JP6068920B2 - Expandable styrene resin particles and method for producing the same, styrene resin foam molded article - Google Patents

Expandable styrene resin particles and method for producing the same, styrene resin foam molded article Download PDF

Info

Publication number
JP6068920B2
JP6068920B2 JP2012229313A JP2012229313A JP6068920B2 JP 6068920 B2 JP6068920 B2 JP 6068920B2 JP 2012229313 A JP2012229313 A JP 2012229313A JP 2012229313 A JP2012229313 A JP 2012229313A JP 6068920 B2 JP6068920 B2 JP 6068920B2
Authority
JP
Japan
Prior art keywords
weight
parts
styrene resin
resin particles
flame retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012229313A
Other languages
Japanese (ja)
Other versions
JP2014080514A (en
Inventor
矢野 義仁
義仁 矢野
丸橋 正太郎
正太郎 丸橋
小山 良平
良平 小山
大原 洋一
洋一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50785016&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6068920(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2012229313A priority Critical patent/JP6068920B2/en
Publication of JP2014080514A publication Critical patent/JP2014080514A/en
Application granted granted Critical
Publication of JP6068920B2 publication Critical patent/JP6068920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は発泡性スチレン系樹脂粒子とその製造方法、該発泡性スチレン系樹脂粒子を用いて得られる断熱材などに利用されるスチレン系樹脂発泡成形体に関するものである。   The present invention relates to an expandable styrene resin particle and a method for producing the same, and a styrene resin foam molded article used for a heat insulating material obtained by using the expandable styrene resin particle.

発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡成形体は、軽量性、断熱性、緩衝性などのバランスに優れた発泡体として従来から食品容器箱、保冷箱、緩衝材、そして、住宅などの断熱材として広く利用されている。   Styrenic resin foam molded products obtained by using expandable styrene resin particles have been conventionally used as a food product box, a cold box, a cushioning material, and a foam having an excellent balance of light weight, heat insulation, buffering properties, and the like. It is widely used as a heat insulating material for houses.

近年、地球温暖化などの諸問題に関連し、住宅など建築物の断熱性能向上による省エネルギー化が志向されつつありスチレン系樹脂発泡成形体の需要拡大が期待されるとともに、さらなる断熱性能の向上について種々の検討がなされている。   In recent years, in connection with various problems such as global warming, energy saving has been aimed at by improving the heat insulation performance of buildings such as houses, and the demand for styrene resin foam molded products is expected to increase, and further improvement of heat insulation performance Various studies have been made.

スチレン系樹脂発泡成形体の断熱性能向上に関し、例えば、特許文献1には、赤外線の反射率が40%以上の微粉末が気泡中に均一に分散していることを特徴とする断熱材用熱可塑性樹脂発泡体が提案されており、微粉末としてグラファイトなどが挙げられている。特許文献2には、密度が10〜100Kg/m、独立気泡率が60% 以上、平均気泡径が20〜1000μ mで、黒鉛粉を含有するスチレン系樹脂発泡体であって、黒鉛粉はアスペクト比が5以上であることを特徴とするスチレン系樹脂発泡体が提案されている。 Regarding heat insulation performance improvement of a styrene resin foam molded article, for example, Patent Document 1 discloses that heat for a heat insulating material is characterized in that fine powder having an infrared reflectance of 40% or more is uniformly dispersed in bubbles. A plastic resin foam has been proposed, and graphite or the like is mentioned as a fine powder. Patent Document 2 discloses a styrene resin foam having a density of 10 to 100 kg / m 3 , a closed cell ratio of 60% or more, an average cell diameter of 20 to 1000 μm, and containing graphite powder. Styrenic resin foams having an aspect ratio of 5 or more have been proposed.

さらには、特許文献3には、処理により35g/l又はこれより小さい密度を有する発泡体をもたらすことができ、かつ均斉に分布されたグラファイト粉末を含有することを特徴とする粒子状膨張性スチレン重合体 が提案されており、グラファイト粉末を用いた際の問題点として難燃性の低下があり、これに対して難燃化剤として、70重量%又はこれより多い臭素分を有する有機臭素化合物を含有する技術が提案されている。   Furthermore, Patent Document 3 discloses a particulate expandable styrene characterized by containing a graphite powder that can be processed to yield a foam having a density of 35 g / l or less and that is uniformly distributed. As a flame retardant, an organic bromine compound having a bromine content of 70% by weight or more as a flame retardant has been proposed. Techniques containing saponins have been proposed.

一方、発泡性スチレン系樹脂粒子から得られるスチレン系樹脂発泡成形体の難燃性に関し、特許文献4では、前記特許文献3を例に挙げ、特許文献3に開示された従来技術は、難燃剤としてヘキサブロモシクロドデカン等の有機臭素化合物を用いているが、特許文献3に開示された有機臭素化合物は、難分解性、高蓄積性などの点から環境に悪影響を及ぼす恐れがあり、今後は難燃性ポリスチレン系樹脂発泡成形体の分野においては使用し難い問題があるとして、難燃剤として分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内である難燃剤を含有し、前記発泡性ポリスチレン系樹脂粒子の全体の難燃剤含有量(A)と、該樹脂粒子の表面の難燃剤含有量(B)との比(B/A)が0.8〜1.2の範囲内であることを特徴とする難燃剤含有発泡性ポリスチレン系樹脂粒子を提案している。
しかしながら、特許文献4では、特許文献3において課題とされていたグラファイト粉末を用いた際の問題点である難燃性の低下に対して、有効であったかどうかは全く示唆されていない。
On the other hand, regarding the flame retardancy of a styrene resin foam molded article obtained from expandable styrene resin particles, Patent Document 4 takes the above Patent Document 3 as an example, and the prior art disclosed in Patent Document 3 is a flame retardant. As an organic bromine compound such as hexabromocyclododecane, the organic bromine compound disclosed in Patent Document 3 may adversely affect the environment from the standpoint of difficulty of decomposition and high accumulation. In the field of flame retardant polystyrene resin foam moldings, there are problems that are difficult to use. As a flame retardant, it has a bromine atom in the molecule, the bromine content is less than 70% by mass, and a benzene ring in the molecule. And 5% by mass decomposition temperature of the flame retardant is in the range of 200 to 300 ° C., the entire flame retardant content (A) of the expandable polystyrene resin particles, Resin particles Proposes a flame retardant-containing expandable polystyrene resin particles, wherein the ratio of the flame retardant content of the surface (B) (B / A) is in the range of 0.8 to 1.2.
However, Patent Document 4 does not suggest at all whether or not it was effective against the reduction in flame retardancy, which is a problem when using the graphite powder, which was a problem in Patent Document 3.

特開昭63−183941号公報Japanese Unexamined Patent Publication No. 63-183941 特開2005−2268号公報JP 2005-2268 A 特表2001−525001号公報Special table 2001-525001 gazette 特開2011−93947号公報JP 2011-93947 A

本発明は、上記問題点を鑑みて、グラファイトのような輻射伝熱抑制剤を添加した際の難燃性の低下に対する課題を解決すると共に、環境適合性の高い難燃剤を用いた断熱性と難燃性を両立するスチレン系樹脂発泡成形体を得ることのできる発泡性スチレン系樹脂粒子および、その製造方法、当該発泡性スチレン系樹脂粒子を用いたスチレン系樹脂発泡成形体を提供することにある。   In view of the above problems, the present invention solves the problem with respect to a decrease in flame retardancy when a radiation heat transfer inhibitor such as graphite is added, and has heat insulation using a flame retardant with high environmental compatibility. To provide an expandable styrene resin particle capable of obtaining a styrene resin foam molded article having both flame retardancy, a production method thereof, and a styrene resin foam molded article using the expandable styrene resin particle. is there.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、輻射伝熱抑制剤とともに特定の特性を有する臭素系難燃剤を用いるとともに、輻射伝熱抑制剤含有量と臭素系難燃剤に由来する臭素含有量の重量比を特定の範囲となるように含有させることにより、断熱性と難燃性を両立し、環境適合にも優れる発泡性スチレン系樹脂粒子が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor used a brominated flame retardant having specific characteristics together with a radiant heat transfer inhibitor, and used a radiant heat transfer inhibitor content and a brominated flame retardant. It has been found that by including the weight ratio of the bromine content derived so as to be in a specific range, expandable styrene resin particles having both heat insulation and flame retardancy and excellent environmental compatibility can be obtained. The invention has been completed.

すなわち、本発明は、
[1] スチレン系樹脂100重量部に対して、炭素数が3〜6の炭化水素の少なくとも1種からなる発泡剤を3〜10重量部、輻射伝熱抑制剤を1〜6重量部および、熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上、70重量%未満である臭素系難燃剤 を0.5〜6重量部含有する発泡性スチレン系樹脂粒子であって、
発泡性スチレン系樹脂粒子中の輻射抑制剤含有量に対する臭素系難燃剤に由来する臭素原子含有量の比率である臭素原子含有量/輻射伝熱抑制剤含有量 が1/0.15〜1/2.0であることを特徴とする、発泡性スチレン系樹脂粒子。
[2] スチレン系樹脂100重量部に対して、さらに、ラジカル発生剤を0.05〜1.0重量部含有することを特徴とする、[1]記載の発泡性スチレン系樹脂粒子。
[3] さらに、臭素系難燃剤100重量部に対して、熱安定剤を0.1〜10重量部含有することを特徴とする、[1]または[2]に記載の発泡性スチレン系樹脂粒子。
[4] 輻射伝熱抑制剤が、グラファイト、グラフェン、活性炭、カーボンブラックおよび酸化チタンよりなる群から選ばれる少なくとも1種の化合物であることを特徴とする、[1]〜[3]のいずれか1項に記載の発泡性スチレン系樹脂粒子。
[5] 臭素系難燃剤が、臭素化ビスフェノール系化合物、臭素化イソシアヌレート系化合物および臭素化スチレンブタジエン共重合体よりなる群から選ばれる少なくとも1種の化合物であることを特徴とする、[1]〜[4]のいずれか1項に記載の発泡性スチレン系樹脂粒子。
[6] 発泡剤が、ノルマルペンタン、イソペンタン、シクロペンタンおよびネオペンタンよりなる群から選ばれる少なくとも1種の化合物であることを特徴とする、[1]〜[5]のいずれか1項に記載の発泡性スチレン系樹脂粒子。
[7] 熱安定剤が、ヒンダードアミン系化合物、リン系化合物およびエポキシ系化合物よりなる群から選ばれる少なくとも1種の化合物であることを特徴とする、[3]〜[6]のいずれか1項に記載の発泡性スチレン系樹脂粒子。
[8] [1]〜[6]のいずれか1項に記載の発泡性スチレン系樹脂粒子を加熱して予備発泡させて予備発泡粒子を得た後、成型キャビティ内に充填して型内発泡成形することにより得られることを特徴とする、発泡成形体。
子を得た後、成型キャビティ内に充填して型内発泡成形することを特徴とする発泡成形体。
[9] スチレン系樹脂100重量部に対して、炭素数が3〜6の炭化水素の少なくとも1種からなる発泡剤を3〜10重量部、輻射伝熱抑制剤を1〜6重量部、熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上、70重量%未満である臭素系難燃剤を0.5〜6重量部を押出機で溶融混練し、所定の温度に冷却した後、小孔を有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に押出し、押出し直後から、回転カッターにより切断すると共に、加圧循環水により冷却固化して発泡性スチレン系樹脂粒子を得る製造方法であって、
発泡性スチレン系樹脂粒子中の輻輻射抑制剤含有量に対する臭素系難燃剤に由来する臭素原子含有量の比率である臭素原子含有量/輻射伝熱抑制剤含有量が1/0.15〜1/2.0であることを特徴とする、[1]〜[7]のいずれか1項に記載の発泡性スチレン系樹脂粒子の製造方法。
[10] スチレン系樹脂100重量部に対して、輻射伝熱抑制剤を1〜6重量部、熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上、70重量%未満である臭素系難燃剤を0.5〜6重量部を押出機で溶融混練し、小孔を有するダイスを通じて押出した後カッターで切断することによりスチレン系樹脂粒子を得た後、
該スチレン系樹脂粒子を水中に懸濁させると共に、炭素数が3〜6の炭化水素の少なくとも1種からなる発泡剤をスチレン系樹脂100重量部に対して3〜10重量部含有させる量を供給して発泡性スチレン系樹脂粒子を得る製造方法であって、
発泡性スチレン系樹脂粒子中の輻射抑制剤含有量に対する臭素系難燃剤に由来する臭素原子含有量の比率である臭素原子含有量/輻射伝熱抑制剤含有量が1/0.15〜1/2.0であることを特徴とする、[1]〜[7]のいずれか1項に記載の発泡性スチレン系樹脂粒子の製造方法。
[11] スチレン系樹脂100重量部に対して、さらに、ラジカル発生剤を0.05〜1.0重量部を押出機で溶融混練することを特徴とする、[9]または[10]に記載の発泡性スチレン系樹脂粒子の製造方法。
[12] さらに、臭素系難燃剤100重量部に対して、熱安定剤を0.1〜10重量部を押出機で溶融混練することを特徴とする、[9」〜[11]のいずれか1項に記載の発泡性スチレン系樹脂粒子の製造方法。
That is, the present invention
[1] 3 to 10 parts by weight of a foaming agent composed of at least one hydrocarbon having 3 to 6 carbon atoms, 1 to 6 parts by weight of a radiation heat transfer inhibitor, and 100 parts by weight of a styrene-based resin, Foam containing 0.5 to 6 parts by weight of a brominated flame retardant having a 1% weight loss temperature in a thermogravimetric analysis of 210 ° C. to 280 ° C. and a bromine content of 60% by weight or more and less than 70% by weight Styrenic resin particles,
The bromine atom content / radiant heat transfer inhibitor content, which is the ratio of the bromine atom content derived from the brominated flame retardant to the radiation inhibitor content in the expandable styrene resin particles, is 1 / 0.15 to 1 / Expandable styrenic resin particles, characterized by being 2.0.
[2] The expandable styrene resin particles according to [1], further comprising 0.05 to 1.0 part by weight of a radical generator with respect to 100 parts by weight of the styrene resin.
[3] The expandable styrenic resin according to [1] or [2], further comprising 0.1 to 10 parts by weight of a heat stabilizer with respect to 100 parts by weight of the brominated flame retardant. particle.
[4] Any one of [1] to [3], wherein the radiation heat transfer inhibitor is at least one compound selected from the group consisting of graphite, graphene, activated carbon, carbon black, and titanium oxide. The expandable styrene resin particle according to Item 1.
[5] The brominated flame retardant is at least one compound selected from the group consisting of brominated bisphenol compounds, brominated isocyanurate compounds, and brominated styrene butadiene copolymers, [1] ] The expandable styrene resin particle of any one of [4].
[6] The foaming agent is at least one compound selected from the group consisting of normal pentane, isopentane, cyclopentane and neopentane, according to any one of [1] to [5] Expandable styrene resin particles.
[7] The thermal stabilizer is at least one compound selected from the group consisting of a hindered amine compound, a phosphorus compound, and an epoxy compound, Any one of [3] to [6] Expandable styrene resin particles as described in 1.
[8] The expandable styrenic resin particles according to any one of [1] to [6] are heated to be prefoamed to obtain prefoamed particles, which are then filled into a molding cavity and foamed in the mold. A foamed molded article obtained by molding.
A foam-molded product obtained by filling a molding cavity and molding in-mold after obtaining a child.
[9] 3 to 10 parts by weight of a foaming agent composed of at least one hydrocarbon having 3 to 6 carbon atoms, 1 to 6 parts by weight of a radiation heat transfer inhibitor, 0.5 to 6 parts by weight of a brominated flame retardant having a 1% weight loss temperature in a gravimetric analysis of 210 ° C. to 280 ° C. and a bromine content of 60% by weight or more and less than 70% by weight using an extruder After melt-kneading and cooling to a predetermined temperature, it is extruded through a die having small holes into a cutter chamber filled with pressurized circulating water, and immediately after extrusion, cut by a rotary cutter and cooled by pressurized circulating water. A production method for solidifying to obtain expandable styrene resin particles,
The bromine atom content / radiation heat transfer inhibitor content, which is the ratio of the bromine atom content derived from the brominated flame retardant to the radiation inhibitor content in the expandable styrenic resin particles, is 1 / 0.15-1. The method for producing expandable styrenic resin particles according to any one of [1] to [7], which is /2.0.
[10] 1 to 6 parts by weight of a radiation heat transfer inhibitor with respect to 100 parts by weight of a styrene-based resin, 1% weight loss temperature in thermogravimetric analysis is 210 ° C. to 280 ° C., and bromine content is 60 Styrenic resin particles are obtained by melting and kneading 0.5 to 6 parts by weight of a brominated flame retardant that is not less than 70% by weight with an extruder, extruding through a die having a small hole, and then cutting with a cutter. After getting
Suspending the styrene resin particles in water and supplying an amount of 3 to 10 parts by weight of a foaming agent comprising at least one hydrocarbon having 3 to 6 carbon atoms with respect to 100 parts by weight of the styrene resin A production method for obtaining expandable styrene resin particles,
The bromine atom content / radiant heat transfer inhibitor content, which is the ratio of the bromine atom content derived from the brominated flame retardant to the radiation inhibitor content in the expandable styrene resin particles, is 1 / 0.15 to 1 / The method for producing expandable styrenic resin particles according to any one of [1] to [7], which is 2.0.
[11] The method according to [9] or [10], wherein 0.05 to 1.0 part by weight of a radical generator is further melt-kneaded with an extruder with respect to 100 parts by weight of a styrene-based resin. Of producing expandable styrene resin particles.
[12] Further, any one of [9] to [11], wherein 0.1 to 10 parts by weight of a heat stabilizer is melt-kneaded with an extruder with respect to 100 parts by weight of a brominated flame retardant. 2. A method for producing expandable styrene resin particles according to item 1.

本発明によれば輻射伝熱抑制剤を用いた場合でも難燃性の低下がみられず、環境適合性にも優れた難燃剤を使用していると共に、輻射伝熱抑制剤も含有しているため低い熱伝導率を有する、高い難燃性と断熱性を両立する発泡性スチレン系樹脂粒子および製造方法、当該発泡性スチレン系樹脂粒子を用いたスチレン系樹脂発泡成形体を提供することができる。   According to the present invention, even when a radiant heat transfer inhibitor is used, the flame retardancy is not lowered, and a flame retardant excellent in environmental compatibility is used, and also includes a radiant heat transfer inhibitor. Therefore, it is possible to provide a foamable styrene resin particle having a low thermal conductivity, a high flame retardance and a heat insulating property and a production method, and a styrene resin foam molded article using the foamable styrene resin particle. it can.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の発泡性スチレン系樹脂粒子は、スチレン系樹脂100重量部に対して、炭素数が3〜6の炭化水素の少なくとも1種からなる発泡剤を3〜10重量部、輻射伝熱抑制剤を1〜6重量部、熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上、70重量%未満である臭素系難燃剤を0.5〜6重量部含有する発泡性スチレン系樹脂粒子である。   The expandable styrene resin particles of the present invention are 3 to 10 parts by weight of a foaming agent composed of at least one hydrocarbon having 3 to 6 carbon atoms, and a radiation heat transfer inhibitor, based on 100 parts by weight of the styrene resin. 1 to 6 parts by weight of a brominated flame retardant having a 1% weight loss temperature in a thermogravimetric analysis of 210 ° C. to 280 ° C. and a bromine content of 60% to less than 70% by weight. Expandable styrenic resin particles containing ˜6 parts by weight.

本発明で用いられるスチレン系樹脂はスチレン単独重合体(ポリスチレンホモポリマー)のみならず、本発明の効果を損なわない範囲で、スチレンと共重合可能な他の単量体またはその誘導体が共重合されていてもよい(ただし、後述する臭素化スチレン・ブタジエン共重合体は除く)。   The styrenic resin used in the present invention is not only a styrene homopolymer (polystyrene homopolymer), but also other monomers or derivatives thereof copolymerizable with styrene within a range that does not impair the effects of the present invention. (However, the brominated styrene / butadiene copolymer described later is excluded).

スチレンと共重合可能な他の単量体またはその誘導体としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレンなどのスチレン誘導体;
ジビニルベンゼンなどの多官能性ビニル化合物;
アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチルなどの(メタ)アクリル酸エステル化合物;
(メタ)アクリロニトリルなどのシアン化ビニル化合物;
ブダジエンなどのジエン系化合物またはその誘導体;
無水マレイン酸、無水イタコン酸などの不飽和カルボン酸無水物;
N−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−4−ジフェニルマレイミド、N−2−クロロフェニルマレイミド、N−4−ブロモフェニルマレイミド、N−1−ナフチルマレイミドなどのN−アルキル置換マレイミド化合物、などがあげられる。
これらは単独で使用してもよく、2種以上を混合して使用してもよい。
Examples of other monomers copolymerizable with styrene or derivatives thereof include, for example, methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, Styrene derivatives such as trichlorostyrene;
Polyfunctional vinyl compounds such as divinylbenzene;
(Meth) acrylic acid ester compounds such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate;
Vinyl cyanide compounds such as (meth) acrylonitrile;
Diene compounds such as budadiene or derivatives thereof;
Unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride;
N-methylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-4-diphenylmaleimide, N-2-chlorophenylmaleimide, N-4-bromophenylmaleimide, N-1-naphthylmaleimide, etc. N-alkyl substituted maleimide compounds and the like.
These may be used alone or in combination of two or more.

本発明で用いられるスチレン系樹脂は、前記スチレン単独重合体、および/または、スチレンと共重合可能な他の単量体またはその誘導体との共重合体に限らず、本発明の効果を損なわない範囲で、前記他の単量体又は誘導体の単独重合体又は共重合体とのブレンド物であってもよく、例えば、ジエン系ゴム強化ポリスチレン、アクリル系ゴム強化ポリスチレン、ポリフェニレンエーテル系樹脂、等をブレンドすることもできる。   The styrene resin used in the present invention is not limited to the styrene homopolymer and / or a copolymer with other monomers copolymerizable with styrene or a derivative thereof, and does not impair the effects of the present invention. It may be a blend with a homopolymer or copolymer of the other monomer or derivative, such as diene rubber reinforced polystyrene, acrylic rubber reinforced polystyrene, polyphenylene ether resin, etc. It can also be blended.

本発明で用いられるスチレン系樹脂の中では、比較的安価で、特殊な方法を用いずに低圧の水蒸気等で発泡成形ができ、断熱性、難燃性、緩衝性のバランスに優れることから、ポリスチレンホモポリマー、スチレンーアクリロニトリル共重合体、スチレン−アクリル酸ブチル共重合体が好ましい。   Among the styrenic resins used in the present invention, it is relatively inexpensive and can be foam-molded with low-pressure steam or the like without using a special method, and is excellent in the balance of heat insulation, flame retardancy, and buffering properties. Polystyrene homopolymer, styrene-acrylonitrile copolymer, and styrene-butyl acrylate copolymer are preferred.

本発明で用いられる発泡剤としての炭素数が3〜6の炭化水素としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタン、ノルマルヘキサン、シクロヘキサン等が挙げられる。
これらの発泡剤は単独または2種以上を混合して使用できる。
これら発泡剤の中でも、目的とする発泡倍率に制御しやすいなどの点から、炭素数4または5の炭化水素が好ましいく、発泡性、成形性の点から 、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタンが特に好ましい。
Examples of the hydrocarbon having 3 to 6 carbon atoms as the blowing agent used in the present invention include propane, normal butane, isobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, and cyclohexane.
These foaming agents can be used alone or in admixture of two or more.
Among these blowing agents, hydrocarbons having 4 or 5 carbon atoms are preferable from the viewpoint of easy control of the target expansion ratio, and normal butane, isobutane, normal pentane, isopentane from the viewpoint of foamability and moldability. Is particularly preferred.

本発明における発泡剤の発泡性スチレン系樹脂粒子中の含有量、および、製造時に用いられる添加量は、目的とする発泡倍率に制御しやすいなどの点から、スチレン系樹脂100重量部に対して、3重量部以上10重量部以下であることが好ましく、4重量部以上9重量部以下であることがより好ましく、5重量部以上8重量以下であることがさらに好ましい。   The content of the foaming agent in the foamable styrene resin particles in the present invention and the addition amount used at the time of production are easily controlled with respect to 100 parts by weight of the styrene resin from the viewpoint of easily controlling the target foaming ratio. It is preferably 3 to 10 parts by weight, more preferably 4 to 9 parts by weight, and still more preferably 5 to 8 parts by weight.

本発明において、「輻射伝熱抑制剤」とは、発泡成形体中を伝わる伝熱機構のうち輻射伝熱を抑制することができる物質であって、同一の樹脂、発泡剤、セル構造、密度の発泡成形体において、輻射伝熱抑制剤を添加することによって、無添加系に比較して、熱伝導率を低くする効果を有する物質を言う。   In the present invention, the “radiant heat transfer inhibitor” is a substance that can suppress radiant heat transfer among heat transfer mechanisms that are transmitted through the foamed molded product, and has the same resin, foaming agent, cell structure, and density. In the foamed molded article, a substance having an effect of lowering the thermal conductivity compared to the additive-free system by adding a radiation heat transfer inhibitor is said.

本発明で用いられる輻射伝熱抑制剤としては、近赤外または赤外領域(例えば、800〜3000nm程度の波長域)の光を反射・散乱・吸収する特性を有する物質であれば特に限定されるものではない。   The radiation heat transfer inhibitor used in the present invention is not particularly limited as long as it has a property of reflecting, scattering, and absorbing light in the near infrared or infrared region (for example, a wavelength region of about 800 to 3000 nm). It is not something.

本発明で用いられる輻射伝熱抑制剤としては、例えば、
アルミニウム、酸化アルミニウム等のアルミニウム系化合物、アルミン酸亜鉛等の亜鉛系化合物;ハイドロタルサイト等のマグネシウム系化合物;銀等の銀系化合物:
チタン、酸化チタン、チタン酸ストロンチウム等のチタン系化合物;
ステンレス、ニッケル、錫、銀、銅、ブロンズ、シラスバルーン、セラミックバルーン、マイクロバルーン、パールマイカ等の熱線反射剤や、
カーボンブラック、グラファイト、グラフェン、活性炭などの炭素系化合物;
硫酸バリウム、硫酸ストロンチウム、硫酸カルシウム、メルカライト、ハロトリ石、ミョウバン石、鉄ミョウバン石等の硫酸金属塩;
三酸化アンチモン、酸化アンチモン、無水アンチモン酸亜鉛等のアンチモン系化合物;
酸化錫、酸化インジウム、酸化亜鉛、酸化インジニウム錫、等の金属酸化物;ア
ンモニウム系、尿素系、イモニウム系、アミニウム系、シアニン系、ポリメチン系、アントラキノン系、ジチオール系、銅イオン系、フェニレンジアミン系、フタロシアニン系、ベンゾトリアゾール系、ベンゾフェノン系、シュウ酸アニリド系、シアノアクリレート系、ベンゾトリアゾール系等の熱線吸収剤が挙げられる。
これら輻射伝熱抑制剤は、単独で使用してもよく、2種以上を混合して使用してもよい。
As a radiation heat transfer inhibitor used in the present invention, for example,
Aluminum compounds such as aluminum and aluminum oxide, zinc compounds such as zinc aluminate; magnesium compounds such as hydrotalcite; silver compounds such as silver:
Titanium compounds such as titanium, titanium oxide, strontium titanate;
Heat ray reflectors such as stainless steel, nickel, tin, silver, copper, bronze, shirasu balloon, ceramic balloon, micro balloon, pearl mica,
Carbon compounds such as carbon black, graphite, graphene, activated carbon;
Metal sulfates such as barium sulfate, strontium sulfate, calcium sulfate, mercalite, halothrite, alumite, iron alumite;
Antimony compounds such as antimony trioxide, antimony oxide, and anhydrous zinc antimonate;
Metal oxides such as tin oxide, indium oxide, zinc oxide, and indinium tin oxide; ammonium, urea, imonium, aminium, cyanine, polymethine, anthraquinone, dithiol, copper ion, phenylenediamine , Phthalocyanine, benzotriazole, benzophenone, oxalic anilide, cyanoacrylate, benzotriazole, and the like.
These radiation heat transfer inhibitors may be used alone or in combination of two or more.

これら輻射伝熱抑制剤の中でも、グラファイト、グラフェン、活性炭、酸化チタンが、熱伝導率低減効果とコストのバランスが優れる点から好ましい。比較的少量の含有量で熱伝導率低減効果が発揮される点から、グラファイト、グラフェンが特に好ましい。   Among these radiant heat transfer inhibitors, graphite, graphene, activated carbon, and titanium oxide are preferable from the viewpoint of excellent balance between thermal conductivity reduction effect and cost. Graphite and graphene are particularly preferable because the effect of reducing the thermal conductivity is exhibited with a relatively small amount.

本発明における輻射伝熱抑制剤の発泡性スチレン系樹脂粒子中の含有量、および、製造時に用いられる添加量は、目的とする発泡倍率に制御しやすいと共に、熱伝導率低減効果、難燃性などのバランスの点から、スチレン系樹脂100重量部に対して、1重量部以上6重量部以下であることが好ましく、1.5重量部以上5.5重量部以下であることがより好ましく、2重量部以上5重量以下であることがさらに好ましい。   The content of the radiant heat transfer inhibitor in the present invention in the expandable styrenic resin particles and the addition amount used at the time of manufacture are easily controlled to the target expansion ratio, and the thermal conductivity reduction effect, flame retardancy From the viewpoint of balance such as, it is preferably 1 part by weight or more and 6 parts by weight or less, more preferably 1.5 parts by weight or more and 5.5 parts by weight or less, with respect to 100 parts by weight of the styrene resin. More preferably, it is 2 parts by weight or more and 5 parts by weight or less.

本発明で用いられる、熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上、70重量%未満である臭素系難燃剤としては、例えば、2,2−ビス[4−(2,3−ジブロモ−2−メチルプロポキシ)−3,5−ジブロモフェニル]プロパン(別名 テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル))、2,2−ビス[4−(2,3−ジブロモプロポキシ)−3,5−ジブロモフェニル]プロパン(別名 テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル))などの臭素化ビスフェノール系化合物;
トリス(2,3−ジブロモプロピル)イソシアヌレートなどの臭素化イソシアヌレート系化合物;
臭素化スチレン・ブタジエンブロック共重合体、臭素化ランダムスチレン・ブタジエン共重合体、臭素化スチレン・ブタジエングラフと共重合体などの臭素化ブタジエン・ビニル芳香族炭化水素共重合体(例えば、特表2009−516019号公報に開示されている)などが挙げられる。
これら臭素系難燃剤は単独で使用してもよく、2種以上を混合して使用してもよい。
Examples of the brominated flame retardant having a 1% weight loss temperature in thermogravimetric analysis of 210 ° C. to 280 ° C. and a bromine content of 60 wt% or more and less than 70 wt% used in the present invention include: 2,2-bis [4- (2,3-dibromo-2-methylpropoxy) -3,5-dibromophenyl] propane (also known as tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether) ), 2,2-bis [4- (2,3-dibromopropoxy) -3,5-dibromophenyl] propane (also known as tetrabromobisphenol A-bis (2,3-dibromopropyl ether)) Compounds;
Brominated isocyanurate compounds such as tris (2,3-dibromopropyl) isocyanurate;
Brominated styrene / butadiene block copolymers, brominated random styrene / butadiene copolymers, brominated butadiene / vinyl aromatic hydrocarbon copolymers such as brominated styrene / butadiene graphs and copolymers (for example, JP 2009) -Disclosed in JP-A-516019).
These brominated flame retardants may be used alone or in admixture of two or more.

ここで、熱重量分析における1重量%減少温度は、熱重量分析装置[(株)島津製作所製、DTG−60A]を用いて、秤量された5mgの試料 を、10℃/minの昇温速度で30℃から350℃まで加熱して測定した値である。   Here, the 1% by weight reduction temperature in thermogravimetric analysis was determined by using a thermogravimetric analyzer [DTG-60A, manufactured by Shimadzu Corporation] and weighing a 5 mg sample at a rate of 10 ° C./min. It is the value measured by heating from 30 ° C to 350 ° C.

臭素系難燃剤の効果が発現されるかを見極める為には、臭素系難燃剤が分解を開始する温度で判断されるのが、本発明での温度範囲(210〜280℃)は、特許文献4で規定される温度範囲(200〜300℃)よりも有効であり、 特に輻射伝熱抑制剤を添加した発泡性スチレン系樹脂粒子、これを用いて得られるスチレン系樹脂発泡成形体では有効であることを、本発明者らは見出した。   In order to determine whether the effect of the brominated flame retardant is expressed, the temperature range (210 to 280 ° C.) in the present invention is determined based on the temperature at which the brominated flame retardant starts to decompose. 4 is more effective than the temperature range (200 to 300 ° C.) defined by 4 and particularly effective for expandable styrene resin particles to which a radiant heat transfer inhibitor is added, and a styrene resin foam molded article obtained using the same. We have found that.

本発明における臭素系難燃剤の発泡性スチレン系樹脂粒子中の含有量、および、製造時に用いられる添加量は、目的とする発泡倍率に制御しやすいと共に、輻射伝熱抑制剤添加時の難燃性などのバランスの点から、スチレン系樹脂100重量部に対して、0.5重量部以上6重量部以下であることが好ましく、1重量部以上5重量部以下であることがより好ましく、1.5重量部以上4重量以下であることがさらに好ましい。
ただし、臭素系難燃剤の含有量は、後述する、ラジカル発生剤、熱安定剤の添加有無、添加量などによっても異なる。
In the present invention, the content of the brominated flame retardant in the expandable styrene resin particles and the addition amount used at the time of production are easily controlled to the target expansion ratio, and the flame retardant at the time of addition of the radiant heat transfer inhibitor From the viewpoint of balance such as property, it is preferably 0.5 parts by weight or more and 6 parts by weight or less, more preferably 1 part by weight or more and 5 parts by weight or less, with respect to 100 parts by weight of the styrene resin. More preferably, it is 5 parts by weight or more and 4 parts by weight or less.
However, the content of the brominated flame retardant varies depending on the presence / absence, addition amount, etc. of a radical generator and a thermal stabilizer, which will be described later.

本発明では、輻射伝熱抑制剤を添加した際の難燃性の低下に関する課題を環境適合性の高い臭素系難燃剤を用いて解決する為、臭素系難燃剤として熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上、70重量%未満である臭素系難燃剤を用いると共に、発泡性スチレン系樹脂粒子中の輻射抑制剤含有量に対する臭素系難燃剤に由来する臭素原子含有量の比率である臭素原子含有量/輻射伝熱抑制剤含有量が1/0.15〜1/2.0とすることが重要である。
すなわち、発泡性スチレン系樹脂粒子中の輻射伝熱抑制剤の含有量を1とした場合、臭素系難燃剤に由来する臭素原子含有量比は、0.15以上、2.0以下が好ましく、0.20〜1.5がより好ましく、0.30〜1.0がさらに好ましい。
輻射伝熱抑制剤に対する臭素原子含有量比が0.15未満であると、難燃性効果が発現しにくくなる傾向があり、2.0超以上の場合、難燃性効果は発現されるものの、スチレン系樹脂の劣化などを誘発しやすくなり、しいては得られた発泡成形体の機械的特性などの低下を招く可能性があるとともにコスト的にも不利である。
In this invention, in order to solve the problem regarding the flame retardance at the time of adding a radiant heat transfer inhibitor using a brominated flame retardant having high environmental compatibility, 1% weight in thermogravimetric analysis as a brominated flame retardant A brominated flame retardant having a decreasing temperature of 210 ° C. to 280 ° C. and a bromine content of 60% by weight or more and less than 70% by weight is used, and with respect to the radiation inhibitor content in the expandable styrene resin particles. It is important that the bromine atom content / radiant heat transfer inhibitor content, which is the ratio of the bromine atom content derived from the brominated flame retardant, is 1 / 0.15 to 1 / 2.0.
That is, when the content of the radiation heat transfer inhibitor in the expandable styrene resin particles is 1, the bromine atom content ratio derived from the brominated flame retardant is preferably 0.15 or more and 2.0 or less, 0.20 to 1.5 is more preferable, and 0.30 to 1.0 is more preferable.
If the bromine atom content ratio to the radiation heat transfer inhibitor is less than 0.15, the flame retardancy effect tends to be difficult to be exhibited. If it exceeds 2.0, the flame retardancy effect is manifested. Further, deterioration of the styrene-based resin is likely to be induced, which may cause a decrease in mechanical properties of the obtained foamed molded article and is disadvantageous in terms of cost.

本発明の発泡性スチレン系樹脂粒子においては、さらに、熱安定剤を併用することによって、臭素系難燃剤含有混合物の熱重量分析における1%重量減少温度を制御することができる。   In the expandable styrene resin particles of the present invention, the 1% weight reduction temperature in the thermogravimetric analysis of the brominated flame retardant-containing mixture can be controlled by using a heat stabilizer in combination.

本発明における熱安定剤は、用いられるスチレン系樹脂、発泡剤種および含有量、輻射伝熱抑止剤種および含有量、臭素系難燃剤種および含有量に応じて、適宜組み合わせて用いることができる。   The heat stabilizer in the present invention can be used in appropriate combination according to the styrene resin used, the foaming agent species and content, the radiation heat transfer inhibitor species and content, the brominated flame retardant species and content. .

本発明で用いられる熱安定剤としては、例えば、
トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−t−ブチル−4−ヒドロキシフェニル)プロピオネート、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルホスフェート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレイトなどのヒンダードフェノール系化合物;
2,2,6,6−テトラメチル−4−ピペリジルステアレート、1,2,2,6,6−ペンタメチル−4−ピペリジルステアレート、2,2,6,6−テトラメチル−4−ピペリジルベンゾエート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(2−(トリス(2,2,6,6−テトラメチルピペリジルオキシカルボニル)ブチルカルボニルオキシ)−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ〔5.5〕ウンデカン、ビス(2−(トリス(1,2,2,6,6−ペンタメチルピペリジルオキシカルボニル)ブチルカルボニルオキシ)−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ〔5.5〕ウンデカン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)・ジ(トリデシル)−1,2,3,4−ブタンテトラカルボキシレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)・ジ(トリデシル)−1,2,3,4−ブタンテトラカルボキシレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−ブチル−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)マロネート、1−(2−ヒドロキシエチル)−2,2,6,6−テトラメチル−4−ピペリジノール/コハク酸ジエチル重縮合物、1,6−ビス(2,2,6,6−テトラメチル−4−ピペリジルアミノ)ヘキサン/ジブロモエタン重縮合物、1,6−ビス(2,2,6,6−テトラメチル−4−ピペリジルアミノ)ヘキサン/2,4−ジクロロ−6−モルホリノ−s−トリアジン重縮合物、1,6−ビス(2,2,6,6−テトラメチル−4−ピペリジルアミノ)ヘキサン/2,4−ジクロロ−6−t−オクチルアミノ−s−トリアジン重縮合物、テトラキス(2,2,6,6−テトラメチルピペリジルオキシカルボニル)ブタン、テトラキス(1,2,2,6,6−ペンタメチルピペリジルオキシカルボニル)ブタン、1,5,8,12−テトラキス〔2,4−ビス(N−ブチル−N−(2,2,6,6−テトラメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕−1,5,8,12−テトラアザドデカン、1,5,8,12−テトラキス〔2,4−ビス(N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕−1,5,8,12−テトラアザドデカン、1,6,11−トリス〔2,4−ビス(N−ブチル−N−(2,2,6,6−テトラメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕アミノウンデカン1,6,11−トリス〔2,4−ビス(N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕アミノウンデカンなどのヒンダードアミン化合物;
トリスノニルフェニルホスファイト、トリス〔2−t−ブチル−4−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニルチオ)−5−メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジーt−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジーt−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6−トリーt−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)−4,4’−n−ブチリデンビス(2−t−ブチル−5−メチルフェノール)ジホスファイト、ヘキサ(トリデシル)−1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタントリホスファイト、テトラキス(2,4−ジーt−ブチルフェニル)ビフェニレンジホスホナイト、9,10−ジハイドロ−9−オキサ−10−ホスファフェナンスレン−10−オキサイド、2,2’−メチレンビス(4,6−t−ブチルフェニル)−2−エチルヘキシルホスファイト、2,2’−メチレンビス(4,6−t−ブチルフェニル)−オクタデシルホスファイト、2,2’−エチリデンビス(4,6−ジ−t−ブチルフェニル)フルオロホスファイト、トリス(2−〔(2,4,8,10−テトラキスーt−ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン−6−イル)オキシ〕エチル)アミン、2−エチル−2−ブチルプロピレングリコールと2,4,6−トリ−t−ブチルフェノールのホスファイトなどのリン系化合物;
2,2,4−トリメチル−1,2−ジヒドロキノリン重合体、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミンなどのアミン系化合物、3,3−チオビスプロピオン酸ジオデシルエステル、3,3’−チオビスプロピオン酸ジオクタデシルエステルなどの硫黄系化合物、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、臭素化ビスフェノールAジグリシジルエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂などのエポキシ化合物が挙げられる。
これらの熱安定剤は、単独または2種以上を混合して使用できる。
As the heat stabilizer used in the present invention, for example,
Triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis {3- (3,5-di-t-butyl-4 -Hydroxyphenyl) propionate}, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-t-butyl-4-hydroxyphenyl) propionate, 3,5-di-t- Butyl-4-hydroxy-benzyl phosphate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydride Kishibenjiru) benzene, tris (3,5-di -t- butyl-4-hydroxybenzyl) hindered phenolic compounds such as isocyanurate late;
2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6,6-tetramethyl-4-piperidyl benzoate Bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (2- (tris (2,2 , 6,6-tetramethylpiperidyloxycarbonyl) butylcarbonyloxy) -1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, bis (2- (tris (1 , 2,2,6,6-pentamethylpiperidyloxycarbonyl) butylcarbonyloxy) -1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [ .5] undecane, bis (2,2,6,6-tetramethyl-4-piperidyl) di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6 , 6-Pentamethyl-4-piperidyl) -di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2-butyl 2- (3,5-di-tert-butyl-4-hydroxybenzyl) malonate, 1- (2-hydroxyethyl) -2,2,6,6-tetramethyl-4-piperidinol / diethyl succinate polycondensation 1,6-bis (2,2,6,6-tetramethyl-4-piperidylamino) hexane / dibromoethane polycondensate, 1,6-bis (2,2,6,6-tetramethyl-4 -Piperidylamino Hexane / 2,4-dichloro-6-morpholino-s-triazine polycondensate, 1,6-bis (2,2,6,6-tetramethyl-4-piperidylamino) hexane / 2,4-dichloro-6 -T-octylamino-s-triazine polycondensate, tetrakis (2,2,6,6-tetramethylpiperidyloxycarbonyl) butane, tetrakis (1,2,2,6,6-pentamethylpiperidyloxycarbonyl) butane 1,5,8,12-tetrakis [2,4-bis (N-butyl-N- (2,2,6,6-tetramethyl-4-piperidyl) amino) -s-triazin-6-yl] -1,5,8,12-tetraazadodecane, 1,5,8,12-tetrakis [2,4-bis (N-butyl-N- (1,2,2,6,6-pentamethyl-4- Piperidyl) Ami F) -s-triazin-6-yl] -1,5,8,12-tetraazadodecane, 1,6,11-tris [2,4-bis (N-butyl-N- (2,2,6) , 6-Tetramethyl-4-piperidyl) amino) -s-triazin-6-yl] aminoundecane 1,6,11-tris [2,4-bis (N-butyl-N- (1,2,2, Hindered amine compounds such as 6,6-pentamethyl-4-piperidyl) amino) -s-triazin-6-yl] aminoundecane;
Trisnonylphenyl phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phosphite, tridecyl phosphite, octyldiphenylphos Phyto, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, Bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tri-t-butylphenyl) pentaerythritol diphosphite, bis (2,4-dicumyl) Phenyl) pentaerythritol diphosphite, Tora (tridecyl) isopropylidene diphenol diphosphite, tetra (tridecyl) -4,4′-n-butylidenebis (2-tert-butyl-5-methylphenol) diphosphite, hexa (tridecyl) -1,1,3- Tris (2-methyl-4-hydroxy-5-t-butylphenyl) butanetriphosphite, tetrakis (2,4-di-t-butylphenyl) biphenylene diphosphonite, 9,10-dihydro-9-oxa-10- Phosphophenanthrene-10-oxide, 2,2'-methylenebis (4,6-t-butylphenyl) -2-ethylhexyl phosphite, 2,2'-methylenebis (4,6-t-butylphenyl)- Octadecyl phosphite, 2,2'-ethylidenebis (4,6-di-t-butylphenyl) fluor Phosphite, tris (2-[(2,4,8,10-tetrakis-t-butyldibenzo [d, f] [1,3,2] dioxaphosphin-6-yl) oxy] ethyl) amine, Phosphorus compounds such as phosphite of 2-ethyl-2-butylpropylene glycol and 2,4,6-tri-t-butylphenol;
Amine compounds such as 2,2,4-trimethyl-1,2-dihydroquinoline polymer, alkylated diphenylamine, octylated diphenylamine, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, 3,3- Sulfur compounds such as thiobispropionic acid didecyl ester, 3,3'-thiobispropionic acid dioctadecyl ester, bisphenol A diglycidyl ether type epoxy resin, brominated bisphenol A diglycidyl ether type epoxy resin, cresol novolac type epoxy Examples thereof include epoxy compounds such as resins and phenol novolac type epoxy resins.
These heat stabilizers can be used alone or in admixture of two or more.

これら熱安定剤のうちでも、臭素系難燃剤含有混合物の熱重量分析における1%重量減少温度を任意に制御できる点から、ヒンダードアミン化合物、リン系化合物、エポキシ化合物が好ましい。   Among these heat stabilizers, a hindered amine compound, a phosphorus compound, and an epoxy compound are preferable because the 1% weight reduction temperature in the thermogravimetric analysis of the brominated flame retardant-containing mixture can be arbitrarily controlled.

本発明における熱安定剤の発泡性スチレン系樹脂粒子中の含有量および添加量は、前記臭素系難燃剤100重量部に対して、0.1重量部以上10重量部以下であることが好ましく、0.3重量部以上8重量部以下であることがより好ましく、0.5重量部以上6重量部以下であることがさらに好ましい。   The content and addition amount of the heat stabilizer in the foamable styrene resin particles in the present invention are preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the brominated flame retardant, It is more preferably 0.3 parts by weight or more and 8 parts by weight or less, and further preferably 0.5 parts by weight or more and 6 parts by weight or less.

本発明では、臭素系難燃剤と熱安定剤は、後述する製造方法において、そのままスチレン系樹脂と溶融混練できるが、通常は、分散性等を考慮して、スチレン系樹脂とのマスターバッチを作り、該マスターバッチとスチレン系樹脂を溶融混練することが好ましい。
該マスターバッチとしては、スチレン系樹脂50重量%以上70重量%以下および、臭素系難燃剤と熱安定剤との混合物30重量%以上50重量%以下である(両者の合計量は100重量%)ことが好ましく、スチレン系樹脂55重量%以上65重量%以下および、臭素系難燃剤と熱安定剤との混合物35重量%以上45重量%以下であることがより好ましい。
該マスターバッチ中での臭素系難燃剤と熱安定剤との混合物の比率を30重量%以上50重量%以下にすることにより、臭素系難燃剤と熱安定剤との混合物の分散性が優れるため、低い添加量で優れた難燃性を得ることができる。
In the present invention, the brominated flame retardant and the heat stabilizer can be melt-kneaded with the styrene resin as they are in the production method described later, but usually a masterbatch with the styrene resin is prepared in consideration of dispersibility and the like. The master batch and the styrene resin are preferably melt-kneaded.
The master batch includes 50% by weight or more and 70% by weight or less of a styrene resin and 30% by weight or more and 50% by weight or less of a mixture of a brominated flame retardant and a heat stabilizer (the total amount of both is 100% by weight). It is preferable that the styrene-based resin is 55% by weight or more and 65% by weight or less and the mixture of the brominated flame retardant and the heat stabilizer is 35% by weight or more and 45% by weight or less.
The dispersibility of the mixture of the brominated flame retardant and the thermal stabilizer is excellent when the ratio of the mixture of the brominated flame retardant and the thermal stabilizer in the masterbatch is 30% by weight or more and 50% by weight or less. Excellent flame retardancy can be obtained with a low addition amount.

本発明の発泡性スチレン系樹脂粒子においては、ラジカル発生剤をさらに含有することにより、臭素系難燃剤と併用することで臭素系難燃剤の熱重量分析における1%重量減少温度を制御することができ、用いるスチレン系樹脂、発泡剤種および含有量、輻射伝熱抑止剤種および含有量、臭素系難燃剤種および含有量に応じて適宜組み合わせて用いることができる。ラジカル発生剤としてはたとえば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、2,3−ジメチル−2,3−ジフェニルブタン、等が挙げられる。   In the expandable styrene resin particles of the present invention, by further containing a radical generator, the 1% weight loss temperature in thermogravimetric analysis of brominated flame retardants can be controlled by using in combination with brominated flame retardants. The styrenic resin to be used, the foaming agent type and content, the radiant heat transfer inhibitor type and content, the brominated flame retardant type and content can be used in appropriate combinations. Examples of the radical generator include cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and the like.

本発明におけるラジカル発生剤の発泡性スチレン系樹脂粒子中の含有量および添加量はスチレン系樹脂100重量部に対して0.05重量部以上、1.0重量部以下が好ましい。   In the present invention, the content and addition amount of the radical generator in the expandable styrene resin particles are preferably 0.05 parts by weight or more and 1.0 part by weight or less with respect to 100 parts by weight of the styrene resin.

本発明の発泡性スチレン系樹脂粒子では、必要に応じて、
ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、流動パラフィンなどの加工助剤;
前述したヒンダードアミン類、リン系安定剤、エポキシ化合物の他、フェノール系抗酸化剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類などの耐光性安定剤、帯電防止剤、顔料などの着色剤などの添加剤;
シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、炭酸カルシウム、炭酸水素ナトリウムなどの無機化合物、メタクリル酸メチル系共重合体、ポリエチレンワックスなどの、オレフィン系ワックス、タルク、メチレンビスステアリルアマイド、エチレンビスステアリルアマイド、ヘキサメチレンビスパルミチン酸アマイド、エチレンビスオレイン酸アマイドなどの脂肪酸ビスアマイド、エチレン−酢酸ビニル共重合体樹脂などの造核剤;
スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等の、大気圧下における沸点が200℃以下である溶剤などの発泡助剤を含有していてもよい。
In the expandable styrenic resin particles of the present invention, if necessary,
Processing aids such as sodium stearate, magnesium stearate, calcium stearate, zinc stearate, barium stearate, liquid paraffin;
In addition to the hindered amines, phosphorus stabilizers, and epoxy compounds described above, phenolic antioxidants, nitrogen stabilizers, sulfur stabilizers, light-resistant stabilizers such as benzotriazoles, antistatic agents, and colorants such as pigments Additives such as;
Silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, calcium carbonate, sodium hydrogen carbonate and other inorganic compounds, methyl methacrylate copolymer, polyethylene wax, olefin wax, talc, methylene Nucleating agents such as bisstearyl amide, ethylene bisstearyl amide, hexamethylene bispalmitic acid amide, fatty acid bisamide such as ethylene bisoleic acid amide, ethylene-vinyl acetate copolymer resin;
Foaming of aromatic organic compounds such as styrene, toluene, ethylbenzene and xylene, cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane, solvents such as ethyl acetate and butyl acetate having a boiling point of 200 ° C. or less under atmospheric pressure An auxiliary agent may be contained.

本発明の発泡性スチレン系樹脂粒子を製造する方法としては、押出機を用いてスチレン系樹脂と各種化合物とを溶融混練したのち粒子状に切断して得る方法が好ましく、以下の2つの方法が挙げられる。   The method for producing the expandable styrene resin particles of the present invention is preferably a method obtained by melt-kneading a styrene resin and various compounds using an extruder and then cutting into particles, and the following two methods are used. Can be mentioned.

すなわち、第1の製造方法として、
スチレン系樹脂100重量部に対して炭素数が3〜6の炭化水素の少なくとも1種からなる発泡剤を3〜10重量部、輻射伝熱抑制剤を1〜6重量部、熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上、70重量%未満である臭素系難燃剤を0.5〜6重量部、必要に応じて、ラジカル発生剤を0.05〜1.0重量部、熱安定剤を臭素系難燃剤100重量部に対して0.1〜10重量部、さらには必要に応じて他の添加剤を押出機で溶融混練し、所定の温度に冷却した後、小孔を有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に押出し、押出し直後から、回転カッターにより切断すると共に、加圧循環水により冷却固化して発泡性スチレン系樹脂粒子を得る製造方法であって、発泡性スチレン系樹脂粒子中の輻射伝熱抑制剤含有量と臭素系難燃剤に由来する臭素含有量との重量比が1/0.15〜1/2.0であることを特徴とする発泡性スチレン系樹脂粒子の製造方法が挙げられる。
That is, as the first manufacturing method,
3 to 10 parts by weight of a foaming agent comprising at least one hydrocarbon having 3 to 6 carbon atoms, 1 to 6 parts by weight of a radiation heat transfer inhibitor, and 1 in thermogravimetric analysis with respect to 100 parts by weight of a styrene resin. 0.5 to 6 parts by weight of a brominated flame retardant having a% weight reduction temperature of 210 ° C. to 280 ° C. and a bromine content of 60% by weight or more and less than 70% by weight, if necessary, radical generation 0.05 to 1.0 parts by weight of the agent, 0.1 to 10 parts by weight of the heat stabilizer with respect to 100 parts by weight of the brominated flame retardant, and further melt and knead other additives as necessary. Then, after cooling to a predetermined temperature, it is extruded into a cutter chamber filled with pressurized circulating water through a die having a small hole, and immediately after extrusion, it is cut with a rotary cutter and cooled and solidified with pressurized circulating water. To obtain expandable styrene resin particles The weight ratio of the radiation heat transfer inhibitor content in the expandable styrene resin particles and the bromine content derived from the brominated flame retardant is 1 / 0.15 to 1 / 2.0. And a method for producing expandable styrene resin particles.

第1の製造方法における、押出機の溶融混練部での樹脂の温度は、160℃〜250℃が好ましい。また、押出機にスチレン系樹脂および各種化合物を供給してから溶融混錬終了までの押出機内滞留時間が7分以下であることが好ましい。
樹脂温度が250℃より高い場合、および/または、融混錬終了までの押出機内滞留時間が7分より長い場合には、臭素系難燃剤の分解が起こる場合があり、所望の難燃性が得られなかったり、所望の難燃性を付与する為に過剰に添加しなければならないことになる。一方、樹脂温度が160℃より低い場合は、押出機の負荷が大きくなって押出が不安定になったり、添加する材料の分散性が悪化したりする場合がある。加えて、溶融混錬後、直ぐにダイスを通して押出す場合は溶融樹脂のせん断歪、伸張歪が大きくなる為、得られる樹脂粒子がいびつになる場合がある。得られる発泡性樹脂粒子の形状が良好でない場合には、成形性を悪化させる原因にもなる。
In the first production method, the temperature of the resin in the melt kneading part of the extruder is preferably 160 ° C to 250 ° C. Moreover, it is preferable that the residence time in an extruder from supplying a styrene resin and various compounds to an extruder until the end of melt-kneading is 7 minutes or less.
When the resin temperature is higher than 250 ° C. and / or when the residence time in the extruder until melting and kneading is longer than 7 minutes, the brominated flame retardant may be decomposed, and the desired flame retardancy is obtained. It cannot be obtained or must be added in excess to impart the desired flame retardancy. On the other hand, when the resin temperature is lower than 160 ° C., the load on the extruder becomes large and the extrusion may become unstable, or the dispersibility of the material to be added may deteriorate. In addition, if the resin is extruded through a die immediately after melting and kneading, the shearing strain and elongation strain of the molten resin increase, and the resulting resin particles may become distorted. When the shape of the obtained expandable resin particles is not good, it may cause deterioration of moldability.

ここで、押出機の溶融混練部とは、単軸あるいは二軸スクリューを有する押出機一つから構成される場合はフィード部以降から押出機先端までを意味し、タンデム押出機のような場合は第一押出機のフィード部以降から第二押出機先端までを意味する。   Here, the melt kneading part of the extruder means from the feed part to the tip of the extruder when it is composed of one extruder having a single screw or a twin screw, and in the case of a tandem extruder. It means from the feed section of the first extruder to the tip of the second extruder.

押出機中にてスチレン系樹脂中に発泡剤、輻射伝熱抑制剤および、臭素系難燃剤、必要に応じて、熱安定剤、造核剤などのその他添加剤が溶解あるいは均一分散され、適切な温度まで冷却された溶融混練物は、複数の小孔を有するダイから、加圧された冷却水中に押し出される。   In the extruder, the foaming agent, radiant heat transfer inhibitor, brominated flame retardant, and other additives such as heat stabilizer and nucleating agent are dissolved or uniformly dispersed in the styrene resin as appropriate. The melt-kneaded product cooled to a certain temperature is extruded into pressurized cooling water from a die having a plurality of small holes.

本発明で用いられるダイは、特に限定されないが、例えば、直径0.3mm〜2.0mm、好ましくは0.4mm〜1.0mmの小孔を有するものが挙げられる。   The die used in the present invention is not particularly limited, and examples thereof include those having a small hole having a diameter of 0.3 mm to 2.0 mm, preferably 0.4 mm to 1.0 mm.

第1の製造方法において、ダイより押し出される直前の溶融混練物の温度は、発泡剤を含まない状態での熱可塑性樹脂のガラス転移温度+40℃〜100℃、より好ましくは、ガラス転移温度+50℃〜70℃まで冷却されることが好ましい。
ダイより押し出される直前の溶融混練物の温度がガラス転移温度+40℃よりも低い場合は、吐出樹脂の粘度が高すぎて、小孔で詰まってしまい、実質小孔開口率の低下のために得られる樹脂粒が変形する場合がある。一方で、ダイより押し出される直前の溶融混練物の温度がガラス転移温度+100℃よりも高い場合は、吐出樹脂が完全に固化されず、発泡してしまう場合や、吐出樹脂の粘度が低すぎて、安定的に加圧冷却水中に吐出できず、実質小孔開口率が低下する場合がある。
In the first production method, the temperature of the melt-kneaded product immediately before being extruded from the die is the glass transition temperature of the thermoplastic resin in a state not containing the foaming agent + 40 ° C. to 100 ° C., more preferably the glass transition temperature + 50 ° C. It is preferable to cool to -70 degreeC.
If the temperature of the melt-kneaded product immediately before being extruded from the die is lower than the glass transition temperature + 40 ° C., the viscosity of the discharged resin is too high and clogged with small holes, which is obtained due to a decrease in the substantially small hole opening ratio. The resin particles that are produced may be deformed. On the other hand, when the temperature of the melt-kneaded product immediately before being extruded from the die is higher than the glass transition temperature + 100 ° C., the discharge resin is not completely solidified and foams, or the viscosity of the discharge resin is too low. In some cases, it cannot be stably discharged into the pressurized cooling water, and the substantial aperture ratio of the small holes may decrease.

第1の製造方法における循環加圧冷却水に押出された樹脂を切断する切断装置としては、特に限定されないが、例えば、ダイリップに接触する回転カッターで切断されて小球化され、加圧循環冷却水中を発泡することなく、遠心脱水機まで移送されて脱水・集約される装置、等が挙げられる。   The cutting device that cuts the resin extruded into the circulating pressurized cooling water in the first manufacturing method is not particularly limited. For example, the cutting device is cut by a rotary cutter that contacts the die lip to be spheroidized, and pressurized circulating cooling is performed. Examples include a device that is transported to a centrifugal dehydrator and dewatered and collected without foaming the water.

第2の発泡性スチレン系樹脂粒子の製造方法としては、
スチレン系樹脂100重量部に対して輻射伝熱抑制剤を1〜6重量部、熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上、70重量%未満である臭素系難燃剤を0.5〜6重量部、必要に応じて、ラジカル発生剤を0.05〜1.0重量部、熱安定剤を臭素系難燃剤100重量部に対して0.1〜10重量部、さらには必要に応じて、他の添加剤を押出機で溶融混練し、小孔を有するダイスを通じて押出した後カッターで切断することによりスチレン系樹脂粒子を得た後、
該スチレン系樹脂粒子を水中に懸濁させると共に、炭素数が3〜6の炭化水素の少なくとも1種からなる発泡剤をスチレン系樹脂100重量部に対して3〜10重量部含有させる量を供給して、発泡性スチレン系樹脂粒子を得る製造方法であって、
発泡性スチレン系樹脂粒子中の輻射伝熱抑制剤含有量と臭素系難燃剤に由来する臭素含有量との重量比が1/0.15〜1/2.0であることを特徴とする発泡性スチレン系樹脂粒子の製造方法が挙げられる。
As a production method of the second expandable styrene resin particles,
1 to 6 parts by weight of radiant heat transfer inhibitor with respect to 100 parts by weight of styrenic resin, 1% weight reduction temperature in thermogravimetric analysis is 210 ° C. to 280 ° C., and bromine content is 60% by weight or more, 0.5 to 6 parts by weight of a brominated flame retardant that is less than 70% by weight, 0.05 to 1.0 parts by weight of a radical generator and 100 parts by weight of a thermal stabilizer as necessary. On the other hand, 0.1 to 10 parts by weight, and if necessary, other additives are melt-kneaded with an extruder, extruded through a die having a small hole, and then cut with a cutter to obtain styrenic resin particles. After
Suspending the styrene resin particles in water and supplying an amount of 3 to 10 parts by weight of a foaming agent comprising at least one hydrocarbon having 3 to 6 carbon atoms with respect to 100 parts by weight of the styrene resin Then, a production method for obtaining expandable styrene resin particles,
Foam, wherein the weight ratio of the radiation heat transfer inhibitor content in the expandable styrenic resin particles to the bromine content derived from the brominated flame retardant is from 1 / 0.15 to 1 / 2.0 For example, a method for producing a conductive styrene resin particle.

第2の製造方法で用いられる押出機としては、前記の製造法で記載したものと同様のものを用いることができる。   As an extruder used by the 2nd manufacturing method, the thing similar to what was described by the said manufacturing method can be used.

第2の製造方法における押出機の溶融混練部での樹脂の温度は、160℃〜250℃が好ましい。また、押出機に材料を供給してから溶融混錬終了までの押出機内滞留時間が7分以下であることが好ましい。
樹脂温度が250℃より高い場合、および/または、融混錬終了までの押出機内滞留時間が7分より長い場合は、第1の製造方法の説明で記載したものと同様の問題が発生し得る。一方、樹脂温度が160℃より低い場合は、第1の製造方法の説明で記載したものと同様の問題に加えて、溶融混錬後すぐにダイスを通して押出す場合は溶融樹脂のせん断歪、伸張歪が大きくなる為、得られる樹脂粒子がいびつになったり、発泡剤含浸工程で粒子の膠着や扁平度合いが大きくなって工程が不安定になったり、工程が長期化して生産性を著しく低下させる場合もある。
The temperature of the resin in the melt kneading part of the extruder in the second production method is preferably 160 ° C to 250 ° C. Moreover, it is preferable that the residence time in an extruder from supplying a material to an extruder until the end of melt-kneading is 7 minutes or less.
When the resin temperature is higher than 250 ° C. and / or when the residence time in the extruder until the end of melt-kneading is longer than 7 minutes, the same problem as described in the explanation of the first production method may occur. . On the other hand, when the resin temperature is lower than 160 ° C., in addition to the same problem as described in the explanation of the first production method, when the resin is extruded through a die immediately after melt kneading, the shear strain and elongation of the molten resin Since the strain increases, the resulting resin particles become distorted, the degree of particle sticking and flattening increases during the foaming agent impregnation process, the process becomes unstable, and the process is prolonged and productivity is significantly reduced. In some cases.

以上のようにして得られた発泡性スチレン系樹脂粒子は、従来公知の予備発泡工程、例えば、加熱水蒸気によって10〜110倍に発泡させる工程を経て、一定時間養生させた後、型内成形して、例えば、10〜110倍に発泡させた発泡成形体を得ることができる。   The expandable styrenic resin particles obtained as described above are cured in a mold for a certain period of time through a conventionally known preliminary foaming process, for example, a process of foaming 10 to 110 times with heated steam. Thus, for example, it is possible to obtain a foamed molded product foamed 10 to 110 times.

本発明のスチレン系樹脂発泡成形体の密度は、断熱性と難燃性の両立の点から、5〜50kg/mが好ましく、8〜40kg/mがより好ましい。 The density of the styrene resin foam molded article of the present invention is preferably 5 to 50 kg / m 3 and more preferably 8 to 40 kg / m 3 from the viewpoint of achieving both heat insulation and flame retardancy.

本発明のスチレン系樹脂発泡成形体における平均セル径は、断熱性の点から、0.02〜1.50mmが好ましく、0.05〜0.50mmがより好ましい。   The average cell diameter in the styrenic resin foam molded article of the present invention is preferably 0.02 to 1.50 mm, more preferably 0.05 to 0.50 mm from the viewpoint of heat insulation.

以下に、実施例および比較例を挙げて、本発明を具体的に説明するが、これらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but is not limited thereto.

なお、実施例および比較例の評価は下記の方法で行なった。   The examples and comparative examples were evaluated by the following methods.

(1)臭素系難燃剤および臭素系難燃剤含有混合物の熱重量分析:
試料5mgを秤量し、示差熱・熱重量同時測定装置[(株)島津製作所製、DTG−60A]を用いて、10℃/minの昇温速度にて、30℃から350℃まで加熱して、1%重量減少温度を測定した。
(1) Thermogravimetric analysis of brominated flame retardants and brominated flame retardant-containing mixtures:
A sample of 5 mg was weighed and heated from 30 ° C. to 350 ° C. at a rate of temperature increase of 10 ° C./min using a differential thermal and thermogravimetric simultaneous measurement apparatus [manufactured by Shimadzu Corporation, DTG-60A]. A 1% weight loss temperature was measured.

(2)発泡性スチレン系樹脂粒子中の輻射伝熱抑制剤の含有量:
JIS K6226−2:2003に準拠し、発泡性スチレン系樹脂粒子中のグラファイトの定量を行った。
他方、ICP−AES法にて、発泡性スチレン系樹脂粒子中のTiの定量を行い、酸化チタン(TiO)に換算して酸化チタンの含有量とした。
(2) Content of radiant heat transfer inhibitor in expandable styrene resin particles:
In accordance with JIS K6226-2: 2003, graphite in the expandable styrene resin particles was quantified.
On the other hand, Ti in the expandable styrene-based resin particles was quantified by ICP-AES method, and converted to titanium oxide (TiO 2 ) to obtain the content of titanium oxide.

(3)発泡性スチレン系樹脂粒子中の臭素含有量:
発泡性スチレン系樹脂粒子中を5mg精秤した後、超純水にて25mlに調整した。下記条件にて、イオンクロマトグラフを測定して、発泡性スチレン系樹脂粒子中の臭素含有量を測定した。
測定機器:ダイオネクス製ICS−2000
カラム:IonPac AG18、AS18(4mmφ×250mm)
溶離液:KOHグラジエント
溶離液流量:1.0ml/分
試料注入量:50μL
検出器:電気伝導度検出器
(3) Bromine content in expandable styrene resin particles:
After 5 mg of the expandable styrene resin particles were precisely weighed, it was adjusted to 25 ml with ultrapure water. The ion chromatograph was measured under the following conditions to measure the bromine content in the expandable styrene resin particles.
Measuring equipment: ICS-2000 made by Dionex
Column: IonPac AG18, AS18 (4mmφ × 250mm)
Eluent: KOH gradient Eluent flow rate: 1.0 ml / min Sample injection volume: 50 μL
Detector: Electric conductivity detector

(4)成形性の評価方法
実施例および比較例の条件で、型内成形を行い、得られた発泡成形体に関して、目視にて、以下の基準で評価した。
○:発泡成形体にヒケ、メルト、収縮等なく、成形体表面の発泡粒子間隙が少なく平滑で、成形体を割った時の破断面において材破する融着ビーズが8割以上である発泡成形体が得られた。
×:発泡成形体にヒケ、メルト、収縮等が発生するか、成形体表面の発泡粒子間隙が大きいか、成形体を割った時の破断面において材破する融着ビーズが8割未満であるかのいずれかである発泡成形体が得られた。
(4) Formability evaluation method In-mold molding was performed under the conditions of the example and the comparative example, and the obtained foamed molded product was visually evaluated according to the following criteria.
○: Foam molding in which there is no sink, melt, shrinkage, etc. in the foamed molded body, there are few gaps between the foamed particles on the surface of the molded body, the surface is smooth, and over 80% of the fused beads break the material on the fracture surface when the molded body is broken. The body was obtained.
X: Sink, melt, shrinkage, etc. occur in the foam molded product, the foam particle gap on the surface of the molded product is large, or less than 80% of the fused beads break the material on the fracture surface when the molded product is broken. A foamed molded product that was either of these was obtained.

(5)スチレン系樹脂発泡成形体の発泡倍率の測定方法:
得られた発泡成形体の寸法を測定し、体積を求め、重量と体積から下記の式により求めた。
発泡倍率=体積/発泡粒子の重量(g)
(5) Measuring method of expansion ratio of styrene resin foam molding:
The dimension of the obtained foaming molding was measured, the volume was calculated | required, and it calculated | required by the following formula from the weight and the volume.
Expansion ratio = volume / weight of expanded particles (g)

(6)スチレン系樹脂発泡成形体の熱伝導率の測定方法
得られた発泡成形体から、長さ200mm×幅200mm×厚さ25mmの平板を切り出し、50℃にて24時間処理した後、熱伝導率測定装置[英弘精機(株)製、HC−072]を用いて、平均温度20℃での熱伝導率を測定した。
(6) Method of measuring thermal conductivity of styrene resin foam molded article A plate having a length of 200 mm, a width of 200 mm and a thickness of 25 mm was cut out from the obtained foamed molded article and treated at 50 ° C. for 24 hours. The thermal conductivity at an average temperature of 20 ° C. was measured using a conductivity measuring device [manufactured by Eihiro Seiki Co., Ltd., HC-072].

(7)スチレン系樹脂発泡成形体の難燃性の評価方法
<自己消火性>
得られた発泡成形体に対して、50℃雰囲気下24時間静置した後、JIS A9511(発泡プラスチック保温材)測定方法Aに準じた評価を行った。
○:消火時間が3秒以内。
×:消火時間が3秒を超える、或いは、消火しなかった。
<最低酸素指数[LOI]>
得られた発泡成形体に対して、50℃雰囲気下24時間静置した後、JIS K7201に準じた評価を行った。
(7) Evaluation method of flame retardancy of styrenic resin foam molding <self-extinguishing>
The obtained foamed molded product was allowed to stand in a 50 ° C. atmosphere for 24 hours, and then evaluated according to JIS A9511 (foamed plastic heat insulating material) measuring method A.
○: Fire extinguishing time is within 3 seconds.
X: Fire extinguishing time exceeded 3 seconds, or did not extinguish.
<Minimum oxygen index [LOI]>
The obtained foamed molded product was allowed to stand in an atmosphere of 50 ° C. for 24 hours, and then evaluated according to JIS K7201.

(8)発泡性スチレン系樹脂粒子中の難燃剤残存率の測定方法
得られた発泡成形体約40mgをクロロホルム2mlに溶解した後、メタノール2mlを加えて樹脂成分のみ再沈させた後、該溶液を0.45μmPTFEフィルターで濾過した。
次いで、用いた各難燃剤純成分を標準試料として校正した、下記高速液体クロマトグラフ(HPLC)を用いて、調製した濾液中の難燃剤を定量した。
装置:島津製作所製、HPLC prominence
カラム:Thermo HYPERCARB 5μm(50×2.1mm)
カラム温度:40℃
移動相:クロロホルム/メタノール=50/50(v/v)
流量:0.5mL/分
検出:UV 254nm、210nm
試料注入量:10μL
分析時間:20分
(8) Measuring method of residual ratio of flame retardant in expandable styrene resin particles After dissolving about 40 mg of the obtained foamed molded product in 2 ml of chloroform, 2 ml of methanol was added to reprecipitate only the resin component, and then the solution Was filtered through a 0.45 μm PTFE filter.
Subsequently, the flame retardant in the prepared filtrate was quantified using the following high performance liquid chromatograph (HPLC) which calibrated each flame retardant pure component used as a standard sample.
Apparatus: Shimadzu Corporation HPLC HPLC
Column: Thermo HYPERCARB 5 μm (50 × 2.1 mm)
Column temperature: 40 ° C
Mobile phase: chloroform / methanol = 50/50 (v / v)
Flow rate: 0.5 mL / min Detection: UV 254 nm, 210 nm
Sample injection volume: 10 μL
Analysis time: 20 minutes

実施例および比較例においては、以下の原材料を用いた。
<スチレン系樹脂>
(A1)ポリスチレンホモポリマー[PSジャパン(株)製、G9401]
(A2)ポリスチレンホモポリマー[PSジャパン(株)製、680]
<発泡剤>
(B1)ノルマルペンタン[和光純薬工業(株)製、試薬品]
(B2)イソペンタン[和光純薬工業(株)製、試薬品]
<輻射伝熱抑制剤>
(C1)グラファイト[伊藤黒鉛工業(株)製、鱗片状黒鉛Z−5F]
(C2)二酸化チタン[堺化学工業(株)製、R−7E]
<臭素系難燃剤>
(D1)2,2−ビス[4−(2,3−ジブロモ−2−メチルプロポキシ)−3,5−ジブロモフェニル]プロパン [第一工業製薬(株)製、SR−130:1%重量減少温度=231℃、臭素含有量=66重量%]
(D2)臭素化スチレン・ブタジエン共重合体 [Chemtura社製、Emerald3000:1%重量減少温度=243℃、臭素含有量=65重量%]
(D3)2,2−ビス[4−(2,3−ジブロモプロポキシ)−3,5−ジブロモフェニル]プロパン [第一工業製薬(株)製、SR−720:1%重量減少温度=272℃、臭素含有量=68重量%]
(D4)トリス(2,3−ジブロモプロピル)イソシアヌレート[日本化成(株)製、TAIC−6B、1%重量減少温度=256℃、臭素含有量=66重量%]
(D5)2,2−ビス[4−アリロキシ−3,5−ジブロモフェニル]プロパン [帝人化成(株)製、FG−3200:1%重量減少温度=198℃、臭素含有量=51重量%]
(D6)トリス(トリブロモネオペンチル)フォスフェート[大八化学工業(株)製、CR−900:1%重量減少温度=289℃、臭素含有量=70重量%]
(D7)テトラブロモシクロオクタン[第一工業製薬(株)製、FR200:1%重量減少温度=155℃、臭素含有量=75重量%]
<熱安定剤>
(E1)テトラキス(2,2,6,6−テトラメチルピペリジルオキシカルボニル)ブタン
(E2)ビス(2,6−ジーt−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト [Chemtura社製、Ultranox626]
(E3)クレゾールノボラック型エポキシ樹脂[アラルダイト社製、ECN−1280]
(ラジカル発生剤)
(F1)2,3−ジメチル−2,3−ジフェニルブタン[日本油脂(株)製、ノフマーBC]
<臭素系難燃剤と熱安定剤との混合物>
(G1)臭素系難燃剤(D1)100重量部に対して、熱安定剤(E1)3重量部および(E2)2重量部を混合した。 臭素系難燃剤(D1)含有混合物の1%重量減少温度は、248℃であった。
(G2)臭素系難燃剤(D2)100重量部に対して、熱安定剤(E3)10重量部および(E2)5重量部を混合した。 臭素系難燃剤(D2)含有混合物の1%重量減少温度は、255℃であった。
<その他>
(H1)タルク [林化成(株)製、タルカンパウダーPK−Z]
<臭素系難燃剤と熱安定剤との混合物のマスターバッチ>
(I1)二軸押出機にポリスチレンホモポリマー(A2)100重量部を供給して溶融混練した後、押出機途中より臭素系難燃剤と熱安定剤との混合物(G1)を73重量部供給して、さらに溶融混練した。押出機先端に取り付けられた小穴を有するダイスを通して、吐出量300kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、切断して、臭素系難燃剤と熱安定剤との混合物のマスターバッチを得た。この際、押出機の設定温度は170℃で実施した。マスターバッチ中の臭素系難燃剤含有量は40重量%であった。
(I2)二軸押出機にポリスチレンホモポリマー(A2)100重量部を供給して溶融混練した後、押出機途中より臭素系難燃剤と熱安定剤との混合物(G2)を100重量部供給して、さらに溶融混練した。押出機先端に取り付けられた小穴を有するダイスを通して吐出量300kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、切断して臭素系難燃剤と熱安定剤との混合物のマスターバッチを得た。この際、押出機の設定温度は170℃で実施した。マスターバッチ中の臭素系難燃剤含有量は43重量%であった。
<輻射伝熱抑制剤のマスターバッチ>
(J1)バンバリーミキサーに、ポリスチレンホモポリマー(A2)100重量部、輻射伝熱抑制剤(C1)67重量部を投入して設定温度220℃にて10分間溶融混練した後、ルーダーに供給して先端に取り付けられた小穴を有するダイスを通して吐出量300kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、切断してマスターバッチを得た。
マスターバッチ中の臭素系難燃剤含有量は、40重量%であった。
In the examples and comparative examples, the following raw materials were used.
<Styrene resin>
(A1) Polystyrene homopolymer [PS940, G9401]
(A2) Polystyrene homopolymer [PS Japan Co., Ltd., 680]
<Foaming agent>
(B1) Normal pentane [Wako Pure Chemical Industries, Ltd., reagent product]
(B2) Isopentane [Wako Pure Chemical Industries, Ltd., reagent product]
<Radiation heat transfer inhibitor>
(C1) Graphite [manufactured by Ito Graphite Industry Co., Ltd., scaly graphite Z-5F]
(C2) Titanium dioxide [manufactured by Sakai Chemical Industry Co., Ltd., R-7E]
<Brominated flame retardant>
(D1) 2,2-bis [4- (2,3-dibromo-2-methylpropoxy) -3,5-dibromophenyl] propane [Daiichi Kogyo Seiyaku Co., Ltd., SR-130: 1% weight reduction Temperature = 231 ° C., bromine content = 66 wt%]
(D2) Brominated styrene / butadiene copolymer [Chemtura, Emerald 3000: 1% weight loss temperature = 243 ° C., bromine content = 65% by weight]
(D3) 2,2-bis [4- (2,3-dibromopropoxy) -3,5-dibromophenyl] propane [Daiichi Kogyo Seiyaku Co., Ltd., SR-720: 1% weight loss temperature = 272 ° C. , Bromine content = 68 wt%]
(D4) Tris (2,3-dibromopropyl) isocyanurate [manufactured by Nippon Kasei Co., Ltd., TAIC-6B, 1% weight loss temperature = 256 ° C., bromine content = 66% by weight]
(D5) 2,2-bis [4-allyloxy-3,5-dibromophenyl] propane [manufactured by Teijin Chemicals Ltd., FG-3200: 1% weight reduction temperature = 198 ° C., bromine content = 51% by weight]
(D6) Tris (tribromoneopentyl) phosphate [manufactured by Daihachi Chemical Industry Co., Ltd., CR-900: 1% weight loss temperature = 289 ° C., bromine content = 70% by weight]
(D7) Tetrabromocyclooctane [Daiichi Kogyo Seiyaku Co., Ltd., FR200: 1% weight reduction temperature = 155 ° C., bromine content = 75% by weight]
<Heat stabilizer>
(E1) Tetrakis (2,2,6,6-tetramethylpiperidyloxycarbonyl) butane (E2) bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite [Chemtura, Ultranox 626 ]
(E3) Cresol novolac-type epoxy resin [manufactured by Araldite, ECN-1280]
(Radical generator)
(F1) 2,3-dimethyl-2,3-diphenylbutane [manufactured by NOF Corporation, NOFMER BC]
<A mixture of brominated flame retardant and heat stabilizer>
(G1) 3 parts by weight of heat stabilizer (E1) and 2 parts by weight of (E2) were mixed with 100 parts by weight of brominated flame retardant (D1). The 1% weight reduction temperature of the brominated flame retardant (D1) -containing mixture was 248 ° C.
(G2) 10 parts by weight of heat stabilizer (E3) and 5 parts by weight of (E2) were mixed with 100 parts by weight of brominated flame retardant (D2). The 1% weight reduction temperature of the brominated flame retardant (D2) -containing mixture was 255 ° C.
<Others>
(H1) Talc [Made by Hayashi Kasei Co., Ltd., Talcan powder PK-Z]
<Masterbatch of a mixture of brominated flame retardant and heat stabilizer>
(I1) After supplying 100 parts by weight of polystyrene homopolymer (A2) to a twin-screw extruder and melt-kneading, 73 parts by weight of a mixture (G1) of a brominated flame retardant and a thermal stabilizer is supplied from the middle of the extruder. And further melt-kneaded. A strand-like resin extruded at a discharge rate of 300 kg / hour through a die having a small hole attached to the tip of the extruder is cooled and solidified in a 20 ° C. water tank, and then cut to obtain a brominated flame retardant and a thermal stabilizer. A master batch of the mixture with was obtained. At this time, the setting temperature of the extruder was 170 ° C. The brominated flame retardant content in the masterbatch was 40% by weight.
(I2) After supplying 100 parts by weight of polystyrene homopolymer (A2) to a twin screw extruder and melt-kneading, 100 parts by weight of a mixture (G2) of a brominated flame retardant and a heat stabilizer is supplied from the middle of the extruder. And further melt-kneaded. The strand-shaped resin extruded at a discharge rate of 300 kg / hour through a die having a small hole attached to the end of the extruder is cooled and solidified in a 20 ° C. water tank, and then cut to obtain a brominated flame retardant and a thermal stabilizer. A master batch of the mixture was obtained. At this time, the setting temperature of the extruder was 170 ° C. The brominated flame retardant content in the masterbatch was 43% by weight.
<Master batch of radiant heat transfer inhibitor>
(J1) A Banbury mixer was charged with 100 parts by weight of polystyrene homopolymer (A2) and 67 parts by weight of a radiant heat transfer inhibitor (C1), melted and kneaded at a set temperature of 220 ° C. for 10 minutes, and then supplied to a ruder. The strand-like resin extruded at a discharge rate of 300 kg / hour through a die having a small hole attached to the tip was cooled and solidified in a 20 ° C. water bath, and then cut to obtain a master batch.
The brominated flame retardant content in the masterbatch was 40% by weight.

(実施例1)
[発泡性スチレン系樹脂粒子の作製]
スチレン系樹脂(A1)100重量部に対して、臭素系難燃剤と熱安定剤の混合物(G1)を3.2重量部、輻射伝熱抑制剤(C1)2重量部、タルク(H1)0.2重量部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。
得られた樹脂組成物を口径65mmの単軸押出機(第一押出機)と口径90mmの単軸押出機(第二押出機)を直列に連結したタンデム型二段押出機へ供給し、口径65mm押出機の設定温度220℃にて溶融混練した。口径65mm押出機(第一押出機)の途中から、スチレン系樹脂100重量部に対してイソペンタン7重量部を圧入した。その後、230℃に設定された継続管を通じて、口径90mm押出機(第二押出機)に供給した。口径90mm押出機(第二押出機)にて樹脂温度を167℃まで溶融樹脂を冷却した後、275℃に設定した第2押出機の先端に取り付けられた直径0.7mm、ランド長3.0mmの小孔を40個有するダイリップから、吐出量50kg/時間で、温度60℃および1.0MPaの加圧循環水中に押出した。押出された溶融樹脂は、ダイリップに接触する10枚の刃を有する回転カッターを用いて、3400rpmの条件にて切断・小粒化され、遠心脱水機に移送されて、発泡性スチレン系樹脂粒子として回収された。このとき第一押出機内滞留時間4分であった。
[発泡スチレン系樹脂粒子の作製]
得られた発泡性スチレン系樹脂粒子100重量部に対してステアリン酸亜鉛0.1重量部をドライブレンドした後、予備発泡機[大開工業株式会社製、BHP−300]に投入し、0.08MPaの水蒸気を予備発泡機に導入して発泡させ、発泡倍率70倍の発泡スチレン系樹脂粒子を得た。
[発泡成形体の作製]
得られた発泡スチレン系樹脂粒子を、発泡スチロール用成形機[ダイセン工業株式会社製、KR−57]に取り付けた型内成形用金型(445mm×295mm×25mm)内に充填して、0.06MPaの水蒸気を導入し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を表1に示した。
Example 1
[Production of expandable styrene resin particles]
3.2 parts by weight of a mixture (G1) of a brominated flame retardant and a heat stabilizer, 2 parts by weight of a radiant heat transfer inhibitor (C1), and talc (H1) 0 per 100 parts by weight of the styrene resin (A1) 2 parts by weight were put into a blender and blended for 10 minutes to obtain a resin composition.
The obtained resin composition is supplied to a tandem type two-stage extruder in which a single screw extruder (first extruder) having a diameter of 65 mm and a single screw extruder (second extruder) having a diameter of 90 mm are connected in series. Melt kneading was performed at a set temperature of 220 ° C. in a 65 mm extruder. 7 parts by weight of isopentane was press-fitted into 100 parts by weight of styrene resin from the middle of a 65 mm diameter extruder (first extruder). Then, it supplied to the 90-mm-diameter extruder (2nd extruder) through the continuation pipe | tube set to 230 degreeC. After cooling the molten resin to 167 ° C. with a 90 mm diameter extruder (second extruder), the diameter is 0.7 mm and the land length is 3.0 mm attached to the tip of the second extruder set at 275 ° C. A die lip having 40 small holes was extruded into pressurized circulating water at a temperature of 60 ° C. and 1.0 MPa at a discharge rate of 50 kg / hour. The extruded molten resin is cut and granulated under a condition of 3400 rpm using a rotary cutter having 10 blades in contact with the die lip, transferred to a centrifugal dehydrator, and recovered as expandable styrene resin particles. It was done. At this time, the residence time in the first extruder was 4 minutes.
[Production of expanded styrene resin particles]
After dry blending 0.1 parts by weight of zinc stearate with respect to 100 parts by weight of the obtained expandable styrenic resin particles, it was put into a pre-foaming machine [manufactured by Daikai Kogyo Co., Ltd., BHP-300], and 0.08 MPa. The water vapor was introduced into a pre-foaming machine and foamed to obtain expanded styrene resin particles having an expansion ratio of 70 times.
[Production of foamed molded product]
The obtained expanded styrenic resin particles were filled into an in-mold mold (445 mm × 295 mm × 25 mm) attached to an expanded polystyrene molding machine [manufactured by Daisen Kogyo Co., Ltd., KR-57]. Was introduced to obtain a styrenic foam molded body having a beautiful rectangular parallelepiped appearance.
The evaluation results of the obtained foamed molded product are shown in Table 1.

(実施例2)
[発泡性スチレン系樹脂粒子の作製]
スチレン系樹脂(A2)90.5重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I2)を7重量部、輻射伝熱抑制剤マスターバッチ(J1)10重量部、タルク(H1)0.2重量部をブレンダーに投入して、10分間ブレンドして、樹脂組成物を得た。
得られた樹脂組成物を口径65mmの単軸押出機(第一押出機)と口径90mmの単軸押出機(第二押出機)を直列に連結したタンデム型二段押出機へ供給し、口径65mm押出機の設定温度220℃にて溶融混練した。口径65mm押出機(第一押出機)の途中から、スチレン系樹脂100重量部に対して混合ペンタン(ノルマルペンタン80%とイソペンタン20%の混合物)7重量部を圧入した。その後、230℃に設定された継続管を通じて、口径90mm押出機(第二押出機)に供給した。口径90mm押出機(第二押出機)にて樹脂温度を167℃まで溶融樹脂を冷却した後、275℃に設定した第2押出機の先端に取り付けられた直径0.7mm、ランド長3.0mmの小孔を40個有するダイリップから、吐出量50kg/時間で、温度60℃および1.0MPaの加圧循環水中に押出した。押出された溶融樹脂は、ダイリップに接触する10枚の刃を有する回転カッターを用いて、3400rpmの条件にて切断・小粒化され、遠心脱水機に移送されて、発泡性スチレン系樹脂粒子として回収された。このとき第一押出機内滞留時間4分であった。
[発泡スチレン系樹脂粒子の作製]
得られた発泡性スチレン系樹脂粒子100重量部に対してステアリン酸亜鉛0.1重量部をドライブレンドした後、予備発泡機[大開工業株式会社製、BHP−300]に投入し、0.08MPaの水蒸気を予備発泡機に導入して発泡させ、発泡倍率70倍の発泡スチレン系樹脂粒子を得た。
[発泡成形体の作製]
得られた発泡スチレン系樹脂粒子を、発泡スチロール用成形機[ダイセン工業株式会社製、KR−57]に取り付けた型内成形用金型(445mm×295mm×25mm)内に充填して、0.06MPaの水蒸気を導入し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を表1に示した。
(Example 2)
[Production of expandable styrene resin particles]
7 parts by weight of a master batch (I2) of a mixture of a brominated flame retardant and a heat stabilizer and 10 parts by weight of a radiant heat transfer inhibitor master batch (J1) with respect to 90.5 parts by weight of the styrene resin (A2) Then, 0.2 part by weight of talc (H1) was put into a blender and blended for 10 minutes to obtain a resin composition.
The obtained resin composition is supplied to a tandem type two-stage extruder in which a single screw extruder (first extruder) having a diameter of 65 mm and a single screw extruder (second extruder) having a diameter of 90 mm are connected in series. Melt kneading was performed at a set temperature of 220 ° C. in a 65 mm extruder. 7 parts by weight of mixed pentane (a mixture of 80% normal pentane and 20% isopentane) was pressed into 100 parts by weight of the styrene resin from the middle of the 65 mm diameter extruder (first extruder). Then, it supplied to the 90-mm-diameter extruder (2nd extruder) through the continuation pipe | tube set to 230 degreeC. After cooling the molten resin to 167 ° C. with a 90 mm diameter extruder (second extruder), the diameter is 0.7 mm and the land length is 3.0 mm attached to the tip of the second extruder set at 275 ° C. A die lip having 40 small holes was extruded into pressurized circulating water at a temperature of 60 ° C. and 1.0 MPa at a discharge rate of 50 kg / hour. The extruded molten resin is cut and granulated under a condition of 3400 rpm using a rotary cutter having 10 blades in contact with the die lip, transferred to a centrifugal dehydrator, and recovered as expandable styrene resin particles. It was done. At this time, the residence time in the first extruder was 4 minutes.
[Production of expanded styrene resin particles]
After dry blending 0.1 parts by weight of zinc stearate with respect to 100 parts by weight of the obtained expandable styrenic resin particles, it was put into a pre-foaming machine [manufactured by Daikai Kogyo Co., Ltd., BHP-300], and 0.08 MPa. The water vapor was introduced into a pre-foaming machine and foamed to obtain expanded styrene resin particles having an expansion ratio of 70 times.
[Production of foamed molded product]
The obtained expanded styrenic resin particles were filled into an in-mold mold (445 mm × 295 mm × 25 mm) attached to an expanded polystyrene molding machine [manufactured by Daisen Kogyo Co., Ltd., KR-57]. Was introduced to obtain a styrenic foam molded body having a beautiful rectangular parallelepiped appearance.
The evaluation results of the obtained foamed molded product are shown in Table 1.

(実施例3)
[スチレン系樹脂粒子の作製]
スチレン系樹脂(A2)89.98重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I1)6.7重量部、輻射伝熱抑制剤マスターバッチ(J1)10重量部、タルク(H1)0.2重量部をφ90mm単軸押出機に供給し、押出機内で溶融混錬し、押出機先端に取り付けられた直径1.4mmの小穴が140個設けられたダイスを通して吐出335kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後ストランドカッターでスチレン系樹脂粒子を得た。このとき押出機先端部での樹脂の温度が245℃、押出機内滞留時間3分であった。
[発泡性スチレン系樹脂粒子の作製]
次いで,容積が6Lの撹拌装置付きオートクレーブに,得られたスチレン系樹脂粒子100重量部に対して脱イオン水200重量部、リン酸三カルシウム1重量部、ドデシルベンゼンスルホン酸ナトリウム0.03重量部、塩化ナトリウム1重量部を投入し圧力容器を密閉した。その後1時間で105℃まで加温し、発泡剤として混合ペンタン(ノルマルペンタン80%とイソペンタン20%の混合物)8重量部を30分かけて圧力容器内に添加した後、115℃まで10分かけて昇温し、そのまま4時間保持した。保持後室温まで冷却し、オートクレーブから発泡剤の含浸された樹脂粒子を取り出し、塩酸での酸洗、水洗し、遠心分離機で脱水後、気流乾燥機で樹脂粒子表面に付着している水分を乾燥させた。
[発泡スチレン系樹脂粒子の作製]
得られた発泡性スチレン系樹脂粒子100重量部に対してステアリン酸亜鉛0.1重量部をドライブレンドした後、予備発泡機[大開工業株式会社製、BHP−300]に投入し、0.08MPaの水蒸気を予備発泡機に導入して発泡させ、発泡倍率70倍の発泡スチレン系樹脂粒子を得た。
[発泡成形体の作製]
得られた発泡スチレン系樹脂粒子を、発泡スチロール用成形機[ダイセン工業株式会社製、KR−57]に取り付けた型内成形用金型(445mm×295mm×25mm)内に充填して、0.06MPaの水蒸気を導入し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を表1に示した。
(Example 3)
[Production of styrene resin particles]
6.7 parts by weight of a master batch (I1) of a mixture of a brominated flame retardant and a heat stabilizer, 10 parts by weight of a radiant heat transfer inhibitor master batch (J1) with respect to 89.98 parts by weight of the styrene resin (A2) And 0.2 parts by weight of talc (H1) are supplied to a φ90 mm single screw extruder, melt-kneaded in the extruder, and passed through a die provided with 140 small holes with a diameter of 1.4 mm attached to the tip of the extruder. The strand-shaped resin extruded at a discharge rate of 335 kg / hour was cooled and solidified in a water bath at 20 ° C., and then styrene resin particles were obtained with a strand cutter. At this time, the temperature of the resin at the tip of the extruder was 245 ° C., and the residence time in the extruder was 3 minutes.
[Production of expandable styrene resin particles]
Subsequently, 200 parts by weight of deionized water, 1 part by weight of tricalcium phosphate, 0.03 parts by weight of sodium dodecylbenzenesulfonate are added to 100 parts by weight of the obtained styrene resin particles in an autoclave with a stirrer having a volume of 6 L. Then, 1 part by weight of sodium chloride was added to seal the pressure vessel. Thereafter, the mixture was heated to 105 ° C over 1 hour, and 8 parts by weight of mixed pentane (a mixture of 80% normal pentane and 20% isopentane) was added to the pressure vessel over 30 minutes as a blowing agent, and then over 10 minutes to 115 ° C. The temperature was raised and maintained for 4 hours. After holding, cool to room temperature, take out the resin particles impregnated with the blowing agent from the autoclave, pickle with hydrochloric acid, wash with water, dehydrate with a centrifuge, and remove moisture adhering to the surface of the resin particles with an air dryer. Dried.
[Production of expanded styrene resin particles]
After dry blending 0.1 parts by weight of zinc stearate with respect to 100 parts by weight of the obtained expandable styrenic resin particles, it was put into a pre-foaming machine [manufactured by Daikai Kogyo Co., Ltd., BHP-300], and 0.08 MPa. The water vapor was introduced into a pre-foaming machine and foamed to obtain expanded styrene resin particles having an expansion ratio of 70 times.
[Production of foamed molded product]
The obtained expanded styrenic resin particles were filled into an in-mold mold (445 mm × 295 mm × 25 mm) attached to an expanded polystyrene molding machine [manufactured by Daisen Kogyo Co., Ltd., KR-57]. Was introduced to obtain a styrenic foam molded body having a beautiful rectangular parallelepiped appearance.
The evaluation results of the obtained foamed molded product are shown in Table 1.

(実施例4)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)91.15重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I2)5.7重量部、輻射伝熱抑制剤マスターバッチ(J1)10重量部、タルク(H1)0.2重量部を用いた以外は用いた以外は、実施例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を表1に示した。
Example 4
In [Preparation of Styrenic Resin Particles], 5.7 parts by weight of a master batch (I2) of a mixture of a brominated flame retardant and a heat stabilizer with respect to 91.15 parts by weight of the styrene resin (A2), radiation transmission Except for using 10 parts by weight of the heat-inhibitor master batch (J1) and 0.2 parts by weight of talc (H1), the same procedure as in Example 3 was followed, except that expandable styrene resin particles and expanded styrene resin were used. Resin particles and a foam-molded article were prepared to obtain a styrenic foam-molded article having a beautiful rectangular parallelepiped shape.
The evaluation results of the obtained foamed molded product are shown in Table 1.

(実施例5)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)100重量部に対して、臭素系難燃剤と熱安定剤の混合物(G1)を3.2重量部、輻射伝熱抑制剤(C1)2重量部、輻射伝熱抑制剤(C2)2重量部、タルク(H1)0.2重量部以外は用いた以外は、実施例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を表1に示した。
(Example 5)
In [Production of Styrenic Resin Particles], 3.2 parts by weight of a mixture (G1) of a brominated flame retardant and a thermal stabilizer, and a radiation heat transfer inhibitor (C1) with respect to 100 parts by weight of the styrene resin (A2) ) Expandable styrenic resin particles, foamed in the same manner as in Example 3 except that 2 parts by weight, 2 parts by weight of the radiation heat transfer inhibitor (C2) and 0.2 parts by weight of talc (H1) were used. Styrene-based resin particles and a foam-molded product were produced to obtain a rectangular solid-shaped styrene-based foam-molded product.
The evaluation results of the obtained foamed molded product are shown in Table 1.

(実施例6)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)100重量部に対して、臭素系難燃剤と熱安定剤の混合物(G1)を2重量部、輻射伝熱抑制剤(C1)2重量部、輻射伝熱抑制剤(C2)2重量部、タルク(H1)0.2重量部、ラジカル発生剤(F1)0.5重量部以外は用いた以外は、実施例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を表1に示した。
(Example 6)
In [Production of Styrenic Resin Particles], 2 parts by weight of a mixture (G1) of a brominated flame retardant and a heat stabilizer, 100 parts by weight of the styrene resin (A2), a radiation heat transfer inhibitor (C1) 2 The same operation as in Example 3 except that parts other than parts by weight, 2 parts by weight of the radiation heat transfer inhibitor (C2), 0.2 parts by weight of talc (H1), and 0.5 parts by weight of the radical generator (F1) were used. Thus, expandable styrene-based resin particles, expanded styrene-based resin particles, and a foam-molded product were produced, and a rectangular solid-shaped styrene-based foam-molded product having a beautiful appearance was obtained.
The evaluation results of the obtained foamed molded product are shown in Table 1.

(実施例7)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)100重量部に対して、臭素系難燃剤(D3)を3重量部、輻射伝熱抑制剤(C1)4重量部、タルク(H1)0.2重量部以外は用いた以外は、実施例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を表1に示した。
(Example 7)
In [Production of Styrenic Resin Particles], 3 parts by weight of brominated flame retardant (D3), 4 parts by weight of radiant heat transfer inhibitor (C1), talc (H1) with respect to 100 parts by weight of styrene resin (A2) ) A foamed styrene resin particle, a foamed styrene resin particle, and a foamed molded product were produced by the same operation as in Example 3 except that the components other than 0.2 parts by weight were used. A foamed molded product was obtained.
The evaluation results of the obtained foamed molded product are shown in Table 1.

(実施例8)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)100重量部に対して、臭素系難燃剤(D4)を3重量部、輻射伝熱抑制剤(C1)4重量部、タルク(H1)0.2重量部を用いた以外は、実施例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を表1に示した。
(Example 8)
In [Production of styrene resin particles], 3 parts by weight of brominated flame retardant (D4), 4 parts by weight of radiant heat transfer inhibitor (C1), talc (H1) with respect to 100 parts by weight of styrene resin (A2) ) Except that 0.2 parts by weight were used, expandable styrene resin particles, expanded styrene resin particles, and foamed molded articles were produced in the same manner as in Example 3, and the appearance of a beautiful cuboid styrene foam A molded body was obtained.
The evaluation results of the obtained foamed molded product are shown in Table 1.

Figure 0006068920
Figure 0006068920

(比較例1)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A1)100重量部に対して、臭素系難燃剤と熱安定剤の混合物(G1)を3.2重量部、タルク(H1)0.2重量部以外は、実施例1と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表2に示した。輻射伝熱抑制剤を添加していない為、実施例と比較して熱伝導率が高いことが判る。
(Comparative Example 1)
In [Production of Styrenic Resin Particles], 3.2 parts by weight of a mixture (G1) of a brominated flame retardant and a heat stabilizer and 0.2% of talc (H1) with respect to 100 parts by weight of styrene resin (A1). Except for parts by weight, expandable styrene resin particles, expanded styrene resin particles, and a foam molded body were produced in the same manner as in Example 1 to obtain a rectangular solid styrene foam molded body having a beautiful appearance.
The evaluation results of the obtained foamed molded product are shown in Table 2. Since no radiation heat transfer inhibitor is added, it can be seen that the thermal conductivity is higher than in the examples.

(比較例2)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)96重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I1)6.7重量部、タルク(H1)0.2重量部以外は、実施例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。得られた発泡成形体の評価結果を、表2に示した。輻射伝熱抑制剤を添加していない為、実施例と比較して熱伝導率が高いことが判る。
(Comparative Example 2)
In [Production of Styrenic Resin Particles], 6.7 parts by weight of a master batch (I1) of a mixture of a brominated flame retardant and a thermal stabilizer, 96 parts by weight of styrene resin (A2), talc (H1) Except for 0.2 parts by weight, expandable styrenic resin particles, expanded styrene resin particles, and a foamed molded product are produced in the same manner as in Example 3 to obtain a rectangular solid styrenic foamed molded product. It was. The evaluation results of the obtained foamed molded product are shown in Table 2. Since no radiation heat transfer inhibitor is added, it can be seen that the thermal conductivity is higher than in the examples.

(比較例3)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A1)100重量部に対して、臭素系難燃剤と熱安定剤の混合物(G1)を7重量部、輻射伝熱抑制剤(C1)2重量部、タルク(H1)0.2重量部を用いた以外は、実施例1と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製した。しかし、メルトや収縮などが発生し、外観美麗な直方体状のスチレン系発泡成形体は得られなかった。
得られた発泡成形体の評価結果を、表2に示した。輻射伝熱抑制剤含有量/臭素含有量が本発明の規定外である為、難燃性は満足するが、成形性は劣る結果となった。
(Comparative Example 3)
In [Production of Styrenic Resin Particles], 7 parts by weight of a mixture (G1) of a brominated flame retardant and a heat stabilizer, 100 parts by weight of styrene resin (A1), radiation heat transfer inhibitor (C1) 2 Expandable styrene-based resin particles, expanded styrene-based resin particles, and a foam-molded article were produced in the same manner as in Example 1 except that 0.2 parts by weight of talc (H1) was used. However, melt, shrinkage, etc. occurred, and a cuboid styrene foam molded article having a beautiful appearance could not be obtained.
The evaluation results of the obtained foamed molded product are shown in Table 2. Since the radiant heat transfer inhibitor content / bromine content is outside the scope of the present invention, the flame retardancy is satisfied, but the moldability is poor.

(比較例4)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)92.8重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I1)2重量部、輻射伝熱抑制剤マスターバッチ(J1)10重量部、タルク(H1)0.2重量部を用いた以外は、実施例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表2に示した。輻射伝熱抑制剤含有量/臭素含有量が本発明の規定外である為、難燃性が十分でない結果となった。
(Comparative Example 4)
In [Preparation of Styrenic Resin Particles], 2 parts by weight of master batch (I1) of a mixture of a brominated flame retardant and a heat stabilizer with respect to 92.8 parts by weight of styrene resin (A2), suppression of radiant heat transfer Expandable styrene resin particles, expanded styrene resin particles, and expanded molded article by the same operations as in Example 3 except that 10 parts by weight of the agent master batch (J1) and 0.2 parts by weight of talc (H1) were used. To obtain a styrenic foamed molded article having a beautiful rectangular parallelepiped shape.
The evaluation results of the obtained foamed molded product are shown in Table 2. Since the radiant heat transfer inhibitor content / bromine content was outside the scope of the present invention, the flame retardancy was not sufficient.

(比較例5)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)89.5重量部に対して、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(I1)2.5重量部、輻射伝熱抑制剤マスターバッチ(J1)15重量部、タルク(H1)0.2重量部を用いた以外は、実施例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。
得られた発泡成形体の評価結果を、表2に示した。輻射伝熱抑制剤含有量/臭素含有量が本発明の規定外である為、難燃性が十分でない結果となった。
(Comparative Example 5)
In [Production of Styrenic Resin Particles], 89.5 parts by weight of the styrene resin (A2), 2.5 parts by weight of a master batch (I1) of a mixture of a brominated flame retardant and a heat stabilizer, radiation transmission Except for using 15 parts by weight of heat inhibitor masterbatch (J1) and 0.2 parts by weight of talc (H1), expandable styrene resin particles, expanded styrene resin particles, foamed by the same operation as in Example 3. A molded body was produced, and a cuboid styrene foam molded body having a beautiful appearance was obtained.
The evaluation results of the obtained foamed molded product are shown in Table 2. Since the radiant heat transfer inhibitor content / bromine content was outside the scope of the present invention, the flame retardancy was not sufficient.

(比較例6)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)100重量部に対して、臭素系難燃剤(D5)を3重量部、輻射伝熱抑制剤(C1)4重量部、タルク(H1)0.2重量部を用いた以外は、実施例3と同様の操作により、スチレン系樹脂粒子を作製したが、スチレン系樹脂の劣化が著しく、良好な粒子が得られなかった。
(Comparative Example 6)
In [Production of Styrenic Resin Particles], 3 parts by weight of brominated flame retardant (D5), 4 parts by weight of radiant heat transfer inhibitor (C1), talc (H1) with respect to 100 parts by weight of styrene resin (A2) ) Styrenic resin particles were produced in the same manner as in Example 3 except that 0.2 parts by weight were used. However, the styrene resin was significantly deteriorated, and good particles were not obtained.

(比較例7)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)100重量部に対して、臭素系難燃剤(D6)を3重量部、輻射伝熱抑制剤(C1)4重量部、タルク(H1)0.2重量部を用いた以外は、実施例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製し、外観美麗な直方体状のスチレン系発泡成形体を得た。得られた発泡成形体の評価結果を、表2に示した。臭素系難燃剤が本発明の規定範囲外である為、十分な難燃性が得られなかった。
(Comparative Example 7)
In [Production of Styrenic Resin Particles], 3 parts by weight of brominated flame retardant (D6), 4 parts by weight of radiant heat transfer inhibitor (C1), talc (H1) with respect to 100 parts by weight of styrene resin (A2) ) Except that 0.2 parts by weight were used, expandable styrene resin particles, expanded styrene resin particles, and foamed molded articles were produced in the same manner as in Example 3, and the appearance of a beautiful cuboid styrene foam A molded body was obtained. The evaluation results of the obtained foamed molded product are shown in Table 2. Since the brominated flame retardant is outside the specified range of the present invention, sufficient flame retardancy cannot be obtained.

(比較例8)
[スチレン系樹脂粒子の作製]において、スチレン系樹脂(A2)100重量部に対して、臭素系難燃剤(D7)を3重量部、輻射伝熱抑制剤(C1)4重量部、タルク(H1)0.2重量部を用いた以外は、実施例3と同様の操作により、発泡性スチレン系樹脂粒子、発泡スチレン系樹脂粒子、発泡成形体を作製した。しかし、メルトや変色が起こり、外観美麗な直方体状のスチレン系発泡成形体は得られなかった。
得られた発泡成形体の評価結果を、表2に示した。臭素系難燃剤が本発明の規定範囲外である為、難燃性は得られるものの、成形性は劣る結果となった。
(Comparative Example 8)
In [Production of Styrenic Resin Particles], 3 parts by weight of brominated flame retardant (D7), 4 parts by weight of radiant heat transfer inhibitor (C1), talc (H1) with respect to 100 parts by weight of styrene resin (A2) ) Expandable styrene resin particles, expanded styrene resin particles, and expanded molded articles were produced in the same manner as in Example 3 except that 0.2 parts by weight were used. However, melt and discoloration occurred, and a cuboid styrene foam molded article having a beautiful appearance could not be obtained.
The evaluation results of the obtained foamed molded product are shown in Table 2. Since the brominated flame retardant was outside the specified range of the present invention, flame retardancy was obtained, but the moldability was poor.

Figure 0006068920
Figure 0006068920

Claims (6)

スチレン系樹脂100重量部に対して炭素数が3〜6の炭化水素の少なくとも1種からなる発泡剤を3〜10重量部、輻射伝熱抑制剤を1〜6重量部、熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上70重量%未満である臭素系難燃剤を0.5〜6重量部、および、ラジカル発生剤を0.05〜1.0重量部を押出機で溶融混練し、所定の温度に冷却した後、小孔を有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に押出し、押出し直後から、回転カッターにより切断すると共に、加圧循環水により冷却固化して発泡性スチレン系樹脂粒子を得る製造方法であって、
発泡性スチレン系樹脂粒子中の輻射伝熱抑制剤含有量に対する臭素系難燃剤に由来する臭素原子含有量の比率である臭素原子含有量/輻射伝熱抑制剤含有量が0.15〜2.0であることを特徴とする発泡性スチレン系樹脂粒子の製造方法。
3 to 10 parts by weight of a foaming agent comprising at least one hydrocarbon having 3 to 6 carbon atoms, 1 to 6 parts by weight of a radiation heat transfer inhibitor, and 1 in thermogravimetric analysis with respect to 100 parts by weight of a styrene resin. The bromide-based flame retardant having a% weight reduction temperature of 210 ° C. to 280 ° C. and a bromine content of 60% by weight or more and less than 70% by weight , and 0.5% by weight of the radical generator are added . After melt-kneading 05-1.0 parts by weight with an extruder and cooling to a predetermined temperature, it is extruded through a die having small holes into a cutter chamber filled with pressurized circulating water, and immediately after extrusion, a rotary cutter Is a manufacturing method for obtaining expandable styrene resin particles by cooling and solidifying with pressurized circulating water,
The bromine atom content / radiant heat transfer inhibitor content, which is the ratio of the bromine atom content derived from the brominated flame retardant to the radiation heat transfer inhibitor content in the expandable styrene resin particles, is 0.15 to 2. method for producing foamed styrene resin particles you being a 0.
スチレン系樹脂100重量部に対して炭素数が3〜6の炭化水素の少なくとも1種からなる発泡剤を3〜10重量部、輻射伝熱抑制剤を1〜6重量部、熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上70重量%未満である臭素系難燃剤を0.5〜6重量部、さらに、臭素系難燃剤100重量部に対して、熱安定剤を0.1〜10重量部を押出機で溶融混練し、所定の温度に冷却した後、小孔を有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に押出し、押出し直後から、回転カッターにより切断すると共に、加圧循環水により冷却固化して発泡性スチレン系樹脂粒子を得る製造方法であって、3 to 10 parts by weight of a foaming agent comprising at least one hydrocarbon having 3 to 6 carbon atoms, 1 to 6 parts by weight of a radiation heat transfer inhibitor, and 1 in thermogravimetric analysis with respect to 100 parts by weight of a styrene resin. 0.5 to 6 parts by weight of a brominated flame retardant having a% weight reduction temperature of 210 ° C. to 280 ° C. and a bromine content of 60% to less than 70% by weight, and further 100% by weight of a brominated flame retardant In a cutter chamber filled with pressurized circulating water through a die having a small hole, after melt-kneading 0.1 to 10 parts by weight of the heat stabilizer with an extruder and cooling to a predetermined temperature And immediately after extrusion, cutting with a rotary cutter, cooling and solidifying with pressurized circulating water to obtain expandable styrene resin particles,
発泡性スチレン系樹脂粒子中の輻射伝熱抑制剤含有量に対する臭素系難燃剤に由来する臭素原子含有量の比率である臭素原子含有量/輻射伝熱抑制剤含有量が0.15〜2.0であることを特徴とする発泡性スチレン系樹脂粒子の製造方法。The bromine atom content / radiant heat transfer inhibitor content, which is the ratio of the bromine atom content derived from the brominated flame retardant to the radiation heat transfer inhibitor content in the expandable styrene resin particles, is 0.15 to 2. A method for producing expandable styrenic resin particles, which is zero.
スチレン系樹脂100重量部に対して輻射伝熱抑制剤を1〜6重量部、熱重量分析における1%重量減少温度が210℃〜280℃であり、かつ、臭素含有率が60重量%以上、70重量%未満である臭素系難燃剤を0.5〜6重量部を押出機で溶融混練し、小孔を有するダイスを通じて押出した後カッターで切断することによりスチレン系樹脂粒子を得た後、該スチレン系樹脂粒子を水中に懸濁させるとともに炭素数が3〜6の炭化水素の少なくとも1種からなる発泡剤をスチレン系樹脂100重量部に対して3〜10重量部含有させる量を供給して発泡性スチレン系樹脂粒子を得る製造方法であって、
発泡性スチレン系樹脂粒子中の輻射伝熱抑制剤含有量に対する臭素系難燃剤に由来する臭素原子含有量の比率である臭素原子含有量/輻射伝熱抑制剤含有量が0.15〜2.0であることを特徴とする発泡性スチレン系樹脂粒子の製造方法。
1 to 6 parts by weight of radiant heat transfer inhibitor with respect to 100 parts by weight of styrenic resin, 1% weight reduction temperature in thermogravimetric analysis is 210 ° C. to 280 ° C., and bromine content is 60% by weight or more, After melt-kneading 0.5-6 parts by weight of a brominated flame retardant that is less than 70% by weight with an extruder, extruding through a die having a small hole, and then cutting with a cutter to obtain styrenic resin particles, Suspending the styrene resin particles in water and supplying an amount of 3 to 10 parts by weight of a blowing agent composed of at least one hydrocarbon having 3 to 6 carbon atoms with respect to 100 parts by weight of the styrene resin A process for obtaining expandable styrene resin particles,
The bromine atom content / radiant heat transfer inhibitor content, which is the ratio of the bromine atom content derived from the brominated flame retardant to the radiation heat transfer inhibitor content in the expandable styrene resin particles, is 0.15 to 2. method for producing foamed styrene resin particles you being a 0.
スチレン系樹脂100重量部に対して、さらに、ラジカル発生剤を0.05〜1.0重量部を押出機で溶融混練することを特徴とする、請求項2または3に記載の発泡性スチレン系樹脂粒子の製造方法。 The expandable styrenic system according to claim 2 or 3 , wherein 0.05 to 1.0 part by weight of a radical generator is further melt-kneaded by an extruder with respect to 100 parts by weight of the styrenic resin. A method for producing resin particles. さらに、臭素系難燃剤100重量部に対して、熱安定剤を0.1〜10重量部を押出機で溶融混練することを特徴とする、請求項1または3に記載の発泡性スチレン系樹脂粒子の製造方法。 The expandable styrenic resin according to claim 1 or 3 , wherein 0.1 to 10 parts by weight of a heat stabilizer is melt-kneaded by an extruder with respect to 100 parts by weight of a brominated flame retardant. Particle manufacturing method. 請求項1〜5のいずれか1項に記載の発泡性スチレン系樹脂粒子の製造方法により得られた発泡性スチレン系樹脂粒子を加熱して予備発泡させて予備発泡粒子を得た後、成型キャビティ内に充填して型内発泡成形することを特徴とする、発泡成形体の製造方法。A molding cavity after heating the foamable styrene resin particles obtained by the method for producing expandable styrene resin particles according to any one of claims 1 to 5 to obtain prefoamed particles. A method for producing a foam-molded product, comprising filling in a mold and performing in-mold foam molding.
JP2012229313A 2012-10-16 2012-10-16 Expandable styrene resin particles and method for producing the same, styrene resin foam molded article Active JP6068920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229313A JP6068920B2 (en) 2012-10-16 2012-10-16 Expandable styrene resin particles and method for producing the same, styrene resin foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229313A JP6068920B2 (en) 2012-10-16 2012-10-16 Expandable styrene resin particles and method for producing the same, styrene resin foam molded article

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016114702A Division JP6306643B2 (en) 2016-06-08 2016-06-08 Expandable styrene resin particles and method for producing the same, styrene resin foam molded article

Publications (2)

Publication Number Publication Date
JP2014080514A JP2014080514A (en) 2014-05-08
JP6068920B2 true JP6068920B2 (en) 2017-01-25

Family

ID=50785016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229313A Active JP6068920B2 (en) 2012-10-16 2012-10-16 Expandable styrene resin particles and method for producing the same, styrene resin foam molded article

Country Status (1)

Country Link
JP (1) JP6068920B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061780B2 (en) * 2013-05-22 2017-01-18 株式会社ジェイエスピー Method for producing extruded polystyrene resin foam
JP6133150B2 (en) * 2013-07-04 2017-05-24 株式会社ジェイエスピー Method for producing polystyrene resin foam using flame retardant melt kneaded material
DK3245242T3 (en) 2015-01-14 2019-01-02 Synthos Sa Use of a mineral with perovskite structure in vinyl aromatic polymer foam
CN107406325B (en) 2015-01-14 2021-01-15 西索斯公司 Geopolymer composite and expandable vinyl aromatic polymer particles and expanded vinyl aromatic polymer foams containing the same
MA41342A (en) * 2015-01-14 2017-11-21 Synthos Sa PROCESS FOR THE PRODUCTION OF EXPANDABLE AROMATIC VINYL POLYMER GRANULATES WITH REDUCED THERMAL CONDUCTIVITY
MA41344B1 (en) 2015-01-14 2019-01-31 Synthos Sa Combination of silica and graphite and its use to reduce the thermal conductivity of a vinyl aromatic polymer foam
JP2017132972A (en) * 2016-01-30 2017-08-03 積水化成品工業株式会社 Styrenic resin foamable particle, styrenic resin foamed particle and styrenic resin foamed molding
JP6770838B2 (en) * 2016-07-05 2020-10-21 株式会社カネカ Manufacturing method of foamable styrene resin particles
JP6971743B2 (en) * 2017-09-26 2021-11-24 株式会社カネカ Method for manufacturing foamable styrene resin particles
JP7175642B2 (en) * 2018-06-20 2022-11-21 株式会社カネカ Method for producing expandable styrene resin particles
JP7194535B2 (en) * 2018-08-31 2022-12-22 株式会社カネカ Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051735A1 (en) * 1997-05-14 1998-11-19 Basf Aktiengesellschaft Expandable styrene polymers containing graphite particles
US6130265A (en) * 1997-05-14 2000-10-10 Basf Aktiengesellschaft Method for producing expandable styrene polymers containing graphite particles
JP2008075076A (en) * 2006-08-25 2008-04-03 Sekisui Plastics Co Ltd Styrene-modified polypropylenic resin particle and its foamable resin particle, their production method, pre-foamed particle and foam-molded article
JP2009174109A (en) * 2007-12-27 2009-08-06 Marubishi Oil Chem Co Ltd Flame retarding processing agent for polyester fiber and method of producing flame-retardant polyester fiber
JP5471013B2 (en) * 2009-04-27 2014-04-16 株式会社カネカ Styrenic resin extruded foam and method for producing the same
JP5750221B2 (en) * 2009-10-27 2015-07-15 積水化成品工業株式会社 Flame retardant containing expandable polystyrene resin particles and method for producing the same, flame retardant polystyrene resin pre-expanded particles, and flame retardant polystyrene resin foam molding
JP2013075941A (en) * 2011-09-29 2013-04-25 Sekisui Plastics Co Ltd Foamable polystyrenic resin particle, production method thereof, foamed particle and foamed molding

Also Published As

Publication number Publication date
JP2014080514A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP6068920B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP6216506B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
EP1945700B1 (en) Expandable granulates based on vinylaromatic polymers having an improved expandability and process for the preparation thereof
EP2092002B1 (en) Expandable vinyl aromatic polymers with enhanced heat insulation and process for the preparation thereof
JP6555251B2 (en) Styrenic resin foam molding and method for producing the same
MX2011006635A (en) Compositions of expandable vinyl aromatic polymers with an improved thermal insulation capacity, process for their production and expanded articles obtained therefrom.
KR20120107114A (en) Flame-protected polymer foams
MX2010010875A (en) Compositions of expandable vinyl aromatic polymers with an improved thermal insulation capacity, process for their preparation and expanded articles obtained therefrom.
CN108026311B (en) Expandable styrene resin particles, pre-expanded particles and molded body produced from the same, and method for producing the same
JP5750221B2 (en) Flame retardant containing expandable polystyrene resin particles and method for producing the same, flame retardant polystyrene resin pre-expanded particles, and flame retardant polystyrene resin foam molding
JP6306643B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
CA2697310C (en) Method for producing expandable polystyrene and the use thereof
JP6609653B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP2023063388A (en) Styrenic resin composition, and method for producing foamable styrenic resin particle
JP7144955B2 (en) Method for producing styrenic resin composition and expandable styrenic resin particles
JP6971743B2 (en) Method for manufacturing foamable styrene resin particles
JP7175642B2 (en) Method for producing expandable styrene resin particles
JP6688658B2 (en) Method for producing expandable styrene resin particles, method for producing styrene resin pre-expanded particles, and method for producing styrene resin in-mold foam molded article
JP5909903B2 (en) Method for producing flame retardant foamable styrene resin particles
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP6135791B2 (en) Method for producing flame retardant foamable styrene resin particles
JP2017222772A (en) Method for producing expandable styrene-based resin particles
JP2018145343A (en) Master batch and method for producing the same, and method for producing foamable thermoplastic resin particle
JP2018145212A (en) Expandable polystyrene resin particle, pre-expanded particle and molded body
JP2011094024A (en) Incombustible agent-containing expandable polystyrene resin particle and method for producing the same, incombustible polystyrene resin pre-expanded particle, and incombustible polystyrene resin expanded molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6068920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250