JP5478140B2 - Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article - Google Patents

Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article Download PDF

Info

Publication number
JP5478140B2
JP5478140B2 JP2009175595A JP2009175595A JP5478140B2 JP 5478140 B2 JP5478140 B2 JP 5478140B2 JP 2009175595 A JP2009175595 A JP 2009175595A JP 2009175595 A JP2009175595 A JP 2009175595A JP 5478140 B2 JP5478140 B2 JP 5478140B2
Authority
JP
Japan
Prior art keywords
polystyrene resin
particles
resin particles
density
low density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009175595A
Other languages
Japanese (ja)
Other versions
JP2011026505A (en
Inventor
幸雄 新籾
雅之 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2009175595A priority Critical patent/JP5478140B2/en
Publication of JP2011026505A publication Critical patent/JP2011026505A/en
Application granted granted Critical
Publication of JP5478140B2 publication Critical patent/JP5478140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、食品容器や梱包,緩衝材として有用なポリスチレン系樹脂発泡成形体の製造に用いる発泡性ポリスチレン系樹脂粒子、予備発泡粒子、発泡成形体の製造方法に関する。更に詳しくは、低密度(高発泡)の成形体を製造するのに最適な低密度発泡成形用発泡性ポリスチレン系樹脂粒子とその製造方法、低密度ポリスチレン系樹脂予備発泡粒子及び低密度ポリスチレン系樹脂発泡成形体に関する。   The present invention relates to an expandable polystyrene resin particle, a pre-expanded particle, and a method for producing a foamed molded product, which are used for producing a polystyrene resin foamed molded product useful as a food container, packaging, or cushioning material. More specifically, low-density foam molding polystyrene resin particles for low-density foam molding that are optimal for producing low-density (high-foamed) molded articles, and methods for producing the same, low-density polystyrene resin pre-foamed particles, and low-density polystyrene resin The present invention relates to a foam molded article.

従来、食品用容器や梱包,緩衝材に用いられる発泡プラスチックとしては、優れた断熱性,経済性,衛生性をもつポリスチレン系樹脂発泡成形体が多く使用されている。   Conventionally, as a foamed plastic used for food containers, packaging, and cushioning materials, many polystyrene-based resin foam molded articles having excellent heat insulation, economy, and hygiene have been used.

一般に、工業的に行われているポリスチレン系樹脂発泡成形品の製造方法は、揮発性発泡剤等を含有した、発泡性ポリスチレン系樹脂粒子をスチーム等の熱媒体により加熱し、所望の嵩密度まで発泡(予備発泡)させた後、成形型に充填され再度加熱され成形体とする方法が行なわれている。このとき、得られるポリスチレン系樹脂発泡成形体の密度はほぼ予備発泡での嵩密度と同じとなる。嵩密度の設定は、発泡スチレン系成形体に要求される強度と、発泡性ポリスチレン系樹脂粒子が有する発泡性能によって決定される。
例えば、家電品等の梱包材や魚箱等の食品容器に用いられるものは、およそ0.017〜0.020g/cmの密度で市場に供されている。
In general, the manufacturing method of polystyrene-based resin foam molded products that is industrially used is to heat expandable polystyrene-based resin particles containing a volatile foaming agent or the like with a heat medium such as steam to a desired bulk density. After foaming (pre-foaming), a mold is filled and heated again to form a molded body. At this time, the density of the obtained polystyrene-based resin foam molding is almost the same as the bulk density in the preliminary foaming. The setting of the bulk density is determined by the strength required for the foamed styrene-based molded product and the foaming performance of the expandable polystyrene-based resin particles.
For example, what is used for packing materials, such as household appliances, and food containers, such as a fish box, is marketed by the density of about 0.017-0.020 g / cm < 3 >.

しかし昨今の環境問題において、できるだけ発泡性ポリスチレン系樹脂の使用量を少なくすることが求められており、例えば建材分野などでは前記家電品等の梱包材や魚箱等の食品容器に使用されている密度より低い密度でも使用できる発泡性ポリスチレン系樹脂粒子が求められている。このように、発泡性ポリスチレン系樹脂粒子の発泡性は重要な特性の一つである。   However, in recent environmental problems, it is required to reduce the amount of expandable polystyrene resin used as much as possible. For example, in the field of building materials, it is used for packaging materials such as home appliances and food containers such as fish boxes. There is a demand for expandable polystyrene resin particles that can be used even at a density lower than the density. Thus, the foamability of the expandable polystyrene resin particles is one of the important characteristics.

従来は高い発泡性能を付与する為に、可塑効果のある有機溶剤、可塑剤及び揮発性発泡剤を大量に添加する方法が知られている(例えば、特許文献1参照。)。   Conventionally, a method of adding a large amount of an organic solvent, a plasticizer, and a volatile foaming agent having a plastic effect in order to impart high foaming performance is known (for example, see Patent Document 1).

しかし、これらの方法では予備発泡時に収縮が大きくなること、また成形時に収縮が大きくなり良品の生産性が低下する問題があった。
更に、得られた成形体の強度は、前記の有機溶剤、可塑剤により低下する為に使用できる用途が限定されていた。
However, these methods have a problem that shrinkage increases during preliminary foaming, and shrinkage increases during molding, resulting in a decrease in productivity of non-defective products.
Furthermore, since the strength of the obtained molded body is lowered by the organic solvent and the plasticizer, there are limited uses that can be used.

特開平11−255947号公報Japanese Patent Laid-Open No. 11-255947

本発明は、少ない有機溶剤、可塑剤でも高発泡性を維持できる発泡性ポリスチレン系樹脂粒子、低密度のポリスチレン系樹脂発泡成形体を提供することを課題としている。   An object of the present invention is to provide expandable polystyrene resin particles that can maintain high foamability even with a small amount of organic solvent and plasticizer, and a low-density polystyrene resin foam molded article.

前記目的を達成するため、本発明は、アクリル酸エステルとスチレン系単量体との共重合体を含有する発泡性ポリスチレン系樹脂粒子であって、ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)とATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、(A)<(B)であり、且つ(A)が0.05未満である関係を満たす低密度発泡成形用発泡性ポリスチレン系樹脂粒子を提供する。 In order to achieve the above object, the present invention provides an expandable polystyrene resin particle containing a copolymer of an acrylate ester and a styrene monomer, and the expandable polystyrene resin particle is analyzed by ATR infrared spectroscopy. from the infrared spectrum which is obtained by analyzing the surface of the resin particles, determined the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730 cm -1, the absorbance ratio calculated from the D1730 / D1600 (a) and ATR method from the infrared spectrum which is obtained by analyzing the central portion of the expandable polystyrene resin particles by infrared spectroscopic analysis, obtains a absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730 cm -1, from D1730 / D1600 The calculated absorbance ratio (B) is (A) <(B), and (A) is less than 0.05. Provided is an expandable polystyrene resin particle for low density foam molding that satisfies the relationship.

本発明の低密度発泡成形用発泡性ポリスチレン系樹脂粒子において、前記吸光度比(B)が0.20〜0.60の範囲内であることが好ましい。   In the expandable polystyrene resin particles for low-density foam molding of the present invention, the absorbance ratio (B) is preferably in the range of 0.20 to 0.60.

また本発明は、前記低密度発泡成形用発泡性ポリスチレン系樹脂粒子を嵩密度が0.006〜0.0125g/cmの範囲となるように予備発泡して得られる低密度ポリスチレン系樹脂予備発泡粒子を提供する。 Further, the present invention provides a low density polystyrene resin prefoamed obtained by prefoaming the foamable polystyrene resin particles for low density foam molding so that the bulk density is in the range of 0.006 to 0.0125 g / cm 3. Provide particles.

また本発明は、前記低密度ポリスチレン系樹脂予備発泡粒子を成形型内に充填して加熱、発泡させて得られる低密度ポリスチレン系樹脂発泡成形体を提供する。   The present invention also provides a low density polystyrene resin foam molded product obtained by filling the low density polystyrene resin pre-expanded particles in a mold and heating and foaming.

また本発明は、
(1)ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0〜80.0質量部とアクリル酸エステル単量体2.0〜12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第1重合工程と、
(2)次いで、該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、
(3)第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させて前記発泡性ポリスチレン系樹脂粒子を得る工程とを有する低密度発泡成形用発泡性ポリスチレン系樹脂粒子の製造方法を提供する。
The present invention also provides
(1) In a dispersion obtained by dispersing polystyrene resin seed particles in water, 7.0 to 80.0 parts by mass of a styrene monomer and an acrylate ester alone with respect to 100 parts by mass of polystyrene resin seed particles. A first polymerization step of supplying 2.0 to 12.0 parts by mass of a monomer and allowing these monomers to be absorbed and polymerized in seed particles to grow polystyrene resin particles;
(2) Next, a second polymerization step in which only the styrenic monomer is supplied into the dispersion, and this is absorbed into the seed particles and polymerized to grow polystyrene resin particles;
(3) Low density foaming having a step of obtaining the expandable polystyrene resin particles by performing a second polymerization step to produce polystyrene resin particles or impregnating a foaming agent during the growth of the polystyrene resin particles A method for producing foamable polystyrene resin particles for molding is provided.

本発明によれば、少ない可塑剤、有機溶剤量で低密度のポリスチレン系樹脂発泡成形体が得られ、昨今の環境問題に十分対応できる。また、発泡成形体の低密度化が図れることから、ポリスチレン系樹脂の使用量を削減でき、低コスト化することができる。
更に低密度においても収縮が少ない発泡成形体が得られる。
According to the present invention, a low-density polystyrene-based resin foam molded article can be obtained with a small amount of plasticizer and organic solvent, and can sufficiently cope with recent environmental problems. Moreover, since the density of the foamed molded product can be reduced, the amount of polystyrene resin used can be reduced and the cost can be reduced.
Furthermore, a foamed molded article with little shrinkage can be obtained even at low density.

ATR法赤外分光分析による発泡性ポリスチレン系樹脂粒子の吸光度比の測定において、発泡性ポリスチレン系樹脂粒子の表面の吸光度測定位置を示す概略図である。It is the schematic which shows the light absorbency measurement position of the surface of an expandable polystyrene resin particle in the measurement of the absorbance ratio of an expandable polystyrene resin particle by ATR method infrared spectroscopy. ATR法赤外分光分析による発泡性ポリスチレン系樹脂粒子の吸光度比の測定において、発泡性ポリスチレン系樹脂粒子の中心部の吸光度測定位置を示す概略図である。It is the schematic which shows the light absorbency measurement position of the center part of an expandable polystyrene resin particle in the measurement of the absorbance ratio of an expandable polystyrene resin particle by ATR method infrared spectroscopy.

本発明の低密度発泡成形用発泡性ポリスチレン系樹脂粒子の製造方法としては、ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0〜80.0質量部とアクリル酸エステル系単量体2.0〜12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第1重合工程と、次いで、該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させる工程とを行って低密度発泡成形用発泡性ポリスチレン樹脂粒子を得ることを特徴としている。   As a method for producing expandable polystyrene resin particles for low-density foam molding according to the present invention, a polystyrene resin seed particle is dispersed in water in a dispersion obtained by dispersing polystyrene resin seed particles in 100 parts by mass of polystyrene resin particles. Supply 7.0 to 80.0 parts by mass of monomer and 2.0 to 12.0 parts by mass of acrylate monomer, and absorb and polymerize these monomers in seed particles to produce polystyrene. A first polymerization step in which resin particles are grown, and then a second polymerization step in which only the styrene monomer is supplied into the dispersion, and this is absorbed and polymerized into seed particles to grow polystyrene resin particles. The second polymerization step is performed to produce polystyrene resin particles, or the step of impregnating the foaming agent during the growth of the polystyrene resin particles to obtain expandable polystyrene resin particles for low density foam molding. It is characterized in that.

本発明の製造方法において、ポリスチレン系樹脂種粒子(以下、種粒子と略記する)の材料であるポリスチレン系樹脂としては、スチレン又はスチレン誘導体の単独または共重合体が挙げられる。ここで、スチレン誘導体としては、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。更に、前記ポリスチレン系樹脂としては、前記スチレン系モノマー成分を主成分とすれば、前記スチレン系モノマーと共重合可能なビニルモノマーを併用した共重合体であってもよく、このようなビニルモノマーとしては、例えば、o−ジビニルベンゼン、m−ジビニルベンゼン、p−ジビニルベンゼン等のジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート等の多官能性モノマー;α−メチルスチレン、(メタ)アクリロニトリル、メチル(メタ)アクリレート等が挙げられ、多官能性モノマーが好ましく、エチレングリコールジ(メタ)アクリレート、nが4〜16のポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼンがより好ましく、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレートが特に好ましい。なお、前記スチレンと共重合可能なモノマーは単独で用いられても併用されてもよい。   In the production method of the present invention, examples of the polystyrene resin that is a material of polystyrene resin seed particles (hereinafter abbreviated as seed particles) include styrene or a styrene derivative alone or a copolymer. Here, examples of the styrene derivative include α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, and bromostyrene. Further, the polystyrene resin may be a copolymer using a vinyl monomer copolymerizable with the styrene monomer as long as the styrene monomer component is a main component. Is, for example, divinylbenzene such as o-divinylbenzene, m-divinylbenzene, and p-divinylbenzene, and alkylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate. Functional monomer; α-methylstyrene, (meth) acrylonitrile, methyl (meth) acrylate, and the like can be mentioned, and polyfunctional monomers are preferable, ethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) having n of 4 to 16 ) Acrylate, di Nirubenzen more preferably, divinylbenzene, ethylene glycol di (meth) acrylate are particularly preferred. In addition, the monomer copolymerizable with the styrene may be used alone or in combination.

また、種粒子は一部、または全部にポリスチレン系樹脂回収品を用いることができる。更に種粒子の粒径は作成する発泡性ポリスチレン系樹脂粒子の平均粒子径等に応じて適宜調整でき、例えば平均粒子径が1.0mmの発泡性ポリスチレン系樹脂粒子を作成する場合には平均粒子径が0.4〜0.7mm程度の種粒子を用いることが好ましい。更に種粒子の重量平均分子量は特に限定されないが15万〜70万が好ましく、更に好ましくは20万〜50万である。   In addition, a part of or all of the seed particles may be a polystyrene resin recovered product. Furthermore, the particle diameter of the seed particles can be adjusted as appropriate according to the average particle diameter of the expandable polystyrene resin particles to be prepared. For example, when preparing expandable polystyrene resin particles having an average particle diameter of 1.0 mm, the average particles It is preferable to use seed particles having a diameter of about 0.4 to 0.7 mm. Further, the weight average molecular weight of the seed particles is not particularly limited, but is preferably 150,000 to 700,000, more preferably 200,000 to 500,000.

本発明の製造方法に使用するスチレン系単量体としては、スチレン、またはスチレン誘導体が挙げられる。ここで、スチレン誘導体としては、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられるが、これらの中でもスチレンが好ましい。   Examples of the styrene monomer used in the production method of the present invention include styrene and styrene derivatives. Here, examples of the styrene derivative include α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and the like. Among these, styrene is preferable.

本発明の製造方法に使用するアクリル酸エステル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸エチルヘキシル、アクリル酸ヘキシル等が挙げられ、これらの中でもアクリル酸エチル、アクリル酸ブチル、アクリル酸エチルヘキシルが好ましい。   Examples of the acrylate monomer used in the production method of the present invention include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate, ethyl hexyl acrylate, hexyl acrylate, and the like. Among these, ethyl acrylate, butyl acrylate, and ethylhexyl acrylate are preferable.

第1重合工程に用いられるスチレン系単量体の量は、種粒子100質量部に対して、7.0〜80.0質量部の範囲とする。7.0質量部未満の場合は成形時の耐熱性が低下し、80.0質量部を超えると発泡性が低下する。   The amount of the styrene monomer used in the first polymerization step is in the range of 7.0 to 80.0 parts by mass with respect to 100 parts by mass of the seed particles. When the amount is less than 7.0 parts by mass, the heat resistance during molding decreases, and when the amount exceeds 80.0 parts by mass, the foamability decreases.

また、第1重合工程で使用するアクリル酸エステル系単量体の量は、種粒子100質量部に対して2.0〜12.0質量部とする。2.0質量部未満では発泡性に劣り、12.0質量部を超えると成形品の強度が低下する。   Moreover, the quantity of the acrylate-type monomer used at a 1st superposition | polymerization process shall be 2.0-12.0 mass parts with respect to 100 mass parts of seed particles. If it is less than 2.0 parts by mass, the foamability is poor, and if it exceeds 12.0 parts by mass, the strength of the molded product is lowered.

本発明において発泡性ポリスチレン系樹脂粒子中に含有させる発泡剤は、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されず、例えばイソブタン、n−ブタン、イソペンタン、ネオペンタン等の炭素数5以下の脂肪族炭化水素等の揮発性発泡剤(物理型発泡剤)が挙げられ、ブタン系発泡剤が好ましい。   In the present invention, the foaming agent to be contained in the expandable polystyrene resin particles is not particularly limited as long as it is conventionally used for foaming polystyrene resins. For example, isobutane, n-butane, isopentane, neopentane, etc. Volatile foaming agents (physical type foaming agents) such as aliphatic hydrocarbons having 5 or less carbon atoms, and butane-based foaming agents are preferred.

更に、前記発泡剤の発泡性ポリスチレン系樹脂粒子中における含有量は、少ないと、発泡性ポリスチレン系樹脂粒子から低密度のポリスチレン系樹脂発泡成形体を得ることができないと共に型内発泡成形時の二次発泡力を高める効果が得られないために、ポリスチレン系樹脂発泡成形体の外観性が低下し、又、多いと、発泡性ポリスチレン系樹脂粒子を用いたポリスチレン系樹脂発泡成形体の製造工程における冷却工程に要する時間が長くなって生産性が低下するので、2.5〜5.0質量%の範囲とされ、2.7〜4.8質量%の範囲が好ましい。   Furthermore, if the content of the foaming agent in the expandable polystyrene resin particles is small, a low-density polystyrene resin foam molded product cannot be obtained from the expandable polystyrene resin particles, and at the same time as in-mold foam molding. Since the effect of increasing the secondary foaming power cannot be obtained, the appearance of the polystyrene resin foam molded article is deteriorated, and when it is large, in the production process of the polystyrene resin foam molded article using the expandable polystyrene resin particles. Since the time required for the cooling step becomes long and the productivity is lowered, the range is 2.5 to 5.0% by mass, and the range of 2.7 to 4.8% by mass is preferable.

なお、前記発泡性ポリスチレン系樹脂粒子中における発泡剤の含有量は、発泡性ポリスチレン系樹脂粒子を150℃の熱分解炉に入れ、この熱分解炉で発生した炭化水素量をガスクロマトグラフにて測定することができる。   The content of the foaming agent in the expandable polystyrene resin particles is determined by placing the expandable polystyrene resin particles in a 150 ° C. pyrolysis furnace and measuring the amount of hydrocarbon generated in the pyrolysis furnace with a gas chromatograph. can do.

また、前記低密度発泡成形用発泡性ポリスチレン系樹脂粒子には、発泡剤と共に発泡助剤を含有させることができる。この発泡助剤としては、従来から発泡性ポリスチレン系樹脂粒子に用いられている発泡助剤であれば、特に限定されずに使用でき、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等の一気圧下における沸点が200℃以下の溶剤が挙げられる。   The foamable polystyrene resin particles for low density foam molding can contain a foaming aid together with a foaming agent. As the foaming aid, any foaming aid that has been conventionally used for expandable polystyrene resin particles can be used without particular limitation. For example, aromatic organic compounds such as styrene, toluene, ethylbenzene, and xylene. , Cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane, solvents having a boiling point of 200 ° C. or less under one atmospheric pressure, such as ethyl acetate and butyl acetate.

そして、前記低密度発泡成形用発泡助剤の発泡性ポリスチレン系樹脂粒子中における含有量は、少ないと、ポリスチレン系樹脂の可塑化効果が発現せず、又、多いと、発泡性ポリスチレン系樹脂粒子を発泡させて得られるポリスチレン系樹脂発泡成形体に収縮や溶けが発生して外観性が低下したり或いは発泡性ポリスチレン系樹脂粒子を用いたポリスチレン系樹脂発泡成形体の製造工程における冷却工程に要する時間が長くなるので、1.0〜2.5質量%に限定され、1.2〜2.2質量%が好ましい。   If the content of the foaming aid for low density foam molding in the expandable polystyrene resin particles is small, the plasticizing effect of the polystyrene resin does not appear, and if the content is large, the expandable polystyrene resin particles. The polystyrene resin foam molded product obtained by foaming the resin is shrunk or melted to reduce the appearance, or required for the cooling step in the production process of the polystyrene resin foam molded product using expandable polystyrene resin particles. Since time becomes long, it is limited to 1.0-2.5 mass%, and 1.2-2.2 mass% is preferable.

なお、前記低密度発泡成形用発泡性ポリスチレン系樹脂粒子中における発泡助剤の含有量は、発泡性ポリスチレン系樹脂粒子をジメチルホルムアミドに溶解させると共に内部標準液としてシクロペンタノールを加えてガスクロマトグラフにて測定することができる。   The content of the foaming aid in the low density foam molding foamable polystyrene resin particles is determined by gas chromatograph by dissolving the foamable polystyrene resin particles in dimethylformamide and adding cyclopentanol as an internal standard solution. Can be measured.

更に、低密度発泡成形用発泡性ポリスチレン系樹脂粒子には、加熱発泡時に用いられる水蒸気の圧力が低くても良好な発泡成形性を維持させるために、一気圧下における沸点が200℃を超える可塑剤、例えば、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、グリセリンジアセトモノステアレート等のグリセリン脂肪酸エステル、ジイソブチルアジペート等のアジピン酸エステル、ヤシ油等の可塑剤が2.0質量%未満含有されていてもよい。   Furthermore, in order to maintain good foam moldability even when the pressure of water vapor used during heat foaming is low, the expandable polystyrene resin particles for low density foam molding have a boiling point exceeding 200 ° C. Agent, for example, glycerin fatty acid ester such as phthalate ester, glycerin diacetomonolaurate, glycerin tristearate, glycerin diacetomonostearate, adipic acid ester such as diisobutyl adipate, and plasticizer such as coconut oil Less than may be contained.

なお、前記低密度発泡成形用発泡性ポリスチレン系樹脂粒子には、物性を損なわない範囲内において、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよく、又、ジンクステアレート等の粉末状金属石鹸類を前記発泡性スチレン樹脂粒子の表面に塗布しておけば、発泡性ポリスチレン系樹脂粒子の予備発泡工程においてポリスチレン系樹脂予備発泡粒子同士の結合を減少させることができて好ましい。
前記の難燃剤としては、ポリスチレン系樹脂粒子中に含浸させる条件下において他の媒体に溶解させない状態で存在した場合に粉末状であれば、特に限定されず、ヘキサブロモシクロドデカン、テトラブロモシクロオクタン、テトラブロモブタン、ヘキサブロモシクロヘキサンなどの臭素化脂肪族炭化水素系化合物、テトラブロモビスフェノールA、テトラブロモビスフェノールF、2,4,6−トリブロモフェノールなどの臭素化フェノール類、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ジグリシジルエーテルなどの臭素化フェノール誘導体などが挙げられ、臭素化脂肪族炭化水素系化合物が好ましく、テトラブロモシクロオクタン(以下、TBCOと記す。)がより好ましい。
The foamable polystyrene-based resin particles for low-density foam molding have a binding inhibitor, a bubble regulator, a cross-linking agent, a filler, a flame retardant, a flame retardant aid, a lubricant, and coloring within a range that does not impair physical properties. Additives such as additives may be added, and if a powdered metal soap such as zinc stearate is applied to the surface of the expandable styrene resin particles, a pre-expanding step of expandable polystyrene resin particles Is preferable because it can reduce the bond between polystyrene resin pre-expanded particles.
The flame retardant is not particularly limited as long as it is in a powder form when it is not dissolved in another medium under the conditions of impregnation in polystyrene resin particles, and hexabromocyclododecane, tetrabromocyclooctane. Brominated aliphatic hydrocarbon compounds such as tetrabromobutane and hexabromocyclohexane, brominated phenols such as tetrabromobisphenol A, tetrabromobisphenol F and 2,4,6-tribromophenol, tetrabromobisphenol A- Brominated phenol derivatives such as bis (2,3-dibromopropyl ether), tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-diglycidyl ether, etc. Brominated aliphatic charcoal Hydride compounds are preferable, tetrabromobisphenol cyclooctane (hereinafter, referred to as TbCo.) Is more preferred.

本発明の製造方法で使用する重合開始剤としては、従来からスチレン系モノマーの重合に用いられているものであれば、特に限定されず、例えば、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサノエート、ラウリルパーオキサイド、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3、3、5−トリメチルヘキサノエート、ジーt−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物等が挙げられ、得られるポリスチレン系樹脂のZ平均分子量Mzや質量平均分子量Mwを調整して残存モノマーを低減させるために、10時間の半減期を得るための分解温度が80〜120℃にある異なった二種以上の重合開始剤を併用することが好ましい。なお、前記重合開始剤は単独で用いられても二種以上が併用されてもよい。   The polymerization initiator used in the production method of the present invention is not particularly limited as long as it is conventionally used for the polymerization of styrene monomers. For example, benzoyl peroxide, t-butylperoxybenzoate, t -Butyl peroxy-2-ethylhexanoate, lauryl peroxide, t-butyl peroxide, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t Organic peroxides such as butyl peroxybutane, t-butyl peroxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, azobisisobutyronitrile, azobisdimethylvalero Examples of the resulting police include azo compounds such as nitriles Two or more different polymerizations having a decomposition temperature of 80 to 120 ° C. to obtain a half-life of 10 hours in order to reduce the residual monomer by adjusting the Z-average molecular weight Mz and the mass-average molecular weight Mw of the len-based resin It is preferable to use an initiator in combination. In addition, the said polymerization initiator may be used independently or 2 or more types may be used together.

更に、本発明の製造方法において、スチレン系単量体の小滴及び種粒子を水性媒体中に分散させる為に用いられる懸濁安定剤としては、従来からスチレン系モノマーの懸濁重合に用いられているものであれば、特に限定されず、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子、第三リン酸カルシウム、ピロリン酸マグネシウム等の難溶性無機化合物等が挙げられる。そして、前記懸濁安定剤として難溶性無機化合物を用いる場合には、アニオン界面活性剤を併用するのが好ましく、このようなアニオン界面活性剤としては、例えば、脂肪酸石鹸、N−アシルアミノ酸またはその塩、アルキルエーテルカルボン酸塩などのカルボン酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルフォン酸塩等のスルフォン酸塩;高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩等が挙げられる。   Furthermore, in the production method of the present invention, the suspension stabilizer used for dispersing styrene monomer droplets and seed particles in an aqueous medium is conventionally used for suspension polymerization of styrene monomers. If it is, it will not specifically limit, For example, water-soluble polymers, such as polyvinyl alcohol, methylcellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly soluble inorganic compounds, such as tricalcium phosphate and magnesium pyrophosphate, etc. are mentioned. And when using a sparingly soluble inorganic compound as said suspension stabilizer, it is preferable to use an anionic surfactant together, and as such an anionic surfactant, for example, fatty acid soap, N-acylamino acid or its Salts, carboxylates such as alkyl ether carboxylates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, dialkyl sulfosuccinates, alkyl sulfoacetates, sulfonates such as α-olefin sulfonates; higher alcohol sulfuric acid Ester salts, secondary higher alcohol sulfates, sulfates such as alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, etc .; phosphates such as alkyl ether phosphates, alkyl phosphates, etc. Is mentioned.

前記ポリスチレン系樹脂粒子は球状であるのが好ましく、該樹脂粒子の粒径は、成形型内への充填性等を考慮すると、0.3〜2.0mmが好ましく、0.3〜1.4mmがより好ましい。   The polystyrene resin particles are preferably spherical, and the particle size of the resin particles is preferably 0.3 to 2.0 mm, considering the filling properties in the mold, etc., and 0.3 to 1.4 mm. Is more preferable.

なお、前記ポリスチレン系樹脂粒子に発泡剤及び発泡助剤を含浸させる際の温度は、低いと、ポリスチレン系樹脂粒子に発泡剤及び発泡助剤を含浸させるのに要する時間が長くなって生産効率が低下することがあり、又、高いと、ポリスチレン系樹脂粒子同士が融着して結合粒が発生することがあるので、60〜120℃が好ましく、70〜100℃がより好ましい。   In addition, if the temperature at which the polystyrene resin particles are impregnated with the foaming agent and the foaming aid is low, the time required for impregnating the polystyrene resin particles with the foaming agent and the foaming aid becomes long and the production efficiency is increased. When it is too high, polystyrene resin particles may be fused together to form a bonded particle. Therefore, 60 to 120 ° C. is preferable, and 70 to 100 ° C. is more preferable.

次に、前記製造方法で得られた本発明に係る低密度発泡成形用発泡性ポリスチレン系樹脂粒子について説明する。
本発明の低密度発泡成形用発泡性ポリスチレン系樹脂粒子は、スチレン単量体とアクリル酸エステル単量体との共重合体を含有し、ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)とATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、(A)<(B)であり、且つ(A)が0.05未満である関係を満たすことを特徴としている。
Next, the expandable polystyrene resin particles for low density foam molding according to the present invention obtained by the production method will be described.
The expandable polystyrene resin particles for low density foam molding of the present invention contain a copolymer of a styrene monomer and an acrylate monomer, and the expandable polystyrene resin particles are analyzed by ATR infrared spectroscopy. from the infrared spectrum which is obtained by analyzing the surface of seeking and absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730 cm -1, the absorbance ratio calculated from the D1730 / D1600 (a) and ATR method infrared wherein among the infrared spectrum which is obtained by analyzing the heart of expandable polystyrene resin particles, determined the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730 cm -1, it is calculated from the D1730 / D1600 spectroscopically Absorbance ratio (B) satisfies (A) <(B) and (A) is less than 0.05. It is characterized by that.

ATR法赤外分光分析とは、全反射吸収を利用する1回反射型ATR法により赤外吸収スペクトルを測定する分析方法である。
この分析方法は、高い屈折率を持つATRプリズムを試料に密着させ、ATRプリズムを通して赤外線を試料に照射し、ATRプリズムからの出射光を分光分析する方法である。ATR法赤外分光分析は、試料とATRプリズムを密着させるだけでスペクトルを測定できるという簡便さ、深さ数μmまでの表面分析が可能である等の理由で高分子材料等の有機物をはじめ、種々の物質の表面分析に広く利用されている。
The ATR infrared spectroscopic analysis is an analysis method in which an infrared absorption spectrum is measured by a single reflection type ATR method using total reflection absorption.
This analysis method is a method in which an ATR prism having a high refractive index is brought into close contact with a sample, infrared light is irradiated to the sample through the ATR prism, and light emitted from the ATR prism is spectrally analyzed. ATR method infrared spectroscopic analysis includes organic substances such as polymer materials for the reason that the spectrum can be measured simply by bringing the sample and the ATR prism into close contact, and the surface analysis up to a depth of several μm is possible. It is widely used for surface analysis of various substances.

本発明では、ATR法赤外分光分析により、低密度発泡成形用発泡性ポリスチレン系樹脂粒子の表面と中心部とを分析し、得られた赤外吸収スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求める。そして前記各吸光度の値から樹脂粒子の表面の吸光度比(A)と樹脂粒子の中心部の吸光度比(B)とを算出する。
なお、赤外吸収スペクトルから得られる1600cm−1での吸光度D1600は、ポリスチレン系樹脂に含まれるベンゼン環の面内振動に由来する1600cm−1付近に現れるピーク高さをいう。
また、赤外吸収スペクトルから得られる1730cm−1での吸光度D1730は、アクリル酸エステル系樹脂に含まれるエステル基C=0間の伸縮振動に由来する1730cm−1付近に現れるピーク高さをいう。
In the present invention, the surface and the center of the expandable polystyrene resin particles for low density foam molding are analyzed by ATR infrared spectroscopy, and the absorbance D1730 at 1730 cm −1 of the obtained infrared absorption spectrum. And the absorbance D1600 at 1600 cm −1 . Then, the absorbance ratio (A) on the surface of the resin particle and the absorbance ratio (B) at the center of the resin particle are calculated from the absorbance values.
In addition, the light absorbency D1600 in 1600cm < -1 > obtained from an infrared absorption spectrum says the peak height which appears in the 1600cm < -1 > vicinity derived from the in-plane vibration of the benzene ring contained in a polystyrene-type resin.
Further, the absorbance D 1730 at 1730 cm −1 obtained from the infrared absorption spectrum refers to a peak height that appears in the vicinity of 1730 cm −1 derived from stretching vibration between ester groups C = 0 contained in the acrylate resin.

また表面の吸光度比は、図1に示すように低密度発泡成形用発泡性ポリスチレン系樹脂粒子1の表面AについてATR法赤外分光分析により測定して求めた値であり、また中心部の吸光度比は、図2に示すように低密度発泡成形用発泡性ポリスチレン系樹脂粒子1をその中心を通って切断した断面の中心部BについてATR法赤外分光分析により測定して求めた値である。   Further, the absorbance ratio of the surface is a value obtained by measuring the surface A of the low-density foamable expandable polystyrene resin particle 1 by ATR infrared spectroscopy as shown in FIG. The ratio is a value obtained by measuring the central part B of the cross section obtained by cutting the expandable polystyrene resin particles 1 for low density foam molding through the center thereof by ATR infrared spectroscopy as shown in FIG. .

本発明の低密度発泡成形用発泡性ポリスチレン系樹脂粒子は、前述したように算出された樹脂粒子の表面の吸光度比(A)と樹脂粒子の中心部の吸光度比(B)とが、
(A)<(B)であり、且つ(A)が0.05未満である、との関係を満たすことを特徴としている。
即ち、本発明の低密度発泡成形用発泡性ポリスチレン系樹脂粒子は、粒子の直径方向において、含有されているスチレン−アクリル酸エステル共重合体成分の割合が、中心部で濃度が高く、表層側で低濃度となる。
The expandable polystyrene resin particles for low density foam molding of the present invention have an absorbance ratio (A) of the surface of the resin particles calculated as described above and an absorbance ratio (B) of the center part of the resin particles.
It is characterized in that (A) <(B) and (A) is less than 0.05.
That is, in the expandable polystyrene resin particles for low-density foam molding of the present invention, the ratio of the styrene-acrylate copolymer component contained in the diameter direction of the particles is high in the center, and the surface layer side With low concentration.

本発明の低密度発泡成形用発泡性ポリスチレン系樹脂粒子は、前述したようにスチレン−アクリル酸エステル共重合体成分の分布構造を有していることから、発泡性能が高く、低密度の発泡成形体が得られる。樹脂粒子の表面の吸光度比(A)と樹脂粒子の中心部の吸光度比(B)との関係((A)<(B))を満たさない場合は、得られる発泡性ポリスチレン系樹脂粒子の発泡性能が劣り、低密度の発泡成形体が得にくくなる。   Since the expandable polystyrene resin particles for low density foam molding of the present invention have a distributed structure of styrene-acrylic acid ester copolymer components as described above, the foaming performance is high and low density foam molding is performed. The body is obtained. When the relationship between the absorbance ratio (A) on the surface of the resin particles and the absorbance ratio (B) at the center of the resin particles ((A) <(B)) is not satisfied, foaming of the resulting expandable polystyrene resin particles The performance is inferior and it becomes difficult to obtain a low-density foam molded article.

前記表面の吸光度比(A)は、0.05未満であり、0.04未満がより好ましい。表面の吸光度比(A)が0.05を超えると、発泡性ポリスチレン系樹脂粒子の表層側でスチレン−アクリル酸エステル共重合体成分が高くなることから、高発泡倍数(低密度)の予備発泡粒子及び発泡成形体の製造は可能であるが、高発泡倍数で予備発泡した場合に発泡粒子の結合が多くなり生産性が低下するため好ましくない。   The absorbance ratio (A) of the surface is less than 0.05, and more preferably less than 0.04. When the surface absorbance ratio (A) exceeds 0.05, the styrene-acrylic acid ester copolymer component becomes higher on the surface layer side of the expandable polystyrene resin particles, so that a high expansion ratio (low density) pre-expanded Although it is possible to produce the particles and the foamed molded product, when pre-expanded at a high expansion ratio, the number of bonded foam particles increases, which is not preferable.

前記中心部の吸光度比(B)は0.20〜0.60の範囲が好ましく、更に好ましくは0.30〜0.60の範囲である。中心部の吸光度比(B)が0.20未満であると発泡性ポリスチレン系樹脂粒子の発泡性能が劣る。また中心部の吸光度比(B)が0.60を超えると成形時に収縮が大きくなりやすく、発泡成形体の強度が低下する。   The absorbance ratio (B) at the center is preferably in the range of 0.20 to 0.60, more preferably in the range of 0.30 to 0.60. If the absorbance ratio (B) at the center is less than 0.20, the foaming performance of the expandable polystyrene resin particles is poor. On the other hand, if the absorbance ratio (B) at the center exceeds 0.60, the shrinkage tends to increase at the time of molding, and the strength of the foamed molded product decreases.

本発明の低密度発泡成形用発泡性ポリスチレン系樹脂粒子は、前述した本発明に係る製造方法により効率良く製造することができるが、製造方法はそれに限定されない。   The expandable polystyrene resin particles for low density foam molding of the present invention can be efficiently produced by the production method according to the present invention described above, but the production method is not limited thereto.

本発明の低密度発泡成形用発泡性ポリスチレン系樹脂粒子は、嵩密度0.006〜0.0125g/cmの範囲となるように予備発泡して低密度ポリスチレン系樹脂予備発泡粒子とし、更にこの予備発泡粒子を成形型のキャビティー内に充填し、加熱して型内発泡成形することにより、低密度ポリスチレン系樹脂発泡成形品を製造するために用いられる。 The expandable polystyrene resin particles for low density foam molding of the present invention are pre-foamed so as to have a bulk density in the range of 0.006 to 0.0125 g / cm 3 to form low-density polystyrene resin pre-expanded particles. The pre-expanded particles are filled in a cavity of a mold, and heated to perform in-mold foam molding, and used to produce a low density polystyrene resin foam molded product.

なお、本発明において低密度ポリスチレン系樹脂予備発泡粒子の嵩密度とは、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。
<予備発泡粒子の嵩密度>
先ず、低密度ポリスチレン系樹脂予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積VcmをJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいてポリスチレン系樹脂予備発泡粒子の嵩密度を測定する。
嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
In the present invention, the bulk density of the low-density polystyrene resin pre-expanded particles refers to those measured according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
<Bulk density of pre-expanded particles>
First, Wg was collected as a measurement sample using low-density polystyrene resin pre-expanded particles, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was apparent according to JIS K6911. It measures using a density measuring device, The bulk density of the polystyrene-type resin pre-expanded particle is measured based on a following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)

本発明の低密度ポリスチレン系樹脂予備発泡粒子は、嵩密度が0.006〜0.0125g/cmの範囲であり、0.009〜0.011g/cmの範囲が好ましい。
この低密度ポリスチレン系樹脂予備発泡粒子の嵩密度が0.006g/cm未満であると、収縮が大きくなるだけでなく、発泡成形体の強度が低下する。また嵩密度が0.0125g/cmを超えると、発泡性ポリスチレン系樹脂粒子の使用量が多くなり好ましくない。
Low density polystyrene resin pre-expanded particles of the present invention has a bulk density in the range of 0.006~0.0125g / cm 3, a range of 0.009~0.011g / cm 3 are preferred.
When the bulk density of the low-density polystyrene resin pre-expanded particles is less than 0.006 g / cm 3 , not only the shrinkage increases, but also the strength of the foam-molded product decreases. Moreover, when the bulk density exceeds 0.0125 g / cm 3 , the amount of expandable polystyrene resin particles used is undesirably increased.

また、前記低密度ポリスチレン系樹脂予備発泡粒子を型内発泡成形して得られた、本発明の低密度ポリスチレン系樹脂発泡成形体は、0.006〜0.0125g/cmの範囲の密度であることが好ましく、0.009〜0.011g/cmの範囲が好ましい。
なお、本発明において低密度ポリスチレン系樹脂発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した密度のことである。
<発泡成形体の密度>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
Further, the low density polystyrene resin foam molded product of the present invention obtained by in-mold foam molding of the low density polystyrene resin pre-expanded particles has a density in the range of 0.006 to 0.0125 g / cm 3. It is preferable that it is in the range of 0.009 to 0.011 g / cm 3 .
In the present invention, the density of the low-density polystyrene-based resin foam molded article is a density measured by a method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Density of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test specimen condition adjustment and measurement specimens were cut from a sample that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C ± 2 ° C x 50% ± 5% or 27 ° C ± 2 ° C x 65% ± 5%. It has been left for more than an hour.

以下、実施例によって本発明の具体例を示すが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。また、以下の実施例、比較例において、発泡性ポリスチレン系樹脂粒子の吸光度比の結果は、発泡剤含浸前のポリスチレン系樹脂粒子の吸光度比の結果と同様であった。   Hereinafter, specific examples of the present invention will be described by way of examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited to the following examples. In the following examples and comparative examples, the results of the absorbance ratio of the expandable polystyrene resin particles were the same as the results of the absorbance ratio of the polystyrene resin particles before impregnation with the foaming agent.

以下の実施例、比較例において、ポリスチレン系樹脂粒子の吸光度比、予備発泡時の最低発泡嵩密度、予備発泡時の結合量、発泡成形体の外観及び総合評価は、次の測定方法及び評価基準により測定・評価した。   In the following Examples and Comparative Examples, the absorbance ratio of polystyrene resin particles, the minimum foamed bulk density at the time of pre-foaming, the amount of bonding at the time of pre-foaming, the appearance and overall evaluation of the foamed molded product are the following measurement methods and evaluation criteria. Measured and evaluated by

<吸光度比の測定>
吸光度比(D1730/D1600)は下記の要領で測定される。
即ち、無作為に選択した10個の各樹脂粒子の表面(図1中の符号A)、及び粒子を中心を通って切断した断面の中心部(図2中の符号B)について、ATR法赤外分光分析により粒子表面分析を行って赤外線吸収スペクトルを得る。
各赤外線吸収スペクトルから吸光度比(D1730/D1600)をそれぞれ算出し、表面Aに付いて算出した吸光度比の相加平均を吸光度比(A)とし、中心部Bについて算出した吸光度比の相加平均を吸光度比(B)とする。
吸光度D1730及び、D1600は、たとえばNicolet社から商品名「フーリエ変換赤外分光分析計 MAGMA560」で販売されている測定装置を用いて測定する。
尚、赤外吸収スペクトルから得られる1600cm−1での吸光度D1600は、ポリスチレン系樹脂に含まれるベンゼン環の面内振動に由来する1600cm−1付近に現れるピークの高さをいう。
また、赤外吸収スペクトルから得られる1730cm−1での吸光度D1730は、アクリル酸エステルに含まれるエステル基のC=0間の伸縮振動に由来する1730cm−1付近に現れるピークの高さをいう。
<Measurement of absorbance ratio>
The absorbance ratio (D1730 / D1600) is measured as follows.
That is, the ATR method red is used for the surface of each of 10 resin particles selected at random (reference A in FIG. 1) and the central portion (reference B in FIG. 2) of the cross section cut through the particle. An infrared absorption spectrum is obtained by particle surface analysis by external spectroscopic analysis.
The absorbance ratio (D1730 / D1600) was calculated from each infrared absorption spectrum, and the arithmetic average of the absorbance ratio calculated on the surface A was defined as the absorbance ratio (A). Is the absorbance ratio (B).
The absorbances D1730 and D1600 are measured using a measuring device sold by, for example, Nicolet Corporation under the trade name “Fourier Transform Infrared Spectrometer MAGMA 560”.
The absorbance D1600 at 1600 cm −1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 1600 cm −1 derived from the in-plane vibration of the benzene ring contained in the polystyrene resin.
Further, the absorbance D 1730 at 1730 cm −1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 1730 cm −1 derived from stretching vibration between C = 0 of the ester group contained in the acrylate ester.

<最低発泡嵩密度>
発泡性ポリスチレン系樹脂粒子を蒸気圧0.02MPaで30秒単位で加熱し、各々の発泡嵩密度を測定する。これを発泡粒子に収縮が発生するまで行い、最も低い嵩密度の値を最低発泡嵩密度とした。
本発明において、最低発泡嵩密度が0.010g/cm以下である場合を○(良好)とし、0.010g/cmを超える場合を×(不良)として評価した。
<Minimum foaming bulk density>
The expandable polystyrene resin particles are heated at a vapor pressure of 0.02 MPa in units of 30 seconds, and each foamed bulk density is measured. This was performed until shrinkage occurred in the expanded particles, and the lowest bulk density value was defined as the minimum expanded bulk density.
In the present invention, the case where the minimum foamed bulk density was 0.010 g / cm 3 or less was evaluated as ◯ (good), and the case where it exceeded 0.010 g / cm 3 was evaluated as x (defect).

<予備発泡時の結合量>
前記予備発泡の際に、1cmの目開きの篩を通し、篩上に残った数個の予備発泡粒子が結合したものの質量(X)を測定し、予備発泡に使用した発泡性ポリスチレン系樹脂粒子の総量(Y)に対しての割合を、以下の式により算出し、予備発泡時の結合量(%)とした。
予備発泡時の結合量(%)=(X/Y)×100
本発明において、予備発泡時の結合量が10%未満である場合を○(良好)とし、10%以上である場合を×(不良)として評価した。
<Binding amount during preliminary foaming>
In the pre-foaming, a foamed polystyrene resin particle used for pre-foaming is measured by passing through a sieve with 1 cm openings and measuring the mass (X) of several pre-foamed particles remaining on the sieve. The ratio with respect to the total amount (Y) was calculated by the following formula and used as the binding amount (%) at the time of preliminary foaming.
Bond amount during pre-foaming (%) = (X / Y) × 100
In the present invention, the case where the amount of bonding at the time of preliminary foaming was less than 10% was evaluated as ◯ (good), and the case where it was 10% or more was evaluated as x (bad).

<発泡成形体の外観>
発泡嵩密度0.010g/cmの予備発泡粒子をゲージ圧0.07MPaの水蒸気で加熱成形し、成形後に温度23℃、湿度50%で24時間放置して、密度0.010g/cmの発泡成形体を得た。
本発明において、発泡成形体の外観(成形後24時間放置)に収縮が見られなかった場合を○(良好)とし、収縮が見られた場合を×(不良)として評価した。
<Appearance of foam molding>
The pre-expanded particles foamed bulk density of 0.010 g / cm 3 was heated molded with steam at a gauge pressure of 0.07 MPa, temperature of 23 ° C. After the molding, it was allowed to stand at 50% humidity for 24 hours, the density of 0.010 g / cm 3 A foamed molded product was obtained.
In the present invention, the case where no shrinkage was observed in the appearance of the foamed molded article (left for 24 hours after molding) was evaluated as ◯ (good), and the case where shrinkage was observed was evaluated as x (defect).

<総合評価>
前記<最低発泡嵩密度>、<予備発泡時の結合量>及び<発泡成形体の外観>の各試験・評価項目において、全ての評価が○(良好)であった場合を◎(良好)とし、一つでも×(不良)があった場合を×(不良)として総合評価した。
<Comprehensive evaluation>
In each test / evaluation item of <minimum foamed bulk density>, <bond amount at the time of pre-foaming>, and <appearance of the foamed molded product>, a case where all evaluations were ◯ (good) is ◎ (good) The case where there was even x (defect) was evaluated as x (defect).

[実施例1]
(種粒子の製造)
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤として第三リン酸カルシウム100質量部及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム2.0質量部を供給し攪拌しながらスチレンモノマー40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部を添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してポリスチレン系樹脂粒子(a)を得た。
前記ポリスチレン系樹脂粒子(a)を篩分けし、種粒子として粒子径0.5〜0.71mmのポリスチレン系樹脂粒子(b)を得た。
次に、内容量5リットルの攪拌機付き重合容器内に、水2000質量部、前記ポリスチレン系樹脂粒子(b)500質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム0.3質量部を供給して攪拌しながら72℃に昇温した。
[Example 1]
(Manufacture of seed particles)
A polymerization vessel equipped with a stirrer having an internal volume of 100 liters is supplied with 40000 parts by mass of water, 100 parts by mass of tricalcium phosphate as a suspension stabilizer, and 2.0 parts by mass of calcium dodecylbenzenesulfonate as an anionic surfactant, while stirring. After adding 40000 parts by mass of a monomer and 96.0 parts by mass of benzoyl peroxide and 28.0 parts by mass of t-butylperoxybenzoate as a polymerization initiator, the temperature was raised to 90 ° C. to polymerize. And it hold | maintained at this temperature for 6 hours, and also, after heating up to 125 degreeC, it cooled after 2 hours, and obtained the polystyrene-type resin particle (a).
The polystyrene resin particles (a) were sieved to obtain polystyrene resin particles (b) having a particle diameter of 0.5 to 0.71 mm as seed particles.
Next, in a polymerization vessel equipped with a stirrer having an internal volume of 5 liters, 2000 parts by mass of water, 500 parts by mass of the polystyrene resin particles (b), 6.0 parts by mass of magnesium pyrophosphate as a suspension stabilizer and an anionic surfactant As the above, 0.3 parts by mass of calcium dodecylbenzenesulfonate was supplied and heated to 72 ° C. while stirring.

(第1重合工程)
次に、重合開始剤としてベンゾイルパーオキサイド4.5質量部及びt−ブチルパーオキシベンゾエート1.1質量部をスチレンモノマー180質量部、アクリル酸ブチル30質量部の混合液に溶解させたものを前記5リットルの重合容器に供給してから、72℃で60分保持した。
(First polymerization step)
Next, a solution obtained by dissolving 4.5 parts by mass of benzoyl peroxide and 1.1 parts by mass of t-butylperoxybenzoate in a mixed solution of 180 parts by mass of styrene monomer and 30 parts by mass of butyl acrylate as a polymerization initiator The mixture was supplied to a 5 liter polymerization vessel and held at 72 ° C. for 60 minutes.

(第2重合工程)
60分経過後に反応液を110℃まで150分で昇温しつつ、且つスチレンモノマー1290gを150分で重合容器内にポンプで一定量づつ供給した上で、120℃に昇温して2時間経過後に冷却し、ポリスチレン系樹脂粒子(c)を得た。
(Second polymerization step)
After 60 minutes, the reaction solution was heated to 110 ° C. in 150 minutes, and 1290 g of styrene monomer was fed into the polymerization vessel by a fixed amount in 150 minutes, and then heated to 120 ° C. for 2 hours. After cooling, polystyrene resin particles (c) were obtained.

(樹脂粒子の吸光度比)
得られたポリスチレン系樹脂粒子(c)について、前記<吸光度比の測定>によって樹脂粒子の表面の吸光度比(A)と中心部の吸光度比(B)とを測定した。
その結果を表1に示す。また得られた発泡性ポリスチレン系樹脂粒子についても、前記<吸光度比の測定>により吸光度比を測定することができる。
(Absorbance ratio of resin particles)
With respect to the obtained polystyrene resin particles (c), the absorbance ratio (A) on the surface of the resin particles and the absorbance ratio (B) at the center were measured by the above <Measurement of Absorbance Ratio>.
The results are shown in Table 1. Also, the absorbance ratio of the obtained expandable polystyrene resin particles can be measured by the above <Measurement of Absorbance Ratio>.

(発泡剤含浸)
続いて、別の内容量5リットルの攪拌機付き重合容器に、水2200質量部、ポリスチレン系樹脂粒子(c)1800質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びドデシルベンゼンスルフォン酸カルシウム0.4質量部を供給して攪拌しながら70℃に昇温した。次に、発泡助剤としてシクロヘキサン9.0質量部を重合容器内に入れて密閉し100℃に昇温した。次に、発泡剤としてn−ブタン126質量部をポリスチレン系樹脂粒子(c)が入った重合容器内に圧入して3時間保持した後、30℃以下まで冷却した上で重合容器内から取り出し乾燥させた上で13℃の恒温室内に5日間放置して発泡性ポリスチレン系樹脂粒子を得た。
(Foaming agent impregnation)
Subsequently, in another polymerization vessel equipped with a stirrer having a capacity of 5 liters, 2200 parts by mass of water, 1800 parts by mass of polystyrene-based resin particles (c), 6.0 parts by mass of magnesium pyrophosphate as a suspension stabilizer and dodecylbenzenesulfonic acid 0.4 parts by mass of calcium was supplied and the temperature was raised to 70 ° C. while stirring. Next, 9.0 parts by mass of cyclohexane as a foaming aid was placed in a polymerization vessel, sealed and heated to 100 ° C. Next, 126 parts by mass of n-butane as a foaming agent is pressed into a polymerization vessel containing polystyrene resin particles (c) and held for 3 hours, and then cooled to 30 ° C. or lower, taken out from the polymerization vessel and dried. And allowed to stand in a thermostatic chamber at 13 ° C. for 5 days to obtain expandable polystyrene resin particles.

(予備発泡)
続いて、発泡性ポリスチレン系樹脂粒子の表面に表面処理剤としてジンクステアレート及びヒドロキシステアリン酸トリグリセリドを被覆処理した上で、蒸気圧0.02MPaで加熱を行い、最低発泡嵩密度を測定した結果、0.008g/cmであった。
次いで予備発泡装置にて嵩密度0.010g/cmに予備発泡した後に20℃で24時間熟成してポリスチレン系樹脂予備発泡粒子を得た。
この予備発泡の際に、前記<予備発泡時の結合量>により結合量を測定した。
(Pre-foaming)
Subsequently, the surface of the expandable polystyrene resin particles was coated with zinc stearate and hydroxystearic acid triglyceride as a surface treatment agent, heated at a vapor pressure of 0.02 MPa, and the minimum foamed bulk density was measured. It was 0.008 g / cm 3 .
Subsequently, after pre-foaming to a bulk density of 0.010 g / cm 3 using a pre-foaming device, the resultant was aged at 20 ° C. for 24 hours to obtain pre-foamed polystyrene resin particles.
At the time of this preliminary foaming, the amount of binding was measured by the above-mentioned <the amount of binding at the time of preliminary foaming>.

(発泡成形体の製造)
そして、内寸300mm×400mm×30mmの直方体形状のキャビティを有する成形型を備えた発泡ビーズ自動成形機(積水工機製作所社製 商品名「エース3型」)のキャビティ内に前記ポリスチレン系樹脂予備発泡粒子を充填し、ゲージ圧0.07Mpaの水蒸気で15秒間加熱成形を行った。次に、前記成形型のキャビティ内の発泡体を5秒間水冷した後、減圧下にて放冷(冷却工程)して、密度0.010g/cmのポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は収縮もなく、外観の良好なものであった。
(Manufacture of foam moldings)
Then, the polystyrene-based resin preliminary is placed in the cavity of an automatic foam bead molding machine (trade name “ACE 3 type” manufactured by Sekisui Koki Co., Ltd.) having a mold having a rectangular parallelepiped cavity with an inner dimension of 300 mm × 400 mm × 30 mm. The foamed particles were filled and heat-molded with water vapor having a gauge pressure of 0.07 Mpa for 15 seconds. Next, the foam in the cavity of the mold was water-cooled for 5 seconds, and then allowed to cool under reduced pressure (cooling step) to obtain a polystyrene-based resin foam molded body having a density of 0.010 g / cm 3 .
The obtained foamed molded article did not shrink and had a good appearance.

[実施例2]
第1重合工程において使用するスチレンモノマーを40.0質量部、アクリル酸ブチル50.0質量部の混合液とし、更に第2重合工程で使用するスチレンモノマーを1410質量部とした以外は実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は収縮もなく、外観の良好なものであった。
[Example 2]
Example 1 except that the styrene monomer used in the first polymerization step was a mixture of 40.0 parts by mass and 50.0 parts by mass of butyl acrylate, and that the styrene monomer used in the second polymerization step was 1410 parts by mass. In the same manner, a polystyrene-based resin foam molded article was obtained.
The obtained foamed molded article did not shrink and had a good appearance.

[実施例3]
第1重合工程において使用するスチレンモノマーを375質量部、アクリル酸ブチル12.5質量部の混合液とし、更に第2重合工程で使用するスチレンモノマーを1115質量部とした以外は実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は収縮もなく、外観の良好なものであった。
[Example 3]
The same as in Example 1 except that the styrene monomer used in the first polymerization step was mixed with 375 parts by mass and 12.5 parts by mass of butyl acrylate, and the styrene monomer used in the second polymerization step was 1115 parts by mass. Thus, a polystyrene-based resin foam molded article was obtained.
The obtained foamed molded article did not shrink and had a good appearance.

[実施例4]
第1重合工程において使用するアクリル酸エステルをアクリル酸2エチルヘキシルとした以外は実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は収縮もなく、外観の良好なものであった。
[Example 4]
A polystyrene-based resin foam molded article was obtained in the same manner as in Example 1 except that the acrylic ester used in the first polymerization step was 2-ethylhexyl acrylate.
The obtained foamed molded article did not shrink and had a good appearance.

[実施例5]
第3工程において、難燃剤としてテトラブロモシクロオクタンを1.0質量%使用する以外は実施例1と同様にしてポリスチレン系樹脂発泡成形体を得た。
得られた発泡成形体は収縮もなく、外観の良好なものであった。
[Example 5]
In the third step, a polystyrene resin foam molded article was obtained in the same manner as in Example 1 except that 1.0% by mass of tetrabromocyclooctane was used as a flame retardant.
The obtained foamed molded article did not shrink and had a good appearance.

[比較例1]
第1重合工程でアクリル酸ブチルを使用せず、スチレンモノマーを210質量部のみ使用した以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
しかし、最低発泡嵩密度が0.015g/cmであり、所望の嵩密度0.010g/cmの予備発泡粒子、発泡成形体は得られなかった。
[Comparative Example 1]
In the first polymerization step, expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that butyl acrylate was not used and only 210 parts by mass of the styrene monomer was used.
However, minimum foam bulk density of 0.015 g / cm 3, pre-expanded particles of the desired bulk density 0.010 g / cm 3, the foamed molded product was not obtained.

[比較例2]
第1重合工程において使用するスチレンモノマーを25.0質量部、アクリル酸ブチル70.0質量部の混合液とし、第2重合工程で使用するスチレンモノマー1405質量部とした以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
最低発泡嵩密度が0.009g/cmであり、所望の嵩密度0.010g/cmの予備発泡粒子、発泡成形体は得られたが、予備発泡時の結合量が非常に多く、生産性が極端に低下した。
[Comparative Example 2]
The same as in Example 1 except that the styrene monomer used in the first polymerization step was mixed with 25.0 parts by mass and 70.0 parts by mass of butyl acrylate, and 1405 parts by mass of the styrene monomer used in the second polymerization step. Thus, expandable polystyrene resin particles were obtained.
Pre-foamed particles and foamed molded bodies having a minimum foam bulk density of 0.009 g / cm 3 and a desired bulk density of 0.010 g / cm 3 were obtained. Sexually decreased.

[比較例3]
第1重合工程において使用するスチレンモノマーを425質量部、アクリル酸ブチル7.5質量部の混合液とし、加えて第2重合工程で使用するスチレンモノマーを1070質量部とした以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
しかし、最低発泡嵩密度が0.014g/cmであり、所望の嵩密度0.010g/cmの予備発泡粒子、発泡成形体は得られなかった。
[Comparative Example 3]
Example 1 except that the styrene monomer used in the first polymerization step was a mixed solution of 425 parts by mass and 7.5 parts by mass of butyl acrylate, and that the styrene monomer used in the second polymerization step was 1070 parts by mass. Similarly, expandable polystyrene resin particles were obtained.
However, the minimum foamed bulk density was 0.014 g / cm 3 , and pre-foamed particles and foamed molded articles having a desired bulk density of 0.010 g / cm 3 were not obtained.

前記実施例1〜5、比較例1〜3の製造条件の概要と、各試験・評価結果を表1,2にまとめて記す。   Tables 1 and 2 summarize the manufacturing conditions of Examples 1 to 5 and Comparative Examples 1 to 3 and the results of each test and evaluation.

Figure 0005478140
Figure 0005478140

Figure 0005478140
Figure 0005478140

表1,2の結果より、本発明に係る実施例1〜5の低密度発泡成形用発泡性ポリスチレン系樹脂粒子は、吸光度比(A)と(B)とが、(A)<(B)、且つ(A)が0.05未満である関係を満たしたものなので、最低発泡嵩密度が0.010未満という低密度(高発泡倍数)で予備発泡することができ、得られた低密度予備発泡粒子を型内発泡成形して低密度発泡成形体を製造することができた。実施例1〜5で得られた低密度発泡成形体は、収縮がなく外観が良好であった。
一方、アクリル酸エステルを使用していない比較例1、及び吸光度比(A)が(B)よりも大きくなって本発明の条件((A)<(B))となっていない比較例3で得られた発泡成形体は、いずれも最低発泡嵩密度が0.010以上であり、低密度で予備発泡することができなかった。また吸光度比(A)が0.057と本発明の範囲(0.05未満)を超えた比較例2は、予備発泡時の結合量が高くなり、製造効率が悪く、また得られた発泡成形体は収縮が大きくなって外観の劣るものとなった。
From the results shown in Tables 1 and 2, the foamable polystyrene resin particles for low density foam molding of Examples 1 to 5 according to the present invention have an absorbance ratio (A) and (B) of (A) <(B). In addition, since (A) satisfies the relationship of less than 0.05, it is possible to perform pre-foaming at a low density (high foaming multiple) with a minimum foaming bulk density of less than 0.010, and the obtained low-density preparatory foam A low density foamed molded product could be produced by foaming the foamed particles in the mold. The low density foamed moldings obtained in Examples 1 to 5 did not shrink and had good appearance.
On the other hand, in Comparative Example 1 that does not use an acrylate ester and Comparative Example 3 in which the absorbance ratio (A) is greater than (B) and does not satisfy the conditions of the present invention ((A) <(B)) All of the obtained foamed molded articles had a minimum foam bulk density of 0.010 or more, and could not be pre-foamed at a low density. Further, in Comparative Example 2 in which the absorbance ratio (A) exceeds 0.057 and less than the range of the present invention (less than 0.05), the amount of bonding at the time of preliminary foaming is high, the production efficiency is poor, and the obtained foam molding The body contracted greatly and became inferior in appearance.

本発明によれば、少ない可塑剤、有機溶剤量で低密度のポリスチレン系樹脂発泡成形体が得られ、昨今の環境問題に十分対応できる。また、発泡成形体の低密度化が図れることから、ポリスチレン系樹脂の使用量を削減でき、低コスト化することができる。更に低密度においても収縮が少ない発泡成形体が得られる。   According to the present invention, a low-density polystyrene-based resin foam molded article can be obtained with a small amount of plasticizer and organic solvent, and can sufficiently cope with recent environmental problems. Moreover, since the density of the foamed molded product can be reduced, the amount of polystyrene resin used can be reduced and the cost can be reduced. Furthermore, a foamed molded article with little shrinkage can be obtained even at a low density.

1…低密度発泡成形用発泡性ポリスチレン系樹脂粒子、A…表面、B…中心部。   DESCRIPTION OF SYMBOLS 1 ... Expandable polystyrene resin particle for low density foam molding, A ... Surface, B ... Center part.

Claims (4)

アクリル酸エステルとスチレン系単量体との共重合体を含有する発泡性ポリスチレン系樹脂粒子であって、
ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)とATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外スペクトルのうち、1730cm−1での吸光度D1730と1600cm−1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、(A)<(B)であり、且つ(A)が0.005以上0.05未満、(B)が0.20〜0.60である関係を満たし、
一気圧下における沸点が200℃以下の発泡助剤を含む、低密度発泡成形用発泡性ポリスチレン系樹脂粒子。
Expandable polystyrene resin particles containing a copolymer of an acrylate ester and a styrene monomer,
ATR method infrared spectroscopy of the infrared spectrum which is obtained by analyzing the surface of the expandable polystyrene resin particles by, obtains the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730cm -1, D1730 / D1600 from the infrared spectrum which is obtained by analyzing the central portion of the expandable polystyrene resin particles by absorbance ratio calculated as (a) ATR method infrared spectroscopy from the absorbance at 1730cm -1 D1730 and 1600 cm -1 The absorbance ratio (B) calculated from D1730 / D1600 is (A) <(B), and (A) is 0.005 or more and less than 0.05, (B) Satisfy the relationship of 0.20 to 0.60,
Expandable polystyrene resin particles for low-density foam molding , comprising a foaming aid having a boiling point of 200 ° C. or less under one atmospheric pressure .
請求項記載の低密度発泡成形用発泡性ポリスチレン系樹脂粒子を嵩密度が0.006〜0.0125g/cmの範囲となるように予備発泡して得られる低密度ポリスチレン系樹脂予備発泡粒子。 Low-density polystyrene resin pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles for low-density foam molding according to claim 1 so that the bulk density is in the range of 0.006 to 0.0125 g / cm 3. . 請求項記載の低密度ポリスチレン系樹脂予備発泡粒子を成形型内に充填して加熱、発泡させて得られる低密度ポリスチレン系樹脂発泡成形体。 A low-density polystyrene resin foam molded article obtained by filling the low-density polystyrene resin pre-expanded particles according to claim 2 in a mold and heating and foaming. (1)ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0〜80.0質量部とアクリル酸エステル単量体2.0〜12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第1重合工程と、
(2)次いで、該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、
(3)第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させて請求項記載の低密度発泡成形用発泡性ポリスチレン系樹脂粒子を得る工程とを有する低密度発泡成形用発泡性ポリスチレン系樹脂粒子の製造方法。
(1) In a dispersion obtained by dispersing polystyrene resin seed particles in water, 7.0 to 80.0 parts by mass of a styrene monomer and an acrylate ester alone with respect to 100 parts by mass of polystyrene resin seed particles. A first polymerization step of supplying 2.0 to 12.0 parts by mass of a monomer and allowing these monomers to be absorbed and polymerized in seed particles to grow polystyrene resin particles;
(2) Next, a second polymerization step in which only the styrenic monomer is supplied into the dispersion, and this is absorbed into the seed particles and polymerized to grow polystyrene resin particles;
(3) second after producing a polystyrene resin particles by performing the polymerization step, or growth developing a polystyrene resin particles impregnated with a blowing agent according to claim 1 low-density foam molding expandable polystyrene resin particles according And a process for producing expandable polystyrene resin particles for low density foam molding.
JP2009175595A 2009-07-28 2009-07-28 Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article Active JP5478140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175595A JP5478140B2 (en) 2009-07-28 2009-07-28 Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175595A JP5478140B2 (en) 2009-07-28 2009-07-28 Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article

Publications (2)

Publication Number Publication Date
JP2011026505A JP2011026505A (en) 2011-02-10
JP5478140B2 true JP5478140B2 (en) 2014-04-23

Family

ID=43635619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175595A Active JP5478140B2 (en) 2009-07-28 2009-07-28 Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article

Country Status (1)

Country Link
JP (1) JP5478140B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026506A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Low volatile expandable polystyrene-based resin particle, manufacturing method therefor, low volatile polystyrene-based resin pre-expanded particle, and low volatile polystyrene-based resin expansion molded article
CN103415559B (en) * 2011-03-04 2016-03-23 积水化成品工业株式会社 Composite polystyrene resin foam particle and foam molding thereof
CN103163103B (en) * 2013-02-26 2014-12-03 华南理工大学 Method of measuring plasticizer migration in esterified starch film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156736A (en) * 1984-01-26 1985-08-16 Hitachi Chem Co Ltd Primarily expanded particle of styrene based resin and production of expansion molded article
JP3732418B2 (en) * 2001-03-26 2006-01-05 積水化成品工業株式会社 Expandable styrene resin particles
CN101925647B (en) * 2008-01-30 2013-01-23 积水化成品工业株式会社 Expandable polystyrene resin beads, process for production thereof, pre-expanded beads and expanded moldings
JP2011026506A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Low volatile expandable polystyrene-based resin particle, manufacturing method therefor, low volatile polystyrene-based resin pre-expanded particle, and low volatile polystyrene-based resin expansion molded article

Also Published As

Publication number Publication date
JP2011026505A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5386262B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article
JP5373524B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
WO2009096327A1 (en) Expandable polystyrene resin beads, process for production thereof, pre-expanded beads and expanded moldings
JP5478140B2 (en) Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article
JP6055685B2 (en) Method for producing flame-retardant styrene resin particles, method for producing foamable particles, method for producing foamed particles, and method for producing foamed molded article
JP6612634B2 (en) Styrenic resin foamable particles, foamed particles and foamed molded article
JP2011026506A (en) Low volatile expandable polystyrene-based resin particle, manufacturing method therefor, low volatile polystyrene-based resin pre-expanded particle, and low volatile polystyrene-based resin expansion molded article
JP6441948B2 (en) Expandable styrene composite polyolefin resin particles and process for producing the same, pre-expanded particles, and expanded molded body
JP2011026511A (en) Flame-retardant foamable polystyrene-based resin particle, method for producing the same, preliminarily-foamed particle of flame-retardant polystyrene-based resin and expansion molding of flame-retardant polystyrene-based resin
JP5492616B2 (en) Expandable polystyrene resin particles, pre-expanded particles, and expanded molded articles
JP6407077B2 (en) Polystyrene foamed molded product, expandable particles, pre-expanded particles
JP5860220B2 (en) RESIN PARTICLE, PROCESS FOR PRODUCING THE SAME, FOAMABLE RESIN PARTICLE, FOAMED PARTICLE, AND FOAM MOLDED BODY
JP5798950B2 (en) Building materials and manufacturing method thereof
JP5732358B2 (en) Polystyrene-based resin particles, expandable resin particles, expanded particles, expanded molded articles, and methods for producing them
JP5410874B2 (en) Method for producing expandable polystyrene resin particles
JP2011246644A (en) Automobile interior material and method for manufacturing the same
JP2011026508A (en) Expandable polystyrene-based resin particle, pre-expanded particle, expansion molded article, and manufacturing method therefor
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP6407078B2 (en) Foam molded body, expandable resin particles, pre-expanded particles
JP6227955B2 (en) Foam molding
JP5965853B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP5592678B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP2017132971A (en) Styrenic resin foamed particle and styrenic resin foamed molding
JP2011026507A (en) Surface smooth polystyrene-based resin expansion molded article, and manufacturing method therefor
JP5713726B2 (en) Expandable polystyrene resin particles, expanded particles and expanded molded articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Effective date: 20130507

Free format text: JAPANESE INTERMEDIATE CODE: A132

A521 Written amendment

Effective date: 20130705

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130705

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131120

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20140128

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5478140

Free format text: JAPANESE INTERMEDIATE CODE: R150

Country of ref document: JP