JP2011026507A - Surface smooth polystyrene-based resin expansion molded article, and manufacturing method therefor - Google Patents

Surface smooth polystyrene-based resin expansion molded article, and manufacturing method therefor Download PDF

Info

Publication number
JP2011026507A
JP2011026507A JP2009175597A JP2009175597A JP2011026507A JP 2011026507 A JP2011026507 A JP 2011026507A JP 2009175597 A JP2009175597 A JP 2009175597A JP 2009175597 A JP2009175597 A JP 2009175597A JP 2011026507 A JP2011026507 A JP 2011026507A
Authority
JP
Japan
Prior art keywords
polystyrene resin
particles
molded article
mass
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009175597A
Other languages
Japanese (ja)
Inventor
Yukio Aramomi
幸雄 新籾
Masayuki Takano
雅之 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2009175597A priority Critical patent/JP2011026507A/en
Publication of JP2011026507A publication Critical patent/JP2011026507A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polystyrene-based resin expansion molded article not posing a problem such as scattering of a foaming agent over a long period of time and being excellent in surface smoothness of the expansion molded article, and a manufacturing method therefor. <P>SOLUTION: The expansion molded article is obtained by pre-expanding an expandable polystyrene-based resin particle containing a copolymer of an acrylate and a styrene-based monomer and expansion-molding the pre-expanded article in a die. The expandable resin particle satisfies the relationship that the absorbance ratio (A) obtained by determining absorbance D1,730 at 1,730 cm<SP>-1</SP>and absorbance D1,600 at 1,600 cm<SP>-1</SP>by ATR infrared spectroscopic analysis and calculated from D1,730/D1,600 and the absorbance ratio (B) similarly calculated by analyzing the central part of the resin particle are (A)<(B) and (A) is in a range of 0.05-0.50. In the surface smooth expansion molded article having surface smoothness, the density is 0.010-0.033 g/cm<SP>3</SP>and the void of 1 mm square is 5 or less in a range of 10 cm square on the surface of the expansion molded article. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、食品容器や食品梱包、家電等の緩衝材として有用なポリスチレン系樹脂発泡成形体の製造に用いるポリスチレン系樹脂発泡成形体に関する。更に詳しくは、表面平滑性に優れ、発泡成形体表面に直接印刷を行って美麗な印刷済み発泡成形体を提供することが可能な表面平滑性ポリスチレン系樹脂発泡成形体に関する。   The present invention relates to a polystyrene resin foam molded article used for producing a polystyrene resin foam molded article useful as a cushioning material for food containers, food packaging, home appliances and the like. More specifically, the present invention relates to a surface smooth polystyrene-based resin foam molded article that has excellent surface smoothness and can provide a beautiful printed foam molded article by directly printing on the surface of the foam molded article.

近年、ポリスチレン系樹脂発泡成形体からなる魚箱や農産箱において、発泡成形体の表面に直接、印刷が行われる事例が多くなり、表面平滑性に優れた発泡成形体が求められるようになってきた。このように表面に直接印刷する場合、発泡成形体の表面に凹凸があると、凹部分が印刷されずに白く残り、印刷外観の見映えが低下する問題がある。特に発泡性ポリスチレン系樹脂粒子を使用する、いわゆるビーズ法により製造された発泡成形体では、発泡粒子間の間隙が十分に埋まりにくいため、表面平滑性を向上させて印刷面を美麗にすることが求められている。   In recent years, in fish boxes and agricultural boxes made of polystyrene resin foam molded products, there are many cases where printing is directly performed on the surface of the foam molded products, and foam molded products having excellent surface smoothness have been demanded. It was. When printing directly on the surface in this way, if the surface of the foamed molded product has irregularities, the concave portions remain white without being printed, and the appearance of the printed appearance is degraded. In particular, in foamed molded articles produced by the so-called bead method using expandable polystyrene resin particles, it is difficult to sufficiently fill the gaps between the expanded particles, so that the surface smoothness can be improved and the printed surface can be made beautiful. It has been demanded.

従来から、発泡成形体の表面平滑性の向上を目的として、特許文献1(特開昭58−222121号公報)、特許文献2(特開昭61−214544号公報)、特許文献3(特開昭62−11740号公報)、特許文献4(特開昭63−69844号公報)、特許文献5(特開平1−299841号公報)及び特許文献6(特開平1−299843号公報)には、発泡剤を含浸した発泡性ポリスチレン系樹脂粒子の表面に表皮部を侵食する表面添加物を塗布することで、表層部に非発泡層を設ける方法が記載されている。   Conventionally, Patent Document 1 (Japanese Patent Laid-Open No. 58-222121), Patent Document 2 (Japanese Patent Laid-Open No. 61-214544), and Patent Document 3 (Japanese Patent Laid-Open No. 61-214544) have been proposed for the purpose of improving the surface smoothness of foamed molded products. In Japanese Patent Laid-Open No. 62-11740), Patent Document 4 (Japanese Patent Laid-Open No. 63-69844), Patent Document 5 (Japanese Patent Laid-Open No. 1-299841) and Patent Document 6 (Japanese Patent Laid-Open No. 1-299843), A method is described in which a non-foamed layer is provided on a surface layer portion by applying a surface additive that erodes the skin portion to the surface of expandable polystyrene resin particles impregnated with a foaming agent.

また、特許文献7(特開平4−258646号公報)には、粒子表面層に特定量のシリコーンオイルを含有させる方法が記載されている。
更に特許文献8(特願平6−280386号公報)には、末端にラジカル重合可能な二重結合を有するマクロモノマー及びスチレン系単量体を含む単量体成分を添加することで表面平滑性に優れたポリスチレン系樹脂発泡成形体を得る方法が開示されている。
Patent Document 7 (Japanese Patent Laid-Open No. 4-258646) describes a method in which a specific amount of silicone oil is contained in the particle surface layer.
Further, Patent Document 8 (Japanese Patent Application No. 6-280386) discloses surface smoothness by adding a monomer component including a macromonomer having a double bond capable of radical polymerization at the terminal and a styrene monomer. Discloses a method for obtaining a polystyrene-based resin foam molded article excellent in the above.

特開昭58−222121号公報JP 58-222121 A 特開昭61−214544号公報Japanese Patent Laid-Open No. 61-214544 特開昭62−11740号公報Japanese Patent Laid-Open No. 62-11740 特開昭63−69844号公報Japanese Unexamined Patent Publication No. 63-69844 特開平1−299841号公報JP-A-1-299984 特開平1−299843号公報JP-A-1-299984 特開平4−258646号公報JP-A-4-258646 特開平6−280386号公報JP-A-6-280386

しかし、特許文献1〜6に記載された方法では、発泡剤が逸散しやすくなり、発泡性ポリスチレン系樹脂粒子の保管可能期間が短くなるという欠点がある。
また、特許文献7に開示された方法でも発泡性ポリスチレン系樹脂粒子の使用可能期間が短くなるという問題がある。
更に特許文献8に開示される方法でも、十分な表面平滑性は得られなかった。
However, the methods described in Patent Documents 1 to 6 have a drawback that the foaming agent is easily dissipated and the storage period of the expandable polystyrene resin particles is shortened.
Further, even the method disclosed in Patent Document 7 has a problem that the usable period of the expandable polystyrene resin particles is shortened.
Furthermore, even with the method disclosed in Patent Document 8, sufficient surface smoothness could not be obtained.

本発明は、以上のような問題をすべて解決するものであり、発泡剤の逸散等の問題が長期にわたって生じず、発泡成形品の表面平滑性に優れるポリスチレン系樹脂発泡成形体とその製造方法を提供するものである。   The present invention solves all of the above problems, and does not cause problems such as dissipation of the foaming agent over a long period of time, and a polystyrene-based resin foam molded article having excellent surface smoothness of a foam molded article and a method for producing the same Is to provide.

前記目的を達成するため、本発明は、アクリル酸エステルとスチレン系単量体との共重合体を含有する発泡性ポリスチレン系樹脂粒子を予備発泡し、その予備発泡粒子を型内発泡成形して得られたポリスチレン系樹脂発泡成形体であって、
前記発泡性ポリスチレン系樹脂粒子は、ATR法赤外分光分析により発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)とATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、(A)<(B)、且つ(A)が0.05〜0.50の範囲である関係を満たし、
密度が0.010〜0.033g/cmの範囲であり、発泡成形体の表面において10cm角の範囲で1mm角の空隙が5個以下である表面平滑性を有する表面平滑性ポリスチレン系樹脂発泡成形体を提供する。
In order to achieve the above object, the present invention pre-foams expandable polystyrene resin particles containing a copolymer of an acrylate ester and a styrene monomer, and foams the pre-foamed particles in-mold. The obtained polystyrene-based resin foam molded article,
The expandable polystyrene resin particles, of the ATR method infrared spectroscopy by infrared spectra were obtained by analyzing the surface of the expandable polystyrene resin particles, the absorbance at the absorbance D1730 and 1600 cm -1 in 1730 cm -1 Of the infrared spectrum obtained by determining D1600 and analyzing the central part of the expandable polystyrene resin particles by the absorbance ratio (A) calculated from D1730 / D1600 and ATR infrared spectroscopy, 1730 cm −1 Absorbance D1730 at 1600 cm −1 and absorbance D1600 at 1600 cm −1 , and the absorbance ratio (B) calculated from D1730 / D1600 is (A) <(B), and (A) is 0.05-0. Satisfy a relationship that is in the range of 50,
Surface smooth polystyrene resin foam having a surface smoothness with a density of 0.010 to 0.033 g / cm 3 and 5 or less 1 mm square voids in a 10 cm square range on the surface of the foam molded article A molded body is provided.

本発明の表面平滑性ポリスチレン系樹脂発泡成形体において、吸光度比(B)が0.20〜0.60の範囲内であることが好ましい。   In the surface smooth polystyrene resin foam molded article of the present invention, the absorbance ratio (B) is preferably in the range of 0.20 to 0.60.

また本発明は、
(1)ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0〜80.0質量部とアクリル酸エステル系単量体2.0〜12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第1重合工程と、
(2)次いで、ポリスチレン系種粒子の重合転化率が85〜95質量%の範囲で該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、
(3)第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させて発泡性ポリスチレン系樹脂粒子を得る工程と、
(4)前記発泡性ポリスチレン系樹脂粒子を嵩密度が0.010〜0.033g/cmの範囲となるように加熱し予備発泡して予備発泡粒子を得る工程、
(5)前記予備発泡粒子を成形型のキャビティ内に充填して加熱し型内発泡成形を行って請求項1又は2に記載の表面平滑性ポリスチレン系樹脂発泡成形体を得る工程と、
を有する表面平滑性ポリスチレン系樹脂発泡成形体の製造方法を提供する。
The present invention also provides
(1) In a dispersion obtained by dispersing polystyrene resin seed particles in water, 7.0 to 80.0 parts by mass of a styrene monomer and an acrylate ester system with respect to 100 parts by mass of the polystyrene resin seed particles. A first polymerization step of supplying 2.0 to 12.0 parts by mass of monomers, and absorbing and polymerizing these monomers into seed particles to grow polystyrene resin particles;
(2) Next, only a styrene monomer is supplied into the dispersion in a polymerization conversion ratio of the polystyrene seed particles in the range of 85 to 95% by mass, and this is absorbed into the seed particles and polymerized to obtain a polystyrene resin. A second polymerization step for growing the particles;
(3) After producing the polystyrene resin particles by performing the second polymerization step, or by impregnating a foaming agent during the growth of the polystyrene resin particles to obtain expandable polystyrene resin particles;
(4) A step of heating the expandable polystyrene resin particles so that the bulk density is in the range of 0.010 to 0.033 g / cm 3 and pre-expanding to obtain pre-expanded particles;
(5) The step of filling the pre-expanded particles in a cavity of a mold and heating to perform in-mold foam molding to obtain a surface smooth polystyrene resin foam molded article according to claim 1 or 2,
A method for producing a surface-smooth polystyrene-based resin foam-molded article having the following is provided.

本発明によれば、発泡性ポリスチレン系樹脂粒子の使用可能期間が短くならず、表面平滑性に優れた発泡成形体が得られ、発泡成形体表面に直接印刷しても、粒子間の空隙が少ない為、美麗な印刷面が得られる。   According to the present invention, the usable period of the expandable polystyrene resin particles is not shortened, and a foamed molded article having excellent surface smoothness can be obtained. Because there are few, a beautiful printed surface is obtained.

ATR法赤外分光分析による発泡性ポリスチレン系樹脂粒子の吸光度比の測定において、発泡性ポリスチレン系樹脂粒子の表面の吸光度測定位置を示す概略図である。It is the schematic which shows the light absorbency measurement position of the surface of an expandable polystyrene resin particle in the measurement of the absorbance ratio of an expandable polystyrene resin particle by ATR method infrared spectroscopy. ATR法赤外分光分析による発泡性ポリスチレン系樹脂粒子の吸光度比の測定において、発泡性ポリスチレン系樹脂粒子の中心部の吸光度測定位置を示す概略図である。It is the schematic which shows the light absorbency measurement position of the center part of an expandable polystyrene resin particle in the measurement of the absorbance ratio of an expandable polystyrene resin particle by ATR method infrared spectroscopy.

本発明の表面平滑性ポリスチレン系樹脂発泡成形体の製造方法は、ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0〜80.0質量部とアクリル酸エステル系単量体2.0〜12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第1重合工程と、次いで、ポリスチレン系種粒子の重合転化率が85〜95質量%の範囲で該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させて発泡性ポリスチレン系樹脂粒子を得る工程と、前記発泡性ポリスチレン系樹脂粒子を嵩密度が0.010〜0.033g/cmの範囲となるように加熱し予備発泡して予備発泡粒子を得る工程と、前記予備発泡粒子を成形型のキャビティ内に充填して加熱し型内発泡成形を行って表面平滑性ポリスチレン系樹脂発泡成形体を得る工程とを有することを特徴としている。 The method for producing a surface smooth polystyrene resin foam molded article of the present invention comprises a styrene monomer in a dispersion obtained by dispersing polystyrene resin seed particles in water with respect to 100 parts by mass of polystyrene resin seed particles. 7.0 to 80.0 parts by mass and 2.0 to 12.0 parts by mass of an acrylate ester monomer are supplied, and these monomers are absorbed and polymerized by seed particles to obtain polystyrene resin particles. The first polymerization step to be grown, and then supplying only the styrene monomer into the dispersion in the range of the polymerization conversion rate of polystyrene seed particles of 85 to 95% by mass, and absorbing and polymerizing this into the seed particles A second polymerization step for growing polystyrene resin particles, and after producing the polystyrene resin particles by performing the second polymerization step or by impregnating a foaming agent during the growth of the polystyrene resin particles, Obtaining a down-based resin particles, a step of obtaining pre-expanded particles the expandable polystyrene resin particles by heating the pre-expanded to a bulk density in the range of 0.010~0.033g / cm 3, A step of filling the pre-expanded particles in a cavity of a mold and heating to perform in-mold foam molding to obtain a surface smooth polystyrene-based resin foam molded article.

本発明の製造方法において、ポリスチレン系樹脂種粒子(以下、種粒子と略記する)の材料であるポリスチレン系樹脂としては、スチレン又はスチレン誘導体の単独または共重合体が挙げられる。ここで、スチレン誘導体としては、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。更に、前記ポリスチレン系樹脂としては、前記スチレン系モノマー成分を主成分とすれば、前記スチレン系モノマーと共重合可能なビニルモノマーを併用した共重合体であってもよく、このようなビニルモノマーとしては、例えば、o−ジビニルベンゼン、m−ジビニルベンゼン、p−ジビニルベンゼン等のジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート等の多官能性モノマー;α−メチルスチレン、(メタ)アクリロニトリル、メチル(メタ)アクリレート等が挙げられ、多官能性モノマーが好ましく、エチレングリコールジ(メタ)アクリレート、nが4〜16のポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼンがより好ましく、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレートが特に好ましい。なお、前記スチレンと共重合可能なモノマーは単独で用いられても併用されてもよい。   In the production method of the present invention, examples of the polystyrene resin that is a material of polystyrene resin seed particles (hereinafter abbreviated as seed particles) include styrene or a styrene derivative alone or a copolymer. Here, examples of the styrene derivative include α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, and bromostyrene. Further, the polystyrene resin may be a copolymer using a vinyl monomer copolymerizable with the styrene monomer as long as the styrene monomer component is a main component. Is, for example, divinylbenzene such as o-divinylbenzene, m-divinylbenzene, and p-divinylbenzene, and alkylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate. Functional monomer; α-methylstyrene, (meth) acrylonitrile, methyl (meth) acrylate, and the like can be mentioned, and polyfunctional monomers are preferable, ethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) having n of 4 to 16 ) Acrylate, di Nirubenzen more preferably, divinylbenzene, ethylene glycol di (meth) acrylate are particularly preferred. In addition, the monomer copolymerizable with the styrene may be used alone or in combination.

また、種粒子は一部、または全部にポリスチレン系樹脂回収品を用いることができる。更に種粒子の粒径は作製する発泡性ポリスチレン系樹脂粒子の平均粒子径等に応じて適宜調整でき、例えば平均粒子径が1.0mmの発泡性ポリスチレン系樹脂粒子を作製する場合には平均粒子径が0.4〜0.7mm程度の種粒子を用いることが好ましい。更に種粒子の重量平均分子量は特に限定されないが15万〜70万が好ましく、更に好ましくは20万〜50万である。   In addition, a part of or all of the seed particles may be a polystyrene resin recovered product. Furthermore, the particle diameter of the seed particles can be adjusted as appropriate according to the average particle diameter of the expandable polystyrene resin particles to be produced. For example, when producing expandable polystyrene resin particles having an average particle diameter of 1.0 mm, the average particles It is preferable to use seed particles having a diameter of about 0.4 to 0.7 mm. Further, the weight average molecular weight of the seed particles is not particularly limited, but is preferably 150,000 to 700,000, more preferably 200,000 to 500,000.

本発明の製造方法に使用するスチレン系単量体としては、スチレン、またはスチレン誘導体が挙げられる。ここで、スチレン誘導体としては、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられるが、これらの中でもスチレンが好ましい。   Examples of the styrene monomer used in the production method of the present invention include styrene and styrene derivatives. Here, examples of the styrene derivative include α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and the like. Among these, styrene is preferable.

本発明の製造方法に使用するアクリル酸エステル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸エチルヘキシル、アクリル酸ヘキシル等が挙げられ、これらの中でもアクリル酸エチル、アクリル酸ブチル、アクリル酸エチルヘキシルが好ましい。   Examples of the acrylate monomer used in the production method of the present invention include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate, ethyl hexyl acrylate, hexyl acrylate, and the like. Among these, ethyl acrylate, butyl acrylate, and ethylhexyl acrylate are preferable.

第1重合工程に用いられるスチレン系単量体の量は、種粒子100質量部に対して、7.0〜80.0質量部の範囲とする。7.0質量部未満の場合は成形時の耐熱性が低下し、80.0質量部を超えると発泡性が低下する。   The amount of the styrene monomer used in the first polymerization step is in the range of 7.0 to 80.0 parts by mass with respect to 100 parts by mass of the seed particles. When the amount is less than 7.0 parts by mass, the heat resistance during molding decreases, and when the amount exceeds 80.0 parts by mass, the foamability decreases.

また、第1重合工程で使用するアクリル酸エステル系単量体の量は、種粒子100質量部に対して2.0〜12.0質量部とする。2.0質量部未満では発泡性に劣り、12.0質量部を超えると成形品の強度が低下する。   Moreover, the quantity of the acrylate-type monomer used at a 1st superposition | polymerization process shall be 2.0-12.0 mass parts with respect to 100 mass parts of seed particles. If it is less than 2.0 parts by mass, the foamability is poor, and if it exceeds 12.0 parts by mass, the strength of the molded product is lowered.

本発明の第2重合工程において使用するスチレン系単量体としては、第1重合工程で使用可能なスチレン系単量体を使用できる。   As the styrene monomer used in the second polymerization step of the present invention, a styrene monomer usable in the first polymerization step can be used.

また、本発明の第2重合工程においては、スチレン系単量体の添加開始時期を第1重合工程で生成する種粒子の重合転化率で制御する。詳しくは第1重合工程で生成した種粒子の重合転化率が85〜95質量%、更に好ましくは86〜94質量%の範囲にあるときに、第2重合工程で使用するスチレン系単量体を反応系に添加を開始し、種粒子に吸収、重合させることを特徴としている。重合転化率が85質量%以下では、成形時の外観が劣り、良品を得るには成形時の水蒸気圧力を高くしなければならない。一方、重合転化率が95質量%以上である場合には、予備発泡時に粒子間の結合が多くなり、生産性が低下する問題がある。   Moreover, in the 2nd polymerization process of this invention, the addition start time of a styrene-type monomer is controlled by the polymerization conversion rate of the seed particle produced | generated at a 1st polymerization process. Specifically, when the polymerization conversion rate of the seed particles produced in the first polymerization step is in the range of 85 to 95% by mass, more preferably in the range of 86 to 94% by mass, the styrene monomer used in the second polymerization step is selected. Addition to the reaction system is started, and the seed particles are absorbed and polymerized. When the polymerization conversion is 85% by mass or less, the appearance at the time of molding is poor, and in order to obtain a good product, the water vapor pressure at the time of molding must be increased. On the other hand, when the polymerization conversion rate is 95% by mass or more, there is a problem that the bond between particles increases at the time of preliminary foaming, and the productivity is lowered.

本発明において発泡性ポリスチレン系樹脂粒子中に含有させる発泡剤は、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されず、例えばイソブタン、n−ブタン、イソペンタン、ネオペンタン等の炭素数5以下の脂肪族炭化水素等の揮発性発泡剤(物理型発泡剤)が挙げられ、ブタン系発泡剤が好ましい。   In the present invention, the foaming agent to be contained in the expandable polystyrene resin particles is not particularly limited as long as it is conventionally used for foaming polystyrene resins. For example, isobutane, n-butane, isopentane, neopentane, etc. Volatile foaming agents (physical type foaming agents) such as aliphatic hydrocarbons having 5 or less carbon atoms, and butane-based foaming agents are preferred.

更に、前記発泡剤の発泡性ポリスチレン系樹脂粒子中における含有量は、少ないと、発泡性ポリスチレン系樹脂粒子から低密度のポリスチレン系樹脂発泡成形体を得ることができないと共に成形時の二次発泡力を高める効果が得られないためにポリスチレン系樹脂発泡成形体の外観性が低下し、又、多いと、発泡性ポリスチレン系樹脂粒子を用いたポリスチレン系樹脂発泡成形体の製造工程における冷却工程に要する時間が長くなって生産性が低下するので、2.5〜5.0質量%に限定され、2.7〜4.8質量%が好ましい。   Furthermore, if the content of the foaming agent in the expandable polystyrene resin particles is small, a low-density polystyrene resin foam molded product cannot be obtained from the expandable polystyrene resin particles and the secondary foaming force during molding As a result, the appearance of the polystyrene-based resin foam molded article is deteriorated, and if it is large, the cooling process in the manufacturing process of the polystyrene-based resin foam molded article using the expandable polystyrene resin particles is required. Since time becomes long and productivity falls, it is limited to 2.5-5.0 mass%, and 2.7-4.8 mass% is preferable.

なお、前記発泡性ポリスチレン系樹脂粒子中における発泡剤の含有量は、発泡性ポリスチレン系樹脂粒子を150℃の熱分解炉に入れ、この熱分解炉で発生した炭化水素量をガスクロマトグラフにて測定することができる。   The content of the foaming agent in the expandable polystyrene resin particles is determined by placing the expandable polystyrene resin particles in a 150 ° C. pyrolysis furnace and measuring the amount of hydrocarbon generated in the pyrolysis furnace with a gas chromatograph. can do.

また、前記発泡性ポリスチレン系樹脂粒子には発泡助剤も含有されているが、この発泡助剤としては、従来から発泡性ポリスチレン系樹脂粒子に用いられているものであれば、特に限定されず、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等の一気圧下における沸点が200℃以下の溶剤が挙げられる。   The expandable polystyrene resin particles also contain a foaming aid, but the foaming aid is not particularly limited as long as it is conventionally used for expandable polystyrene resin particles. Examples thereof include aromatic organic compounds such as styrene, toluene, ethylbenzene and xylene, cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane, solvents having a boiling point of 200 ° C. or less under one atmospheric pressure such as ethyl acetate and butyl acetate. It is done.

そして、前記発泡助剤の発泡性ポリスチレン系樹脂粒子中における含有量は、少ないと、ポリスチレン系樹脂の可塑化効果が発現せず、又、多いと、発泡性ポリスチレン系樹脂粒子を発泡させて得られるポリスチレン系樹脂発泡成形体に収縮や溶けが発生して外観性が低下したり或いは発泡性ポリスチレン系樹脂粒子を用いたポリスチレン系樹脂発泡成形体の製造工程における冷却工程に要する時間が長くなるので、1.0〜2.5質量%に限定され、1.2〜2.2質量%が好ましい。   When the content of the foaming aid in the expandable polystyrene resin particles is small, the plasticizing effect of the polystyrene resin is not expressed. When the content is large, the foaming polystyrene resin particles are foamed. As the shrinkage and dissolution occur in the polystyrene resin foam molded product, the appearance is reduced, or the time required for the cooling process in the manufacturing process of the polystyrene resin foam molded product using the expandable polystyrene resin particles becomes longer. 1.0 to 2.5 mass%, and 1.2 to 2.2 mass% is preferable.

なお、前記発泡性ポリスチレン系樹脂粒子中における発泡助剤の含有量は、発泡性ポリスチレン系樹脂粒子をジメチルホルムアミドに溶解させると共に内部標準液としてシクロペンタノールを加えてガスクロマトグラフにて測定することができる。   The content of the foaming aid in the expandable polystyrene resin particles can be measured with a gas chromatograph by dissolving the expandable polystyrene resin particles in dimethylformamide and adding cyclopentanol as an internal standard solution. it can.

更に、発泡性ポリスチレン系樹脂粒子には、加熱発泡時に用いられる水蒸気の圧力が低くても良好な発泡成形性を維持させるために、1気圧下における沸点が200℃を超える可塑剤、例えば、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、グリセリンジアセトモノステアレート等のグリセリン脂肪酸エステル、ジイソブチルアジペート等のアジピン酸エステル、ヤシ油等の可塑剤が2.0質量%未満含有されていてもよい。   Further, in the expandable polystyrene resin particles, a plasticizer having a boiling point of more than 200 ° C. under 1 atm, such as phthalate, is used to maintain good foam moldability even when the pressure of water vapor used at the time of heat foaming is low. It contains less than 2.0% by mass of plasticizers such as acid esters, glycerin diacetomonolaurate, glycerin tristearate, glycerin fatty acid esters such as glycerin diacetomonostearate, adipic acid esters such as diisobutyl adipate, and coconut oil. Also good.

なお、前記発泡性ポリスチレン系樹脂粒子には、物性を損なわない範囲内において、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよく、又、ジンクステアレート等の粉末状金属石鹸類を前記発泡性スチレン樹脂粒子の表面に塗布しておけば、発泡性ポリスチレン系樹脂粒子の予備発泡工程においてポリスチレン系樹脂予備発泡粒子同士の結合を減少させることができて好ましい。
前記の難燃剤としては、ポリスチレン系樹脂粒子中に含浸させる条件下において他の媒体に溶解させない状態で存在した場合に粉末状であれば、特に限定されず、ヘキサブロモシクロドデカン、テトラブロモシクロオクタン、テトラブロモブタン、ヘキサブロモシクロヘキサンなどの臭素化脂肪族炭化水素系化合物、テトラブロモビスフェノールA、テトラブロモビスフェノールF、2,4,6−トリブロモフェノールなどの臭素化フェノール類、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ジグリシジルエーテルなどの臭素化フェノール誘導体などが挙げられ、臭素化脂肪族炭化水素系化合物が好ましく、テトラブロモシクロオクタン(以下、TBCOと記す。)がより好ましい。
The expandable polystyrene resin particles have additives such as a binding inhibitor, a bubble regulator, a crosslinking agent, a filler, a flame retardant, a flame retardant aid, a lubricant, and a colorant, as long as the physical properties are not impaired. In addition, if a powdered metal soap such as zinc stearate is applied to the surface of the expandable styrene resin particles, a polystyrene resin preliminary is added in the pre-expanding step of the expandable polystyrene resin particles. This is preferable because the bonding between the expanded particles can be reduced.
The flame retardant is not particularly limited as long as it is in a powder form when it is not dissolved in another medium under the conditions of impregnation in polystyrene resin particles, and hexabromocyclododecane, tetrabromocyclooctane. Brominated aliphatic hydrocarbon compounds such as tetrabromobutane and hexabromocyclohexane, brominated phenols such as tetrabromobisphenol A, tetrabromobisphenol F and 2,4,6-tribromophenol, tetrabromobisphenol A- Brominated phenol derivatives such as bis (2,3-dibromopropyl ether), tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-diglycidyl ether, etc. Brominated aliphatic charcoal Hydride compounds are preferable, tetrabromobisphenol cyclooctane (hereinafter, referred to as TbCo.) Is more preferred.

本発明の製造方法で使用する重合開始剤としては、従来からスチレン系モノマーの重合に用いられているものであれば、特に限定されず、例えば、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサノエート、ラウリルパーオキサイド、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3、3、5−トリメチルヘキサノエート、ジーt−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物等が挙げられ、得られるポリスチレン系樹脂のZ平均分子量Mzや重量平均分子量Mwを調整して残存モノマーを低減させるために、10時間の半減期を得るための分解温度が80〜120℃にある異なった二種以上の重合開始剤を併用することが好ましい。なお、前記重合開始剤は単独で用いられても二種以上が併用されてもよい。   The polymerization initiator used in the production method of the present invention is not particularly limited as long as it is conventionally used for the polymerization of styrene monomers. For example, benzoyl peroxide, t-butylperoxybenzoate, t -Butyl peroxy-2-ethylhexanoate, lauryl peroxide, t-butyl peroxide, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t Organic peroxides such as butyl peroxybutane, t-butyl peroxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, azobisisobutyronitrile, azobisdimethylvalero Examples of the resulting police include azo compounds such as nitriles Two or more different polymerizations having a decomposition temperature of 80 to 120 ° C. for obtaining a half-life of 10 hours in order to reduce the residual monomer by adjusting the Z-average molecular weight Mz and the weight-average molecular weight Mw of the len-based resin It is preferable to use an initiator in combination. In addition, the said polymerization initiator may be used independently or 2 or more types may be used together.

更に、本発明の製造方法において、スチレン系単量体の小滴及び種粒子を水性媒体中に分散させる為に用いられる懸濁安定剤としては、従来からスチレン系モノマーの懸濁重合に用いられているものであれば、特に限定されず、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子、第三リン酸カルシウム、ピロリン酸マグネシウム等の難溶性無機化合物等が挙げられる。そして、前記懸濁安定剤として難溶性無機化合物を用いる場合には、アニオン界面活性剤を併用するのが好ましく、このようなアニオン界面活性剤としては、例えば、脂肪酸石鹸、N−アシルアミノ酸またはその塩、アルキルエーテルカルボン酸塩などのカルボン酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルフォン酸塩等のスルフォン酸塩;高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩等が挙げられる。   Furthermore, in the production method of the present invention, the suspension stabilizer used for dispersing styrene monomer droplets and seed particles in an aqueous medium is conventionally used for suspension polymerization of styrene monomers. If it is, it will not specifically limit, For example, water-soluble polymers, such as polyvinyl alcohol, methylcellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly soluble inorganic compounds, such as tricalcium phosphate and magnesium pyrophosphate, etc. are mentioned. And when using a sparingly soluble inorganic compound as said suspension stabilizer, it is preferable to use an anionic surfactant together, and as such an anionic surfactant, for example, fatty acid soap, N-acylamino acid or its Salts, carboxylates such as alkyl ether carboxylates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, dialkyl sulfosuccinates, alkyl sulfoacetates, sulfonates such as α-olefin sulfonates; higher alcohol sulfuric acid Ester salts, secondary higher alcohol sulfates, sulfates such as alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, etc .; phosphates such as alkyl ether phosphates, alkyl phosphates, etc. Is mentioned.

前記ポリスチレン系樹脂粒子は球状であるのが好ましく、該樹脂粒子の粒径は、成形型内への充填性等を考慮すると、0.3〜2.0mmが好ましく、0.3〜1.4mmがより好ましい。   The polystyrene resin particles are preferably spherical, and the particle size of the resin particles is preferably 0.3 to 2.0 mm, considering the filling properties in the mold, etc., and 0.3 to 1.4 mm. Is more preferable.

なお、前記ポリスチレン系樹脂粒子に発泡剤及び発泡助剤を含浸させる際の温度は、低いと、ポリスチレン系樹脂粒子に発泡剤及び発泡助剤を含浸させるのに要する時間が長くなって生産効率が低下することがあり、又、高いと、ポリスチレン系樹脂粒子同士が融着して結合粒が発生することがあるので、60〜120℃が好ましく、70〜100℃がより好ましい。   In addition, if the temperature at which the polystyrene resin particles are impregnated with the foaming agent and the foaming aid is low, the time required for impregnating the polystyrene resin particles with the foaming agent and the foaming aid becomes long and the production efficiency is increased. When it is too high, polystyrene resin particles may be fused together to form a bonded particle. Therefore, 60 to 120 ° C. is preferable, and 70 to 100 ° C. is more preferable.

次に、前記製造方法で得られた発泡性ポリスチレン系樹脂粒子について説明する。
前記製造方法で得られた発泡性ポリスチレン系樹脂粒子は、スチレン単量体とアクリル酸エステル系単量体との共重合体を含有し、
ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)とATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、(A)<(B)であり、且つ(A)が0.05〜0.50の範囲である関係を満たすことを特徴としている。
Next, the expandable polystyrene resin particles obtained by the production method will be described.
The expandable polystyrene resin particles obtained by the production method contain a copolymer of a styrene monomer and an acrylate monomer,
ATR method infrared spectroscopy of the infrared spectrum which is obtained by analyzing the surface of the expandable polystyrene resin particles by, obtains the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730cm -1, D1730 / D1600 from the infrared spectrum which is obtained by analyzing the central portion of the expandable polystyrene resin particles by absorbance ratio calculated as (a) ATR method infrared spectroscopy from the absorbance at 1730cm -1 D1730 and 1600 cm -1 Absorbance ratio D1600 is calculated, and the absorbance ratio (B) calculated from D1730 / D1600 is (A) <(B), and (A) is in the range of 0.05 to 0.50. It is characterized by satisfying.

ATR法赤外分光分析とは、全反射吸収を利用する1回反射型ATR法により赤外吸収スペクトルを測定する分析方法である。
この分析方法は、高い屈折率を持つATRプリズムを試料に密着させ、ATRプリズムを通して赤外線を試料に照射し、ATRプリズムからの出射光を分光分析する方法である。ATR法赤外分光分析は、試料とATRプリズムを密着させるだけでスペクトルを測定できるという簡便さ、深さ数μmまでの表面分析が可能である等の理由で高分子材料等の有機物をはじめ、種々の物質の表面分析に広く利用されている。
The ATR infrared spectroscopic analysis is an analysis method in which an infrared absorption spectrum is measured by a single reflection type ATR method using total reflection absorption.
This analysis method is a method in which an ATR prism having a high refractive index is brought into close contact with a sample, infrared light is irradiated to the sample through the ATR prism, and light emitted from the ATR prism is spectrally analyzed. ATR method infrared spectroscopic analysis includes organic substances such as polymer materials for the reason that the spectrum can be measured simply by bringing the sample and the ATR prism into close contact, and the surface analysis up to a depth of several μm is possible. It is widely used for surface analysis of various substances.

本発明では、ATR法赤外分光分析により、発泡性ポリスチレン系樹脂粒子の表面と中心部とを分析し、得られた赤外吸収スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求める。そして前記各吸光度の値から樹脂粒子の表面の吸光度比(A)と粒子の中心部の吸光度比(B)とを算出する。
なお、赤外吸収スペクトルから得られる1600cm−1での吸光度D1600は、ポリスチレン系樹脂に含まれるベンゼン環の面内振動に由来する1600cm−1付近に現れるピーク高さをいう。
また、赤外吸収スペクトルから得られる1730cm−1での吸光度D1730は、アクリル酸エステル系樹脂に含まれるエステル基C=0間の伸縮振動に由来する1730cm−1付近に現れるピーク高さをいう。
In the present invention, by ATR method infrared spectroscopy to analyze the surface and the center portion of the expandable polystyrene resin particles, of the obtained infrared absorption spectrum, absorbance D1730 and 1600 cm -1 in 1730 cm -1 The absorbance D1600 is determined. Then, the absorbance ratio (A) on the surface of the resin particle and the absorbance ratio (B) at the center of the particle are calculated from the respective absorbance values.
In addition, the light absorbency D1600 in 1600cm < -1 > obtained from an infrared absorption spectrum says the peak height which appears in the 1600cm < -1 > vicinity derived from the in-plane vibration of the benzene ring contained in a polystyrene-type resin.
Further, the absorbance D 1730 at 1730 cm −1 obtained from the infrared absorption spectrum refers to a peak height that appears in the vicinity of 1730 cm −1 derived from stretching vibration between ester groups C = 0 contained in the acrylate resin.

また表面の吸光度比は、図1に示すように発泡性ポリスチレン系樹脂粒子1の表面AについてATR法赤外分光分析により測定して求めた値であり、また中心部の吸光度比は、図2に示すように発泡性ポリスチレン系樹脂粒子1をその中心を通って切断した断面の中心部BについてATR法赤外分光分析により測定して求めた値である。   Further, the absorbance ratio of the surface is a value obtained by measuring the surface A of the expandable polystyrene resin particle 1 by ATR infrared spectroscopy as shown in FIG. 1, and the absorbance ratio at the center is shown in FIG. As shown in FIG. 4, the value is obtained by measuring the central part B of the cross section obtained by cutting the expandable polystyrene resin particles 1 through the center thereof by ATR infrared spectroscopy.

本発明の製造方法で得られる発泡性ポリスチレン系樹脂粒子は、前述したように算出された樹脂粒子の表面の吸光度比(A)と樹脂粒子の中心部の吸光度比(B)とが、(A)<(B)であり、且つ(A)が0.05〜0.50の範囲である、との関係を満たすことを特徴としている。
即ち、本発明の製造方法で得られる発泡性ポリスチレン系樹脂粒子は、粒子の直径方向において、含有されているスチレン−アクリル酸エステル共重合体成分の割合が、中心部で濃度が高く、表層側で低濃度となる。
The expandable polystyrene resin particles obtained by the production method of the present invention have an absorbance ratio (A) of the surface of the resin particles calculated as described above and an absorbance ratio (B) of the center part of the resin particles of (A ) <(B) and (A) is in the range of 0.05 to 0.50.
That is, in the expandable polystyrene resin particles obtained by the production method of the present invention, the ratio of the styrene-acrylic acid ester copolymer component contained in the particle diameter direction is high at the center, and the surface layer side With low concentration.

本発明の発泡性ポリスチレン系樹脂粒子は、前述したようにスチレン−アクリル酸エステル共重合体成分の分布構造を有していることから、発泡性能が高く、低密度の発泡成形体が得られ、且つ、発泡性ポリスチレン系樹脂粒子表面にも少量共重合体が存在することで低い水蒸気圧力でも外観の良好な発泡成形体が得られる。樹脂粒子の表面の吸光度比(A)と樹脂粒子の中心部の吸光度比(B)との関係((A)<(B))を満たさない場合は、得られる発泡性ポリスチレン系樹脂粒子の発泡性能が劣り、低密度の発泡成形体が得にくくなる。   Since the expandable polystyrene resin particles of the present invention have a distributed structure of the styrene-acrylate copolymer component as described above, the foaming performance is high, and a low-density foam molded product is obtained. In addition, since a small amount of copolymer is also present on the surface of the expandable polystyrene resin particles, a foamed molded article having a good appearance can be obtained even at a low water vapor pressure. When the relationship between the absorbance ratio (A) on the surface of the resin particles and the absorbance ratio (B) at the center of the resin particles ((A) <(B)) is not satisfied, foaming of the resulting expandable polystyrene resin particles The performance is inferior and it becomes difficult to obtain a low-density foam molded article.

前記表面の吸光度比(A)は、0.05〜0.50の範囲であり、0.10〜0.40の範囲がより好ましい。表面の吸光度比(A)が0.05未満であると発泡成形体の表面平滑性が低下する。また表面の吸光度比(A)が0.50を超えると予備発泡した場合に発泡粒子の結合が多くなり生産性が低下するため好ましくない。   The surface absorbance ratio (A) is in the range of 0.05 to 0.50, and more preferably in the range of 0.10 to 0.40. If the surface absorbance ratio (A) is less than 0.05, the surface smoothness of the foamed molded product is lowered. On the other hand, when the surface absorbance ratio (A) exceeds 0.50, it is not preferable because the number of bonded foam particles increases and the productivity decreases when pre-foamed.

前記中心部の吸光度比(B)は0.20〜0.60の範囲が好ましく、更に好ましくは0.30〜0.60の範囲である。中心部の吸光度比(B)が0.20未満であると発泡性ポリスチレン系樹脂粒子の発泡性能が劣り、揮発成分を多く使用する必要がある。また中心部の吸光度比(B)が0.60を超えると成形時に収縮が大きくなりやすく、発泡成形体の強度が低下する。   The absorbance ratio (B) at the center is preferably in the range of 0.20 to 0.60, more preferably in the range of 0.30 to 0.60. If the absorbance ratio (B) at the center is less than 0.20, the foaming performance of the expandable polystyrene resin particles is inferior, and it is necessary to use a large amount of volatile components. On the other hand, if the absorbance ratio (B) at the center exceeds 0.60, the shrinkage tends to increase at the time of molding, and the strength of the foamed molded product decreases.

なお、本発明の表面平滑性ポリスチレン系樹脂発泡粒子に用いる発泡性ポリスチレン系樹脂粒子は、前述した本発明に係る製造方法により効率良く製造することができるが、製造方法はそれに限定されない。   The expandable polystyrene resin particles used for the surface smooth polystyrene resin foam particles of the present invention can be efficiently manufactured by the above-described manufacturing method according to the present invention, but the manufacturing method is not limited thereto.

前述した本発明に係る製造方法により得られた発泡性ポリスチレン系樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、予備発泡粒子とする。この予備発泡粒子は、製造するべき発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明に係る製造方法において、その嵩密度は0.0100〜0.033g/cmの範囲とし、0.0125〜0.020g/cmの範囲が好ましい。 The expandable polystyrene resin particles obtained by the production method according to the present invention described above are pre-foamed by heating by steam heating or the like using a well-known apparatus and method in the field of foamed resin molding production. And The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the foamed molded product to be manufactured. In the production method according to the present invention, the bulk density in the range of 0.0100~0.033g / cm 3, a range of 0.0125~0.020g / cm 3 are preferred.

なお、本発明においてポリスチレン系樹脂予備発泡粒子の嵩密度とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<予備発泡粒子の嵩密度>
先ず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積VcmをJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて予備発泡粒子の嵩密度を測定する。
嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
In the present invention, the bulk density of the polystyrene resin pre-expanded particles refers to those measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
First, Wg was sampled from pre-expanded particles as a measurement sample, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was measured using an apparent density measuring instrument based on JIS K6911. The bulk density of the pre-expanded particles is measured based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)

前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形して発泡成形体を製造する。これによって本発明の表面平滑性ポリスチレン系樹脂発泡成形体が得られる。   The pre-foamed particles are foam-molded by filling the pre-foamed particles into a cavity of a molding die using a well-known apparatus and technique in the field of foamed resin moldings, and heating by steam heating etc. Manufacture the body. Thus, the surface smooth polystyrene resin foam molded article of the present invention is obtained.

本発明の表面平滑性ポリスチレン系樹脂発泡成形体は、0.010〜0.033g/cmの範囲の密度であり、0.0125〜0.020g/cmの範囲が好ましい。表面平滑性ポリスチレン系樹脂発泡成形体の密度が0.010g/cm未満であると成形時に収縮が発生しやすく好ましくない。また密度が0.033g/cmを超えると発泡性ポリスチレン系樹脂粒子の使用量が多くなり好ましくない。 Surface smoothness polystyrene type resin foamed molded product of the present invention is a density in the range of 0.010~0.033g / cm 3, a range of 0.0125~0.020g / cm 3 are preferred. When the density of the surface-smooth polystyrene-based resin foam molding is less than 0.010 g / cm 3 , shrinkage tends to occur during molding, which is not preferable. On the other hand, when the density exceeds 0.033 g / cm 3 , the amount of expandable polystyrene resin particles used is undesirably increased.

なお、本発明において表面平滑性ポリスチレン系樹脂発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した密度のことである。
<発泡成形体の密度>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
In the present invention, the density of the surface-smooth polystyrene-based resin foam molding is a density measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Density of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test specimen condition adjustment and measurement specimens were cut from a sample that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C ± 2 ° C x 50% ± 5% or 27 ° C ± 2 ° C x 65% ± 5% It has been left for more than an hour.

本発明の表面平滑性ポリスチレン系樹脂発泡成形体は、発泡成形体の表面において10cm角の範囲で1mm角の空隙が5個以下である表面平滑性を有する。前記空隙が10cm角の範囲で5個を超えると、ポリスチレン系樹脂発泡成形体表面の平滑性が悪くなり、この表面に印刷を施した際に、表面の凹凸の凹部が印刷されず、明瞭で綺麗な印刷ができなくなるおそれがある。
本発明の表面平滑性ポリスチレン系樹脂発泡成形体は、前記空隙が10cm角の範囲で5個以下という表面平滑性を有するものなので、表面印刷を施した際に明瞭で綺麗な印刷をすることができ、これを食品等の包装容器として用いた場合にその商品価値を高め、購買意欲を高めることができる。
The surface smooth polystyrene-based resin foam molded article of the present invention has a surface smoothness of 5 or less 1 mm square voids in a 10 cm square range on the surface of the foam molded article. When the number of the voids exceeds 5 in the range of 10 cm square, the smoothness of the surface of the polystyrene-based resin foam molded article is deteriorated, and when the surface is printed, the concave and convex portions on the surface are not printed, and the surface is clear. There is a risk that you will not be able to print beautifully.
Since the surface smooth polystyrene-based resin foam molded article of the present invention has a surface smoothness of 5 or less within the range of 10 cm square, the surface smoothness can be printed clearly and beautifully when surface printing is performed. When this is used as a packaging container for food or the like, the value of the product can be increased and the willingness to purchase can be increased.

以下、実施例によって本発明の具体例を示すが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。また、以下の実施例、比較例において、発泡性ポリスチレン系樹脂粒子の吸光度比の結果は、発泡剤含浸前のポリスチレン系樹脂粒子の吸光度比の結果と同様であった。
以下の実施例、比較例において、種粒子の重合転化率、予備発泡時の結合量、表面平滑性及び総合評価は、次の測定方法及び評価基準により測定・評価した。
Hereinafter, specific examples of the present invention will be described by way of examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited to the following examples. In the following examples and comparative examples, the results of the absorbance ratio of the expandable polystyrene resin particles were the same as the results of the absorbance ratio of the polystyrene resin particles before impregnation with the foaming agent.
In the following examples and comparative examples, the polymerization conversion rate of seed particles, the amount of bonding at the time of preliminary foaming, surface smoothness and comprehensive evaluation were measured and evaluated by the following measuring methods and evaluation criteria.

<種粒子の重合転化率測定方法>
ポリスチレン系樹脂種粒子の重合転化率は下記の方法により求められる。
即ち、ポリスチレン系樹脂種粒子を分散液中から取り出し、該種粒子の表面に付着した水分をガーゼを用いて拭き取り除去する。
そして、該種粒子を0.08g採取し、トルエン24ミリリットル中に溶解させてトルエン溶液を作製する。次に、このトルエン溶液中に、ウイス試薬10ミリリットル、5質量%のヨウ化カリウム水溶液30ミリリットル及び1質量%のでんぷん水溶液30ミリリットルを供給し、N/40チオ硫酸ナトリウム溶液で滴定して試料の滴定数(ミリリットル)とする。なお、ウイス試薬は、氷酢酸2リットルにヨウ素8.7g及び三塩化ヨウ素7.9gを溶解してなるものである。
一方、ポリスチレン系樹脂種粒子を溶解させることなく、トルエン24ミリリットル中に、ウイス試薬10ミリリットル、5質量%のヨウ化カリウム水溶液30ミリリットル及び1質量%のでんぷん水溶液30ミリリットルを供給し、N/40チオ硫酸ナトリウム溶液で滴定してブランクの滴定数(ミリリットル)とする。
そして、ポリスチレン系樹脂種粒子中におけるスチレン系モノマー量を下記式に基づいて算出することができる。
ポリスチレン系樹脂種粒子中におけるスチレン系モノマー量A(質量%)=0.1322×(ブランクの滴定数−試料の滴定数)/試料の滴定数
重合転化率=100−A(%)
<Method of measuring polymerization conversion rate of seed particles>
The polymerization conversion rate of the polystyrene resin seed particles is obtained by the following method.
That is, the polystyrene-based resin seed particles are taken out from the dispersion, and the water adhering to the surface of the seed particles is wiped off using gauze.
Then, 0.08 g of the seed particles are collected and dissolved in 24 ml of toluene to prepare a toluene solution. Next, 10 ml of Wis reagent, 30 ml of 5% by weight potassium iodide aqueous solution and 30 ml of 1% by weight starch aqueous solution are supplied into this toluene solution, and titrated with an N / 40 sodium thiosulfate solution to prepare a sample solution. Set the drop constant (milliliter). The Wis reagent is obtained by dissolving 8.7 g of iodine and 7.9 g of iodine trichloride in 2 liters of glacial acetic acid.
On the other hand, without dissolving polystyrene resin seed particles, 10 ml of Wis reagent, 30 ml of 5% by weight potassium iodide aqueous solution and 30 ml of 1% by weight starch aqueous solution were supplied in 24 ml of toluene, and N / 40 Titrate with sodium thiosulfate solution to blank titration (in milliliters).
And the amount of styrene-type monomers in a polystyrene-type resin seed particle is computable based on a following formula.
Styrenic monomer amount A (mass%) in polystyrene resin seed particles = 0.1322 × (blank drop constant−sample drop constant) / sample drop constant Polymerization conversion rate = 100−A (%)

<吸光度比の測定>
吸光度比(D1730/D1600)は下記の要領で測定される。
即ち、無作為に選択した10個の各樹脂粒子の表面(図1中の符号A)、及び粒子を中心を通って切断した断面の中心部(図2中の符号B)について、ATR法赤外分光分析により粒子表面分析を行って赤外線吸収スペクトルを得る。
各赤外線吸収スペクトルから吸光度比(D1730/D1600)をそれぞれ算出し、表面Aについて算出した吸光度比の相加平均を吸光度比(A)とし、中心部Bについて算出した吸光度比の相加平均を吸光度比(B)とする。
吸光度D1730及び、D1600は、たとえばNicolet社から商品名「フーリエ変換赤外分光分析計 MAGMA560」で販売されている測定装置を用いて測定する。
尚、赤外吸収スペクトルから得られる1600cm−1での吸光度D1600は、ポリスチレン系樹脂に含まれるベンゼン環の面内振動に由来する1600cm−1付近に現れるピークの高さをいう。
また、赤外吸収スペクトルから得られる1730cm−1での吸光度D1730は、アクリル酸エステルに含まれるエステル基のC=0間の伸縮振動に由来する1730cm−1付近に現れるピークの高さをいう。
<Measurement of absorbance ratio>
The absorbance ratio (D1730 / D1600) is measured as follows.
That is, the ATR method red is used for the surface of each of 10 resin particles selected at random (reference A in FIG. 1) and the central portion (reference B in FIG. 2) of the cross section cut through the particle. An infrared absorption spectrum is obtained by particle surface analysis by external spectroscopic analysis.
The absorbance ratio (D1730 / D1600) was calculated from each infrared absorption spectrum, the arithmetic average of the absorbance ratio calculated for surface A was defined as the absorbance ratio (A), and the arithmetic average of the absorbance ratio calculated for center B was the absorbance. The ratio (B).
The absorbances D1730 and D1600 are measured using a measuring device sold by, for example, Nicolet Corporation under the trade name “Fourier Transform Infrared Spectrometer MAGMA 560”.
The absorbance D1600 at 1600 cm −1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 1600 cm −1 derived from the in-plane vibration of the benzene ring contained in the polystyrene resin.
Further, the absorbance D 1730 at 1730 cm −1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 1730 cm −1 derived from stretching vibration between C = 0 of the ester group contained in the acrylate ester.

<予備発泡時の結合量>
予備発泡の際に、1cmの目開きの篩を通し、篩上に残った数個の予備発泡粒子が結合したものの質量(X)を測定し、予備発泡に使用した発泡性ポリスチレン系樹脂粒子の総量(Y)に対しての割合を、以下の式により算出し、予備発泡時の結合量(%)とした。
予備発泡時の結合量(%)=(X/Y)×100
本発明において、予備発泡時の結合量が10%未満である場合を○(良好)とし、10%以上である場合を×(不良)として評価した。
<Binding amount during preliminary foaming>
At the time of pre-foaming, the mass (X) of a combination of several pre-foamed particles remaining on the sieve was measured through a sieve with 1 cm openings, and the expandable polystyrene resin particles used for pre-foaming were measured. The ratio with respect to the total amount (Y) was calculated by the following formula, and was defined as the bonding amount (%) at the time of preliminary foaming.
Bond amount during pre-foaming (%) = (X / Y) × 100
In the present invention, the case where the amount of bonding at the time of preliminary foaming was less than 10% was evaluated as ◯ (good), and the case where it was 10% or more was evaluated as x (bad).

<表面平滑性>
発泡成形体の表面において、10cm角の範囲で1mm角の空隙を観察し、空隙の個数を計測した。
5個以下を○、5個以上を×とした。
<Surface smoothness>
On the surface of the foamed molded article, 1 mm square voids were observed in a 10 cm square range, and the number of voids was measured.
Five or less were marked with ◯, and five or more were marked with x.

<総合評価>
前記<予備発泡時の結合量>及び<表面平滑性>の各試験・評価項目において、全ての評価が○(良好)であった場合を◎(良好)とし、一つでも×(不良)があった場合を×(不良)として総合評価した。
<Comprehensive evaluation>
In each test / evaluation item of <Bonding amount during pre-foaming> and <Surface smoothness>, when all evaluations were ○ (good), ◎ (good). When it was, it evaluated comprehensively as x (defect).

[実施例1]
(種粒子の製造)
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤として第三リン酸カルシウム100質量部及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム2.0質量部を供給し攪拌しながらスチレンモノマー40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部を添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してポリスチレン系樹脂粒子(a)を得た。
上記ポリスチレン系樹脂粒子(a)を篩分けし、種粒子として粒子径0.5〜0.71mmのポリスチレン系樹脂粒子(b)を得た。
次に、内容量5リットルの攪拌機付き重合容器内に、水2000質量部、前記ポリスチレン系樹脂粒子(b)500質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム0.3質量部を供給して攪拌しながら72℃に昇温した。
[Example 1]
(Manufacture of seed particles)
A polymerization vessel equipped with a stirrer having an internal volume of 100 liters is supplied with 40000 parts by mass of water, 100 parts by mass of tricalcium phosphate as a suspension stabilizer, and 2.0 parts by mass of calcium dodecylbenzenesulfonate as an anionic surfactant, while stirring. After adding 40000 parts by mass of a monomer and 96.0 parts by mass of benzoyl peroxide and 28.0 parts by mass of t-butylperoxybenzoate as a polymerization initiator, the temperature was raised to 90 ° C. to polymerize. And it hold | maintained at this temperature for 6 hours, and also, after heating up to 125 degreeC, it cooled after 2 hours, and obtained the polystyrene-type resin particle (a).
The polystyrene resin particles (a) were sieved to obtain polystyrene resin particles (b) having a particle diameter of 0.5 to 0.71 mm as seed particles.
Next, in a polymerization vessel equipped with a stirrer having an internal volume of 5 liters, 2000 parts by mass of water, 500 parts by mass of the polystyrene resin particles (b), 6.0 parts by mass of magnesium pyrophosphate as a suspension stabilizer and an anionic surfactant As the above, 0.3 parts by mass of calcium dodecylbenzenesulfonate was supplied and heated to 72 ° C. while stirring.

(第1重合工程)
次に、重合開始剤としてベンゾイルパーオキサイド4.5質量部及びt−ブチルパーオキシベンゾエート1.1質量部をスチレンモノマー180質量部、アクリル酸ブチル30質量部の混合液に溶解させたものを上記5リットルの重合容器に供給してから、72℃で保持した。
この重合工程において、前記<種粒子の重合転化率測定方法>によって樹脂粒子の重合転化率を測定しながら重合反応を進めた。
(First polymerization step)
Next, 4.5 parts by mass of benzoyl peroxide and 1.1 parts by mass of t-butylperoxybenzoate as a polymerization initiator were dissolved in a mixed solution of 180 parts by mass of styrene monomer and 30 parts by mass of butyl acrylate. After feeding into a 5 liter polymerization vessel, it was held at 72 ° C.
In this polymerization step, the polymerization reaction was advanced while measuring the polymerization conversion rate of the resin particles according to the above <Method for measuring polymerization conversion rate of seed particles>.

(第2重合工程)
種粒子の重合転化率90質量%になるまで第1重合工程の72℃を保持した後、110℃まで150分で昇温しつつ、且つスチレンモノマー1290gを150分で重合容器内にポンプで一定量づつ供給した上で、120℃に昇温して2時間経過後に冷却し、ポリスチレン系樹脂粒子(c)を得た。
得られたポリスチレン系樹脂粒子(c)について、前記<吸光度比の測定>によって樹脂粒子の表面の吸光度比(A)と中心部の吸光度比(B)とを測定した。
その結果を表1に示す。また得られた発泡性ポリスチレン系樹脂粒子についても、前記<吸光度比の測定>により吸光度比を測定することができる。
(Second polymerization step)
After maintaining 72 ° C. in the first polymerization step until the polymerization conversion rate of seed particles reaches 90% by mass, the temperature is raised to 110 ° C. in 150 minutes and 1290 g of styrene monomer is pumped into the polymerization vessel in 150 minutes. After supplying in quantity, the temperature was raised to 120 ° C. and cooled after 2 hours to obtain polystyrene resin particles (c).
With respect to the obtained polystyrene resin particles (c), the absorbance ratio (A) on the surface of the resin particles and the absorbance ratio (B) at the center were measured by the above <Measurement of Absorbance Ratio>.
The results are shown in Table 1. Also, the absorbance ratio of the obtained expandable polystyrene resin particles can be measured by the above <Measurement of Absorbance Ratio>.

(発泡剤含浸)
続いて、別の内容量5リットルの攪拌機付き重合容器に、水2200質量部、ポリスチレン系樹脂粒子(c)1800質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びドデシルベンゼンスルフォン酸カルシウム0.4質量部を供給して攪拌しながら70℃に昇温した。次に、発泡助剤としてシクロヘキサン9.0質量部を重合容器内に入れて密閉し100℃に昇温した。 次に、発泡剤としてn−ブタン126質量部をポリスチレン系樹脂粒子(c)が入った重合容器内に圧入して3時間保持した後、30℃以下まで冷却した上で重合容器内から取り出し乾燥させた上で13℃の恒温室内に5日間放置して発泡性ポリスチレン系樹脂粒子を得た。
(Foaming agent impregnation)
Subsequently, in another polymerization vessel equipped with a stirrer having a capacity of 5 liters, 2200 parts by mass of water, 1800 parts by mass of polystyrene-based resin particles (c), 6.0 parts by mass of magnesium pyrophosphate as a suspension stabilizer and dodecylbenzenesulfonic acid 0.4 parts by mass of calcium was supplied and the temperature was raised to 70 ° C. while stirring. Next, 9.0 parts by mass of cyclohexane as a foaming aid was placed in a polymerization vessel, sealed and heated to 100 ° C. Next, 126 parts by mass of n-butane as a foaming agent is pressed into a polymerization vessel containing polystyrene resin particles (c) and held for 3 hours, and then cooled to 30 ° C. or lower, taken out from the polymerization vessel and dried. And allowed to stand in a thermostatic chamber at 13 ° C. for 5 days to obtain expandable polystyrene resin particles.

(予備発泡)
続いて、発泡性ポリスチレン系樹脂粒子の表面に表面処理剤としてジンクステアレート及びヒドロキシステアリン酸トリグリセリドを被覆処理した。
次いで予備発泡装置にて嵩密度0.0166g/cmに予備発泡した後に20℃で24時間熟成してポリスチレン系樹脂予備発泡粒子を得た。
この際に前記<予備発泡時の結合量>に記した測定方法で結合量を測定した。結果を表2に示す。
(Pre-foaming)
Subsequently, zinc stearate and hydroxystearic acid triglyceride were coated as surface treatment agents on the surface of the expandable polystyrene resin particles.
Next, after pre-foaming to a bulk density of 0.0166 g / cm 3 using a pre-foaming device, the mixture was aged at 20 ° C. for 24 hours to obtain polystyrene-based resin pre-foamed particles.
At this time, the amount of binding was measured by the measurement method described in <Bonding amount during preliminary foaming>. The results are shown in Table 2.

(発泡成形体の製造)
そして、内寸300mm×400mm×30mmの直方体形状のキャビティを有する成形型を備え、且つ、蒸気流量計(YAMATAKE Corporation製 STEAM Cube 一体型)を設置した発泡ビーズ自動成形機(積水工機製作所社製 商品名「エース3型」)のキャビティ内に前記ポリスチレン系樹脂予備発泡粒子を充填し、ゲージ圧0.070Mpaの水蒸気で15秒間加熱成形を行った。次に、前記成形型のキャビティ内の発泡体を5秒間水冷した後、減圧下にて放冷(冷却工程)して、密度0.0166g/cmのポリスチレン系樹脂発泡成形体を得た。得られた成形体は収縮もなく、表面平滑性の良好なものであった。
このようにして製造した発泡成形体の表面を前記<表面平滑性>により測定・評価した。その結果を<総合評価>とともに表2に示す。
(Manufacture of foam moldings)
A foam bead automatic molding machine (manufactured by Sekisui Koki Seisakusho Co., Ltd.) equipped with a molding die having a rectangular parallelepiped cavity with an inner dimension of 300 mm × 400 mm × 30 mm and equipped with a steam flow meter (STAM Cube integrated type manufactured by YAMATAKE Corporation) The polystyrene resin pre-expanded particles were filled in a cavity of a trade name “ACE 3 type”, and heat-molded with water vapor at a gauge pressure of 0.070 Mpa for 15 seconds. Next, the foam in the cavity of the mold was water-cooled for 5 seconds, and then allowed to cool under reduced pressure (cooling step) to obtain a polystyrene-based resin foam molded body having a density of 0.0166 g / cm 3 . The obtained molded body did not shrink and had good surface smoothness.
The surface of the foam molded article thus produced was measured and evaluated according to the above <surface smoothness>. The results are shown in Table 2 together with <Overall evaluation>.

[実施例2]
第1重合工程において使用するスチレンモノマーを40.0質量部、アクリル酸ブチル15.0質量部の混合液とし、更に第2重合工程で使用するスチレンモノマーを1445質量部としたこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は収縮もなく、表面平滑性の良好なものであった。
[Example 2]
Implementation was performed except that the styrene monomer used in the first polymerization step was mixed with 40.0 parts by mass and 15.0 parts by mass of butyl acrylate, and the styrene monomer used in the second polymerization step was 1445 parts by mass. In the same manner as in Example 1, a polystyrene resin foam molded article was obtained.
The obtained foamed molded article did not shrink and had good surface smoothness.

[実施例3]
第1重合工程において使用するスチレンモノマーを375質量部、アクリル酸ブチル50質量部の混合液とし、更に第2重合工程で使用するスチレンモノマーを1075質量部としたこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は収縮もなく、表面平滑性の良好なものであった。
[Example 3]
The same as Example 1 except that the styrene monomer used in the first polymerization step was mixed with 375 parts by mass and 50 parts by mass of butyl acrylate, and that the styrene monomer used in the second polymerization step was 1075 parts by mass. Thus, a polystyrene-based resin foam molded article was obtained.
The obtained foamed molded article did not shrink and had good surface smoothness.

[実施例4]
第2重合工程においてスチレンモノマーを添加する際の種粒子の重合転化率が86質量%であること以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は収縮もなく、表面平滑性の良好なものであった。
[Example 4]
A polystyrene-based resin foam molded article was obtained in the same manner as in Example 1 except that the polymerization conversion rate of the seed particles when adding the styrene monomer in the second polymerization step was 86% by mass.
The obtained foamed molded article did not shrink and had good surface smoothness.

[実施例5]
第2重合工程においてスチレンモノマーを添加する際の種粒子の重合転化率が94質量%であること以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は収縮もなく、表面平滑性の良好なものであった。
[Example 5]
A polystyrene-based resin foam molded article was obtained in the same manner as in Example 1 except that the polymerization conversion rate of the seed particles when adding the styrene monomer in the second polymerization step was 94% by mass.
The obtained foamed molded article did not shrink and had good surface smoothness.

[実施例6]
第1重合工程において使用するアクリル酸エステルをアクリル酸2エチルヘキシルとしたこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は収縮もなく、表面平滑性の良好なものであった。
[Example 6]
A polystyrene-based resin foam molded article was obtained in the same manner as in Example 1, except that the acrylic ester used in the first polymerization step was 2-ethylhexyl acrylate.
The obtained foamed molded article did not shrink and had good surface smoothness.

[比較例1]
第1重合工程でアクリル酸ブチルを使用せず、スチレンモノマーを210質量部のみ使用したこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
しかし、得られた発泡成形体の表面平滑性は実施例1〜6よりも劣るものであった。
[Comparative Example 1]
A polystyrene-based resin foam molded article was obtained in the same manner as in Example 1 except that butyl acrylate was not used in the first polymerization step and only 210 parts by mass of the styrene monomer was used.
However, the surface smoothness of the obtained foamed molded product was inferior to that of Examples 1-6.

[比較例2]
第1重合工程において使用するスチレンモノマーを25.0質量部、アクリル酸ブチル70.0質量部の混合液とし、第2重合工程で使用するスチレンモノマーを1405質量部としたこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
しかし、予備発泡時に結合が多く、生産性が極端に低下した。また、得られた発泡成形体の表面平滑性は実施例1〜6よりも劣るものであった。
[Comparative Example 2]
Example, except that the styrene monomer used in the first polymerization step was mixed with 25.0 parts by mass and 70.0 parts by mass of butyl acrylate, and the styrene monomer used in the second polymerization step was 1405 parts by mass. In the same manner as in Example 1, a polystyrene resin foam molded article was obtained.
However, there were many bonds during pre-foaming, and the productivity was extremely reduced. Moreover, the surface smoothness of the obtained foaming molding was inferior to Examples 1-6.

[比較例3]
第1重合工程において使用するスチレンモノマーを425質量部、アクリル酸ブチル7.5質量部の混合液とし、加えて第2重合工程で使用するスチレンモノマーを1070質量部としたこと以外は、実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
しかし、得られた発泡成形体の表面平滑性は実施例1〜6よりも劣るものであった。
[Comparative Example 3]
Example except that the styrene monomer used in the first polymerization step was a mixed solution of 425 parts by mass and 7.5 parts by mass of butyl acrylate, and that the styrene monomer used in the second polymerization step was 1070 parts by mass. In the same manner as in Example 1, a polystyrene resin foam molded article was obtained.
However, the surface smoothness of the obtained foamed molded product was inferior to that of Examples 1-6.

[比較例4]
第2重合工程においてスチレン系単量体を添加する際の種粒子の重合転化率が83質量%である以外は実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
しかし、得られた発泡成形体の表面平滑性は実施例1〜6よりも劣るものであった。
[Comparative Example 4]
A polystyrene resin foam molded article was obtained in the same manner as in Example 1 except that the polymerization conversion rate of the seed particles when adding the styrene monomer in the second polymerization step was 83% by mass.
However, the surface smoothness of the obtained foamed molded product was inferior to that of Examples 1-6.

[比較例5]
第2重合工程においてスチレン系単量体を添加する際の種粒子の重合転化率が97質量%である以外は実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
しかし、予備発泡時に結合が多く、生産性が極端に低下したばかりか、得られた発泡成形体の表面平滑性は実施例1〜6よりも劣るものであった。
[Comparative Example 5]
A polystyrene resin foam molded article was obtained in the same manner as in Example 1 except that the polymerization conversion rate of the seed particles when adding the styrene monomer in the second polymerization step was 97% by mass.
However, there were many bonds at the time of pre-foaming, and the productivity was extremely lowered, and the surface smoothness of the obtained foamed molded product was inferior to that of Examples 1-6.

前記実施例1〜6、比較例1〜5の製造条件の概要と、各試験・評価結果を表1,2にまとめて記す。   Tables 1 and 2 summarize the outline of the manufacturing conditions of Examples 1 to 6 and Comparative Examples 1 to 5 and the results of each test and evaluation.

Figure 2011026507
Figure 2011026507

Figure 2011026507
Figure 2011026507

表1,2の結果より、本発明に係る実施例1〜6で得られた樹脂粒子は、吸光度比(A)と(B)とが、(A)<(B)、且つ(A)が0.05〜0.50の範囲である関係を満たしたものなので、この樹脂粒子に発泡剤を含浸させ、予備発泡した際に予備発泡時の結合量が低く、生産性が良好であった。さらに該予備発泡粒子を型内発泡成形して得られた実施例1〜6のポリスチレン系樹脂発泡成形体は、10cm角の範囲で1mm角の空隙が4個以下と、優れた表面平滑性を有していた。   From the results of Tables 1 and 2, the resin particles obtained in Examples 1 to 6 according to the present invention had an absorbance ratio (A) and (B) of (A) <(B) and (A). Since the relationship in the range of 0.05 to 0.50 was satisfied, when the resin particles were impregnated with a foaming agent and pre-foamed, the amount of bonding at the time of pre-foaming was low, and the productivity was good. Furthermore, the polystyrene-based resin foam moldings of Examples 1 to 6 obtained by in-mold foam molding of the pre-foamed particles have excellent surface smoothness with 4 or less 1 mm square voids in a 10 cm square range. Had.

本発明によれば、発泡性ポリスチレン系樹脂粒子の使用可能期間が短くならず、表面平滑性に優れた発泡成形体が得られ、発泡成形体表面に直接印刷しても、粒子間の空隙が少ない為、美麗な印刷面が得られる。   According to the present invention, the usable period of the expandable polystyrene resin particles is not shortened, and a foamed molded article having excellent surface smoothness can be obtained. Because there are few, a beautiful printed surface is obtained.

1…発泡性ポリスチレン系樹脂粒子、A…表面、B…中心部。   DESCRIPTION OF SYMBOLS 1 ... Expandable polystyrene resin particle, A ... Surface, B ... Center part.

Claims (3)

アクリル酸エステルとスチレン系単量体との共重合体を含有する発泡性ポリスチレン系樹脂粒子を予備発泡し、その予備発泡粒子を型内発泡成形して得られたポリスチレン系樹脂発泡成形体であって、
前記発泡性ポリスチレン系樹脂粒子は、ATR法赤外分光分析により発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)とATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、(A)<(B)、且つ(A)が0.05〜0.50の範囲である関係を満たし、
密度が0.010〜0.033g/cmの範囲であり、発泡成形体の表面において10cm角の範囲で1mm角の空隙が5個以下である表面平滑性を有する表面平滑性ポリスチレン系樹脂発泡成形体。
This is a polystyrene resin foam molded article obtained by pre-foaming expandable polystyrene resin particles containing a copolymer of an acrylate ester and a styrene monomer, and then pre-foaming the pre-foamed particles. And
The expandable polystyrene resin particles, of the ATR method infrared spectroscopy by infrared spectra were obtained by analyzing the surface of the expandable polystyrene resin particles, the absorbance at the absorbance D1730 and 1600 cm -1 in 1730 cm -1 Of the infrared spectrum obtained by determining D1600 and analyzing the central part of the expandable polystyrene resin particles by the absorbance ratio (A) calculated from D1730 / D1600 and ATR infrared spectroscopy, 1730 cm −1 Absorbance D1730 at 1600 cm −1 and absorbance D1600 at 1600 cm −1 , and the absorbance ratio (B) calculated from D1730 / D1600 is (A) <(B), and (A) is 0.05-0. Satisfy a relationship that is in the range of 50,
Surface smooth polystyrene resin foam having a surface smoothness with a density of 0.010 to 0.033 g / cm 3 and 5 or less 1 mm square voids in a 10 cm square range on the surface of the foam molded article Molded body.
吸光度比(B)が0.20〜0.60の範囲内である請求項1に記載の表面平滑性ポリスチレン系樹脂発泡成形体。   The surface-smooth polystyrene resin foam molded article according to claim 1, wherein the absorbance ratio (B) is in the range of 0.20 to 0.60. (1)ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0〜80.0質量部とアクリル酸エステル系単量体2.0〜12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第1重合工程と、
(2)次いで、ポリスチレン系種粒子の重合転化率が85〜95質量%の範囲で該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、
(3)第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させて発泡性ポリスチレン系樹脂粒子を得る工程と、
(4)前記発泡性ポリスチレン系樹脂粒子を嵩密度が0.010〜0.033g/cmの範囲となるように加熱し予備発泡して予備発泡粒子を得る工程、
(5)前記予備発泡粒子を成形型のキャビティ内に充填して加熱し型内発泡成形を行って請求項1又は2に記載の表面平滑性ポリスチレン系樹脂発泡成形体を得る工程と、
を有する表面平滑性ポリスチレン系樹脂発泡成形体の製造方法。
(1) In a dispersion obtained by dispersing polystyrene resin seed particles in water, 7.0 to 80.0 parts by mass of a styrene monomer and an acrylate ester system with respect to 100 parts by mass of the polystyrene resin seed particles. A first polymerization step of supplying 2.0 to 12.0 parts by mass of monomers, and absorbing and polymerizing these monomers into seed particles to grow polystyrene resin particles;
(2) Next, only a styrene monomer is supplied into the dispersion in a polymerization conversion ratio of the polystyrene seed particles in the range of 85 to 95% by mass, and this is absorbed into the seed particles and polymerized to obtain a polystyrene resin. A second polymerization step for growing the particles;
(3) After producing the polystyrene resin particles by performing the second polymerization step, or by impregnating a foaming agent during the growth of the polystyrene resin particles to obtain expandable polystyrene resin particles;
(4) A step of heating the expandable polystyrene resin particles so that the bulk density is in the range of 0.010 to 0.033 g / cm 3 and pre-expanding to obtain pre-expanded particles;
(5) The step of filling the pre-expanded particles in a cavity of a mold and heating to perform in-mold foam molding to obtain a surface smooth polystyrene resin foam molded article according to claim 1 or 2,
A method for producing a surface-smooth polystyrene-based resin foam-molded article having:
JP2009175597A 2009-07-28 2009-07-28 Surface smooth polystyrene-based resin expansion molded article, and manufacturing method therefor Pending JP2011026507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175597A JP2011026507A (en) 2009-07-28 2009-07-28 Surface smooth polystyrene-based resin expansion molded article, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175597A JP2011026507A (en) 2009-07-28 2009-07-28 Surface smooth polystyrene-based resin expansion molded article, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2011026507A true JP2011026507A (en) 2011-02-10

Family

ID=43635621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175597A Pending JP2011026507A (en) 2009-07-28 2009-07-28 Surface smooth polystyrene-based resin expansion molded article, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2011026507A (en)

Similar Documents

Publication Publication Date Title
JP5373524B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP5386262B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article
WO2009096327A1 (en) Expandable polystyrene resin beads, process for production thereof, pre-expanded beads and expanded moldings
JP2008239793A (en) Modified polystyrene resin particle, expandable modified polystyrene resin particle, modified polystyrene resin foamed particle, modified polystyrene resin foamed molded product, and manufacturing methods therefor
JP5478140B2 (en) Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article
JP6441948B2 (en) Expandable styrene composite polyolefin resin particles and process for producing the same, pre-expanded particles, and expanded molded body
JP2011026506A (en) Low volatile expandable polystyrene-based resin particle, manufacturing method therefor, low volatile polystyrene-based resin pre-expanded particle, and low volatile polystyrene-based resin expansion molded article
JP6353803B2 (en) Polystyrene resin foam molding
JP2011026511A (en) Flame-retardant foamable polystyrene-based resin particle, method for producing the same, preliminarily-foamed particle of flame-retardant polystyrene-based resin and expansion molding of flame-retardant polystyrene-based resin
JP2014145066A (en) Flame-retardant styrene resin particle and method for producing the same, foamable particle, foaming particle, and formed-molded body
JP5492616B2 (en) Expandable polystyrene resin particles, pre-expanded particles, and expanded molded articles
JP5410874B2 (en) Method for producing expandable polystyrene resin particles
JP6407077B2 (en) Polystyrene foamed molded product, expandable particles, pre-expanded particles
JP2013117037A (en) Foam molding body
JP2011026508A (en) Expandable polystyrene-based resin particle, pre-expanded particle, expansion molded article, and manufacturing method therefor
JP2011026507A (en) Surface smooth polystyrene-based resin expansion molded article, and manufacturing method therefor
JP5798950B2 (en) Building materials and manufacturing method thereof
JP5732358B2 (en) Polystyrene-based resin particles, expandable resin particles, expanded particles, expanded molded articles, and methods for producing them
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP5337442B2 (en) Foam molded body and method for producing the same
JP5713726B2 (en) Expandable polystyrene resin particles, expanded particles and expanded molded articles
JP5592678B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP5965853B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP6227955B2 (en) Foam molding
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article