作製]
得られた発泡性スチレン系樹脂粒子100重量部に対してステアリン酸亜鉛0.1重量部をドライブレンドした後、予備発泡機[大開工業(株)製、BHP−300]に投入し、0.08MPaの水蒸気を予備発泡機に導入して発泡させ、発泡倍率40倍の予備発泡粒子を得た。
[Preparation of preliminary foam particles]
After dry-blending 0.1 part by weight of zinc stearate with 100 parts by weight of the obtained effervescent styrene resin particles, the particles were put into a preliminary foaming machine [BHP-300, manufactured by Daikai Kogyo Co., Ltd.]. Steam of 08 MPa was introduced into a pre-foaming machine and foamed to obtain pre-foamed particles having a foaming ratio of 40 times.

[発泡成形体の作製]
得られた予備発泡粒子を、発泡スチロール用成形機[ダイセン工業(株)製、KR−57]に取り付けた型内成形用金型(400mm×300mm×厚み25mm)内に充填して、0.06MPaの水蒸気を導入し、直方体状のスチレン系発泡成形体を得、温度40℃の乾燥室で、1時間放置し、室温に取り出した。乾燥機から取り出した発泡成形体は、他の発泡体から放出されるVOCの吸収を防止するために、測定までの期間は、発泡成形体をアルミ箔、さらに、旭化成(株)製のサランラップ(登録商標)で包み、室温にて保管した。発泡成形体中のVOC量を、表2に示す。
(実施例2)
水量を1.0重量に変更した以外は、実施例1と同様の操作をした。表2に、評価結果を示す。
(実施例3)
水量を2.0重量に変更した以外は、実施例1と同様の操作をした。表2に、評価結果を示す。
(実施例4)
スチレン系樹脂を、(A2)に変更した以外は、実施例3同様の操作をした。表2に、評価結果を示す。
(実施例5)
スチレン系樹脂を、(A3)に変更した以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(実施例6)
熱安定剤を、熱安定剤(B1)0.15重量部、(B2)0.05重量部の併用系とした以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(実施例7)
熱安定剤を、熱安定剤(B1)0.3重量部、(B2)0.1重量部の併用系とした以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(実施例8)
熱安定剤(B1)を、熱安定剤(B1)0.4重量部、(B2)0.2重量部の併用系とした以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(実施例9)
難燃剤(C1)を無添加にした以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(実施例10)
溶融部のシリンダ温度を、220℃に変更した以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(実施例11)
発泡剤含浸温度を、115℃に変更した以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(実施例12)
発泡剤含浸温度を、105℃に変更した以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(実施例13)
実施例1で作製した樹脂粒子を、実施例1の押出条件で、更に2回押出機に通し、樹脂粒子を作製した。その後、実施例1と同様の操作で、発泡性樹脂粒子を得た。表2に、評価結果を示す。
[Preparation of foam molded product]
The obtained preliminary foamed particles were filled in an in-mold molding die (400 mm × 300 mm × thickness 25 mm) attached to a styrofoam molding machine [KR-57, manufactured by Daisen Kogyo Co., Ltd.] and 0.06 MPa. A rectangular parallelepiped styrene-based foam molded product was introduced, left in a drying chamber at a temperature of 40 ° C. for 1 hour, and taken out to room temperature. In the foam molded body taken out from the dryer, in order to prevent absorption of VOC released from other foams, the foam molded body is made of aluminum foil and Saran Wrap manufactured by Asahi Kasei Corporation until the measurement. Wrapped in (registered trademark) and stored at room temperature. The amount of VOC in the foam molded product is shown in Table 2.
(Example 2)
The same operation as in Example 1 was performed except that the amount of water was changed to 1.0 weight. Table 2 shows the evaluation results.
(Example 3)
The same operation as in Example 1 was performed except that the amount of water was changed to 2.0 weight. Table 2 shows the evaluation results.
(Example 4)
The same operation as in Example 3 was performed except that the styrene resin was changed to (A2). Table 2 shows the evaluation results.
(Example 5)
The same operation as in Example 3 was performed except that the styrene resin was changed to (A3). Table 2 shows the evaluation results.
(Example 6)
The same operation as in Example 3 was carried out except that the heat stabilizer was a combined system of 0.15 parts by weight of the heat stabilizer (B1) and 0.05 parts by weight of (B2). Table 2 shows the evaluation results.
(Example 7)
The same operation as in Example 3 was carried out except that the heat stabilizer was a combined system of 0.3 parts by weight of the heat stabilizer (B1) and 0.1 part by weight of (B2). Table 2 shows the evaluation results.
(Example 8)
The same operation as in Example 3 was carried out except that the heat stabilizer (B1) was a combined system of 0.4 parts by weight of the heat stabilizer (B1) and 0.2 parts by weight of (B2). Table 2 shows the evaluation results.
(Example 9)
The same operation as in Example 3 was performed except that the flame retardant (C1) was not added. Table 2 shows the evaluation results.
(Example 10)
The same operation as in Example 3 was performed except that the cylinder temperature of the molten portion was changed to 220 ° C. Table 2 shows the evaluation results.
(Example 11)
The same operation as in Example 3 was performed except that the foaming agent impregnation temperature was changed to 115 ° C. Table 2 shows the evaluation results.
(Example 12)
The same operation as in Example 3 was performed except that the foaming agent impregnation temperature was changed to 105 ° C. Table 2 shows the evaluation results.
(Example 13)
The resin particles prepared in Example 1 were further passed through an extruder twice under the extrusion conditions of Example 1 to prepare resin particles. Then, the foamable resin particles were obtained by the same operation as in Example 1. Table 2 shows the evaluation results.

(比較例1)
水無添加以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(比較例2)
水無添加以外は、実施例4と同様の操作をした。表2に、評価結果を示す。
(比較例3)
水無添加以外は、実施例5と同様の操作をした。表2に、評価結果を示す。
(比較例4)
水量を6.0重量に変更した以外は、実施例1と同様の操作をした。表2に、評価結果を示す。
(比較例5)
押出時の真空度を0MPaG(大気圧)に変更した以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(比較例6)
押出時の真空度をー0.04MPaGに変更した以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(比較例7)
熱安定剤を無添加にした以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(比較例8)
水無添加以外は、実施例9と同様の操作をした。表2に、評価結果を示す。
(比較例9)
溶融部のシリンダ温度を、260℃に変更した以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(比較例10)
発泡剤含浸温度を、98℃に変更した以外は、実施例3と同様の操作をした。表2に、評価結果を示す。
(比較例11)
市販されているスチレン系発泡性樹脂粒子((株)カネカ製、LVF)を評価した。表2に、評価結果を示す。
(Comparative Example 1)
The same operation as in Example 3 was performed except that no water was added. Table 2 shows the evaluation results.
(Comparative Example 2)
The same operation as in Example 4 was performed except that no water was added. Table 2 shows the evaluation results.
(Comparative Example 3)
The same operation as in Example 5 was performed except that no water was added. Table 2 shows the evaluation results.
(Comparative Example 4)
The same operation as in Example 1 was performed except that the amount of water was changed to 6.0 weight. Table 2 shows the evaluation results.
(Comparative Example 5)
The same operation as in Example 3 was performed except that the degree of vacuum at the time of extrusion was changed to 0 MPaG (atmospheric pressure). Table 2 shows the evaluation results.
(Comparative Example 6)
The same operation as in Example 3 was performed except that the degree of vacuum at the time of extrusion was changed to −0.04 MPaG. Table 2 shows the evaluation results.
(Comparative Example 7)
The same operation as in Example 3 was carried out except that the heat stabilizer was not added. Table 2 shows the evaluation results.
(Comparative Example 8)
The same operation as in Example 9 was performed except that no water was added. Table 2 shows the evaluation results.
(Comparative Example 9)
The same operation as in Example 3 was performed except that the cylinder temperature of the molten portion was changed to 260 ° C. Table 2 shows the evaluation results.
(Comparative Example 10)
The same operation as in Example 3 was performed except that the foaming agent impregnation temperature was changed to 98 ° C. Table 2 shows the evaluation results.
(Comparative Example 11)
Commercially available styrene-based effervescent resin particles (manufactured by Kaneka Corporation, LVF) were evaluated. Table 2 shows the evaluation results.

Figure 0006971743
Figure 0006971743

Claims (7)

スチレン系樹脂100重量部に対して、水0.01〜5重量部、熱安定剤0.05〜0.6重量部を押出機で溶融混練した後、揮発性有機成分を押出機内から真空度−0.08MPaG以下、溶融部のシリンダ温度200℃〜250℃の条件で吸引処理し、小孔を有するダイスを通じて押出した後カッターで切断してスチレン系樹脂粒子を製造する工程と、
前記工程により得られたスチレン系樹脂粒子を水中に懸濁させ、温度100℃〜120℃で、発泡剤を、該スチレン系樹脂粒子に含浸させて製造する工程と、
を備える発泡性スチレン系樹脂粒子の製造方法。
After melt-kneading 0.01 to 5 parts by weight of water and 0.05 to 0.6 parts by weight of the heat stabilizer with respect to 100 parts by weight of the styrene resin, the volatile organic components are evacuated from the inside of the extruder. A process of producing styrene resin particles by suction treatment under the condition of -0.08 MPaG or less and the cylinder temperature of the molten part at 200 ° C to 250 ° C, extruding through a die having small holes, and then cutting with a cutter.
A step of suspending the styrene-based resin particles obtained in the above step in water and impregnating the styrene-based resin particles with a foaming agent at a temperature of 100 ° C. to 120 ° C.
A method for producing effervescent styrene resin particles.
前記スチレン系樹脂粒子を製造する工程において製造されたスチレン系樹脂粒子の揮発性有機成分量(スチレンモノマーとエチルベンゼンの合計量)が200ppm未満である、
請求項1項の発泡性スチレン系樹脂粒子の製造方法。
The amount of volatile organic components (total amount of styrene monomer and ethylbenzene) of the styrene-based resin particles produced in the step of producing the styrene-based resin particles is less than 200 ppm.
The method for producing foamable styrene resin particles according to claim 1.
前記スチレン系樹脂粒子を製造する工程において、スチレン系樹脂100重量部に対して、0.5重量部以上3重量部の水を添加する、
請求項1又は2に記載の発泡性スチレン系樹脂粒子の製造方法。
In the step of producing the styrene-based resin particles, 0.5 parts by weight or more and 3 parts by weight of water are added to 100 parts by weight of the styrene-based resin.
The method for producing effervescent styrene resin particles according to claim 1 or 2.
前記熱安定剤が、ヒンダードアミン系化合物、リン系化合物およびエポキシ系化合物よりなる群から選ばれる少なくとも1種の化合物であることを特徴とする、
請求項1〜3のいずれかに記載の発泡性スチレン系樹脂粒子の製造方法。
The heat stabilizer is characterized by being at least one compound selected from the group consisting of hindered amine compounds, phosphorus compounds and epoxy compounds.
The method for producing effervescent styrene resin particles according to any one of claims 1 to 3.
前記熱安定剤は、リン系安定剤及びヒンダードアミン系安定剤であり、
スチレン系樹脂100重量部に対して、リン系安定剤を0.025〜0.3重量部、かつ、ヒンダードアミン系安定剤を0.025〜0.3重量部、添加することを特徴とする、
請求項1〜4のいずれかに記載の発泡性スチレン系樹脂粒子の製造方法。
The heat stabilizer is a phosphorus-based stabilizer and a hindered amine-based stabilizer.
It is characterized in that 0.025 to 0.3 parts by weight of a phosphorus-based stabilizer and 0.025 to 0.3 parts by weight of a hindered amine-based stabilizer are added to 100 parts by weight of a styrene-based resin.
The method for producing effervescent styrene resin particles according to any one of claims 1 to 4.
前記発泡剤が、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、シクロペンタンおよびネオペンタンよりなる群から選ばれる少なくとも1種の化合物であることを特徴とする、
請求項1〜5のいずれかに記載の発泡性スチレン系樹脂粒子の製造方法。
The foaming agent is characterized by being at least one compound selected from the group consisting of normal butane, isobutane, normal pentane, isopentane, cyclopentane and neopentane.
The method for producing effervescent styrene resin particles according to any one of claims 1 to 5.
請求項1〜6のいずれかで記載された製造方法で製造した発泡性スチレン系樹脂粒子を加熱して予備発泡させて予備発泡粒子を得る工程と、
前記工程で得た予備発泡粒子を成型キャビティ内に充填して型内発泡成形する工程と、
を備える発泡成形体の製造方法。
A step of heating the effervescent styrene-based resin particles produced by the production method according to any one of claims 1 to 6 and pre-foaming them to obtain pre-foamed particles.
A step of filling the molding cavity with the preliminary foamed particles obtained in the above step and foaming molding in the mold.
A method for manufacturing a foam molded article.
JP2017185349A 2017-09-26 2017-09-26 Method for manufacturing foamable styrene resin particles Active JP6971743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185349A JP6971743B2 (en) 2017-09-26 2017-09-26 Method for manufacturing foamable styrene resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185349A JP6971743B2 (en) 2017-09-26 2017-09-26 Method for manufacturing foamable styrene resin particles

Publications (2)

Publication Number Publication Date
JP2019059843A JP2019059843A (en) 2019-04-18
JP6971743B2 true JP6971743B2 (en) 2021-11-24

Family

ID=66176258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185349A Active JP6971743B2 (en) 2017-09-26 2017-09-26 Method for manufacturing foamable styrene resin particles

Country Status (1)

Country Link
JP (1) JP6971743B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175642B2 (en) * 2018-06-20 2022-11-21 株式会社カネカ Method for producing expandable styrene resin particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002225104A (en) * 2001-02-06 2002-08-14 Jsp Corp Polystyrene resin extrusion foam heat insulator and its manufacturing method
JP2004292654A (en) * 2003-03-27 2004-10-21 Sekisui Plastics Co Ltd Method for removing volatile organic compound of styrenic resin, styrenic resin, styrenic resin foam board and styrenic resin foam sheet
JP6068920B2 (en) * 2012-10-16 2017-01-25 株式会社カネカ Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
KR20140068672A (en) * 2012-11-28 2014-06-09 제일모직주식회사 Resin compositions and articles including the same

Also Published As

Publication number Publication date
JP2019059843A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6216506B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP6068920B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP6555251B2 (en) Styrenic resin foam molding and method for producing the same
WO2011052631A1 (en) Foamable polystyrene resin particles and process for production thereof, polystyrene resin prefoamed particles, polystyrene resin foam-molded article, heat-insulating material for building material, banking member, and vehicle interior material
JP5750221B2 (en) Flame retardant containing expandable polystyrene resin particles and method for producing the same, flame retardant polystyrene resin pre-expanded particles, and flame retardant polystyrene resin foam molding
JP2013528248A (en) Foam with improved thermal properties
JP3970191B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
JP6971743B2 (en) Method for manufacturing foamable styrene resin particles
JP2008056825A (en) Expandable polystyrene-based resin particle, method for producing the same, polystyrene-based resin preexpanded particle, and polystyrene-based resin foamed molded article
JP6055687B2 (en) Flame-retardant styrenic resin particles, expandable particles, expanded particles and expanded molded articles
JP7175642B2 (en) Method for producing expandable styrene resin particles
JP6055685B2 (en) Method for producing flame-retardant styrene resin particles, method for producing foamable particles, method for producing foamed particles, and method for producing foamed molded article
JP6306643B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP2012188634A (en) Polystyrene based expandable resin particle, polystyrene based expanded resin particle and polystyrene based expanded resin molded article
KR100622807B1 (en) Process for the production of expandable polystyrene
JP2012077149A (en) Expandable resin, method for producing the same, pre-expanded particle, and expansion molded body
JP2018053181A (en) Method for producing foamable styrene resin particle
JP7100995B2 (en) Expandable polystyrene-based resin particles, polystyrene-based expanded particles and polystyrene-based expanded molded products
JP6688658B2 (en) Method for producing expandable styrene resin particles, method for producing styrene resin pre-expanded particles, and method for producing styrene resin in-mold foam molded article
JP3935849B2 (en) Self-extinguishing styrene resin foam particles and self-extinguishing foam
JP6692219B2 (en) Method for producing expandable styrenic resin particles
JP2011094024A (en) Incombustible agent-containing expandable polystyrene resin particle and method for producing the same, incombustible polystyrene resin pre-expanded particle, and incombustible polystyrene resin expanded molded article
JP6135791B2 (en) Method for producing flame retardant foamable styrene resin particles
JP5377917B2 (en) Flame retardant expandable polystyrene resin particles
JP2018100418A (en) Expandable styrene resin particle and manufacturing method therefor, styrene resin foam molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211102

R150 Certificate of patent or registration of utility model

Ref document number: 6971743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150